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Oscillatory systems exist everywhere, from our planet circulating around the 
sun with a period of 365.2422 days in an average tropical year; to a pendulum 
in an antique clock ticking every second; to the vibrations of a quartz crystal 
in a wrist watch. The study of oscillators was initiated centuries ago in basic 
mechanics. Some of the very complicated problems of injection locking in 
coupled oscillators were experimentally verified in the 1 7 ~ ~  century by Huy- 
gens. He used coupled pendulums using elastic threads to move energy from 
one pendulum to another. Oscillators belong to a class of systems known as 
autonomous systems. As opposed to driven systems, oscillators possess the 
unique feature that they do not need a time varying input to produce a time 
varying output. The periodicity and amplitude of the produced oscillation are 
regulated by the system's energy balance rather than an external input. This 
unique property makes the study of oscillators both complicated and fascinat- 
ing. 

In the field of electrical circuits, the study of oscillators was pioneered by 
radio scientists and particularly flourished during World War 11. Some inge- 
nious circuit implementations were devised to produce the best oscillators 
possible. Along with the circuit implementations, came the formal mathemat- 
ical analysis. One of the earliest models is due to Van Der Pol in the 1920s. 
Rigorous nonlinear analysis was carried out throughout the 1920's until 
today. 

Despite the long history, most of the literature, until recently, focused on two 
questions: 'what is the precise amplitude of oscillation?' and 'what is the 
exact period of oscillation?' 

The question of noise behavior was addressed much later. The work of Edson 
was one of the earliest to discuss the output spectrum of an autonomous oscil- 
lator in circuit terms. The work of Leeson in 1964 was perhaps one of the first 
to address phase noise as a distinct class of noise in electronic oscillators and 
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try to predict it using mathematical expressions. His heuristic model without 
mathematical proof is almost universally accepted. However, it entails a cir- 
cuit specific noise factor that is not known a priori and so is not predictive. 

In this work, we attempt to address the topic of oscillator design from a differ- 
ent perspective. By introducing a new paradigm that accurately captures the 
subtleties of phase noise we try to answer the question: 'why do oscillators 
behave in a particular way?' and 'what can be done to build an optimum 
design?' It is also hoped that the paradigm is useful in other areas of circuit 
design such as frequency synthesis and clock recovery. 

In Chapter 1, a general introduction and motivation to the subject is presented. 
Chapter 2 summarizes the fundamentals of phase noise and timing jitter and 
discusses earlier works on oscillator's phase noise analysis. Chapter 3 and 
Chapter 4 analyze the physical mechanisms behind phase noise generation in 
current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs 
and new techniques in LC oscillator design that allows optimal design. 
Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator 
design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated 
to the complete analysis of the role of varactors both in tuning and AM-FM 
noise conversion. 

In some sense, oscillators are the last of obscure analog circuits. The purpose 
of this book is to put together a sensible theory and optimization methodol- 
ogy. The objective is to lead the reader to understand and efficiently design 
oscillators using a mechanistic approach that does not entail complicated 
mathematics yet gives accurate results and design insights. 
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1 Introduction 

Phase noise has been one of the most interesting yet poorly understood topics 
in circuit design. The challenge of predicting the amount of phase noise in a 
given circuit has been approached from a variety of angles, from using a "heu- 
ristic model without formal proof' [l] to simulation techniques that lead to 
accurate results [2][3]. Completing this book involved hours of computer sim- 
ulation, pages of algebra, translation of antiquated notation, and utilizing 
archeological-type efforts to unearth significant but otherwise forgotten 
papers. 

With regard to this work, three major steps lead to the solution of this prob- 
lem. The first is Lesson's equation. All works on phase noise must reference 
Lesson's equation because it is simple, intuitive, and has withstood the test of 
time [I]. The second innovation was in the development of Cadence, Inc.3 
SpectreRF simulation tool [2]. This tool accurately predicts phase noise and 
served as a test bench to validate all derived equations. Finally, Huang [4] 
showed it was possible to write out equations for phase noise explicitly. This 
work takes inspiration and elements from all these works and forms a model 
that is as intuitive as Leeson, as accurate as SpectreRF, and as rigorous as 
Huang. 

