

UML FOR SOC DESIGN

UML for SOC Design

Edited by

GRANT MARTIN
Tensilica Inc., Santa Clara,
CA, USA

and

WOLFGANG MÜLLER
University of Paderborn,
Germany

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Published by Springer,

www.springeronline.com

Printed on acid-free paper

All Rights Reserved
© 2005 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

ISBN-10 0-387-25744-6 (HB)

ISBN-13 978-0-387-25745-7 (e-book)

ISBN-13 978-0-387-25744-6 (HB)

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

ISBN-10 0-387-25745-4 (e-book)

Grant Martin would like to
dedicate this book to his

wife, Margaret Steele, and
daughters Jennifer and

Fiona.

Wolfgang Mueller dedicates
this book to his wife,

Barbara, and children
Maximilian, Philipp, and

Tabea.

Contents

Preface ix

Chapter 1

When Worlds Collide: Can UML help SoC Design? 1
Grant Martin, Wolfgang Mueller

1.1. Introduction 1
1.2. New Directions for HW-SW Interaction 2
1.3. UML 2.0 3
1.4. UML Profiles 7
1.5. Executable UML 9
1.6. UML in the SoC Design Process 11
1.7. Conclusions 15

Chapter 2

Why Systems-on-Chip needs More UML like a Hole in the Head 17
Stephen J. Mellor, John R. Wolfe, Campbell McCausland

2.1. Problem and Solution 17
2.2. Executable and Translatable UML Application Models 20
2.3. Manipulating the Application Models 27
2.4. Marks 32
2.5. Work in Context 33
2.6. How Does All This Stack Up? 35
2.7. A Hole in the Head? 36

Chapter 3

UML as a Framework for Combining Different Models of Computation 37
Peter Green

3.1. Introduction 37
3.2. Modeling Framework 38
3.3. Modeling Synchronous Dataflow Graphs in UML 2.0 39
3.4. Communication and Concurrency 44
3.5. Class and Object Relationships 46
3.6. The Shell Model 50
3.7. Hybrid Shells 53
3.8. Mapping Shell Models to Software and Hardware 55
3.9. Case Study: A Simple Modem 57
3.10. Conclusions 61

vii

UML FOR SOC DESIGN

Chapter 4

A Generic Model Execution Platform for the Design of Hardware and
Software

63

Tim Schattkowsky, Wolfgang Mueller, Achim Rettberg
4.1. Introduction 63
4.2. Related Works 64
4.3. The Model Execution Platform (MEP) 66
4.4. Code Generation for Hardware Implementation 75
4.5. The MEP Virtual Machine 86
4.6. Conclusions 87

Chapter 5

Hardware/Software Codesign of Reconfigurable Architectures Using UML 89
Bernd Steinbach, Dominik Fröhlich, Thomas Beierlein

5.1. Introduction 89
5.2. A Platform Model Driven Development Approach 91
5.3. Mapping Design Models onto Implementation Models 99
5.4. Mapping Implementation Models onto Platform-Specific Implementa-

tions 102
5.5. Experimental Results 115
5.6. Conclusions 116

Chapter 6

A Methodology for Bridging the Gap between UML and Codesign 119
Ananda Shankar Basu, Marcello Lajolo, Mauro Prevostini

6.1. Introduction 119
6.2. State of the Art and Contribution 120
6.3. The ACES Codesign Flow 121
6.4. Modeling Hardware Related Aspects in UML 130
6.5. Model Verification in UML 137
6.6. Transformation from UML to Codesign 139
6.7. Conclusions 146

Chapter 7

UML Tailoring for SystemC and ISA Modelling 147
Giovanni Agosta, Francesco Bruschi, Donatella Sciuto

7.1. Introduction 147
7.2. Abstraction and Application Specificity 148
7.3. UML Transaction Level Modeling 152
7.4. Application Specific UML Modeling 161
7.5. Concluding Remarks 173

Chapter 8

Model-Driven SoC Design: The UML-SystemC Bridge 175
Kathy Dang Nguyen, Zhenxin Sun, P.S. Thiagarajan, Weng-Fai Wong

8.1. Introduction 175
8.2. SystemC Preliminaries 179
8.3. UML Modeling 179
8.4. Implementation 183
8.5. Examples and Results 188
8.6. Conclusion 196

viii

Contents

Chapter 9
199

Carlos E. Pereira
9.1. Introduction 199
9.2. A Methodology for SoC Design and ASIP Generation 201
9.3. Case Study: Evaluating High Level Models 203
9.4. Problems in Mapping from High Level Models to HW–SW SoC 217
9.5. Related Works 220
9.6. Conclusions 222

Chapter 10

A Model-Driven Development Process for Low Power SoC Using UML 223
Yves Vanderperren, Wim Dehaene

10.1. Introduction 223
10.2. UML and System Design 225
10.3. Process and Model-Driven Development 230
10.4. Model-Driven Development for SoC: Case Study 231
10.5. Conclusions 251

References 253

Lisane Brisolara, Leandro B. Becker, Luigi Carro, Flavio Wagner,

ix

SoC Design and ASIP Generation
A Comparison between UML and Function Blocks for Heterogeneous

Preface

The last several years have seen significant progress on two related fronts
in hardware and software design for electronic systems. The first is the rapid
growth in the design of complex System-on-Chip devices (SoC). The second
is progress in adding capabilities to the Unified Modeling Language (UML) to
better support the design of real-time and embedded systems, culminating in the
UML 2.0 specification which is nearing final approval. It is thus an excellent
time to evaluate the combination of these two topics into a unified theme: UML
for SoC design.

UML 2.0 provides a collection of 13 different diagrams, which were orig-
inally targeted for application in software engineering. On the other hand, as
hardware systems exceed a specific complexity, new means and methodologies
are required to close the productivity gap for SoC design. UML and the closely
related concept of Model-Driven Architecture (MDA) based design provide
concepts, which are both of potential interest and real application for hardware
design and hardware/software co-design, respectively.

At DAC 2004, we organized a UML for SoC Design workshop as a discussion
forum to bring hardware, SoC, and UML experts together. For that workshop,
we received great international interest and contributions from Asia, Europe,
and North America. The success of the workshop has demonstrated that there
is a great interest in both academia and industry to create and investigate joint
efforts in SoC design and UML. This book is a collection based on the main
contributors to the DAC 2004 UML for SoC Design workshop, providing the
first set of papers for such a joint effort. Some additional contributions to the
book were made by other experts who did not present at the workshop,

The selected chapters present approaches to executable UML, UML trans-
lations for FPGA synthesis and SystemC simulation, as well as UML-specific
SoC methodologies. They give insights into the current state of the art and
the most recent advances in applying UML to SoC design. They provide a
representative overview of current UML activities in SoC design and give an
excellent introduction to UML’s application in hardware and hardware/software
codesign.

ix

UML FOR SOC DESIGN

We wish to acknowledge the contributions of all the contributors and partic-
ipants in the 2004 DAC UML for SoC Design workshop, and the support of the
DAC Executive Committee, Special Initiatives Chair, and the conference staff,
without whom this book would not have been possible.

Grant Martin
Tensilica Inc., USA

Wolfgang Mueller
Paderborn University , Germany

xii

Chapter 1

When Worlds Collide: Can UML Help SoC Design?

Grant Martin,1 Wolfgang Mueller2

1Tensilica, Inc.
Santa Clara, CA, USA

2Paderborn University
Paderborn, Germany

Abstract There has been a growing realization that it is necessary to marry together notions
from both the HW and SW design and verification worlds. It may be true that “HW
designers are from Mars, SW designers are from Venus”, and that traditionally
they have not interacted where they should — but we have seen the results: late
designs, poor HW-SW integration, and inadequate verification. This chapter
gives an overview of how UML can help SoC design to link the worlds.

1.1 Introduction

The last several years have seen growing interest in the convergence be-
tween software and hardware design, embodied in the form of the System-
on-Chip (SoC). SoC is a particularly interesting design approach for seeing
this convergence, because most SoCs are intended for embedded systems, and
all interesting SoCs are programmable, incorporating one or more processors.
The growing trend for the future in fact is multiprocessor SoC (MPSoC) using
network-on-chip (NOC) communication fabrics.

Yet the practices for design of these complex systems lag their growing
complexity. There are many issues with HW design, especially in coping with
advanced sub-100 nm. IC processes [43]. The complexity of these embedded
systems has revitalized the area of system level design, especially using new
standard languages such as SystemC [80]. But despite the fact that these systems
are complex mixtures of HW and SW processing, the barriers between the
traditionally divorced worlds of HW and SW are just beginning to break down.
Discussions of the SW issues involved in SoC design have been occurring for

1

G. Martin and W. Müller (eds.), UML for SOC Design, 1–15.

© 2005 Springer. Printed in the Netherlands.

2 UML FOR SOC DESIGN

a number of years [127], but the real take-off for these methods has not yet
started.

1.2 New Directions for HW-SW Interaction

Designers have been looking at UML for application to embedded software
and real-time design [114]. Now, SoC designers and architects have begun
to look at UML for possible improvements to the specification, design, im-
plementation and verification processes, as UML provides several means for
architectural as well as behavioural design, which have been well established
in HW and HW/SW Codesign for some time. The different UML diagrams or
variations of them already have found application in various areas such as:

requirements specification,

testbenches,

IP integration, and

architectural and behavioural modelling.

From the general perspective of SoC design, there are three key issues and
thus three opportunity areas in HW-SW integration. These are:

Embedded system and SoC architects need to decide on their choice of
programmable processors, bus architectures, memory sizes, and dedi-
cated hardware units, and make fundamental decisions on mapping func-
tions into hardware or software implementation. This is a traditional
co-design task. With multiple processors, as in MPSoC, mapping SW
tasks to particular processors, and determining how they communicate,
becomes a kind of “software-software” co-design.

HW developers need to validate the system architecture and hardware
components in the context of the overall HW-SW system. In particular,
Hardware-dependent Software (HdS) should be validated on transaction-
accurate models of the HW system, to ensure correct HW-SW integration,
long before bringing them together on the real product in the lab.

SW developers, whether working at the HdS, middleware, or applica-
tions level, need fast-executing HW-SW platform models on which to
validate the functionality of their software. In addition, at the HdS level,
a transaction-accurate platform model, as described above, can also be
used by SW developers for early validation.

Each of these HW-SW areas presents opportunities for ESL (Electronic System
Level) tools and methods, and we have recently seen significant progress made
in all of them:

When Worlds Collide: Can UML help SoC Design? 3

Co-design and design space exploration is supported by a number of
commercial tools. Even more important, the growing community around
SystemC as a standard modelling language allows the easier creation of
system level models of platforms to support mapping and choices of HW
or SW implementation, and a flow into implementation. These models
range from functional through transaction level architectural models, and
can serve the other communities of designers as well.

For HW developers needing to validate their HW components in the con-
text of the overall system, including the execution of HdS, the availability
of recent modelling languages such as SystemC and SystemVerilog, hard-
ware verification languages, and new verification environments which al-
low multiple languages to co-simulate and transaction level models from
all sources to co-exist, represent substantial progress and opportunities
for new methodologies. The new verification environments allow flexi-
ble creation of platform models for validating HdS in context and indeed
a flow of both design and testbench models from system architects to HW
designers and validation engineers is becoming a reality. The incorpora-
tion of C/C++-based Instruction Set Simulators (ISS’s) into multilingual
hardware verification tools is becoming standard. These new methods
and flows, based on standard languages, are tending to replace the older
proprietary co-simulation tools and enjoy much wider acceptance.

For SW engineers at all levels of abstraction, we see the emergence of
sufficiently accurate and fast executing functional models of processor
platforms, offering them tradeoffs between transaction or functional ac-
curacy, and speed. Such models can emerge from the system architectural
and co-design arena as discussed above, or be derived from specialised
processor modelling tools. Speeds of many MIPS or tens of MIPS for
functionally accurate models running on standard workstations under
Linux or Windows are possible, and there are an increasing number of
vendors offering these models or tools to create such models.

The latest ESL developments are only a start, but a good and productive one,
in offering improved productivity by allowing development, and integration of
hardware and software, for platform-based embedded system design, to occur
in a virtual sense at much earlier stages than has been possible with traditional
methods. We are at last reaching the point where the methods, models and tools
are available to address these issues very pragmatically.

1.3 UML 2.0

The Unified Modeling Language (UML) 2.0 is an Object Management Group
(OMG) standard divided into four main parts: the UML metamodel infrastruc-

4 UML FOR SOC DESIGN

ture, the actual UML definition (superstructure), the XML based interchange
format (XMI), and the Object Constraint Language (OCL). In this chapter, we
are mainly interested in the UML definition and its application.

UML has received significant upgrades in the revision from Version 1.5 [150]
to 2.0 [154] — also known as UML2. One of the most important structural
updates in the UML superstructure is the definition of components and their
ports, which represent building blocks that encapsulate structure and behaviour.
Substantial upgrades in the behavioural portions introduce actions and activities
derived from the concepts of the action semantics. Since the scope of the
UML2 is large, and its changes from the previous UML 1.5 specification is
considerable, we can only give a brief overview of UML2 and its OCL here and
refer the reader interested in more details to [150, 154, 155, 156, 157, 18].

1.3.1 Structure

The fundamental structural units of UML are classes with attributes, oper-
ations, and interfaces. Class and object diagrams are the different graphical
views provided for classes.

Components, represented by component diagrams, are introduced as au-
tonomous units with interfaces exposed to other components via ports. Com-
ponents have internal structure, consisting of elements that may be other com-
ponents or classes, connected by connectors, usually through their ports. Ports
of components are communication points, each of which may have a set of
required and provided interfaces. Ports allow components to hide details of
implementation (black box modelling). This concept owes much to the work
of ObjecTime/Rational/IBM on capsule-port-signal notation in ROOM [192].
This method of decomposition of overall system design intent, or application
structure, is more natural for most electronic system design than a purely object-
oriented class-method descriptive method as offered by other parts of UML. A
UML component as a structured class thus can have a realization as HW or
SW, and in addition, represents the communication between components in
an idealised form independent of implementation. The flexibility of compo-
nents also allows use of UML for specification of behaviours using a variety
of ‘models of computation’ (synchronous dataflow, synchronous reactive, etc.),
which is an important SoC aspect especially for systems implemented on a va-
riety of processing elements. The now classical example of a cellular handset
contains control-dominated processing often implemented as SW on a RISC
processor, interacting with signal processing dataflow algorithms implemented
in combinations of HW and SW running on a DSP.

Run-time instances are described by composite models and their diagrams.
Instances are connected by communication links with interfaces and ports,
which can be adapted to represent signals over channels in a hardware con-

When Worlds Collide: Can UML help SoC Design? 5

text as in SystemC, or messages written into defined memory locations in a
software context.

Finally, component deployments and their diagrams give a structural view
of hierarchical nodes with communication paths. They basically resemble an
architectural system view with execution steps on the connections and soft-
ware or hardware artefacts assigned to nodes. However, they just give a rough
overview of the component interaction and their expressiveness is rather limited
compared to the use of the behavioural diagrams.

1.3.2 Behaviour

UML2 has use cases, actions, activities, state machines, and interactions as
basic behavioural elements with various graphical representations.

Use cases represented by use case diagrams provide an informal functional
view of the system and its interaction with the environment. They are typically
applied to specify system requirements by means of actors, conditions, and the
system as a subject of investigation. As use cases are not strongly integrated
with the other behavioural parts of UML, they can be used for a variety of
purposes, including application-specific uses.

The main behavioural concepts of UML combine actions, activities, and state
machines, where the concept of actions was derived from the previous work of
the action semantics consortium and several years of experience in generating
executable code from UML.

In UML2, an action is defined as the fundamental unit of the UML behaviour.
Actions can apply primitive functions, invoke behaviours, send and receive
signals, and even modify structures by creating objects and links.

Actions are embedded in hierarchical and potentially asynchronous control
and data flows of activities — very similar to Petri Net semantics. Activities are
represented by activity diagrams. They are composed of object, control, and
executable nodes connected by links defining the flow of data or control tokens.
An executable node can be either an action or a structured activity. When
(input/output) pins or object nodes are defined, they stand for the production
and consumption of object tokens implicitly declaring a link as an object link.
Those links basically compare to places in Petri Nets with queuing semantics
and are introduced into UML2 to support the modelling of communication
structures with (possibly unlimited) input and output buffers. Additional control
nodes and structured activities provide advanced control flow constructs such
as loop, decision, fork, and join. Activities have an exception handling but do
not provide any history mechanism as supported by state machines. Activities
can be grouped into partitions, which give the individual activity a context,
such as hardware or a software partition or a physical location. However, the
assignment has no effect on the computation.

6 UML FOR SOC DESIGN

Activities can be invoked by (hierarchical) state machines. They can be ei-
ther assigned to states as entry/do/exit activities or to transitions as an effect
activity. UML state machines resemble finite state machines with hierarchical
(composite) and parallel (orthogonal) states. Events from activities and actions
are collected in a global event pool. A dispatcher takes events from that pool
and processes them in a non-defined order. For that, UML defines a run-to-
completion (RTC) semantics, meaning that the processing of the next event is
not started before the completion of the currently selected event. However,
the RTC semantics often turns out to be a source of incompatibilities with re-
spect to different hierarchical finite state machine implementations and Harel’s
StateCharts [85]. In hardware synthesis, for example, a synchronous parallel
behavioural semantic is applied, which is not covered by UML. Though UML2
provides basic support for discrete-event based models of computation through
activities and state machines, further investigation is necessary to apply UML
as framework for models of computation. The first work in that direction is
being done by SysML [207], which extends token flows by continuous token
flows and probabilities.

As a complementary behavioural concept, UML introduces interactions. In-
teractions are partially ordered traces over event occurrences, where events are
generated when a message is sent and received. Traces may have an assign-
ment to a discrete time scale, whose relationship to any computational step
of activities and state machines is not explicitly defined by the standard. In-
teractions can be represented as sequence, interaction overview, collaboration,
and timing diagrams, where sequence diagrams owe very much to ITU’s Mes-
sage Sequence Charts (MSCs). As a consequence, they may be applied to
various purposes such as the specification of testbenches. Sequence diagrams
represent the object traces as a lifeline proceeding from the top to the bottom.
Links between lifelines represent message calls. UML2 introduces new addi-
tional constructs to improve the expressive power of sequence diagrams with
combined fragments covering alternatives, loops, critical sections, strict se-
quencing across lifelines and parallel message sequences. The decomposition
of sequence diagram lifelines into hierarchical sequence diagrams allows ref-
erences to embedded interactions (interaction occurrences), in order to support
reuse.

1.3.3 The Object Constraint Language

The Object Constraint Language (OCL) of the UML2 is a declarative, ex-
pression based, textual language. The strength of OCL is its expressive power
for the definition of expressions over collection types, mainly sets, ordered
sets, bags, and sequences. For these types, OCL provides several built-in oper-

When Worlds Collide: Can UML help SoC Design? 7

ations such as notEmpty(), includes(), includesAll(), excludes(), excludesAll(),
subSequence(), exists(), forAll().

In the context of SoC design, they provide the basis for a much wider use of
OCL. For example, it can be applied to the definition of temporal logic based
properties for state machines which allows their use in requirement specification
and formal verification such as model checking as is demonstrated in [61]. For
these applications, the notion of a state has to be clearly defined in order to
reason about states and state configurations. In that respect, OCL provides a
much richer language than temporal logic based formulae like LTL or CTL and
is more comparable to PSL/Sugar.

1.4 UML Profiles

Profiles define application-oriented variations of standard UML. A profile
defines a refinement or extension of the UML metamodel typically given by
class diagrams (abstract syntax) with textual outlines (class descriptions). This
approach proves the applicability of UML for specific applications, since this
is the process where the deep UML expertise ‘collides’ with domain experts.
The profile document has to be readable by other domain experts, or, at least, to
be translatable for their understanding.1 To bring a profile into real application,
it is required that the profile metamodel is sufficiently precise so that it can
provided in a machine readable — preferably XMI based — format. Some
generic modelling tools are already available and several are under development,
which take such metamodels for their configurations. All in all, the definition
of a profile can be a time consuming process and there is still a long way to go to
arrive at precise and well-formed UML profiles for SoC design. Nevertheless,
the path is already paved with several profiles relevant for SoC design; others
are in preparation.

The most popular profile in the SoC community is certainly the Schedulabil-
ity, Performance, and Timing Analysis (SPT) profile, which is also known as
the RT profile.2 The SPT profile provides constructs to represent more easily
the kinds of timing and performance artefacts useful in embedded real-time
systems, such as Rate Monotonic Analysis (RMA) and Deadline Monotonic
Analysis (DMA). Though the profile is well defined and has existed for quite
a while, the practices around using these constructs are not yet codified into
standard approaches nor has a consensus emerged on how to make UML-based
designs with constraints on real-time performance interoperable across propri-
etary toolsets. Such a consensus is likely to emerge in the next few years as

1The notion of profiles is similar to the idea of EDA information models, which came up in the early 90’s
and were defined by the ISO-Std10303-11 EXPRESS language [69, 113].
2In January 2005, the OMG initiated the development of the complementary MARTE (Modelling and
Analysis of Real-Time Embedded systems) profile, a domain specific SPT extension [175].

8 UML FOR SOC DESIGN

the SPT profile and UML2 changes are supported by commercial tools and
user demands for interoperability and design flow provide an imperative for
standardised methods.

A related profile is the one for QoS and Fault Tolerance [158], which defines
the notion of concurrently executing resource-consuming components (RCC).
This profile covers real-time issues with a focus on communication policies and
their latency with hard and soft deadlines. However, though the QoS profile
has some overlap with the SPT profile there has been no effort to combine both
on a joint basis.

An additional profile was defined for applications in software, hardware, and
protocol testing. The UML testing profile [160] gives several definitions for
testbenches, test architectures, stimuli, and procedures. The standard gives a
mapping of the concepts to the ITU standard test language TTCN-3 (Testing and
Test Control Notation), which plays an important role in telecom and automotive
systems design. The mapping demonstrates its applicability for embedded
systems and SoC design.

For SoC specific application, we currently see two different activities: the
SoC profile and SysML. The SoC profile is an activity from the UML for
SoC Forum (USoCF). The USoCF is a Japanese initiative founded by CATS,
IBM/Rational, and Fujitsu to define the SoC profile with modelling guidelines.
Their approach is validated by several pilot projects. The current SoC profile
is based on the SPT profile and addresses the SystemC oriented SoC design
process. For more details, see Section 1.4.1.

An upcoming requirement for UML comes from the need to cover a wider
range of engineering applications such as automotive, aerospace, communi-
cations, and information systems. In that context, INCOSE (the International
Council on Systems Engineering) devised SysML (System Modelling Lan-
guage), which was submitted to the OMG as an UML profile. SysML extends
UML2 by additional diagrams and concepts. One important aspect of SysML
lies in its introduction of additional Models of Computation by extending the
behaviour of UML activities for the modelling of continuous and probabilis-
tic systems. Here, SysML modifies the definition of token consumption and
introduces flow rates and probabilities. Additional mechanisms support the
modelling of energy and material flows.

1.4.1 The UML for SoC Forum Profile

The draft proposal from the UML for SoC Forum in Japan, which was sub-
mitted to the OMG in January 2005, develops a set of extensions to allow UML
to be used for SoC design [65]. A special structure diagram, the SoC structure
diagram, is used in conjunction with class diagrams to create an executable
system level model.

When Worlds Collide: Can UML help SoC Design? 9

A number of stereotypes are defined to relate SoC model elements with
UML metaclass elements. The essential SoC model elements include modules,
connectors, channels and ports; clocks and resets; processors, protocols and
data types, and controllers. As one would expect, the module is the basic class
and supports hierarchy (modules contain modules and channels). Processes are
member functions for behaviour. Data is communicated between modules via
channels, using protocol interfaces which link to module ports. Clock channels
are used for synchronisation, and reset channels control system reset behaviours.

The profile gives example of class and structure diagrams and has a defined
capability for SystemC code generation that is derived naturally from the UML
classes and stereotypes. In fact, the profile is arguably a translation of SystemC
modelling constructs into UML terminology and diagram notation.

The SoC profile also uses OCL to define constraints on structural elements,
for example, the relationships between modules, channels, ports and connectors,
and interface inheritance and channel inheritance relationships. It does not yet
define constraints that go beyond the structural to the behavioural domain.

1.5 Executable UML

StateCharts and their variations have been supported as a means of graphical
capture by several EDA tools for more than 10 years. They have been available
as graphical representations and entry mechanisms for hardware description
languages such as VHDL (e.g., STATEMATE, i-Logix), together with code
generation of synthesisable output. To use StateCharts as a graphical modelling
front-end, states and state transitions are annotated with textual code as actions,
which is very similar to the use within several CASE tools.

With the advent of UML, the notion of executable and translatable UML
became a subject of wider interest and investigation [201, 131]. The notion of
executable UML basically denotes the application of UML as an abstract high
level programming language. In most cases, the approach to executable UML
covers a well-defined UML subset in addition to a specific specification, de-
scription, or programming language (surface language). Again, in most cases,
the subset covers class diagrams and state machine diagrams in combination
with an application-specific programming (or hardware description) language.
Each state machine typically gives the behaviour of one class with operations
as its activities.

During the last few years, the notion of executable UML was also investigated
within the OMG by the Action Semantics committee with the main industrial
contributions from tool vendors like Project Technology,3 Kennedy-Carter, and
Kabira [1]. The Action Semantics Proposal was an additional UML package

3now Accelerated Technology, Mentor Graphics

10 UML FOR SOC DESIGN

that specifies computational behavior in UML 1.5 and became the behavioural
basis of UML 2.0. In that context, the notion of an action language was intro-
duced. The original motivation of the OMG for the action language was the
definition of a language more abstract than a programming language with high
level query and assignment constructs (cf. Mellor in [131]).

The general concepts of action semantics provided many important capabil-
ities that enable UML to be considered as a realistic front-end specification and
design vehicle for a specific application domain such as SoC design. In that
context, one very promising area for future methodology work is to establish a
truly multilingual world, where software specified and modelled in UML can
code-generate platform-optimised software tasks, which can then be simulated
within a SystemC-based transaction level platform model, with appropriate OS
models. The hardware part of the design will move into SystemVerilog or
VHDL based implementation and verification, re-using the functional proto-
types built earlier in the process. The impetus and interest in using UML for
SoC design would not have built to the levels seen recently if there were not de-
velopments in code generation that allowed both the production of executable
models and the synthesis of implementation-quality code. The concepts of
actions embedded in activities and state machines allow the specification of
executable semantics in a syntax-neutral fashion and thus can allow a variety
of specific code generators targeting various languages and platforms.

The possibilities of flexible code generation have been used in experiments
with UML as a front end for hardware design, particularly targeting new system
design languages such as SystemC. The convergence of interests in hardware
and software development, using UML as a specification and design medium,
have been accompanied by a number of experiments targeting SystemC or an
HDL as an output language [182, 164, 28]. This works especially well in a
codesign flow, where system function is first captured independent of realisa-
tion, and only assigned to HW or SW implementation at a later point in system
analysis. A generated SystemC model can of course represent SW as well
as HW. The key to this flow is to satisfy a well-defined model of interaction
and communication between generated modules. Explicit communications be-
tween modules using ports, channels and interfaces as defined in SystemC is
now possible in UML2 and ensures that code generation can occur cleanly.
Generated processes can represent SW tasks as easily as HW modules. If one
defines a specific HW-centred profile in UML, as has been done in some of
the experiments, then it is possible to directly generate synthesisable Register
Transfer Level (RTL) models from UML behavioural diagrams. This has been
successfully demonstrated using both SystemC and HDLs.

SystemVerilog, representing recent advances in Verilog HDL, adding im-
proved HDL constructs as well as interfaces, modules and testbench capabil-
ities, represents another interesting target possibility for UML specifications

When Worlds Collide: Can UML help SoC Design? 11

intended to represent HW modules. Another alternative would be to generate
SystemC code from UML, and refine the SystemC to a SystemVerilog form
for implementation. Here, as discussed previously, the SystemC environment
would be used to bring together models of SW in C/C++ or code-generated
from UML, models of HW either again code-generated from UML or natively
captured in SystemC, and finally, using co-simulation with HDLs, legacy HW
blocks. A SystemC transaction level model of a target platform is an excel-
lent environment within which to validate software, new hardware blocks and
legacy HW blocks together.

1.6 UML in the SoC Design Process

With UML2 it is possible for designers to specify the structure and func-
tionality of interacting components which could be realised in either software
or hardware form. The interaction between components can be described as
the explicit transfer of data and control tokens on communication channels —
something that is more natural, and safer, for describing concurrent hardware
or software behaviour than implicit communications via method calls or global
variables. These channels can be ultimately realised via hardware signals or a
variety of mechanisms used for software task communications — but details of
implementation will be kept separate from functional modelling.

In general, the OMG notion of “Model-Driven Architecture” (MDA) fits in
well with the trends over the last decade in embedded system design towards
a kind of HW-SW codesign called “function-architecture codesign” [10]. In
this approach, which has been widely adopted in most commercial codesign
tools, the system functionality is captured in a manner separately from, and in-
dependent of, any possible architectural implementation, and can be analysed
separately from any consideration of architectural effects. When designers have
a notion of an explicit realisation architecture — for example, a specific target
HW-SW platform — they create a mapping between function and architecture
(between the “model” and the architecture), which allows analysis of the speci-
fication as a possible realisation. Estimates of performance can be compared to
system constraints specified for functional processing and the communications
between them.

Functional models can have behaviour specified in a number of forms — state
diagrams, activity diagrams and code. UML2 provides enhanced mechanisms
for behavioural specification, although it still lacks explicit support for multiple
models of computation — for example, dataflow firing rules. However, the
functional component modelling style can be used together with stereotyping
to capture dataflow — or it can be captured as pure code.

UML provides for several mechanisms for describing component interaction,
but one that has a particularly interesting potential is a combination of use case

12 UML FOR SOC DESIGN

modelling and sequence diagrams for describing testcases and the generation
of assertions. The ability to easily and flexibly describe expected message
interactions between components, with timing and performance constraints,
is one that has not yet been exploited for SoC design in details and is easily
overlooked.

We will now provide additional detail on these various ideas.

1.6.1 Platform-Based Design

One particular application for UML to SoC design that has already been
studied, and is highly relevant to the future application of UML in this context,
is platform-based design.

The notion of a HW-SW “platform” as a design and implementation vehicle
for embedded applications has been frequently discussed during the evolution of
the SoC “revolution”. Figure 1.1, from [37], illustrates the concept of platform-
based design.

Application Space
Application Instance

Architectural Space
Platform Instance

System Platform

Platform
Mapping

Platform
Design-Space
Export

Figure 1.1. The Concept of Platform-Based Design

In Figure 1.1 we see the concept of mapping a particular embedded sys-
tem application into a “system platform”, which represents a series of possible
platform instances from the architecture space. Platform-based design thus
represents one approach to function-architecture codesign. A system platform
subsumes a variety of possible platform instances whose specific configuration
is explored and optimally chosen based on the notion of design space explo-
ration.

A system platform can be described in a UML context by constructing a UML
extension or profile based on adding stereotypes to the basic UML constructs.
Applications, which might be described in UML collaboration diagrams, can
then be mapped to this platform using these additional stereotypes. The no-

When Worlds Collide: Can UML help SoC Design? 13

tations of UML deployment diagrams, if extended suitably, form one basis to
allow this mapping and analysis to be carried out.

Figure 1.2, again derived from the experiments in [37], illustrates the map-
ping between a communications protocol used in a particular application space,
and an embedded system platform that is described at several layers of interface
abstraction. This work, which preceded UML2 definition and standardisation,
would be greatly facilitated by using the new constructs available in UML2,
especially the additional semantics that facilitate the generation of executable
simulation and analysis models.

UI

Voice Q.

Transport FIFOs

Disp.

MAC

T_CRC

R_CRC

Phy L.

RTOS
 {Context Switch,
 Sched. policy}

Device
Drivers

{1.6 Mbps}

{64 kbps}

{BER = 0}

Processor
Xtensa

{Frequency}

I/O
devices

<<task>>
Transport

<<task>>
UI

<<mapping>><<mapping>>

<<use>>

<<mapping>>

<<use>>
<<implement>>

<<implement>>

<<use>>

<<mapping>>
<<mapping>>

<<mapping>>

ASIC

AS Layer

API Layer

ARC Layer

FPGA

Sonics
µnetwork

ISA execution services HW interface services

communication,
scheduling services

Figure 1.2. Example of Mapping a Communications Protocol onto an Embedded System Plat-
form

Another approach to the unification of UML and SoC design is the HASoC
approach of Edwards and Green [54]. In HASoC, design consists of building
uncommitted applications models, and target platform models, and through a
process of “committing” the application models to the platform models, (a form

14 UML FOR SOC DESIGN

of mapping,) the suitability of the platform can be explored and analysed and a
detailed configuration built.

Uncommitted models in HASoC are built with use cases, object and class
models, state diagrams, and sequence diagrams, and executable models can be
created by annotating code fragments in a manner similar to earlier action spec-
ification languages. Committing models implies HW-SW partitioning using
the capsule concepts from UML-RT (that in UML2 are supported using com-
ponents), and associating them with specific platform components. Platform
modelling builds a Software Hardware Interface Model (SHIM) and a Hard-
ware Architecture Model (HAM). The HAM uses the early UML concept of a
deployment diagram. The SHIM uses a UML component diagram.

As with the UML-Platform work in [37], HASoC could also make use of the
new UML2 constructs and future work may well carry it in that direction.

We can see from these two examples that the concepts of platform-based de-
sign of SoC and UML work well together and represent an interesting direction
for future development of notation and design methodologies. Although UML2
helps in several ways, no doubt further UML development will be required to
develop a more complete methodology.

1.6.2 Testbenches

One of the most interesting applications of UML for SoC design is the pos-
sibility of using its notations as the basis for generating testcases, and artefacts
suitable for verification, both via formal static methods (e.g. model or property
checking) and informal dynamic techniques (e.g. simulation). In particular,
interaction diagrams such as use case and sequence diagrams seem admirably
adaptable for these purposes. Of course, applications for verification and test
cases have been used in the software domain with similar diagrams. Message
sequence charts from SDL have been used for verification for a number of years.
Recent developments with TTCN-3 and the UML testing profile enhance those
possibilities. Of more interest, perhaps, for SoC design, lies in the application
of this for verifying hardware, or for verifying functions at the pre-partitioning
stage, where they might be implemented as either hardware or software.

It is fairly easy to see how sequence diagrams, or MSCs, annotated with
constraints, for example real-time and embedded timing constraints based on
the UML SPT profile [159], could become the basis for executable testcases.
These could be expressed in a classical Hardware Description Language (HDL)
such as Verilog or VHDL, or one of the new Hardware Verification Languages
(HVL) such as ‘e’ or OpenVera, or the new hybrid HDVL SystemVerilog. Mes-
sages passed between objects as indicated in a sequence diagram can become
an expected sequence of observed events, for example in a protocol timing
diagram. Because sequence diagrams establish a partial ordering of messages

When Worlds Collide: Can UML help SoC Design? 15

without explicit timing (unless annotated on as constraints or SPT expressions),
they can represent complex hardware or system communications protocols in a
purely functional manner. Then, by adding timing or performance constraints
or expressions, variably timed and fixed protocol sequences can be captured.

In addition, the new constructs allowed with sequence diagrams in UML2
such as alternatives and looping, allow more complex variable protocols to be
represented. An upcoming alternative can be the use of activity diagrams for
test cases, such as it is already supported by the AutomationDesk toolset from
DSPACE with Python code generation [53]. The generation of executable HDL
and HVL verification stimulators, monitors and checkers from sequence and
activity diagrams represent one interesting set of SoC verification possibilities.
Along the lines of OCL, one can also easily envisage its joint use with assertion
expressions in OpenVera, SystemVerilog, e, or PSL/Sugar formats, which can
be used with static formal verification tools (property or model checkers) to
accomplish verification without simulation for many classes of designs. In
addition, assertions can themselves be used to generate dynamic simulation
verification artefacts via a number of tools. Thus, the possibilities for using
UML to capture system specifications in formats useful for ‘golden model
verification’ processes seem to be a very fruitful avenue for exploration.

Another aspect, although a minor one, of UML which can be useful in golden
verification model generation is the use of Use Case diagrams to represent the
span of test scenario cases which form part of the overall design specification.
Use cases could be partitioned into key functional and performance cases, corner
cases for special coverage, and as one means to ensure better functional cov-
erage. They can also be used in a more rigorous development and verification
process to ensure system traceability from requirements through specification
through design and verification.

1.7 Conclusions

The linkage of UML and SoC design represents a set of possibilities that
have to this point been experimented with, but not yet become an everyday
part of designer practice. We are seeing a number of new methodologies being
advocated, accompanying a tremendous burst of rapid change in design lan-
guages. Among these, the use of UML is particularly appropriate as a way of
linking or bringing together the traditionally divided communities of HW and
SW developers. As reusable SoC platforms become the main targets of system
design, it is indeed possible that the main designers of HW in the future will
be systems and software designers using UML as a specification medium, and
automated flows leading them to implementations without needing deep HW
design expertise. Although this is currently just a dream of a few, we have seen
similar radical changes in design methods occur within our lifetimes.

Chapter 2

Why Systems-on-Chip needs More UML
like a Hole in the Head

Stephen J. Mellor, John R. Wolfe, Campbell McCausland

Accelerated Technology, a Division of Mentor Graphics
Tucson, AZ, USA

Abstract Let’s be clear from the outset: SoC most certainly can make use of UML; SoC
just doesn’t need more UML, or even all of it. Rather, we build executable models
of system behavior and translate them into hardware and software using a small
well-defined core of UML. No more UML!

2.1 Problem and Solution

2.1.1 A Caricature of the State of the Practice

In this section, we caricature today’s development process so as to illuminate
the problems that we address in our approach.

Partition: At the beginning of an SoC project, it is common for the hardware
and software teams to build a specification, usually in natural language. This
defines a proposed partitioning into hardware and software so the two teams,
with different skills, can head off in parallel.

Verifying the hardware/software partition requires the ability to test the sys-
tem, but it takes months of effort to produce a prototype that can be executed.
Yet we need to execute the prototype before we will know whether the logic
designers and the software engineers have the same understanding of the hard-
ware/software interface. We also need to run the prototype system before we
can measure its performance, but if the performance is unacceptable, we must
spend weeks changing the hardware/software partition, making the entire pro-
cess circular.

Interface: The only thing connecting the two separate teams, each with dif-
ferent skills, heading off in parallel, is a hardware/software interface specifica-

© 2005 Springer. Printed in the Netherlands.

G. Martin and W. Müller (eds.), UML for SOC Design,

 17

, 17–36.,,

.

18 UML FOR SOC DESIGN

tion, written in natural language. Two teams with disparate disciplines working
against an ambiguous document to produce a coherent system. Sounds like a
line from a cheap novel.

Invariably, the two components do not mesh properly. The reasons are myr-
iad: the logic designers didn’t really mean what they said about that register
in the document; the software engineers didn’t read all of the document, es-
pecially that part about waiting a microsecond between whacking those two
particular bits; and of course, the most common failure mode of all, logic inter-
face changes that came about during the construction of the behavioral models
that didn’t make it back into the interface specification.

Integration: So what’s a few interface problems among friends? Nothing
really. Just time. And money. And market share. We’ve been doing it this way
for years. It’s nothing a few days (well, weeks) in the lab won’t solve. Besides,
shooting these bugs is fun, and everyone is always so pleased when it finally
works. It’s a great bonding experience.

Eventually, the teams manage to get the prototype running, at least well
enough that they can begin measuring the performance of the system. “Per-
formance” has a number of meanings: Along with the obvious execution time
and latency issues, memory usage, gate count, power consumption and its evil
twin, heat dissipation, top the list of performance concerns in many of today’s
embedded devices.

There’s nothing like a performance bottleneck to throw a bucket of cold water
on the bonding rituals of the integration heroes. Unlike interface problems, you
don’t fix hardware/software partition problems with a few long nights in the
lab. No, this is when the engineers head back to their desks to ponder why they
didn’t pursue that career as a long-haul truck driver. At least they’d spend more
time at home.

2.1.2 Problems to Address

Given this is how we operate, what are the problems? They are, of course,
deeply interrelated.

Partition: For the early part of the process, logic designers and coders are
actually doing the same thing, just using different approaches. Distilled, we are
all involved in:

Gathering, analyzing, and articulating requirements for a product.

Creating abstractions for solutions to these requirements.

Formalizing these abstractions.

Rendering these abstractions in a solution of some form.

Why Systems-on-Chip needs More UML like a Hole in the Head 19

Testing the result (almost always through execution).

So, can’t we all just get along? At least in the beginning.

Interface: It is typical to describe the interface between hardware and soft-
ware with point-by-point connections, such as “write 0x8000 to address 0x3840
to activate the magnetron tube;” and “when the door is opened interrupt 5 will
be activated.” This approach requires that each connection between hardware
and software be defined, one by one, even though there is commonality in the
approach taken. Using a software example, each function call takes different
parameters, but all function calls are implemented in the same way. At present,
developers have to construct each interface by hand, both at specification and
implementation time. We need to separate the kinds of interface (how we do
function calls) from each interface (the parameters for each function call) and
apply the kinds of interface automatically just like a compiler.

Integration: We partitioned the system specification into hardware and soft-
ware because they are two very different products with different skills required
to construct them. However, that partitioning introduces multiple problems as
we outlined above so we need to keep the hardware and software teams working
together for as long as possible early in the process by maintaining common
elements between the two camps. That which they share in common is the
functionality of the system—what the system does.

A significant issue in system integration, even assuming the hardware and
software integrate without any problem, is that the performance may not be
adequate. Moreover, even if it is adequate at the outset, version 2.0 of the
product may benefit from shifting some functionality from software to hardware
or vice versa. And here we are, back at the partitioning problem.

2.1.3 Towards a Solution

Happily, the problems described above do suggest some solutions.

Build a Single Application Model: The functionality of the system can be
implemented in either hardware or software. It is therefore advantageous to ex-
press the solution in a manner that is independent of the implementation. The
specification should be more formal than English language text, and it should
raise the level of abstraction at which the specification is expressed, which,
in turn, increases visibility and communication. The specification should be
agreed upon by both hardware and software teams, and the desired functioning
established, for each increment, as early as possible.

Build an Executable Application Model: Indeed, the specification should be
executable. The UML is a vehicle for expressing executable specifications now
that we have the action semantics of UML 1.5 and its latest version, the action

20 UML FOR SOC DESIGN

model of UML 2.0. This action model was expressly designed to be free of
implementation decisions and to allow transformation into both hardware and
software. Executable application models enable earlier feedback on desired
functionality.

Don’t Model Implementation Structure: This follows directly from the above.
If the application model must be translatable into either hardware or software,
the modeling language must not contain elements designed to capture imple-
mentation, such as tasking or pipelining. At the same time, the modeling
language must be rich enough to allow efficient implementations. Chief among
the topics here is concurrency, both at the macro level (several threads of control
as tasks or processors and blocks of logic that execute concurrently) and at the
micro level (several elements in a computation executing at once).

In other words, we need to capture the natural concurrency of the application
without specifying an implementation.

Map the Application Model to Implementation: We translate the executable
UML application model into an implementation by generating text in hardware
and software description languages. This is accomplished by a set of mapping
rules that ‘reads’ selected elements of the executable UML application model
and produces text. The rules, just like a software compiler generating a func-
tion call in our example above, establish the mechanisms for communicating
between hardware and software according to the same pattern.

Crucially, the elements to be translated into hardware or software can be
selected by marking up the application model, which allows us to change the
partition between hardware and software as a part of exploring the architectural
solution space.

All this provides a way to eliminate completely the hardware/software inter-
face problems that are discovered during the initial integration, and to allow us
to change the partition between the hardware and software in a matter of hours.
The remainder of this chapter describes how this all works.

2.2 Executable and Translatable UML Application Models

2.2.1 Separation between Application and Architecture

A UML model can be made executable by simply adding code to it. How-
ever, this approach views a model as a blueprint to be filled out with more
and more elaborate implementation detail and so ties the model to a specific
implementation.

Instead, we must allow developers to model the underlying semantics of a
subject matter without having to worry about e.g. number of the processors,
data-structure organization, or the number of threads. This ability to spec-

Why Systems-on-Chip needs More UML like a Hole in the Head 21

ify functionality without specifying implementation is the difference between
blueprint-type models and executable-and-translatable models.

How can we capture the functionality of the system without specifying im-
plementation? The trick is to separate the application from the architecture,
and that trick differentiates blueprint-type models from executable ones. Figure
2.1 illustrates this separation. Focus on the dotted line that separates the two
parts.

Figure 2.1. The Separation between Application and Architecture

The dotted line between “application” and “architecture” enables the capture
of an executable application model by representing it in a simple form: sets of
data that are to be manipulated; states the elements of the solution go through;
and some functions that execute to access data, synchronize the behavior of the
elements, and carry out computation. This dotted line, consisting of sets, states,
and functions, captures the modeling language.

22 UML FOR SOC DESIGN

Only the semantics of the modeling language matter for translation purposes.
If a class is represented graphically as a box, or even as text, this is of no conse-
quence. Equally, no semantics content is added by composite structures. They
can be convenient for the modeler, but to be executed they must be reduced to
their constituent classes. Similar arguments can be made for the rich vocabulary
of state machines that also can be reduced to simpler elements.

The UML is just an accessible graphical front-end for those simple elements.
When you build a ‘class’ such as CookingStep in a microwave oven, that rep-
resents a set of possible cooking steps you might execute, each with a cooking
time and power level. Similarly, when you describe the lifecycle of a cooking
step using a state machine, it follows a sequence of states as synchronized by
other state machines (when you open the microwave door, it should stop cook-
ing), external signals (such as a stop button), and timers. And in each state, we
execute some functions.

A selection of these simple elements makes up the executable UML modeling
language. The number of elements is low to ease the construction of translators
and more importantly to ease the burden of learning the language and eliminate
the ambiguity that accompanies the use of multiple constructs to represent the
same concept. The elements are sufficiently primitive to be translatable into
multiple implementations, but be powerful enough to be useful. Determining
exactly which elements make up an executable UML is therefore a matter of
judgment, which implies there are many possible executable UMLs.

Naturally, it’s a bit more complicated than that, but the point is that any model
can be represented in terms of these primitive concepts. And once that’s done,
we can manipulate those primitive concepts completely independently of the
application details.

2.2.2 Actions

The introduction of the Action Semantics enables execution of UML models,
but at a higher level of abstraction than code. The difference between an ordi-
nary, boring programming language and a UML action language is analogous
to the difference between assembly code and a programming language. They
both specify completely the work to be done, but they do so at different levels
of language abstraction. Programming languages abstract away details of the
hardware platform so you can write what needs to be done without having to
worry about e.g. the number of registers on the target machine, the structure of
the stack or how parameters are passed to functions. The existence of standards
also made programs portable across multiple machines.

To illustrate the issues, consider the following fragment of logic:

Why Systems-on-Chip needs More UML like a Hole in the Head 23

Sum = 0;
Until Calls = null do

Sum += Calls.timeOfLastCall;
Calls = Calls.next;

endUntil

The elements in this fragment include assignments, until, null, an expression
(with equality), an increment of a variable, and a linked list of some sort.

The semantics of While not (expr)and Until (expr) are the same. One of
them is syntactic sugar—a sweeter way of expressing the same thing.1 Of
course, which one is syntactic sugar, and which the one true way of expressing
the statement is often a matter of heated debate. One can always add syntactic
sugar to hide a poverty of primitives so long as the new syntax can be reduced
to the primitives. The choice of primitives is a matter of judgment and there is
no bright line.

Consider, too, a triplet of classes, X, Y, and Z with associations between
them. We might wish to traverse from the x instance of X to Y to Z to get
the p attribute (x->Y->Z.p). The primitives involved here are a traversal and
a data access. However, we could choose to implement these classes by join-
ing them together to remove the time-consuming traversal. In this case, the
specification (x->Y->Z.p) can be implemented by a simple data access xyz.p,
where xyz is an instance of the combined classes X, Y, and Z. In this example,
the traversal is a single logical unit expressed as a set of primitives. Defining
the specification language so that these primitives are grouped together in a
specification allows the translation process to be more efficient. For example,
if GetTheTimesOfAllCalls is a query defined as a single unit in the manner of
(x->Y->Z.p), so that all knowledge of the data structures is localized in one
place, we can implement it however we choose.

We can go further. The logic above simply sums the times of some calls that
happen to be stored in a list. We can recast it at a higher level of abstraction as:
GetTheTimesOfAllCalls, sum them. This is the formulation used by the UML
action model. The application model can be translated into a linked list as in
the code above, a table, distributed across processors, or a simple array.

This last point is the reason for the word ‘translatable.’ An executable trans-
latable UML has to be defined so that the primitives can be translated into any
implementation. This means isolating all data access logic from the computa-
tions that act on the data. Similarly, the computations must be separated from
the control structures (in the fragment above, the loop) so that the specification
is independent of today’s implementation—including whether to implement in
hardware or software.

1We once saw the following code.
Constant Hell Freezes Over = False;
Until Hell Freezes Over do. . . . Sweet!

24 UML FOR SOC DESIGN

2.2.3 An Executable and Translatable UML—Static
Elements

Executable and Translatable UML (xtUML, or just Executable UML) [131]
defines a carefully selected streamlined subset of UML to support the needs
of execution- and translation-based development, which is enforced not by
convention but by execution: Either an application model compiles and executes
correctly, or it doesn’t.

The notational subset has an underlying execution. All diagrams (e.g. class
diagrams, state machines, activity specifications) are “projections” or “views”
of this underlying model. Other UML models that do not support execution,
such as use case diagrams, may be used freely to help build the xtUML models,
but as they do not have an executable semantics, they are not a part of the xtUML
language. The xtUML model is the formal specification of the solution to be
built on the chip.

The essential components of xtUML are illustrated in Figure 2.2, which
shows a set of classes and objects that use state2 machines to communicate.
Each state machine has a set of actions triggered by the state changes in the state
machine. The actions then cause synchronization, data access, and functional
computations to be executed.

Each class may be endowed with a state model that describes the behavior
of each instance of the class. The state model uses only states (including initial
pseudostates and final states), transitions, events, and actions. Each class may
also be endowed with a state model that describes the behavior of the collection
of instances. Each class in a subtyping hierarchy may have a state model defined
for it as a graphical convenience.

A complete set of actions, as provided by UML 1.5 and later, makes UML a
computationally-complete specification language with a defined “abstract syn-
tax” for creating objects, sending signals to them, accessing data about in-
stances, and executing general computations. An action language “concrete
syntax” 3 provides a notation for expressing these computations.

2.2.4 xtUML Dynamics

Figure 2.2 showed the static structure of xtUML, but a language is mean-
ingful only with a definition of the dynamics. To execute and translate, the
language has to have well-defined execution semantics that define how it exe-

2UML 2 uses “state machine” to mean both the diagram (previously known as a state chart diagram) and the
executing instance that has state. To reduce ambiguity, we have chosen to use “state model” for the diagram
describing the behaviors, and “state machine” for the executing instance. Where either meaning could apply,
we use “state machine” to be consistent with the UML.
3BridgePoint r© provides OAL (Object Action Language) that is compliant with the abstract syntax standard,
but there is presently no action language (notation) standard.

Why Systems-on-Chip needs More UML like a Hole in the Head 25

Figure 2.2. The Structure of an xtUML Model

cutes at run time. xtUML has specific unambiguous rules regarding dynamic
behavior, stated in terms of a set of communicating state machines, the only
active elements in an xtUML program.

Each object and class can have a state model that captures its behavior over
time. Every state machine is in exactly one state at a time, and all state ma-
chines execute concurrently with respect to one another. Each state machine
synchronizes its behavior with another by sending a signal that is interpreted
by the receiver’s state machine as an event. On receipt of a signal, a state ma-
chine fires a transition and executes an activity, a set of actions that must run to
completion before that state machine processes the next event.

Each activity comprises a set of actions that execute concurrently unless
otherwise constrained by data or control flow, and these actions may access
data of other objects. It is the proper task of the modeler to specify the correct
sequencing and to ensure object data consistency.

The essential elements, then, are a set of classes and objects with concurrently
executing state machines. State machines communicate only by signals. On re-
ceipt of a signal, a state machine executes a set of actions that runs to completion
before the next signal is processed. (Other state machines can continue merrily
along their way. Only this state machine’s activities must run-to-completion.)

Signal order is preserved between sender and receiver object pairs, so that
the actions in the destination state of the receiver execute after the action that
sent the signal. This captures desired cause and effect.

26 UML FOR SOC DESIGN

It is a wholly separate problem to guarantee that signals do not get out of
order, links fail, etc., just as it is separate problem to ensure sequential execution
of instructions in a parallel machine.

Those are the rules of the language, but what is really going on is that xtUML
is a concurrent specification language. Rules about synchronization and object
data consistency are simply rules for that language, just as in C we execute
one statement after another and data is accessed one statement at a time. We
specify in such a concurrent language so that we may translate it onto con-
current, distributed platforms; hardware definition languages; as well as fully
synchronous, single tasking environments.

At system construction time, the conceptual objects are mapped to threads
and processors. The model compiler’s job is to maintain the desired sequencing
specified in the application models, but it may choose to distribute objects,
sequentialize them, even duplicate them redundantly, or split them apart, so
long as the defined behavior is preserved.

2.2.5 Application Model Verification

An application model can be executed independent of implementation. No
design details or code need be added, so formal test cases can be executed
against the application model to verify that requirements have been properly
met. Critically, xtUML is structured to allow developers to model the underly-
ing semantics of a problem without having to worry about whether it is to be
implemented in hardware or software.

Verification of application models is exactly that: It verifies the behavior of
the application models and nothing else. It does not check that system will
be fast enough or small enough; it checks only that the application does what
you (your client and your experts) want. Verification is carried out by model
execution.

When we construct an application model, such as that shown in Figure 2.2,
we declare the types of entities, but models execute on instances. To test the
behavior of the example in Figure 2.2, therefore, we need first to create instances.
We can do this with action language or with an instance editor.

We then define operations to create the object instances on which the test
will execute. Then, we send a signal to one of the created objects to cause it
to begin going though its lifecycle. Of course, actions in that object may be
signal-sends that cause behavior in other objects. Eventually the cascade of
signals will cease and the system will once again be in a steady state, ready for
another test.

Each test can be run interpretively. Should the test fail, the application model
can be changed immediately and the test rerun. Care should be exercised to
ensure the correct initial conditions still apply. It is useful to be able to ‘run’

Why Systems-on-Chip needs More UML like a Hole in the Head 27

the whole test at once; to ‘jog’ through each state change, and to ‘step’ through
each action.

When each test run is complete, we need to establish whether it passed.
This can be achieved either by interactively inspecting attribute values and the
state of the application models or by using action language that simply checks
expected values against actuals. A report can be produced in regression-test
mode that states whether each test passed or failed.

Selecting test cases is a separate topic. There are many theories on how
best to test a system ranging from the “just bang on it till it breaks” end of the
spectrum through to attempts at complete coverage.

2.3 Manipulating the Application Models

2.3.1 Capturing Application Models

When we build an application model such as that in Figure 2.2, its semantic
content must be captured somehow. This is accomplished by building a model
of the modeling language itself.

The classes Oven and CookingStep, for example, are both instances of the
class Class in the model of the modeling language4. Similarly, the states Ready
and Executing for the class CookingStep are captured as instances of the class
State, and attributes powerOutput and pulseTimer of the class Magnetron are
captured as instances of the class Attribute. This is also true for the actions.
The action language statement generate powerOn to magnetron; is an instance
of the metamodel class GenerateSignalAction.

Naturally, a tool will also capture information about the graphical layout of
the boxes on the diagrams entered by the developer, but this is not necessary
for the translation process. Only the semantics of the application model is
necessary for that, and that’s exactly what is captured in a metamodel.

2.3.2 Rules and Rule Languages

We have captured the semantics of an application model completely in a
neutral formalism allowing us to write rules. One rule might take a ‘class’
represented as a set CookingStep(cookingTime, powerLevel), and produce
a class declaration. Crucially, the rule could just as easily produce a struct
for a C program, or a VHDL entity. Similarly, we may define rules that turn
states into arrays, lists, switch statements, or follow the State pattern from the
Design Patterns community. (This is why we put ‘class’ in quotation marks. A
‘class’ in an executable model represents the set of data that can be transformed

4The formal name for a model whose instances are types in another model is a metamodel.

28 UML FOR SOC DESIGN

into anything that captures that data; in a blueprint-type model, a class is an
instruction to construct a class in the software.)

These rules let us separate the application from the architecture. The xtUML
model captures the problem domain graphically, and represents it in the meta-
model. The rules read the application as stored in the metamodel, and turn that
into code.

There are many possible rule languages. All that’s required is the ability
to traverse a model and emit text. As an example, the rule below generates
code for private data members of a class by selecting all related attributes and
iterating over them. All lines beginning with a period (‘.’) are commands to
the rule language processor, which traverses the metamodel whose instances
represent the executable model and performs text substitutions.

.Function PrivateDataMember(class Class)

.select many PDMs from instances of Attribute related to Class

.for each PDM in PDMs
${PDM.Type} ${PDM.Name};
.endfor

${PDM.Type} recovers the type of the attribute, and substitutes it on the out-
put stream. Similarly, the fragment ${PDM.Name} substitutes the name of the
attribute. The space that separates them and the lone ‘;’ is just text, copied
without change onto the output stream.

Table 2.1. C++ Code Generation

Rule Generated Code

.select many stateS related to instances of
class->[R13]StateChart->[R14]State

where (isFinal == False);
public: public:

enum states e enum states e
{ NO STATE = 0, { NO STATE = 0,

.for each state in stateS Ready,
.if (not last stateS) Executing,

${state.Name}, NUM STATES =
.else Complete

NUM STATES = ${state.Name} };
.endif;

.endfor;
};

In the more complete example in Table 2.1, the rule uses italics for references
to instances of the metamodel; underlining to refer to names of classes and at-

Why Systems-on-Chip needs More UML like a Hole in the Head 29

tributes in the metamodel; and noticeably different capitalization to distinguish
between collections of instances vs. individual ones.

You may wonder what the produced code is for. It is an enumeration of states
with a variable NUM STATES automatically set to be the count for the number
of elements in the enumeration. (There is a similar rule that produces an enu-
meration of signals.) The enumerations are used to declare a two-dimensional
array containing the pointers to the activity to be executed. You may not like
this code, or you may have a better way to do it. Cool: all you have to do is
modify the rule and regenerate. Every single place where this code appears
will then be changed. Propagating changes this way enables rapid performance
optimization.

While the generated code is less than half the size of the rule, the rule can
generate any number of these enumerations, all in the same way, all equally
right—or wrong.

We have also used the rule language to generate VHDL in Table 2.2.

Table 2.2. VHDL Code Generation

Rule Generated Code

.select many stateS related to instances of
class->[R13]StateChart->[R14]State

where (isFinal == False);
TYPE t ${class.Name}State IS {
.for each state in stateS TYPE t CookingStepState

.if (not last stateS) IS {
${state.Name}, Ready,

.else Executing,
${state.Name} Complete

.end if };
.end for
};

The rule language can be used in conjunction with the generator to generate
code in any language: C, C++, Java, Ada, and, if you know the syntax, Klingon.

2.3.3 Model Compilers and System Construction

So, we can build a platform-independent model of our application, we can
execute it to verify that it functions properly, and as we’ve just seen we can
translate it into text of any form. The instrument for organizing the collection
of translation rules is a model compiler, and as a result, the overall architecture
of the generated system is then encapsulated within the model compiler.

30 UML FOR SOC DESIGN

Each model compiler is coupled to the target, but the model compiler is inde-
pendent of the application models that it translates. This is important because
maintaining this separation of application from design allows us to reuse both
application model and model compiler as needed. We can translate the same
application model for many different targets by using different model compil-
ers, but the models of the application do not change. Similarly we can use the
same model compiler to translate any number of application models for a given
target without changing the model compiler.