2 The Mathematical Oscillator 

The mathematical model of an ideal voltage-controlled oscillator starting at 
t = 0 is described by the following expression: 
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where v, is the control voltage of the oscillator as a function of time. The cen- 
ter frequency of oscillation is o, and the instantaneous frequency of oscilla- 
tion is given by: 

where Kv is the oscillator sensitivity and typically given in rad~seclvolt. 

As can be seen from (I), the small signal model of an oscillator in frequency1 
phase domain, with voltage as an input and phase as an output, functions as an 
integrator. The frequency of oscillation is directly proportional to the control 
voltage and the oscillator phase is the time-integral of frequency. Being a self- 
timed system, the oscillator lacks the ability to correct for its own phase. 
Imagine an oscillator running at some frequency with a constant bias applied 
to its control voltage line. Any disturbance on the control line will result in 
instantaneous frequency shift that integrates over the time the disturbance 
lasts. The resulting phase error will last indefinitely and can never be recov- 
ered even though the disturbance lasted for a short amount of time as shown 
in Figure 1. 

FIGURE 1 Phase jitter accumulation. 
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3 Additive White Noise in LC Oscillators 

An oscillation is fully characterized by its amplitude and phase. When white 
noise is added to an oscillation, noise corrupts both the amplitude and phase 
of oscillation. Assume a noise signal n(t) added to an oscillation v(t). It is cus- 
tomary to model noise as an infinite number of uncorrelated sinusoids sepa- 
rated by l Hz each. The sum of the oscillation signal at o, and a noise signal 
at frequency (I>, + con is given by: 

where a, is the noise amplitude and (P, is a random phase. This equation can 
re-written as 

The first three terms constitute an amplitude modulated carrier with the mod- 
ulating tones at w,. The last two terms together with the carrier, approximate a 
narrow band phase modulation signal. This means that a single sideband noise 
component added to the oscillator modulates both the amplitude and phase of 
the oscillation. The power of amplitude modulation sidebands is equal to the 
power of phase modulation sidebands. 

In Chapter 2, we will rigorously define phase noise. For now, any noise that 
modulates the phase of oscillation is phase noise. Any noise that modulates 
the amplitude is considered amplitude noise and is unimportant in most prac- 
tical cases, except when it later converts to phase or frequency noise. 

4 The Linear Oscillator 

4.1 Warning 

In this section, we develop a misleading analysis of oscillators based on linear 
system theory. Despite looking reasonable, we will show later why it is not 
accurate or even correct. 
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4.2 Linear System Theory Applied to Oscillators 

Oscillators are fundamentally nonlinear. In fact oscillator's nonlinearity is the 
reason for their "stable" amplitude. Yet linear models are often used to 
describe oscillatory behavior. This is acceptable when oscillation start-up 
conditions are pursued because oscillation at start-up is a small signal. How- 
ever, the periodically stable frequency can be far different from the small sig- 
nal "linear" prediction. Furthermore, a linear oscillator model cannot predict 
the oscillation amplitude. In fact, the assumption of linearity, leads to an un- 
determined amplitude. This is because in a linear system, if the input doubles, 
the output doubles. In an oscillator, this leads to an amplitude that is arbitrary 
P I .  
So what is a linear model good for? 

1. It can yields a startup condition for oscillation, and 

2. it gives a rough estimate of the frequency of oscillation. 

FIGURE 2 Basic LC oscillator: 

Consider the LC oscillator shown in Figure 2. If the oscillator loop is cut at 
any point, the gain around the loop is given by: 
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For a sustained oscillation, Barkhausen criterion mandates that the gain 
around the loop is exactly unity and the phase shift around the loop is pre- 
cisely 360 degrees. This leads to the following: 

The oscillator shown in Figure 2 can be modeled as a positive feedback sys- 
tem. In Figure 3, the oscillator is constructed using an amplifier and a phase 
shift network. The amplifier provides no phase shift. The modes of oscilla- 
tions for this system occur at the natural frequencies of the phase shift net- 
work. At these frequencies, the phase shift of this network is a multiple of 360 
degrees. If there are multiple frequencies at which Barkhausen criterion is 
met, then the oscillator can have multiple modes of oscillation. The mode 
with the highest gain is most likely to prevail but multiple modes of oscilla- 
tion can coexist. 