Figure 2.3. Model Compiler and System Construction

Each model compiler encapsulates the architecture of the generated system.
If we’re generating only software, then a software architecture—the design and
implementation approaches used to render each element of the model in some
implementation language like C++ or C—has been captured.

For example, a model compiler for an object-oriented architecture will likely
translate each UML class to a C++ class or a C struct with each associated UML
attribute being translated to a data member of the class or a member of the struct.

Why Systems-on-Chip needs More UML like a Hole in the Head 31

The state machines in the application model would be translated into two
dimensional arrays where the row index represents the current state of an object,
and the received event provides the column index. Each cell contains the value
of the next state for the transition identified by the current state (row) and the
received event (column). This next-state value is then used as an index into
an array of function pointers, each corresponding to a state. This particular
approach leads to a constant-time dispatching mechanism for the actions of
each state machine.

Of course we can use alternative implementations depending on our needs.
For example in some cases, we might choose to use a switch statement or nested
if-else statements to implement the state machine, each of which would have
slightly different speed and space characteristics (if-else is linear in the product
of states and events).

For hardware implementations we might choose to translate each UML class
into a collection of registers, one for each attribute in the class. Each state
machine of the application model could be mapped to a VHDL case statement.
There are, of course, many other possible implementations. UML classes can
be mapped into blocks of RAM, and state machines can be translated into a
data-driven and gate-conservative dispatcher.

But what about the interfaces between the hardware and software components
of the system? These interfaces are just a part of the architecture encapsulated
within the model compiler. Let’s look at a simple example.

Suppose we have two UML classes, CookingStep and Oven where Cooking-
Step is translated to software and Oven is translated to hardware. In this case
the hardware architecture for Oven is a collection of memory-mapped registers.
The generated interface for an action in CookingStep that accesses an attribute
of Oven is then a simple memory access of the address allocated for the register
in question.

Consider a slightly different hardware architecture in which the UML class
Oven is mapped to only two addresses, one representing a control register
and one for a data register. Accesses to attributes of the class would then be
accomplished by writing the attribute identifier and the type of access (read or
write) to the control register and then manipulating the data register accordingly
(reading it after writing to the control register or writing it before writing to the
control register).

The point here is that since the model compiler is generating the implemen-
tation for both the hardware and the software components of the system, it has
sufficient information to generate the interface between the two, and it will do
so without succumbing to the ambiguities of a natural language specification.
It will do it correctly, every time.

It’s possible to build and deploy model compilers that provide completely
open translation systems. Exposing the translation rules in this way allows you

32 UML FOR SOC DESIGN

to make changes to the rules to meet your particular needs so that the model
compiler generates code exactly the way you want. This puts the translation of
the models completely under your control.5

OK, we have collections of rules that translate UML models into hardware
and software implementations. In many cases we have multiple rules for trans-
lating each UML construct, one rule for each variation in our architecture. Now
we need a way of selecting which rule to apply to which part of the model.

2.4 Marks

We have described a model compiler that has two parts, but we have not
yet described how we tell the model compiler whether to generate hardware
or software for a given model element. To do so, we need additional inputs
to decide which mapping to perform. These additional inputs are provided as
marks, which are lightweight, non-intrusive extensions to models that capture
information required for model transformation without polluting those models.

Each kind of mark has a name and a type. In addition, a kind of mark can
have a default value. In programmer-esque language, we might write

Mark HardSoft [isHardware, isSoftware] = isSoftware
which declares a kind of mark named HardSoft that can have one of two values,
where the default is isSoftware.

Most marks apply to instances of metaclasses, so that, for example, if we
have a metamodel with class Class, and two instances of that class, Oven and
CookingStep, the mark HardSoft can have a separate value for each of those
instances, isHardware for the Oven, say, and isSoftware for the CookingStep.

Were the kind of mark to apply instead to generated signals, then the marks
would be associated with instances of the class GenerateSignalAction in the
metamodel. A given application model element can have several marks asso-
ciated with it. Each of these marks is an extended attribute of the appropriate
metamodel class.

We do not intend to leave the impression that the metamodel should be
extended directly. Marks are not part of either the application model or the
metamodel, though they can refer to them both. Rather, we view the extended
attributes of the metaclasses as being housed on a plastic sheet that can be peeled
off at will for a different model compiler. This separation supports both model
portability and longevity.

The separation also provides the ability to evaluate a number of different ar-
chitectural possibilities without requiring modification of the application model.
Just change the values of the marks. Not to put too fine a point on it, this solves

5We know of at least one vendor providing commercial model compilers in source-code form. More are
sure to follow suit in the coming years.

Why Systems-on-Chip needs More UML like a Hole in the Head 33

the problem of changing the hardware-software partition after we have verified
the behavior of the application model by executing test cases against it.

The plastic sheet analogy suggests that some marks might be related and
could all be placed on the same sheet. A single sheet could contain multiple
related marks, such as those indicating which types of hardware implementa-
tions should be applied to which elements of the application model. Removal of
the plastic sheet, then, implies the removal of the entire hardware architecture
represented by that sheet from the system.

Marks may also be quantities used to optimize the target implementation.
Consider a model that must be transformed into an implementation that occupies
as small an amount of memory as possible. We can save memory if we observe
that a particular class has only one instance (e.g., Oven). Such a class can
be marked as extentLess, and no container need be generated for instances of
that class, making references to the instances more efficient. Similarly, we can
make trade-offs within the hardware architecture. Suppose the original target
had plenty of address space available and consequently mapped each class
attribute implemented in hardware to a specific address, making the software
access to the attributes simple and efficient. In a subsequent release we move
to a lower-cost processor with a constrained address space. Through marks we
then instruct the model compiler to use a single pair of addresses for each class
to provide access to all the attributes in the class. Since the model compiler
knows how to generate the software required for this more interesting approach
for accessing hardware-resident attributes, the application models do not change
even though the nature of the hardware/software interface has been drastically
altered.

There have to be ways for the modeler to assign values to marks. Some
implementations provide for graphical drag-and-drop allocation of model ele-
ments into folders that correspond with marks; others define an editor for the
defined mark sets that can display all marks defined by the model for a selected
model element, with pull-down menus for each of the marks. Another option is
to define text files, and then use the large set of available editing, and scripting
tools.

2.5 Work in Context

The work described here, UML models, metamodels, and transformations
to text all fit into a larger context within the Object Management Group. The
OMG, the organization that standardized the UML, has a standard approach for
storing metamodels, not just the UML metamodel, and it is working now [152]
to define a standard approach for transforming populated models to text.

These standards, and others, fit into a larger architecture called Model-Driven
Architecture. You may have heard of MDA in an IT context, but the principles

34 UML FOR SOC DESIGN

behind it apply to system development in general, and they’re not specific to a
certain kind of system or even to software [132].

MDA is three things:6

An OMG initiative to develop standards based on the idea that modeling
is a better foundation for developing and maintaining systems

A brand for standards and products that adhere to those standards

A set of technologies and techniques associated with those standards

At present, MDA is still in development, and some of the technologies need
further definition while others need to be standardized.

One key standard that is missing at the time of writing is a standard definition
of an executable, translatable UML. While there are mechanisms that allow for
the interchange of models between tools, there must be agreement on the UML
elements they can each understand. That is, the tools must share a common
subset of UML for the tools to communicate effectively. It is possible for one
tool to be “more powerful” than another, but effectively that restricts the power
of a two-tool tool chain to the weaker of the two. When multiple tools claim to
be in the same tool chain, it is only as strong as its weakest link.

Model-driven architecture, of course, is the name of the game. Not only
must there be standards for the UML and the rest, but it’s also important that
tools built to these standards also fit together within that architecture and so
create a complete model-driven development environment. This set of tools,
loosely sequenced, constitutes a tool chain.

There are many possible tools that need to be integrated to make a complete
development environment. With the right standards, one can envision tools that
do the following:

Transform one representation of an underlying model to another repre-
sentation friendlier to a reader

Generate test vectors against the application model, and then run them

Check for state-space completeness, decidability, reachability, and the
like

Manage deployment into processors, hardware, software, and firmware

Mark models

6Dr. Richard Mark Soley, the Chairman of the OMG, defined MDA thusly. We also used his definition in
[132], for which Dr. Soley was a reviewer.

Why Systems-on-Chip needs More UML like a Hole in the Head 35

Partition or combine behavior application models for visualization or
deployment

Analyze performance against a given deployment

Examine the generated code in execution (in other words, model debug-
gers)

We can imagine a developer receiving a application model from a vendor or
colleague; turning that application model into a comfortable notation or format;
making a change with a model builder; verifying that the behavior is correct by
analysis and by running test cases; marking the models and deploying them;
analyzing performance; debugging the resulting system, and so forth.

When developers have the ability to provide specification tidbits at varying
levels of abstraction and then link them all together, MDA will face additional
tool challenges regarding smooth integration between different specification
levels, such as consistency checking, constraint propagation, and incremental
mapping-function execution.

As the SoC community continues to push toward a higher level of abstraction
for the specification of systems it will be important to establish and maintain
relationships with organizations focused on model-driven development, even if
the traditional focus of such groups has been software development.

2.6 How Does All This Stack Up?

Partition? Because the xtUML models accurately and precisely represent
the application, and the implementation is generated, with absolute fidelity from
these models, the partition can easily be changed, and a new implementation
can then be generated. This replaces weeks of tedious manual changes to an
implementation with a few hours of automatic generation.

With the ability to change the partition and regenerate the implementation,
the developers can explore much more of the design space, measuring the perfor-
mance of various allocation arrangements that would otherwise be prohibitively
expensive to produce.

Interface? The interface between the hardware and software is defined by
the model compiler. Because the implementation is generated, there can be
no interface mismatches. Because we no longer have two separate teams of
people working from a natural-language interface specification, the generated
implementation is guaranteed to have exactly zero interface problems. (This
does have the unfortunate side effect of reducing the number of opportunities
for logic designers and software engineers to spend long nights together in the
integration lab fixing interface problems.)

Marks are a non-intrusive way to specify allocation of system functionality
without affecting system behavior. The existence of automated tools to cause

36 UML FOR SOC DESIGN

the generation of the system with interfaces known to be correct completely
removes any interface problems that can lead to a failure to integrate the system.

Integration? Integration is now the integration of two independently tested
pieces: the application model and the model compiler. Each can be under-
stood separately, tested separately, reviewed separately, and built separately.
The integration is realized by the generalized part of the model compiler (the
generator) that embeds the application into the target platform.

The real integration issue now whether that model compiler meets the perfor-
mance needs of the system. Should performance be less than adequate, we can
change the allocation using the existing model compiler, or change the rules to
create a new target architecture that does meet the performance requirements

2.7 A Hole in the Head?

SoC needs UML, but not a lot of it, and even less does SoC need more UML,
especially more UML used specifically to capture hardware implementation.
That way lies the primrose path to the ever-burning fires.

All SoC needs is a small, but powerful, subset of UML enabling abstract
specification of behavior. Automated mappings enable interface definition in
one place, so that consistency is guaranteed. Marks enable late decision making
on the partition.

That’s all we need; we need more UML like a hole in the head.

Chapter 3

UML as a Framework for Combining Different Models
of Computation

Peter Green

School of Electrical and Electronic Engineering
University of Manchester
Manchester, United Kingdom

Abstract This chapter discusses how the well-known synchronous dataflow formalism
can be represented in UML 2.0, and how it can be integrated with UML state
machines to provide an object oriented specification language encompassing both
state-based and dataflow behavior.

3.1 Introduction

Rising silicon capacity underpins the development of embedded systems-
on-chip (SoCs) with increasingly complex behavior [34], and consequently the
specification of system behavior becomes progressively more challenging. Be-
havior is typically classified as control- or data-oriented, and the different types
of behavior are normally specified by different models of computation [195].
However, since it is the complete behavior of a system that meets requirements,
then in order to assess a specification, for example by execution, it is neces-
sary to develop frameworks in which different models of computation can be
combined, or to invent new formalisms [195, 68].

The purpose of a model of computation is to support the specification of
system behavior, and to facilitate behavioral analysis. Such formalisms are not
intended to represent the overall organization, or structure, of a system. How-
ever, increasing silicon capacity leads to increasing structural complexity, and
so notations to support the description of structure are required. The need for
a comprehensive and coherent set of modeling notations to support the specifi-
cation of both behavior and structure has led the software community to adopt
UML as the de facto standard modeling language for software-intensive sys-

37

G. Martin and W. Müller (eds.), UML for SOC Design, 37–62.

© 2005 Springer. Printed in the Netherlands.

38 UML FOR SOC DESIGN

tems, since it provides a rich set of constructs to support both types of modeling.
The success of UML within the software community has prompted researchers
in the embedded SoC field to investigate the applicability of UML in this area
[126, 78]. However, a number of limitations with respect to its applicability
to embedded SoCs have been identified [126, 78], prompting researchers to
propose the development of a specialization (or profile) of UML suitable for
complete SoCs, including software and hardware, application and platform.

One difficulty with using UML for embedded SoCs is that although it pro-
vides extensive facilities for the modeling of system structure, and a rich set
of constructs for modeling control-oriented behavior, until recently it has not
provided support for the high-level modeling of dataflow behavior, which is
common in DSP and video applications. However, the enhanced activity model
in UML 2.0 enables such behavior to be represented. Hence the purpose of this
chapter is to demonstrate how UML can be used as a framework for integrating
the specification of control and dataflow behavior, and how implementations,
which may or may not use object oriented (OO) techniques, can be derived. The
synchronous dataflow formalism is used to represent the behavior of classes and
objects that exhibit dataflow behavior. It was selected because it is well-known
within the embedded systems community, and significant experience has been
gained in its application [115]. It also has a well-developed mathematical basis.

Hence the overall intention is to develop an OO framework for the specifica-
tion of embedded SoCs that integrates both state-based and dataflow behavioral
models. The result is a system that is specified as a network of objects, some
of which are reactive, some of which continuously process streams of data, and
others which share both characteristics. The work is related to other research
that has sought to integrate different models of computation; in particular, it
draws on [68] and [10].

3.2 Modeling Framework

This work takes place in the context of the HASoC development method
[78], although the formalism that has been developed may also be used in other
design flows. HASoC provides a framework for developing both the software
and hardware of an embedded SoC, and both application and platform are
modeled in OO terms with UML. Briefly, the HASoC method is an iterative,
incremental approach to development, merging concepts from the MOOSE
method [136], the Rational Development Lifecycle [24] and platform-based
design [34]. Within HASoC, the approach to application development is use
case driven, involving the iterative development of class and object models
that realize increasing numbers of system use cases as development proceeds.
Each version of the object model is itself subjected to an iterative process
of commitment, where the object model is partitioned between software and

UML as a Framework for Combining Different Models of Computation 39

hardware, and mapped to the current version of the underlying platform for
evaluation in terms of the non-functional characteristics of interest. This may
result in the modification of the object model, the partition or the platform.

Part of the development of class/object models involves the specification of
internal behavior. This can be described in terms of some programming lan-
guage or hardware description language, or in terms of a particular model of
computation (MoC). A MoC is typically restricted in its expressiveness com-
pared with an ad hoc description, but provides benefits in terms of support for
formal or semi-formal reasoning, partitioning and the automatic synthesis of
an implementation. For these reasons, models of computation are the principle
method of representing the behavior of classes/objects within HASoC, although
developers may also supply arbitrary code sequences. UML state machines are
used for modeling control-oriented behavior, and synchronous dataflow (SDF)
graphs are used to represent dataflow components. SDF graphs are not part
of UML, but may be described using activities in UML 2.0, as discussed in
Section 3.3.3. Hence object models in HASoC consist of sets of collaborating
entities, some of which contain state machines, some of which contain SDF
graphs, and some of which contain both types of behavioral description. Mod-
eling systems in this way raises issues of communication and concurrency, and
these are discussed in Section 3.4. For objects that contain both state machines
and SDF graphs, the way in which the two types of behavior can interact must
be considered, and this is discussed in Section 3.7.

3.3 Modeling Synchronous Dataflow Graphs in UML 2.0

This section reviews salient aspects of the notation and semantics of SDF
graphs and activities in UML 2.0. There then follows a discussion of how SDF
graphs may be represented by UML activities.

3.3.1 The Synchronous Dataflow Model

The SDF formalism was introduced by Lee and Messerschmitt [116] as an
approach to modeling signal processing applications and supporting automatic
code generation for DSPs. It has undergone continuous refinement since its
introduction, and has been widely used [115]. In SDF, a computation is repre-
sented as a graph, the nodes, or actors, representing sub-computations and the
arcs representing communication paths between the actors. A path between two
actors explicitly represents data dependencies between the two. Consequently,
actor computations must be free from side-effects.

The SDF model is data-driven, meaning that a node may perform its compu-
tation (fire) whenever data values (tokens) are available on all of its input arcs.
When a node fires, it consumes tokens from each of its input arcs and deposits
new tokens on its output arcs, which represent the result of its computation.

40 UML FOR SOC DESIGN

A

C

B

D

E

Actor

Fork
node

Source/
sink node

1

4

2

1

1 1

1 1

1

1

A

C

B

D

E

Actor

Fork
node

Source/
sink node

1

4

2

1

1 1

1 1

1

1

Figure 3.1. Simple SDG Graph (adapted from [16])

Tokens are stored in FIFO order in buffers associated with the arcs. The num-
bers of tokens consumed from each input arc and produced on each output arc
are fixed. Since data availability alone controls the firing of actors, then it is
possible that several actors may fire simultaneously, and consequently the SDF
model can exploit the full concurrency available within an algorithm.

Figure 3.1 shows a simple SDF graph. The circular nodes represent actors,
and the triangular nodes represent sources and sinks of tokens i.e. the interface
between the SDF graph and its environment. The small circular, unlabelled
nodes are fork nodes. These are a notational convenience, and replicate inputs
on each of the output arcs.

Actors may have a range of granularities, ranging from the fine where, for
example, the actor implements a simple arithmetic operation, to the coarse,
where an actor can represent a significant DSP operation. In the latter case, an
actor may itself be represented by a lower-level SDF graph, and so models may
be hierarchical. Fine grained actors that are not refined are said to be atomic.

The basic SDF model involves the streaming of a semi-infinite sequences of
samples through the SDF graph. Actors fire in an order that respects the data
dependencies implied by the node edges. Since semi-infinite sample sequences
are being processed, the schedule of actor firings is periodic. Lee and Messer-
schmitt [116] demonstrate that for SDF graphs with consistent sample rates, a
schedule can be computed at design-time that will execute in bounded mem-
ory. Sequential and concurrent implementations can be derived in software or
hardware [16, 229].

3.3.2 Activities in UML 2.0

The UML 2.0 activity model provides facilities for describing behavior in
terms of control and data flows [154] and may be applied in areas as diverse as
algorithms and business processes. Activity diagrams can be used to represent
an operation of a classifier, the overall behavior of a classifier, the behavior of
use cases without reference to classifiers, or just abstract behavior, independent
of classes/objects.

UML as a Framework for Combining Different Models of Computation 41

An activity is a directed graph that describes how actions are sequenced
within the behavior. An action is an atomic unit of behavior, and the UML 2.0
standard defines several different types of action. In the context of representing
SDF graphs, two types are relevant: computation actions and call actions, and
these will be considered in the next section.

Activities may have other types of nodes, besides actions. Control nodes
are used when there are multiple possible paths through the activity, and can
represent decision and merging points, the forking and joining of concurrent
flows, and the initial and final steps within the activity.

Edges within an activity are used to transport objects or values (object flows)
or control (control flows). Hence, the basic model of an activity concerns
values, or objects, flowing along the paths through the activity, being modified
or transformed as they pass through actions, and being routed by control nodes.

Another type of node, the object node, may be used to temporarily store
object tokens/values, and such nodes have an upper bound that defines their
buffering capacity. There are two special types of object node: pins and activity
parameter nodes [21]. Pins are used to connect input and output object flows
to actions, and parameter nodes are used to represent the parameters that are
passed into and out of an activity.

The execution semantics of activities is defined in terms of tokens flowing
through the activity. In abstract terms, tokens transport objects or values over
the edges between nodes. Token movement can also represent the flow of
control through a system, in a similar fashion to Petri Nets. Actions may only
execute when there are tokens present at all of their inputs, both object and
control flows. Lower and upper bound multiplicity values may be associated
with input and output pins, specifying the minimum and maximum numbers of
tokens required or provided when the action fires.

Object flows between source and destination nodes have an associated weight
that determines when tokens are transferred from the output pin of the source to
the input pin of the destination. Consider an action that produces m tokens per
invocation and which is connected to a destination node via an arc of weight
n. Further assume that m < n. Every time the source node fires it generates m
tokens, to add to the running total of tokens t generated by previous invocations.
Tokens are only transported over the arc when t ≥ n, and then n tokens will be
transferred.

An example activity diagram is shown in Figure 3.2.

3.3.3 Representing SDF Graphs with Activity Diagrams

UML does not support any of the dataflow formalisms typically used in the
development of embedded SoCs. However, this section presents a discussion

42 UML FOR SOC DESIGN

A B

{weight = 1}

s : SType [1..1]

C D

s : SType
[1..3]

E

s : SType [4..4]

s : SType [2..2]

s : SType [1..1]

Parameter
node

Fork
node

Pin Action

Output multiplicity
Input
multiplicity

Note: some weights and multiplicities are omitted in the interests of clarity

AA BB

{weight = 1}

s : SType [1..1]

CC DD

s : SType
[1..3]

EEE

s : SType [4..4]

s : SType [2..2]

s : SType [1..1]

Parameter
node

Fork
node

Pin Action

Output multiplicity
Input
multiplicity

Note: some weights and multiplicities are omitted in the interests of clarity

Figure 3.2. Activity Diagram Corresponding to the SDF Graph of Figure 3.1

of how activities in UML 2.0 may be used to represent the semantics of SDF
graphs.

A comparison of the SDF and UML activity models reveals broad similari-
ties. Both emphasize the flow of tokens bearing information through a system,
and both consider token presence as the trigger to node execution. With its rich
set of constructs, the UML activity model is applicable to a far wider range
of systems than the SDF model. However, the SDF graph model’s simplic-
ity offers a number of significant advantages. Concurrency may be exploited
more readily since SDF graphs can be statically (i.e. at design-time) and au-
tomatically scheduled. This enables concurrent implementations in software
or hardware to be automatically generated, with sub-graphs being mapped to
different execution units. In addition, consistent SDF graphs can be shown to
have bounded resource requirements.

The key to representing SDF graphs with UML activities is to recall that the
SDF model is purely data-driven, in that token availability alone determines
when an actor may fire. If a UML activity is developed by simply connecting a
set of actions by object flows, with no control flows or control nodes, the model
will represent an activity where execution is driven by the availability of data
from the previous action – i.e. data-driven behavior.

This basic approach requires some refinement if activities are to represent
SDF semantics, in particular with respect to token flow rules, and the actions
used to represent SDF actors. Consider token flow first.

The SDF model has specific rules about token production, consumption
and buffering. Specifically, when an actor fires, fixed numbers of tokens are
consumed from the FIFOs associated with each input arc, and fixed numbers of
tokens are produced and stored in the output arc FIFOs. The numbers of tokens
produced/consumed are used to annotate the arcs as they leave/enter each actor.

In order to realize SDF graph semantics with UML 2.0 activities, multiplic-
ities and weights must be defined. By specifying the minimum and maximum

UML as a Framework for Combining Different Models of Computation 43

multiplicities at inputs to be equal to one another and to the corresponding input
token count on the SDF graph, the associated action can be forced to execute
only when that number of tokens is available. The same strategy is used with
output pins, to force the production of the exact number of tokens specified by
the SDF graph. The weight of the object flow from the output pin is also set
equal to this number, indicating that when the source action fires, it produces a
fixed number of tokens, which are immediately transferred to the input pin of
the destination where they are buffered. The capacity of the input pin is spec-
ified by its upper bound [154]. Since the storage requirements of a consistent
SDF graph can be determined a priori [16], the upper bound of the input pin
can be determined.

The order in which tokens are selected to move through pins and other object
nodes can be also be specified. The default ‘selection behavior’ is FIFO, as
required by the SDF model, and so it is unnecessary to indicate this in an
activity representing an SDF graph. Hence by specifying input and output pin
multiplicity, object flow weights, and upper bound pin capacities as indicated
above, using the default FIFO selection behavior, and by setting the pin’s upper
bound from the corresponding FIFO size determined from the SDF graph,
then the execution semantics of SDF graphs can be represented with UML 2.0
activities.

In the majority of cases, two types of action can be used to represent actors.
Computation actions transform input tokens into output tokens via the invoca-
tion of a primitive function. Primitive functions typically perform arithmetic or
logical operations, and must not access or update the state of the owning object,
nor interact with other objects. The representation of primitive functions is
not defined by UML. Actions of this kind are used to depict atomic actors in
SDF graphs, since neither may be refined within the respective models, both
are triggered by the availability of input tokens, and both must execute without
side-effects.

The other type of action required is the call action. Call actions are concerned
with invoking behavior and receiving output values once that behavior has
completed. In terms of the UML 2.0 meta-model, CallAction is an abstract
class. The particular child class of interest here is CallBehaviorAction that
may be used to invoke another activity, either synchronously or asynchronously.
Synchronous actions of this type are used to model non-atomic SDF actors, since
they are represented by SDF graphs, and SDF graphs are modeled by activities
in this work.

The final elements of the SDF model that require representation in an equiv-
alent UML 2.0 activity are fork nodes and source and sink nodes. SDF fork
nodes are simply represented by fork nodes in UML 2.0, since both have the
effect of duplicating the tokens arriving on the input arc on all of the output
arcs [21]. Note that fork nodes are the only type of control node that appear in

44 UML FOR SOC DESIGN

a UML activity that represents an SDF graph. Source and sink nodes, repre-
senting inputs to, and outputs from, an SDF graph, are modeled with parameter
nodes.

On the basis of the above discussion, it may be concluded that an SDF
graph can be realized as a specialized form of activity via the mapping given in
Table 3.1. Such an activity will be termed an SDF activity, and a class/object
whose behavior is purely represented by an SDF activity will be called an SDF
class/object.

Table 3.1. Mapping between SDF Graphs and UML Activities

SDF Graphs UML

Actors (primitive) Computation Actions – primitive functions
Actors (hierarchical) CallBehaviorActions
Fork node Fork Node
Source/Sink Nodes Parameter Nodes
Edge Object Flow
Implicit FIFO Pins
Token Token
Firing Rule Input/Output Multiplicities, Weights

3.4 Communication and Concurrency

An SDF class essentially encapsulates an algorithm, and hence instances
are ‘algorithm objects’ which [72] indicates are common in real-time systems,
and in scientific/engineering applications. Hence SDF objects are essentially
equivalent to the blocks used in block diagram languages for DSP [116], and
enable DSP/video processing to be described within the same system model as
state-based objects. In Section 3.7 the interaction between state machines and
SDF activities within objects is discussed. Here consideration is given to the
way in which SDF objects communicate within UML object models, and the
consequent concurrency issues that arise.

Typically SDF objects will represent different stages in a sample-processing
pipeline, with the samples originating from an analogue-to-digital converter, or
from an object that generates a stream of samples (the ADC and DTMF Dialer
objects in the case study of Section 3.9 are examples of these two types of
source). In terms of UML activity modeling, the activities of the component
SDF objects are simply part of a larger activity flow, and this can be represented
in an activity partition, which shows the composite activity flow, with the ob-
jects that contain the different parts of the flow superimposed in the appropriate
places. However, this simply provides a view of the overall activity and its
partitioning into objects, and token flows cannot be represented within object

UML as a Framework for Combining Different Models of Computation 45

models (e.g. interactions/composite structures etc) that realize the overall ac-
tivity. Such object models realize the token flows via message exchanges, since
all communication in UML is message-based. This leads to object models that
are low-level, and implementation-oriented.

Stream-based communication is a common and natural mechanism in many
embedded systems. Indeed, abstractions of this mechanism can be found in
many formalisms used for modeling embedded system behavior e.g. SDF
[116], LUSTRE [83], etc. Hence stream-based communication ought to be a
first-class citizen of any language that is used for embedded system specifi-
cation. Unfortunately, stream-based communication is absent from UML and
most other object-oriented methods (with the exception of MOOSE [136]), pre-
sumably because it can imply the breaking of information-hiding rules, which
in general is undesirable. However, this is rather less important where there is
a simple producer-consumer relationship between objects.

Since the purpose of this work is to develop a high level, implementation-
independent notation for the specification of complete embedded systems, a
new inter-object communication mechanism is proposed for UML: the object-
stream. Object-streams define the unidirectional transmission of object or value
tokens of fixed type between producer and a consumer objects, and in meta-
model terms they are classifiers, meaning that they are generalizable elements.
Token order is preserved within an object-stream, and so if datum i is generated
by the producer, before the generation of datum j, then i will arrive at the
consumer before j, for all i and j.

In a sense, object-streams represent the object flows shown in activity parti-
tions between the activities of different objects representing the partitioning of
the overall activity. However, the syntax of UML does not allow object flows
to be used directly in object models.

The interface of a class whose instances receive an object-stream must declare
that its objects are willing to receive a stream of a certain type, and this is done by
declaring an inlet. An inlet is analogous to a reception, which is the mechanism
by which a class indicates in its interface that it is prepared to receive signals
of a particular type. In the same way that a reception may be associated with
a state machine, leading to received signals being added to the state machine’s
event pool, an inlet is associated with an activity, via a token queue, which is
an input parameter node of the activity.

A key aspect of object-stream semantics is the lack of control flow. There
is no sense in which the sender executes a method in the receiver. The object-
stream model simply specifies that the receiver object will provides a place for
the sender to leave tokens. It is entirely up to the receiver to remove the tokens
that it receives from this place, in good time.

The lack of explicit control flow has implications for concurrency. In the
object model, the sending/receipt of messages can be synchronous or asyn-

46 UML FOR SOC DESIGN

chronous [55]. Either way, activity is triggered in the receiver, and either
executed on the thread of control of sender or receiver (if active – see below).
In the object-stream model, there is no sense in which the writer of the object-
stream directly triggers activity in the receiver. Data is simply made available
in a sequence. Hence there is no notion of a transfer of control from sender
to receiver. This would seem to indicate that an object that receives a stream
should be active, that is, it should have its own thread of control. However, it is
possible to imagine a software implementation where the receiver is a passive
object (one that does not possess a thread), which is called periodically by an
active object, for example, to process object-stream data that has arrived since
the last call, or to execute an iteration of the SDF graph schedule. In such a
case the SDF activity would represent a method that could be called, but which
would suspend if insufficient data were available. Therefore, it may be con-
cluded that classes whose instances receive streams may be active or passive,
although they will often be active.

3.5 Class and Object Relationships

This section presents a discussion of the way in which typical OO concepts
are interpreted when SDF graphs are utilized for the description of class be-
havior. Specific implementation issues relating to hardware and software are
discussed in Section 3.8.

3.5.1 Dynamic Object Creation and Deletion

Conceptually, object creation poses no difficulties, in that the SDF activity
is a private behavior of the class, and if the class is active, then execution
can begin as soon as the contained thread is created, and data is available.
In a similar fashion, object destruction is no more of a problem than system
termination in traditional SDF graphs - a matter that is not normally considered
in the SDF literature, since it is outside the scope of the SDF model, involving
as it does, the notion of control. However, the implementation must provide
some form of support to facilitate the connection of input and output streams
to such a dynamically created instance, and the removal of such connections
when an instance is destroyed. This is clearly a greater challenge if objects are
implemented in hardware rather than in software. However, recent advances in
the management of the dynamic partial reconfiguration of FPGAs may reduce
the level of difficulty associated with dynamic object management in hardware
[55].

3.5.2 Associations

According to [204], two classes A and B are associated if:

UML as a Framework for Combining Different Models of Computation 47

1. An object of class A creates an object of class B.

2. An object of class A sends a message to an object of class B.

3. An object of class A has an attribute of class B (or a collection of objects
of class B).

4. An object of class A receives a message with an object of class B as an
argument.

The issue of object creation has been considered in the previous section. If we
extend statement (2) by replacing ‘sends a message to’ with ‘communicates
with’ then this case covers object-streams, and is a logical extension to basic
UML. Associations of type (3) will be dealt with below when we consider
composition/aggregation. As with point (2), point (4) requires reinterpretation
in the context of non-message-based communications. Since an object-stream
is a classifier, it can represent a stream of objects of a particular class. Hence
associations based on (4) may be interpreted in the sense that an object of class
A receives a stream whose elements are of class B.

3.5.3 Inheritance

In representing class behavior via alternative models of computation, the
issue of inheritance must be addressed, and the meaning of inheritance must
be defined. The inheritance relationship between two classes is such that the
inheriting class (or derived class) inherits all the characteristics (operations and
attributes) of the base class whilst adding additional attributes and operations.
The meaning of inheritance for classes whose behaviors are described by state
machines is discussed in [193, 49], and the treatment of inheritance between
classes whose behavior is described by SDF graphs is similar. Briefly, if a class
X has its behavior described by a state machine, and a class Y inherits from that
class, then Y’s state machine may extend X’s in a number of ways. New states
and transitions can be added to the derived class as desired (including decom-
posing a state into sub-states and/or orthogonal components). Activities and
actions associated with states and transitions can be added/removed/specialized
for each transition/state, and the target state of transitions can be changed.

The application of these ideas to SDF classes is now considered. The SDF
activity of the base class can be refined in the subclass by the modification of
its actions, e.g. by replacing a primitive action with a CallBehaviorAction that
invokes a new activity. However, at the higher level, the produced/consumed
token counts must not be changed. Alternatively, the SDF graph of the base
class can be extended in the subclass such that it forms a subgraph of the derived
class SDF activity. Finally, both of these modifications can be applied, so that
the SDF activity of the derived class can both refine the actions of the base class,
and extend the base class graph.

48 UML FOR SOC DESIGN

By using the notion of clustering in SDF graphs, a relationship between
the schedules of the base and derived classes can be obtained. For the sake
of simplicity, this is discussed in terms of SDF graphs rather than activities.
However, the discussion can be applied to SDF activities via Table 3.1.

I J

M

K L

N

(a) Base class graph GR, schedule KLMNIJ

D

D

W P

(c) Clustered derived class graph GC
Schedule WR
Schedule of unclustered graph by
substitution: KLMNIJR

I J

M

K L

N

P

(b) Unclusted derived class graph GU

W

D

D

I J

M

K L

N

(a) Base class graph GR, schedule KLMNIJ

D

D

I J

M

K L

N

(a) Base class graph GR, schedule KLMNIJ

D

D

W P

(c) Clustered derived class graph GC
Schedule WR
Schedule of unclustered graph by
substitution: KLMNIJR

I J

M

K L

N

P

(b) Unclusted derived class graph GU

W

D

D

W P

(c) Clustered derived class graph GC
Schedule WR
Schedule of unclustered graph by
substitution: KLMNIJR

I J

M

K L

N

PP

(b) Unclusted derived class graph GU

W

D

D

Figure 3.3. Clustering and Inheritance (SDF graph taken from [116])

Clustering is where a subgraph of an SDF graph is encapsulated into a single
node to produce a modified SDF graph (see Figure 3.3). This is done when
some part of an SDF graph can be treated as a subsystem [16]. In this context,
if the base class is extended such that its SDF graph is a connected subgraph
of the derived class SDF, then the base class subgraph can be clustered into a
single node, leaving a simplified base class graph. Let the unclustered, derived
class SDF graph be GU , the base class graph be GR with schedule SR, and
GR be clustered into a single node Ω to produce a simplified, clustered version
of GU named GC , with schedule SC . Then if every occurrence of Ω in SC is
replaced with the schedule SR of the subgraph that it represents, the resulting
schedule SU is a valid schedule for the unclustered graph GU [16]. See Figure
3.3.

This result has significance whether the SDF graph extension is accomplished
by the refinement of actors, or by the extension of the base class graph, or both.
If inheritance is via actor refinement, then if the schedule of the base class SDF

UML as a Framework for Combining Different Models of Computation 49

graph is known, along with the schedule of the graphs that refine the actors,
then the schedule of the derived class can be found by substitution. Equally, if
the base class SDF graph is a subgraph of the derived class SDF graph, then
it can be represented by a single, clustered node, as shown in Figure 3.3(c). If
the schedule of this simple SDF graph can be found then that of the full derived
class SDF graph (including the expansion of the clustered node) can be found by
substitution. Alternatively, the derived class schedule can be computed directly
using a tool like Ptolemy [115].

3.5.4 Composition and Aggregation

Consider first the issue of composition, as this is the simpler case, since
there is no difference in the lifetime of the composite and the components1.
If a composite class is specified, which has its own behavior defined by an
SDF activity, and whose component classes also have their behaviors defined
by SDF activities, then what can be said about the overall behavior of the
composite? In order to answer this question, the way in which the composite is
defined must be specified. If it is merely by a conventional class diagram with
composition ‘diamonds’ then it is not possible to determine the overall behavior
of the composite, as there is no mechanism for specifying how the components
are connected into a processing chain. See Figure 3.4.

Composite
Class

Component
Class1

Component
Class2

Composite
Class

Component
Class1

Component
Class2

Figure 3.4. Class Diagram Showing Two Whole-Part Relationships Defined by Composition

Hence some supplementary form of diagram would be needed in this case.
This is analogous to the situation with state machines discussed by [222], where
sequence diagrams are used to specify the collaboration of objects that provides
the behavior of the composite. However, if the components are drawn in an
activity partition, which shows both the activities and instances to which they
belong, then the interaction of components, and the behavior of the composite
is clear. See Figure 3.5.

It is simple to determine the overall behavior of an object that is the composite
of a number of SDF objects. In the general case, if the SDF activities in each

1Note that the word component is used in the sense of a ‘part’, not in the UML sense.

50 UML FOR SOC DESIGN

A BA BB

DD

C

E

F

G

H

:Composite Class :ComponentClass1 :ComponentClass2

Figure 3.5. Activity Partition Equivalent to Figure 3.4

partition (object) are replaced by a single CallBehaviorAction node that invokes
the relevant activity, then the overall graph typically has a very simple structure,
and a high-level SDF schedule can easily be constructed, often by hand. If the
schedules of each of the component graphs are known, then the schedule of the
composite and its parts can be determined by substitution, as discussed in the
previous section. Hence, when it comes to implementation, the behaviors of the
components can combined and mapped to a single large SDF graph, which can
then be implemented by standard techniques in software or hardware [116, 229].
The approach therefore allows dataflow components to be integrated into a
complete object model of the system during specification, whilst supporting
the synthesis of efficient, non-OO implementations using well-known methods.
This approach can also be applied to any set of SDF objects that are not part of
a composite, but whose connection topology is defined via an activity partition.

Having dealt with composition, aggregation is now briefly considered. One
key difference between composition and aggregation is that, whilst the whole-
part relationship applies to both, in the case of aggregation, the lifetime of the
components is not necessarily the same as that of the ‘parent’. This does not
require any special treatment, above that which is discussed in this section, and
in Section 3.5.2.

3.6 The Shell Model

Embedded SoC applications typically require high levels of internal par-
allelism, since they must typically respond concurrently to stimuli and data
streams from many different sources in the environment of the system. Multiple
processors, multi-tasking operating systems and application-specific hardware,
which is inherently concurrent, are all employed to meet this need. Hence, in
developing specification models for embedded SoCs, concurrency must play a
prominent role.

The early stages of the HASoC method are concerned with use case and
class/object modeling, and adopt a standard UML-based approach. After this,
the model under development is organized on the basis of the major concurrent

UML as a Framework for Combining Different Models of Computation 51

elements in the object model. These are represented by shells, a shell being a
specialized form of active object. Shells are a generalization of capsules from
UML-RT [194], which are themselves based on actors from ROOM [193].
A capsule is a stereotyped form of active class, with specific execution and
communication semantics. The behavior of a capsule is typically represented
by a single state machine, although capsules may contain sub-capsules as well
as, or instead of, the state machine. Hierarchical refinement of capsules can
be continued to any depth, and is depicted in capsule collaboration diagrams,
which show both child capsules contained within the parent and the parent’s state
machine (if it has one), represented by a rounded rectangle. Capsule instances
communicate via owned objects called ports that realize specific protocol roles.
A protocol role defines the UML signals that are sent and received by a port.
Connectors between ports in different capsules show message communications
paths. The execution model is based on the transmission and reception of
UML signals through ports that cause state transitions within the capsule’s state
machine. Computation and communication can be associated with transitions,
and state entry, exit and occupancy.

A number of features from UML-RT have been included in UML 2.0. In
particular, internal structure diagrams, showing the structure of a class in terms
of the instances that it owns, are very similar to capsule collaborations. Ports
are also included in UML 2.0, and are features of a class. When an instance
of the class is created, instances of its ports are created and these are termed
interaction points. If a port is specified to be a behavior port, it relays incoming
information to the internal behavior of the instance of the owning class. Other-
wise information will be sent to one of the objects within the internal structure
of the owning instance. Behavior ports are distinguished by being connected
to a rounded rectangle within the owning instance which represents its behav-
ior. Behavior ports can be hidden within a class, in which case they are used
to support communication between the internal objects and the composite’s
behavior.

The capsule was chosen as the basis of HASoC models for a number of rea-
sons. The use of ports leads to the separation of communication from computa-
tion, which is recognized to be a key SoC design principle [177]. Furthermore,
the capsule concurrency model is simple and clean, minimizing the possibility
of interthread interference, and since most communication is by asynchronous
signals, the danger of deadlock is reduced.

It is clear from the above description, however, that capsules can only repre-
sent reactive behavior, and so the capsule model has been generalized to support
different forms of behavioral description. This is done by introducing the notion
of a shell, which is an active, abstract class that has no concrete form of behav-
ioral description, and which communicates through ports. Two specializations
can be derived from the basic notion of a shell: AShells and MShells. AShells

52 UML FOR SOC DESIGN

have arbitrary behavioral descriptions (e.g. in terms of code in a high-level
language or hardware description language) and their ports simply encapsulate
whatever form of communications is necessary to support the ad hoc behavioral
description. AShells are concrete classes that can have direct implementations.

The behavior of an MShell is described via one or more models of compu-
tation, and the form of port communicators must be consistent with the model.
MShells are abstract and are specialized into CShells (control-oriented shells),
DShells (data-oriented shells), and HShells (hybrid shells). CShells are equiv-
alent to UML-RT capsules, and have state-based behavioral descriptions and
ports which support only communication by signals (signal-ports). DShells are
active SDF objects that communicate via ports that transmit only object-streams
(stream-ports). HShells (hybrid shells) have both control and data-oriented be-
havior and both signal- and stream-based ports. It should be emphasized that
the behavioral descriptions exist within the context of the enclosing object, and
although they may be refined according to the semantics of the prevailing MoC,
the refinement does not explicitly include objects.

Signal-ports and stream-ports are represented by modifications to the basic
port notation. These symbols are shown in Figure 3.6 along with examples of
CShells, DShells and HShells.

CShellClassA

DShellClassB

HShellClassC

Internal behavior

Signal Port

Stream Port

CShellClassA

DShellClassB

HShellClassC

Internal behavior

Signal Port

Stream Port

Figure 3.6. CShells, DShells and HShells

UML as a Framework for Combining Different Models of Computation 53

3.7 Hybrid Shells

A key issue that needs to be addressed within the notation is how the different
behavioral descriptions of hybrid shells relate to each other. Consider the hybrid
shell from Figure 3.6, HShellClassC. Although the internal behavior of this shell
is represented by a single symbol, the fact that it is an HShell and has different
types of port indicates that it has a state machine, and one or more SDF activities.
In the general case, the state machine and the SDF activities will interact, since
if the descriptions are independent, then combining them within a single class is
inappropriate on the grounds of poor cohesion. Hence in this formulation of the
hybrid shell model, an SDF activity is simply represented as a form of in-state
activity, and so the state machine controls the execution of the SDF activity. This
is a more conservative approach than the one proposed by [68] which permits
the arbitrary nesting of SDF graphs within states, and vice versa. The more
constrained approach was adopted because in this model, classes and objects
are the major structural elements for system description, and although they may
contain arbitrarily complex behavior, consideration of good OO design would
typically militate against objects with very high degrees of internal complexity.
Hence the general approach of [68] is not adopted, although some notions from
that work are utilized.

In terms of UML state machines, a behavior that is triggered upon entry to
a state, and which executes whilst the machine remains in that state is known
as a do-activity. The UML semantics of do-activities are defined in [154] as
follows:

1. Do-activities start upon entry to a state.

2. If a do-activity is executing when an event arrives triggering a transition
from the enclosing state, then the do-activity is aborted.

3. If the do-activity completes whilst the state machine resides in the en-
closing state, then a completion transition is triggered.

If an SDF activity is associated with a do-activity, then rule (3) is irrelevant
since the SDF model only deals with semi-infinite data streams. Rules (1) and
(2) however, require modification in the light of the SDF model. In order to
explain this, consider the following state machine that represents the state-based
behavior of an HShell HShellClassC.

The role of the state machine shown in Figure 3.7 is to initiate, pause, resume
and terminate the SDF behavior S. The SDF is represented by a do-activity in
state Active. To provide control, a number of actions are defined that enable
the state machine to interact with the SDF activity. These actions, which all
apply to a named SDF graph (S in the example) are associated with transitions
or state entry/exit in the normal UML manner, and are all logically transparent
to the SDF model. The actions are:

54 UML FOR SOC DESIGN

Idle

Active

α

Process-
ing

Paused

β/pause(S)

δ/resume(S)

γ
entry/initialise(S)
do/execute(S)
exit/reset(S)

Idle

Active

α

Process-
ing

Paused

β/pause(S)

δ/resume(S)

γ
entry/initialise(S)
do/execute(S)
exit/reset(S)

Figure 3.7. Example State Machine

Initialize(S): place initial values on the SDF arcs.

Execute(S): executes the SDF.

Reset(S): clears values from the SDF arcs.

Pause(S): stores the current values on the SDF arcs and then executes a
reset.

Resume(S): restores values stored by the previous pause operation. The
result of executing resume when no previous pause has been executed is
undefined.

Note that the execute action is not strictly necessary, as once an SDF activ-
ity has been initialized or resumed its execution is driven by the availability
of input data through the enclosing object’s stream-ports. It is included for
documentation purposes. If any of these actions are associated with states or
transitions, they override rule (2) above. This requires a change to the existing
UML semantics. For example an event that causes a transition out of a state
with a do-activity may either abort or pause the do-activity, depending on the
action associated with the event.

The above operations are chosen in such a way as to enable the SDF to
be controlled (i.e. started, paused, resumed etc) without the need to modify
the SDF model in any way at all. The operations simply achieve their effect
by removing or restoring tokens, relying on token presence/absence to control
the SDF operation. It is clear that an implementation would have significant
latitude with respect to how the same effects are achieved.

The above considers the control of an SDF activity by a state machine.
Influence may also be exerted in the opposite direction: the activity may force
the state machine to change state, via the addition of SendSignalActions to the
SDF activity. This is accomplished by adding a CallBehaviorAction to the SDF
activity, whose role is to evaluate a data dependent condition and if appropriate,

UML as a Framework for Combining Different Models of Computation 55

to generate a SendSignalAction [154] to force the state machine to change state.
This additional action has no effect on the overall behavior of the SDF activity,
and so does not affect the SDF activity schedule.

3.8 Mapping Shell Models to Software and Hardware

Straightforward mappings of shell models into OO languages can be achiev-
ed. However, since there are many well-known implementations of state ma-
chines and dataflow graphs, it is also possible to target lower level, non-OO
implementations. For example a software CShell can be mapped to an OS
thread with a message queue, and in very primitive execution environments,
threads may be dispensed with altogether, and a cyclic executive structure can
be used [179].

The implementation of DShells is, to some extent, bound up with their map-
ping to execution engines. For example, DShells would typically be used to
represent different filtering stages in a DSP chain with, for example, the output
of one stage providing the input to the next. In such cases, the most efficient
implementation would be obtained by exploiting the composition relationship
mentioned in Section 3.5 and composing the SDF graphs of all DShells allo-
cated to a common execution engine into a single SDF graph, and then applying
standard SDF graph implementation techniques [16, 229].

Implementations of HShells must consider the interaction model, discussed
in Section 3.7. Key issues include the concurrent, or pseudo-concurrent, exe-
cution of the state machine and SDF graph, and how the SDF graph is paused or
reset upon state exit/transition/entry. In a single threaded software implemen-
tation, once a state is entered in which the SDF graph executes, the thread must
be used for this purpose. However, to avoid state machine starvation, checks for
event arrival must be made from within the SDF graph schedule. Such checks
are still necessary even if the SDF graph runs on its own thread in a multi-
threaded implementation, unless the OS supports some form of asynchronous
signaling.

If a hardware implementation is chosen for a shell (or set of shells), then
there are several issues that must be addressed. These include the integration
of the shell with the underlying platform, the level at which the shells are to be
represented, and communication between the shell and the rest of the platform.

In terms of HASoC, a shell that is chosen for hardware implementation is
both part of the applications model and part of the underlying platform. The
system platform is initially modeled as a UML deployment diagram, from
which a shell model of the platform is synthesized [78]. This is known as the
hardware architecture model (HAM) and provides a framework for simulation
and synthesis, by supporting the integration of IP blocks, or the development
of hardware modules from scratch.

56 UML FOR SOC DESIGN

Hardware modeling in HASoC is conducted either at the transaction level
or register transfer level. Transaction level modeling is used to support rapid
simulation early in development and consequently uses high level behavioral
models, and intermodule communications based on interface functions in chan-
nels that encapsulate the low level details of data transfer. SystemC has proved
to be popular for transaction level modeling [92], and a mapping between the
HAM and SystemC has been established [73], and a prototype tool that gener-
ates SystemC from simple shell models has been developed [2]. In such models,
high level representations of state machines and SDF graphs can be used, since
the aim is to support simulation. Communication by simple object streams
and events is realised by calls to channel interface functions, necessitating the
addition of detail to the ports of hardware shells.

In terms of developing models that are suitable for synthesis, the behavior
of the shell must be represented at the register transfer level, and inter-module
communication must be refined to this level of detail. In terms of internal be-
havior, techniques have been developed for the synthesis of register transfer
level descriptions of SDF graphs and statecharts (upon which UML state ma-
chines are based). See, for example, [16, 223]. Hence attention is focused
mainly on the implementation of the interaction model for HShells. However,
it is necessary to explain that the SDF graph is represented as a set of execution
units (EXUs), which can implement either actors or precedence graph firings,
interconnected by token storage. The firing of the execution units is controlled
by the SDF graph scheduler, which implements the firing schedule of the graph.
See Figure 3.8. The state machine actions that control the SDF graph (e.g. see
Figure 3.7) are mapped directly to control signals that are input to the SDF
graph scheduler (Figure 3.8). These are distributed to the EXUs, along with
the basic control signals needed to control the EXUs.

B

C

A D

SDFG
Scheduler

EXU (actors
or firings)Storage

e.g. FIFO

Control
Signals

Signal
from
SDFG

State Machine
Implementation

SDFG
Implementation

(a) HShell hardware architecture

Exec A APaused

pause
/pauseA

resume/resumeA

Exec D DPaused

pause
/pauseD

resume/resumeD

doneA
/startB…

doneD
/startA…

Waiting Initialising
initialise

execute

Executing schedule

reset/resetA…

(b) SDFG Scheduler State Machine

B

C

A D

SDFG
Scheduler

EXU (actors
or firings)Storage

e.g. FIFO

Control
Signals

Signal
from
SDFG

State Machine
Implementation

SDFG
Implementation

(a) HShell hardware architecture

Exec A APaused

pause
/pauseA

resume/resumeA

Exec D DPaused

pause
/pauseD

resume/resumeD

doneA
/startB…

doneD
/startA…

Waiting Initialising
initialise

execute

Executing schedule

reset/resetA…

(b) SDFG Scheduler State Machine

Figure 3.8. Hardware Implementation of an Hshell

UML as a Framework for Combining Different Models of Computation 57

In addition to the representation of shell behaviour at the register transfer
level, intermodule communication must also be represented at this level. A
procedure for refining communications in a HASoC HAM from transaction
level to register transfer level is presented in [73], which is based on a proce-
dure discussed in [162]. In the initial stage of communication refinement, the
ports of a hardware shell are replaced by an adapter port that translates between
the transaction level interface and the bus protocol, enabling an RTL simulation
of communication to be carried out, whilst using transaction level models of
behavior. When a register transfer level description of shell behavior is avail-
able, the adapter port is replaced by one with the same external interface, but
whose internal interface is now at register transfer level.

3.9 Case Study: A Simple Modem

A small case study will now be presented. The system under consideration is
a simple modem, which is intended to be a subsystem of an embedded SoC. A
number of assumptions and simplifications are made in the interests of brevity.
The modem and the ‘main’ system communicate through shared memory, and so
there is no need to model a serial interface, AT commands and an AT command
parser. Moreover, it is assumed that the modem operates at a single line-speed,
and so there is no negotiation between sending and receiving modems, once a
connection is established.

<<AShell>>
SystemClass

:Client :Call

:TxData
Pump

:Line

:RxData
Pump

<<AShell>>
SystemClass

:Client :Call

:TxData
Pump

:Line

:RxData
Pump

:Client :Call

:TxData
Pump

:Line

:RxData
Pump

Figure 3.9. Modem System Shell Diagram

A shell model of the system is shown in Figure 3.9. The Client shell repre-
sents the part of the SoC that uses the modem to transmit messages. The Call
shell is a high level object that tracks the status of a call, and which mediates
between the Client and the Line. The Line shell encapsulates all the details

58 UML FOR SOC DESIGN

of access to the physical communications channel. The DataPump shells are
responsible for most of the signal processing operations that must be performed
by the system e.g. modulation/demodulation/filtering etc etc. In terms of the
shell categorization given in Section 3.6 the Client is an AShell, Call is a CShell,
and the Line and the Data Pumps are HShells.

:Line Tones :ADC

<<HShell>>
Line

:DAC

:Line Tones :ADC

<<HShell>>
Line

:DAC

Figure 3.10. The Line Shell

The refinement of the Line shell is given in Figure 3.10. In terms of a
specification model, the ADC and DAC represent hardware components that
play a significant role within the application model.

Part of the Line state machine is shown in Figure 3.11. It resides in the
Idle state until either the Call shell sends a dial event accompanied by a string
representing the number to be called, or the Line shell reports an incoming call.
In responding to the dial event, the state machine sends a message to passive
object switch, which is owned by Line, but not shown in the shell diagram,
causing the system to go off-hook. It is assumed that the ring detection is part
of the platform, which will generate the incomingCall event for the Line shell
state machine.

success/
done

Idle

Trans-
mitting

Rec-
eiving

dial(n)/
switch.offHook incomingCall

(a) Top Level State Machine

Establishing
Connection

Connected

failure

hangUp

entry start

(b) Refinement of State Transmitting

success/
done

Idle

Trans-
mitting

Rec-
eiving

dial(n)/
switch.offHook incomingCall

(a) Top Level State Machine

Establishing
Connection

Connected

failure

hangUp

entry start

(b) Refinement of State Transmitting

Establishing
Connection

Connected

failure

hangUp

entry start

(b) Refinement of State Transmitting

Figure 3.11. Part of the Line State Machine

UML as a Framework for Combining Different Models of Computation 59

Connected

ringTone

hangUp

noDialTone/failure

after tr/
failure

Dialing
do/ DTMF.dial(n)

dialTone

busyTone

entry/ configDT;
initialize(Detect);
do/execute(Detect);

RingOrBusy

entry/configRing;
initialize(Detect);
do/execute(Detect);

answerTone

Ringing

entry/configAns;
initialize(Detect);
do/ execute(Detect);

Detecting Dial Tone

/initADC

Connected

ringTone

hangUp

noDialTone/failure

after tr/
failure

Dialing
do/ DTMF.dial(n)

dialTone

busyTone

entry/ configDT;
initialize(Detect);
do/execute(Detect);

RingOrBusy

entry/configRing;
initialize(Detect);
do/execute(Detect);

RingOrBusy

entry/configRing;
initialize(Detect);
do/execute(Detect);

answerTone

Ringing

entry/configAns;
initialize(Detect);
do/ execute(Detect);

Detecting Dial Tone

/initADC

Figure 3.12. LineTones State Machine

The refinement of the Transmitting state is shown in Figure 3.11(b). The main
task here is to initiate, via the start entry action, the connection sequence that is
performed by the shell LineTones in Figure 3.10. If LineTones is successful in
making a connection, it sends event success to the Line state machine, which
in turn sends a done event to the Call shell. This switches the TxDataPump on
and instructs the Client to send data to it. If a connection cannot be established
then a failure event is sent to Line.

The LineTones state machine (Figure 3.12) implements the sequence of op-
erations required to establish a connection, specifically dialing tone detection,
DTMF dialing, ring/busy and answer tone detection. The LineTones shell owns

Scale NBFilterNBFilter

Input
Energy
Estim

Output
Energy
Estim

Decision
Detect

Figure 3.13. SDF Activity

60 UML FOR SOC DESIGN

a passive object called DTMF Dialer, which is responsible for generating the
tones to dial the target number, and a configurable datapath, represented by
the SDF activity in Figure 3.13 that performs tone detection. This activity is
based on the tone detector discussed in [213]. Upon entry to each state in which
tone detection is required, the tone detection datapath is configured, the SDF
activity is initialized, and then executed as an in-state activity. The Decision
action invokes the behavior shown in Figure 3.14, which represents the generic
detection behavior. This calls the decision algorithm that determines whether
or not the tone has been detected, which in turn generates the appropriate signal.
For example, during dial tone detection, the Decision activity will send either
a present or an absent signal (mapped in this case to a dialTone/noDialTone
event) to the LineTones state machine, forcing a state change.

Decision
Algorithm

Decision

present
[yes]

[no] absent

Decision
Algorithm

Decision

present
[yes]

[no]

Decision
Algorithm

Decision

present
Decision
Algorithm

Decision

presentpresent
[yes]

[no] absent

Figure 3.14. Decision Activity

3.9.1 Commitment and the Platform

In HASoC, shells are committed to software or hardware implementation,
typically on the basis of non-functional requirements. In this section a small
part of the modem model will be committed in order to illustrate the process.

Figure 3.15 shows the decomposition of the TxDataPump shell into a Link-
Layer HShell that is responsible for link management, and a Modulator DShell
that contains a chain of DShells that perform all the signal processing necessary
to produce a modulated sample stream that is sent to the DAC.

<<HShell>> TxDataPump

:LinkLayer :Modulator

<<sw HShell p>> <<hw DShell p>>

<<HShell>> TxDataPump

:LinkLayer :Modulator

<<sw HShell p>> <<hw DShell p>>

Figure 3.15. Decomposition of TxDataPump

UML as a Framework for Combining Different Models of Computation 61

It is assumed that, on the basis of performance estimates, the decision has
been taken to implement the LinkLayer in software and the Modulator in hard-
ware. The identifier ‘p’ in the stereotype indicates that the LinkLayer shell
will run on processor p which is part of the platform (see below), and that the
Modulator will be interfaced to p, and share memory with it.

As indicated in Section 3.8, application-specific hardware shells are also
part of the system platform, which is represented by the HAM. In this simple
example, it is assumed that the initial system platform consists of a single
processor, SRAM, ROM, a DAC and an ADC, all connected via a single bus.
The HAM, including the Modulator is shown in Figure 3.16. A transaction
level SystemC model can be developed within this framework, as indicated
in Section 3.8, provided that appropriate SystemC models of the components
exist, or time is available to develop them. On the basis of data gathered from
simulation runs, it may be deemed necessary to reorganize the platform, for
example by introducing a more elaborate bus structure, additional memories
etc.

b:Bus

p: Processor r: ROM s: SRAM

a: ADC d: DAC m: Modulator

<<AShell>>
Platform

b:Bus

p: Processorp: Processor r: ROMr: ROM s: SRAMs: SRAM

a: ADCa: ADC d: DACd: DAC m: Modulatorm: Modulator

<<AShell>>
Platform

Figure 3.16. Platform Model

3.10 Conclusions

This chapter has introduced a formalism to support the specification and
modeling of complex embedded SoCs. The approach is based on the HASoC
design method and UML 2.0, and a key aspect is the integration of control-
oriented (state machine) and dataflow (SDF) models of computation. It allows
embedded SoCs to be modeled uniformly in terms of a specialized form of
object, known as a shell, and for those shells to exhibit different forms of
behavior. Some shells will be reactive, and their behavior is described by
state machines. Others will exhibit dataflow behavior, which is represented
internally by SDF activities. Finally some shells will display both types of

62 UML FOR SOC DESIGN

behavior, requiring both types of internal behavioral representation. In such
cases, a simple interaction model has been defined, enabling the different types
of behavior to communicate. The overall approach requires a small number of
minor modifications to UML 2.0, specifically the addition of object-streams and
the associated constructs, and small changes to the semantics of do-activities,
enabling them to be optionally resumed upon state re-entry.

Having a complete representation of system behavior enables the specifica-
tion to be evaluated against the requirements of the whole system. This does
not, however, prevent the different aspects of a system’s behavior being consid-
ered in isolation if necessary. For example, model checking can be applied to
the reactive parts of the system to establish the presence of desirable properties
and the absence of undesirable behavior [212].

Shell models can be realized in software or hardware, and a range of imple-
mentation options exist, some of which can yield very efficient implementations
based on well-known techniques. The HASoC method supports the integration
of hardware shells with the underlying system platform, and provides proce-
dures for developing transaction level and register transfer level models. This
facilitates platform simulation and synthesis, and offers the prospect of co-
simulation based on a complete model of the system represented in UML 2.0.

Acknowledgements

The author gratefully acknowledges the contributions of Martyn Edwards
and Salah Essa to earlier versions of this work.

Chapter 4

A Generic Model Execution Platform for
the Design of Hardware and Software

Tim Schattkowsky, Wolfgang Mueller, Achim Rettberg

Paderborn University/C-LAB
Paderborn, Germany

Abstract This chapter presents the concepts of our Model Execution Platform (MEP). The
MEP is an approach to executable UML for the design of hardware and software
systems covering Class, State Machine, and Activity Diagrams. We present
how the MEP is employed for Handel-C code generation and briefly sketch the
concepts of a MEP based UML virtual machine.

4.1 Introduction

In electronic and embedded systems design we can currently identify a num-
ber of gaps in moving from specification to implementation.

In embedded systems design most approaches employ platform specific code
generation. Various code generator targets are available covering various mi-
crocontrollers such as the C166 and C8085 families as well as different Real
Time Operating Systems (RTOSs) such as OSEK [128]. Many efforts have
been made to investigate retargetable compilers that can be tailored to different
hardware platforms [119].

In electronic systems design the platform based approach has become quite
popular. Platform based chip design encompasses the use of SoC platforms and
the integration and reuse of IPs [181, 34].

Most recently, UML and the idea of MDA (Model Driven Architecture)
[147] has become well recognized in the domain of embedded software and
hardware systems. MDA is based on the idea of platform-independent devel-
opment with Platform-Independent Models (PIMs). PIMs have to be mapped
to Platform-Specific models (PSMs), which are used for the derivation of the
actual implementation. In that context UML has an important role for system

63

G. Martin and W. Müller (eds.), UML for SOC Design, 63–88.

© 2005 Springer. Printed in the Netherlands.

64 UML FOR SOC DESIGN

documentation and specification. The notion of Executable UML is of major
interest here as it enables a UML based PSM to become executable.

This chapter presents a model-based approach for hardware and embedded
software design to bridge the gap from specification to implementation based
on the notion of executable UML. For that we introduce the concepts of our
Model Execution Platform (MEP). The MEP is based on a UML 2.0 subset
with precise behavioral semantics. This subset covers Class, State Machine,
and Activity Diagrams. It provides abstract concepts which can be employed
for the hardware code generation as well as for embedded software. Based
on the MEP, we introduce concepts for true object-oriented hardware design
starting from Class Diagrams arriving at a synthesizable hardware description
language such as Handel-C. Additionally we outline how to apply the same
concepts for the efficient execution of binary encoded UML specification on a
virtual machine.

The remainder of this chapter is structured as follows. The next section
discusses related works. Section 4.3 introduces the basic MEP concepts. Sec-
tion 4.4 employs the MEP concepts for Handel-C code generation. Section 4.5
briefly sketches how the same concepts are applied for the implementation of
a UML virtual machine before Section 4.6 finally closes with a conclusion.

4.2 Related Works

The MEP is a model-based approach for the design of hardware and software
systems. Related works can be mainly identified in the areas of abstract execu-
tion platforms for FPGAs, methodologies for hardware/software codesign, and
the generation of hardware/system description languages from UML.

In the field of abstract hardware execution platforms, the Hardware Virtual
Machine project [81] targets at the specification of an abstract FPGA in order
to overcome the problem of incompatible bit files. Designs for such an abstract
FPGA are automatically transformed into an FPGA bitstream file. This trans-
formation is based on an automatic assembly from small fragments, which are
further subject to place and route.

Lange and Kebschull introduce the idea of a virtual machine for abstract
hardware implementations running on specific types of FPGAs [111]. Their
approach is based on the execution of byte code, which essentially contains a
binary encoded register transfer level description. The byte code is composed
of blocks of instructions that are scheduled into multiple equal execution units
within the actual virtual machine implementation. This virtual machine im-
plementation is specific for a particular FPGA and may vary in the number of
execution units. Their byte code describes low level hardware designs compa-
rable to a direct FPGA implementation and does not support high level control
constructs.

A Generic Model Execution Platform for the Design of Hardware and Software 65

For SoC and hardware/software codesign, several methodologies start from
platform-independent diagrams or C based specifications. One example is the
OCTOPUS approach for embedded systems design [5]. It is based on OOA
and already follows the idea of diagrammatic platform-independent specifica-
tion. OCTOPUS covers hw/sw partitioning and embedded software design.
However, OCTOPUS just introduces general concepts without complete tool
support for specification and code generation.

The SpecC methodology is based on the SpecC language, a concurrent C ex-
tension [67]. The SpecC specification is the starting point for an architectural
exploration and a communication synthesis, which gives the input for further
software and hardware synthesis. The methodology comes with the SoC En-
vironment (SCE) from UC Irvine, an advanced tool set for hw/sw partitioning
and profiling.

COSYMA [90] denotes a methodology and a toolset for hw/sw codesign
and cosynthesis. The design starts with a specification written in Cx. Cxis a
C extension by processes and interprocess communication. After compilation
and profiling, the design is partitioned into hardware and software, which are
subject to further synthesis.

The IMEC SoC++ design flow [123] is a C++ based methodology for hw/sw
codesign. It starts with a specification in concurrent C++ and covers the explo-
ration of storage and data transfer management in addition to task scheduling
and a Pareto-based power and performance analysis. The design can start with
UML for system requirements and architecture. Here UML has more the role
of an optional graphical frontend for system specification and is not an integral
part of the design flow.

In the context of the OMG Model Driven Architecture the notion of platform-
independent design and executable UML became popular for retargetable soft-
ware generation. Most approaches are mainly based on Class and State Machine
Diagrams (resp., StateCharts) such as xUML [169] and xtUML [131].

The concept of xUML is based on the notion of an Action Specification
Language (ASL), which defines the semantics of basic actions for code gener-
ation [148]. However, for creating an executable model xUML still relies on a
programming language specific code generation (e.g., for Ada, C, C++).

A similar approach is taken by xtUML, which defines an executable and
translatable UML subset for embedded real time systems. The modeling tools
integrate abstract, macro-like constructs, which are easily retargetable to the
various C dialects of different microcontroller platforms.

Implementations of xUML and xtUML can be found in iUML (Kennedy
Carter) and Bridgepoint (Accelerated Technology), respectively. Comparable
approaches are taken by Real-Time Studio (ARTiSAN) and the Ameos tool
suite (Aonix).

66 UML FOR SOC DESIGN

Most recently, we can find several investigations on code generation for
hardware/system description language from UML like SystemC and VHDL
[139]. Most of them are in more details in the other chapters of this book.

In this chapter we introduce the Model Execution Platform (MEP) which
defines an abstract model-based platform for executable UML in the context
of embedded systems and SoC design. The MEP is generic in the sense that it
is applicable as a model-based approach for hardware and embedded software
systems. In this chapter, we focus on Handel-C code generation for FPGA syn-
thesis and only sketch the application for embedded software. Details of the
MEP based virtual machine for embedded systems can be found in [185]. In
contrast to other approaches, we apply a combination of State Machines and Ac-
tivities for behavioral specification based on a strict object-oriented methodol-
ogy. Though this chapter just presents the Handel-C code generation for FPGA
synthesis, our approach is not limited to Handel-C and can be easily adapted to
other system or hardware description languages like VHDL or System-C.

4.3 The Model Execution Platform (MEP)

The UML is a general purpose modeling language. Since UML models are
not necessarily executable, the notion of Executable UML and UML model
compilers for transforming executable UML models into implementations are
of particular interest. To arrive at executable models it is necessary to tailor
UML to such an application. For this a well defined UML subset for the creation
of a composite UML model consisting of different views and diagrams must be
identified along with its execution semantics.

The foundation of our approach is the definition of a generic Model Execution
Platform (MEP) as given in the remainder this section. The MEP introduces
syntax and semantics for complete system specification based on a well defined
UML subset with precise execution semantics. The subset is based on the
definition of a Class Diagram with classes, their properties, and operations in
combination with State Machines, Activities, and Actions.

Inherently different techniques may be applied to implement the execution
semantics of our MEP. In Section 4.4 we discuss the implementation through
automatically generated synthesizable hardware descriptions. In Section 4.5,
for comparison, we sketch the concepts of an implementation through a virtual
machine (VM) (see also [185]).

4.3.1 Structure

As our approach is fully object-oriented, UML Class Diagrams provide the
basis for our structural specifications where Associations1 reflect the existing

1We capitalize references to classes of the UML standard metamodel.

A Generic Model Execution Platform for the Design of Hardware and Software 67

attribute type information and Generalizations define subclasses and imple-
mented Interfaces.

The object model of our MEP UML subset is strictly derived from the UML
2.0 metamodel (see Fig. 4.1). A Class supports Operations and Properties,
which can be static or non-static Features. Single inheritance and the use of
multiple interfaces are included. An Operation may have in, out, inout, and
return Parameters with an optional default ValueSpecification. Furthermore,
an Operation may raise typed exceptions.

In the UML 2.0 metamodel the actual method for an Operation is defined by
an instance of a Behavior subclass. The MEP employs a StateMachine for this
purpose which is outlined in more details in Subsection 4.3.2. If no Behavior
is given, the Operation is implicitly defined as abstract.

Instance and class variables are declared through non-static and static Prop-
erties, which represent the attributes of a Class. A Property is defined by its
name, type, and visibility (public/private/protected). Unlike arrays, we do not
support collections. However, they can be easily implemented by run time
classes.

4.3.2 Behavior

The UML offers a rich set of concepts for behavioral modeling. Actions rep-
resent single computational steps and are composed to Activities. An Activity
provides means for modeling flow oriented behavior based on Petri Net-like
token semantics. Activities are composed of subActivities or Actions, where
the latter are the fundamental behavioral elements of the UML. An Activity
Diagram graphically represents such an Activity.

UML StateMachines enable state-oriented modeling. StateMachines are
based on the concept of hierarchical finite state machines. StateMachines invoke
Activities when executing States or Transitions as Entry, Do, Exit, or Effect
Activities. A StateMachine is represented by a StateMachine Diagram.

An Interaction describes behavior in terms of partially ordered messages
between objects and is comparable to a SDL message sequence chart. An
Interaction can be represented by a Sequence Diagram.

Actions, Activities, StateMachines, and Interactions are subclasses of Be-
havior in the UML metamodel and can describe the method of an Operation.
In our MEP approach we use a StateMachine to describe the Behavior of an
Operation. The States in a StateMachine can contain Activities, which finally
contain Actions. Since Actions can invoke other StateMachines, this provides
the support for arbitrarily combined data, control, and state oriented modeling
for each Operation.

Actions as Basic Elements. Actions are the fundamental behavioral units in
the UML. Each Action is considered as one computational step. For executable

68 UML FOR SOC DESIGN

Multipl icityElement
NamedElement

Parameter

StructuralFeature

Property

Classifier

Class

BehavioralFeature

Operation

Behav ior

PackageableElement

Type

Multipl icityElement

ValueSpecification

Classifier

Interface

0..1

* {ordered}+parameter

+redefinedOperation *

*

+raisedException

+operation

*+formalParameter

0..1

+type

0..1
+operation

0..1 +method

+superclass 0..1

* 1

+contract

0..1+class

* {ordered}
+ownedOperation

0..1+class

* {ordered}
+ownedAttribute

0..1

* {ordered}
+ownedOperation

0..1 +owningParameter

0..1+defaultValue

0..1
+owningProperty

0..1

+defaultValue

Figure 4.1. MEP Object Model

A Generic Model Execution Platform for the Design of Hardware and Software 69

UML, Actions and the owning Activities have to form a computationally com-
plete language. Our approach utilizes most of the Actions introduced by the
UML 2.0 [157]. In cases where the UML provides no graphical notation, we
employ a JAVA-like textual syntax for Action specification.

Using Activities for Control and Data Flows. StateMachines can hardly
express complex behavior with nested conditional control flows, loops, and
complex data structures. A typical example is the specification of the simple
Bubble Sort algorithm, where no useful states can be identified. In Activities,
integrated data and control token flows address the needs for combined data
and control oriented modeling much better. We thus employ such Activities
through their application in StateMachines.

The MEP supports the essential elements of UML 2.0 Activities such as
Initial, Final, Action, Fork, Join, Decision, and Merge nodes. However, for
efficient code generation we have introduced wellformedness rules for their
composition. As an example we require a closing Join for each Fork element.
Furthermore, as UML 2.0 introduces the definition of input and output Pins for
an Action, we apply them to represent the signature of individual ActivityNodes.

Defining Operations through StateMachines. Many approaches employ
StateMachines to describe the behavior of a whole Class at state level with
Transitions triggered by Operation calls. Other applications are fundamentally
different. They apply transitions to react to a set of heterogeneous signals,
without object-oriented semantics. Thus some developers implement State-
Charts through a single Operation like several reference implementations for
protocols do. The definition of Operations through StateMachines enables the
integration of additional model elements such as Exceptions and timeouts. Ad-
ditionally it enables the dynamic composition of StateMachines through nested
operation calls and also avoids the artificial creation of an individual class for
each StateMachine, which appears to be more intuitive for the specification of
complex systems. Therefore we follow that approach and define Operations
through StateMachines. It is important to note here that a trivial StateMachine
(i.e., a single State with a single Activity) is equivalent to the direct application
of an Activity for the definition of an Operation.

A MEP StateMachine consists of simple and composite states (see Fig.
4.2). The latter can embed another StateMachine. Initial Pseudostates are the
only supported PseudostateKind. Concurrent States are intentionally not sup-
ported. Alternatively, concurrency can be implemented through asynchronous
Operation calls. This enables the dynamic creation of concurrently executing
StateMachines while maintaining the UML ‘run to completion’ semantics.

Both composite and simple States may have Activities defining their behavior
on entry, exit, and during execution. Transitions usually have explicit Triggers.

70 UML FOR SOC DESIGN

Behavior

StateMachine

NamedElement

Region

NamedElement

State

NamedElement

Transition

Element

Trigger

NamedElement

Vertex

Behavior

Activ ity

FinalState

PackageableElement

Constraint

Pseudostate

+ kind: PseudostateKind

*
+subvertex

0..1
+container

0..1

+container

*+transitions

*

*

+deferrableTrigger

*

+submachineState

0..1
+submachine

0..1

0..1
+region

*

0..*+trigger

0..1

0..1+effect

*

+outgoing

1

+source

0..1

1+region

0..1

0..1+guard

0..1

+entry

0..1

0..1

+exit

0..1

0..1

+doActivity

0..1

*

+incoming

1

+target

Figure 4.2. MEP State Machine Model

In addition, one unguarded completion transition without a Trigger may exist
for each State. As given in Fig. 4.3, Transitions may have different Triggers:
the occurrence of a timeout or hardware Interrupt, a software Exception (e.g., di-
vision by zero), or an explicit Trigger (ImmediateTrigger). ImmediateTriggers
are instantly processed and cause the current State to be exited immediately.
An Operation completes when the corresponding StateMachine terminates by
reaching a final state.

The MEP supports timeouts, interrupts, exceptions, explicit events, and the
completion event for the embedded Activities. Exceptions are raised from
StateMachines by taking them as the effect of a Transition to a final State

A Generic Model Execution Platform for the Design of Hardware and Software 71

Element

Trigger

TimeTrigger

MultiplicityElement

ValueSpecification

ExceptionTrigger

Type

Exception

ExternalException RaisedException

Interrupt RuntimeException

ImmediateTrigger

GeneratedTrigger

Class

TriggerObjectClass

Operation

TriggerGenerator

*

1+triggerType

0..1+class

1+triggerOperation
{subsets
ownedOperation}

1 +caughtException 1 +when

Figure 4.3. MEP Trigger Types

72 UML FOR SOC DESIGN

at the given StateMachine level. Generally, all Exceptions thrown in a sub-
StateMachine have to be caught in the containing StateMachine by defining
Transitions from the containing State, which is triggered by the Exception.
Transitions may raise the same Exception again to propagate it in the StateMa-
chine hierarchy. Timeouts are implemented by a TimeTrigger with an Integer
value and a relative physical time unit as a parameter. Absolute TimeTriggers
can be easily implemented by computing the respective relative timeouts.

A dedicated Operation can generate additional events for a StateMachine,
where each MEP StateMachine may have an EventGenerator Operation to pro-
duce additional EventObjects. The EventObject Class defines a member op-
eration that is used to retrieve the event identifier. This Operation is executed
once when a State completes and no completion Transition exists. Through
this mechanism, it is possible to assign an individual event semantics for each
StateMachine. This enables the reuse of existing StateCharts implementations.
However, special care has to be taken when the original target platform enforces
different execution semantics.

4.3.3 MPEG Video Decoder Example

We briefly illustrate the MEP concepts with the example of an MPEG video
decoder. The decoder reads a compressed frame from the MPEG video stream
and decodes it to raw video data. This decoding includes the Inverse Discrete
Cosine Transformation (IDCT) as the step most critical to performance. Thus
MPEG decoder designs have to pay special attention to the IDCT by providing
different optimized implementations due to the actual platform.

The MEP based design of an MPEG decoder maps the individual entities to
a Class Diagram (see Fig. 4.4). In our example the MPEGVideoDecoder class
represents the MPEG decoder. The class implements a getFrame() Operation
that retrieves a compressed frame from the binary data stream and returns a
decoded frame. In our model, the MPEGFrame and RawFrame Class represent
the encoded and decoded frames, respectively. MPEGVideoInputStream parses
the MPEG stream and returns individual MPEGFrames. The initStream() Op-
eration of the decoder takes an MPEGVideoInputStream instance to initialize an
MPEGVideoDecoder instance for processing frames from the MPEGVideoIn-
putStream.

To decode a frame, the private decodeFrame() operation uses a dedicated
implementation of the IDCT Interface. Through this Interface different IDCT
implementations can be employed depending on the characteristics of the indi-
vidual hardware or software platform.

We will outline the getFrame() Operation here in more detail to illustrate
the design of behavioral aspects. The getFrame() Operation is specificed by a
StateMachine (see Fig. 4.5) with a single State, which executes the Process-

A Generic Model Execution Platform for the Design of Hardware and Software 73

MPEGFrameRawFrame

MPEGVideoDecoder

- Stream: MPEGVideoInputStream
- StoredFrames: RawFrame[2]
- IDCTImpl: IDCT

+ initStream(MPEGVideoDecoder) : void
+ getFrame() : RawFrame
- decodeFrame(MPEGFrame) : RawFrame

«interface»

IDCT

MPEGVideoInputStream

+ readFrame() : MPEGFrame

... ...

...

...

...

0..1

0..2+storedFrame

0..1

0..1+stream

* 0..1

Figure 4.4. Simplified MPEG Video Decoder Class Diagram

MPEGVideoDecoder.getFrame()

- DecodedFrame: RawFrame

do / ProcessFrame Exception /EDecodeError

EStreamError /EStreamError

/return DecodedFrame

Figure 4.5. MPEGVideoDecoder.getFrame() State Machine Diagram

74 UML FOR SOC DESIGN

Frame Activity. Note here that the StateMachine is not trivial, as it is employed
to catch Exceptions that may occur when processing the video stream or de-
coding the individual MPEGFrame and raise respective new Exceptions.

The implementation of the ProcessFrame Activity (see Fig. 4.6) is composed
from several Actions and essentially invokes Stream.readFrame() to retrieve an
encoded MPEGFrame and to decode it to a RawFrame using decodeFrame().

MPEGVideoDecoder.getFrame().ProcessFrame

readFrame()

Stream

ReadStructuralFeature

ReadSelf ReadSelf

decodeFrame()

DecodedFrame

WriteVariable

Figure 4.6. MPEGVideoDecoder.getFrame().ProcessFrame Activity Diagram

A Generic Model Execution Platform for the Design of Hardware and Software 75

Based on the Class Diagram we can decide on a first partition into hardware
and software components. As the IDCT is known as performance-critical, it is
a candidate for implementation on a DSP or dedicated hardware. The example
in the next section outlines how to implement the IDCT as a butterfly network
and generate Handel-C code for FPGA synthesis.

4.4 Code Generation for Hardware Implementation

4.4.1 From Objects to Hardware Blocks

Whilst the implementation of the MEP semantics in a software system is quite
straightforward, as demonstrated in the next section, the inherently different
properties of hardware systems must be considered when applying the MEP
approach here. The following paragraphs discuss those properties and outline
the semantics we employ to derive a hardware implementation directly from an
MEP based specification.

Instantiation. In the context of hardware generation we first have to clarify
the actual semantics of class instantiation. Our approach maps class instances
to hardware blocks whilst their attributes map to registers. Operations are syn-
thesized to equivalent logic for each individual instance. It is thus not possible
to instantiate a hardware class at run time2 and all instances must be deter-
mined at compile time. Thus we define all instantiations in the constructors.
Consequently all Instances except the system’s root Instance are owned through
composition and form a composition tree at compile time. A shared Associ-
ation between Instances defines non-owned links between instances, e.g., for
delegation. However, those Instances have a common transitive owner in the
composition tree.

For our hardware generation all constructors are evaluated starting from
the constructor of the system main class. This results in the creation of the
corresponding hardware blocks and their interconnections based on the param-
eterized constructor calls for owned instances and interconnection definitions
in the constructors.

The evaluation of the constructors can be done simply by running a software
simulation that computes the initial configuration of the hardware system. To
eliminate the need for a complete simulation, Operation calls other than con-
structor calls within the constructors can be prohibited. However, this is not a
significant limitation because Operation calls may be used later to initialize the
instance at run time.

2Not considering run time reconfiguration for specific FPGAs here.

76 UML FOR SOC DESIGN

Note here that destructors are essentially normal Operations in the context
of hardware synthesis where the implied deallocation is meaningless. Anyway,
we prescribe that no access to an instance is allowed after the destructor call.

Size and Granularity Considerations. The mapping from similarly sized
specifications to hardware may yield circuits which differ significantly in size.
A very simple example is an adder compared to a multiplier when both are
specified with the same size. Furthermore, unlike in software systems, hardware
instances contain individual copies of each circuit. It is therefore essential
for hardware synthesis to reflect these properties in the structural part of the
specification to make efficient use of the available silicon. This usually leads to
the creation of reusable elements at a finer granularity than in software systems.

Finally, the bit width of data is an important factor for the size and depth of
a circuit. Unlike in software systems, which use fixed size registers, hardware
systems directly implement logic for each bit of the operand size. Thus it
is essential to support this at the design level through explicit operand size
definition.

Connecting Hardware Blocks. Dynamic links between software Instances
are just pointers, which are essentially without cost in software systems. In
hardware, dynamic links are costly and require significantly more effort to be
implemented, e.g., by the use of multiplexers.

In our approach hard wired links between hardware blocks can be defined in
three ways. The first way is through composition and they are defined through
nested constructor calls. The second alternative is to pass references to con-
nected instances to the constructor, which are assigned to final attributes. Fi-
nally, the explicit declaration of hard wired interconnections at an owning In-
stance is possible. We support this through parameterized Activities defining
fixed data and control flows between a subset of the owned instances. The exam-
ple in Fig. 4.11 takes the third alternative and defines the interconnection of the
Butterfly Instances through the parameterized IDCTActivity. A parameterized
Activity is a template defining the fixed interconnection between elements from
the given Instances resulting in a named Activity. The newly defined Activity
can be referenced from other Activities (see Fig. 4.12).

We investigated the support of dynamic hardware links to enable polymor-
phism during execution as an essential feature. From a hardware point of view
dynamic links connect one hardware block to other hardware blocks with a
common interface. This enables an Instance to access all Instances of a given
type und its subtypes including all Attributes, Operations, and their parameters.
However, since dynamic hardware links can be highly resource consuming,
e.g., by their implementation through cascaded multiplexers, their individual
application has to be carefully considered in the context of hardware synthesis.

A Generic Model Execution Platform for the Design of Hardware and Software 77

Multiplexing. Multiplexing of hardware units is used for multiple access
to single resources. We model this by associating a class implementing the
multiplexed unit. However, access to an instance has to be controlled in order
to avoid reentrancy problems.

Reentrancy. When moving directly from software to hardware design, the
non-reentrancy of hardware needs special attention. Operations in software
systems are usually reentrant since software systems typically use the stack to
store the execution state during an Operation call. In hardware systems this state
is the state of the respective circuit. Thus recursion or concurrent invocation of
the same Operation leads to erroneous behavior. Therefore we require that all
hardware Operations must be declared as non-reentrant.

Interconnecting IPs. When composing components, e.g., IPs, to a system,
we have to consider the corresponding instances und their interconnected in-
terfaces. This makes it possible to define the complete system through a UML
Component Diagram where the individual components are Instances of Classes
defined by their exposed and required Interfaces. Note that this is semantically
equivalent to a subset of the Class Diagrams we use at the top level.

4.4.2 Handel-C Code Generation

Handel-C is a procedural C based Hardware Description Language (HDL)
for FPGA synthesis. In Handel-C, variables represent registers and internal and
external memory. Control constructs with C based expressions, i.e., conditional
branches and loops, define control flows. For synthesis the Celoxica tools
transform the nested Handel-C procedures into corresponding gates, flip-flops
and additional components, like multipliers.

For hardware code generation we define a transformation from MEP based
specifications into Handel-C programs. This is mainly a straightforward transla-
tion where control oriented behavior models like Activities are directly mapped
to Handel-C control constructs. The translation of StateMachines involves a
transformation into an explicit implementation, which is well understood in
hardware synthesis. However, Handel-C, like other commonly used synthe-
sizable HDLs, is not object-oriented. Therefore we need to implement the
object-oriented MEP semantics through procedural programs.

For that our code generation takes two passes. During the first pass all rele-
vant information is collected from the design model and stored in a temporary
data structure, which we call the instance model. Based on the instance model
linear generation of Handel-C is performed (see Fig. 4.7). The first pass starts
from the class representing the complete system. That class inherently has just
one instance, which we call the system instance. The instance model with the
system instance as a root represents the actual system in terms of Instances and

78 UML FOR SOC DESIGN

Design Model Instance Model Generated Handel-C Program

declaration

InterfaceOperationDecl

Classifier

Class

Instance

+ InstanceID: int

BehavioralFeature

Operation

Classifier

Interface

struct declaration

InstanceAttrDecl

declaration

«array»
InterfaceOperationImpls

function definition

«function array»
OperationDef

constraints
{ordered by InstanceID}

InterfaceImpl

+ ImplID: int

declaration

«array»
InstanceAttrs

constraints
{ordered by InstanceID}

struct declaration

StaticAttrDecl

Activity

Interconnection

StructuralFeature

Property

StaticFeatures

+ ClassID: int

function definition

«function»
StaticOperationDef

InstanceFeatures

function definition

«function»
InterconnectionDef

*+parent 0..1

*

*{ordered by ImplID}
*+arrayContent

*+parent
0..1

*

+inherited 0..1

*

*

1+arrayType

11

1

*

*

*1

1

*

1

*

1*

*

*

*

1

1

*

*

+inherited 0..1

1+arrayType
+prev 0..1+next 0..1

+prev 0..1 +next 0..1

1

0..1
+owningAttribute

1

1

Figure 4.7. Handel-C Code Generation Overview

A Generic Model Execution Platform for the Design of Hardware and Software 79

their Classifiers. It provides navigation capabilities to directly access the indi-
vidual model elements during code generation. The instance model is derived
from the design model by complete traversal along the constructor call hierarchy
starting from the constructor of the system instance. The respective elements
from the design model are included through directed links. The list of all Classes
is available through the StaticFeatures element in the instance model. For each
Interface a list of all implementations is accessible through InterfaceImpl. Fi-
nally, all Instances can be derived through the link to InstanceFeatures. The
lists are also used to assign consecutive identifiers to the respective elements.
The identifiers are required during code generation as well as during run time
to identify the actual type of an Instance to implement polymorphism.

The generated code essentially consists of Handel-C records and functions.
Attributes are represented as nested records as defined by the class hierarchy.
Furthermore, static and non-static attributes are separated into two different
record hierarchies. Final Attributes are defined directly as constants using fully
qualified names.

The behavioral parts of the MEP specification are resembled by Handel-C
functions. An individual function is required for each Activity instance con-
tained in each Operation for each Instance as well as for each static Operation.

For Operation calls with fixed targets, the corresponding function is invoked
directly. However, this cannot be applied for Parameters or dynamically associ-
ated Instances of a Class or Interface. In those cases the actual Instance and the
respective Handel-C function implementing the Operation may vary. Therefore
the call is implemented through a function table. As pointed out earlier, this
solution can be very resource consuming.

Recall that the MEP defines an Operation by a StateMachine. That StateMa-
chine is directly implemented by a Handel-C function as a event loop, which
processes the StateMachine events. The loop implements each state as a case of
a switch statement which handles the individual events and executes the do, en-
try, exit, and effect Activities by calling the corresponding Handel-C functions.
When an Operation is defined by a trivial StateMachine with a single Activity,
the function for the Activitiy is directly implemented without generating the
redundant code for the StateMachine.

Each Activity instance is implemented as a separate function. This also
applies to the parameterized Activities for interconnecting Instances in the con-
structor. Because we target for hardware we can fully exploit the concurrency
given by the forks and joins of Activities. They are directly mapped to parallel
and sequential Handel-C blocks. The code generation for Activities is based on
a list scheduling algorithm where code for the model elements of an Activity
is generated in the order in which these elements are enabled through the data
and control flows of the Activity.

80 UML FOR SOC DESIGN

4.4.3 IDCT Hardware Example

As outlined in the previous section, the Inverse Discrete Cosine Transfor-
mation (IDCT) is one of the steps most critical to performance in the MPEG
decoding process, so that we take it for our hardware code generation exam-
ple. During this step, a complete video frame is decoded. It is composed from
blocks of 8x8 bytes representing either chrominance or luminance information
for a block of 8x8 pixels. The same decoding is applied to each of the blocks.

Y0

Y7

Y1

Y6

Y2

Y5

Y3

Y4

S0

S1

S2

S3

S4

S5

S6

S7

+

-

C3
C6
C6
C3

+

C1
C7
C7
C1

+

-

C5
C2
C2
C5

+

+

-

+

-

+

-

+

- C8

+

-

+

-

+

-

+

-

+

-

C8

-

-

Figure 4.8. IDCT Implementation using the Chen-Wang Algorithm

We apply the Chen-Wang algorithm [227, 35] to decode an 8x8 byte block
of a frame through the application of a butterfly network (see Fig. 4.8) to each
row and column of an 8x8 byte block. For that, the Chen-Wang algorithm
employs 13 butterfly components for processing a row of 8 pixels with 8 bits
each. Each butterfly component has two inputs and two outputs. The inputs
are connected to an addition and a subtraction to produce the outputs. This also
involves a constant multiplication in some instances. We take the Chen-Wang
algorithm to demonstrate an efficient hardware implementation of the IDCT by
means of Handel-C code generation in the context of our MEP approach. That
complements the MPEG decoder example, which was introduced in Subsection
4.3.3.

For hardware implementation we introduce a HardwareIDCT class imple-
menting the IDCT interface as defined in the previous Class Diagram of the
MPEG decoder (see Fig. 4.4). The MEP specification for the HardwareIDCT

A Generic Model Execution Platform for the Design of Hardware and Software 81

component starts with a Class Diagram describing the Features and composition
of that Class (see Fig. 4.9).

Butterfly

- c0: int(32) {isFinal}
- c1: int(32) {isFinal}

+ Butterfly()
+ Butterfly(int(32), int(32))
+ run(int(32), int(32)) : int(32)[2]

IDCT

HardwareIDCT

+ IDCT()
+ row(int(8)*)
...

1 13

+Butterfl ies

Figure 4.9. HardwareIDCT Class Diagram

As an implementation of the Chen-Wang algorithm the HardwareIDCT class
is composed from 13 instances of a Butterfly Class using scaled integers with
32-bit precision. The Butterfly Class essentially contains constructors for ini-
tializing the multiplier constants and a run() Operation for computing the output
of the particular butterfly component for a given set of inputs.

HardwareIDCT.HardwareIDCT()

«construction»

Butterflies[0]=new Butterfly();
Butterflies[1]=new Butterfly(5352,3219); //C6,C2
Butterflies[2]=new Butterfly(5682,1131); //C1,C7
Butterflies[3]=new Butterfly(3219,4817); //C5,C3
Butterflies[4]=new Butterfly();
Butterflies[5]=new Butterfly();
Butterflies[6]=new Butterfly();
Butterflies[7]=new Butterfly();
Butterflies[8]=new Butterfly(2897,2897); //C4,C4
Butterflies[9]=new Butterfly();
Butterflies[10]=new Butterfly();
Butterflies[11]=new Butterfly();
Butterflies[12]=new Butterfly();

Tags
Interconnect = IDCTActivity(Butterflies) as DoIDCT

Figure 4.10. Constructor Creating and Interconnecting Butterflies

The HardwareIDCT class (see Fig. 4.10) defines all owned Butterfly in-
stances through respective constructor calls in its constructor. This constructor
also applies a parameterized Activity identified as IDCTActivity to define a

82 UML FOR SOC DESIGN

«interconnection»
IDCTActivity(Butterfly[13] Butterflies)

S0

S1

S3

S2

S4

S5

S7

S6

Y0

Y7

Y1

Y6

Y3

Y4

Y2

Y5

Butterflies[0].run()s0

s1 run[1]

run[0]

Butterflies[1].run()

s1

s0 run[0]

run[1]

Butterflies[10].run()s0

s1

run[0]

run[1]

Butterflies[7].run()

s1

s0 run[0]

run[1]

Butterflies[6].run()s0

s1

run[0]

run[1]

Butterflies[5].run()s0

s1

run[0]

run[1]

Butterflies[4].run()

s1

s0 run[0]

run[1]

Butterflies[2].run()s0

s1

run[0]

run[1]

Butterflies[3].run()

s1

s0

run[1]

run[0]

Butterflies[8].run()s0

s1

run[0]

run[1]

Butterflies[12].run()s0

s1

run[0]

run[1]

Butterflies[11].run()s0

s1

run[0]

run[1]

Butterflies[9].run()s0

s1

run[0]

run[1]

Figure 4.11. IDCTActivity with Interconnected Butterflies

fixed interconnection for those Butterfly instances (see Fig. 4.11). This Activ-
ity is applied as a template for constructing a new Activity that represents the
interconnected hardware blocks. Operations must call this Activity as DoIDCT
to invoke the butterfly network. It has to be noted here that the parameterized
Activity can be referenced by different constructors. Even multiple references
within the same constructor are allowed, e.g., to create eight copies of IDC-
TActivity for parallel operation on the complete 8x8 block.

In our example the DoIDCT Activity is used by the row() and column()
Operations to process the rows and columns of an 8x8 block respectively. The
row() Operation essentially invokes DoIDCT (see Fig. 4.12). Additionally it
contains ReadVariable and WriteVariable Actions for fetching and storing the
input and output bytes from and to memory. As the column() Operation is
implemented similarly we omit its details here. It is important to note that since
both operations employ DoIDCT they cannot be invoked at the same time as
the respective hardware exists only once. This is not a problem in our example,
as the data dependences in the algorithm imply that anyway.

The Handel-C Code generation essentially yields a hierarchy of functions
representing the Operations and Activities along the call hierarchy starting from
the system main function. To illustrate code generation for our example, we
focus on the previously introduced parts of the specification.

Recall that the HardwareIDCT constructor instantiates 13 Butterfly Instances
(see Fig. 4.10), which results in interconnections defined by IDCTActivity (see
Fig. 4.11). The corresponding Handel-C function DoIDCT0(), as given in Fig.

A Generic Model Execution Platform for the Design of Hardware and Software 83

HardwareIDCT.row(int(8)* S)

DoIDCT

S2

S6

S7

S5

S4

S3

S1

S0 Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

S[0]
WriteVariable

S[1]
WriteVariable

S[2]
WriteVariable

S[3]
WriteVariable

S[4]
WriteVariable

S[5]
WriteVariable

S[6]
WriteVariable

S[7]
WriteVariable

S[0]
ReadVariable

S[1]
ReadVariable

S[2]
ReadVariable

S[3]
ReadVariable

S[4]
ReadVariable

S[5]
ReadVariable

S[6]
ReadVariable

S[7]
ReadVariable

Figure 4.12. AD for HardwareIDCT.row() with Reference to DoIDCT

4.13, calls the different instances of the Butterfly and implements the data flow
through temporary variables. The signature of the function is determined by the
Pins of IDCTActivity where OutputPins are mapped to parameters passed by
reference. The actual sequence of statements is determined by the list schedul-
ing algorithm of the code generation. Parallel parts of the IDCTActivity are
simply mapped to parallel blocks.

The HardwareIDCT0 row() function implementing the row() Operation, as
given in Fig. 4.14, is generated similarly. That function essentially invokes the
DoIDCT0() function implementing IDCTActivity for the same instance after
sequentially fetching the operands. The result is sequentially stored back to
memory as defined by the Activity.

Code generation for each Butterfly instance is straightforward. As an exam-
ple, Fig. 4.15 gives the implemention of Butterfly.run() for the instance

84 UML FOR SOC DESIGN

void DoIDCT0(int 8 S0, int 8 S1, int 8 S2, int 8 S3,
int 8 S4, int 8 S5, int 8 S6, int 8 S7,
int 8 *Y0, int 8 *Y1, int 8 *Y2, int 8 *Y3,
int 8 *Y4, int 8 *Y5, int 8 *Y6, int 8 *Y7)

{
int 32 *_Temp0; int 32 *_Temp1; int 32 *_Temp2;
int 32 *_Temp3; int 32 *_Temp4; int 32 *_Temp5;
int 32 *_Temp6; int 32 *_Temp7; int 32 *_Temp8;
int 32 *_Temp9; int 32 *_Temp10; int 32 *_Temp11;
int 32 *_Temp12;
par
{

_Temp0=Butterfly0 _run(ext24(S0),ext24(S1));
_Temp1=Butterfly1 _run(ext24(S2),ext24(S3));
_Temp2=Butterfly2 _run(ext24(S4),ext24(S5));
_Temp3=Butterfly3 _run(ext24(S6),ext24(S7));

}
par
{

_Temp4=Butterfly4 _run(_Temp0[0], _Temp1[0]);
_Temp5=Butterfly5 _run(_Temp0[1], _Temp1[1]);
_Temp6=Butterfly6 _run(_Temp2[0], _Temp3[0]);
_Temp7=Butterfly7 _run(_Temp2[1], _Temp3[1]);

}
par
{

_Temp8=Butterfly9 _run(_Temp4[0], _Temp6[0]);
_Temp9=Butterfly11 _run(_Temp4[1], _Temp7[0]);
_Temp10=Butterfly8 _run(_Temp6[1], _Temp7[1]);

}
par
{

_Temp11=Butterfly10 _run(_Temp5[0], _Temp10[0]);
_Temp12=Butterfly12 _run(_Temp5[1], _Temp10[1]);
*Y0= _Temp8[0]<-8;
*Y3= _Temp9[0]<-8;
*Y4= _Temp9[1]<-8;
*Y7= _Temp8[1]<-8;

}
par
{

*Y1= _Temp11[0]<-8;
*Y2= _Temp12[0]<-8;
*Y5= _Temp12[1]<-8;
*Y6= _Temp11[1]<-8;

}
}

Figure 4.13. Handel-C Code for DoIDCT0()

A Generic Model Execution Platform for the Design of Hardware and Software 85

void HardwareIDCT0 _row(int 8 *S)
{

int 8 _Temp0; int 8 _Temp1; int 8 _Temp2;
int 8 _Temp3; int 8 _Temp4; int 8 _Temp5;
int 8 _Temp6; int 8 _Temp7; int 8 _Temp8;
int 8 _Temp9; int 8 _Temp10; int 8 _Temp11;
int 8 _Temp12; int 8 _Temp13; int 8 _Temp14;
int 8 _Temp15;
_Temp0=S[0];
_Temp1=S[1];
_Temp2=S[2];
_Temp3=S[3];
_Temp4=S[4];
_Temp5=S[5];
_Temp6=S[6];

_Temp7=S[7];
DoIDCT0(_Temp0, _Temp1, _Temp2, _Temp3,

_Temp4, _Temp5, _Temp6, _Temp7,
_Temp8, _Temp9, _Temp10, _Temp11,
_Temp12, _Temp13, _Temp14, _Temp15);

S[0]= _Temp8;
S[1]= _Temp9;
S[2]= _Temp10;
S[3]= _Temp11;
S[4]= _Temp12;
S[5]= _Temp13;
S[6]= _Temp14;
S[7]= _Temp15;

}

Figure 4.14. Handel-C Code for HardwareIDCT0 row()

with index 0. The generated code is basically given by a parallel Handel-C
block. The actual calculations there involve the final instance variables c0 and
c1 of the Butterfly Instance. They are initialized in the Butterfly constructor.
This also underlines that Handel-C function arrays are not sufficient to represent
multiple instances of a function for different Class instances, as the individual
instance variables are directly accessed.

int 32 *Butterfly0 _run(int 32 s0, int 32 s1)
{

int 32 _Result[2];
par
{

_Result[0]=Butterfly0 _c0*s0+Butterfly0 _c1*s1;
_Result[1]=Butterfly0 _c1*s0-Butterfly0 _c0*s1;

}
return _Result;

}

Figure 4.15. Handel-C Code for Butterfly run() with Index 0

86 UML FOR SOC DESIGN

4.5 The MEP Virtual Machine

The previous section introduced concepts to generate synthesizable hard-
ware descriptions from the MEP based UML models. This section presents an
alternative approach implementing the MEP semantics by a Virtual Machine
(VM) for embedded real time systems. Here we just sketch the basic concepts
and refer the reader to [185] for further details.

The MEP VM introduces an alternative run time environment for embedded
software which supports interrupts, and timeouts. First evaluations of a VM
prototype implemented on an FPGA have shown that it is possible to reach a
performance level in the region of C programs [185].

The virtual machine executes binary encoded specifications which resemble
the object-oriented structure of the MEP-based UML specification. It enables
efficient execution of StateMachines with Activities, which are compiled to a
microprocessor-like byte code with object-oriented extensions (see Fig. 4.16).
In contrast to the Java Virtual Machine [122], the MEP VM is based on the exe-
cution of state oriented models. For efficient execution in the context of reactive
systems, the MEP VM byte code has specific instructions for state transitions
and advanced event processing, like timeouts and interrupts. Additionally, the
architecture separates the scheduler and the memory manager from the byte
code and ESM interpreter, so that it can be easily tailored to the individual
application and platform.

Executable Binary SpecificationExecutable Binary Specification

bytecodebytecode

bytecodebytecode

bytecodebytecodebytecode

MEP SpecificationMEP Specification

Figure 4.16. Transformation to Binary Specifications

The Model Execution Unit (MEU) and the Runtime Kernel (RK) are the core
elements of the MEP VM as shown in Fig. 4.17. The MEU directly executes
MEP specifications. The RK is implemented as an executable specification. It
includes memory management and thread scheduling. Additionally it incorpo-
rates bootstrapping, e.g., for loading the initial executable UML model.

The Model Execution Unit is composed of two interacting interpreters for
the different parts of the binary UML representation; one for the Executable
StateMachines (ESM) and another one for the byte code. A separate timer
manages hard timeouts at the precision of a millisecond.

A Generic Model Execution Platform for the Design of Hardware and Software 87

MEP Virtual Machine

Runtime Kernel

Memory Manager

Scheduler

Bootstrap

Environment

Bytecode Interpreter Timer
timeout

ESM Interpreter

interrupt

Executable MEP Specifications

Model Execution Unit

Figure 4.17. MEP VM Architecture

The ESM Interpreter performs immediate state transitions when events occur.
Six predefined events are supported: Completion, Interrupt, Timeout, Division
by Zero, Overflow, and Out of Memory. When a state is entered, or a transition
is executed, the interpreter first checks if an Activity with byte code is defined. If
there is byte code in the embedded Activity, the byte code interpreter is invoked.
A generated byte code sequence typically finishes with a special COMPLETE
instruction, which generates a completion event. If no Activity is defined or
when the final state is reached, an immediate completion event is generated.

The byte code Interpreter executes the byte code in a microprocessor like
manner using instruction scheduling. To provide a hardware-independent exe-
cution platform, the interpreter has no registers. All variables are managed on
the stack. The overall conception of the byte code Interpreter is comparable
to the Java VM, but is embedded in the execution of ESMs and relies on the
customizable scheduling and memory management provided by the Runtime
Kernel.

4.6 Conclusions

We have introduced our Model Execution Platform (MEP), which is based on
the notion of executable UML and bridges the gap from specification to imple-
mentation. The MEP introduces concepts for true object-oriented, model-based
system design. We start from Class, StateMachine, and Activity Diagrams, ar-
riving at software or a synthesizable Hardware Description Language such as
Handel-C. We have demonstrated the Handel-C code generation from Class and

88 UML FOR SOC DESIGN

Activity Diagrams by the example of an Inverse Discrete Cosinus Transforma-
tion (IDCT). The generated Handel-C code was synthesized on a Celoxica RC
200 evaluation Board with a Virtex X2CV-1000 FPGA. It required 461 slice
flip-flops and 730 of the 4 input LUTs. The number of occupied slices was
550. The IDCT implementation takes 10% of the FPGA. One execution of the
IDCT at 30 MHz takes approx. 39.7 ns.

We have additionally sketched the MEP implementation as a virtual machine
for embedded real time systems. There the MEP-based UML specification is
compiled to an efficient binary representation composed of executable state ma-
chine with embedded UML byte code. For a comparison we have additionally
implemented the VM in Handel-C and evaluated it on the RC 200 board, where
the hardware encoded VM processes the UML byte code from the SDRAM.
Final figures showed that the IDCT implementation as a byte code takes ap-
proximately 103 µsec for one execution based on 30 MHz.

Both variants, the direct HDL generation and the byte code generation, have
demonstrated that the MEP provides a feasible and viable approach for hardware
and embedded software systems design. The first evaluations give promising
results for both variants. However, evaluations of more complex examples and
projects are still necessary in order to draw more general conclusions.

Chapter 5

Hardware/Software Codesign of
Reconfigurable Architectures Using UML

Bernd Steinbach,1 Dominik Fröhlich,1,2 Thomas Beierlein2

1Institute of Computer Science
Technische Universität Bergakademie Freiberg
Freiberg, Germany

2Institute of Automation Technology
Hochschule Mittweida (FH) - University of Applied Sciences
Mittweida, Germany

Abstract The development of systems comprising hardware and software components has
been a demanding and complex problem. To manage the informational and
architectural complexity inherent to these systems novel approaches are taken.
In this chapter we present an approach that is based on the concepts of model
driven architecture, platform based design, and hardware/software codesign.

5.1 Introduction

Reconfigurable architectures are a relatively novel means of constructing
computer systems. These architectures comprise one or more microprocessors
and reconfigurable logic resources. The microprocessors execute the global
control flow and those parts of the application that are uncritical to the over-
all performance. The logic resources act as coprocessors and execute the
performance-critical algorithms of the system or specialized input/output oper-
ations. In runtime reconfigurable architectures (RTR) the logic resources are
reconfigurable while the system is in operation. RTR systems feature the dy-
namic adaption of the functionality executed by the coprocessors to the current
requirements of the application.

The main applications of reconfigurable architectures are system on chip
(SoC) and high performance computing. Reconfigurable systems enable the
acceleration of the overall system whilst cutting development and manufactur-

89

G. Martin and W. Müller (eds.), UML for SOC Design, 89–117.

© 2005 Springer. Printed in the Netherlands.

90 UML FOR SOC DESIGN

ing costs. In contrast to classical ASIC approaches the functionality imple-
mented in hardware is not fixed, it may change even while the system is already
deployed. This makes them an enabling technology for SoC prototyping and
evolving systems.

The development of applications of reconfigurable architectures is a very
complex and error-prone task. The most current development approaches,
which are based on programming languages or mixed languages, are insufficient
owing to their strong focus on implementation and the inherent technology de-
pendence [14]. Thus novel directions must be taken. In this chapter we present a
development approach that is based on the Unified Modeling Language (UML)
and a dedicated action language. UML 2.0 and the action language are used
for the object-oriented system specification and design at the system level of
abstraction.

The approach is backed by a dedicated tool called the MOCCA compiler
(Model Compiler for reconfigurable architectures). Given complete and pre-
cise models of the applications design and the design and implementation plat-
forms, MOCCA can automatically perform partitioning, estimation, and the
implementation of the system into hardware/software modules. The synthe-
sized implementation is directly executable and exploits the capabilities of the
hardware architecture. The key concepts of object-orientation — inheritance,
polymorphism, encapsulation, and information hiding — are preserved down to
the implementation level. Thus the archetypal break in paradigms, languages,
and tools of current object oriented hardware development efforts is avoided.

The full automation of the implementation process supports early verification
and simulation. The time required for the implementation of a system level
specification is cut down by orders of magnitude. As a result, the focus is
shifted from implementation towards modeling. This offers tremendous gains
in productivity and quality. The synthesized hardware and software modules
fit together by definition because the compiler has automatically implemented
them. The change of the system design, the algorithms, the partitioning, and
the implementation platform is encouraged.

The rest of this chapter is structured as follows. In Section 5.2 we introduce
our development approach. We describe the used models, artifacts, and the
utilization of UML and the action language. In Section 5.3 we define how the
UML system design models are mapped into implementations. The focus of this
chapter is on the mapping of implementation models into hardware/software
implementations, which is described in detail in Section 5.4. The approach is
illustrated by AudioPaK an encoder/decoder for the lossless compression of
audio streams [84]. In Section 5.5 experimental results for the example are
presented and then this chapter is concluded.

Hardware/Software Codesign of Reconfigurable Architectures Using UML 91

5.2 A Platform Model Driven Development Approach

5.2.1 Overview

In this section a brief overview of the general development approach will be
given. Because of the lack of space we focus on the key concepts and artifacts.
The methodology is not described here, a thorough discussion can be found in
[14][203].

The development of applications is based on platforms, whereas different
platforms are used for design, implementation, and deployment. As a result,
a strict separation of development concerns is accomplished. Moreover, this
approach eases validation, portability, adaptability, and reuse. Platforms have
been used ever since in the areas of software and hardware development. How-
ever, platforms are mostly captured implicitly in language reference manuals,
libraries, and tools, which hampers their automated interpretation by computers.

Platforms represent sets of assumptions, which are the foundation of any
development effort. In our approach, these assumptions are made explicit by
platform models, whereas each platform is specified by a dedicated platform
model. Platform models abstract from the details of the platform described, but
carry enough information to avoid iterations in the design flow. They are the
basis for the definition of application models that describe a certain aspect of
the system under development. The relationship between the platform models
and application models is illustrated in Figure 5.1. The platform models define
the space of applications which may be developed with the respective plat-
forms. Each particular set of application specific models represent one point
in the application space. Different platform models normally share application
models.

Design
Model

Implementation
Model

Design
Platform
Model

Deployment
Model

Deployment
Platform
Model

Implementation
Platform
Model

application

application
space

<<use>> <<use>> <<use>>

<<realize>> <<realize>>

<<realize>> <<realize>>

Figure 5.1. Relationships between Models

All models are described using UML 2.0 [154] and a dedicated action lan-
guage called MAL (MOCCA Action Language). MAL was developed to enable
the detailed specification of behavior in UML models in computation intensive
and control intensive applications. This language is compliant to the UML

92 UML FOR SOC DESIGN

action semantic specification. It has a medium level of abstraction because it
requires the developer to make data organization and data access explicit. How-
ever, this allows us to employ standard analysis, optimization, and estimation
techniques [14].

In the following sections we discuss the employed platforms and models and
give some brief examples of their content and meaning.

5.2.2 Design Model and Design Platform Model

A design model defines an executable and implementation independent re-
alization of the use cases of a system. This model defines the structure and
behavior of the system. System structure is defined by UML packages, classes
and interfaces and their various relationships. For concurrency specification
active classes are supported. System behavior is defined by operations and
state machines. Detailed behavior is defined by UML actions, whereas MAL is
used as action language. Concurrent control flows are synchronized by guarded
operations.

Each design model is based on a design platform which is specified by a
design platform model. The content of a design platform model depends on the
targeted application domain. It specifies the types, constraints, and relationships
used for system design. For each type the relationship to other types in terms
of generalizations and dependencies, the supported operations, and constraints
are defined. The definition of the basic types is mandatory when developing
systems using UML because the types defined by the UML specification are
defined too loosely in order to be useful in real world designs.

Example 5.1 Figure 5.2 shows a small part of a design platform model. The
example illustrates some design types whicht may be used in design models
that are based on this platform model. For the boolean type the operations are
shown. The operations represent the common logical operations and type casts
one would expect. Constraints are exemplified by the int type. Design platform
models contain typically additional types, e.g., for basic input/output, access
to actors/sensor, and system control.

It is important to note that in this definition the design platform model is
not specific to a concrete action language. Model compilers use this model
for the purpose of validating and optimizing the design model. Such compilers
make only minimum assumptions about types. The validity of a design model is
determined entirely by the design platform model and the UML well formedness
rules. Designers may add new types and operations to the design platform model
which are treated by model compilers as primitive types. For these elements the
designer may then provide optimized implementations in the implementation
platform.

Hardware/Software Codesign of Reconfigurable Architectures Using UML 93

<<DesignType >>
<<Object>>

object

<<DesignType >>
<<Integer>>

bit

<<DesignType >>
<<Integer>>

byte

<<DesignType >>
<<Integer>>

short

<<DesignType >>
<<Integer>>

int

<<DesignType >>
<<Real>>

float

<<DesignType >>
<<Real>>
double

<<DesignType >>
<<Boolean>>

boolean

+add(arg : boolean) : boolean;
+asgn (val : boolean) : void;
+cast() : bit;
+eq(arg : boolean) : boolean;
+neq (arg : boolean) : boolean;
+not() : boolean;
+or(arg : boolean) : boolean;
+xor (arg : boolean) : boolean;

<< DesignType >>
<<Remote>>

remote

<<DesignType >>
<<Time>>

time

{ LowerBound =-2147483648,
UpperBound =2147483647,
DistanceVector =(int=0,
float=1,double=2,object=3)}

Figure 5.2. Design Platform Model Example

Example 5.2 Figure 5.3 shows the design model of an AudioPaKCoder [84].
AudioPaK is a well known algorithm for lossless compression of audio informa-
tion. In the example the class Main instantiates a number of AudioPaKCoder
objects, which encode frames of audio samples, whereas each sample is repre-
sented by a 16 Bit integer. The frames are written to coder objects which con-
currently encode them while main performs other tasks, such as input/output,
filtering, etc.. The example shows the intra channel decorrelation algorithm
performed by the operation encode.

5.2.3 Implementation Model and Implementation
Platform Model

An implementation model defines the realization of a design model in terms
of implementation classes, components, artifacts and relationships. This model
has the same functionality as the design model; however, it typically realizes
this functionality differently. Implementation models define how structure and
behavior are realized with the services provided by the implementation plat-
form. There are many implementation models for a given design model. An
implementation model is derived from a design model by applying a sequence of
transformations and mappings (see Section 5.3.4). The implementation model
is created manually, or (semi-) automatically by model compilers.

Each implementation model is based on a specific implementation platform.
Implementation platforms define the realization of design platforms, whereas

94 UML FOR SOC DESIGN

<<focus>>
Main

+@FRAME_SIZE : int = 1152
+@NUMBER_OF_CODERS : int = 5

+create() : Main
+destroy() : void
+main() : int

<<auxiliary>>
AudioPaKCoder

+finished : boolean
+number_of_bits : byte
+predictor : byte
+samples : short[]
+sze : short

+create() : AudioPaKCoder
+destroy() : void
+encode() : void
...

-app

1

-coder

0..*

encode_samples

short pdiff1=0, pdiff2 = 0;
int abs_err0 = 0, abs_err1 = 0, abs_err2 = 0, abs_err3 = 0;
finished=false;
short psample = samples[0];
for(int i=1; i<size; i++) { // intra channel decorrelation
short csample = samples[i];
abs_err0 = abs_err0 + csample; // P0
short diff1 = csample - psample; abs_err1 += diff1.abs(); // P1
short diff2 = (diff1 - pdiff1); abs_err2 += diff2.abs(); pdiff1 = diff1; // P2
short diff3 = (diff2 - pdiff2); abs_err3 += diff3.abs(); pdiff2 = diff2; // P3
psample = csample;
}
... // select predictor with least error, compute bits/sample and
encode samples accordingly
finished = true;

AudioPaKCoder[] coders = new AudioPaKCoder
[NUMBER_OF_CODERS];
for(int i=0; i<NUMBER_OF_CODERS; i++) {

coders[i] = new AudioPaKCoder();
}
... // get new samples
// send samples to coder and start encoding
coders[0].samples = samples;
coders[0].size = FRAME_SIZE;
send coders[0].encode();
//...
if(coders[0].isFinished()) {

samples = coders[0].samples;
}

Figure 5.3. Design Model Example: AudioPaK Coder

each implementation platform realizes one design platform. Each implemen-
tation platform is specified by an implementation platform model. For each
processing element in the hardware platform an implementation platform model
is defined.

An implementation platform model is the set of types, constraints, trans-
formations, and tools that may be used for the realization of design models.
As design platforms, implementation platforms are defined on the basis of ab-
stract instruction sets1 and their execution characteristics. This model is used
by model compilers to perform high level design space exploration (platform
mapping), estimation, and synthesis.

Example 5.3 Figure 5.4 shows a part of an implementation platform model
for a HDL implementation platform. The diagram depicts design types from
Example 5.1 and the implementation types used for their realization. The im-
plementation types and operations are characterized by quality of service and
generation information.

1An instruction may be the native instruction of microprocessors, the operations directly implementable in
hardware, but also high level operations of programming languages.

Hardware/Software Codesign of Reconfigurable Architectures Using UML 95

<< DesignType >>
<<Integer>>

bit

<< ImplementationType >>
std_logic

<<ImplementationType >>
std_logic_vector

<< DesignType >>
<<Integer>>

short

<<DesignType >>
<<Boolean>>

boolean

{ImplementationArea =(0.5,'CLB'),
ExecutionLatency (1,'Cycle'),
ImplementationLanguagePattern =
"($this - $other)}

<< DesignType >>
<<Integer>>

bit[] << ImplementationType >>
std_logic_vector<16>

...

+sub(std_logic_vector<16> :
other) :
std_logic_vector<16>;

{AddressSpaceSize =(2,'Byte'),
VHDL Lower Index=0,
VHDL Upper Index=15,
ImplementationName =
"std_logic_vector(15 downto 0)"}

<<realize>>

<<realize>>

<<realize>>

<<realize>>

Design Platform Model VHDL Implementation Platform Model

Figure 5.4. Implementation Platform Model: Types and Mappings

Example 5.4 Figure 5.5 continues the presentation of the VHDL implemen-
tation platform model. Implementation platforms may contain pre-implemented
hardware/software modules. Model compilers can integrate such cores in the
generated modules. The example shows a clock generator component, a PCI
bridge, and a storage component that may be used in hardware designs. The
components specify a number of interfaces for clocking, local/external access
and interconnections, which are specified in detail by interfaces and classes.
The components are implemented in VHDL, the UML model just specifies the
necessary information to integrate them into hardware modules.

<<component>>
<<StorageComponent >>

ZBT RAM Bank 0 DCM Clock

<<component>>
<<Communication-

Component>>

PCI Bridge

<<component>>
<< ClockComponent >>

Clock In

Local Access

Device Connect

External
Access

<<VHDL Entity>>
dcm _clock

...

...

<<VHDL Architecture>>
dcm _clock_ rtl

...

...

Device Connect

Local Access

Device Connect

Figure 5.5. Implementation Platform Model: IP Integration

The implementation components, types, and operations are characterized by
their quality of service (QoS). As shown in Figure 5.4, the QoS characteristic

96 UML FOR SOC DESIGN

of a type is an area value which defines the memory footprint or the number of
gates of its instances. The QoS of an operation defines its area, latency, power
dissipation or even abstract cost. Moreover, the elements of the implementation
platform model may specify information to control the generator of a model
compiler. Name and type mappings and implementation language patterns are
examples for such information.

The syntax and semantics of the UML extensions which are used for design
space exploration, estimation, generation, and synthesis are modeled by UML
profiles. Profiles are UML models which define coherent sets of extensions of
UML. Such extensions are commonly specific to application domains, imple-
mentation platforms, backend tools and configurations. There is a common set
of extensions that is used in most implementation platforms, but each platform
has its own set of additional extensions. Thus implementation platform profiles
are defined hierarchically.

UML extensions can be interpreted by users and model compilers. In order
to avoid design iterations, implementation models and implementation plat-
form models must reflect the characteristics of the compiled/synthesized hard-
ware/software artifacts as close as possible. Thus it is important to give the
model compiler control over the implementation process. Owing to the huge
variety of implementation platforms a model compiler for SoC should be able to
adapt to the set of platforms being used. To make this adaption convenient and
straightforward, the respective components of the model compiler are modeled
in the implementation platform model.

Example 5.5 The approach to model the modeling compiler components in
the implementation platform model is exemplified for the MOCCA compiler in
Figure 5.6. In this part of the model the MOCCA components used for esti-
mation, mapping, generation, and backend tools are specified. The component
specification is used by MOCCA to adapt to the implementation platform. Dur-
ing the compilation these components are dynamically linked into the compiler.
Users may implement new compiler components on their own, or specialize
existing components to adapt the compiler to their concrete requirements.

Example 5.6 From now on it is assumed that the design model classAudio-
PaKCoder is realized by the VHDL implementation platform. The respective
implementation model class and its relationship to the design model class is
illustrated in Figure 5.7. The encode operation cannot be implemented di-
rectly in hardware; the mechanism and protocols to access the sample array
must be made explicit. A simple WISHBONE-like bus interface is used in the
example [197]. The behavior of encode is transformed respectively to access
the samples through this interface. This model will be refined in the course of
this chapter.

Hardware/Software Codesign of Reconfigurable Architectures Using UML 97

MOCCA VHDL
Estimator

<<NodeEstimator >>
MOCCA VHDL

Mapper

<< NodeMapper >> Node
Estimator

Node
Mapper

<<NodeGenerator >>
MOCCA VHDL

Generator

<<NodeInterpreter >>
Xilinx Xflow

<<library>>
compiler.component .
implementation.xflow .

DefaultNodeInterpreter

<<manifest>>

<<library>>
compiler.component .

implementation.
HwModuleEstimator

<<manifest>>

Node
Interpreter

Figure 5.6. Implementation Platform Model: Compiler Components

AudioPaKCoder

...

+create() : AudioPaKCoder ;
+destroy() : void;
+encode() : void;
+isFinished () : boolean;

AudioPaKCoder

...

...
+encode(out std_logic_vector<32> :
ADDRESS,

inout std_logic_vector<16> : DATA,
 out std_logic : RW,
 out std_logic : ENABLE,
 in std_logic : ACK,
 in std_logic_vector<16> : size
 out std_logic : finished);

<<realize>>

<<realize>>

Design Model Implementation Model

Figure 5.7. Implementation Model: AudioPaKCoder Mapping

98 UML FOR SOC DESIGN

5.2.4 Deployment Model and Hardware Platform Model

A deployment model defines the deployment of an implementation model
of the application on a target hardware architecture. This model defines the
deployment relationship between the nodes of a hardware architecture and the
artifacts which manifest the components of the implementation model. As a
result, the deployment model fixes the execution of the implementation model.
Examples of nodes are microprocessors, reconfigurable logic devices, or ab-
stract execution platforms. In accordance with the UML specification a node
may comprise a processing element (PE), dedicated memory, and peripherals.
Common artifacts are executables, logic configurations, libraries, and tables.
The deployment model is created manually, or (semi-) automatically by model
compilers.

Each deployment model is based on a hardware platform. Hardware plat-
forms define how implementation platforms may be realized. A hardware plat-
form may realize multiple implementation platforms and an implementation
platform may be realized by different hardware platforms. Hardware platforms
are specified by hardware platform models.

A hardware platform model defines the nodes, communication paths, and
constraints of a hardware architecture. Hardware platforms commonly do not
specify the micro-architecture of hardware nodes; they define the services pro-
vided by the hardware resources. For instance, the number of logic and mem-
ory resources, clock rate ranges, scheduling policies, communication protocols
are specified by constraints. The hardware platform model must contain just
enough information to enable high quality design space exploration. The con-
straint representation is similar to the QoS in the implementation platform. This
information of the hardware platform model is used to parameterize implemen-
tation platforms.

Example 5.7 In Figure 5.8 a portion of a hardware platform model and a
deployment model based on this hardware platform is illustrated. The hard-
ware platform consists of two nodes h0 and h1, which are connected by a
communication path. Artifacts being deployed on the nodes are implemented
by a dedicated implementation platform. The artifact audiopak.exe is an
executable program for h0. It manifests a component that realizes the Main
class. The audio coders are implemented by a component that represents a
configuration bitstream of node h1. This is made explicit by the according
stereotypes.

The deployment and implementation related models complement each other.
The deployment platform model and implementation platform model are re-
ferred to as target platform model. The implementation model and deployment
model are subsumed in the platform specific model [14]. A design model is

Hardware/Software Codesign of Reconfigurable Architectures Using UML 99

<<Implementation
Platform>>

C++

<<implement>>

<<Implementation
Platform>>

VHDL

<<implement>>

<< SystemMaster >>

h0 h1

{ClockCycle =(10,' ns'),
ImplementationArea =(3584,' CLB '),
SchedulingPolicy ="force driven"
...}

<<CommunicationPath >>1 1

-master -slave

<<executable>>
audiopak.exe

Main

<<Configuration>>
codecs.bit

Codecs
<<focus>>

Main
<<auxiliary>>

AudioPaKCoder

<<realize>> <<realize>>

<<deploy>> <<deploy>>

<<manifest>> <<manifest>>

Figure 5.8. Deployment Model

implemented on a new target platform by using an according target platform
model. The design model and design platform model are not required to change.

5.3 Mapping Design Models onto Implementation Models

5.3.1 Hardware Architecture

The mapping of a design model to an implementation model depends on the
physical and logical system architecture. The physical system architecture is
determined by the architecture of the underlying hardware. The development
approach targets SoCs with heterogeneous multiprocessor architectures that
are complemented by reconfigurable logic resources. Figure 5.9 shows an
architectural template for these architectures.

The hardware is a heterogeneous multiprocessor system that comprises a
number of processing elements, realized as microprocessors or FPGAs (field
programmable gate arrays). Each FPGA is associated with a set of configura-
tions. Runtime reconfigurable FPGAs are associated with multiple configura-
tions which are activated on demand. The nodes of the hardware architecture are
connected through a common communication channel. The PEs may possess
local communication channels to reduce contention on the global channel.

A dedicated PE acts as the system master. This node is commonly a micro-
processor. It controls the overall control flow of the system, invokes function-
ality implemented by the slaves, and triggers the reconfiguration of the FPGAs.

100 UML FOR SOC DESIGN

Micro-
processor 0

Micro-
processor 1

FPGA 0

Global
RAM 0

FPGA 1

Local
RAM 0

Periphal
Unit 0

0/0

0/1
0/2

1/0

Configuration Set
FPGA 0

Configuration Set
FPGA 1

Communication
Channel

Figure 5.9. Hardware Architecture Template

The slaves commonly execute performance-critical behavior and special in-
put/output operations.

5.3.2 Logical System Architecture

The logical system architecture is implemented with the resources of the
hardware architecture. This architecture orients towards the object model of
computation [57]. The system functionality is realized by objects communicat-
ing through structured messages. Each object has a state (the data encapsulated
by the object) and offers services which may be accessed through the interface
of the object. The services define the object behavior. A service is invoked
by sending an appropriate message to the object. The respective service han-
dler may change the state of the object and it may also send messages to other
objects. Messages may be sent synchronously or asynchronously.

Objects are realized with PEs and memory resources. Objects of the same
class may be executed on multiple PEs and may have different PE specific
implementations. The messages are transmitted through the common commu-
nication channel or a local communication channel.

5.3.3 Design Space Exploration

During design space exploration a partition of the system function amongst
the components of the target hardware architecture is computed. The imple-
mentation space, as defined by the target platform model, is explored for fea-
sible alternatives implementing the system. The quality of each alternative
being explored is estimated. The partition which optimizes the performance
and satisfies the design constraints best is chosen for implementation. As a
result, an implementation model and deployment model for the design model
is computed.

Hardware/Software Codesign of Reconfigurable Architectures Using UML 101

Design space exploration can be performed fully automated by model com-
pilers or based on models which have been partially partitioned by the designer.
Of course, designers may also create the implementation and deployment model
manually. The algorithms for design space exploration and hardware/software
partitioning are chosen depending on the application domain and the model
compiler. Model compilers for hardware/software systems are extendable to
support user-specific partitioning algorithms. This degree of freedom in choos-
ing the partitioning mode and algorithms is possible owing to the application
of a common language. This is one of the strengths of UML based codesign of
hardware/software systems.

Common object-oriented UML specifications are not directly implementable
on the given target, due to the polymorphism and use of dynamic data struc-
tures. Thus during design space exploration those parts of the design model that
are not implementable on a target platform must be transformed respectively.
Design models are transformed to enable implementation and to optimize im-
plementation and execution characteristics. The transformations are manifested
in the implementation and deployment models.

5.3.4 Model Transformations

Model transformations are used to map and optimize design models. Map-
ping transformations are used during design space exploration to define the real-
ization of design models. If a design model is not directly implementable model
compilers search for a sufficient set of transformations. If no such transforma-
tion set exists the design model is not implementable with the implementation
platform. There are three classes of transformations: allocations, behavior
transformations, and structure transformations [203]. Allocation operators act
on all elements of design and implementation models. These operators map
model elements to the target platform by assigning sufficient sets of resource
services.

Example 5.8 Figure 5.10 continues the implementation model of Example
5.6. For the action diff1=csample-psample in the operation encode
the allocation of resource services is demonstrated. The respective activity
group is shown in a compact notation, according to [146]. For the realization
of the "-" operation, a sufficient resource service is allocated. The service is
implemented by a sub operation of the VHDL type std logic vector-
<16>. Other examples for this transformation type are allocations of storage
and communication components as shown in Figure 5.5.

Behavior transformations act on UML behavior specifications, e.g., state
machines, activities and actions, and the model elements which implement
them. Structure transformations act on model elements from which the structure
of a UML model is built.

102 UML FOR SOC DESIGN

:AddVariableValueAction
isReplaceAll = true

diff1:
VariableAction

variable

csample:
VariableAction

psample:
VariableAction

sub
<<ImplementationType>>
std_logic_vector<16>

 ...

 ...
+ sub(in std_logic_vector<16> : other) :
 std_logic_vector<16>

<<realize>>

<<DesignType>>
short : DataType

type

type

type
<<realize>>

variable

variable

Figure 5.10. Allocation Transformation Example

Example 5.9 An example for behavioral transformations has already been
given in Example 5.6. The interface and behavior of the encode operation
are transformed in such a way that the samples are accessed via a bus inter-
face. Similar transformations are necessary to accomplish message transfers
in hardware modules. Another example of this kind of transformation are (de)
compositions and optimizations, such as arithmetic/logic optimizations, dead
code elimination, and constant value propagation. Behavior transformations
are often accompanied by respective structure transformations.

In the same way as programming language compilers and synthesis tools,
model compilers may use transformations to optimize the implementation and
execution characteristics of design and implementation models. In principle the
most basic and advanced optimization techniques that are applicable to common
object-oriented specifications are applicable to UML models as well, and there
is good reason to do so. In contrast to the final implementation executable UML
models describe the entire control and data flow of an application in a single
and consistent representation. This information is used by advanced model
compilers to perform more aggressive optimizations than would be possible on
the final implementation. Examples are dead code elimination, constant and
value range propagation optimizations that act globally on UML models [138].
Also optimizations known from behavioral synthesis are applicable.

5.4 Mapping Implementation Models onto
Platform-Specific Implementations

5.4.1 Overview

The implementation of the system relates directly to the structure and behav-
ior of the implementation model. The object-oriented properties of the design

Hardware/Software Codesign of Reconfigurable Architectures Using UML 103

model are preserved in the final implementation. Classes, interfaces, opera-
tions, and attributes of implemented objects map directly to their counterparts
in the implementation model. Inheritance and polymorphism are preserved
independently of the realization! In addition, the components and artifacts as
specified in the implementation model are preserved in the implementation.
Artifacts stereotyped as ‘Configuration’ map to configuration bitstreams of (re-
configurable) logic resources. The instantiation of a component manifested by
such an artifact corresponds to the loading of the bitstream into the physical
device. The same relationship applies for ‘executable’ artifacts and micropro-
cessor devices.

For both hardware and software realizations, the question of the right level
of abstraction of the final implementation and a suitable language arises. In an
object-oriented approach it seems quite natural to choose a language support-
ing the object paradigm for software implementation. This approach makes the
implementation convenient and straightforward. The final compilation is dele-
gated to 3rd party compilers. However, as a result a fair amount of control over
the final implementation is lost. In performance and resource critical applica-
tions, this uncertainty can cause iterations in the development flow. To avoid
this problem model compilers for critical application domains may generate
microprocessor specific assembly language implementations. For the purpose
of this chapter C++ is used to implement software modules.

For the implementation of hardware modules the same considerations as for
software apply. Owing to the tight timing and resource constraints imposed
by the hardware it is even more important to reflect the implementation model
directly in the implementation. In principle the implementation can be dele-
gated to behavioral synthesis tools [58]. However, as for software implementa-
tions it is hardly possible to compute good estimates of the synthesized results.
Moreover, the programming language based approaches, such as SPARK and
Forge [134][231], are restricted by the employed languages and the directly
synthesizable language subsets of the targeted HDLs. Thus model compilers
for SoC synthesize hardware modules directly from UML models on the regis-
ter transfer level (RTL). For the purpose of this chapter, the implementation of
hardware modules is described with synchronous VHDL-RTL designs.

The direct implementation of components, classes, and features is convenient
and straightforward. Whereas in software this is a well understood problem, in
hardware implementations this approach raises the following challenges:

Dynamic Object Instantiation/Destruction Owing to the static nature of even
partially reconfigurable hardware, the efficient instantiation and destruc-
tion of hardware objects is not possible efficiently. The class instantiation
per reconfigurable device is by far too expensive in terms of the number
of required logic resources and reconfiguration time.

104 UML FOR SOC DESIGN

Polymorphic Features Polymorphism is an important property of object-or-
iented specifications. It should be supported directly by hardware im-
plementations. Current approaches avoid polymorphism by prohibiting
inheritance or overriding of behaviors.

Communication of Objects Objects should be able to communicate indepen-
dent from their realization. In mixed software and hardware implemen-
tations no single, common mechanism for message exchange exists.

In the following sections the mapping of implementation models to hard-
ware/software implementations is discussed. Owing to the focus of this book
the main focus is on hardware implementations. Solutions of the stated problem
areas are presented.

5.4.2 Software Implementation

The implementation model of a design determines the implementation of the
design. Model compilers implement hardware/software modules that realize the
same function and structure as the implementation model. Owing to different
implementation patterns and styles multiple implementations are possible for
an implementation model. These differences are reflected in the QoS in the
implementation platform model so that it does not affect the quality of the
design space exploration results.

The implementation patterns and rules are either manifested in the respective
components of the model compiler or in code generation annotations in the
UML meta model. The latter approach is taken by xtUML [131]. It has the
advantage of being defined entirely with UML models and dedicated generation
languages (archetypal language). However, it orients towards single language
software implementations. Design space exploration, estimation, (automated)
model transformations, and mixed language implementations are not directly
supported. Thus in our approach the former approach is taken.

The classes of the implementation model being deployed on microprocessor
nodes are directly implemented in C++. Local proxy objects manage the com-
munication between local and remote objects. For each remote object that is
accessed by a local object a proxy is instantiated locally. The proxy encapsul-
ates the communication mechanism. Thus the objects of an application are not
required to share a common address space. The proxy is explicitly modelled
in the implementation platform model as an remote type (see Figure 5.2). As
a result, the model compiler can compute high quality estimates of the charac-
teristics of distributed applications.

Objects which are implemented in reconfigurable hardware are managed by
a dedicated service called RTR Manager [174]. This manager encapsulates
the specifics of the reconfigurable hardware, e.g., reconfiguration modes, in-
put and output functions, and communication. The most important task of

Hardware/Software Codesign of Reconfigurable Architectures Using UML 105

this service is to process application requests for the creation and destruction
of hardware objects. Hardware objects are created and destroyed on demand.
An application that instantiates an hardware object requests it from the RTR
Manager by its type. The RTR Manager searches for a suitable object in the
currently instantiated bitstreams and serves its proxy to the application. If no
bitstream containing an object of the searched type is currently instantiated, the
RTR Manager dynamically instantiates an appropriate bitstream.

Example 5.10 Figure 5.11 illustrates the basic architecture of the AudioPaK
Example. The instance main of class Main and a number of proxies for
hardware objects are implemented in software. The actual instances of the
class AudioPaKCoder are realized by means of reconfigurable resources.
Each hardware object is accessed from software through a dedicated proxy.
The proxies are served to the application by an instance of the RTR Manager
service.

coders[i] :
IHwObject

main : Main
rtr_mgr : RTR -

Manager
1

0..n

1 1

coder i :
AudioPaKCoder1 1

1

1

configure

create/
destroy/
manage

access

access
h0 h1

Figure 5.11. Software Architecture of AudioPaK Example

Proxies can be used directly in the software implementation to provide a
simple yet fast mechanism for accessing the hardware objects. Alternatively,
proxies may be wrapped by software implementations of the hardware object
classes. If an instance of the software object is created the object tries to instan-
tiate its hardware counterpart. In case of success the hardware object is used,
otherwise the software object switches transparently to the software implemen-
tation. This approach also enables the transparent migration between hardware
and software objects. Advanced model compilers generate such implementa-
tions automatically. Implementations are guaranteed to be correct because the
compiler has generated them.

Example 5.11 Figure 5.12 shows a part of the operation Main::main. In
the loop, a number of hardware objects will be created. Recall from Example
5.2 that the algorithm writes one frame with audio samples to the first coder
object and starts it asynchronously. In the course of the algorithm it is checked
whether the encoding is finished, and, if so, the encoded frame is read.

106 UML FOR SOC DESIGN

 ...
 coders = new smartptr<IHwObject>[5];
 for(i = 0; (i < 5); i = i + 1) { // create coder objects
 coders[i] = RTRManager::getInstance()->createObject(0);
 }

 ... // get new samples
 coders[0]->write<short>(8, samples, 1152);
 coders[0]->write<short>(2312, 1152);
 coders[0]->start<char>(4, 2); // start encode (async)
 ... // fill other coders
 coders[0]->execute<char>(4, 1); // isFinished (sync)
 if(coders[0]->read<bool>(2315)) {
 samples = ((short*)((int) coders[0].getPtr() + 8));
 } ...

Figure 5.12. Software Implementation of Main::main

5.4.3 The Hardware/Software Interface

The hardware/software interface of object-oriented implementations with re-
configurable hardware defines the life cycle and access mechanisms of objects
and components realized in reconfigurable hardware. The hardware/software
interface can be viewed from a logical and physical perspective. The logical
hardware/software interface can be realized by different physical implementa-
tions. The concrete implementation depends upon the target platform and the
model compiler.

For efficiency reasons the life cycle of hardware objects is different from
the life cycle of software objects. In order to avoid costly reconfigurations
hardware objects are reused as much as possible. Because a true dynamic in-
stantiation/destruction of objects is not efficiently possible in hardware, these
objects are pre-instantiated at compilation time and synthesized into configu-
ration bitstreams. The objects are dynamically allocated on demand; the RTR
Manager serves as object broker. Additionally, in RTR systems the objects and
hardware configurations are dynamically bound to logic resources.

This mechanism is reflected in the life cycle of objects and bitstreams, which
is illustrated in Figure 5.13. Because of the tight relationship between the hard-
ware objects and their configuration context, as the container of the hardware
objects, both life cycles influence each other. Each object and its bitstream will
go through three states, X UNBOUND, X BOUND and X ALLOCATED (where X is
either OBJ for hardware objects or BS for bitstreams). As long as the bitstream
is not loaded into the reconfigurable hardware, the bitstream and the contained
objects are in state X UNBOUND. When a bitstream is loaded it changes its state
to BS BOUND. The objects contained go to the state OBJ BOUND. Objects allo-
cated by the application change go from state OBJ BOUND to OBJ ALLOCATED.

Hardware/Software Codesign of Reconfigurable Architectures Using UML 107

Bitstream
Instantiated

Bitstream
not Instantiated

BS_UNBOUND BS_BOUND BS_ALLOCATED

OBJ_UNBOUND OBJ_BOUND OBJ_ALLOCATED

Create
Object

Destroy
Object

[obj is first allocated]

[obj is last
 unallocated]

Bitstream Life Cycle

Object Life Cycle

Figure 5.13. Object and Configuration Bitstream Life Cycles

All objects returned by the application will set their state back to OBJ BOUND.
The last object of a context returned causes the bitstream to be set back to
BS BOUND. Until the bitstream is unloaded from the hardware, the objects will
still be available for allocation. The bitstream is not allowed to be unloaded
from the hardware as long as it is in the state BS ALLOCATED.

The mechanisms for the access of objects are defined by the object interfaces.
The interface of each object consists of a control interface, a data interface, and
an exception interface.

The control interface allows for identification, typing, and access to the
object. Objects are uniquely identified in their object space. The ID represents
the address of the object and is set during initialization. This field is only
required if the object address must be made explicit in the object interface. The
type field represents the dynamic type of the object. It is used to select the proper
implementations of polymorphic features. This field is only required if the
object may have different dynamic types. The message field uniquely identifies
the type of service accessed by a message sent to the object. The service which
is executed in response to the message may depend on the dynamic object type.
The message parameters are passed through the data interface.

The data interface allows one to access the object state and to pass in-
put/output parameters from and to objects. The interface contains the entire

108 UML FOR SOC DESIGN

public state of the object and the parameters to/from services that are publicly
accessible.

The exception interface reflects exceptional conditions that occur in the ob-
ject. Depending on the exception handling of the object the information on the
position and type of exceptions is represented. This enables other objects to
react appropriately.

The interface of each component representing a configuration bitstream com-
prises all interfaces of the objects accessible through the component interface.
An implementation of the hardware object and component interfaces is pre-
sented in the next sections.

5.4.4 Hardware Implementation of Components

Figure 5.14 shows a template for the implementation of UML components
in hardware. The component contains the pre-implemented objects Oi. The
objects O0, ..., On+4 are accessible via the communication interface. All other
objects are not directly visible outside the component. The component also
contains central circuits for the generation of clock and reset signals. There
may be specialized clock generators for dedicated modules, such as external
ZBT RAM (zero bus turnaround random access memory) or peripheral devices.

Communication Interface

Communication Channel

O0 O1 O2 On

On+2 On+3 On+4

RAM0

RAM1

DCM0

RAM2On+1

OB0

FPGA

External
Storage
Components

DC0

DC1

DC2

DC3

Register File

OB1

DC4

R C

External
Clock
Generator

Figure 5.14. Hardware Component Template

The portsDCi are manifestations of the Device Connect interfaces as mod-
eled in the implementation platform model (see Figure 5.5). This interface type
is used to establish connections between internal logic resources and external
devices through the physical device interface. From the UML specification of
these interfaces the model compiler generates such implementations. The gen-
eration process is controlled by the generation information in the model. In the
VHDL implementation the interface of the top level design module comprises
of all signals of the DC ports.

Hardware/Software Codesign of Reconfigurable Architectures Using UML 109

Additionally required components modeled in the implementation platform
model are instantiated on demand. For instance, if RAM0 was realized with
ZBT RAM Bank 0 (Figure 5.5), a DCM Clock (Digital Clock Manager) com-
ponent is instantiated (DCM0) and connected to RAM0. The interfaces of
both components are modeled by UML interfaces and classes. The logic using
the storage is connected to its Local Access interface. The adaption of the
external to the local interface is realized by an appropriate VHDL wrapper com-
ponent. The reset and clock signals of the design are automatically generated
by the model compiler. If the number of sink flip-flops on the clock tree exceeds
the maximum fan-out of the clock generator, a clock generator component is
instantiated to buffer the signal.

Multiple objects are clustered in a hardware configuration. The number and
type of the hardware objects being clustered in a single configuration is deter-
mined either manually or automatically. For this the global message exchange
of classes and their object creation/destruction characteristics is analyzed. The
number of concurrently required object instances is estimated from real or es-
timated execution profiles of the application [52].

The public interface of publicly visible objects is realized by a register file.
The register file allows one to access the control, data, and exception interfaces
of the respective hardware objects. Collaborating objects communicate via di-
rect connections or object buses (OBi). In order to minimize bus contention
there may be multiple object buses in one component. During design space
exploration the model compiler tries to identify reasonable groups of collabo-
rating objects. For each object group an object bus is generated which connects
all member objects of the group.

Only the publicly visible objects can be instantiated by the software portion
of the application. The other objects are hidden from the outside and are used
as helper objects within the component. The access to an object of a given type
must be independent of the object template and the dynamic object type. In
order to accomplish this the public object interfaces of all objects of a given
type and all of its subtypes must be identical. The realization of polymorphism
is hidden behind the external object interface.

Model compilers for SoC perform the interface layout during generation.
In the real layout alignment constraints on the items in the register file, which
are imposed by the communication channels, are considered. Model compilers
assign to each element in the register file an address that satisfiess the alignment
constraints in the system. In addition the corresponding address decoders are
automatically generated. Software modules accessing a hardware object use
only the relative addresses of the member elements of the object interfaces. The
software proxies are parameterized with the absolute object address by the RTR
Manager. The proxies compute the absolute address of an element when it is

110 UML FOR SOC DESIGN

accessed. This ensures that software and hardware always fit together and that
the object access is independent of real object addresses and implementations.

Example 5.12 Figure 5.15 illustrates the implementation of a hardware
component for our design example. In this implementation a PCI bus (Pe-
riphal Component Interconnect) is used as communication channel. The PCI
bridge from our implementation platform (see Figure 5.5) is used to adapt the
external bus to the internal bus Local Access. The external interface of
the component was modeled as Device ConnectUML interface. A register
file is connected to the internal bus. The address decoders and address range
decoders AD/ARDi select the appropriate register from the file at each PCI
access. The AudioPakCoder objects are also connected to the register file.
Their control interface is implemented in the address decoders and the con-
trol register. The other registers realize the data interface; the BRAMs (Block
RAMs) have been modeled in the implementation platform, the other registers
are generated by the model compiler. Owing to the flat class hierarchy of the
example no type register is required. The exception interface is empty because
no exceptions are thrown in the example.

PLX 9080

PCI Bridge

PCI-Bus

lc
lk

la
(2

3.
.2

)

ld
(3

1.
.0

)

lre
se

t_
l

lw
rit

e

la
ds

_l

lb
la

st
_l

lb
te

rm
_l

lre
ad

y_
l

lb
e_

l(3
..0

)

fh
ol

d_
a

Programm-
able

Clock
Generator

External Component
Interface
(Device Connects)

sa
m

pl
es

0

(B
lo

ck
R

A
M

)
2x

16
K

b

C
on

tr
ol

0

si
ze

0

fin
is

he
d 0

sa
m

pl
es

1
(B

lo
ck

R
A

M
)

2x
16

K
b

C
on

tr
ol

1

...

i_address(23..2)

i_data(31..0)

i_rw
i_enable

i_be(3..0)

A
D

0

A
R

D
1

A
D

2

A
D

3

A
D

4

A
R

D
6

AudioPakCoder0 AudioPakCoder1
...

Lo
ca

l A
cc

es
s

In
te

rf
ac

e
R

eg
is

te
r

F
ile

ctrl0 samples0 size0 finished0 ctrl1 samples1

R
E

T
_V

A
L 0

A
D

5

RET_VAL0

Figure 5.15. Component Implementation AudioPaK Example

Hardware/Software Codesign of Reconfigurable Architectures Using UML 111

5.4.5 Hardware Implementation of Objects

Figure 5.16 shows a template for the implementation of objects in hardware.
The template shows the implementation of one object. The object contains the
pre-implemented operation Oi, the operation parameters Pi and the attributes
Ai. The object can be of type T0 or T1. The sets Pi and Ai comprise the data
interface of the object. Operation O2 has a non-empty exception interface.

For each type the visible features must be provided in the interface. The set
of visible operations is a superset of the operations that are defined by a type.
Model compilers automatically eliminate unused features before design space
exploration.

A control and type register implements the control interface. The type reg-
ister holds the current dynamic type of the object. The control register contains
the two signals GO and DONE for each operation. An operation is started by
setting its GO signal. The end of execution is signaled by the operation when
it sets its DONE signal.

TypeCtrl

O0

O1

T0

O1

T1

O2

P00

P01

A0

P10

P20

P21

P22

GO,DONE(O 0)

GO,DONE(O 2)

SEL 1
GO,DONE(O 1)

T0::O1 T 1::O 1

Ctrl Type

GO DONE DONE GO

DONE

type(T 1)

GO

Implementation of SEL 1

type(T 0)

MUX

EX 2

OE(T 0)

OE(T 1)

OE(T 0) OE(T 1)

OB
Ai - Attributes
Pj - Parameters
EX k - Exceptions

Figure 5.16. Hardware Object Template

Operation O1 is polymorphic, that is, the behavior to be executed when the
operation is started depends on the current object type. The selection of the
behavior to execute is performed by a selector circuit whose implementation is
depicted on the right hand side of Figure 5.16. Because the execution of both
implementations of O1 does not necessarily require the same time, the selector
must also multiplex the DONE signal.

The object interface hides the execution of polymorphic behavior; that is,
for the sender of a message which is handled by O1 it must be irrelevant which
implementation of this operation is executed. Thus both implementations of
O1 share the same data interface. If both behaviors of the operations change
data in their data interface, the implementations must be decoupled from the

112 UML FOR SOC DESIGN

actual data by appropriate logic. If no other output enable was specified in the
model the DONE signal is used.

With a growing number of polymorphic operations the implementation re-
quires a reasonable amount of logic resources. However, the support of poly-
morphism also provides significant advantages. If the implementation sup-
ports the object-oriented features the designer has more freedom for the system
specification. Moreover, because object-orientation means implementing the
differences between classes, the direct implementation of class hierarchies can
help to reduce the amount of logic resources required. In each class of the
hierarchy only the new and overridden features of the class in comparison to its
superclasses must be realized. Also the probability that an object of a required
type is contained in the current bitstream is raised because there are virtually
more objects of different types. Hence the overall number of reconfigurations
may drop. In experiments we have shown that this approach can improve the
overall performance by orders of magnitude [174]. The full implementation of
class hierarchies is only advantageous however, if the classes in the hierarchy
are actually instantiated by the application.

The implementation of attributes and parameters is straightforward; they
are mapped to a storage component of an appropriate width. If the imple-
mentation platform contains components with appropriate interfaces (Local
Access, External Access), the resources modeled are used to generate the
storage components. For performance and synchronization reasons the data
interface of publicly visible objects is located in the register file.

Objects are connected to the data interface and other objects with direct
connections or buses. This raises a significant synchronisation problem be-
cause multiple objects or operations may access features concurrently. For the
publicly visible objects the software proxy objects synchronize concurrent ac-
cesses by sequentializing them. Concurrent accesses of proxy objects and their
hardware counterparts are decoupled by the dual ported architecture of the reg-
ister file. Potentially concurrent accesses to an element in the same hardware
component are guarded with arbiters.

If the implementation uses an implementation type or operation which im-
plements the Device Connect interface, the signals of this interface are routed
to the top level VHDL module. This mechanism is used to include peripherals
into the generated designs.

Example 5.13 Figure 5.17 continues the implementation of the AudioPaK-
Coder example. As the figure suggests, this implementation is very simple
because the AudioPaKCoder neither implements polymorphic behavior nor
does it access other hardware objects; hence intra-device synchronization prob-
lems do not arise. The data interface of the object is realized in the register
file as presented in Example 5.12. Notably, the interface to access the sample
array has been transformed into a WISHBONE-like bus interface [197]. The

Hardware/Software Codesign of Reconfigurable Architectures Using UML 113

transformed interface was already introduced in the implementation model (see
Example 5.6).

C
LO

C
K

R
E

S
E

T

G
O

_e
nc

od
e

D
O

N
E

_e
nc

od
e

fin
is

he
d

si
ze

A
D

D
R

E
S

S

D
A

TA

R
W

E
N

A
B

LE

A
C

K

G
O

_c
re

at
e

D
O

N
E

_c
re

at
e

G
O

_i
sF

in
is

he
d

D
O

N
E

_i
sF

in
is

he
d

ctrlsamples

isFinishedcreateencode

R
E

T_
V

A
L

Figure 5.17. Object Implementation AudioPaK Example

5.4.6 Hardware Implementation of Behavior

The behavior of classes and operations is implemented according to the
FSMD model (finite state machine with datapath) as Moore FSM [66]. This
model is especially suitable for control oriented applications, and fits the mes-
sage based computing paradigm of the object based model of computation.

Each behavior is constructed as controller with an attached datapath. The
datapath performs the computations of the behavior, the evaluation of the con-
ditions which control the datapath, and the components that store the inputs,
outputs, and intermediate results. For the realization of the computation oper-
ations and buffers the resource services that have been allocated during design
space exploration are used. The results of conditions are inputs of the controller.

Scheduling of the datapath is performed and assigned to the behavior during
design space exploration. During implementation this schedule is then actually
realized. For each PE the global scheduling policy is specified in the deployment
platform model. For a better control of the implementation the designer may
also specify a local, operation-specific policy in the implementation model.

The controller is realized as FSM. Each of the operations of the datapath
is associated with a number of states of the FSM. Operations which require at
most one clock cycle are associated with one FSM state. Multi-cycle operations
are associated with a number of consecutive states. Independent operations and
operations that execute at most one clock cycle may be chained to execute back
to back in the same cycle. State transitions are performed synchronously.

Example 5.14 Figure 5.18 shows the realization of the first loop of the be-
havior of the operation AudioPaKCoder::encode. Owing to the lack of

114 UML FOR SOC DESIGN

space, the computations in the loop are not shown. The FSM 2 on the left side
is decomposed into a controller, a datapath, and a synchronization process.
The loop is executed as long as the loop counter i is less than size. The
synchronization process is not shown. It synchronously sets the current FSM
state and the DONE signal when the FSM is in the final state.

ADDRESS = i
RW = 0
ENABLE = 0
tmp = (ACK = 0)

S11
tmp=1

S12

tmp=0

sample = DATA
RW = 0
ENABLE = 1

S22
i = i + 1

S8

S9

tmp = (i < size)

tmp=1

tmp=0

...

 fsm : process (tmp, CS) is
 begin
 case CS is
 ...
 when S8 =>
 NS <= S9 ;
 when S9 =>
 if (tmp = '1') then
 NS <= S10 ;
 else
 NS <= ... ;
 end if;
 when S10 =>
 NS <= S11 ;
 when S11 =>
 if (tmp = '1') then
 NS <= S10 ;
 else
 NS <= S12 ;
 end if;
 when S12 =>
 NS <= ... ;
 when S22 =>
 NS <=
 ...
 end process;

FSMD Controller

 dp : process (GO, CLOCK) is
 begin
 if GO = '0' then
 -- Initializations
 ...
 else
 if rising_edge(CLOCK) then
 case CS is
 ...
 when S8 =>
 tmp <= conv_std_logic(i < size)) ;
 when S10 =>
 ADDRESS_9 <= i ;
 RW <= '0' ;
 ENABLE <= '1' ;
 tmp <= (ACK = '0') ;
 when S12 =>
 RW <= '0' ;
 ENABLE <= '0' ;
 ...
 when S22 =>
 i <= (i + "0000...01") ;
 ...
 end case;
 end if;
 end if;
 end process dp;

Datapath

S10

Figure 5.18. VHDL Loop Implementation Example

In contrast to software implementations each behavior is realized for each
hardware object, that is, the implementation of a behavior is not shared by ob-
jects which provide the same behavior. Hence no synchronization of concurrent
executions of the same behavior in different objects is required.

To avoid write contention the datapath keeps local copies of attributes and
inout parameters. All modifications of the datapath are performed on the copies.
If no explicit output enable is specified in the model, they are synchronized back
at the end of computation and when the behavior executes a message transfer.

As shown in the previous example, array accesses in the model are trans-
formed to explicit bus transfers. Similar transformations are performed to ac-

2We use the FSM notation here instead of UML State Machines in order to emphasize the relation to the
VHDL implementation. Also the currently implemented FSMs have less powerful semantics as UML State
Machines.

Hardware/Software Codesign of Reconfigurable Architectures Using UML 115

complish message exchange between objects. Message transfers between op-
erations of the same object are commonly inlined by the model compiler. This
requires more implementation resources but again minimizes data contention.

5.5 Experimental Results

The design model from our permanent AudioPaK example was automatically
implemented with the MOCCA compiler using C++ and VHDL-RTL imple-
mentations platforms. The key concepts of the implementation have already
been presented in the previous sections. The overall compilation/synthesis time
of the design model into the final hardware/software modules takes approxi-
mately 5 to 10 minutes, depending on the degree of optimization.

The coder was tested on a hardware platform comprising a Pentium IV pro-
cessor running at 2.4 GHz (master) and a Xilinx Virtex-II FPGA with approxi-
mately 3 Million gate equivalents running at 100 MHz (slave). Master and slave
are connected with a 33 MHz PCI bus. The slave implements the AudioPaK
coder objects, and the master is responsible for the filtering and distribution of
the audio information to the coder objects and the audio clients in a network.

The current scarcely optimized FPGA implementation of one coder object
requires about 1800 slices, which corresponds to 12% of the available area. Ad-

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

100 200 300 400 500 600 700 800 900 1000 1100 1200

T
im

e/
F

ra
m

e
[s

]

Samples/Frame

Coding w/o Communication
Communication Master-Slave

Coding+Communication Master-Slave

Figure 5.19. AudioPaKCoder Coding and Communication Effort

116 UML FOR SOC DESIGN

ditionally two 16Kbit BRAMs are used to store the sample array. The majority
of the resources is consumed by the encode operation. The resources required
for the PCI bridge are neglectable.

The FSM generated for the encode operation consists of 214 states, which
results in a complex controller. Despite the relatively low arithmetic com-
plexity of the encoding algorithm, its implementation is rather expensive. The
algorithm comprises six loops realizing the intra-channel decorrelation, com-
putation of the encoding parameters and the actual coding of the audio samples.
The algorithm potential for parallelization is quite small.

In Figure 5.19 the performance characteristics of the coder implementation
is shown. The coder implementation is quite efficient. Depending on the frame
size, between 15 and 20 audio channels can be encoded concurrently with one
coder object at 96KHz sampling rate. To avoid contention on the objects,
we found it useful to implement up to five coder objects that are executed in
‘round robin’ order. The time to transfer the samples from/to the hardware may
be dropped in the future by connecting the coder directly to the audio input
devices.

5.6 Conclusions

In this chapter we have presented a novel approach to the UML-based devel-
opment of applications for reconfigurable architectures. The approach incorpo-
rates the key concepts of model driven architecture, platform based design, and
hardware/software codesign. We have shown that UML can be used beneficially
to develop a wide range of relevant SoC applications. This has been exemplified
with a simple application for the encoding of audio data streams. With this ap-
plication the transformation of platform-independent UML design models into
final implementations of hardware/software modules has been demonstrated.

The paradigm of platform based design can be used by specifying platforms
with UML models. Platform models make the important abstractions, assump-
tions, and constraints of platforms explicit. The formal description of plat-
form models with UML makes them automatically interpretable. In contrast to
conventional approaches, platform models enable the flexible, yet automated,
transformation of UML models into final implementations. These transforma-
tions can be performed (semi-) manually or completely automated by model
compilers. As a result, the capabilities of current approaches to behavioral syn-
thesis and compilation are pushed to the system level. This improves system
quality and enables one to cut down development time by orders of magnitude.

Whilst the software implementation of object-oriented specifications is state
of art, this chapter has shown that such specifications can also be realized
with reconfigurable hardware in a straightforward and convenient manner. The
paradigm of message based computation can be used to generate very efficient

Hardware/Software Codesign of Reconfigurable Architectures Using UML 117

and scalable hardware implementations. The development of highly parallel
applications is encouraged. Advanced model compilers for SoC can automat-
ically implement heterogeneous multiprocessor solutions from UML models.

The capabilities of our approach have been demonstrated with a real world
design of a coder for high quality audio streams. With this example it has
been shown that the approach provides significant gains in system quality and
development efficiency. Especially, the short implementation time motivates
the exploration of different design alternatives in order to improve the overall
quality and to reduce costs.

Chapter 6

A Methodology for Bridging the Gap
between UML and Codesign

Ananda Shankar Basu,1 Marcello Lajolo,1 Mauro Prevostini2

1NEC Laboratories America
Princeton, NJ, USA

2ALaRI, University of Lugano
Lugano, Switzerland

Abstract The Unified Modeling Language (UML) is getting more popular among system
designers due to the need to raise the level of abstraction in system specifica-
tions. We present here a methodology that integrates UML specifications with
a hardware/software codesign platform. This work aims to give a contribution
toward SoC Design Automation starting from system level specification down to
hardware/software partitioning and integration.

6.1 Introduction

With the increasing design complexity and the reduction of the time to market
windows, the design of electronic systems has become a challenging task to be
handled by traditional methodologies. Embedded systems design in compar-
ison to traditional software development requires not only to verify the func-
tional correctness, but also to satisfy tight performance and cost constraints.
Hence, new methodologies are needed to improve design productivity and de-
rive high performance low cost implementations keeping in mind the reuse of
pre-designed components.

The software community, after several years of work, converged on a set of
notations for developing specifications of object oriented systems known as the
Unified Modeling Language or UML [178] that has been very successful as a
visual way for describing software. However, UML is not limited to software
modeling and the development of UML 2.0 has been undertaken with the express

119

G. Martin and W. Müller (eds.), UML for SOC Design, 119–146.

© 2005 Springer. Printed in the Netherlands.

120 UML FOR SOC DESIGN

intention of producing a language that has benefits for a much wider audience
than just software developers, including the world of systems engineering.

In this work, we present an integration of a UML based modeling method-
ology with a C based design technology called Aces (Application to C to
Exploration to System LSI) [109] that leverages on high level synthesis and
coverification tools and aims to assist the designer in the hardware/software
partitioning and architecture selection phases. Aces has the unique advantage
with respect to all similar approaches to be able to leverage off the strengths of
two key pieces in NEC’s C based design flow [226]: Cyber, a behavioral hard-
ware synthesis tool and Classmate, a hardware/software coverification tool.
UML complements Aces with an object oriented modeling language with both
graphical and textual notations, organized in a set of diagrams, each diagram
capturing a different aspect, or level of abstraction, of the system. The result is a
unified design flow from system specification down to system implementation.

This chapter is organized as follows. Section 6.2 talks about the state of the art
in electronic system level (ESL) design and focuses on our main contributions.
Section 6.3 describes the Aces codesign flow, which is an integral part of our
methodology. Section 6.4 talks about the hardware oriented modeling aspects
of UML. Section 6.5 describes how the model can be verified in the UML
environment. Section 6.6 talks about the link between UML specifications and
the codesign environment. Section 6.7 presents our conclusions.

6.2 State of the Art and Contribution

As the complexity of systems increases, so does the importance of good
specification and modeling techniques. Many factors contribute to the success
of a project, and certainly one we cannot do without is a rigorous modeling
language standard (see, e.g., [85, 142]). Introduced in recent years,UML [178]
is now widely used, historically for requirements specification and for the de-
sign of complex software systems and since at least a couple of years also for
hardware modeling and for embedded systems design. Although UML has a lot
of advantages, is still not fully reliable for hardware description, especially for
event semantics [13, 110]. This lack of semantics for hardware modeling exists
because UML was originally conceived by the software development commu-
nity. The Object Management Group (OMG) [144] is at the moment assessing
it in order to define standard semantics able to improve hardware description
modeling. These new standards have been recently adopted by OMG through
UML 2.0 [217].

On the other hand, Electronic System Level (ESL) design has been a hot area
for Electronic Design Automation (EDA) vendors and startups in particular,
but there are so many entries now that marketplace confusion is more likely
than widespread adoption. ESL point tools are many, but flows that can go

A Methodology for Bridging the Gap between UML and Codesign 121

from concept to implementation are few. For example, commercial hardware
and software coverification tools from companies such as Mentor Graphics,
CoWare, VAST, Virtio and Axys can provide fast instruction set simulators
linked to various hardware simulators. They mainly focus on the functional
and performance modeling problem for software dominated embedded systems,
although they do not address the issues of high level hardware modeling and
refinement. The main limitation of these tools is that they often require to model
the hardware at the RT level and even though recently some of these vendors
have started to offer the possibility to perform a mixed C/RTL coverification
(e.g. C Bridge from Mentor Graphics), none of them offers yet an automated
behavioral synthesis path from behavioral specifications.

An emerging area is also the one of coprocessor synthesis [133, 206, 44],
where the main idea is to combine the software compilation and the hardware
synthesis technologies to provide a system that allows designers to explore and
implement their designs directly from descriptions written in algorithmic C.
The main limitation of this approach is that it is based on the assumption that
the designer has already been able to come up with a feasible hardware/soft-
ware partitioning for the entire design and the coprocessor synthesizer can then
provide the possibility to perform some software acceleration by offloading
compute intensive algorithms from the CPU to dedicated hardware. Although
very useful, tools of this type can only provide a partial support to a complete
SoC design flow because it is well known that many decisions regarding the
efficiency (performance, power, area etc.) of the system have largely been fixed
by the time a designer commits to a particular architecture.

Alternative and complementary methodologies and solutions must hence be
provided in order to help the designer during the initial phases of the design pro-
cess when coarse hardware/software partitioning tradeoffs have to be analyzed.
Our work is an attempt to try to fill this gap by proposing a practical integration
between a UML based modeling methodology and an existing hardware/soft-
ware codesign technology.

6.3 The ACES Codesign Flow

The overall flow presented in this chapter is shown in Figure 6.1. Our
proposed methodology starts with the UML specification of the system, fol-
lowed by exploration of the UML database for extraction of functional and
structural information. This is followed by an interactive process performed
through a web based interface that allows to capture UML specifications and
design constraints provided by the designer, like architectural specifications and
hardware/software partitioning, and export the entire structure of the design into
the Aces [109] codesign environment.

122 UML FOR SOC DESIGN

In Aces the system is described at the behavioral level as a network of
components that can communicate by both means of events as well as shared
variables. A web based interface acts as an intermediate layer between UML and
codesign through which the user can drive the codesign process by performing
the important tasks of component and communication mapping. A library
of precharacterized architectural templates is provided in order to allow the
designer to explore different design solutions.

The following sections describe in detail the various phases in this design
flow.

UML

Web-based Interface

Functional Specification
(Class, State machines, Activity

and Sequence Diagrams)

Functions
Extraction

Design
Summary

Component
Mapping

Platform
Selection

Code
Generation

Communication
Refinement

Structure
Extraction

UML DB Exploration
and Code Generation

Design Problem
Formulation

(Use Case Diagram)

Discrete
Event Models

Partitioning

SystemC
Behavioral HW/SW

Co-Simulation

Interface
Synthesis

Co-Simulation

Debug
optimization

SW
Synthesis

HW
Synthesis

Design
Summary

Codesign Environment

Platform
Specification

Figure 6.1. Design Flow

6.3.1 UML Specifications

UML is an object oriented modeling language that consists of graphical and
textual notations, organized in a set of diagrams, each diagram capturing a
different aspect or level of abstraction of the system [178]. After getting the
requirements specification of the system to be designed, the first step is to cap-
ture the functionality of the system as a whole using Use Case Diagrams. In the
second step, the functionality is decomposed into components within Classes
describing the SoC’s structure and State Machines, Activity and Sequence Di-
agrams, describing the SoC’s behavior. Constraints (i.e. performance) are
captured using Stereotypes, which are simple extension mechanisms of UML,

A Methodology for Bridging the Gap between UML and Codesign 123

and propagated and budgeted to the components. In the following step, the
model is simulated in the UML environment in order to check whether the
functional behavior of the system matches the original specifications.

For a first analysis of a possible integration between UML and codesign, we
have started by considering a UML specification flow in which first an Object
Model Diagram (OMD) is defined to capture the structural decomposition into
interacting components. An OMD contains two sets of classes: the ones whose
behavior could potentially be implemented either in hardware or in software and
others that do not have to enter in the codesign flow, for example, testbenches and
strictly software oriented components. The first set of classes are distinguished
by a specific set of UML stereotypes and additionally they are also used to
differentiate between the types of behavioral specification associated with a
particular class. For example, the stereotype Partitionable StateMachine is
used for classes with state machine behavior and Partitionable Text is used for
classes with textual specifications. We will talk in more detail about this item
in Section 6.4. Communication among objects of classes can be specified
through links connecting ports of different objects. Ports are stereotyped as
output or input which allows for semantic verification of connections between
ports during the structural information exportation process. Visually, interfaces
among classes are described by means of ports and connectors (see [189]). The
behavior of the classes participating in the codesign process can be specified
graphically using state machines as well as textually in the form of behavioral
SystemC code, attached as a description to a class.

As a next step, the UML Functional Specification must be translated into
Aces Discrete Event Models to conjugate the convenience of using the graph-
ical UML Platform interface for specification with the possibility to use the
analysis and synthesis tools available using the Aces codesign methodology.
We have also proposed a possible way to specify the architectural platform in
which system modules would be deployed onto different architectural compo-
nents using the UML Deploymemt diagrams.

6.3.2 System Level API

We provide a specific API, basically an extended UML library, in order
to allow the user to describe the type of communication that he wants to be
performed. The API combines transaction level modeling for the hardware in-
terface and OS and device driver levels for the software interface into a unified
semantic. The objective is to provide designers with a minimal set of high
level primitives that can be used to abstract and specify the behavior of the
system. The proposed generic API for design specification is presented in
Table 6.1. It is based on the POSIX [215] standard, a well defined and accepted
programming interface for Operating Systems. The API is divided in four parts:

124 UML FOR SOC DESIGN

Table 6.1. The API Functions

Process process create(id, param, func, arg)

Management process delete(id)

process suspend(id)

process resume(id)

Communication port send(port, data, mode)

port receive(port, mode)

shared mem read(mem, offset, mode)

shared mem write(mem, offset, data, mode)

Synchronization mutex lock(mutex)

mutex unlock(mutex)

sema wait(sem)

sema post(sem)

cond var wait(var, mutex)

cond var signal(var)

cond var broadcast(var)

Timing time wait(time)

process join(id)

mutex lock tmo(mutex, time)

sema wait tmo(sem, time)

cond var wait tmo(var, mutex, time)

Process Management, Communication, Synchronization and Timing. Process
management includes functions to control process creation and execution. The
Communication part encompasses shared memory and message passing based
communication, both blocking and nonblocking style. Synchronization in-
cludes primitives for process synchronization, like mutexes, semaphores and
condition variables. Finally, the Timing section allows some control over the
timing behavior of the system, providing a timed wait and controlling timeouts
for blocking operations.

The API is thought to be integrable with any system level specification lan-
guage, for instance, SystemC. The range of specification styles possible to target
with the API is very broad. Hardware oriented specifications might use bit ma-
nipulation and low level constructs more intensively, while software oriented
specifications could use pointers, memory allocation and stack manipulation
more frequently. Nevertheless, the API we propose is neutral and can accom-
modate either style.

In the Process Management section of the API, four functions are defined.
The function process create is used to instantiate and start the execution of a
new process. The function func is the entry point of the process. Note that the
actual code of the process, be it hardware or software, is already available. The
API function will create a new context for the new process and start executing

A Methodology for Bridging the Gap between UML and Codesign 125

the initial function. Also note that in case of hardware processes, if more
than one process shares the same hardware implementation, there is a need to
synthesize a scheduler within the hardware implementation, so that time sharing
of the hardware is possible. Process delete stops and removes a process
from the scheduler list forever, freeing all the resources that were held by that
process. Finally, process suspend and process resume are used to stop
and resume the execution of a process, respectively. A process is suspended
by a process suspend call, and stays suspended until some other process
executes process resume for that specific process.

Two different communication models are supported in the API, message
passing and shared memory. Message passing is abstracted by the concepts
of ports, and provides the primitives port send and port receive to imple-
ment the communication. Blocking and nonblocking styles are supported, and
are specified by the designer through the argument mode. A blocking send
blocks the sender until the receiver reads the message. Similarly, a blocking
receive blocks the receiver until a message is available in the corresponding
port. Shared memory communication is modeled with the shared mem read
and shared mem write primitives. Here, two styles are also possible, syn-
chronous and asynchronous, specified in the parameter mode.

In the Synchronization section, three different synchronization mechanisms
are defined by the API: mutexes, semaphores and condition variables. A call to
sema wait will block the calling process if the semaphore value is zero, mean-
ing that none of the shared resources are available, while a call to sema post
increments the value of the semaphore, and unblocks a possibly waiting process.
Mutexes are similar to binary semaphores, i.e., semaphores initialized with the
value of one. The process calling mutex lock will block in case the mutex
value is zero, and mutex unlock will set the mutex value to one, allowing one
of the possibly waiting processes to continue. Finally, condition variables allow
processes to wait for some event or condition to happen. The process calling
cond var wait will block until the condition is met and the corresponding
cond var signal is invoked. Alternatively, cond var broadcast can be
used to signal an event when multiple processes should resume execution as a
result of one event.

Finally, the Timing section allows the specification of the timing behavior of
processes. Processes can wait for a fixed amount of time using the API called
time wait. The waiting time is provided in the parameter time. Additionally,
it is also possible to specify timeouts for each of the blocking synchronization
primitives, with sema wait tmo, mutex lock tmo and cond var wait tmo.

126 UML FOR SOC DESIGN

6.3.3 Interface Synthesis

When the input design description contains communication primitives from
the System Level API, there is a need to synthesize the communication interface
between the processes. Depending on the design partitioning, the interface will
need to connect two hardware modules, two software modules, or a hardware
and a software module. This phase is controlled through a web based interface
that acts as an intermediate layer between UML and codesign and that will be
presented in detail in Section 6.6.4 in the context of a real application.

In this section, we show examples of custom interface synthesis for differ-
ent partitions. We refer to the process sending data as the producer, and the
processor receiving data as the consumer.

Hardware to Hardware Communication. In the case where two processes
that communicate through ports are mapped to a hardware implementation,
there are different alternatives for interface synthesis. However, since this is
a hardware to hardware communication, it is not necessary to generate RTOS
code or software to handle this specific communication.

One possible architecture for a port based hardware to hardware communi-
cation is shown in Figure 6.2. In this case, there is a direct data connection
between producer and consumer. Additionally, control lines are synthesized
according to the API usage. If the port is ever used for a blocking send, then an
acknowledgement line from the consumer to the producer is necessary. There-
fore, the producer is suspended until it receives an acknowledgement from the
consumer in case of a blocking communication. For communications with mul-
tiple consumers, the producer waits for the acknowledgement of all consumers.
This behavior is implemented with a logic OR of the individual acknowledges
of the consumers, as shown in Figure 6.2. Similarly, an event line is added
from the producer to each consumer for the case when blocking receives are
specified. Since the event and acknowledge control signals are only synthesized
when needed, they are shown with dashed lines in Figure 6.2.

Producer
Consumer

Evt_p

p_Data p_Data

p_Event

p_Ack

Consumer

Evt_p

port_receive(p,...)

port_send(p,...)

Figure 6.2. Interface Synthesis for HW to HW Communication

Other architectures are also possible from the same System Level API. For
instance, it is possible to generate a Transaction Level Model with AMBA

A Methodology for Bridging the Gap between UML and Codesign 127

bus transactions for each port primitive. In this case, the port send and
port receive primitives are replaced by a set of calls to the AMBA Transac-
tion Level API [6].

Software to Software Communication. When two software processes
are mapped to the same processor, the interface synthesis is simpler. Our
framework will generate a software data structure in memory, shared between
the processes, that will keep the data along with event and acknowledge control
signals. All the producer has to do is to update two memory locations, with
data and event signaling (in case of blocking receives), while the consumer will
read the data memory and update the acknowledge bit of the same port. Figure
6.3 shows the interaction between the processes.

Port

Data

Evt/Ack

Processor

Producer Consumer

port_send(p,...) port_receive(p,...)

Figure 6.3. Interface Synthesis for SW to SW Communication

Hardware to Software Communication. Hardware to software commu-
nications can be implemented by either interrupts or polling, using memory
mapped addresses in the latter case. In both cases, we will need some RTOS
support in order to coordinate the processes. One possible solution is shown in
Figure 6.4. Our framework will generate a bus adaptation layer for the hard-
ware module, so that it can send and receive data from the bus. In the case of
a memory mapped communication, a device driver is also generated and runs
inside the processor, monitoring the bus for activity in the memory mapped
region. The device driver is responsible for transferring data from the bus to
the processor memory, to an equivalent port structure as the one shown in Fig-

Port ConsumerDevice
Driver

Producer

Processor

port_send(p,...) port_receive(p,...)

interrupt line

D
e
c
o
d
e
r

Figure 6.4. Interface Synthesis for HW to SW Communication

128 UML FOR SOC DESIGN

ure 6.3. The software process will access the port data structure as it did in the
software to software case, retrieving data and updating event flags. If instead an
interrupt based communication is specified, then an Interrupt Service Routine
(ISR) needs to be synthesized. The ISR will be responsible for receiving the
event signaling from the producer. In the interrupt based communication, the
actual data is still transferred through a memory mapped location to the port
structure.

Software to Hardware Communication. In software to hardware com-
munications, the producer is running in a processor, communicating with a
hardware module. In our model, this kind of communication is always memory
mapped. The producer will update a port data structure, and a device driver
propagates data and events to and from the bus. Events and acknowledge signals
are generated for the receiver whenever necessary.

Note that the device driver can be unique for all the software to hardware and
hardware to software communications. It has to monitor a set of software ports,
transferring data to the bus, as well as monitor the bus for memory mapped
communications.

Multiprocessor Communication. Finally, in case the processes are mapped
to different processors, with different buses, a bridge will also be synthesized.
Figure 6.5 shows the proposed architecture. In this scenario, the producer runs
on processor 1, connected to CPU1 Bus, while the consumer runs on processor
2, connected to CPU2 Bus. The producer will see the bridge as the consumer.
Meanwhile, the consumer will see the bridge as the producer. Both processes
will see a hardware to software communication, and the port will be accessed
through a memory mapped address. In addition to the bridge, device driver code

Port ConsumerDevice
Driver

Producer

Processor

Port ProducerDevice
Driver

Consumer

Processor
Bus

Bridge

CPU1

Bus
CPU2

Bus

port_receive(p,...)

port_send(p,...)

D
e
c
o
d
e
r

D
e
c
o
d
e
r

Figure 6.5. Interface Synthesis for Multiprocessor Communication

A Methodology for Bridging the Gap between UML and Codesign 129

is synthesized for both processors, linking the software process to the RTOS
and to the bridge hardware.

For shared memory communication, two different architectures are possi-
ble, depending on synchronous or asynchronous communication. In the syn-
chronous mode, a locking structure is generated for each shared memory, so
that access is granted exclusively for each process. Every memory access has
to obtain the lock first. In the asynchronous mode, only the memory is synthe-
sized. The locking mechanism is implicit in the API call for shared memory
access. Every shared memory will be directly connected to the system bus,
accessible by the CPU. Additionally, a dedicated memory port will be available
for each hardware module accessing the memory, so that using the bus is not
necessary while accessing shared data. Therefore, there is less contention and
higher parallelism in the implementation.

RTOS Synthesis. In addition to communication interface synthesis, the
generation of RTOS support is required. In this case, our System Level API
has to be mapped to OS specific resources, adapting the generic API to the
functionality available in the target RTOS. Since our API is based on POSIX,
the mapping is trivial when targeting a POSIX compliant OS, like Embedded
Linux [214]. Alternatively, it is possible to target non POSIX RTOSes by
mapping the API calls to the specific RTOS. That is the case with eCos [129].
Finally, the API based description can be used as input to tools that generate a
customized OS infrastructure, like Polis [10] and Phantom [140].

6.3.4 Our HW/SW Codesign Environment

Input to our codesign environment is a set of modules M1, M2 . . . Mn that
implement a design. Modules are described in SystemC extended with the pro-
posed API functions. The SystemC modules are partitioned into hardware and
software implementations. Currently, the partitioning process is manual. Once
the design is partitioned, hardware, software and interfaces are synthesized.
Hardware synthesis is handled by an inhouse SystemC behavioral synthesizer,
that produces synthesizable RTL for each SystemC module. Software mod-
ules are generated according to the operating system support desired by the
designer. At the time, our environment can generate software modules based
on the POLIS framework [10], the Phantom Compiler [140] and any POSIX
based operating system, like Embedded Linux [214] or eCos [129] with the
POSIX adaptation layer. Software is compiled to a specific processor, which
can be a NEC V850 or an ARM946. Finally, the interface is generated accord-
ing to the partition and the communication style specified. We have simulators
available that allow us to simulate the synthesized hardware, selected processor
(cycle accurate in the case of V850 and instruction based in the case of ARM),
software and communication interfaces.

130 UML FOR SOC DESIGN

6.4 Modeling Hardware Related Aspects in UML

This section deals with the hardware oriented modeling aspects of UML.
In particular, it describes methods for specifying a system using the different
flavors of UML diagrams, some depicting the structure and some depicting the
behavior. It shows how hierarchy in hardware design can be represented at
the specification level using available UML features. It also talks about our
proposed enhancement of textual specifications and ways to integrate that in
our codesign flow. Lastly, it speaks about the UML2.0 enhancements relevant
to hardware oriented support, in particular the usefulness of timing diagrams
as well as the specification of interfaces, ports and connectors. To create our
model we used Rhapsody V5.2 which is the UML tool provided by I-Logix
Inc.

6.4.1 Object Model Diagrams (OMD)

The OMD helps designers in modeling the structure of the system by means
of classes. In our design flow we assume that each instantiated class is a
functional system component. Figure 6.6 describes the top level OMD views for
our example model that implements a simple matrix multiplication algorithm.
It shows the block IndexControl, that controls the execution of the algorithm,
a memory object and a hierarchical block MatrixMult. The OMD shows the
static structure of the specified system, in particular, classes and their internal
structure like the objects instantiated within them and relationships among the
objects. The OMD can also show the relationships of a class with respect to
other classes, such as inheritance or generalization and associations. We have
used the OMD in a way to show the hierarchical view of a design, where each
OMD shows the details pertinent to that hierarchy. In this way, the OMD can
be used to represent hardware modeling. In our system, there are three basic
partitionable objects (IndexControl, DataRetrieve, Multiplier) and a memory
object. We have created two OMD’s to show the hierarchical break down of the
design. The top level object model diagram in Figure 6.6 shows the highest level
view of the design under test. Hierarchical objects are marked with stereotype
net while basic partitionable objects are marked either as Partitionable Text
or Partitionable StateMachine. The top level view also shows the input and
output stimuli that needs to be generated from the test benches in order to
simulate the model. The hierarchical component MatrixMult is described in
Figure 6.7 which shows its component classes like DataRetrieve and Multiplier.
Also note that the same Memory object appears in both the OMD views to
show the relationship it shares with different objects across different levels of
hierarchy. All relationships between objects are specified using links, which are
connected via ports. The links can specify event based communication or pure
data communication based on the stereotype attached to them. Event based

A Methodology for Bridging the Gap between UML and Codesign 131

communication triggers a transition in a state machine (see Section 6.4.3), but
pure data communications do not trigger any transitions. Another kind of link
is used to specify the relation of an object to a memory. These links have an
associated direction and are shown as an arrow. For example, in Figure 6.6, the
link between IndexControl and Memory belongs to one of this type.

top

<<top_level>>

IndCntr:IndexControl

<<Partitionable_Text>>

1 MatMult:MatrixMult

<<net>>

1

Default::MatrixMult.mem:Memory

<<memory>>

1

End

Line

Control

Next

Start

Progress

Column

Next

Start

Column

Control

Line
Progress

End

Top level
instance

Hierarchical
components are

stereotyped as net

Top level
design entity

Figure 6.6. Top Level Object Model Diagram

MatrixMult

mem:Memory

<<memory>>

1

DataRetr:DataRetrieve

<<Partitionable_Text>>

1

Mult:Multiplier

<<Partitionable_StateMachine>>

1

Column
Y_Data

X_Data
Line

Next

Control

X

Y

Line

Column

Start

Next

Control

Ports are
connected through

Links

State machine exported
to codesign environment

Memory elements are
stereotyped

All communications are port
to port, using UML ports

Textual description
passed to codesign

environment
�������

next next

Figure 6.7. matrixMultiplier Object Model Diagram

132 UML FOR SOC DESIGN

DataRetrieveIndexControl

/
/

/
/

Repeated
Row X Column
Times

\
\
\
\
\

readMemory()

storeResultToMem()

Next()

Start()

sendData()

computeProduct()

��������	
�����������	���

��������	
������������	���

���	���������()

next()

Multiplier

Figure 6.8. Sequence Diagram of matrixMultiplier

6.4.2 Sequence Diagrams

A sequence diagram shows object interactions arranged in time sequence. It
shows the objects participating in the interraction and the sequence of messages
exchanged between them. After Use Cases and OMDs have been developed,
a Sequence Diagram can be specified as an additional form of interaction to
help create testbenches. Figure 6.8 shows the exchange of signals and their
sequence between the various objects in the matrixMultiplier system. Data
communication across the objects through the function calls is shown in the
figure. API calls can appear inside the functions, for example the function
sendData() calls internally the API port send().

6.4.3 State Machines

The next step is to create the state machines, that are descriptions based on
Harel statecharts [85], used to model the behavior of each instantiated class in
the system. The designer is responsible to figure out for each objects what the
states are, and how transitions happen between them. The transition indicates
one movement from one state to another. Each transition has a label that comes
in three parts: trigger-signature [guard]/activity. All the parts are
optional. States can also have some internal activity, like actions on entry, ac-
tions on exit and actions in state, and there are some mechanisms to specify a
delay for executing a transition. States can be broken into several orthogonal
state machines that run concurrently and superstates can be used in order to
share common transitions and internal activities among states. As an exam-
ple, Figure 6.9 describes the state machine for the IndexControl object in the
matrixMultiplier example. The Index Control is responsible for the execution
sequence of the matrix multiplication. It is basically composed of two nested
loops, that advance the current line and column of the multiplication. Current

A Methodology for Bridging the Gap between UML and Codesign 133

IndexControl’s
state machine

IndexControl

Idle

Init>

CheckRow>

SendRowColumn>

CheckCol

EnabledH

C

C

C

C

Exit>

Working

DIsabled

[col_count < Col]

[col_count >= Col]/row_count ++;

Next

/col_count ++;

[row_count < Row]

disable

[row_count >= Row]/triggerEnd();

enable

tm(1)

tm(1)

[progress == 0]

[progress == 1]/this->GEN(enable)

[progress == 1]

[progress == 0]/this->GEN
(disable)

Nested
state

Action on entry:
sendRowColumn();

Default history
transition

History
connector

Orthogonal state:
and line

Figure 6.9. State Machine of IndexControl

line and column are communicated to the Data Retrieve module by two ports,
named Line and Column.

Here is shown an AND state containing a nested state machine with a history
connector. An AND state is an orthogonal state which represents simultaneous
independent substates that an object can be in at the same time. A history
connector stores the most recent active configuration of a state, so a transition
to a history connector restores this configuration.

6.4.4 Textual Specifications

Figure 6.10 shows how we manage the textual format of the behavioral de-
scription. Through the Rhapsody tool we have to set, for each system compo-
nent, which is the stereotype that specifies the type of the behavioral description.
In the "Description dialog box" we edit the textual (SystemC) description of
the system module. A module can potentially contain both a state machine as
well as a textual description for its behavior in the form of SystemC. In the
codesign phase, it will be possible to associate different instantiations of the
same module to different form of specifications, i.e. some to state machines,
some to textual description.

6.4.5 UML 2.0 Enhancements

UML 2.0 enhancements are not changing dramatically the modeling elements
of UML 1.x. As it is said in [59]: "UML 2.0 doesn’t represent a substantial

134 UML FOR SOC DESIGN

Object stereotype can
be selected from a

dropdown list Textual(SystemC)
description for
IndexControl

Figure 6.10. Behavioral Description: Textual Format

redefinition of the modeling elements". Most of the changes were performed
in the behavioral diagrams rather than in the structural diagrams. For instance
in the interaction diagrams the collaboration diagram disappeared, while the
sequence diagram notation is now able to support nested diagram notation and
conditional behavior. In addition there are three new interaction diagrams: tim-
ing, communication and interaction overview diagram. Among the behavioral
diagrams, the activity diagram was improved significantly and now it is possible
to model the concurrent behavior relying on tokens similar to Petri Nets [171].

In this section we will talk more about UML2.0 enhancements relevant to
hardware modeling. In particular we will focus on structural diagrams like
the Deployment diagrams. We will also spend a few words on an interaction
diagram, the timing diagram, and its related elements specialized for realtime
systems. In addition we will talk about the specification of interfaces, ports and
connectors.

Deployment Diagrams. A Deployment diagram captures the configuration
of runtime processing elements and the software component instances that re-
side on them. It is a graph of nodes, representing the hardware resources, and
communication paths representing physical connections among the resources.
A node can be a CPU or some other processing element and can have its own
memory. Components represent software modules, tasks or processes that run
on a node. Hence deployment diagrams specify the runtime physical architec-
ture of a system.

A Methodology for Bridging the Gap between UML and Codesign 135

M1

V850

IndexControl DataRetrieve

Bus1

BusIntfc1

Hardware1

Multiplier

Figure 6.11. Deployment Diagram: Platform Specification and Component Mapping

Platform Specification using Deployment Diagrams. The deployment
diagram can be used to specify a platform architecture in our proposed method-
ology. Normally the user has to select an architecture from a list of predefined
platforms to be considered in the codesign phase. These predefined platforms
are shown as an interconnection of hardware resources like CPU, hardware
elements and memories, connected by means of buses or dedicated point to
point connections. Depending on the user’s choice to map a design module
either to hardware or software, the modules are deployed to the corresponding
elements in the architectural platform. We propose an additional stage in our
design methodology where the platform can also be specified graphically by
the user, making use of the UML Deployment diagram. Other than the pre-
defined platforms, we would also provide the basic resources like the CPUs,
switches, hardware elements, buses, bus bridges, etc., from which the user can
select, and connect them using communication paths to build his own platform.
There would be necessary checks to ensure the semantic correctness of the us-
age of the architectural components as well as their interconnection protocol.
The design components can then be deployed to the nodes in the architectural
platform. Information from the deployment diagram would then be exported
to the codesign environment for further steps to cosimulation.

An example of our proposed scheme is shown in Figure 6.11. It shows the
V850 platform specification and the default configuration of the modules in the
matrixMultiplier application.

136 UML FOR SOC DESIGN

Timing Diagrams. The timing diagram shows the change in state along a
lifeline in terms of a defined time unit. Figure 6.12 describes the timing diagram
related to the behavior of the IndexControl object. The diagram is related
to Figure 6.9 which describes the state machine of IndexControl. The states
represented by the timing diagram of IndexControl are: Init, Idle, Working and
Exit. The object will change its internal state depending on the event that will
occur. Events are: enable, disable and end. Figure 6.12 shows that when the
event enable occurs, the IndexControl goes from state Idle to state Working,
whereas it changes from Working back to Idle when the event disable occurs.
The module goes in state Exit when, while being in state Working, the event
end occurs.

Init

Idle

Working

Exit

sdTimingDiagram : IndexControl

enable

disable
triggerEnd

enable enable enable

disable disable

Figure 6.12. Timing Diagram for IndexControl

Timing diagrams are very helpful to specify the duration and timing con-
straints of realtime systems.

Interfaces, Ports and Connectors. Figure 6.13 shows how we model
interfaces, ports and connectors between IndexControl and MatrixMult objects.
Interfaces are specified through ports and connectors. Ports are identified by
little squares on the object boundaries while connectors might be little plain
circles or arcs. Circled connectors describe the provided interface (e.g the
object sends a signal through this port), arc connectors describe the required
interface (e.g. the object waits for a signal through this port).

Interface direction (input/output) can be shown graphically only using UML
2.0 semantics which allows to specify whether an interface requires (input) or
provides (output) a service (a signal in our case study). For links, the direction
cannot be specified, so we are using an input/output stereotype attached to a
port in order to specify the direction. Connections to memories do not use ports,
but direct links with objects.

A port is an interaction point assigned to an object and can exchange messages
with other external objects or send messages to and from their parts. A port
enables to specify instantiated classes independently of the environment in

A Methodology for Bridging the Gap between UML and Codesign 137

Required
Interface

Provided
Interface

Provided Interface
coupled with Required

Interface

MatMult:MatrixMult

<<net>>

1
IndCntr:IndexControl

<<Partitionable_Text>>

1

Start
start

Next

next

Column
column

Control
control

Line
line

Control
control

End
end

Start
start

Line
line

Progress
progress

Next

next

Column
column

Required Interface
coupled with

Provided interface

Figure 6.13. Interfaces, Ports and Connectors between IndexControl and MatrixMult

which they will be embedded. The internal part of the object can be completely
isolated from the environment. In our methodology, ports are used to extract
the interface signals of a module needed in its SystemC implementation (see
Section 6.4.1).

6.5 Model Verification in UML

This section deals with verification aspects of UML. In particular, we dis-
cuss the event semantics in UML, and propose some UML enhancements for
supporting a pure discrete event simulation that is more suitable for hardware
modeling. We also describe how to take advantage of other useful UML fea-
tures like animated sequence diagrams and state machines during the system
verification process.

During the design phase, designers should periodically validate their UML
models so that they can find bugs very early in the project. Discovering bugs
in the design phase is much cheaper than in later phases. In this section we
present animated diagrams, that are important features provided by UML tools,
and we also discuss event semantics in UML.

6.5.1 Animated Sequence Diagrams and State Machines

The first technique we use is a particular feature provided by the UML tool
Rhapsody from I-Logix [172], which allows the designer to simulate the model
by animating its sequence diagrams and state machines. This allows the de-
signer to visualize the system behavior during a specified test case and validate
the model. Rhapsody also provides the possibility to compare the animated
sequence diagrams with those developed during the Analysis phase. This helps

138 UML FOR SOC DESIGN

in validating the model versus the requirement specification. Figure 6.14 shows
the animated state machine of IndexControl at the beginning of its behavior.
In Rhapsody the ‘IndexControl’ main state and the initial ‘Init’ state are high-
lighted by means of a violet colour. This means that the IndexControl object is
in that particular state at that moment. This is very useful for designers when
they need to verify the model behavior.

SendRowColumn>

C

C

H

C

C

IndexControl

Idle

Exit>

Working

CheckCol

CheckRow>

Init>
DIsabled

Enabled

Next

[col_count >= Col]/row_count ++;

/col_count ++;

[row_count < Row]

[col_count < Col]

enabledisable

[row_count >= Row]/triggerEnd();
tm(1)

progress == 0]

[progress == 1]/this->GEN(enable)

progress == 0]/this->
GEN(disable)

tm(1)

[progress == 1]

Figure 6.14. Animated State Machine

6.5.2 Event Semantics in UML

The native communication model in UML is based on asynchronous events
with a single queue. In this model events are processed in the following fashion:

1. An event is created when it is sent by one object to another.

2. It is then queued on the queue of the target object thread.

3. An event that gets to the head of the queue is dispatched to the target
object.

4. The event is processed by the receiving object and then deleted by the
execution framework.

The main drawback of this semantics is that it is essentially SDL-like, and
hence it is not adequate for hardware modeling where instead a real discrete
event engine would be needed. In particular a global event queue and a support

A Methodology for Bridging the Gap between UML and Codesign 139

for event ordering based on their timestamps is mandatory for simulating real
hardware.

UML 2.0 has tried to address this issue by allowing management of events as
an event pool without defining a priori their order of dispatching. This leaves
open the possibility of modeling different models of computation. Method-
ologies like the one presented in [77] have already shown how it is possible
to extend UML very easily and efficiently in order to support new models of
computation.

Unfortunately, many UML tools that are currently on the market still use
the native communication model of UML and hence it is not yet possible to
rely on a general solution for modeling hardware behavior in UML. For this
reason, we have decided to use UML only for system specification but not for
hardware/software cosimulation and validation.

6.6 Transformation from UML to Codesign

In this section we present the link between UML specifications and the ACES
hardware/software codesign environment. Items that will be discussed are:
UML database exploration, behavioral code generation and export of structural
information necessary for the codesign environment.

6.6.1 UML Database Exploration

After the application is modeled and analyzed using the UML tool, we get
a repository that contains information of the model in the internal database.
We have used Rhapsody from I-Logix, Inc. as UML tool. The database
generated by Rhapsody is organized as follows. The main project consists of
a list of packages. A package is a mechanism to organize different project
elements into groups. A package consists of the list of classes, functions,
objects, events, global variables, diagrams as well as packages. Each class has
a list of attributes, methods, objects instantiated within it, links between the
objects and other modeling elements.

6.6.2 Code Generation

In this phase, the behavior of the modules specified in UML is converted to
SystemC code in order to be imported into the ACES codesign environment.
From this SystemC representation, ACES is then able to perform both hardware
and software synthesis. In our proposed methodology, the behavior of a module
can be specified either through a state machine as shown in Figure 6.9 or a
textual specification as shown in Figure 6.10. The type of the specification can
be selected from a drop down list.

When the user selects the textual specification, the code generator just copies
the user specified code into the file needed by ACES. Input and output descrip-

140 UML FOR SOC DESIGN

tions for the ports and signals would be automatically extracted by the code
generator from the OMD.

On the other hand, when the user specifies the behavior through a state
machine, the code generator has to explore the UML database in traversing
the states of the state machine and generate the corresponding code. A sketch
of the algorithm for this code generation process is shown in Figure 6.15.
The algorithm needs to know the events in the model, the action/guard for
the transitions, entry and exit actions in a state, in transitions to a state, out
transitions from a state, etc. It is possible to browse through the entire object
model and extract the relevant information from the state machine. Also UML
allows the behavior to be specified using Activity Diagrams, which are very
similar to State machines, and the same algorithm can be used for generation
of the behavioral code.

The algorithm is called on the root state of each state machine for which code
has to be generated. In every state, it first emits the code specified by the user in
the action on entry portion of the state. Then it checks out transitions from the
state. For the transitions triggered by events, it issues a wait statement on that
event, then it emits the code specified in the action on exit portion, followed
by a goto statement, the label being the target state. In case of a conditional
transition, it issues an "if then else" statement with goto labels depending on
the condition. It also issues the code (if any) specified in the action section of
the transition. Then the algorithm is called recursively on each state reachable
by the current out transition. For an AND state, the same code generation
algorithm is called on each of the substates within the AND state. The behavior
is also the same for a state with a nested state machine.

The output of the code generator is a list of SystemC files, each corresponding
to the behavior of a specific object in the system to be considered in the codesign
flow. Figure 6.16 shows a portion of a SystemC description generated for the
state machine of object IndexControl corresponding to Figure 6.9. We have
chosen an unstructured style for the generated code, due to its simplicity and
efficiency, but many variants (e.g. nested switch, state pattern, state tables, etc.)
are possible. Events are implemented as boolean terminals.

We have implemented and tested the algorithm using Rhapsody UML tool,
which provides API functions that allow us to extract all required information
from a UML project database. However we would like to emphasize that this
code generation algorithm is very general and can be utilized also with other
UML tools.

6.6.3 Exporting Structural Information

In order to start with the codesign process, the last thing we need is to extract
a summary of the design, essentially a textual representation containing a list of

A Methodology for Bridging the Gap between UML and Codesign 141

codeGenerate(state S) {
1. If S is visited, return;
2. Mark S as visited.
3. Issue code specified in the action-on-entry section (This code can

be directly copied)
4. Get out transitions {T} from state S;
5. {U} = empty;
6. for each out-transition ‘t’ of {T} do {

if ‘t’ is conditional {
issue code specified in the action-on-exit section;
s_t = target state if condition is true;
s_f = target state if condition is false;
issue if-then-else with goto label as ‘s_t’ or ‘s_f’ depending
on condition;
insert ‘s_t’, ‘s_f’ in {U}; }

else {
s = target state of ‘t’, insert ‘s’ in {U};
if ‘t’ is triggered by event ‘e’ {

issue wait on event ‘e’; }
issue code specified in the action-on-exit section;
issue goto with label as ‘s’; }

issue code specified in the action section of transition ‘t’; }
for each ‘u’ in {U} do

codeGenerate(u);
}

Figure 6.15. Algorithm to Extract Code from UML State Machine

#include <IndexControl.h>
extern sc_int<8> mem[Row*Column]; // External memories
SC_MODULE(IndexControl) {
sc_in_clk clk;
sc_in<bool> rst;

// Input terminals
sc_in<bool> Next; // input event */
// Output terminals
sc_out<bool> End; // output event
sc_out<sc_int<8>> row; // output data
… Omitted …
SC_CTOR(IndexControl) {

SC_CTHREAD(main,clk.pos());
watching(rst.delayed() == 0);

}
void main(void) {
...
CheckRow:

col_count=0;
if (row_count < Row) {

goto CheckCol;
}
else { triggerEnd(); // Send End

goto Init;
}

CheckCol: ... Omitted ...
};

Figure 6.16. Code Generated for Module IndexControl

142 UML FOR SOC DESIGN

all the partitionable objects and their interconnections as well as a description
of the memory object. More specifically, this phase generates the files which
are necessary for ACES to use as input to proceed to cosimulation.

Main {
Open UML project database
Get list of packages
For each package do {

get list of defined classes
find class from list marked as top_level
DFS_Traverse(top level class) }

}
DFS_Traverse(class C) {

Mark class as visited
get list of object instantiations in class
For each object do {

If object is a memory instance {
generate memory descriptions }

else {
generate structural descriptions
put object’s master class in DFS_List }

}
For each master class in DFS_List do {

DFS_Traverse(master class) }
}

Figure 6.17. Pseudocode for Extracting Structural Information

In order to export the structural information to ACES, we need to traverse
the design hierarchy and generate the textual descriptions. The algorithm is de-
scribed in Figure 6.17. The algorithm makes a breadth first search traversal of
the design hierarchy and generates the text files. In order to identify the highest
level of the hierarchy, the user needs to specify a stereotype top level to the top
level module. Any intermediate hierarchical modules are stereotyped as net,
whereas the leaf level modules are marked either as Partitionable StateMachine
or Partitionable Text. Example of the text files generated for the matrixMul-
tiplier example is shown in Figure 6.18. The generated files consists of the
following:

1. A file describing the structure of the system. It consists of all the class
instantiations in a hierarchical fashion, showing the inputs and outputs
at each level of hierarchy and also the port connection of the instantiated
classes.

2. A file describing all the signals that are necessary for connecting the
objects of the system. It shows the list of signals along with their source
and destination objects, and also in particular the ports of the object with
which the ends are connected. Any source or destination which is in the
outer hierarchy is shown as OUT.

A Methodology for Bridging the Gap between UML and Codesign 143

3. A description of the memory objects used in the system, specifying the
memory name, objects that access the memory, and other details like total
size of the memory, word length and access type.

Structure
net top:
input Progress;
output End;
module IndexControl IndCntr [Progress/Progress,

Row/IndCntr_e_Row,
Column/IndCntr_e_Column,
Start/IndCntr_e_Start,
Next/MatMult_e_Next,
End/End,
Control/IndCntr_e_Control] %IMPL_IndCntr;

module MatrixMult MatMult [Row/IndCntr_e_Row,
Column/IndCntr_e_Column,
Start/IndCntr_e_Start,
Next/MatMult_e_Next,
Control/IndCntr_e_Control] %IMPL_MatMult;

.
net MatrixMult:
input Row;
input Column;
input Start;
output Next;
input Control;
module DataRetrieve DataRetr [Row/Row,

Column/Column,
Next/Next,
X_Data/DataRetr_e_X_Data,
Y_Data/DataRetr_e_Y_Data] %IMPL_DataRetr;

module Multiplier Mult [X/DataRetr_e_X_Data,
Y/DataRetr_e_Y_Data,
Control/Control] %IMPL_Mult;

Signals
IndCntr_e_Control IndCntr.Control
net_MatMult.Control
IndCntr_e_Column IndCntr.Column
net_MatMult.Column
Progress OUT IndCntr.Progress
IndCntr_e_Start IndCntr.Start net_MatMult.Start
End IndCntr.End OUT
IndCntr_e_Row IndCntr.Row net_MatMult.Row
MatMult_e_Next net_MatMult.Next IndCntr.Next

#net MatrixMult
Next DataRetr.Next OUT
Column OUT DataRetr.Column
DataRetr_e_X_Data DataRetr.X_Data Mult.X
Row OUT DataRetr.Row
DataRetr_e_Y_Data DataRetr.Y_Data Mult.Y
Control OUT Mult.Control

Memories
mem DataRetr 1000 UMEM <16,1> shared
mem IndCntr 1000 UMEM <16,1> shared
mem Mult 1000 UMEM <16,1> shared

#SystemC Descriptions

IndexControl.cpp

Multiplier.cpp

DataRetrieve.cpp

Figure 6.18. Generated Input Files for Codesign Environment

6.6.4 Web Based Interface

Figure 6.19 refers to the HTML page that is generated at the beginning of this
phase. The two screen shots show the same page and respectively the top part
(left side) and the bottom part (right side). This page can be opened using any
web browser and is organized as follows. Starting from the top, there is a brief
summary of the project containing its name and a short description. By clicking
on a link, it is possible to see all the verbose reports provided by the UML tool
containing all the information about the project that has been collected in the
UML database. The third line is used in order to select the platform on which to
implement the desired functionality. The selection is performed through a menu
window where the user can pick any of the architectural templates available in a
library provided with the codesign tool. An architectural template represents the
platform for the system implementation and the user is responsible for selecting
the platform that is best suitable for the system that he needs to implement (one
or multiple CPUs, DSPs, simple or very complex bus hierarchy, etc).

The selection of the platform is directly reflected in the graphical content,
presented in the middle of the page, where on the left side there is the functional

144 UML FOR SOC DESIGN

Figure 6.19. HTML Page Generated from UML Specifications

Figure 6.20. Mapping on a Dual Processor Architecture

A Methodology for Bridging the Gap between UML and Codesign 145

Figure 6.21. Communication Refinement

view of the system exported from the UML specifications and on the right side
there is the picture of the selected platform. By changing the target platform,
the picture on the right is automatically updated. For example in Figure 6.19 the
platform contains only one processor, while in Figure 6.20 the platform contains
two processors and a two level bus hierarchy. The idea behind this solution is to
support a function architecture codesign approach that requires the separation
of the functionality from the architecture selected for its implementation.

Finally, at the bottom of the page are listed all the objects present in the
functional specifications and the user can specify the implementation (i.e., the
hardware or software component of the platform onto which the functionality
will be implemented.) for each of them through a menu window associated
to each object. This is what we call component mapping phase. The number
of choices available for this mapping depends on the selected platform. For
example, in the platform shown in Figure 6.19, only two choices are possible
(Software1, Hardware1) due to the fact that it is a simple single processor
architecture with one hardware component connected to the processor bus. But
in the multiprocessor architecture shown in Figure 6.20, five different choices

146 UML FOR SOC DESIGN

are possible, since in this platform there are two processors and three hardware
units.

The component mapping phase ends when the user clicks the button “COM-
PONENT MAPPING”. This starts the process of analysis and characterization
of all interface signals and opens a new html page, like the one shown in Fig-
ure 6.21, where all signals are listed.

At this point, the communication mapping phase can start. The table shows
all different types of connections: hardware to software, software to hardware,
hardware to hardware and software to software connections. A connection can
be recognized by its name, a color associated to its type, its source and its des-
tination. The last column shows the specific implementation of the connection.
Software to hardware connections are implemented in memory mapped I/O,
while hardware to software connections are by default implemented in memory
mapped, but the user can alternatively specify an interrupt based implementa-
tion. Hardware to hardware signals are by default implemented as point to point
communications, but the user can alternatively require the communication to
be performed on the bus (memory mapped). Finally, software to software con-
nections are implemented by the realtime operating system (RTOS). This list of
signals presented in the table refers to a specific CPU in the selected platform
and its associated system bus. In case of multiprocessor platforms, several list
of signals, one per CPU, are generated.

When all implementation options have been specified, the user can proceed
to the communication mapping phase. At this point physical addresses will
be generated for all memory mapped communications and specific interrupt
lines of the processor will be selected for signals implemented in interrupt. The
result is a new page, not shown here, similar to Figure 6.21, but where the last
column shows now the physical addresses and the interrupt lines that have been
selected. After having examined all the communications, the user can still go
back and change some implementation options or, if satisfied, proceed to the
next hardware/software cosimulation phase.

6.7 Conclusions

The complexity of current embedded systems requires large teams of design-
ers that interact especially at the early design stages when architecture selection
and hardware/software partitioning take place. Models and tools that allow one
to visualize and document the design abstractions and the interactions between
different components or levels of abstraction of a specification are essential.
UML being platform independent and with a rich graphical notation can serve
this purpose. We presented a methodology that specializes the UML standard
notation for modeling embedded systems platforms and protocols leading to an
integration with an existing hardware/software codesign technology.

Chapter 7

UML Tailoring for SystemC and ISA Modelling

Giovanni Agosta, Francesco Bruschi, Donatella Sciuto

Politecnico di Milano
Milano, Italy

Abstract In this chapter, two approaches to the use of UML as a formalism for the de-
sign of digital systems are presented, based on the two metrics defined for the
classification of design formalisms, abstraction and application specificity. Ac-
cording to the language features represented by these figures, we address two
different modeling domains, defining specific profiles characterized by a low or
high application specificity.

7.1 Introduction

Object oriented formalisms, after having been widely accepted in the soft-
ware world, are making their way into the specification and design of complex
hardware/software systems. The constantly growing complexity of these de-
vices, in fact, adds new requirements to the modeling tools involved in the
design flow. The Unified Modeling Language (UML) is a visual formalism for
the design of object oriented systems that is gaining consensus as a result of its
standardization and expressive versatility.

In this chapter we explore the possibility of exploiting UML in the design
flow of hardware and hardware/software digital devices. The aim of the work
is twofold:

1. to analyze the roles that UML can play with respect to other system
formalisms;

2. to explore the possibility of effectively exploiting UML in the roles iden-
tified in the previous analysis.

To better understand and frame the benefits UML can provide to a SoC design
flow, we rely on two evaluation metrics, abstraction and application specificity.

G. Martin and W. Müller (eds.), UML for SOC Design, 147-173.

© 2005 Springer. Printed in the Netherlands.

147

148 UML FOR SOC DESIGN

These two concepts, even if not completely unrelated and orthogonal, allow one
to clearly identify and highlight the peculiarities of a flexible high level language
such as UML in the context of a hardware/software design flow. Moreover, the
two different approaches presented for the exploitation of UML in a SoC design
scenario will be characterized in terms of the two attributes introduced, in order
to clearly understand their contribution to each one of them.

7.2 Abstraction and Application Specificity

A typical modern design flow can be seen as a series of steps, applied in
a defined sequence, that aim at the implementation of a specific functionality.
What typically happens is that some desired behavior must, at the end of all
the design phases, be described in terms of elementary manufacturing actions
dependent of the implementation technology chosen. The intermediate steps
through which the designers can be required to go can be extremely heteroge-
neous from many different points of view. Nevertheless, it can be worth seeking
some core concepts whose meaning remains defined throughout all the different
stages, and that could help in defining some basic invariant properties of the
design flow.

An alternative way of describing a design flow is to depict it as the production
of a series of descriptions of the system, incrementally richer in information
related to the implementation. Ideally the design would start from the pure
statement of the functionality of the system to be realized, without any in-
formation on how this will be implemented. Then, as far as implementation
choices are performed, new descriptions are produced which contain details
that reflect such choices. Even if apparently straightforward, it is worth noting
that an implicit constraint strictly imposed on the subsequent descriptions is
that the functionality of each of those must remain the same.

This simple analysis implies a set of assumptions that are usually implicit,
and that are worth being highlighted:

the outcome of each design flow stage is some description of the system;

descriptions of the same system at different stages differ in that they
reflect a different amount of implementation details;

all the descriptions of the same system are assumed to describe the same
functionality.

These assumptions can be further made explicit as follows:

it is assumed that it is possible to associate a functionality with every
description. Note that this association may not be easy to determine;

it is assumed that functionalities of descriptions at different stages can be
compared for equivalence. This is a very strong assertion, since defining

UML Tailoring for SystemC and ISA Modelling 149

an equivalence between heterogeneous models can be extremely diffi-
cult, but nevertheless it cannot be disregarded, since giving it up would
conceptually prevent the possibility of checking for design correctness.

Note that two classes of concepts are present at every stage of a generic
design flow: descriptions and functionalities. Examples of what is meant by
description are:

A textual description of the expected behavior of a system;

A C function that maps an array of floating point numbers onto another;

A netlist of elementary elements such as logic gates and flip–flops.

Examples of functionalities, on the other hand, are:

a representation of the input/output relation of a low pass filter;

the behavior of some observable feature of a system as a response to some
input.

In the context of a design flow, what is usually meant by the term model is
a description from which a certain functional interpretation is derived. Note
that the nature of the functionalities considered depends mainly on the type of
system or subsystem under analysis.

These considerations can be formalized as a mathematical relation between
descriptions and functionalities.
A model is a pair 〈d, fi〉, where:

d is a description, d ∈ D, and D is the set of all possible descriptions;

fi : D → F is the functional interpretation, and F is called the function-
ality space. fi is injective (a description can have only one functionality,
given a functional interpretation).

fi(d) is the functionality of D.

Since different functionalities can be equivalent with respect to some equiva-
lence relation e ∈ F 2, for simplicity we will consider, as a functionality space,
the space of all the equivalence classes induced by e. Since fi is injective,
an equivalence relationship eD ∈ D2 is induced on D: (d1, d2) ∈ eD ⇔
f(d1) = f(d2). Amongst all the possible descriptions that form the domain of
a given functionality space, several clusterings can be made. In particular, it
is possible to group all the descriptions produced with a given formalism L (a
software example could be: all the C programs; all the assembly descriptions;
all the models of a processor given its memory content and state registers).
The point is that some interesting properties of the different formalisms can be

150 UML FOR SOC DESIGN

stated in terms of properties of the description subspaces and of the functional
interpretation fi.

Let us define another function of a description d ∈ D:

I : D → R+

that represents the information content of the description d. The expression
information content must be used according to Shannon’s definition.

One of the most important features which a formalism for the system level
design must have is the ability to express specifications that can be easily in-
terpreted and analyzed in the early phases of a project by various different
designers and analysts. This is a key point in enabling important possibilities
such as model exchange, verification of correctness, and, most of all, communi-
cation between system level engineers and designers. The ease of interpretation
of a description can be put into correspondence with the ability to evaluate its
functionality by a human user. Greatly simplifying the complex compound of
perceptive and psychological phenomena that lie behind the ability to interpret
a description which extracts certain functional features from it, it is reasonable
to state that the smaller is the description information content, the easier it will
be to interpret it. It is then possible to compare the understandability of two de-
scriptions d1 and d2 that belong to different formalisms L1 and L2, that have the
same functional interpretation, by comparing their information contents: d1 is
more easily understandable than d2, given that they have the same functionality
fi(d1) = fi(d2), if I(d1) < I(d2). If this property is reflected by a consistent
number of functionalities interesting for a given design domain, then, in that
domain, L1 is more easily understandable than L2.

Another interesting feature of a formalism is its ability to represent func-
tionalities easily. The specifications representation problem can be stated as
follows. Given a functionality f ∈ F , where F is a given functional domain,
and a formalism L, what is the effort in finding a description d ∈ L such that
fi(d) = f? Again, it is possible to formalize conceptually this problem by
assuming that if in L1 there is a description d1 with a smaller information con-
tent than a description d2 ∈ L2, then it will be easier for a designer to find d1

than d2, or, in other words, to model f in L1 than in L2. A way of reinforcing
this assumption is to remember that the information content of a description is,
according to Shannon’s interpretation, the number of modeling choices which
must be performed to obtain it. If

I(d1) > I(d2), d1 ∈ L1, d2 ∈ L2, f i(d1) = fi(d2)

for a consistent number of functionalities of interest F , then L1 is said to
be more expressive with respect to L2. Note that both expressiveness and
understandability depend on the set of functionalities F considered.

UML Tailoring for SystemC and ISA Modelling 151

Amongst all others, two features directly influencing expressiveness and
understandability of a given formalism can be defined: its abstraction and its
application specificity.

Abstraction is related to the amount of detail that must be provided, in a
given formalism, in order to describe a given functionality. A way of defining
abstraction differentially amongst different formalisms is the following: given
a functionality f ∈ F , if there are more descriptions d1i ∈ L1 than d2j ∈ L2

such that i(d1i) = i(d2j) = f , then L2 is more abstract than L1 with respect to
f . This definition is directly based on the etymological meaning of abstraction,
in that it expresses the possibility, for a more abstract language, of describing
a property common to several different descriptions in a less abstract language
(in this case, the property is the functionality).

Application specificity is the possibility, for a given formalism, of effectively
describing functionalities which belong to a specific application domain. This
happens when a certain amount of information on the specific domain is embed-
ded in the language definition. Descriptions d in a formalism that is application
specific with respect to a subset Fa ⊂ F will have a lower information content
with respect to descriptions in a non–application specific formalism.

Both abstraction and application specificity are features that increase the
expressive efficiency of a given formalism, that is, they allow the description of
functionalities of interest with less information. Nevertheless, a high applica-
tion specificity narrows the expressive domain of the formalism. Thus whilst
abstraction has no drawbacks when present in formalisms adopted in the early
phases of system level design, the application specificity can keep a formalism
from being adopted in a wide range of applications.

The interesting point is that UML, whilst being abstract, can allow different
levels of application specificity. In particular, its profiling features allow a
specialization of the syntactical and semantical elements, importing concepts
that are typical of a given set of applications.

In Section 7.3 an approach to the use of UML with a high degree of ab-
straction and low application specificity is shown. The specialization features
of UML are employed to define a set of concepts present in the Transaction
Level communication modeling style. Transaction Level Modeling allows the
description of communication between modules of a system disregarding infor-
mation that is implementation related, such as the protocol and the semantics
of the communication means. The semantics are similar to that of the remote
procedure call (RPC). The information content I(d) of a Transaction Level
description d is typically much lower than that of a description of a system with
the same communication functionality written, for instance, in VHDL, where
explicit synchronization and acknowledge information must be specified. On
the other hand, there is no specific application domain concept in Transaction
Level Modeling, that can be applied to describing a wide range of systems.

152 UML FOR SOC DESIGN

Native unconstrained UML model elements are more abstract than the core
concepts of Transaction Level Modeling. Section 7.3 shows how to constrain
UML elements in order to “mimic” the concepts typical of an abstract textual
formalism for the specification of communication between functional elements.
The result is the formalism LTLM .

On the other hand, in Section 7.4 the problem of modeling a narrow set of
systems is analyzed, in order to verify the possibility of effectively using UML
while varying application specificity. The set FISA ⊆ F considered is that of
instruction level programmable systems. A set of concepts functional for the
description of these components is defined by specializing core UML elements,
and these are applied to the description of existing instruction set architectures.
The set of these concepts, together with the syntactical rules for their compo-
sition defines the formalism LISA. It is interesting to compare the expressive
effectiveness of the two profiles: the information content of a description d
whose functionality lies in FISA would be much higher if d ∈ LTLM than if
d ∈ LISA. On the other hand, there is a wide range of functionalities f for
which a description d does not exist in LISA.

The comparison of pros and cons of both approaches will allow an evalu-
ation of the effectiveness of UML when used considering different levels of
application specificity.

7.3 UML Transaction Level Modeling

In this section we present a profile that defines within UML a set of ele-
ments typical of Transaction Level Modeling. Through the UML specialization
mechanisms we formalize the concepts of module, channel, and event based
synchronization. In addition to the possibility of modeling the communica-
tion structure of a system, we consider the possibility of modeling behavioral
aspects by means of state diagrams as part of the UML formalism. This is a
substantial extension of the work in [27].

Having defined these elements that allow the composition of an executable
model of the system to be designed, we face the problem of automatically
generating code from the model. The problem is tackled at both the conceptual
(mapping from the UML model semantics to design language semantics) and
technological level (choice of portable and standard technologies).

The design language chosen as target for the translation is SystemC[161],
and the translation flow is fully based on standard technologies such as XMI
[145], XSLT[225], DOM[48], SAX[183].

This section shows how UML can be employed at a high abstraction level, low
specificity level design formalism by means of a case study in which, starting
from a graphical model, a SystemC description is generated.

UML Tailoring for SystemC and ISA Modelling 153

An interesting question is whether the modeling capabilities of UML can
be applied to embedded system design, and integrated in a flow that comprises
SystemC 2.0 [161] as the modeling language. In particular, such a flow should
allow the use of the high level modeling features of UML in the early phases of
the design, and then it should be able to map this information onto a SystemC
model. This approach can provide several advantages. Most of them are well
proven in the software design field:

Using a visual design approach lets the designer focus on the essential
architectural and functional features of the system in the early phases of
the project, without being bothered with the many details (syntactical, for
instance) of a textual design language, that is to say, that the abstraction
is higher;

Visual models are a documentation mean of proved effectiveness; the
project documentation task can thus be simplified by the adoption of a
visual modeling approach;

A point of great importance is the possibility, given by a modeling lan-
guage such as UML, of locating architectural patterns and expressing
them for further reuse. The pattern idea extends the reusability concept
from the object to the architecture domain, and is becoming widely used
in the design of complex software systems. A great advantage coming
from the integration of UML in the design of hw/sw systems would be to
explore whether such concepts are meaningful in the context of the design
of embedded systems; this would be of great interest for the management
of the ever growing complexity of the design of this kind of systems.

We divide the problem of representing a system design in UML in its struc-
tural and behavioral components. In Section 7.3.1 we define a profile for the
structural description of Transaction Level models, whilst in Section 7.3.2 we
augment the system description with behavioral elements that describe the func-
tionality of each component of the system.

The expression Transaction Level Modeling (TLM) refers to an abstraction
level in the description of a system which provides modeling of the commu-
nication between the elements that describe the behavior of the system in a
functionally, but not pin-accurate way. That is, in a TLM model the focus is
on the data which is passed between two modules, rather than on the way the
transfer is accomplished.

For instance, it is possible to specify the functional characteristics of the com-
munication, such as the blocking or non–blocking semantics, without defining
their implementation. To do so the designer does not need to use the hardware
signal semantics, as happens in languages such as SystemC 1.0 and VHDL.

154 UML FOR SOC DESIGN

One of the many advantages of the introduction of such a modeling style
in a specification language is the possibility of obtaining an executable model
at a higher level of abstraction, not biased by architectural choices. Most of
the implementation choices will be performed after this early modeling phase.
Thus, a TLM model of a system can describe an abstract system that can be
mapped onto different architectures.

Transaction Level Modeling was first introduced in hardware specification
languages in SpecC [235], and later developed under the name of behavioral
wrappers in [234] and as Functional Interface by the VSIA [118].

7.3.1 Structural Features of Transaction Level Models

The first step in defining a UML profile and toolchain to describe HW/SW
systems is to define their structural components. We first define a UML profile,
then we describe the flow of code generation.

Profile Definition. The profile has been defined to satisfy the characteristics
previously required, by exploiting the stereotype extension mechanism of UML.
A stereotype is used to tailor UML constructs to the needs of specific application
domains.

In Figure 7.1 the elements of the profile and the relations between them are
shown as a UML class diagram.

The stereotypes defined correspond to the conceptual entities used to capture
the communication features offered by SystemC:

The <<module>> stereotype is intended, in the profile, as the basic en-
capsulation element; it acts essentially as a container of processes and
of other modules. Moreover, the possible communication links amongst
modules are different from those among processes. In this way the en-
capsulation features typical of the SystemC 2.0 modules are preserved;
the modules can act as sender and receiver of messages, and can commu-
nicate with other modules by means of <<moduleLink>> associations.

The <<process>> stereotype represents the behavioral elements of mod-
ules. Two processes can communicate directly only if they belong to the
same module; communication between two processes of different mod-
ules is achieved by means of intermodule communication links. The
processes can act as sender and receiver of messages, which in turn are
realized by <<processLink>> associations. The <<process>> stereo-
type is the top of a hierarchy that comprises elements corresponding to the
SC METHOD, SC THREAD, SC CTHREAD SystemC process types.

The <<message>> stereotype is used to represent information exchange
between different modules and processes. These are the direct links to the

UML Tailoring for SystemC and ISA Modelling 155

<<moduleLink>>

<<module>>

<<message>>

<<processLink>>

<<process>>

<<message>>

+sender+sender +receiver+receiver

0..*

communicates with

0..*

0..*

0..*

communicates with

Figure 7.1. Relations between Profile Elements

collaboration diagrams obtained from the UML design phases: for every
message between two entities in the collaboration or sequence diagrams,
there has to be a corresponding <<message>> in the class diagram. Mes-
sages must be associated with <<moduleLink>> or <<processLink>>
classes, according to the nature of their senders and receivers (either
modules or processes). This association is the link between the UML
collaboration diagrams and their SystemC realization.

<<moduleLink>> stereotype represents the “links” that implement the
exchange of a set of messages between two modules. In SystemC this
concept corresponds to that of channel. In SystemC the channel entity is
specialized into less general, lower level specializations: the <<module
Link>> has the same characteristic. This isomorphism is meant to give
control over the code generation phase: the designer can decide to use a
signal to realize a set of messages instead of a more general channel; this
information will be reflected in the generated code.

156 UML FOR SOC DESIGN

<<processLink>> is analogous to <<moduleLink>>: it represents a
communication link between processes belonging to the same module;
the main difference is the spectrum of possible implementations of a link:
two processes inside a module can communicate with signal sharing,
channels, or events that realize simple rendezvous; these possibilities are
again represented hierarchically.

Profile Extendibility. The structural part of the profile is designed to allow
further extensions. In particular, we use this extensibility features to express
the behavioral features of the modeled system. A natural way of extending the
profile elements is shown in Figure 7.2.

<<behavior>> <<process>>

1
+behavior

0..*communicates with

0..*

Figure 7.2. Process Behavioral Extension

Here the <<process>> class is associated with a <<behavior>> class,
which in turn can express some behavioral properties of the process (for in-
stance, it could be associated with a State Machine diagram).

The link stereotyped classes (<<processLink>> and <<moduleLink>>
classes) are susceptible to a similar extendibility: there could be, for instance,
a set of communication protocols that can be attached to a channel and then
synthesized in the code generation phase. The profile elements and associations
are defined in order to allow such extensions.

Code Generation Flow. The proposed design process comprises a UML
design phase, a refinement phase that extracts from the UML model the infor-
mation needed for code generation using the concepts defined in the profile,
and two automatic translation phases, that operate a series of transformations
to obtain the final code. The implementation of the flow implies the use of
different emerging technologies in the field of data exchange:

UML model (collaboration, sequence, class) → UML profiled class dia-
gram. This is the translation phase in which the designer, after having

UML Tailoring for SystemC and ISA Modelling 157

outlined a suitable set of communication scenarios, distills the information
needed and expresses it in terms of the concepts defined by the profile. The
steps needed to perform the translation are:

identify the module-process architecture (i.e., assign every process to a
module);

for each link between two processes in a collaboration diagram:

1. define a set of <<processLink>> association classes if the pro-
cesses belong to the same modules, a set of <<moduleLink>> be-
tween the containing modules otherwise;

2. assign each <<message>> that connects two processes to a link;

repeat for each module.

UML profiled class diagram → XMI model description. This step is
performed by the UML modeling tool; XMI (see [145]) is a XML format that
is standardized by OMG (see [144]); it allows the exchange of design models.
XMI provides data exchange not only among UML modeling tools: it has the
capability to represent every design model whose metamodel is described in
terms of the OMG Meta Object Facility (MOF) (see [149]). Most of the UML
tools now available include an XMI generation module that allows the export
of the model in compliance with this XML format;

XMI model description → XML intermediate format. The XMI repre-
sentation of a UML model is very rich in details that relate to things such as
the graphical representation of the elements, the references between objects in
different diagrams, and so on. Moreover, the data are generated according to
the MOF metamodel structure of the UML language: this means that the infor-
mation associated with the profile elements is not easily accessible. Therefore
this format is not an ideal starting point for the code generation; so a choice
was made to perform a first transformation on the XMI representation, in order
to extract from it only the relevant details needed by the next phases. Another
significant choice was to obtain from this transformation another XML com-
pliant document. This, in fact, allows an easy data parsing by the subsequent
algorithms and a much easier data exchange with third parties’ tools. The tech-
nology chosen to perform this step is the W3C XSLT (see [225]). XSLT is a set
of recommendations for a scripting language that is able to transform a XML
document into another XML document by means of a sequence of transfor-
mations. The XLST scripts are XML documents themselves. This translation
phase is then accomplished by means of an XLST script, whose main tasks are:

158 UML FOR SOC DESIGN

to extract the model information needed to build the intermediate format;

to format the information retrieved in a useful fashion.

To achieve the first goal the algorithm has to retrieve all the instances of
the stereotyped classes, the associations between them, and to output all the
related information, formatted as an XML document. This intermediate format
contains a list of modules, each one in turn containing a list of processes; for each
process there is a set of references to each process which exchanges messages
with it, together with the message signatures and the links to what they belong.

XMI intermediate model → SystemC skeleton code. This step can be
again performed using XSLT transformations; the intermediate description can
also be easily parsed using an XML parser and then elaborated in order, for
instance, to compute some metrics from the static information contained in it.

7.3.2 Behavioral Description of Transaction Level Models
with UML State Diagrams

In this section we define a behavioral extension of the structural profile
previously defined, based on the State Machine UML diagrams.

As stated in Section 7.3.1, the description of the structural elements of a
model can be augmented with arbitrary information by means of the extension
syntax proposed. We exploit this possibility in order to associate behavioral
functionality descriptions with modules. In particular, we have chosen the
State machine diagrams defined in UML 2.0 as the computational model of
the modules’ behavior. This choice is somewhat arbitrary, since, in principle,
other computational models could be adopted for the same purpose. Never-
theless, State machines are directly available in UML and their expressiveness
is adequate for a significant set of application domains. When a process be-
havior is to be specified the behavioral extensibility is exploited by associating
a State Machine with the process. Interaction with other processes and with
external modules is represented by the transitions’ triggering: the set of all
possible triggers is naturally associated with a State machine. In the SystemC
implementation these triggers are implemented either as <<moduleLinks>>
or as <<processLinks>>. In the first case it must be possible to fire the
triggers from outside the module. Thus the triggers must be accessible as in-
terface methods. In the second case, triggers are implemented by a couple
of <<processLink>>: the notification of an event and the modification of a
variable visible at module level.

The main issue in extending the model with State machines behavioral in-
formation is to define a proper translation of the UML diagram semantics to
the target language, in this case SystemC 2.x. There are different possible
implementations of the semantics considered with the behavioral concepts of

UML Tailoring for SystemC and ISA Modelling 159

SystemC. Out of all the possibilities, the following translation rules were cho-
sen:

for each state in a State Machine associated with a process, a SystemC
thread is generated. The reason why states are represented by threads is
to allow parallel state activation semantics, present in State Machines;

the activation of each state is represented by a boolean signal. More than
one state can be active at the same time;

for each possible trigger an event is instantiated. All the state threads are
sensitive to the notification of every trigger event that can possibly fire a
transition from that state;

a variable last trigger that identifies the last trigger fired as an enu-
merated value is instantiated;

a trigger fire is implemented as an event notification and as a change of
the last trigger variable;

when a trigger is fired all the states which are sensitive to it are awakened;
if they are active the triggered transitions are executed if the corresponding
guarding conditions are true.

As an example consider the fraction of a State machine shown in Figure 7.3.
The code structure of the thread implementing state 1 is shown in Figure 7.4.

1
entry/<entry activity>
exit/<exit activity>
b/<activity 1 1>

2

a [<guard 1 2>] <activity 1 2>

Figure 7.3. State Transition Instance

160 UML FOR SOC DESIGN

void state 1 thread() {
while(true) {

wait();
if (state 1 active) {

state 1 entry action();
switch (current event) {

case event a h:
if (guard 1 2) {

activity 1 2();
state 1 active=false;
state 2 active=true;
break;

}
case event b h:

activity 1 1();
break;

}
state 1 exit action()
current event=no event;

}
}

}

Figure 7.4. State Implementation Thread

UML Tailoring for SystemC and ISA Modelling 161

7.4 Application Specific UML Modeling

In this section we explore the possibility of using the specialization mecha-
nisms of UML to define conceptual toolsets that specifically target an applica-
tion field, such as multimedia processing or processor design.

First, we evaluate the potential effectiveness of this approach from a theo-
retical point of view. Then, we support our analysis by means of a case study
targeting the field of instruction set architecture design.

In the case study, UML is used to describe the typical concepts used in the
definition of instruction set architectures. A profile is defined, and its use is
exemplified by modeling some sample instruction sets.

7.4.1 Motivation for Highly Specific System Design

As we have seen in Section 7.2, high specificity is one of the characteristics
which allows a design to be easily understood by an observer. When the observer
knows the application domain many application–specific details need not to be
made explicit in the description, since the observer’s knowledge will “fill the
gaps” in the description.

However, a description cannot be simply underspecified, since this will make
it understandable only to the observer that has application specific knowledge
and abstraction abilities. Therefore what should be done is to create a special-
ized description language that has highly specific primitives, allowing a concise
but well defined description of a system within a given application domain.

From the definition of Application Specificity given in Section 7.2 we now
consider the mechanisms that UML 2.0 offers to customize the modeling lan-
guage for the description of highly specific systems. The main mechanism
offered by UML for specialization of a metamodel are the profiles.

By means of profiles we can describe highly specific aspects of an application,
while preserving the high level of abstraction offered by UML.

7.4.2 Case Study: A UML Profile for the Description of
Processor Instruction Set Architectures

To evaluate the effectiveness of UML profiles for the description of highly
specific systems, we build a profile (the ISA profile package) for processor
instruction set architectures (ISA).

Instruction set description languages can be classified as structural and be-
havioral (see [167]). Behavioral languages abstract from the architecture, and
directly describe the ISA semantics. This is the abstraction level at which
ISA profile works.

For the purpose of the ISA profile, a processor ISA is divided into five com-
ponents:

162 UML FOR SOC DESIGN

data types;

microinstructions;

ISA syntactic specification;

ISA semantic specification;

register file and other implementation components.

Data Types. The basic elements of the description are the data items
managed by the processor. In our description, these are always vectors of bits.
Therefore we define a <<BitVector>> stereotype that becomes the root class
for all data types used in the description of a processor ISA. The Type abstract
class defines a bitvector object with basic operations.

We then define two levels of data type descriptions. First, there is a level
at which the only relevant information is the information content of the data.
This level is characterized by the stereotype <<ISADataType>>, which defines
a size attribute.

Then, we add a level that takes into account the nature of the data – e.g., it al-
lows the distinction of constant items, such as an immediate operand, from vari-
able items such as registers. This level is characterized by the template classes
RO object and RW object, stereotyped with <<DataTempl>>. The former de-
fines data items with read primitives, whilst the latter inherits from RO object
and adds write methods.

Figure 7.5 shows the definitions of all the stereotypes required to define data
items and types. In addition to the main items mentioned above there are a few
more elements to consider:

<<DataItem>> is the stereotype used to characterize data items;

<<ConcreteItem>> is used to define an architectural component, such
as a special purpose register, by means of the stereotyped generalization
<<ph impl>> from a data item;

<<composed>> is used to stereotype associations of <<ConcreteIt
em>> objects — i.e., compound registers derived from the composition
of shorter registers as in the “extended” registers of the Intel x86 family.

Microinstructions. To define the semantics of the ISA elements, we chose
an operational specification. Therefore, the definition of the functionality of an
instruction will be given as a State Machine whose actions are simple atomic op-
erations, called microinstructions. This allows all defined ISA to be expressed
in terms of the microinstruction language.

UML Tailoring for SystemC and ISA Modelling 163

<<profile>>
ISA profile

Core::DataType Core::Basic::Class

<<stereotype>>

BitVector
<<stereotype>>

DataTempl
<<stereotype>>

DataItem

<<stereotype>>

ConcreteItem
<<stereotype>>

ISA DataType

Core::Abstraction::Generalization Core::Abstraction::Association

<<stereotype>>

ph impl
<<stereotype>>

composed

Figure 7.5. Stereotype Declarations of Elements Used in the Definition of Data Types and Items

Microinstructions are defined through a stereotyped class <<MicroInstruc
tion>>, and can be collected into several broad categories defined by the
<<MicroBlock>> stereotype.

The Semantic facilities.Base MicroInstructions package defines a set of basic
microinstructions. Since the basic microinstructions are an abstract representa-
tion of functionality they do not work on actual data items. Rather they accept
arguments of a single type, that is, instances of the Type class.

164 UML FOR SOC DESIGN

<<profile>>
ISA profile

Core::Basic::Class

<<stereotype>>

MicroBlock

Core::Basic::Operation

<<stereotype>>

MicroInstruction

Figure 7.6.

User defined microinstructions, on the other hand, may well be defined to
accept a restricted set of data items within the type hierarchy.

The Base MicroInstructions package, shown in Figure 7.6 includes the fol-
lowing <<MicroBlock>> items:

The Memory group, which defines load and store operations that read an
write a memory word;

The Arithmetic group, which contains the basic arithmetic operations
(addition, subtraction, multiplication);

The Branch group, which contains a basic set of control operations
(branch on zero, unconditional jump);

The Logic group, which defines the basic bitwise logical operations (and,
or, not) and bit operations (shift).

ISA Syntax. The syntactic definition of the ISA provides the description
of all the instructions formats allowed in the described processor. Instructions
must be defined through the stereotype <<Instruction>>.

An instruction class is associated with the required operands (both sources
and destination) via stereotyped associations. These allow the description of
the following items:

<<source>> describes a source register or immediate operand;

UML Tailoring for SystemC and ISA Modelling 165

<<profile>>
ISA profile

Kernel::Class

<<stereotype>>

Instruction

Kernel::Package

<<stereotype>>

InstructionGroup

Kernel::Classifier

<<stereotype>>

int value

Kernel::Association

<<stereotype>>

source

<<stereotype>>

destination

<<stereotype>>

fixed source

<<stereotype>>

fixed destination

Figure 7.7. Specification of the Stereotypes Used in the Syntactical Definition of the ISA

166 UML FOR SOC DESIGN

<<fixed source>> describes a source register (or possibly immediate
operand) implicitly specified within the instruction (e.g., an instruction
which reads only from a specific register, as in a CISC processor);

<<destination>> describes a destination register;

<<fixed destination>>describes a destination register that is implic-
itly specified within the instruction (e.g., an accumulator register).

Figure 7.7 shows the definition of the stereotypes required for the syntac-
tic description, including the <<int value>> stereotype used to syntactically
describe temporary values used in the instruction semantic definition.

ISA Semantics. The semantics of an instruction is defined in the ISA profile
by means of a State Machine. Microinstructions can be assigned as actions that
are performed at a specified state as a do clause. The operation is described as a
combination of assignments and microinstructions, according to the following
grammar:

do clause:
assign statement | action statement ;

assign statement:
<Temporary> ’=’ microinstruction
| <Temporary> ’=’ register read ;

action statement:
microinstruction | register write ;

microinstruction:
<MicroBlock> ’.’ <MicroInstruction> ’(’ operands ’)’ ;

operands:
operands ’,’ operand | operand ;

operand:
<Temporary> | <DataItem> ’.’ <ReadOperation> ;

register read:
<DataItem> ’.’ <ReadOperation> ;

register write:
<DataItem> ’.’ <WriteOperation> ’(’ operand ’)’ ;

Temporaries must be described in the syntactic specification, using the data
types available in the design.

System Components. Some components of the system must be specified
at least partially in order to allow the designer to define the ISA. For example,

UML Tailoring for SystemC and ISA Modelling 167

the register file should be known. This is required to allow the use of specific
registers such as an accumulator.

Registers are defined as classes stereotyped with <<ConcreteItem>>, in or-
der to distinguish them from the non–specialized data items. The <<Concrete
Item>> stereotype points to the fact that the registers are elements of the struc-
tural description of the processor architecture rather than items of the conceptual
description of the instruction set.

7.4.3 Modeling Examples of the Defined Profile

To prove the effectiveness of the defined profile we applied it to several
architectures. We present here some significant parts of the MIPS [135] speci-
fications.

MIPS Model. The MIPS is a RISC processor; it has a register file of 32
64 bit general purpose registers, used for both integer and floating point values.
Memory addresses are 64 bit long.

<<BitVector>>

Type
(from Semantic facilities::Data types)

- content: boolean[]
+ set bit(position: int, value: boolean): void
+ get bit(position: int): boolean

<<ISA DataType>>

Double word
+ size := 64 { frozen }

<<ISA DataType>>

Word
+ size := 32 { frozen }

<<ISA DataType>>

Half
+ size := 16 { frozen }

<<ISA DataType>>

Byte
+ size := 8 { frozen }

Figure 7.8. Specification of MIPS Data Types

168 UML FOR SOC DESIGN

<<DataTempl>>

RW Object
(from Semantic facilities::Data types)

value: T
+ get bit(position: int): boolean
+ get block(start: int, length: int): boolean[]

<<DataTempl>>

RO Object
(from Semantic facilities::Data types)

+ set bit(position: int, value: boolean): void
+ set block(start: int, block: boolean[]): void
+ set all(value: boolean): void

<<DataItem>>

Immediate Word
<<DataItem>>

Immediate Half
<<DataItem>>

Immediate Byte

<<bind>>
Word

<<bind>>
Half

<<bind>>

Byte

<<DataItem>>

FP Register
<<DataItem>>

Register

<<bind>>
Double word <<bind>>

Double word

Figure 7.9. Specification of MIPS Data Items

UML Tailoring for SystemC and ISA Modelling 169

<<MicroBlock>>

Memory
(from Semantic facilities::Base Microinstructions)

<<MicroInstruction>> + MicroLoad(address: Type): Type
<<MicroInstruction>> + MicroStore(address: Type, value: Type): void

<<MicroBlock>>

MIPS Memory

<<MicroInstruction>> + MicroLoad32(address: Word): Word

<<MicroBlock>>

Arithmetic
(from Semantic facilities::Base Microinstructions)

<<MicroInstruction>> + MicroSum(val1: Type, val2: Type): Type
<<MicroInstruction>> + MicroSub(val1: Type, val2: Type): Type
<<MicroInstruction>> + MicroMult(val1: Type, val2: Type): Type

<<MicroBlock>>

MIPS FP Arithmetic

<<MicroInstruction>> + FPMicroSum(val1: Double word, val2:
Double word): Double word
<<MicroInstruction>> + FPMicroSub(val1: Double word, val2:
Double word): Double word
<<MicroInstruction>> + FPMicroMult(val1: Double word, val2:
Double word): Double word
<<MicroInstruction>> + FPMicroDiv(val1: Double word, val2:
Double word): Double word

Figure 7.10. MIPS Semantics: Microinstruction Extensions

170 UML FOR SOC DESIGN

<<DataItem>>

Register
(from Abstract types)

<<DataItem>>

Immediate Half
(from Abstract types)

<<DataItem>>

FP Register
(from Abstract types)

<<Instruction>>

LD
<<int value>> - temp1:
<<int value>> - temp2:
- mnemonic : String = LD
<OP1>,<OP2>(<OP3>)
+ execute(): void

+OP3

<<source>> +OP2 <<source>>

+OP1
<<destination>>

<<Instruction>>

L.S
<<int value>> - temp1:
<<int value>> - temp2: Word
- mnemonic : String=L.S
<OP1>,<OP2>(<OP3>)
+ execute(): void

+OP1 <<destination>>

+OP3
<<source>> +OP2

<<source>>

Figure 7.11. Example of Instruction Syntax for the MIPS

UML Tailoring for SystemC and ISA Modelling 171

LD

Initial State 1

Compute address
do/ temp = Microinstructions.Arithmetic.Microsum(OP2,OP3.value)

Load data
do/ OP1.value = Microinstructions.Memory.MicroLoad(temp)

Final State 1

Figure 7.12. Example of Instruction Semantics for the MIPS: LD

Figure 7.8 shows the definition of new data types for the MIPS specification.
The Byte, Half, Word and Double Word types are declared as the basic units of
information available to the machine. They are bound to the appropriate types
through the <<bind>> stereotype.

The data items, on the other hand, are shown in Figure 7.9. Read only objects
include the available immediate operands (from byte to word), while the read-
write objects include two logical types of registers, integer and floating point.
These are mapped, in the architecture’s implementation, to the same physical
register set, but are considered as separate in the abstract specification of data
types.

Figure 7.10 describes the extensions to the set of microinstructions needed
to specify at a high level the floating point operations. Other microinstructions
are created to define operations that work on specific types (e.g., MicroLoad is
specialized into MicroLoad32 and MicroLoad64).

Figure 7.11 shows an example of the instruction syntax for the MIPS, the
definition of two load operations. Both operations have three operands: two
sources and a destination. In both cases operands OP2 and OP3 are the source’s
immediate value and the register used in the address computation, while operand
OP1 is the destination register. While the LD operation loads a word as an
integer, L.S loads a single precision (32-bits) floating point value. Therefore,

172 UML FOR SOC DESIGN

operand OP1 is in the former case an association with the Register class, and
an association with the FP Register class in the latter.

Figure 7.12 and 7.13 show the semantics for the same LW and L.S operations.
The basic behavior of a load operation is exemplified by the LD, which first
computes the address by applying the MicroSum operation to the first two
operands, and then loads the value from memory to the destination register.
L.S is somewhat more complex, since, after loading the value from memory to
a temporary register, it needs to reset all the bits of the destination register to
zero, then to move the 32 bit value from the temporary value to the destination,
in the correct position.

L.S

Initial State 2

Compute address
do/ temp1 = Microinstructions.Arithmetic.Microsum(OP2,OP3.value)

Load data
do/ temp2 = MIPS Microinstr.Memory.MicroLoad32(temp1)

Reset result
do/ OP1.value.set all(0)

Set result (word 0)
do/ OP1.value.set block(0,temp2)

Final State 2

Figure 7.13. Example of Instruction Semantics for the MIPS: L.S

UML Tailoring for SystemC and ISA Modelling 173

7.5 Concluding Remarks

The adoption of a high level formalism for the functional specification of
systems appears to be effective even according to a formal analysis of the design
languages based on the newly defined concepts of abstraction and application
specificity.

As a low specific modeling domain we have chosen Transaction Level Mod-
elling, which allows one to abstract, in the system level design, implementation
details of communication between elements. We have enriched an existing ap-
proach with the possibility of specifying behavioral features by means of State
Machines. We have then explored the possibility of translating the information
present in the UML model into a SystemC 2.x description.

As a highly specific modeling domain we have chosen the description of
processor instruction set architectures. We have defined a UML profile to
capture the information related to the application domain, and have shown an
application of the profile to the description of the MIPS ISA.

From the modelling experiments conducted UML proved to be effective in
modeling at different levels of abstraction and application specificity.

Chapter 8

Model-Driven SoC Design:
The UML-SystemC Bridge

Kathy Dang Nguyen, Zhenxin Sun, P.S. Thiagarajan, Weng-Fai Wong

School of Computing
National University of Singapore
Singapore, Republic of Singapore

Abstract We present a system level description mechanism based on UML notations from
which one can automatically extract SystemC code. Our modelling framework
is based on a restricted set of UML diagram types together with some extensions
developed using stereotypes. As a result, applications as well as platform features
can be captured at this level. Our system models are developed using the UML
compatible tool, Rhapsody 4.2 [172].

8.1 Introduction

System level design methods for Systems-on-a-Chip seem inevitable given
the technological trends and the accompanying economic pressures. In the
recent past, a broad consensus has emerged regarding the basic principles that
should govern system level design methods. Some of these principles are:

The design methodology should support and deploy substantial compo-
nent reuse.

There should be an intermediate representation level with a clean ex-
ecutable semantics, at which both the application and the platform on
which the application is to be realized can be captured and related.

Behaviors described at the intermediate level, should clearly separate the
computational aspects from the communication features.

This intermediate representation should serve as a common design docu-
ment for the software and hardware teams which can then independently
work towards a detailed implementation.

© 2005 Springer. Printed in the Netherlands.

175

G. Martin and W. Müller (eds.), UML for SOC Design, 175–197.

176 UML FOR SOC DESIGN

Given this wish list, two crucial choices to be made are the high level sys-
tem description language and the intermediate representation language. We
claim that a modeling language based on UML (Unified Modeling Language)
notations for high level system descriptions and SystemC as the intermediate
representation language constitute sound choices. Our main goal here is to
substantiate this claim.

UML is now widely accepted in the software engineering community as a
common notational framework. It supports object oriented designs which in
turn encourage component reuse. It can be used to provide multiple views of the
system under design with the help of a variety of structural and behavioral dia-
grams. It allows standard ways of extending the language to meet the demands
of specific application domains. Though it was originally created to serve the
software engineering community, UML is also becoming an attractive basis for
developing system descriptions in the (real time) embedded systems domain
[114]. In fact, many of the enhancements to the UML 2.0, the new standard,
are geared towards easing the task of specifying complex real time embedded
applications.

SystemC on the other hand, allows both applications and platforms to be
expressed at fairly high levels of abstraction while enabling the linkage to hard-
ware implementation and verification. Furthermore, SystemC — viewed as a
programming language — is a collection of class libraries built on top of C++
and hence is naturally compatible with the object oriented paradigm that the
UML is based on. Though SystemC is at present mainly oriented towards hard-
ware descriptions, the enhanced version in the making [79] will support soft-
ware module descriptions and run time features including scheduling. Hence
SystemC has the potential to provide a full fledged description of an execu-
tion platform which can serve as the target of a codesign methodology. Thus
SystemC is a viable intermediate representation language.

One might wish to consider SystemC itself as the high level system descrip-
tion language. However, at the application level one would like to have visual
notations for interacting with the end users to capture requirements. It is also
important to be able to use standard models of computation (MOCs) at the initial
design stages. Further, one may not wish to concretely specify the communica-
tion mechanisms and instead leave it to be defined by the underlying operational
semantics of the MOCs being deployed. Finally, design reuse with the help of
modifications to an existing component as well as formal verification are easier
to carry out at a higher level of abstraction than what is offered by SystemC.
Hence we propose a top layer of system descriptions using UML notations.

Given these two choices, our goal is to build a flexible and automated transla-
tion mechanism using which one can transform UML based system descriptions
to SystemC code. A crucial step here is to develop a coherent subset of UML
notations. This is so because UML offers a bewildering variety of diagrammatic

Model-Driven SoC Design: The UML-SystemC Bridge 177

notations and it is up to the user to decide the combined roles of these various
diagrams. We select here the so called executable subset of UML, namely class
diagrams and state machine diagrams. The other diagram types may well be
useful for capturing user requirements and for documenting important features
of the design, but they are unlikely to contribute to code generation and hard-
ware synthesis. One important exception is sequence diagrams. As we discuss
later, they do have an important role to play in system level designs but we have
not yet incorporated them in our framework.

The linkage between the UML layer and SystemC layer we have been con-
structing [211, 143] serves a dual purpose. On the one hand, we use it for
transforming applications described at the UML layer to SystemC code for
initial simulation. On the other hand, our translation mechanism also enables
us to pull up the platform description mechanisms to the UML layer. In this
latter usage, we could consider both the executable platform description and the
application models to be available at the UML layer where one can hope to do
formal verification. Further one can also begin to tackle a more abstract version
of the problem of mapping an application to a platform. Using our translator, a
designer can then translate these two descriptions down to the SystemC level for
more detailed simulation and move towards a detailed implementation. With
this as motivation, a substantial part of our work at the UML level consists of
incorporating SystemC compatible (inspired) entities.

In our work , we have been mainly concerned with the transaction level
modeling (TLM) layer of SystemC. At this level, the basic communication
unit consists of a method call and hence the performance numbers reported will
generally not be cycle accurate. This is acceptable if the goal is to rapidly obtain
a design document at the SystemC level that describes both the application
and the platform. Naturally, many other design steps will have to be realized
to support a viable design flow, the key one among them being an efficient
hardware synthesis tool. We feel that our modeling framework and the translator
can easily be linked to tools that will provide these missing steps.

We have prototyped our UML based modeling environment using the Rhap-
sody 4.2 tool [172]. It supports state machine diagrams with concurrency and
hierarchy (in other words, statecharts [85]). It also provides access to the XMI
[155] representation of the design which is faithful and facilitates the translation
process.

In order to support UML based platform descriptions, we have incorporated
stereotypes in the Rhapsody environment to capture the communication prim-
itives of SystemC such as interfaces and channels. On the hand, ports are
declared as the internal attributes of modules and (hierarchical) channels. It is
worth noting that the new version of Rhapsody [50] directly offers communi-
cation primitives with a similar flavor.

178 UML FOR SOC DESIGN

We have also incorporated the clock sensitivity features and other timing
aspects of SystemC at the Rhapsody level. Consequently we can describe
real time applications faithfully while being able to instrument performance
constraints in the UML based platform descriptions.

As mentioned earlier, we use just class diagrams and state machine diagrams
at present. More crucially, we only use the “unstructured” class diagrams and
the restricted state diagrams of UML 1.5 while ignoring the simple sequence di-
agrams because they are not very useful for developing test benches. However,
in UML 2.0, all three of these diagram types have been extended in powerful
ways. A major challenge is to exploit these extensions while preserving the ca-
pabilities of our current framework. We shall return to this issue in Section 8.6.

8.1.1 Related Work

The need for system level design methods has been discussed more elo-
quently and in larger contexts in [124, 126, 80]. The role of SystemC in this
context has also been explored in detail in [124, 80]. What UML may have
to offer towards system level design methods for real time embedded systems
has been studied from a number of perspectives as reported in [114]. For basic
material on SystemC, the UML 2.0 standard and the Rhapsody tool, we refer
the reader to [210, 80, 217] and [172, 50] respectively. Our programme, ini-
tiated here, could also have been based on system description languages such
as SpecC, Rosetta or SystemVerilog [67, 3, 71]. Our preference for SystemC
over these related languages has been mainly influenced by accessibility and
familiarity. A similar remark applies to our choice of the Rhapsody tool.

UML and SystemC have also been proposed to be used elsewhere [221,
141, 26]. Our use of stereotypes for SystemC components is similar to those
proposed in [221, 173, 26]. However, in these efforts, automatic generation
of SystemC code from the models is not supported. An earlier effort that
translates UML to SystemC is YAML [199]. However, YAML uses UML
merely to capture the structural aspects of the system under design. In contrast,
our approach provides for the full fledged use of state machine diagrams —
including C++ code associated with the actions — and hence can capture system
behaviors exhibiting concurrency at the UML level.

8.1.2 Organization of the Chapter

In the next section, we recall the main features of SystemC. In Section 8.3
we explain our scheme for using the Rhapsody tool to develop designs. In the
subsequent sections we first discuss the major details of our implementation.
We then present some examples and results to illustrate the main aspects of our
translator. The final section concludes with a brief discussion on what needs to

Model-Driven SoC Design: The UML-SystemC Bridge 179

be achieved in order for UML 2.0 and SystemC to realize their potential in the
domain of Systems-on-a-Chip design flows.

8.2 SystemC Preliminaries

Here we briefly describe the basic features of SystemC. For more information,
please see [80] and [210]. SystemC is a library built entirely on top of C++.
It separates computation and communication by having modules and processes
for computation; ports, interfaces and channels for communication. Modules
are the basic building blocks for partitioning a design. A module hides its
data and algorithms from other modules. It may have one or more processes
which can run concurrently. Modules as well as processes within a module
communicate through channels. There are two types of channels: primitive
channels and hierarchical channels. Primitive channels are in some sense,
stateless while hierarchical channels can have internal states and control flow
associated with them. As the name suggests, hierarchical channels can contain
other channels, modules or processes. Interfaces specify the signature of the
operations provided by channels. A module accesses a channel through a port
whose type is one of the interfaces implemented by the channel.

A key feature of SystemC is that communication can be modeled at a high
level of abstraction often referred to as transaction level modeling (TLM). It
is hard to pin down this notion precisely. Intuitively, communication between
components is described through method calls, without any synchronization.
Here, ‘transaction’ stands for the exchange of data between two components
of a system. This level emphasizes what data are transferred and from which
locations but not the details of the specific protocol used by the communica-
tion. Thus, intercomponent interactions are abstracted from the details of the
implementation of the communication architecture and this facilitates compo-
nent reuse. In addition, simulation at this level can be usually carried out at a
much high speed. For a more detailed description of TLM, see [30].

Behavioral synthesis of SystemC descriptions is still an unfinished story. On
this front, one tool we were able to access is the CoCentric SystemC Compiler
tool. It synthesizes a SystemC behavioral hardware module into an RTL de-
scription or a gate level netlist. Unfortunately, severe restrictions are placed
on the SystemC code that can be synthesized. Further, this tool is no longer
supported by its vendor. More recently, two new synthesis tools [32, 63] have
come to the market but it is too early to assess their strengths and weaknesses.

8.3 UML Modeling

We use two types of UML diagrams for modeling, namely, class and state
machine diagrams. Class diagrams are mainly used to describe the component
structure of a system while state machine diagrams describe the behavior of

180 UML FOR SOC DESIGN

the components. Besides the standard UML notations, we have also lifted
some SystemC features up to the UML level using the stereotype extension
mechanism.

8.3.1 Class Diagrams

We use the class hierarchy in the usual way to describe the computational
entities via their methods and data types. More crucially, class diagrams are also
used to specify the overall structure of a system in terms of its components and
how the components are connected to each other. We wish to emphasize that
we do not handle at present the structured classes notation offered in UML 2.0.
This is a rich extension particularly relevant for describing complex hierarchical
multicomponent systems. Augmenting the current version of our translator to
incorporate structured classes will considerably expand its applicability. We
shall return to this issue in the Section 8.6.

To bring out the main aspects of our modeling method, we will use the simple
bus model available in the SystemC package [210] as a running example. In this
system, there are three masters, namely a blocking, a nonblocking and a direct
master. In addition, there is a bus and two memory slaves. A master initiates
transactions on the bus to access a memory. Figure 8.1 shows a fragment of the
class diagram of this example.

Class notations are also used to define and distinguish between the various
features of SystemC lifted up to the UML level using the stereotype mechanism.
This is an extension mechanism of UML that allows one to define virtual sub-

simple_bus_master_blocking simple_bus_master_non_blocking simple_bus_master_direct

 simple_bus_blocking_if simple_bus_non_blocking_if simple_bus_direct_if

<<Interface>> <<Interface>> <<Interface>>

 simple_bus

<<Channel>>

1
1

1
1

1
1

Figure 8.1. A Class Diagram

Model-Driven SoC Design: The UML-SystemC Bridge 181

classes of UML meta classes with new meta attributes and additional semantics.
Using this, users can define a class as a module, an interface, a primitive chan-
nel or a hierarchical channel. In addition, we support declaration of ports for
modules to access channels. A port can be declared as an attribute of a module.

Classes can be related by the following UML compatible relations:

Generalization (or inheritance): when a channel implements an interface,
it inherits that interface. Moreover, an interface, channel and module can
inherit another interface, channel and module respectively.

Aggregation/composition: modules and channels may be hierarchical.

Association: classes that exchange messages with each other are associ-
ated to one another. We model messages by UML events with or without
arguments. Furthermore, a module may have an association relationship
with an interface when it accesses a channel through this interface.

In the case of the simple bus example, the masters access the bus through
three different interfaces. The bus is a hierarchical channel which implements
the three interfaces.

8.3.2 State Machine Diagrams

State machine diagrams describe the behavior of classes. A state can be a
simple state or a composite state. A composite state may consist of concurrent
substates; in this case it is called an orthogonal state. A composite state which
consists of sequential substates is called a simple composite state. Being in an
orthogonal state means being in all of its substates. Being in a simple composite
state means being in exactly one of its substates.

Modeling concurrency is an important part of a system specification and this
is achieved with the help of orthogonal states. Figure 8.2 shows a state machine
diagram of a master which is a combination of the three masters described
above. This is a derived version of the simple bus model in the SystemC
package; we have combined the three masters into one master state machine
diagram. The orthogonal state Master has three substates, each of which is a
simple composite state which in turn has a set of simple leaf states (that have
no internal structure). Each state is associated with a set of actions on entry
and actions on exit. These will be executed when the object enters and leaves
that state respectively. A transition connects a source state and a target state.
The label of each transition includes a trigger event, a guard and a sequence of
actions. Events may be parameterized. A guard is an expression which returns
a Boolean value. When an object is in a state and an event of an outgoing
transition of that state occurs, the corresponding guard is evaluated. If the
guard is true, the transition is taken, the actions are performed and the object

182 UML FOR SOC DESIGN

Master

Master_blocking Master_direct Master_non_blocking

Master

mb_wait_write mb_waiting_read

mb_to_write

mb_to_read

m_direct

mnb_to_write

mnb_to_read

/mb_do_write(); finish_blocking_read/

mb_after_read();

finish_blocking_write/

mb_after_write();

/mb_do_read();

to_print/md_to_print();

to_wait/mnb_wait_to_write();

finish_nbr/

mnb_do_write();

finish_nbw/

mnb_do_read();

to_wait/mnb_wait_to_read();

Figure 8.2. An Orthogonal State

moves into another state. Otherwise, the object stays in that state and the event
is simply discarded.

The actions associated with a transition can be C++ statements or a function
call whose body (in the form C++ code) is to be provided by the user. The action
could also correspond to sending an event to another state machine diagram
(describing the behavior of a different class). In addition, the action could
be calling an interface method through a port. Moreover, in the actions, we
support specification of clock sensitivity or delays in terms of clock cycles or
time units through C++ macros. This gives the designers an option to have
timed models. Furthermore, this allows users to provide annotations of timing
information for performance estimation and architectural exploration. For TLM
level implementations, we do not restrict the C++ code associated with the
actions in anyway. There will however be severe restrictions when the target is
behavioral level SystemC code. We will return to this point in the next section.

Figure 8.2 shows an orthogonal state named Master consisting of three
states: Master_direct, Master_blocking and Master_non_blocking.
We describe the behavior associated with the Master_blocking state. First,
it goes from the initial state to mb_to_read state. Since there is no trigger
event and guard for the transition, the function mb_do_read is called and
the state mb_waiting_read is entered. In state mb_waiting_read, when
the event finish_blocking_read arrives, mb_after_read is performed and
state mb_to_write is entered. Other states and transitions can be interpreted
similarly.

Model-Driven SoC Design: The UML-SystemC Bridge 183

In our framework, classes or objects can communicate through events that
carry arguments. On the other hand, classes corresponding to modules or hier-
archical channels may also communicate by means of interface methods.

We currently require users to declare a top level class to instantiate objects.
Object diagrams could have been used instead to do this. We also allow for
only one level of nesting in our state machine diagrams with orthogonal states
at the top layer and simple composite states at the second layer. However it will
not be difficult to extend our state machine diagrams to allow more than two
levels of hierarchy.

8.4 Implementation

As mentioned earlier, the Rhapsody tool supports the main features of UML
that we need. Moreover, Rhapsody has a toolkit which can generate XMI
[155] as an intermediate representation. This representation contains all the
information about the model that we need for code generation.

The XMI toolkit is used to generate XMI document from the graphical mod-
els. We then use our XMI parser to gather information from the XMI document
to build an abstract tree as an input to a template engine called Velocity [224]
that generates SystemC code from predefined templates. With the help of this
engine, we are able to decouple the parsing of XMI document from the code
generation step so that changes in the XMI parser do not affect the code gener-
ation process. Further, in the later part of the work flow, we only need to work
with the templates to generate code without having to deal with the verbose
code of the parser. Consequently, by merely modifying the templates for one
level of abstraction, we can have the templates for another level of abstraction
and generate code, without touching the XMI parser. Figure 8.3 shows the work
flow of our translator.

We support the initialization of multiple instances of a type (module, primi-
tive channel or hierarchical channel). However, they cannot be created dynam-
ically since SystemC does not support dynamic instantiation; the structure of a
system is determined at elaboration time.

The skeleton of the SystemC modules, interfaces, channels and their rela-
tionship are generated from class diagrams in a straightforward fashion. The
action code for modules and channels are generated from their state machine
diagrams.

From the model that includes the state machine diagram in Figure 8.4, an
XMI document is generated from the Rhapsody XMI tool kit. Here is a fragment
of the rather verbose XMI code that describes the transition from state s1 to
state s2. It is not meant to be readable. We are including it merely for the sake
of completeness.

184 UML FOR SOC DESIGN

UML model in Rhapsody

Rhapsody XMI Toolkit

XMI document

XMI parser and pre-processor

Abstract tree

Templates

SystemC code

Velocity engine

Figure 8.3. Our Implementation Workflow

s1

s2

s3

eventA/ functionA()

eventB[guardB]/

functionB()

Figure 8.4. A Simple State Machine Diagram

Model-Driven SoC Design: The UML-SystemC Bridge 185

<Behavioral_Elements.State_Machines.Transition xmi.id="_52"
xmi.uuid="GUID 4b07ad6f-53cf-4f08-b181-3f1ad9b809a2">

<Foundation.Core.ModelElement.name>2</Foundation.Core.
ModelElement.name>

<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Behavioral_Elements.State_Machines.Transition.trigger>

<Behavioral_Elements.State_Machines.SignalEvent xmi.idref="_55"/>
<!-- call eventA -->

</Behavioral_Elements.State_Machines.Transition.trigger>
<Behavioral_Elements.State_Machines.Transition.source>

<Behavioral_Elements.State_Machines.State xmi.idref="_53"/>
<!-- s1 -->

</Behavioral_Elements.State_Machines.Transition.source>
<Behavioral_Elements.State_Machines.Transition.target>

<Behavioral_Elements.State_Machines.State xmi.idref="_49"/>
<!-- s2 -->

</Behavioral_Elements.State_Machines.Transition.target>
<Foundation.Core.ModelElement.taggedValue>

<Foundation.Extension_Mechanisms.TaggedValue>
<Foundation.Extension_Mechanisms.TaggedValue.tag>

displayName
</Foundation.Extension_Mechanisms.TaggedValue.tag>
<Foundation.Extension_Mechanisms.TaggedValue.value>

eventA/functionA();
</Foundation.Extension_Mechanisms.TaggedValue.value>

</Foundation.Extension_Mechanisms.TaggedValue>
</Foundation.Core.ModelElement.taggedValue>
<Behavioral_Elements.State_Machines.Transition.effect>

<Behavioral_Elements.Common_Behavior.UninterpretedAction
xmi.id="_56" xmi.uuid="GUID 8ac5ea7f-6e32-4151-8530-16712de444a7">

<Foundation.Core.ModelElement.name>
functionA();

</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Behavioral_Elements.Common_Behavior.Action.script>

<Foundation.Data_Types.ActionExpression xmi.id="_57">
<Foundation.Data_Types.Expression.body>

functionA();
</Foundation.Data_Types.Expression.body>

</Foundation.Data_Types.ActionExpression>
</Behavioral_Elements.Common_Behavior.Action.script>

</Behavioral_Elements.Common_Behavior.UninterpretedAction>
</Behavioral_Elements.State_Machines.Transition.effect>

</Behavioral_Elements.State_Machines.Transition>

After the XMI parser has read the XMI documents that contains code such
as the one shown above, it builds an abstract tree. The Velocity engine will then
take this tree and together with the necessary templates as its input and generates
SystemC code. It is the templates that determine how the generated SystemC
code should look like. We show here a simplified fragment of a template that
is used for the state machine diagrams.

186 UML FOR SOC DESIGN

switch (state)
{

#foreach ($state in $class.getRootState().getInterStates())
case $state.getID():

$state.getActionOnEntry()
this_uport->wait#foreach($transition in
$state.getOutgoingTransitions())_$transition.getTrigger()#end();

#foreach ($transition in $state.getOutgoingTransitions())
if (this_uport->get_$transition.getTrigger()_flag() == true)
{

if ($transition.getGuards())
{

$state.getActionOnExit()
$transition.getAction()
state = $transition.getTarget();
break;

}
}

}
#end
#end

The following is the SystemC code which will be generated for the simple
state machine diagram in Figure 8.4. For the sake of readability we present this
program in pseudocode form.

current_state = initial_state;
while (current_state != final_state) {

switch(state) {
case initial_state:

wait for trigger from the top module to start behavior
actionT;
current_state = s1;
break;

case s1:
actions on entry of s1
wait for eventA or eventB to come
if eventA comes {

if (true) { // the guard of this transition is true
actions on exit of s1
functionA();
current_state = s2;
break;

}
}
if eventB comes {

if guardB is true {
actions on exit of s1
functionB();
current_state = s3;
break;

}
}
break;

case s2: . . . break; case s3: . . . break;
}

}

Model-Driven SoC Design: The UML-SystemC Bridge 187

The code of actionT, functionA and functionB are to be provided by
the users. The SystemC implementation of actions for events depends on the
levels of abstraction which will be discussed in the following subsections.

8.4.1 Translation to TLM Level

SystemC code at the TLM level is ideal for simulation as details of the
low level communication infrastructure are not present. In our design flow,
users do not have to specify any SystemC components at UML level. They
can simply work with classes or objects, state machine diagrams and model
communication between objects by events with or without arguments. Such
events will be implemented through SystemC primitive channels. Each module
has a primitive channel to receive events sent by other modules. This primitive
channel essentially acts as a buffer for incoming events to that module. When
a module has an association relationship with another module, it can send
messages to that module. A port is declared in the sender module to access the
other module’s primitive channel. Thus, the primitive channels implement two
interfaces: the interface for sending events and the interface for receiving events.
The SystemC code generated by our translator will be at the TLM level since the
senders and receivers just call functions of the primitive channels, regardless
of whether or not the events have arguments associated with them. In the
pseudocode above, waiting for an event to arrive or checking if some event has
arrived constitutes function calls to the corresponding primitive channels. Users
can also specify SystemC components, such as interfaces and channels through
stereotypes, ports, time delay, and clock sensitivity through C++ macros. These
are translated to SystemC accordingly.

There are three types of SystemC processes: sc_thread, sc_cthread and
sc_method [80]. Each simple composite state in a state machine diagram
is translated into a sc_thread of the corresponding module. Thus, a state
machine diagram such as the one in Figure 8.2 will be translated into three
sc_threads of the same module. The reason we chose sc_thread over
sc_method and sc_cthread is that an sc_thread can be suspended dur-
ing execution to wait for events and is not necessarily sensitive to every clock
edge.

8.4.2 Translation to Behavioral Level

We have also experimented with the generation of behavioral level SystemC
code using CoCentric tool of Synopsys. This tool requires us to place rather
severe restrictions at the Rhapsody level on the C++ code fragments supplied
by the user. Further, one has to declare a class called Top to initialize all the
instances since the method new() used to create instances is not synthesizable.
One may however initialize multiple instances of the same class. The translator

188 UML FOR SOC DESIGN

will create the corresponding modules and connect them according to their
specified relationships.

The code synthesized at this level has to comply with the coding convention
of the Synopsys tool. Restrictions are placed on the data types, constructs,
instructions and SystemC classes [208]. Due to these restrictions, a simple
composite state is translated to an sc_cthread which is only sensitive to an
active clock edge. Further, communication is achieved only through signals.
UML events are implemented as sc_signals which can have boolean val-
ues representing the existence of the events. We will see an example of the
behavioral level code in the next section.

8.5 Examples and Results

8.5.1 A Simple Bus

This is a benchmark example of SystemC at the TLM level which has been
described partially in the previous section. Here we use it to demonstrate how
one might model a fragment of a platform at UML level and translate it into
SystemC. This model uses all the four stereotypes mentioned above, namely
modules, interfaces, primitive channels and hierarchical channels. In particular,
the three masters are modules that access the bus through three ports using three
different interfaces. The bus is a hierarchical channel which implements the
methods of the three interfaces.

Master1 Master2 Master3

Bus
Arb

Slave1 Slave2
port

interface

clock

Figure 8.5. Block Diagram for the Simple Bus Example [80]

For faster simulation speed, the arbiter and the fast memory are modelled
as primitive channels to decrease the number of threads and thus, decrease the
context switching time. The bus accesses these primitive channels through the
arbiter interface and the slave interface, respectively. The Top class initializes
all the objects of the system, in this case one instance for each module and
channel. Figure 8.6 shows the class diagram of this example.

Model-Driven SoC Design: The UML-SystemC Bridge 189

simple_bus_master_non_blocking

simple_bus_direct_if

<<Interface>>

simple_bus_arbiter_if

<<Interface>>

simple_bus_non_blocking_if

<<Interface>>

simple_bus_master_direct

simple_bus_master_blocking

simple_bus_slave_if

<<Interface>>

simple_bus_slow_mem

<<Channel>>

simple_bus_fast_mem

<<PrimitiveChannel>>

simple_bus_blocking_if

<<Interface>>

Top

simple_bus

<<Channel>>

simple_bus_arbiter

<<PrimitiveChannel>>

1

1 1 1

1

1

1

1

1

1

Figure 8.6. Class Diagram of the Simple Bus Example

190 UML FOR SOC DESIGN

We first captured this UML level model using the Rhapsody tool and then
translated it into TLM SystemC code automatically using our translator. We
then simulated the resulting SystemC code using the standard SystemC sim-
ulation kernel. When measuring performance, we did not initialize the direct
master, because it is only used for debugging. The experiments were performed
on Linux Red Hat 9.0 running on CPU Intel Xeon 2.8GHz. We measured the
number of CPU clock cycles for 1,000 bus transactions using the Pentium’s
rdtsc instruction. With the original code provided in the SystemC public dis-
tribution, we obtained a speed of 81K transactions per second. In comparison,
with our automatically generated code from the UML model, we obtained a
speed of 41K transactions per second. One reason for the slower simulation
speed of our generated code is the use of sc_thread for all processes. The orig-
inal model has the bus and the slow memory implemented as sc_methods. Due
to the need for context switching, sc_threads run slower than sc_methods.

8.5.2 The Micro Polymerase Chain Reaction Controller

This is a simple realtime controller. Polymerase Chain Reaction (PCR) is a
thermal cycle reaction used for the rapid in vitro multiplication of DNA samples
[121]. The µ-PCR chip realizes a miniaturized version of this process where a
small quantity of the DNA sample is placed in each chamber of the chip and
the PCR reaction is achieved by controlling the thermal power supplied to the
chambers according to an input temperature profile. A schematic diagram is
shown in Figure 8.7.

Figure 8.7. µ-PCR Block Diagram

We will not describe here the PCR biochemical process in detail but instead
focus on the functional model of the controller. This unit is driven by the
temperature profile, which specifies the control objective, and feedback received
from the chip regarding the current temperatures of the chambers. In the present
version of the plant model, the effects of interchamber influences are ignored as
a simplification. Hence there is one independent controller for each chamber.

Model-Driven SoC Design: The UML-SystemC Bridge 191

This controller periodically reads the temperature, converted into a voltage
value via an analog-to-digital converter, of the chamber. With the help of the
estimator — the control law — it then computes the output voltage required for
that chamber to maintain the temperature according to the temperature profile
of the current PCR thermal cycle. This voltage is then converted back into an
analog value via a digital-to-analog converter, which is then used to control the
heating element of that chamber.

Profiler

<<PrimitiveChannel>>

Estimator

<<PrimitiveChannel>>

Estimator_if

<<Interface>>

Top

Profiler_if

<<Interface>>

Plant ControllerADC

DAC

1

1

1

1 1

1 1

*

* 11

1

* *

*

*

1

1

Figure 8.8. µ-PCR Class Diagram

Figure 8.8 shows the class diagram of this example. The profiler that keeps
the temperature profile and the estimator that keeps the control laws were mod-
elled separately from the controller so that we can reconfigure the temperature
profile and control law easily. They were modelled as primitive channels in
order to get better simulation speed at the TLM level. The communication
among the modules are cycle accurate, in the sense the status of a module’s
input and output are specified at each clock cycle. Yet another real time aspect
is the timing diagram associated with the A/D converter. The state machine
diagram of the controller is shown in Figure 8.9.

For this example, we have synthesized, using the CoCentric compiler tool
of Synopsys, the behavioral level SystemC code generated via our translator.
This application has been simulated at both TLM and behavior levels.

Following is a fragment of the code for the sc_cthread of the controller at
behavior level. For brevity we have eliminated some wait() statements.

192 UML FOR SOC DESIGN

Adjust

Estimate

Compute

waiting

Read_Temp

GetProf ile

/setPoint = IMC(pro_port, mapping(timer));/Rk = IMC(est_port, estimate(Yk));

ack

/timer = 0;

CLOCK_DELAY(3);

GEN_EVENT(itsADC, readtemp());

currenttemp/Yk = GET_PARAM(currenttemp, temp);

/GEN_EVENT(itsPlant, toadjust(Uk));

timer = timer + stepwide;

CLOCK_DELAY(3);

GEN_EVENT(itsADC, readtemp());

/Uk = K1*setPoint + Rk;

Figure 8.9. The State Machine Diagram of µ-PCR Controller

while (true) {
switch (state) {
// Read_Temp state
case 106:

wait_ack(); //wait for ack signal from ADC
if (read_ack() == true) {

//the guard of this transition is true
if (true) {

state = 118;
write_ack(false);
break;

}
else

write_ack(false);
}
break;

//GetProfile state
case 110:

// no event trigger for this transition
if (true) {

//IMC is a macro for an interface method call
//to the port pro_port to the profiler
//the method mapping has an argument timer
//the returned value of this method
//is assigned to variable setPoint
setPoint = IMC(pro_port, mapping(timer));
state = 115;

}

Model-Driven SoC Design: The UML-SystemC Bridge 193

break;
//Adjust state
case 113:

if (true){
GEN_EVENT(itsPlant, toadjust(Uk));
timer = timer + stepwide;
//this macro is called to delay for 3 clock cycles
CLOCK_DELAY(3);
//send event readtemp to the ADC
GEN_EVENT(itsADC, readtemp());
state = 106;

}
break;

//Estimate state
case 115:

if (true) {
Rk = IMC(est_port, estimate(Yk));
state = 117;

}
break;

//Compute state
case 117:

if (true){
Uk = K1*setPoint + Rk;
state = 113;

}
break;

//Waiting state
case 118:

wait_currenttemp();
if (read_currenttemp() == true){

if (true){
//GET_PARAM is the macro to get
//the value of parameter temp
//associated with currenttemp
//event
Yk = GET_PARAM(currenttemp, temp);
state = 110;
write_currenttemp(false);
break;

}
else

write_currenttemp(false);
}
break;

// the initial state
case 119:

//wait for signal to start the execution
//of this process
wait_initController();
timer = 0;
GEN_EVENT(itsADC, readtemp());
CLOCK_DELAY(3);
state = 106;
break;

}
}

194 UML FOR SOC DESIGN

The implementation of the functions like mapping() and estimate() is
provided by users; they can only use the synthesizable subset of SystemC de-
fined by Synopsys. Note that although SystemC interfaces and channels are
not synthesizable by CoCentric Synopsys, we can still generate behavioral level
SystemC code from the models that have interfaces and channels like the one
in this example. In this case, the interfaces in the UML models are not gener-
ated, the model’s channels are declared as sc_modules; each has a thread that
receives triggers for method calls from other modules, locally calls the methods
and returns values by sending signals to the caller modules.

Table 8.1 shows the simulation speed—in terms of transactions per second—
of the µ-PCR example on the same platform as the one used in the previous
example. By a transaction we mean the period of time in which the controller
senses the current voltage, computes and outputs to the plant.

Our simulation results show, as expected, that simulation speed at the TLM
level is higher than that at the behavior level. The experiments also give evidence
that the code we generate scales fairly well in terms of performance.

Table 8.1. Simulation Speed of the µ-PCR Example

Chamber arrangement TLM sim. (trans./sec) Behavioral sim. (trans./sec)
2 × 2 12,125 5,766
4 × 4 2,714 1,543
5 × 5 1,676 785
8 × 8 555 148

8.5.3 Digital Down Converter

For our third example, we implemented a digital down converter (DDC) for
the global system for mobile communications (GSM) - a wireless communica-
tion protocol . Digital radio receivers often have fast analog to digital converters
delivering vast amounts of data. However, in many cases, the signal of inter-
est represents a small proportion of that bandwidth. A DDC is a filter that
extracts the signal of interest from the incoming data stream. Our implemen-
tation closely follows the MATLAB example in Xilinx’s system generator (see
Figure 8.10).

The desired channel is translated to baseband using the digital mixer com-
prised of multipliers and a direct digital synthesizer (DDS). The sample rate
of the signal is then adjusted by a multistage, multirate filter consisting of a
cascade integrator-comb (CIC) filter and two polyphase finite impulse response
(FIR) filters with a decimation factor of 2. The functions performed in the
system are complex multiplication and multirate filtering. The overall down
sampling rate of the converter is 192:1.

Model-Driven SoC Design: The UML-SystemC Bridge 195

I

Q

H(z) Polyphase
Decimator 2:1

G(z) Polyphase
Decimator 2:1

I

Q

4-stage CIC
48:1

I

Q

I

Q

din

din

Digital Mixer

1

2

din_i

din_q

1

2

I

Q

Z-1

Delay

Figure 8.10. Digital Down Converter for GSM - Block Diagram

Each of the components is mapped to a module, and data is sent through the
chain by events (see Figure 8.11). The model has been translated into both TLM
and behavioral levels. We could not find the source code for a similar DDC
in UML or SystemC for comparison. Hence we could only compare the FIR
module of our design with an FIR example provided by Synopsys. The only
modification we did to the Synopsys code was to ensure that the coefficients and
the bit widths of the ports are the same as those of our FIR model. The codes
were compiled into gate level netlist using Synopsys tc6a_cbacore library,
which targets cell based array architectures [209]. The same timing constraints
were used on the synthesis runs of both. Table 8.2 shows the comparisons of the
final synthesized hardware. From the result we can see that our generated code

Tester

Mixer

DDS

DelayTop

VCC

CIC

GzMacFilter

HzMacFilter

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

Figure 8.11. Digital Down Converter for GSM - Class Diagram

196 UML FOR SOC DESIGN

uses about 33.25% more resources than the hand coded version. We believe
that this is an acceptable overhead given the fact we input the model using the
Rhapsody tool with UML notations.

Table 8.2. Area Statistics for FIR Component Implemented on Cell Based Array Architecture

FIR from Synopsys(S) FIR from DDC(D) Ratio((D-S)/S)
Number of ports 260 261 0.39%
Number of nets 18393 27942 51.92%
Number of cells 18010 27547 55.15%
Number of references 93 99 6.45%
Combinational area 30181.2 50583.7 67.60%
Noncombinational area 34560.0 36844.2 6.61%
Net interconnect area 244806.2 325033.1 32.77%
Total cell area 64741.1 87430.3 35.05%
Total area 309547.6 412461.1 33.25%

8.6 Conclusion

The work that we have pursued so far, in the context of UML 2.0, has ex-
ploited only a fraction of the potential of this new standard. The overarching
goal is to support (software) system development based on models rather than
programming artifacts with the slogan “The model is the implementation” cap-
turing the essence of this approach. The new features of UML 2.0 that are of
particular relevance are: More direct support for architectural modeling, a gen-
erous menu of formalisms for specifying behaviors, hierarchical interactions
modeling and better support for component based development.

Architectural modeling is supported with the help of structured classes with
the key insight here being that class diagrams are often too crude to capture
structure at the instance/role level. Consequently, the class notion is now aug-
mented with those of ports, interfaces and connector using which the objects
— or for that matter even subclasses — of a class can be grouped together in
different ways to communicate with their environments. An additional twist is
to provide behavioral descriptions of the manner in which an interface can be
accessed with the help of protocol state machines. There are other key aspects
of the structured classes that we will not go into here but taken together, all
these features make structured classes into a powerful mechanism for specify-
ing complex, hierarchical, component based architectures.

State machine diagrams, the basic behavioral specification mechanism, have
also been enhanced in UML 2.0 with the features of modularized submachines
and specialization/redefinition, action blocks and state lists.

Model-Driven SoC Design: The UML-SystemC Bridge 197

Yet another key feature of UML 2.0, from the standpoint of system level
design are the sequence diagrams which can now be structurally decomposed.
In addition they can be composed with help of operations such as alternatives,
iteration, break (to exit from a loop), negative (forbidden scenarios) and condi-
tions. In addition, timing diagrams are also a part of the interactions classifier.
As a result, the designer can now develop powerful test benches along with the
system specification. As a result, both the specification and its test benches can
be compiled into SystemC code for simulation and verification.

In summary, structured classes, state machine diagrams, protocol state ma-
chines, sequence diagrams and timing diagrams of UML 2.0 together constitute
a powerful conceptual and notational base for developing system level designs.
The key to realizing this potential is to automatically generate executable code
from specifications developed using these diagram types so that one can carry
out simulation, performance estimation and verification. We feel that the UML-
SystemC bridge that we are advocating here can, with concerted effort, help
achieve this purpose.

We have presented here the backbone of a framework in which designs can be
specified using UML notations. SystemC code implementing these designs can
then be automatically generated. We showed some realistic examples illustrat-
ing the use of object oriented structuring, real time constraints and transaction
level modeling. We see this framework as a sound launching pad for realizing
the considerable potential that UML 2.0 has to serve as the basis for model
driven system design methods.

Chapter 9

A Comparison between UML and Function Blocks
for Heterogeneous SoC Design and ASIP Generation

Lisane Brisolara,1 Leandro B. Becker,2 Luigi Carro,3 Flavio Wagner,1

Carlos E. Pereira3

1Computer Science Institute
Federal University of Rio Grande do Sul (UFRGS)
Porto Alegre, Brazil

2Automation and Control Systems Department
Federal University of Santa Catarina (UFSC)
Florianópolis, Brazil

3Electrical Engineering Department
Federal University of Rio Grande do Sul (UFRGS)
Porto Alegre, Brazil

Abstract This chapter presents the SEEP methodology for heterogeneous SOC design and
ASIP generation starting from high level models. However, the main point is the
comparison between the Functional Blocks and the Unified Modeling Language
modeling approaches. Results obtained have led to the use of UML within the
scope of SEEP methodology. Related issues are discussed in detail, together with
a case study.

9.1 Introduction

The great majority of current electronic products contain an embedded com-
putational system, for example mobile telephones, DVD players, microwaves
ovens, etc.. Moreover, embedded controllers are also used in systems whose
purposes are far from the electronic domain, such as medical devices, cars, and
airplanes. Such embedded computational systems are often implemented as
heterogeneous systems-on-a-chip (SoCs), which are usually composed of ded-

199

G. Martin and W. Müller (eds.), UML for SOC Design, 199–222.

© 2005 Springer. Printed in the Netherlands.

200 UML FOR SOC DESIGN

icated hardware modules, programmable processors, memory, interface con-
trollers, and software components.

Embedded systems design has become an important research area owing
to the high complexity of new generations of systems. Increasing complexity
derives from the amount of functionality that is associated with those systems.
Efforts in all areas of system level design, such as specification, modeling,
synthesis, simulation, verification, and estimations are required in order to cope
with this increasing complexity.

At the same time the life cycle of embedded products becomes increasingly
tighter. Cell phones, for example, represent one of many examples of this
trend, since they are the basis for two major product line developments each
year, compared to only one a few years ago [105]. In this scenario productivity
and quality are simultaneously required in embedded systems design in order
to deliver competitive products. Current research on embedded systems design
emphasizes that the use of techniques starting from higher abstraction levels is
crucial to the design success. Some authors such as Selic [191], Douglass [49],
and Gomaa [72] argue that this approach is the only viable way of coping with
the complexity which is found in the new generations of embedded systems.

Using this approach, models of embedded systems should evolve from high
level views into actual implementations, ensuring a relatively smooth and po-
tentially much more reliable process in comparison with traditional forms of
engineering. Thereby the Unified Modeling Language (UML) has gained in
popularity as a tool for specification and design of embedded systems and SoCs.
In [114] one can find several efforts that describe the use of UML during the
different phases of an embedded system design process. Such popularization
comes from UML being by far the most used modeling notation for conventional
computational systems.

Another issue is that owing to their various applications many embedded
systems can be considered heterogeneous from the problem domain perspec-
tive. This applies to systems whose respective models require different models
of computation (MoCs) [56], such as stream processing, control flow, and con-
tinuous time, in order to capture and express their behavior. For example, the
specification of a mobile phone requires not only digital signal processing for
the telecommunication domain, which is a discrete time MoC, but also sequen-
tial logic programs to describe several available applications (e.g., contacts and
alarm clock). Such requirements contrast with the characteristics of UML,
which was originally designed for the specification of event based systems.

Traditionally, the functional block (FB) modeling approach has been used
by the signal processing, industrial automation, and control engineering com-
munities for the development of embedded systems (see [103]). These models
are widely accepted in industrial design, driven by an extensive set of design
tools, such as, for instance, Matlab/Simulink from MathWorks. Features such

A Comparison between UML and Function Blocks 201

as modularity, abstraction level, and re-usability contributed to the popularity
of this modeling approach.

A relevant question is whether the use of UML presents concrete advantages
for the design of embedded systems (further implemented as a SoC), when
compared to a more traditional approach such as the FB approach. To answer
this question a qualitative and quantitative comparison between both approaches
is presented in this chapter by means of a case study. Results show that by
using a specific toolset it is possible to generate a SoC from the UML model.
Moreover, the current weaknesses of UML for SoC generation are highlighted
and possible solutions are discussed.

This chapter introduces the Object Oriented Platform Based Design Pro-
cess for Embedded Real Time Systems, or simply SEEP (from the Portuguese
acronym), which proposes a methodology for SoC design and ASIP genera-
tion. This methodology offers a complete set of modeling, analysis, validation,
and synthesis tools to support the development of optimized embedded real
time systems comprising software and hardware components. It is based on
the re-use of hardware and software components and on the configuration of
architectural platforms implemented upon affordable FPGAs.

The remaining parts of the chapter are divided in the following way. Section
9.2 presents the SEEP methodology for SoCs design and ASIP generation.
Section 9.3 presents the case study, the developed models, as well as the results
from the comparison between UML and FB. Section 9.4 discusses weaknesses
of UML that must be further tackled to allow the complete generation of SoCs.
Section 9.5 discusses related work. Lastly, the main conclusions of this chapter
are drawn in Section 9.6.

9.2 A Methodology for SoC Design and ASIP Generation

The SEEP methodology proposes a complete and integrated approach for
SoC design and ASIP generation. This methodology is defined to guide the
system integrator and the core provider towards the development of embed-
ded applications within a reduced design time. Therefore the re-use concept
is assumed, and each design step aims at facilitating the development of re-
usable components and the rapid, but cost effective, design space exploration.
The proposed methodology is basically divided in two phases, as follows: (i)
architecture-independent design; and (ii) system generation.

An overview of the proposed design methodology flow is shown in Figure
9.1. The first phase generates as output the so called architecture-independent
specification, which is further used as input for the second phase which generates
the ASIP.

202 UML FOR SOC DESIGN

1. Architecture-independent
Design

Architecture-independent
Specification

2. Final System
Generation

Dedicated System

Figure 9.1. Overview of SEEP Methodology for SoC Design and ASIP Generation

9.2.1 The Architecture-Independent Design

This phase is responsible for generating the architecture-independent spec-
ification, which can be understood as the source code of the application that
contains the functionality of the system under design. This source code must
avoid architecture-dependent parts and can be written in any commonly used
programming language such as C/C++, Java, SystemC, and others. Although
this code could be written directly by the designer from the very beginning, the
proposed methodology agrees with the need of applying software engineering
techniques to speed up the process and to guarantee the quality of the resulting
system.

One of the main aspects that should be addressed according to the proposed
approach is the development of a high level system model, containing the spec-
ification of both the requirements and the solution itself. The requirements rely
on the definition of three main aspects: (i) problem domain elements; (ii) de-
sired behavior/functionality; and (iii) quality of service (QoS) requirements —
performance, timing, power consumption, and cost. Once these elements are
specified, designers can proceed with the development of the solution, which
consists of a detailed description of the problem using the notation provided by
the adopted modeling language and/or formalism, such as UML or FB.

Although the methodology itself does not rely on a specific language, this
chapter provides some hints to help designers in deciding about which mod-
eling language should be adopted. An important aspect to be considered is
that the high level model should reflect the nature of the application domain.
It is important and even necessary to use the most appropriate MoC for the

A Comparison between UML and Function Blocks 203

model applicability to be enhanced. Furthermore, the language should be able
to express both the application requirements and the functional specification.
It should also provide facilities for allowing model validation prior to imple-
mentation, as well as features that can be used to guide the implementation. In
order to clearly state such needs this chapter presents several qualitative and
quantitative criteria for comparing the object oriented modeling approach of
UML with the FB modeling approach provided by Simulink. A complete com-
parison is performed by means of a case study, which is presented in the next
section.

Once the model is ready, mapping it to the architecture-independent speci-
fication is needed. In other words, it is necessary to generate the source code
of the system under design. This process should be automatically carried out,
but depending on the adopted modeling notation it may need different degrees
of designer interaction. In the course of this chapter several existing CASE
(Computer Aided Software Engineering) tools that can be used to help in this
process will be discussed.

9.2.2 System Generation

The next step in the design process takes the architecture-independent de-
scription as input for an architectural exploration, where alternative hardware
and software solutions which fulfill the system requirements should be con-
sidered and evaluated. After compiling all the available information the final
system generation is performed, resulting in a micro architecture and a software
description for a dedicated system.

In the SEEP methodology we are currently limited to accepting Java source
code for representing the architecture-independent description. Using the SA-
SHIMI environment [100] both a VHDL description for a dedicated Java proces-
sor and the respective program memory code (application code) are generated.
This CAD environment automatically synthesizes an Application Specific In-
struction Set Processor (ASIP) microprocessor for a target application, using
only a subset of instructions used by the designed application. This Java pro-
cessor implements an execution engine for Java in hardware through a stack
machine compatible with the Java Virtual Machine (JVM) specification. Figure
9.2 presents the SASHIMI environment design flow.

9.3 Case Study: Evaluating High Level Models

This section presents two different models developed for comparing the
object oriented modeling approach of UML with the FB modeling approach
provided by Simulink. Our goal here is to analyze how suitable these two
approaches are for the first phase of the SEEP methodology, namely, the archi-
tecture-independent design.

204 UML FOR SOC DESIGN

Java
Source

Java
Compiler

Java
VM

SASHIMI
Libraries

Analyser

ASIP Gen

Synthesis
Tool

Linker

SW
Adapter

ASIP+
Software

Synthesis

Specification

Simlulation

Figure 9.2. SASHIMI Environment Design Flow

The case study consists of a crane control system, proposed as a benchmark
for system level modeling [137]. Once the user defines a position for the crane,
the control system should activate the motor and move the crane to the desired
point. Special care must be taken with speed and position limits while the crane
is moving, in order to guarantee the safety of the transported load. Therefore

xxl0.0

0.0 x

xc PosCarMaxPosCarMin

Track
Car

Cable

fc

ml
fd

mc

Figure 9.3. Crane System

A Comparison between UML and Function Blocks 205

constant monitoring is needed in order to avoid unexpected situations. This
system incorporates hard real time constraints. Figure 9.3 gives an overview of
the system.

9.3.1 FB Model

In the functional block (FB) approach applications are designed by connect-
ing several FBs. Each FB output must be connected with an appropriate input,
coming from a FB or another model element. This modeling language does
not allow the designer to express system requirements. Therefore they start
modeling already thinking of the solution for the problem under considera-
tion. Our modeling starts with the functional decomposition, and the result
is the definition of the modules that interact during the system execution. As
shown in Figure 9.4, the modeling resulted in four high level modules orga-
nized hierarchically, as follows: PlantActuators; Sensors; ControlAlgorithm;
and JobControl. Each module has its intrinsic behavior and is further detailed
in this section.

PosCar

Sensors
Plant

alphaSensor

SWPosCarMax

SWPosCarMin

alpha

Xc

alpha

Xc

VCn
PosCar

ControlAlgorithm

PosDesired

EmgrMode

alpha
VC

PosCar

PosDesired

alpha

SWPosCarMax

SWPosCarMin

Shutdown

SwitchON

Em

JobControl

1/z

UnitDelay

Vc

brakeVC 1/z

UnitDelay

PosDesired

Switch

ShutDown

SwitchON

Figure 9.4. Crane Model using Simulink

The crane system is composed of both data driven and event driven parts, as
can be observed in Figure 9.4. The JobControl module is represented by a finite
state machine (event based), whilst the other modules are data driven. Figure
9.5 shows a view of the JobControl module that is composed by five states:
Poweroff, Init, PosDesiredTest, NormalMode and EmergencyStop.

206 UML FOR SOC DESIGN

Power_off
entry: V=0;

 selectVC=1;
 em=0; es=0; Init

PosDesiredTest

EmergencyStop
entry: es=1; V=0;
selectVc=1;

NormalMode

[SwitchOn==0]

[SwitchOn==1]

[(posDes<4)||(posDes>-4)]
{brake=0; pt=0;at=0;}

[!(posDes<4)||(posDes>-4)][(SWShutdown==1)]

[(pt>20)]{brake=1;}

[(cond1Time>=500)]
{brake=1;}

[(cond2Time>=500)]
{brake=1;}

Figure 9.5. JobControl

The NormalMode is a composite state, containing two concurrent states,
Diagnosis and Control, as can be observed in Figure 9.6. The Diagnosis module
runs in parallel with the control algorithm. This module is responsible for
monitoring the position and alpha sensors, indicating when some risk condition
occurs. On the other hand, the control is responsible for detecting the braking
condition for the control algorithm.

Figure 9.7 illustrates details of the ControlAlgorithm module, which is re-
sponsible for computing the control algorithm of the crane motor. This module
receives the position of the car (posCar), the alpha angle of the cable (alpha),
and the desired position of the load (PosDesired). The ControlAlgorithm com-
putes a set of equations and determines the voltage (VC) that is applied to the
crane motor. This FB contains two implicit MoCs, which are characterized as
continuous time and discrete time, respectively. For example, it contains a dis-
crete space state component used for differential equations resolution (top left),
which is combined with those components that work in the time continuous
domain. The control algorithm is periodic, with a period of 10 ms. Although
this timing restriction could be represented in the model using a clock, this is
not a suitable way of expressing timing requirements. For instance, no deadline
can be stated, representing a missing piece of information required to perform
schedulability analysis.

The Sensors module is responsible for reading the sensors and works with
a fixed cycle time of 2 ms. Although this FB is not shown in this chapter, we
observe that it has the same problems previously stated for the control algorithm
regarding the representation of timing restrictions. Besides the position and
angle sensors there are two other sensors for indicating when the car is beyond
the track limits (minimal and maximum car position).

A Comparison between UML and Function Blocks 207

posTest

alphaTest

NormalMode

PositionTest
Diagnosis

AlphaTest

Control

brakeCond1

brakeCond2

Control_Init

[(SWPosCarMin==1)&&(SWPosCarMax==1)]
{pt=pt+1;}

[abs(alpha)>alphaMax]{at=at+1;}

[(abs(V)<0.01)(cond1T<500)]{cond1T=cond1T+1;}

[(abs(V)<0.01)(cond2T<500)]{cond2T=cond2T+1;}

[cond1T>=500]{brake=1;}

[cond2T>=500]{brake=1;}

[abs(V)>=0.01]

[em==0]{cond2T=0;}

[abs(V)>=0.01]

[em==1]{cond1T=0;}

[at>50]{em=1;}

[apt>20]{brake=1;}

emrgMode
{em=0; at=0;}

Figure 9.6. NormalMode

Y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

qn=xn
q(2)

K

un-ynYn=k*qn
-+

X

-+
+
+

Poscar

VCn

PosDesired

PosDesired

x
/

5

10

l

m

1/z

.

X

X

1/z

++

Saturation
+40, -40

alpha

emrgMode

Poscar

VCn

Poscar

 Zn
if EM>=1, posCar

[+5.5000]

VC

Figure 9.7. Control Algorithm Model in Simulink

208 UML FOR SOC DESIGN

Finally, the Plant module contains the specification of the physical plant (car
and load) to be controlled. Although this module is not part of the system
functional specification, it must be described in order to allow the simulation
of the system’s behavior. For describing the continuous behavior of the plant,
linear equations were represented by Simulink components such as integrators,
adders, and gains. This highlights one important aspect of the FB approach,
which is the possibility of re-using pre-defined FBs.

Once the modeling phase is completed the simulation is performed to provide
the validation of the FB model. Afterwards the application code is generated,
as proposed by the first phase of the SEEP methodology. Simulink allowed the
generation of C code for the corresponding FBs. The generated code can be
executed in real time within the framework provided by the tool. However, rea-
sonable efforts must be made to allow running this code in a target environment
that is different from the development one.

9.3.2 UML Model

Alternatively from the previous model, UML allows designers to represent
the system’s needs or functionalities before their implementation. This can be
performed by means of the Use Case Diagram, in which actors represent the
external elements that interact with the system (I/O device or human user) and
each Use Case represents a specific functionality that must be provided. The

Calculate
Position

Sensors
Update

Sensor
Check

Emergency
Mode

Diagnosis

Initialization

Nominal
OperationMode

<<extend>>

Cable-angle
Sensor

Break-relay

Car-position
Sensor

Motor

Crane User

Figure 9.8. UML Use Case Diagram of the Crane system

A Comparison between UML and Function Blocks 209

Use Case Diagram for the crane system is presented in Figure 9.8. Each Use
Case also includes a textual specification to detail its related responsibility. For
a better structuring of the model development we followed the design phases
proposed by Gomaa in the COMET/UML methodology [72]. However, any
other UML based design methodology that considers real time aspects could
be used.

To describe the interaction between objects that participate in each Use Case,
they are further detailed using UML Collaboration Diagrams. This is part of
the so called analysis modeling, which precedes the definition of requirements.
To highlight important characteristics of the modeled system (mainly timing
restrictions), the UML profile for Schedulability, Performance, and Time (SPT)
[159] is used. This profile is also usually referred to RT–UML, and is composed
mostly by stereotypes and its related tags. Using this profile, a timer event, for
example, is decorated with the stereotype «SAtrigger». It includes information
about its triggering frequency, as presented in the collaboration diagram from
Figure 9.9 (see event 3 — run()). Such information is represented by the tag
RTat of the stereotype that, in this case, means a periodic event with a 10 ms
period.

Operations depicted in the diagram of Figure 9.9 represent the ‘ControlAl-
gorithm’ and, partially, the ‘JobControl’ blocks from the FB model (see Figure
9.7). Detailing the collaboration diagram one can see three different sequences
of operations, denoted by the numbers 1, 2, and 3. Special attention is given
to the third sequence, the control operation, which represents a periodic activ-
ity. Timing restrictions are denoted by the elements from the RT–UML profile.
Similarly to the FB model, the controller class also has an associated state di-
agram, which is presented in Figure 9.10. This is part of the system dynamic
model. One missing feature of UML noticed is the lack of semantics for al-
lowing expressing the control algorithm itself, including its time continuous
characteristics.

The complete UML model of the crane system includes 9 different collabo-
ration diagrams. All classes from these diagrams constitute the system’s static
structure, which is used as input for the next development step from the COMET
methodology, which is known as Design Modeling. This phase is responsible
for defining the architecture of the system, including the division of responsi-
bility between client and server objects. Since the crane model makes use of
decentralized control, it was necessary to classify objects as being passive or
active. The former represents data repository elements, whilst the latter repre-
sents elements with their own thread of control that are capable of triggering
an interaction sequence. The final result is represented by the class diagram
depicted in Figure 9.11. Classes names are preceded by ‘::’ in order to follow
UML conventions. They can also contain a stereotype incoming from the RT–
UML profile (e.g., «SAschedRes», which denotes a concurrent element in the

210 UML FOR SOC DESIGN

<<SAschedRes>>
:Controller

:SystemClock

<<SAschedRes>>
:ConsoleInterface

<<SAschedRes>>
:AngleSensorInterface

<<SAschedRes>>
:PositionSensorInterface

:MotorInterface

:BreakInterface

<<SAschedRes>>
:Initializer

<<SAresource>>
:DesiredPosition

Crane User

1:
setposition()

1.1:
set()

2.2:
new()

3.1:
controll()

3:
<<SAtrigger>>{Rtat=(“periodic, 10, ms”)}
<<SAresponse>>
run()

3.1.1:
get()

3.1.2:
read()

3.1.3:
read()

3.2:
setVC()

2.1:
release()

2:
activate()

Figure 9.9. UML Collaboration Diagram of the Control Algorithm

Idle

Active

Blocked

<<Create>>/isActive = false;

activate/isActive = true;

run/

block/isActive = false;

Figure 9.10. State Diagram of the Controller Class

A Comparison between UML and Function Blocks 211

Figure 9.11. UML Class Diagram of the Crane System

system). The choice for the use of classes instead of capsules (part of UML
2.0) is due to the available runtime structure on which object communication
is event based and does not use the port abstraction. This diagram is used as
basis for the embedded system code generation.

As the design tool used to build the UML model did not include a simulation
module, the next step was the code generation for the system. As expected by
the SEEP methodology, an architecture-independent code should be provided.
Although other programming languages such as C++ could also be used for
code generation, the Java language was chosen as the target in this study owing
to the current toolset used by the SEEP methodology (see Section 9.2.2). Details
of the generated code will now be approached.

The Controller class, in which the associated stereotype denotes a concurrent
real time task in the system, is selected to illustrate the generated code. This
task is triggered periodically every 10 ms, with a deadline of 10 ms (see the
collaboration diagram presented in Figure 9.9). To implement such features
the Controller class needs to inherit features from RealtimeThread, as shown
in Figure 9.12. Moreover, it must define release parameters to implement the
modeled timing constraints. Therefore the PeriodicParameters class is used. Its
instance is passed as a parameter for the superclass constructor. A RelativeTime
object is used to represent the 10 milliseconds from the task period and deadline.
All these special classes are derived from an API, which has been especially

212 UML FOR SOC DESIGN

import saito.sashimi.realtime.*;

public class Controller extends RealtimeThread
{

private static RelativeTime _10_ms =new RelativeTime(0,10,0);
private static PeriodicParameters schedParams=new PeriodicParameters(

null, // start time
null, // end time
_10_ms, // period
null, // cost
_10_ms);// deadline

public Controller() {
super("Controller", null, schedParams);
// do other initializations

}
... //continues

};

Figure 9.12. Generated Code for the Controller Class (Part1)

developed to cope with the design process from SEEP methodology. Readers
interested in more details about this API can refer to [228].

Figure 9.13 presents the remaining parts of the Controller class. It presents
two important methods: mainTask() and exceptionTask(). The former repre-
sents the task body, that is, the code executed when the task is activated. Since
this task is periodic, there must be a loop which denotes the periodic execution.
The loop execution frequency is controlled by calling the waitForNextPeriod()
operation. This operation uses the task release parameters to interact with the
scheduler and control the correct execution of the operation. The exception-
Task() operation represents the exception handling code that is triggered in the

public class Controller extends RealtimeThread {
... //continuation
public void mainTask() {

Crane.breakInterface.release();
// periodic loop
while(isRunning == true){

this.controll();
Crane.monitorInterface.setVC(m_vc);
this.waitForNextPeriod();

}
}

private int controll() { ... }

public void exceptionTask() {
// handle deadline missing

}
};

Figure 9.13. Generated Code for the Controller Class (Part2)

A Comparison between UML and Function Blocks 213

case of a deadline miss, that is, if the mainTask() operation does not finish until
the established deadline.

After the code generation process the application was ported to the FemtoJava
environment using the SASHIMI tool, and which was previously introduced in
Section 9.2.2.

9.3.3 Evaluation Criteria

In order to perform a comparison between the modeling approaches, several
evaluation criteria have been identified. These criteria are based on the work
conducted by Ardis et al [4], which performs a qualitative comparison between
several design languages for reactive systems. Such work is extended here in the
direction of searching for aspects which could be used to perform a quantitative
evaluation of the designed models. Moreover, a new organization for the set of
criteria is established. They are organized into groups which reflect the needs
observed in the first design phase of the methodology presented in Section 9.2,
as can be seen in Table 9.1.

The groups are further refined into subgroups to compose the evaluation
criteria elements. In Table 9.2 each evaluation criterion is detailed, together
with an explanation of how it is evaluated (in qualitative or quantitative terms).

Table 9.1. Evaluation Criteria

Evaluation Criteria Description
a)Requirements Specification criterion for evaluating the capability of expressing and

documenting user needs and system requirements
b) Functional Specification criterion for evaluating the model abstraction level and

expressiveness, i.e., if it describes the problem-
domain elements and their behavior/functionality
in a natural and straightforward manner

c) Validation /simulation criterion for evaluating whether the specification can be
validated before its implementation

d) Implementability criterion for evaluating whether the specification can be
easily refined or translated into an implementation,
which is compatible with the rest of the system

9.3.4 Comparison Results

This section presents an analysis and comparison of the UML and FB models
according to the criteria discussed in the previous section. The results are
summarized in Table 9.3. For evaluating the qualitative aspects, we have used
the symbol ++ to indicate a particular strength of the approach, + to indicate
that the model meets the criterion in a way that is adequate, but less than ideal,
and 0 to indicate a clear weakness of the model.

214 UML FOR SOC DESIGN

Table 9.2. Evaluation Criteria - Subgroups

Criterion Description Evaluation Expressed by
a1) Functional

requirements
capability of expressing and
documenting the desired
functionality of the system,
together with the problem
domain elements that inter-
act with the system

Quantitative the number of mod-
eling diagrams that
can be used to imple-
ment the desired fea-
ture

a2) QoS
requirements

capability of expressing the
application QoS require-
ments and/or restrictions

Quantitative the number of QoS
requirements that
can be specified

b1) Applicability capability of representing
system behavior or func-
tionality by using different
MoCs, according to systems
nature

Quantitative number of supported
MoCs

b2) Maintainability easiness to make modifica-
tions in the specification,
e.g., addition of new ele-
ments and changes in the ex-
ternal elements such as sen-
sors

Qualitative ++ strength;
+ adequate;
0 weak

b3)Modularity /
Hierarchy

capability of dividing a
large specification into in-
dependent modules, which
could be again decomposed
into even smaller parts

Qualitative ++ strength;
+ adequate;
0 weak

b4) Expressiveness capability of the modeling
language primitives to de-
scribe the specification

Quantitative b4.1) number of
modeling primitives
b4.2) number of
different modeling
primitives b4.3)
number of lines of
code programmed
by the designer

c1) Simulation capability of verifying if the
specification can be used to
validate the implementation

Qualitative ++ strength;
+ adequate;
0 weak

c2) Verification capability of demonstrating
formally that the specifica-
tion or generated program
meets the requirements

Qualitative ++ strength;
+ adequate;
0 weak

d1) Code
generation

capability of generating an
executable application from
the model

Qualitative ++ strength;
+ adequate;
0 weak

A Comparison between UML and Function Blocks 215

Table 9.3. Comparison Results

Evaluation Criteria FB UML
a) Requirements Specification

a1) Functional requirements 0 1
a2) QoS requirements 0 2

b) Functional Specification
b1) Applicability 3 1
b2) Maintainability + ++
b3) Modularity / Hierarchy ++ ++
b4.1) Number of used modeling primitives 111 184
b4.2) Number of different modeling primitives 5 5
b4.3) Number of line codes written by the designer 0 96

c) Validation / Simulation
c1) Simulation ++ +
c2) Verification 0 0

d) Implementability
d1) code generation ++ +

This evaluation begins by analyzing the facilities for expressing the system’s
functional requirements. UML offers the facilities provided by the Use Case
Diagram (1 point), in which functional requirements are defined in terms of
actors and Use Cases. On the other hand, the FB approach does not support
this kind of resource (0 points).

Regarding the support for QoS specification, one can see that the RT–UML
profile supports both timing and performance requirements specification (2
points), whilst in the FB approach there is no support for such issues (0 points).
In the FB model the timing requirements are implicit in the functional/behavior
specification. Neither language give support to the specification of power con-
sumption and cost requirements.

Analyzing the model applicability by means of the number of supported
MoCs, it is possible to observe the advantages provided by the FB approach,
as it supports three different MoCs (3 points): time continuous (analog), time
discrete (digital), and event based. Regarding UML, it supports only the event-
based model (1 point). In spite of this there are efforts described in literature
that already address the lack of a dataflow model in UML (see [17], [76]).

Regarding maintainability, the intrinsic OO properties from UML models,
such as the specialization/generalization facilities (inheritance), provide better
maintainability if compared to the structured approach of FB models.

Considering modularity/hierarchy aspects, it is possible to conclude that the
FB model leads to a slight better decomposition. This can be observed by
comparing the Simulink high level model against the UML class diagram. The
first one contains fewer elements, making the interpretation of the physical

216 UML FOR SOC DESIGN

behavior easier. The UML class diagram used in our model maintains the
whole system elements within the same abstraction level, which is somewhat
unsuitable, considering the desired hierarchical features. However, the addition
of the composite structure diagram in UML 2.0 overcomes this problem, since
it allows for decomposition in a natural and straightforward manner.

The next criterion concern model expressiveness: number of used modeling
primitives vs. number of different modeling primitives in use. The FB model
contains 111 modeling primitives, except the plant module, including Simulink
components, connections, ports, states, and transitions. In the UML model, 184
primitives are used. Regarding different modeling primitives in use, the UML
model is represented by means of classes, objects, associations, states, and
transitions. Therefore it is natural to observe an equivalent number of different
modeling primitives if compared with the FB model, which includes blocks,
ports, connections, states, and transitions. Nevertheless, using a design tool
like Simulink, the designer can make use of different pre-defined components
available in a component library.

Another relevant issue relates to the number of lines of code programmed
by the designer in each model. It can be observed that in the UML model the
designer has to manually write 96 code lines, whilst in FB model the program
code was completely generated by the tool. Several UML tools have code
generation capabilities, but they generate only code skeletons for classes and,
at most, code from the Statecharts. The handwritten code parts include mainly
the methods’ behaviors that cannot be captured from the model. On the other
hand, by using the FB model and associated library, the designer is not required
to code the program by him/herself, as observed in our case study. Lastly, our
experimental results show that by using a component library within the UML
model it is possible to reduce the number of handwritten code from 96 to 66
lines.

Regarding model validation/simulation, it is possible to observe that in order
to provide such features suitable modeling/design tools are required. Regarding
the crane case study, only the FB model could be simulated, thanks to the
Simulink tool which provides a simulation engine. The available version of the
Real-Time Studio tool, used for the construction of the UML model, does not
support model simulation. However, considering the authors’ experience with
other UML like modeling tools, they provide support at most for animation of
Statecharts (event based MoC). Consequently, one can state that for this task
the FB model is more adequate, because the simulation environment supports
all the three intrinsic MoCs.

Analyzing the verification features, neither UML nor FB approach have sup-
port of formal verification of complete models. In UML some tools allow for
model checking in specific diagrams, such as Statecharts and Sequence Dia-
grams. Moreover, many tools support consistency checking between diagrams,

A Comparison between UML and Function Blocks 217

for instance checking the connections between the components in a FB diagram
or even guaranteeing that an operation called in a UML collaboration diagram
exists in the related class. For this reason both languages are considered weak in
this aspect. Moreover, UML commercial tools check the syntax of actions in the
Statecharts or if an operation called in a collaboration diagram was defined in
the class. Therefore Damm and Harel [46] proposed the Live Sequence Charts
(LSC) that are a extension of Message Sequence Charts (MSC) with rigorous
semantic. The use of the LSCs allows consistency check between the generated
scenarios and the sequence charts applying formal verification techniques.

Finally, considering the model’s implementability one can see that from both
models an architecture-independent specification can be derived. Still, there are
two aspects that lead to distinct capabilities: amount of code provided by de-
signer and number of pre-defined components. In UML the need for designer
intervention is higher as can be observed in the crane case study, because some
parts of the specification cannot be expressed using UML diagrams (e.g., the
control algorithm). In the FB models the whole code can be generated automat-
ically, since it relies on the use of pre-defined libraries. However, the generated
code requires several modifications/optimizations to be executed outside the
framework provided by Simulink.

9.4 Problems in Mapping from High Level Models to
HW–SW SoC

The SEEP methodology proposes an approach for the synthesis of a dedicated
SoC that starts from a high level model model, as illustrated in Figure 9.1. This
approach suggests the mapping of the high level model to a Java application,
which is further synthesized in order to obtain a dedicated SoC comprising
software and hardware components. This section discusses problems related to
the transformations of FB and UML models into a HW–SW SoC according to
the SEEP methodology. The following is illustrated in Figure 9.14.

The main problem observed in the proposed mapping is the so called ‘MoC
semantic gap’, i.e., the lack of abstractions in the modeling language for repre-
senting properly a certain feature of the system. Another problem regards the
‘generality’ of the specification, i.e., how independent from architecture and
platform it is. Both problems are detailed in the next subsections. Moreover,
this section summarizes the results from the synthesis of the UML model of the
crane system.

9.4.1 The MoC Semantic Gap

This problem relates to the lack of abstractions in the modeling language for
representing properly a certain feature of the system. In our study this gap is
more evident in UML since it does not provide a natural abstraction for modeling

218 UML FOR SOC DESIGN

FB Model
High-level model

UML Model

mappingmapping Simulink toolSimulink tool

Java
specification

SASHIMI tool

Executable specification

software Femtojava
VHDL SW + micro-architecture

Figure 9.14. Proposed Design Flow

some specific behaviors, such as the control algorithm. The main reason for
this problem is that UML is only event based and consequently not capable of
representing the continuous and discrete time MoCs, as required by the control
algorithm. Therefore the designer needs to write the related algorithm using
an adequate programming language, thus reducing the model abstraction. The
consequence is that the resulting model will not be ‘pure’ UML, but UML
skeletons filled with handwritten code. Related approaches that tackle this gap
are presented in Section 9.5.

9.4.2 The Model Generality Problem

It is possible to observe another problem which, at least in UML, is directly
related to the MoC semantic gap. During the design phase the model is filled
with code written in a specific programming language. This makes the model
strongly connected to this language, i.e., the model is composed by UML plus
the programming language (C++, Java, etc). The result of this is that it is
not possible to make code generation for a different target language. For that
reason one needs to develop a new model, rewriting the code within the UML
model. The imminent conclusion is that UML should have its own semantic for
expressing the application’s behavior to allow the design of complete platform-
independent models.

Therefore there is a growing trend towards building systems to different tar-
get platforms directly from models. To enable rapid prototyping it is necessary
to have models designed in a language-independent manner. In this context the
OMG promoted the definition of UML action semantics [148], which, when
combined with UML, allows modelers to define behavioral specifications at a

A Comparison between UML and Function Blocks 219

higher level of abstraction. The main advantage is that the UML action se-
mantics is independent of any specific underlying technology in the execution
environment. The adoption of the precise action semantics for UML supports
the viability of executable UML (xUML). Unfortunately, the precise action se-
mantics for UML is a semantic standard only, not a syntactic standard [25]. It is
easy to see that competing syntaxes may constrain the ability of xUML to gain
a mind share in the development community and may, by extension, hinder the
adoption of this technology. Given that, alternative solutions have been pro-
posed. An example is the Object Action Language (OAL) designed by Mentor
Graphics [131], which is platform-independent and allows the specification of
actions associated to all states of the Statecharts. Other related approaches are
presented in Section 9.5.

From the FB model the whole code can be generated almost automatically,
since it relies on the use of pre-defined libraries and details of the implementa-
tion have already been defined in the model. Nevertheless, the FB model also
has limitations related to the possible target platforms. Parts of the models,
such as the control state machines, can be mapped to different target languages,
but this does not apply to the all FBs, which are mostly language-dependent.
Additionally, if the Simulink tool is used for modeling the system, an exe-
cutable specification can be automatically derived thanks to this tool having a
library of pre-defined components. However, this executable code cannot be
cross-compiled to the embedded platform, since the pre-defined components
are suitable only for the host platform and its provided framework.

9.4.3 Results Summary from the Crane Synthesis

In this work we have focused in the path from a high level model to an SOC
using the SASHIMI tool in order to synthesize a dedicated processor. This
tool generates a VHDL description of a Java processor (femtoJava) and the
application software for this processor. Because the Simulink tool was unable
to generate the Java code of the model, the obtained results reflect only the
synthesis from the UML model.

Table 9.4. Synthesis Results

Area (µp size) 3749 LCs
RAM Size 780 B
ROM Size 8 KB

Table 9.4 presents the results of concrete experiments in terms of memory
size (program memory and data memory) and processor size. The area taken
by the processor was computed in number of FPGA logic cells, after synthesis
from the VHDL description of this processor. These results were obtained
for an FPGA synthesis, but the VHDL description could be also used for the

220 UML FOR SOC DESIGN

generation of an ASIC version. The approximate area in gates of this processor
is around 50k gates. The results were obtained using Xilinx ISE version 6.2i
[232] and the FPGA used was the Xilinx SpartanIIE XC2S200E-6PQ208.

9.4.4 Modeling Approach in the SEEP Methodology

After considering the results of the performed analysis we chose to use UML
as a modeling language in the SEEP methodology for the following reasons:
(i) UML is a recognized standard and is becoming very popular, especially in
industry; (ii) UML offers extension mechanisms (stereotypes, tagged values,
constraints) allowing us to implement our own additional semantics and adding
it into UML; (iii) UML is modeled by a metamodel, itself specified by the
MOF [149]. This allows us to specify a metamodel that extends UML. The
conformity of models exchanged between tools is ensured by the XMI/XML
standard [155]. Using OO concepts of UML a definition of a class is made of
a class interface and a class behavior. This distinction between definition and
instances allows the development of libraries of re-usable components. Another
contribution from OO is the ability to define a component by inheriting features
from another one, which again improves the re-use of components.

Moreover, UML does not depend on any particular methodology. For this
reason we can define our own methodology. Other projects in the area of real
time systems or embedded applications have also chosen UML as the modeling
language. For example, the HASOC methodology [75] extends UML-RT to
include annotations with mapping information. In this work, the authors pro-
pose the association of capsules with additional MoCs, such as Synchronous
Dataflow and Codesign Finite State Machines. Another research group pro-
posed an UML profile for embedded system platforms [36], which allows
the modeling of platforms, quantifying QoS performance and budgeting con-
straints, and revealing platform services. In this work an IIR filter was modeled
using the proposed profile to demonstrate its use in applications targeted to the
wireless domain and other domains with intensive use of digital signal pro-
cessing techniques. The model strategy used in the IIR example is difficult to
understand, mainly because it is hard to see a direct correspondence between
the filter UML model and its describing equation. Moreover, the model is too
verbose, since it uses several modules to describe a simple equation with two
multiplications. Additionally, the model abstraction level is very low, going
down to the micro-operation level, and is not adequate for complex embedded
system modeling.

9.5 Related Works

At present, the authors are not aware of similar work comparing the OO
modeling approach from UML against the FB modeling approach. However,

A Comparison between UML and Function Blocks 221

there are several proposals for combining both modeling paradigms. In [91]
a profile for integrating FBs into UML is proposed. Therefore the General
Function Block Model is presented, working as a kind of adapter between
classes and FBs. Another work [17] addresses the lack of a dataflow model in
UML and presents a proposal for the integration of both modeling paradigms.
More recently Green et al in [76] included the support of dataflow model into
activities UML diagrams, but this work is recent and is not completely validated.

Additionally, other works observe that UML is not suitable for representing
other MoCs besides the event-based one. For that reason other extensions are
proposed. Axelsson [8] proposes an UML extension to represent continuous
time relationships, such as continuous variables, equations, time, and deriva-
tives. A similar work has been conducted by Berkenkötter et al [15], in which
the authors extended UML using as its basis a programming language suitable
for hybrid systems.

Recently a new visual language called Systems Modeling Language (SysML)
was submitted to the OMG [207]. It re-uses a subset of UML 2.0 and extends the
language so as to satisfy the requirements of the UML for Systems Engineering
(SE) domain. In this proposal the activity diagram is extended to support tradi-
tional SE functional flow block diagrams (dataflow) and continuous behaviors.

In order to support model verification, simulation, and synthesis, Bjorklund
[20] proposes the use of Rialto as the intermediate language during the model’s
design. This language has a formal semantics that allows the capture of the
semantics of UML behavioral diagrams. As a result the language can be used
as an execution engine for UML models and also to generate code. Rialto can
also be used to combine multiple MoCs because different scheduling policies
are defined in this language. In this work the authors consider that the activities
diagrams have dataflow as their underlying model of computation and these
diagrams can be interpreted as a Statechart in which all computation is per-
formed in state activities and the transitions are triggered by completion events.
However, a Statechart is control-flow like and is not an adequate representation
for dataflow models. Moreover, as this is an ongoing work, it supports only
some UML diagrams.

Hubbers and Oostdijk [95] highlight the gap between a model and its imple-
mentation, pointing to the difficulty of verifying whether the implementation’s
behavior agrees with the specification. In this context the authors propose the
use of JML (Java Modeling Language) specifications in order to facilitate this
verification. A JML specification allows one to formally verify whether the
generated code implements the specified model. Tools which are compatible
with this language are available, such as ESC/Java [62] and Loop [101]. In
this project a tool called AutoJML has been developed, which automatically
derives JML specifications from UML state diagrams represented in the XMI

222 UML FOR SOC DESIGN

format, beyond the Java code. The combination of the JML specification and
the skeleton code can be formally verified using the ESC/Java.

In [170] one can find a proposal for the integration of different modeling
approaches using UML metamodels, allowing that the designer chooses the
most adequate tool to model a given part of the system. Models developed
with different tools can be integrated, and an executable code can be generated
from this integrated model. In this approach an action language called MeDeLa
is used to specify the operation behavior. This proposal is compliant with the
action semantics proposed by OMG. The code generator generates Java or C++.

9.6 Conclusions

This work has presented a comparison between FB and UML for high level
modeling according to the SEEP methodology. Considering the result obtained,
it can be seen that UML works better for requirements specification. Never-
theless, none of the models deal properly with the specification of embedded
systems requirements, since power, for instance, is not included. An advan-
tage of UML is that it can be extended to incorporate this and other features.
Comparing the developed functional specifications, a similar score is observed
for both approaches. This leads to the conclusion that models are somehow
equivalent, although each has pros and cons in this aspect.

Although OMG promotes efforts towards the precise action semantics, such
as xUML, it does not have a syntactic standard. This weak aspect results in the
use of different syntaxes in the UML based CAD tools. In the course of this
chapter several options for representing the system behavior were presented.
Our approach, for instance, uses Java code within the model to describe the
algorithmic behavior. From the generated Java code one can synthesize a dedi-
cated Java processor. Results obtained for the ASIP generation from the UML
model, containing processor and memory size, have been presented.

Lastly, our conclusion is that UML is more suitable for being used within
the SEEP methodology. This is owing to the following reasons: (i) UML is a
recognized standard and is becoming very popular, especially in industry; (ii)
UML offers extension mechanisms (stereotypes, tagged values, profile) allow-
ing us to implement our own additional semantics and to add it into UML; (iii)
UML is modeled by a metamodel, so that the conformity of models exchanged
between tools is ensured. Moreover, UML does not depend on any particular
methodology, making it suitable for being used in our approach. Addition-
ally, other projects in the area of real time systems or embedded applications
have also chosen UML as their modeling language. Moreover, it provides all
benefits from the object oriented paradigm such as modularity, encapsulation,
re-usability, concurrency, etc.. Therefore its use should be widely expanded in
the new generation of SoCs and embedded systems.

Chapter 10

SoC Using UML

Yves Vanderperren, Wim Dehaene
Department Elektrotechniek – ESAT – MICAS
Katholieke Universiteit Leuven
Leuven, Belgium

Abstract UML is gaining increased attention as a system design language. This is con-
firmed by several reported experiences and current standardization activities such
as the SysML initiative and the UML for SoC Forum in Japan. The adoption of
UML 2 is a significant step towards a broader range of modeling capabilities.
This chapter analyzes the impact of these recent advances on the applicability
of UML in SoC development. An application of such new practice is presented
in a model-driven development process geared towards SoC design and taking
benefit of the best techniques recently introduced. In addition, the crucial issue
of power efficient system design with UML 2 is investigated.

10.1 Introduction

Larger scale designs, increased mask and design costs, ’first time right’ re-
quirements and shorter product development cycles motivate the application
of innovative ’system on a chip’ (SoC) methodologies which tackle complex
system design issues. There is a noticeable need for design flows towards im-
plementation starting from higher level modeling. However, the concepts of
system level modeling, analysis, and refinement are subject to various inter-
pretations, owing to the wider scope of application at higher abstraction levels.
Several entry points into the flow can be defined from high level modeling
languages and abstraction levels.

UML for SoC is attracting growing interest in the recent years, in particular
since 2002 [125, 74, 47, 139, 220], and the conclusions from different experi-
ences in the industry have already been published [164, 64]. The fusion of some
of the best ideas from the digital hardware and software engineering domain
provides major benefits. A common and structured environment for capturing

223

G. Martin and W. Müller (eds.), UML for SOC Design, 223–252.

© 2005 Springer. Printed in the Netherlands.

A Model- Driven Development Process for Low Power

224 UML FOR SOC DESIGN

Figure 10.1. Relationship between Model and Code: (a) Code Only; (b) Code Visualization;
(c) Round Trip Capability; (d) Model-Centric Approach

the requirements, a unified view of the system, a notation complementary to
SystemC are some of the major advantages identified while using UML.

Significant issues remain, however. The most important is the need to cus-
tomize UML towards the specificity of SoC development. Following the trend
of platform-based designs, a UML profile to model embedded system plat-
forms has been proposed [36]. Even so, development tools are slow to realize
UML’s full potential in a SoC context, despite the success of UML in its main
areas. More recently the UML for SoC Forum [88] in Japan has been working
on a specific extension in the form of a UML profile for SoC to solve these
shortcomings and improve interoperability of tools.

Furthermore, UML requires the definition of model elements with clear se-
mantics geared towards SoC design languages, in order to efficiently support
model-centric design flows for SoCs. Several works have already proposed
extensions to UML towards SystemC [12, 143, 173]. The first benefit is code
visualization through graphical notation to aid understanding of the code struc-
ture and behavior (Figure 10.1). As a next step round trip capability between
the code and the UML model becomes feasible if these customizations are stan-
dardized and supported by existing tools. The system models contain enough
information in model-centric approaches to allow complete code generation.
This situation follows the principles promoted by the Model Driven Architec-
ture (MDA) initiative of the Object Management Group (OMG) [132] and the
concept of executable and translatable UML (xtUML) [131, 168]. MDA en-
courages the development of platform-independent (PIM) UML models which
are mapped onto platform-specific (PSM) models. This approach can be seen
as a particular case of model-driven development that emphasizes the role of
(executable) models. However, SoCs can present severe real-time and power

A Model-Driven Development Process for Low Power SoC Using UML 225

constraints which limit the applicability of MDA and the generation of the
system implementation. Moreover, deep sub-micron effects threaten classical
development approaches in which design is separated as much as possible from
manufacturing aspects. As a result the principle of decoupling functionality
from implementation becomes even more problematic with nanometer tech-
nologies and the increasing intrusion of device physics into design [39].

Finally, employing a modeling language by itself is not sufficient. Questions
such as the pros and cons of UML, the available tools and their interoperability
are frequently addressed. But the impact of a well defined development process
which assists engineers in improving their design using UML is often neglected.
UML provides a notation for modelling systems, allows one to couple the model
with conceptual and executable artifacts, addresses complex systems with scal-
able and flexible modeling means, and improves the communication between
stakeholders. UML is neither a methodology nor does it dictate any particular
development process1 to be used, but provides communication support within
the development process, which is the backbone of the project.

This chapter stresses, therefore, the importance of a sound methodology
guiding the system design flow from the requirements capturing phase to the
start of detailed hardware and software implementation, assisted by the model-
ing capabilities of UML 2 and SysML, an extension of UML towards systems
engineering. Their essential features are summarized next before considering
a concrete case study.

10.2 UML and System Design

10.2.1 From UML 1.x to 2

Several deficiencies were identified when applying UML at system level,
as reported, e.g., in [70]. UML 2 alleviates some of these issues. The UML
2 specification is in its finalization phase [154] and represents a significant
milestone in the evolution of UML to support the design of complex systems.
Some concepts from UML-RT/ROOM [190] are now standard, such as the no-
tion of ports. The introduction of the composite structure diagrams eases the
representation of the structural aspects of a system. The improved support for
hierarchical decomposition of the system structure facilitates the representa-
tion of systems which are not necessarily object-oriented in their nature. The
capability to model complex and parallel behavior has significantly improved
with UML 2, which supports the hierarchical decomposition of the behavioral
constructs. Sequence diagrams can have fragments and allow the representa-
tion of loops, alternative sequences, and parallel message exchanges. Activity

1A process describes how to organize work in a common direction and provides a structured set of steps to
design successfully robust systems which efficiently meet the customer requirements.

226 UML FOR SOC DESIGN

diagrams are now based on Petri nets and the representation of concurrent flows
of operation is improved. Timing diagrams stress the importance of time when
showing the interaction between objects and their change in state.

Although UML 2 represents a significant step towards system modeling, it
still presents several imperfections. One of the most significant problems is the
question of the semantics of UML.

10.2.2 UML and the Issue of Semantics

UML is the result of a converging trend from the ’method wars’ towards
a unified notation. As a result a common criticism of UML is the wealth of
available diagrams. Instead of simplifying this situation UML 2 adds four more
diagrams to the nine existing ones in the previous version of UML.

A more severe concern with UML is its lack of semantics2. Although UML
standardizes the syntax of the diagrams it does not provide the detailed semantics
of the implementation of their functionality and structure. Precise semantics is
required to ensure efficient communication, to provide a notion of well formed
model, and to enable automated code generation. On the other hand, providing
too detailed precision would limit the applicability of UML. The domains in
which UML is now applied are so different that they cannot be unified under
a single semantics. UML therefore remains a semi-formal language and al-
lows semantic variation points, i.e., its semantics may vary according to the
application area.

Two opposite directions of solutions can be identified. A first approach
consists in defining precise semantics for a subset of UML based mainly on
class diagrams and simplified state machines. Since UML 1.5 and the adoption
of a precise action semantics the behavioral aspects of UML models can be
specified with enough details to allow an executable application to be generated
from the UML model. The semantically defined set of operations involve
direct manipulation of UML modeling elements and are specified by means of
a text based action language. Owing to the lack of standardized syntax, action
languages vary between tool vendors. Nevertheless, using an action language
allows one to specify the behavior of a system at a very high level of abstraction
and is independent of any execution environment. Model compilers translate
the platform-independent model by mapping it onto a target implementation.
This approach is close to the MDA philosophy and gives rise to the different
flavors of executable and translatable UML (xtUML).

Instead of considering a subset of UML with precise semantics, another point
of view is to provide domain-specific semantics in dedicated UML profiles. A

2The way symbols look like and can be combined forms the syntax of a language. The exact meaning
and interpretation of each symbol constitute the semantics of the language. More details can be found e.g.
in [87].

A Model-Driven Development Process for Low Power SoC Using UML 227

profile is a UML package which defines sets of extensions for a particular
domain or purpose. It allows one to create new modeling constructs based
on the existing ones within UML. As a result a profile does not create a new
modeling language. This would be the case if a new metamodel is defined
from the Meta-Object Facility (MOF) in a similar way to that in which UML
is specified. The motivation behind the use of a profile is the need for a model
to capture accurately the essence of the considered domain. Since UML is
conceived as a semi-formal language and a general purpose notation, modelers
may have to bring domain specific adaptation to the language in order to define
particular semantic elements of interest and to fit their needs. However, profiles
present the risk of transforming UML into a modeling paradigm instead of a
language. For instance, several different profiles have been proposed to bridge
the gap between UML and SystemC [12, 143, 173]. Having a standard extension
would benefit the SystemC community by providing common communication
means. On the other hand, no profile is likely to suit all the needs of each user.
In this aspect a sound and suitable development process for guiding designers in
the application of modeling languages, in particular UML, plays a major role.

Several profiles are already ratified by OMG, such as the UML Profile for
Schedulability, Performance and Time3 [159], or are under standardization pro-
cedure, e.g., the UML for SoC profile or SysML [207]. The latter is introduced
in the following section and applied later to a concrete case study.

10.2.3 SysML

Motivation. The Systems Modeling Language (SysML) is a joint initiative
of OMG and the International Council on Systems Engineering (INCOSE). The
purpose is to refine UML and provide a general purpose modeling language for
systems engineering. This field covers complex systems which include a broad
range of heterogeneous domains4, in particular, hardware and software.

Strong similarities exist between the methods used in the area of systems en-
gineering and complex SoC design, such as the need for accurate requirements
capture, heterogeneous system specification and simulation, system validation
and verification. Several features from SysML can be applied to SoC design.

Overview of SysML. The SysML initiative will result in a profile extending
UML 2 to systems which are not purely software based. Although UML is

3Also called the Real-Time Profile (RTP).
4INCOSE [98] defines systems engineering as an “interdisciplinary approach and means of enabling the
realization of successful systems. It focuses on defining customer needs and required functionality early
in the development cycle, documenting requirements, then proceeding with design synthesis and system
validation while considering the complete problem. Systems engineering integrates all the disciplines and
speciality groups into a team effort forming a structured development process which proceeds from concept
to production to operation.”.

228 UML FOR SOC DESIGN

currently broadly defined5, many concepts remain tightly linked to software
applications and are more relevant from a software perspective, such as de-
ployment diagrams. Whilst UML 2 provides stronger support for modelling
hierarchical system architectures, for example by means of composite structure
diagrams, an ambiguity remains regarding the choice between component [45],
composite structure and deployment diagrams [74, 236], when considering sys-
tems like SoCs in which the description of the hardware part may be as important
as the software part. Moreover, flows such as a discrete stream of data cannot be
represented on any of these diagrams. SysML proposes a unified and domain-
neutral solution to represent the system architecture and flows of information
by means of SysML assembly, which is a stereotyped class describing a system
as a collection of parts with specific roles. The SysML assembly can be used
to represent both the logical and the physical aspects of various of kinds of
systems. Since an assembly is domain-neutral, it can be applied to describe
the hardware as well as the software part in the SoC context. An assembly can
represent a black box view of a system without showing the internal structure,
as well as a white box view in which the internal parts, connectors, and ports
are visible. SysML considers the ’ball and socket’ notation for provided and
required interfaces as being specific to the software domain and is therefore not
used by an assembly.

In addition SysML provides support for representing requirements and re-
lating them to the model of a system, the actual design and the test procedures.
Although tracing the requirements of a system from informal specifications
down to the individual design elements and test cases is a fundamental activ-
ity, UML does not address this subject in detail. A Use Case (UC) analysis
typically helps build up a sound understanding of the expected behavior of the
system and validate the proposed solution. However, requirements are often
only traced to the use cases but not to the design. Consequently the focus on
the responsibility of the different parts of the system is lost and the verification
becomes more complicated. SysML therefore introduces the requirement dia-
gram and defines several kinds of relationships for improving the requirement
traceability. The purpose is not to replace the numerous commercial tools ded-
icated to this subject, but to provide a standard way of linking the requirements
to the design. Requirements can be decomposed by means of the containment
relationship in a similar way to that for class diagrams. The trace dependency
relates derived requirements to source requirements. The system designed and
the requirements are linked by a satisfaction dependency. Finally, the verifi-
cation dependency associates a requirement with the test case used to verify

5“The Unified Modeling Language is a visual language for specifying, constructing, and documenting the
artifacts of systems.” [157]

A Model-Driven Development Process for Low Power SoC Using UML 229

this requirement. Examples of stereotypes defined for these relationships are
shown in the case study later in this chapter.

SysML introduces one more diagram, the parametric diagram, to model
properties and their relationships such as mathematical expressions or con-
straints. This diagram provides more benefits in the scope of mechanical engi-
neering than SoCs.

Although SysML adds two diagrams to UML, it abandons the use of the
communication diagram and the deployment diagram. The latter is considered
specific to the software domain and limited to the deployment of software arti-
facts onto hardware components. The SysML version of the composite struc-
ture diagram with the support for flows is meant to provide an equivalent and
domain-neutral modeling capability. Furthermore, the concept of allocation in
SysML is a more abstract form of deployment and is defined as a design time
relationship between model elements which maps a source onto a target. An
allocation can associate miscellaneous elements. For example, the link between
the requirements and the design elements (the trace and satisfaction dependen-
cies) is a requirement allocation. An allocation also applies to the mapping of a
function onto the structure implementing it (functional allocation) and logical
assemblies onto physical assemblies (behavioral allocation).

Finally SysML provides several enhancements to activity diagrams. In par-
ticular the control of execution is extended such that running actions can be
disabled. In UML 2 the control is limited to the determination of the moment
when actions start. In SysML a behavior may not stop itself. Instead it can
run until it is terminated externally. For this purpose SysML introduces control
operators, i.e., behaviors which produce an output controlling the execution of
other actions.

More information regarding the detailed features available with SysML can
be found in the SysML specification [207].

Shortcomings of SysML. SysML contributes to more rigorous transfer of
the specifications between system, software and hardware engineers, introduces
several modeling elements applicable across multiple domains, and enhances
UML 2 toward systems engineering. Despite these benefits SysML falls short
in the following points.

Use cases are not well integrated with the rest of UML [104]. Although
SysML stresses the traceability from the requirements to the design, it does not
help in solving this issue and the difficulties associated with use cases [70, 120].

SysML provides domain-neutral modeling capability which allows a high
level understanding of systems. However, these modeling constructs are used at
the level of system conceptualization and requirement engineering. They must
be linked later during detailed design to domain-specific model elements—for
example, the UML representation of a SystemC model of the system, or the

230 UML FOR SOC DESIGN

UML model of the software architecture designed. It remains unclear how
the concept of allocation can cope in this situation with notations excluded by
SysML, such as the ’ball and socket’ notation which is applicable to software.
Moreover, SysML does not provide domain-specific semantics and does not
completely solve the semantics issue raised above.

SysML is recent and still under evolution. More lessons from practical expe-
riences are needed and the standardization effort of SysML would benefit from
an involvement from system houses (from the telecom area) and semiconductor
design companies, which could complement the current contributions from the
space, aircraft, and defense industry.

SysML is only a modeling language like UML and does not provide any
development process. SIMILAR [9] is an example of parallel and iterative
process based on a study between several approaches in the area of systems
engineering. Processes are discussed further in the following section.

10.3 Process and Model-Driven Development

UML defines a notation but does not include any development process or
life cycle model. A well defined process provides significant advantages. First,
it coordinates the activity of the project team. This ensures a consistent evo-
lution of work. Second, a process eases the measure of progress by identify-
ing the deliverables at crucial steps and provides effective means of planning.
Third, it encourages continuous assessment of the product designed and the
process itself. Modern development processes for software [106], embedded
software [49], and systems engineering [9] follow Boehm’s spiral model [22]
and are structured around a number of iterations or microcycles. Each of these
involve several disciplines of system development running in parallel, such as
requirements capturing, analysis, implementation and test. The effort spent in
each of these parallel tasks depends on the particular iteration and the risk to
be mitigated by that iteration. As a result large scale systems are incrementally
constructed as a series of smaller deliverables of increasing completeness which
are evaluated in order to produce inputs to the next iteration. This continuous
feedback loop improves not only the quality of the final product but the process
as well, which is nothing else than a development model.

It is crucial to adapt the development process to the particular needs of the
given application domain. In the SoC context, characterized by severe first
time right requirements and exponentially increasing mask costs which prevent
successive physical implementations, executable models provide a means to
support iterative development process. This specificity makes SoC development
processes like [219, 236, 74] resemble systems engineering processes, such as
SIMILAR [9] (Figure 10.2) or HARMONY [94]. Abstract and executable
models play a crucial role in these development processes. First, they resolve

A Model-Driven Development Process for Low Power SoC Using UML 231

Figure 10.2. Amount of Emphasis in the Phases of the Development Lifecycle

ambiguities related to paper specification. Next, they capture the essential
characteristics of the large and complex system for design, and allow designers
to concentrate on the key issues. Third, executable models help analyze the
system and spot performance bottlenecks of the architecture. The bottom line
is that models provide a simplified representation of a system in order to validate
and verify performance in early stages of the development. During validation
the system is evaluated against the specified requirements to guarantee that the
right system has been built. The verification task ensures that the system is
built correctly, it focuses on systematic errors, deadlock conditions, etc., which
must be absent in the designed system. The performance is the degree to which
the system accomplishes its designated functions within given constraints such
as speed and power. Models help identify performance issues but can never
absolutely prove the absence of problems, since a model is a simplification
of reality. Models must capture the essentials characteristics of the designed
system. Executable models rely on a language having precise semantics and
play an essential role in avoiding ambiguity and self-contradictory models.

10.4 Model-Driven Development for SoC: Case Study

This section illustrates by means of a concrete case study the application of
a SoC development process using UML. Although such a process spans the
whole design until completion of the project, this chapter focuses on system
level design and the development of an executable model of the architecture
until the start of the implementation of the detailed hardware and software.

232 UML FOR SOC DESIGN

10.4.1 Concise Summary of the Application

We consider as a case study an IEEE 802.11a/b/g wireless LAN SoC which
must be compatible with two different modulation schemes in the 2.4 GHz
band [97], the Orthogonal Frequency Division Multiplexing (OFDM) and the
Complementary Code Keying / Direct Sequence Spread Spectrum (CCK /
DSSS) modulation. This double scheme in the 2.4 GHz band provides back-
wards compatibility with .11b (WiFi) systems, extends the available data rates
up to 54 Mbit/s, and allows a smooth migration to .11a OFDM systems in the
5 GHz band.

10.4.2 Requirements Capturing and Use Case Analysis

Overview. Capturing requirements efficiently is crucial to starting the design
of multidisciplinary systems with a sound basis. This activity is, however, too
often mingled with design elements. The focus must be kept at this stage on the
goals which external actors expect to be realized by the system, as is illustrated
by the following example.

Figures 10.3, 10.4, and 10.5 show a typical architecture of a complete 802.11
a/b/g solution. We assume the MAC to be an available IP to which the PHY
layer’s capability is appended, including both hardware and software parts. The
MAC is supposed to have a general purpose processor which may be shared
with the PHY, as shown by the dashed lines in 10.5. The purpose is to describe
how external actors (the MAC and the radio) try to achieve a goal by using the
system (the PHY) from a black box point of view.

It seems straightforward to identify quickly the several blocks of the PHY
shown on Figure 10.5, such as the two modems and the interface to the lower
(RF) and upper (MAC) levels. But doing so at a too early stage encourages the
structural separation of the modems and fails to identify a tight functional link
imposed by the requirements. A use case analysis, a key activity which will be
detailed in the next paragraphs, reveals instead that the PHY must detect the
type of frame when receiving a valid signal in the 2.4 GHz band. The modems
both try to synchronize on the incoming signal and recognize their respective
preamble. This operation may be coordinated by an arbiter taking a decision
based on the results from both modems. An early decomposition of the system
restricts the design space exploration and can preclude the investigation of
design alternatives. An architecture actually realizes the use cases (Figure 10.6)
and is proposed after the use case analysis. The system’s behavior is understood
during the use case analysis without introducing design details. Nevertheless,
constraints coming from design aspects (for example, an available platform)
may already be present from the beginning of the system’s development, as in
this example.

A Model-Driven Development Process for Low Power SoC Using UML 233

Figure 10.3. High Level View of the Architecture

Figure 10.4. Overview of the Radio Frequency Part

Figure 10.5. Overview of the Physical and Medium Access Control Layers

234 UML FOR SOC DESIGN

Figure 10.6. Relationship Between Use Cases and the Designed System

Before the use case analysis starts, requirements can be structured by means
of the SysML requirements diagram (Figure 10.7). As indicated in Section
10.2.3, this step improves traceability with the architecture (represented here
by the assembly PhyOFDM corresponding to the OFDM subsystem in the PHY)
and the test suite which will be developed.

The use case analysis brings tangible added value by encouraging thorough
thinking about the expected behavior of the system. Use cases are a textual
description of the system’s behavior in terms of its primary and secondary re-
sponses to external stimuli. The former corresponds to the expected reaction
whilst the latter covers unexpected cases such as error conditions. These alter-
native behaviors, which are extensions to the main success scenario, provide
one of the greatest values of use cases because they contribute to designing
robust and fault resistant systems. Use cases are essentially text despite that

Figure 10.7. Requirement Diagram and Traceability to Design and Test

A Model-Driven Development Process for Low Power SoC Using UML 235

Use Case – Tx 802.11g OFDM

scope: PHY system

trigger: MAC issues a Tx request (2.4 GHz band).

preconditions: CCA idle

postconditions: PHY available for a new Rx or Tx request

success guarantee: Frame mapped to a stream of samples transferred to the RF
for transmission in the 2.4 GHz band

main success scenario:
1 The MAC provides the RATE, LENGTH, and SERVICE parameters

to the PHY. The PHY calculates the number of tail and pad bits.
2 The PHY generates the SIGNAL field, encodes it with a convolutional

code at R=1/2, and maps it onto an OFDM symbol with BPSK modulation.
3 The PHY configures the RF to use the 2.4 GHz band, and starts sending

the training symbols to the RF.
4 The MAC provides the data to the PHY at a maximum average rate of

54 Mbps.
5 The PHY scrambles and encodes the data with the rate specified by RATE.
...
Steps 4–9 repeat until the end of the frame.
10 The PHY notifies the MAC when it transmits the last sample to the RF.

extensions:
1.a The RATE parameter is not valid.

1.a.1 The PHY notifies a Tx error to the MAC and resets its state.
4.a The MAC interrupts its data transfer

4.a.1 The PHY aborts transmission to the RF and resets its state.
...

Figure 10.8. Example of Use Case

use case diagrams may help to organize use cases whilst behavioral diagrams
such as sequence diagrams can illustrate them visually.

Although use cases provide a powerful modeling instrument, they require
skill and experience. Besides the original definition from Jacobson6, numerous
variations have been proposed [93] and differ in the degree of formalism, the
organization between use cases, the relationship with respect to scenarios, and
the modeling capabilities of use cases. Cockburn [42] recommends writing
goal oriented semi-formal text organized in a semi-formal structure, which is
an interesting compromise between the need for clear communication and the
drawbacks of over-abundant formalism.

As an illustration, the use case of the transmit procedure for OFDM modu-
lation in the 2.4 GHz band may look like Figure 10.8. This example illustrates

6“A use case is a sequence of transactions in a system whose task is to yield a measurable value to an
individual actor of the system.” [102]

236 UML FOR SOC DESIGN

a remarkable benefit of the use case analysis: the possible paths in the use case
give rise to a collection of scenarios which help to identify the tests to apply later
on the designed system. The impact of the use case analysis therefore spans
the complete development until the test of the prototype. Use cases contribute
to the principle of testing early and often. The added value of use cases as a
means for regular, systematic, and effective testing depends, however, on the
rigor and formality of the use cases.

Use cases are discovered by identifying the scope of the system, the external
actors, and their goals. In the SoC context the term actor should be interpreted in
a wide sense. It corresponds to any object located outside the system considered
and interacting directly with it, ranging from other large systems (such as the
MAC and the RF in the present case) to a simple time trigger, for example.

Figure 10.9. Use Case Levels

As shown in Figure 10.9, use cases can be structured according to their goal
level [41] instead of using the object oriented relationships between use cases as
defined in UML. Higher levels provide summary use cases and tend to answer
the question why these use cases are of interest, whilst lower levels correspond
to sub-functions closer to the question of how the functionality is done. Valuable
use cases are located mainly inside the dotted line at the ’sea-level’. The scope
and the level of use cases are key practical aspects to keep in mind during the
use case analysis.

Limitations, Pitfalls. It is important to underline several misconceptions
and limits of use cases. First, the distinction between requirements and use
cases is a common point of misinterpretation. Use cases provide a technique
for analyzing specifications, mitigating the functional risk caused by misun-
derstanding the requirements. Therefore use cases are mainly equivalent to the

A Model-Driven Development Process for Low Power SoC Using UML 237

functional requirements, since they detail what the system must do. Use cases
provide limited support for capturing the non-functional requirements or qual-
ity of service (QoS) requirements in the large sense, such as constraints related
to time, power consumption or computational accuracy. This type of require-
ments is associated with the performance risk, caused by insufficient evaluation
of the system performance throughout the design. Primary QoS requirements,
such as the packet error rate tolerated by the IEEE WLAN standard, can be
represented in SysML requirements diagrams and traced to the designed SoC.
Derived QoS requirements, such as a limited processing time, are the conse-
quences of primary QoS requirements and design constraints. The degree of
satisfaction of the system in terms of its QoS requirements can be evaluated
by means of executable models of the SoC, using for example C/C++ based
languages such as SystemC [219, 64, 74]. This approach avoids postponing and
ignoring crucial parts of the system analysis. As the results are only accurate
to the level of the model of the system, dedicated attention must be paid to the
assumptions and the abstraction level of the model.

Second, system architects often have exaggerated expectations with use
cases. In particular, it should be underlined that use cases describe the be-
havioral requirements but do not lead straightforwardly to an implementation.
Applying a functional decomposition of the system structure with the help of the
use cases is a mistake. Instead, a proposed implementation must be validated
by means of the scenarios from the use cases.

Finally, numerous questions such as the determination of the completeness,
the correctness, the consistency of use cases, or the appropriate level of details,
commonly arise while writing use cases. The reader is referred to the available
literature for practical hints and solutions [41, 112].

10.4.3 From Use Cases to Architecture Modeling

Realization of the Top Level Use Cases. Contrary to a waterfall approach,
the evolution from the use case analysis to the actual design occurs smoothly.
Elements of a possible architecture are gradually introduced as soon as the
major use cases have been developed while use cases are further refined. The
system is opened up, broken down into large scale subsystems to which clear
responsibilities are assigned (Figure 10.10). Referring to the introductory ex-
ample of Section 10.4.2, it should be stressed that these main components are
identified only now. This draft architecture is then validated against the top
level use cases. The use case analysis is therefore a critical step, as it drives
the complete design process. Unchecked errors or unexpected behaviors risk
propagating through the project with dramatical consequences.

Figure 10.11 presents a sequence diagram corresponding to the use case for
the reception in the 2.4 GHz band, in which the system is now seen as a white

238 UML FOR SOC DESIGN

Figure 10.10. PHY Top Level Rx 2.4 GHz Sequence Diagram

box view. As shown in the referenced sequence diagram (Figure 10.11), the
PHY receives samples from the RF at a rate dictated by the ADC, in the present
case 40 MHz. Owing to the different data rates supported by the OFDM and
the CCK/DSSS modulations, the two modems work at different frequencies,
20 and 22 MHz. The block interfacing the RF performs the appropriate rate
conversion. Upon request from the MAC, the PHY listens to the channel and
tries to detect an OFDM or a CCK/DSSS signal. If a signal is present the

A Model-Driven Development Process for Low Power SoC Using UML 239

Figure 10.11. PHY Sequence Diagram for the Reception of Samples from the RF

RFIF detects that the channel is busy and enables both modems. The RFIF
adjusts the gain so that the amplified signal can be processed by the modems.
These attempt to recognize specific characteristics of the OFDM or CCK/DSSS
preamble initiating each frame. Once one of the modems detects the pattern
it expects it notifies the RFIF, which consequently disables the other modem.
Received samples are then demodulated and transferred to the MAC until the
end of the frame, as indicated by the loop fragment.

Figure 10.12. OFDM Preamble

Figure 10.12 represents the preamble which constitutes the beginning of an
OFDM modulated frame [96] and imposes several hard real-time constraints.
The Automatic Gain Control (AGC) functionality should, for example, be per-
formed in 4 µs at most, whilst the modems must detect the preamble type in a
window time lying between 8 and 10 µs. Sequence diagrams can be annotated
with real-time constraints expressed as boolean expressions placed within curly
braces. However, UML does not specify the precise syntax nor the semantics
of such timing markers. Even though the Real-Time Profile (RTP) provides a
set of standard stereotypes for expressing time related aspects, it does not solve
this issue completely. Each particular development process or methodology
must therefore clarify the remaining ambiguities.

240 UML FOR SOC DESIGN

Besides these constraints, mechanisms such as timers are introduced to en-
sure a timely reaction of the modems. Although the detailed implementation of
these features is not yet decided, these devices are identified while determining
the responsibility of each subsystem. They constitute essential elements in sat-
isfying the assumptions between the subsystems and the development of robust
SoCs.

Numerous degrees of freedom exist at this stage and the proposed architec-
ture is only one of the possible solutions in the design space. In this example the
coordination between the modems and the interfaces is distributed amongst the
subsystems. Instead a central coordinator could be introduced. Such a decision
affects the responsibilities of the subsystems and possibly the interfaces to the
actors outside the current scope (the RF and the MAC). Investigating alterna-
tives is essential to reducing project risk. Executable models of the system here
play a decisive role because they help verify early the performance of design
alternatives in a limited amount of time. Metrics specific to the particular appli-
cation must be defined to assess the performances of these design alternatives.
In this example the IEEE standard imposes a worst case answer time of 16
µs, the duration of the short inter-frame space (SIFS, see Figure 10.13), and
design alternatives will have different time margins with respect to this con-
straint. However time is not the only criterion. Other aspects such as power
consumption must be taken into consideration despite the possible difficulty
in accurately estimating these factors. This question is further addressed in
Section 10.4.4.

Figure 10.13. Maximum Allowed Inter Frame Times

Refinement of the Top Level Use Cases. The top level use cases are
refined while design elements are gradually introduced: the use case analysis
is performed recursively at the subsystem scope in a similar way as for the top
level. The subsystem use cases are derived from the top level requirements and
the architecture decomposition of the system. For instance, the activity diagram
in Figure 10.14 is a more detailed view of the MACIF behavior resulting from
a use case analysis on this subsystem.

A Model-Driven Development Process for Low Power SoC Using UML 241

Figure 10.14. MAC Interface Behavior

As a result the transition between the use case analysis and the design effort
occurs smoothly and follows the principle of iterative development processes.
The algorithmic work proceeds in parallel and follows conventional lines.

The degree to which design details should be introduced varies case by case
and is a tradeoff between two opposite concerns: whereas it is a mistake to bring
design details too early, the architecture must be validated with enough precision
to avoid costly redesigns. Hidden requirements are discovered while moving
further towards design. As an example the severe constraint on the reaction time
of a terminal (Figure 10.13) has a direct impact on the maximum latency of the
PHY. Assuming a MAC reaction time of 2 µs and a preparation time of 2 µs in
the PHY to start the generation of the preamble in the Tx direction, the PHY
must have a latency smaller than 12 µs in the Rx direction. This requirement
propagates further down at the level of the different subsystems within the
modems. The time budget represented informally in Figure 10.15 for the OFDM
modem is more accurately represented by a time diagram (Figure 10.16).

Figure 10.17 shows how the timing budget is specified at the detailed level
of the FSM describing the synchronization of the OFDM modem.

242 UML FOR SOC DESIGN

Figure 10.15. Real-Time Constraint on the OFDM PHY Modem

Figure 10.16. Time Diagram for the OFDM PHY Modem

A Model-Driven Development Process for Low Power SoC Using UML 243

Figure 10.17. Time Budget of the OFDM Synchronization FSM

A SysML assembly describes the system in terms of its structure and the
data flow, but does not imply any particular implementation domain and parti-
tioning between hardware and software. By analyzing the system architecture
further and identifying the main blocks and associated time budgets it becomes
clear that several parts, such as the synchronization, have very high processing
demands which a software implementation cannot provide. Neither can other
parts be implemented on a general purpose processor, but a tradeoff between
the performances of dedicated hardware and the flexibility of software can be
obtained by means of custom processors like application specific instruction
processors (ASIPs). Memories are introduced to relax the timing constraints
between the processing blocks. Further questions related to the partitioning be-
tween hardware and software or the number of processors are outside the scope
of this chapter. At the end of this step one or several partitioning solutions
arise and can be investigated further. Figure 10.18 depicts one of the possible
choices for the present case study.

Figure 10.18. Hardware/Software Partitioning of the OFDM Modem of the PHY

244 UML FOR SOC DESIGN

As soon as the system architecture has been investigated in sufficient detail to
allow an executable model to be constructed, the system architecture is validated
by running the scenarios from the use case analysis. When to build an executable
model during the development process depends on the risks to be assessed and
the degree of implementation detail the model is expected to abstract. Before
detailing this question further it is worth briefly considering the relationship
between UML and system level languages.

UML and SoC Languages at System Level. Several languages have been
developed in recent years to support higher abstraction levels than RTL. Pro-
posals for system level languages are based on extensions of existing software
or hardware languages, such as C (SpecC, Handel-C), C++ (SystemC, Cynlib),
VHDL or Verilog (SystemVerilog), or new languages created specifically for
system level design (Rosetta) [82]. The different flavors of executable UML
fall in the latter category as they rely on a tool specific action language which is
platform-independent, although some code belonging to one of the languages
above is eventually generated by a model compiler provided that mapping rules
are defined for that specific language. In any case there are a number of essential
requirements a language must fulfil at system level.

First, a language can only be executed if its syntax and semantics are unam-
biguous. As a consequence UML itself is not enough and must either have its
semantics clarified or be associated with an unambiguous executable language.

Second, a language at system level must support abstraction and be able
to describe heterogeneous implementation domains (hardware/software, ana-
log/digital) and models of computation (MOC). In this respect C/C++ based
languages have common roots with embedded software and provide a smoother
transition toward software design, because they bring hardware and embedded
software into the same language base. The software part can indeed be linked
to a high level model of the hardware part and verified without waiting for the
completion of the hardware design [40] and time consuming co-simulations.
Moreover the ongoing work on SystemC-AMS [218] to extend SystemC to-
wards continuous time and mixed discrete event/continuous time systems is
expected to provide the missing bridge for including in system simulations the
analog front-end part of SoCs. SysML is a possible answer based on UML
and provides a domain-neutral representation of systems. It has, however, the
drawback of not being executable and abstracts the domains instead of giving
them specific semantics.

Third, there must be a painless path to lower abstraction levels. This ques-
tion is related to the main purpose of models and how the representations of
the system at different abstraction levels are linked. MDA is close to synthe-
sis-based approaches because it seeks to automate the path between models
and abstract implementation details. This typically imposes several restrictions

A Model-Driven Development Process for Low Power SoC Using UML 245

on the models and the language. According to this view models are a repre-
sentation of the system at a higher level but still have a defined link with the
implementation. On the other hand, verification-oriented solutions consider
models as a risk-mitigating tool and emphasize the role of test bench reuse,
testing the system at a lower abstraction level (such as cycle-accurate RTL)
using higher level test benches (e.g. based on SystemC and SCV, the SystemC
Verification library). Models are used here mainly as an abstract representation
of a system in order to gain a thorough understanding of the system before
starting the design and testing it early. Furthermore, models act as a reference
for further design steps and reduce the problem of creating synthesizable mod-
els. However, this creates a gap between models and implementation that must
be carefully compensated by thorough testing. For reasons explained in the
introduction, severe implementation constraints may restrict the application of
MDA to SoC design. In addition, model-driven approaches focusing on the ver-
ification of the functionality and the performance of a system can take benefit
from languages which support several abstraction levels at the same time, such
as SystemC. This feature allows gradually refining parts of the model in order to
reduce the gap between transaction level models of the system and its RTL de-
scription [219], and supports the principles of iterative development processes
in which the system designed is gradually refined. Object-oriented languages
naturally complement SoC methodologies which involve UML, since the link
between models expressed in OO languages and their UML representation fol-
lows principles similar to the application of UML to classical software artifacts.
Figure 10.19 shows how the SystemC model of the OFDM PHY subsystem can
be documented using UML. However, UML is relevant with non-OO languages
as well, as is indicated by early works of VHDL generation from UML models
for verification [130] or more recent efforts for synthesis purposes [19, 184].

Figure 10.19. UML Representation of the SystemC Model of the OFDM PHY Modem

246 UML FOR SOC DESIGN

As these examples illustrate, requirements analyzed with the help of UML may
be implemented without using OO.

The bottom line is that UML can be complemented with several SoC design
languages. This is required when using standard UML because it provides
only a notation and is not executable. We will therefore close this section by
considering SystemC as the target language to model and assess the system
architecture.

Executable Models of the Architecture. The purposes of an executable
model of the architecture using, e.g., SystemC can be summarized as follows.
First, it is constructed to validate completely the system’s behavior, because
it avoids the ambiguity of paper specifications. Second, the model is meant
to capture essential characteristics of the system such that its performance can
be quantified. Although some information is lost when raising the abstraction
level, the impact of limited precision and fixed point effects on intensive digital
signal processing hardware parts can for example be quickly assessed. Third,
the model abstracts the description of the hardware and provides a platform for
an early development of the embedded software part of the design. Last, but
not least, an executable model acts as a reference and tool for test generation
as input to the detailed hardware design. The SystemC executable model adds
precision to the scenarios generated from the use case analysis and provides
strong cross verification capabilities between the model of the architecture and
the RTL description. Although SystemC can reach RTL level and be used for
synthesis purposes, doing so does not take advantage of the major assets of
SystemC and does not correspond to its mainstream use [51].

The ability to model the system at different levels of abstraction is vital to
support an iterative development process, since it allows one to gradually con-
struct more refined versions of the system model with an increasing amount of
detail. The model can be refined along the dimensions of 1) time (cycle accu-
rate or high level event-driven processing, both in terms of the representation
of the computation as the communication), 2) structure (degree of hierarchical
decomposition of the modeled system), 3) functionality (discard of non-critical
functions in the model), 4) data (bit accurate or object based, for example).
More details about the taxonomy of models can be found in [80, 30]. Options
for refining the hardware and software parts are further described in [219].

The executable model provides a verified executable specification as input
to the detailed design. The test scenarios developed at system level are reused
throughout the design and play a major role in defining the suite of prototype
tests. Figure 10.20 presents an overview of the design flow followed in this
chapter.

Real-time constraints have concentrated a major part of our attention in the
previous sections. As power consumption is becoming a technological issue

A Model-Driven Development Process for Low Power SoC Using UML 247

Figure 10.20. UML/SystemC Based Design Flow

of crucial importance, UML should also facilitate the development of power
efficient systems. In the remainder of this chapter we look further into this
question with the help of the same case study.

10.4.4 Power Efficient System Design: Can UML Help?

Need for Power Aware System Design. Current works investigating the
application of UML to SoC design seek to bridge the gap between heterogeneous
domains but do not take into account power consumption, a rising technological
concern of major consequence [180, 39].

As the feature size of the VLSI circuit technology decreases towards the deep
submicron range, device physics increasingly threatens classical development
approaches. These separate digital design aspects as much as possible from
manufacturing issues and concentrate design efforts on area minimization and
timing analysis. However, severe power constraints emerge and are now im-
posed through the entire design flow, motivating power management solutions
at each level of abstraction. Numerous power optimization techniques ranging
from architectural to circuit level are available [33]. However, the power saving
capabilities of these methods are limited and concentrate the power optimization

248 UML FOR SOC DESIGN

effort at a late stage of development. Only optimizations and power manage-
ment solutions applied sufficiently early in the design cycle have potential for
radical power reduction.

At the same time the emergence of low power wireless technologies and the
wealth of mobile battery powered devices necessitate consideration of power
constraints at system level, as is illustrated by several works on power efficient
wireless LAN systems, wireless video streaming applications and ultra wide
band (UWB) systems [107, 176, 38, 117]. Although new batteries with in-
creased stored energy are under development, an optimal control system must
be developed at system level in order to optimize the energy use of the battery.
The bottom line is that these recent trends raise the need for appropriate captur-
ing of the power needs and specifications of a given system and the available
resources.

Embedded software is also affected by power constraints. First, software
can decide when it is possible to trade off the processor and/or hardware per-
formance and the power consumption without sacrificing the overall system
performance. The power consumption follows the relationship P = CV 2

ddf
and can be reduced by means of frequency or voltage scaling [29] or by shut-
ting down blocks of hardware which are not being used. As a consequence
specifications for embedded software must capture the power requirements of
the system on top of functional and real-time requirements taken into account
until now. Second, the energy consumption of software itself and the pro-
cessor on which it is running becomes a relevant concern and has attracted
attention [216, 198, 23, 60].

In a word, recent technological evolutions both in terms of new applications
and underlying implementation technology require power aware design flows.
The long term success of UML in the domain of SoC design does not only
depend on its capability of supporting the design of complex systems but also
on its potential to take into account the specificity of power constrained systems.

Role of UML in Power Efficient System Design. As underlined in the
previous paragraphs, power constraints must be taken into account early in the
design flow. The approach presented in this chapter allows the specification of
power needs at system level in order to identify power management solutions
early in the design. The benefits of SysML in terms of improved traceability of
the requirements towards the actual design are applicable to power constraints.

Furthermore, the stereotypes defined in the RTP profile can be applied beyond
the context of time constrained systems, as is illustrated by following examples.
A battery can be modeled as a passive resource with specific attributes, such as
its energy density or discharge characteristics (Figure 10.21). Dynamic power
management solutions which aim at extending the battery lifetime are equivalent
to the concept of a resource manager applying a resource control policy to the

A Model-Driven Development Process for Low Power SoC Using UML 249

Figure 10.21. Applying the RTP to Model Resources and Battery Access Policy

battery. The specificity of the battery control policy is application-dependent
and out of the scope of the RTP. It could be based, for example, on an algorithm
offloading tasks between terminals [176], or combined with the time scheduling
algorithm such that power hungry tasks do not overlap in time [107].

But the RTP provides only a limited answer. An energy conscious policy such
as in [176] considers the energy dissipation cost of the communication when
dispatching the heavy workload from a mobile host to an AC powered server.
The message exchange in such a case needs proper annotation to capture the
energy cost associated with the communication and the offloaded computation,
where the RTP falls short. A similar conclusion can be drawn in the context
of power aware routing algorithms at MAC level for Ultra Wide Band (UWB)
communications [117]. Such examples raise again the issue of standardization
and semantics of the annotations.

Even if designers have the means of capturing the power constraints of a
SoC in their UML models, the most important question is the ability to support
power consumption analysis at system level. Power optimization techniques
can be enhanced with the visual means of UML 2. Figure 10.22 is closely
related to Figure 10.21 and further details the example [107] mentioned above.
In this case the tasks at the MAC level of a wireless LAN system are scheduled
such that the current peaks caused by an overlap of power demanding tasks
are avoided. In this way the discharge profile becomes more battery friendly.
Although power is traded versus time in a more subtle way than the classical
dynamic frequency scaling approach, the data rate may decrease. Even though
the benefit is not apparent at first sight, the end result is an improved battery
capacity and extended lifetime. A time diagram provides a visual means of
easily representing the overall activity and the effect of the block scheduling on
the total power consumption.

However, power analysis techniques require executable models in order to
provide accurate results. A static analysis of annotated UML models, as sug-
gested by the RTP, is not adequate for power estimation. An executable HW/SW

250 UML FOR SOC DESIGN

Figure 10.22. Battery Friendly Battery Discharge Profile: Unmodified (Light Grey) and De-
layed (Dark Grey) Tasks

cosimulation environment is required such that a dynamic or a mixed perfor-
mance analysis can be carried out. The example above corresponds to the latter
situation [108]. A detailed simulation is performed once in order to extract
the power consumption figures of selected blocks. This characterization step
is followed by the static generation of several power traces depending on how
these blocks are scheduled. A dynamic performance analysis relies solely on
simulation traces. It is therefore slower but can support the analysis of more
complicated scenarios. Instead of generating the power consumption curve for
a single scenario as above, the power consumption figures extracted in the char-
acterization step can be included in the SystemC executable model to simulate
more scenarios. A time diagram can then be generated based on the simulation
results. The bottom line is that UML can provide a visual aid and complement
existing power analysis techniques, but again requires an executable environ-
ment.

A Model-Driven Development Process for Low Power SoC Using UML 251

Still the question of the power estimation, how to obtain accurate power
figures, is the critical aspect of any power analysis technique. The importance
of this issue must be stressed although it is beyond the scope of this chapter.
One possibility is to characterize and extract parameters to be used at higher
levels of abstraction, as shown above. Another solution is to synthesize a model
at a lower abstraction level, perform the power estimation at that level by means
of activity files from simulations, and bring the results back to the user. This
approach is classically implemented in conjunction with RTL synthesis tools as
well as more recent behavioral synthesis tools starting from VHDL or C/C++.
Obviously UML is particularly an interesting candidate to provide a graphical
aid in the latter case. The main issue remains the accuracy of these power
estimations methods at system level, which still need to be assessed against
several concrete cases and implementations.

A final remark should be made regarding power aware embedded software.
The RTP Profile focuses on the capability of capturing time information essen-
tial for a particular analysis technique such that predictions can be made about
the real-time performance of a system under different conditions. However, sev-
eral works related to energy aware scheduling algorithms could suggest further
enhancements of the profile [233, 230]. Such algorithms optimize timeliness
and energy consumption in a unified way. The RTP does not allow scheduling
techniques which take into account more constraints than only time require-
ments, and considers only time as the major non-functional aspect. Stronger
support for power aware embedded systems is required.

10.5 Conclusions

The recent advances in UML and SysML present a valuable milestone for
the application of UML to modern chip design. Further formalization and
standardization are needed. In addition, increasing attention must be paid to
power aware design flows in order to consolidate the applicability of UML to
SoC design in the future. It is essential to remember that the standard UML
is only a notation. UML does not solve the difficulty associated with systems
analysis but provides means for efficient communication between the project
stakeholders. Hence a sound development process which suits the peculiarities
of SoC design is necessary to complement the use of UML for SoC design.
Furthermore, executable models are required for early and detailed analysis
of the system performances. Several options are possible: besides xtUML
the standard UML can be associated with existing system level languages, in
particular C/C++ based languages. There is ample room for discussion on
the pros and cons of different SoC development processes using UML and how
these consider the role of models. Irrelevant to the specific characteristics of the
particular adopted methodology, it is beneficial to extend SoC engineering from

252 UML FOR SOC DESIGN

its focus on hardware and software technologies to an engineering discipline
of system development. A multi-disciplinary approach is crucial to coping
not only with macroscopic aspects, such as increasing product complexity and
reduced ’time to market’ requirements, but also the consequences of the physical
aspects of SoC, in particular issues related to power consumption.

References

[1] Action Semantics Consortium - UML Subcommittee Webpage.
www.kabira.com/as/home.html

[2] J. Alderman, M. London, S. Sorensen, and D. Yang. SHOOT-EMU—
Software/Hardware Object Oriented Tool for Executable Modelling.
Fourth Year Group Project Report, Department of Computation, UMIST,
June 2003.

[3] P. Alexander, R. Kamath, and D. Barton. System Specification in Rosetta.
In IEEE Engineering of Computer Based Systems Symposium, Edin-
burgh, Scotland, 2000.

[4] M. Ardis. A Framework for Evaluating Specification Methods for Re-
active Systems: Experience Report. In IEEE Transactions on Software
Engineering, 22(6), IEEE Press, 1996.

[5] M. Awad, J. Kuusela, and J. Ziegler Object-Oriented Technology for
Real-Time Systems: A Practical Approach Using OMT and Fusion.
Prentice-Hall, Eaglewood Cliffs, NJ, USA, 1996.

[6] ARM Limited. AMBA AHB Cycle Level Interface Specification, 2003.

[7] D.I. August, K. Keutzer, S. Malik, and A.R. Newton. A Disciplined
Approach to the Development of Platform Architectures. In Microelec-
tronics Journal, 33(11), November 2002.

[8] J. Axelsson. Real-World Modeling in UML. In 13th International Con-
ference on Software and Systems Engineering and their Applications,
Paris, France, December 2000.

[9] A.T. Bahill and B. Gissing. Re-evaluating Systems Engineering Concepts
Using Systems Thinking. In IEEE Transactions on Systems, Man, and
Cybernetics—Part C: Applications and Reviews, 1998.

[10] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,

254 UML FOR SOC DESIGN

and B. Tabbara. Hardware-Software Co-Design of Embedded Sys-
tems: The POLIS Approach. Kluwer Academic Publishers, Boston/Dor-
drecht/London, 1997.

[11] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic Sys-
tem Design Environment. In IEEE Computer, 36(4), April 2003.

[12] L. Baresi, F. Bruschi, E. Di Nitto, and D. Sciuto. SystemC Code Gen-
eration from UML Models. In Ch. Grimm (ed.): System Specifica-
tion & Design Languages. Kluwer Academic Publishers, Boston/Dor-
drecht/London, 2003.

[13] A. S. Basu, M. Lajolo, and M. Prevostini. UML in an Electronic
System Level Design Methodology. In UML for SoC Design Workshop
at DAC’04 (UML-SoC’04), San Diego, CA, USA, June 2004.

[14] Th. Beierlein, D. Fröhlich, and B. Steinbach. UML Based Codesign of
Reconfigurable Architectures. In Forum on Specification and Design
Languages (FDL’03), Frankfurt, Germany, September 2003.

[15] K. Berkenkötter, S. Bisanz, U. Hannemann, and J. Peleska. Hybrid
UML Profile for UML 2.0. In Workshop on Specification and Validation
of UML Models for Real Time and Embedded Systems (SVERTS 2003),
San Francisco, CA, USA, October 2003.

[16] S.S. Bhattacharyya, P.K. Murthy, and E.A. Lee. Software Synthe-
sis from Dataflow Graphs. Kluwer Academic Publishers, Boston/Dor-
drecht/London, 1996.

[17] L. Bichler, A. Radermacher, and A. Schürr. Integrating Data Flow Equa-
tions with UML/Realtime. In Real-Time Systems, 26(1), Kluwer Aca-
demic Publishers, Boston/Dordrecht/London, January 2004.

[18] M. Björkander and C. Kobryn. Support for Embedded Systems in
UML 2.0. In E. Villar and J. Mermet (eds.): System Specification and
Design Languages: Best of FDL 2002, Kluwer Academic Publishers,
Boston/Dordrecht/London, 2003.

[19] D. Björklund and J. Lilius. From UML Behavioral Descriptions to Effi-
cient Synthesizable VHDL. In IEEE Norchip Conference, Copenhagen,
Denmark, November 2002.

[20] D. Bjorklund, J. Lilius, and I. Porres. A Unified Approach to Code
Generation from Behavioral Diagrams. In Forum on Specification and
Design Languages (FDL’03), Frankfurt, Germany, September 2003.

REFERENCES 255

[21] C. Bock. UML2 Activity and Action Models Part 3 Control Nodes. Jour-
nal of Object Technology, 2(6), ETH Swiss Federal Institute of Technol-
ogy, 2003.

[22] B.W. Boehm. A Spiral Model of Software Development and Enhance-
ment. In IEEE Computer, 21(5), May 1988.

[23] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R. Zafalon.
Energy Estimation and Optimization of Embedded VLIW Processors
based on Instruction Clustering. In 39th Design Automation Conference
(DAC’02), New Orleans, LA, USA, 2002.

[24] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language
User Guide. Addison-Wesley, Boston, 1999.

[25] G. Boyd. Executable UML: Diagrams for the Future. In devX.com,
February 5, 2003. www.devx.com/enterpresi/Article/10717

[26] F. Bruschi. A SystemC Based Design Flow Starting from UML Models.
In 9th European SystemC Users Group Meeting, Paris, France, 2004.

[27] F. Bruschi, E. di Nitto, and D. Sciuto. SystemC Code Generation from
UML Models. In System Specification and Design Languages: Best
of FDL’02, Kluwer Academic Publishers, Boston/Dordrecht/London,
January 2003.

[28] F. Bruschi and D. Sciuto. A SystemC Based Design Flow Starting from
UML. In 6th European SystemC Users Meeting, Stresa, Italy, October
2002. www-ti.informatik.uni-tuebingen.de/∼systemc

[29] T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A Dynamic Voltage
Scaled Microprocessor System. In IEEE Journal of Solid-State Circuits,
35(11), IEEE CS Press, November 2000.

[30] L. Cai and D.D. Gajski. Transaction Level Modeling: An Overview.
In 1st IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign & System Synthesis, Newport Beach, CA, USA, October 2003.

[31] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Tur-
chetti. Transaction-Level Models for AMBA Bus Architecture Using
SystemC 2.0. In DATE’03 Designers’ Forum, Munich, Germany, 2003.

[32] Celoxica. Agility Compiler for SystemC Synthesis. 2005.
www.celoxica.com/agility/FlashLoader.htm

[33] A. Chandrakasan and R. Brodersen. Low-Power CMOS Design. Wiley-
IEEE Press, 1998.

256 UML FOR SOC DESIGN

[34] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd. Sur-
viving the SOC Revolution. Kluwer Academic Publishers, Boston/Dor-
drecht/London, 1999.

[35] W. H. Chen, C. H. Smith, and S. C. Fralick. A Fast Computational
Algorithm for the Discrete Cosine Transform. In IEEE Trans. on Com-
mununications, vol. COM-25, 1977.

[36] R. Chen, M. Sgroi, G. Martin, L. Lavagno, A. Sangiovanni-Vincentelli,
and J. Rabaey. Embedded System Design Using UML and Platforms.
In Forum on Specification and Design Languages (FDL’02), Marseille,
France, September 2002.

[37] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-Vincentelli,
and J. Rabaey. UML and Platform-Based Design. In L. Lavagno, G.
Martin, and B. Selic (eds.): UML for Real: Design of Embedded Real-
Time Systems, Kluwer Academic Publishers, Boston/Dordrecht/London,
2003.

[38] K. Choi, K. Kim, and M. Pedram. Energy-Aware MPEG-4 FGS Stream-
ing. In 40th Design Automation Conference (DAC’03), Anaheim, CA,
USA, 2003.

[39] P. Clarke. Bridging the Divide Between Design and Manufacturing.
Silicon Strategies, November 2003.

[40] A. Clouard, K. Jain, F. Ghenassia, L. Maillet-Contoz, and J.-P. Strassen.
Using Transactional Level Models in a SoC Design Flow. In W. Mueller,
W. Rosenstiel, J. Ruf (eds.): SystemC: Methodologies and Applications,
Kluwer Academic Publishers, Boston/Dordrecht/London, 2003.

[41] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, Boston,
2000.

[42] A. Cockburn. Use Cases, Ten Years Later. STQE Magazine, 4(2), March-
April 2002.

[43] J. Cohn. Technology Challenges for SoC Design: An IBM Perspective.
In G. Martin, H. Chang (eds.): Winning the SoC Revolution, Kluwer
Academic Publishers, Boston/Dordrecht/London, 2003.

[44] CriticalBlue Webpage. www.criticalblue.com

[45] A. Cuccuru, P. Marquet, and J.-L. Dekeyser. UML2 as an ADL Hierar-
chical Hardware Modeling. Technical Report 5166, Institut National de
Recherche en Informatique et en Automatique, April 2004.

REFERENCES 257

[46] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. In Formal Methods in System Design, 19(1), Kluwer Academic
Publishers, Boston/Dordrecht/London, 2001.

[47] G. de Jong. A UML-Based Design Methodology for Real-Time and Em-
bedded Systems. In Design Automation and Test in Europe (DATE’02),
Paris, France, March 2002.

[48] DOM Webpage. www.w3.org/DOM

[49] B.P. Douglass. Real-Time UML: Developing Efficient Objects for Em-
bedded Systems. Addison-Wesley, Boston, 2004.

[50] B.P. Douglass. Rhapsody 5.0 Breakthroughs in Software and Systems
Engineering. White Paper. I-Logix, 2005.
www.ilogix.com/whitepapers/whitepapers.cfm

[51] Doulos. SystemC in Europe – Current Usage and Future Requirements.
Technical Report, Doulos, May 2003.

[52] I. Drost. Estimation of Execution Probabilities and Frequencies of OO
Models. Diploma Thesis, University of Applied Sciences Mittweida,
Germany, 2003.

[53] dSPACE GmbH. AutomationDesk Guide Release 4.2. Paderborn, Ger-
many, March 2005. www.dspace.com

[54] M.D. Edwards and P.N. Green. UML for Hardware and Software Object
Modeling. In L. Lavagno, G. Martin, and B. Selic (eds.): UML for Real:
Design of Embedded Real-Time Systems, Kluwer Academic Publishers,
Boston/Dordrecht/London, 2003.

[55] M. D. Edwards and P. N. Green. Run-time Support for Dynamically
Reconfigurable Computing. In Journal of Systems Architecture: the EU-
ROMICRO Journal, 49(4-6), Elsevier North-Holland, New York, NY,
2003.

[56] S. Edwards, L. Lavagno, E..A. Lee, and A. Sangiovanni-Vincentelli. De-
sign of Embedded Systems: Formal Models, Validation, and Synthesis.
In Proceedings of IEEE, 85(3), March 1997.

[57] A. Eliens. Principles of Object-Oriented Software Development. Addi-
son-Wesley, Boston, 2000.

[58] J.P. Elliott. Understanding Behavioral Synthesis. Kluwer Academic
Publishers, Boston/Dordrecht/London, 2000.

258 UML FOR SOC DESIGN

[59] H.E. Eriksson, M. Penker, B. Lyons, and D. Fado. UML 2 Toolkit.
John Wiley & Sons, 2004.

[60] Y. Fei, S. Ravi, A. Raghunathan, and N. Jha. Energy Estimation for Exten-
sible processors. In Design, Automation and Test in Europe (DATE’03),
Munich, Germany, 2003.

[61] S. Flake and W. Mueller. An OCL Extension for Real-Time Constraints.
In T. Clark and J. Warmer (eds.): Advances in Object Modelling with the
OCL, Springer Verlag, Berlin, 2001.

[62] C. Flanagan. Extended Static Checking for Java. In ACM SIGPLAN
Programming Language Design and Implementation (PLDI). Berlin,
Germany, 2002.

[63] Forte Design Systems. Cynthesizer. 2005.
www.forteds.com/products/cynthesizer.asp

[64] Fujitsu. New SoC Design Methodology Based on UML and C Program-
ming Languages. Fujitsu Electronic Devices News (FIND), 20(4), 2002.

[65] Fujitsu Limited, IBM Corporation, NEC Corporation. A UML Extension
Profile for SoC. Draft RFC Submission to OMG, 2005-01-01, January
2005.

[66] D.D. Gajski. Principles of Digital Design. Prentice Hall Inc., Eaglewood
Cliffs, NJ, USA, 1997.

[67] D.D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao. SpecC:
Specification Language and Methodology. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2000.

[68] A. Girault, B. Lee, and E.A. Lee. Hierarchical Finite State Machines
with Multiple Concurrency Models. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 18(6), June 1999.

[69] Ch.A. Giumale and H.J. Kahn. Information Models of VHDL. In 32nd
International Design Automation Conference (DAC’95), San Francisco,
CA, USA, 1995.

[70] M. Glinz. Problems and Deficiencies of UML as a Requirement Specifi-
cation Language. In International Workshop on Software Specification,
November 2000.

[71] R. Goering. Next-Generation Verilog Rises to Higher Abstraction Levels.
EE Times, March 15, 2002.

REFERENCES 259

[72] H. Gomaa. Designing Concurrent Distributed, and Real-Time Applica-
tions with UML. Addison-Wesley, Boston, 2000.

[73] P.N. Green and M.D. Edwards. Platform Modelling with UML and Sys-
temC. In Forum on Specification and Description Languages (FDL’02),
Marseilles, France, 2002.

[74] P.N. Green and M.D. Edwards. The Modelling of Embedded Systems
Using HaSoC. In Design Automation and Test in Europe (DATE’02),
Paris, France, March 2002.

[75] P.N. Green and M.D. Edwards. The Modeling of Embedded Systems
Using HASoC. In Design, Automation and Test in Europe (DATE’02),
Paris, France, March 2002.

[76] P.N. Green and S. Essa. Integrating the Synchronous Dataflow Model
with UML. In Design, Automation and Test in Europe (DATE’04), Paris,
France, 2004.

[77] P.N. Green, M.D. Edwards, and S. Essa. Enhancing UML to Support the
Specification of Behavior for Embedded Systems-on-a-Chip. In UML
for SoC Design Workshop at DAC’04 (UML-SoC’04), San Diego, CA,
USA, June 2004.

[78] P.N. Green, M.D. Edwards, and S. Essa. HASOC — Towards a New
Method for System-on-a-Chip Development. In Design Automation for
Embedded Systems, 6(4), July 2002.

[79] Th. Grötker. Modeling Software with SystemC 3.0. In 6th European
SystemC Users Group Meeting, Stresa, Italy, October 2002.

[80] Th. Grötker, S. Liao, G. Martin, and S. Swan. System Design with Sys-
temC. Kluwer Academic Publishers, Boston/Dordrecht/London, 2002.

[81] Y. Ha, P. Schaumont, M. Engels, S. Vernalde, F. Potargent, L. Rijn-
ders, and H. de Man. A Hardware Virtual Machine for the Networked
Reconfiguration. In 11th IEEE International Workshop on Rapid System
Prototyping (RSP 2000), Montreal, Canada, 2000.

[82] A. Habibi and S. Tahar. A Survey on System-on-a-Chip Design Lan-
guages. In IEEE International Workshop on System-on-Chip for Real-
Time Applications, Calgary, Alberta, Canada, July 2003.

[83] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous
Data Flow Programming Language LUSTRE. In Proceedings of the
IEEE, 79(9), 1991.

260 UML FOR SOC DESIGN

[84] M. Hans and R.W. Schafer. Lossless Compression of Digital Audio.
Technical Report, Client and Media Systems Laboratory, HP Laborato-
ries Palo Alto, 1999.

[85] D. Harel. Statecharts: A Visual Formalism for Complex Systems. In
Science of Computer Programming, 8(3), June 1987.

[86] D. Harel and R. Marelly. Come, Let’s Play. Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer-Verlag, Berlin, 2003.

[87] D. Harel and B. Rumpe. Modeling Languages: Syntax, Semantics and All
That Stuff, Part I: The Basic Stuff, Faculty of Mathematics and Conputer
Science, The Weizmann Insitute of Science, Israel, September 2000.

[88] T. Hasegawa. An Introduction to the UML for SoC Forum in Japan. In
UML for SoC Design Workshop at DAC’04 (UML-SoC’04), San Diego,
CA, USA, June 2004.

[89] Ø. Haugen, B. Møller-Pederson, and Th. Weigert. Structural Modelling
with UML 2.0: Classes, Interactions and State Machines. In L. Lavagno,
G. Martin, and B. Selic (eds.): UML for Real: Design of Embedded Real-
Time Systems, Kluwer Academic Publishers, Boston/Dordrecht/London,
2003.

[90] J. Henkel, Th. Benner, R. Ernst, W. Ye, N. Serafimov, and G. Glawe.
COSYMA: A Software-Oriented Approach to Hardware/Software Code-
sign. In Journal of Computer and Software Engineering, 2(3), Ablex
Publishing Corp., Norwood, NJ, USA , March 1994.

[91] T. Heverhagen, R. Tracht, and R. Hirschfeld. A Profile for Integrating
Function Blocks into the Unified Modeling Language. In UML 2003
Workshop on Specification and Validation of UML Models for Real Time
and Embedded Systems (SVERTS 2003), San Francisco, CA, USA, Oc-
tober 2003.

[92] R. Hilderink and S. Klostermann. Transaction Level Modeling of SoC
Platforms Using SystemC. In Design Automation, and Test in Europe
(DATE’02), Paris, France, March 2002.

[93] R.R. Hurlbut. A Survey of Approaches For Describing and Formalizing
Use Cases. Technical Report, XPT-TR-97-03, Expertech, Ltd., 1997.

[94] H.-P. Hoffmann. UML 2.0-Based Systems Engineering Using a Model-
Driven Development Approach. I-Logix, White Paper, 2004.

REFERENCES 261

[95] E. Hubbers and M. Oostdijk. Generating JML Specifications from
UML State Diagrams. In Forum on Specification and Design Languages
(FDL’03), Frankfurt, Germany, September 2003.

[96] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications: High-speed Physical Layer in the 5 GHz Band,
IEEE Std 802.11a, June 2003.

[97] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications: Further Higher Data Rate Extension in the 2.4 GHz
Band, IEEE Std 802.11g, June 2003.

[98] INCOSE Webpage. What is Systems Engineering?
www.incose.org/practice/whatissystemseng.aspx

[99] I-Logix Webpage. www.ilogix.com

[100] S. A. Ito, L. Carro, and R. Jacobi. Making Java Work for Microcontroller
Applications. In IEEE Design and Test, 18(5), IEEE Press, Sept–Oct
2001.

[101] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and
H. Tews. Reasoning about (Java) Classes. In Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA’98), Vancouver,
Canada, 1998.

[102] I. Jacobson, M. Ericsson, and A. Jacobson. The Object Advantage: Busi-
ness Process Reengineering With Object Technology. Addison-Wesley,
Boston, 1995.

[103] K. John and M. Tiegelkamp. IEC61131-3: Programming Industrial
Automation Systems: Concepts and Programming Languages, Require-
ments for Programming Systems, Aids to Decision-Making. Springer-
Verlag, Berlin, 2001.

[104] C. Kobryn. UML 3.0 and the Future of Modeling. In Software and System
Modeling, 3(1), Springer-Verlag, Berlin, March 2004.

[105] F. Kordon and J. Henkel. An Overview of Rapid System Prototyping To-
day. In Journal on Design Automation for Embedded Systems (DAES),
8(4), Kluwer Academic Publisher, Boston/Dordrecht/London, Decem-
ber 2003.

[106] P. Kruchten. The Rational Unified Process: An Introduction (3rd Ed.).
Addison-Wesley, Boston, 2003.

262 UML FOR SOC DESIGN

[107] K. Lahiri, A. Raghunathan, and S. Dey. Communication Architecture
Based Power Management for Battery Efficient System Design. In
39th Design Automation Conference (DAC’02), New Orleans, LA, USA,
2002.

[108] K. Lahiri, A. Raghunathan, and S. Dey. Fast System-Level Power Pro-
filing for Battery-Efficient System Design. In 10th International Sym-
posium on Hardware/Software Codesign (CODES’02), Estes Park, Col-
orado, USA, 2002.

[109] M. Lajolo. IP-Based SoC Design in a C-Based Design Methodology.
In IP Based SoC Design 2003, Grenoble, France, November 2003.

[110] M. Lajolo, A. S. Basu, and M. Prevostini. UML Specifications To-
wards a Codesign Environment. In Forum on Specification and Design
Languages (FDL’04), Lille, France, 2004.

[111] S. Lange and U. Kebschull. Virtual Hardware Byte Code as a Design
Platform for Reconfigurable Embedded Systems. In Design, Automation,
and Test in Europe (DATE’03), Munich, Germany, 2003.

[112] C. Larman. Use-Case Model: Writing Requirements in Context. In
Applying UML and Patterns (2nd Ed.), Prentice Hall, Eaglewood Cliffs,
NJ, USA, 2001.

[113] R. Y. W. Lau and H. J. Kahn. Information Modelling of EDIF. In 30th In-
ternational Design Automation Conference (DAC’93), Dallas, TX, USA,
1993.

[114] L. Lavagno, G. Martin, and B. Selic. UML for Real: Design of Em-
bedded Real-Time Systems. Kluwer Academic Publishers, Boston/Dor-
drecht/London, 2003.

[115] E. A. Lee. Overview of the Ptolemy Project. Technical Memorandum
No. UCB/ERL M03/25. University of California, Berkeley, CA, 94720,
USA, July 2, 2003.

[116] E. A. Lee and D. Messerschmitt. Synchronous Dataflow. In Proceedings
of the IEEE, 75(9), September 1987.

[117] F. Legrand, I. Bucaille ans S. Héthuin, L. De Nardis, G. Giancola, M.-
G. Di Benedetto, L. Blazevic, and P. Rouzet. U.C.A.N.’s Ultra Wide
Band System: MAC and Routing Protocols. In International Workshop
on Ultra Wideband Systems, June 2003.

[118] C. K. Lennard, P. Schaumont, G. de Jong, A. Haverinen, and P. Hardee.
Standards for System-Level Design: Practical Reality or Solution in

REFERENCES 263

Search of a Question? In Design, Automation and Test in Europe (DATE’
00), Paris, France, 2000.

[119] R. Leupers and P. Marwedel. Retargetable Compiler Technology for Em-
bedded Systems. Kluwer Academic Publishers, Boston/Dordrecht/Lon-
don, 2001.

[120] S. Lilly. Use Case Pitfalls: Top 10 Problems from Real Projects Using
Use Cases. In Proceedings of Technology of Object Oriented Languages
and Systems, August 1999.

[121] Y.C. Lin, C.C. Yang, M.Y. Hwang, and Y.T. Chang. Simulation and Ex-
perimental Verification of Micro Polymerase Chain Reaction Chip. In
Fifth International Conference on Modeling and Simulation of Microsys-
tems (MSM 2000), San Juan, Puerto Rico, April 2000.

[122] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Second
Edition, Addison-Wesley, Boston, 1999.

[123] K. Marent. SoC++: A Unified Design Method from Concept to Imple-
mentation. In TechOnLine Journal, September 18, 2000.
www.techonline.com

[124] G. Martin. SystemC and The Future of Design Languages: Opportunities
for Users and Research In The 16th Symposium on Integrated Circuits
and Systems Design. Sao Paulo, Brazil, 2003.

[125] G. Martin. UML for Embedded Systems Specification and Design: Moti-
vation and Overview. In Design, Automation and Test in Europe (DATE’
02), Paris, France, March 2002.

[126] G. Martin, L. Lavagno, and J. Louis-Guerin. Embedded UML: A Merger
of Real-time UML and Co-design. In Ninth International Symposium
on Hardware/Software Co-Design (CODES’01), Copenhagen, Denmark,
2001.

[127] G. Martin and Ch. Lennard. Improving Embedded SW Design and Inte-
gration for SOCs. In Custom Integrated Circuits Conference, Orlando,
FL, USA, May 2000.

[128] P. Marwedel. Embedded Systems Design. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2003.

[129] A. Massa. Embedded Software Development with eCos. Prentice Hall,
Eaglewood Cliffs, NJ, USA, 2002.

264 UML FOR SOC DESIGN

[130] W.E. McUmber and B.H.C. Cheng. UML-Based Analysis of Embed-
ded Systems Using a Mapping to VHDL. In IEEE International Sympo-
sium on High-Assurance Systems Engineering HASE’99, IEEE CS Press,
November 1999.

[131] S. Mellor and M. Balcer. Executable UML: A Foundation for Model
Driven Architecture. Addison-Wesley, Boston, 2002.

[132] S. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled: Principles of
Model-Driven Development. Addison-Wesley, Boston, 2004.

[133] Mentor Graphics. Mentor’s Application Specific Assistant Processor.
www.mentor.com/asap

[134] Microelectronic Embedded Systems Laboratory (MESL), University of
California, San Diego. SPARK: High-Level Synthesis using Parallelizing
Compiler Techniques. April 2004. mesl.ucsd.edu/spark

[135] MIPS Technologies, Inc. MIPS Webpage. www.mips.com

[136] D. Morris, D.G. Evans, P.N. Green, and C.J. Theaker. Object-Oriented
Computer Systems Engineering. Springer-Verlag, Berlin, 1996.

[137] E. Moser and W. Nebel. Case Study: System Model of Crane and Em-
bedded Control. In Design, Automation and Test in Europe (DATE’99),
Munich, Germany, March 1999.

[138] S.S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann Publishers, 1997.

[139] W. Mueller and G. Martin. UML for SoC Design Workshop at DAC’04
(UML-SoC’04), San Diego, CA, June 2004. www.c-lab.de/uml-soc

[140] A. Nacul and T. Givargis. Code Partitioning for Synthesis of Embedded
Applications with Phantom. In International Conference on Computer
Aided Design (ICCAD’04), San Jose, CA, USA, November 2004.

[141] T. Nakata, A. Matsuda, M. Shoji, S. Kuwamura, and Q. Zhu. An Object-
Oriented Design Process for System-on-Chip Using UML. In 15th Inter-
national Symposium on System Synthesis, Kyoto, Japan, October 2002.

[142] S. Narayan, F. Vahid, and D. Gajski. System Specification with the
SpecCharts Language. In IEEE Design & Test, 9(4), October 1992.

[143] K.D. Nguyen, Z. Sun, P.S. Thiagarajan, W.F. Wong. Model-Driven SoC
Design Via Executable UML to SystemC, In 25th International Real-
Time Systems Symposium (RTSS’04), Lisbon, Portugal, December 2004.

REFERENCES 265

[144] Object Management Group (OMG) Webpage. www.omg.org

[145] Object Management Group (OMG). OMG XML Metadata Interchange
(XMI) Specification, Version 1.2, OMG Specification, 2000.
www.omg.org/xml

[146] Object Management Group (OMG). OMG Unified Modelling Language
Specification (Action Semantics). Version 1.4, January 2002.

[147] Object Management Group (OMG). Model Driven Architecture (MDA).
ormsc/2001-07-01, July 2001.

[148] Object Management Group (OMG). Action Semantics for the UML.
ad/2001-08-04, August 2001.

[149] Object Management Group (OMG). Meta-Object Facility (MOF).
formal/2001-11-02, November 2001.

[150] Object Management Group (OMG). Unified Modelling Language Spec-
ification Version 1.5. OMG Adopted Specification, formal/03-03-01,
March 2003.

[151] Object Management Group (OMG). Platform Independent Model (PIM)
and Platform Specific Model (PSM) for Super Distributed Objects (SDO)
Specification. dtc/03-09-01, OMG Adopted Specification, September
2003.

[152] Object Management Group (OMG). MOF Model to Text Transformation
RfP, April 2004. www.omg.org/cgi-bin/doc?ad/04-04-07

[153] Object Management Group (OMG). Human-Usable Textual Notation
(HUTN) Specification. formal/04-08-01, OMG Adopted Specification,
August 2004.

[154] Object Management Group (OMG). UML 2.0 Superstructure Specifica-
tion. Revised Final Adopted Specification, ptc/04-10-02, October 2004.

[155] Object Management Group (OMG). Unified Modeling Language: Dia-
gram Interchange Version 2.0. OMG Draft Adopted Specification, ptc/
03-07-03, July 2003.

[156] Object Management Group (OMG). UML 2.0 OCL Specification. OMG
Adopted Specification, ptc/03-10-14, October 2003.

[157] Object Management Group (OMG). UML 2.0 Infrastructure Specifica-
tion. OMG Adopted Specification, ptc/03-09-15, August 2003.

266 UML FOR SOC DESIGN

[158] Object Management Group (OMG). UML Profile for Modeling Quality
of Service and Fault Tolerance Characteristics & Mechanisms. Final
Adopted Specification, ptc/04-09-01, September 2004.

[159] Object Management Group (OMG). UML Profile for Schedulability,
Performance, and Time Specification. OMG Adopted Specification,
formal/03-09-01, September 2003.

[160] Object Management Group (OMG). UML Testing Profile, Proposed
Specification. OMG document ptc/04-04-02, April 2004.

[161] Open SystemC Initiative (OSCI). SystemC Version 2.0 beta-1 User’s
Guide, 2001. www.systemc.org

[162] Open SystemC Initiative (OSCI). Functional Specification for SystemC
2.0, 2001. www.systemc.org

[163] S. Pasricha. Transaction Level Modeling of SoC with SystemC 2.0. In
Synopsys User Group Conference (SNUG’02), Bangalore, India, May
2002.

[164] M. Pauwels, Y. Vanderperren, G. Sonck, P. van Oostende, W. Dehaene,
and T. Moore. A Design Methodology for the Development of a Complex
System-on-Chip Using UML and Executable System Models. In E. Villar
and J. Mermet (eds.): System Specification and Design Languages: Best
of FDL 2002, Kluwer Academic Publishers, Boston/Dordrecht/London,
2003.

[165] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. Lisa Machine De-
scription Language for Cycle-Accurate Models of Programmable DSP
Architectures. In 36th Design Automation Conference (DAC’99), New
Orleans, LA, USA, 1999.

[166] Project Technology Webpage. www.projtech.com

[167] W. Qin and S. Malik. Architecture Description Languages for Retar-
getable Compilation. In Y. N. Srikant and P. Shankar (eds.): The Com-
piler Design Handbook—Optimizations and Machine Code Generation,
CRC Press, 2003.

[168] C. Raistrick. Developing Embedded Systems Using Model-Driven Ar-
chitecture and Executable UML. In Forum on Specification and Design
Languages (FDL’02), Marseilles, France, 2002.

[169] C. Raistrick, P. Francis, and J. Wright. Model Driven Architecture with
Executable UML. Cambridge University Press, 2004.

REFERENCES 267

[170] C. Reichmann, D. Gebauer, and K. Müller-Glaser. Model Level Cou-
pling of Heterogeneous Embedded Systems. In 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto, Canada,
May 2004.

[171] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, Berlin, 1985.

[172] Rhapsody Webpage. www.ilogix.com/rhapsody/rhapsody.cfm

[173] E. Riccobene, A. Rosti, and P. Scandurra. Improving SoC Design Flow
by Means of MDA and UML Profiles. In 3rd UML Workshop in Software
Model Engineering (WiSME’2004), Lisbon, Portugal, October 2004.

[174] H. Riedel. Design and Implementation of a Run-Time Environment for
RTR-Systems. Diploma Thesis, University of Applied Sciences Mitt-
weida, Germany, January 2004.

[175] L. Rioux, T. Saunier, S. Gerard, A. Radermacher, R. de Simone,
T. Gautier, Y. Sorel, J. Forget, J.-L. Dekeyser, A. Cuccuru, C. Du-
moulin, and C. Andre. MARTE: A New Profile RFP for the Mod-
eling and Analysis of Real-Time Embedded Systems. In UML for
SoC Design Workshop at DAC’05 (UML-SoC’05), Anaheim, June 2005.
www.c-lab.de/uml-soc

[176] P. Rong and M. Pedram. Extending the Lifetime of a Network of Battery-
Powered Mobile Devices by Remote Processing: a Markovian Decision-
based Approach. In 40th Design Automation Conference (DAC’03), Ana-
heim, CA, USA, 2003.

[177] J. Rowson and A. Sangiovanni-Vincentelli. Interface-Based Design.
In 34th Design Automation Conference (DAC’97), Anaheim, CA, USA,
1997.

[178] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, Boston, 1998.

[179] M. Saksena, A. Ptak, P. Freedman, and P. Rodziewicz. Schedulability
Analysis for Automated Implementations of Real-Time Object-Oriented
Models. In IEEE Real-Time Systems Symposium (RTSS’98), Madrid,
Spain, 1998.

[180] T. Sakurai. Perspectives on Power-Aware Electronics. In Digest of IEEE
International Solid-State Circuits Conference, February 2003.

[181] A. Sangiovanni-Vincentelli. Defining Platform-based Design. EEDesign
of EETimes, February 2002.

268 UML FOR SOC DESIGN

[182] A. Sardini. SoC Design with UML and SystemC. In 6th European Sys-
temC Users Meeting, Stresa, Italy, October 2002.
www-ti.informatik.uni-tuebingen.de/∼systemc

[183] SAX Website. www.saxproject.org

[184] T. Schattkowsky and A. Rettberg. UML for FPGA Synthesis. In UML
for SoC Design Workshop at DAC’04 (UML-SoC’04), San Diego, CA,
USA, June 2004.

[185] T. Schattkowsky, W. Mueller, and A. Rettberg. A Model-Based Ap-
proach for Executable Specifications on Reconfigurable Hardware. In
Design, Automation and Test in Europe (DATE’05), Munich, Germany,
2005.

[186] T. Schattkowsky and W. Mueller. Model-Based Design of Embedded
Systems. In 7th IEEE International Symposium on Object-oriented Re-
altime distributed Computing (ISORC’04), Vienna, Austria, 2004.

[187] T. Schattkowsky and W. Mueller. Model-Based Specification and Exe-
cution of Embedded Real time Systems. In Design, Automation and Test
in Europe (DATE’04), Paris, France, 2004.

[188] C. Schulz-Key, M. Winterholer, T. Schweizer T. Kuhn, and W. Rosenstiel.
Object-Oriented Modeling and Synthesis of SystemC Specifications. In
Asia South Pacific Design Automation Conference (ASP-DAC’04), Yoko-
hama, Japan, 2004.

[189] K. Scott. Fast Track UML 2.0. Apress, 2004.

[190] B. Selic. Using UML for Modeling Complex Real-Time Systems. In
ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES’98), Montreal, Canada, June 1998.

[191] B. Selic. Models, Software Models and UML. In L. Lavagno, G. Martin,
and B. Selic (eds.): UML for Real: Design of Embedded Real-Time
Systems, Kluwer Academic Publishers, 2003.

[192] B. Selic. Turning Clockwise: Using UML in the Real-Time Domain. In
Communications of the ACM, 42(10), October 1999.

[193] B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented
Modeling. John Wiley, 1994.

[194] B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real-Time
Systems. ObjecTime Limited/Rational Software White Paper, 1998.

REFERENCES 269

[195] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli. Formal Models
for Embedded System Design. In IEEE Design & Test , 17(2), June 2000.

[196] S. Shlaer and S. Mellor. Object Lifecycles – Modeling the World in
States. Yourdon Press, Prentice Hall, Eaglewood Cliffs, NJ, USA, 1992.

[197] Silicore and OPENCORES.ORG. Specification for the: WISHBONE
System-on-Chip (SoC) Interconnection Architecture for Portable IP
Cores. Revision B.3, September 2002. www.opencores.org

[198] A. Sinha and A. Chandrakasan. JouleTrack – A Web Based Tool for Soft-
ware Energy Profiling. In 38th Design Automation Conference (DAC’01),
Las Vegas, NV, USA, 2001.

[199] V. Sinha, F. Doucet, C. Siska, and R. Gupta. YAML: A Tool for Hardware
Design Visualization and Capture. In 13th International Symposium on
System Synthesis (ISSS’00), Madrid, Spain, 2000.

[200] SpecC Technology Open Consortium (STOC) Webpage.
www.specc.org.

[201] L. Starr. Executable UML How to Build Class Models. Prentice Hall,
Eaglewood Cliffs, NJ, USA, 2001.

[202] L. Starr. Executable UML: The Models are the Code, A Case Study.
Model Integration Llc, 2001.

[203] B. Steinbach, D. Fröhlich, and Th. Beierlein. UML-Based Codesign
for Run-Time Reconfigurable Architectures. In Ch. Grimm (ed.): Lan-
guages for System Specification, Kluwer Academic Publishers, Bost-
on/Dordrecht/London, 2004.

[204] P. Stevens and R. Pooley. Using UML: Software Engineering with
Objects and Components. Addison-Wesley, Boston, 2000.

[205] Sun Microsystems, Inc. The Java Language Specification, Second Edi-
tion, 2000.

[206] Synfora Webpage. www.synfora.com

[207] SysML Partners. Systems Modeling Language (SysML) Specification,
version 0.9 (DRAFT), January 10, 2004.

[208] Synopsys. Synopsys CoCentric SystemC Compiler Behavioral User and
Modeling Guide, 2001.

[209] Synopsys. DesignWare Building Block IP User Guide. 2004.
www.synopsys.com/products/designware/docs/doc/
dwf/manuals/dwug.pdf

270 UML FOR SOC DESIGN

[210] SystemC Webpage. www.systemc.org

[211] W.H. Tan, P.S. Thiagarajan, W.F. Wong, Y. Zhu, and S.K. Pilakkat. Syn-
thesizable SystemC Code from UML Models. In UML for SoC Design
Workshop at DAC’04 (UML-SoC’04), San Diego, CA, USA, June 2004.

[212] K. Tasie-Amadi and P. N. Green. Establishing the Correctness of Em-
bedded Software. Seminar Digest, IEE Postgraduate Seminar on System-
on-Chip Design Test and Technology, Loughborough, UK, 2004.

[213] Texas Instruments. Programmable Double Biquad Filter for Tone De-
tection on Fixed Point DSPs. Application Report SPRA482, February
1999.

[214] The Embedded Linux Consortium Webpage.
www.embedded-linux.org

[215] The Open Group and IEEE. IEEE Std 1003.1, 2004.
www.opengroup.org/onlinepubs/009695399/toc.htm

[216] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded Soft-
ware: A First Step Towards Software Power Minimization. In IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2(4), 1994.

[217] UML Webpage. www.uml.org

[218] A. Vachoux, C. Grimm, and K. Einwich. Towards Analog and Mixed-
Signal SoC Design with SystemC-AMS. In IEEE International Work-
shop on Electronic Design, Test and Applications (DELTA’04), Perth,
Australia, January 2004.

[219] Y. Vanderperren, M. Pauwels, W. Dehaene, A. Berna, and F. Özdemir. A
SystemC Based System On Chip Modelling and Design Methodology.
In W. Mueller, W. Rosenstiel, J. Ruf (eds.): SystemC: Methodologies and
Applications, Kluwer Academic Publishers, Boston/Dordrecht/London,
2003.

[220] Y. Vanderperren and W. Dehaene. UML for SoC: One More Language
at System Level? In DAK Forum, Trondheim, Norway, October 2004.

[221] Y. Vanderperren, G. Sonck, P. Oostende, M. Pauwels, W. Dehaene, and
T. Moore. A Design Methodology for the Development of a Complex
System-On-Chip using UML and Executable System Models. In Forum
on Specification and Design Languages (FDL’02), Marseilles, France,
2002.

REFERENCES 271

[222] S. Vauttier, M. Magnan, and C. Oussalah. Extended Specification of
Composite Objects in UML. Journal of Object Oriented Programming,
12(2), 1999.

[223] C. Veith, K. Buchenreider, and A. Pytell. Mapping Statechart Models
onto an FPGA-based ASIP Architecture. In European Design Automa-
tion Conference (EURODAC’96), Geneva, Switzerland, 1996.

[224] Velocity Home Page. jakarta.apache.org/velocity

[225] W3C. XSL Transformations (XSLT) Version 1.0., W3C Recommenda-
tion, November 1999.

[226] K. Wakabayashi and T. Okamoto. C-Based SoC Design Flow and
EDA Tools: An ASIC and System Vendor Perspective. In IEEE
Trans. Computer-Aided Design, 19(12), December 2000.

[227] Z. Wang. Fast Algorithms for the Discrete W Transform and for the
Discrete Fourier Transform. In IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. ASSP-32, August 1984.

[228] M.A. Wehrmeister, L.B. Becker, and C.E. Pereira. Optimizing Real-
Time Embedded Systems Development Using a RTSJ-based API. In
Workshop On Java Technologies For Real-Time And Embedded Systems.
Lecture Notes in Computer Science 3292, Springer-Verlag, Heidelberg,
2004.

[229] M. Williamson. Synthesis of Parallel Hardware Implementations from
Synchronous Dataflow Graph Specifications. Ph.D. Thesis, University
of California at Berkeley, 1998.

[230] D. Wu, B. Al-Hashimi, and P. Eles. Scheduling and Mapping of Condi-
tional Task Graphs for the Synthesis of Low Power Embedded Systems.
In Design, Automation and Test in Europe (DATE’03), Munich, Germany,
2003.

[231] Xilinx Inc. Forge Compiler for High-Level Language Design. 2003.
www.xilinx.com/ise/advanced/forge.htm

[232] Xilinx. Xilinx ISE. www.xilinx.com

[233] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,
and R. Lauwereins. Energy-Aware Runtime Scheduling for Embedded-
Multiprocessor SoCs. In IEEE Design & Test, 18(5), Sept–Oct, 2001.

[234] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and A. A. Jerraya. A
Generic Wrapper Architecture for Multi-Processor SoC Cosimulation

272 UML FOR SOC DESIGN

and Design. In Ninth International Symposium on Hardware/Software
Codesign (CODES’01), Copenhagen, Denmark, 2001.

[235] J. Zhu, D.D. Gajski, and R. Doemer. Syntax and Semantics of the SpecC+
Language. In SASIMI Workshop, Nara, Japan, 1997.

[236] Q. Zhu, A. Matsuda, S. Kuwamura, T. Nakata, and M. Shoji. An Object-
Oriented Design Process for System-on-Chip Using UML. In Digest of
IEEE International Solid-State Circuits Conference, October 2002.

[237] V. Zivojnovic, S. Pees, and H. Meyr. Lisa - Machine Description Lan-
guage and Generic Machine Model for Hw/Sw Co-Design. In IEEE
Workshop on VLSI Signal Processing, San Francisco, CA, USA, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