FIGURE 3 Feedback amplEfier model o f  the oscillator: 

Another way to model an oscillator is a single port model. A lossless LC tank 
is an oscillator with its frequency of oscillation that can be computed from (7). 
Loss in the tank damps the oscillation with a time constant equal to 1IRC. 
Adding a negative resistance element replenishes any current that flows 
through the lossy element to sustain oscillation. If the oscillation is to grow 
then the energy supplied by the negative resistance element must equal the 
energy lost per cycle. For the oscillator in Figure 2, the two transistors are 
arranged such that they provide a negative resistance of -2/g,. The differen- 
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tial resistance of the tank is 2R. Therefore, for a sustained oscillation, the neg- 
ative resistance should be equal to the positive resistance at all times. This 
leads back to (6). Redrawn in Figure 4, this circuit is known as the voltage- 
biased oscillator. 

FIGURE 4 Basic LC oscillator (redrawn). 

r̂ 

5 Linear Oscillator Noise Analysis 
Imagine an oscillator constructed using a parallel LC tank and a transconduc- 
tor in a positive feedback loop. The frequency of oscillation is of course given 
by (7). Note that the resonant frequency of the LC tank is the same as the 
oscillation frequency because both the resistor and the transconductor do not 
provide any extra phase shift as they carry no reactive current. The reader can 
readily prove that if the resistive loss is modeled in series with the inductor 
rather than it parallel, the oscillation frequency will be different from that 
given by (7). 

Now let's consider the noise. Noise can come from two sources in this sys- 
tem: the resistor and the transconductor. Resistor noise is modeled by a white 
thermal noise current whose density is given by: 

Noise in the transconductor is also modeled as a white noise current whose 
density is given by: 
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nL 

i,(f 1 = 4kTg,J (9) 

where y is the noise figure of the transconductor element. 

The combined noise can be referred to the input of the transconductor as a 
white noise voltage given by: 

Substituting from (6), the input referred noise voltage at the transconductor 
input is given by: 

where F = 1 + y is the noise figure of the entire oscillator. 

The tank impedance at a frequency 6o away from the resonance frequency 
can be approximated by 

where Q is the tank quality factor. 

Using basic feedback theory, it is trivial to prove that the closed-loop transfer 
function from the noise input to the oscillator output is given by: 

In noise analysis, it is customary to represent noise by a sine wave in a 1 Hz 
bandwidth. Let's consider a noise component at a frequency do away fi-om 
the carrier (i.e. oscillation fundamental tone). Noise power at the output of the 
oscillator can be deduced using (1 1) and (13), 
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As shown earlier, additive noise shows as half amplitude noise and half phase 
noise. The noise-to-carrier ratio is obtained by dividing the output phase 
noise by the carrier power. We should also consider noise in the lower side 
band at o, + 6o. The single side band noise to carrier ratio is obtained by add- 
ing noise power at +6o and -60 resulting in the following expression: 

This is the renowned Leeson's equation [I]. In the original paper it was given 
as a heuristic equation without formal prooj The preceding analysis is not 
part of the original paper that was based on measurements and observations. 
Many other researchers and design engineers derived, over the years, proofs 
similar to the one we derived here and ended up with one version or another 
of (1 5). 

What's wrong with the above analysis? First, it is linear and time invariant. 
Therefore, no frequency translations of noise can occur. This means that low 
frequency noise, such as flicker noise, cannot create phase noise under the 
assumptions of this model. The only type of noise that can create phase noise 
in this model is noise originating around the oscillation frequency. Moreover, 
it has to have an equivalent amount of amplitude noise because it is in 
essence, additive noise. In any LC oscillator, this is not true. As we will show 
later, some elements contribute pure phase noise and no amplitude noise. 
Finally, linear analysis cannot predict the amplitude of oscillation. The ampli- 
tude limiting mechanism is fundamentally nonlinear and cannot be captured 
in the context of a linear time-invariant analysis. 

6 How Is This Book Different? 

In the following chapters we will show in detail why the derivation in 
Section 4 is wrong. We will show how to use circuit theory to derive an accu- 
rate model for phase noise in electrical oscillators. We will describe what we 
call a mechanistic model that captures the dominant nonlinearities in an oscil- 
lator and provides a closed form expression for phase noise. No fudge factors 
utilized! 
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Concepts from nonlinear circuit theory are sometimes utilized yet we tried to 
keep that to the minimum necessary. 

By doing so, this book provides deep insight into the operation of oscillators 
and provides simple procedures for designing high-purity oscillators. We are 
answering the seldom tackled questions: 'why does the oscillator behave that 
way?' and 'how is an optimal oscillator designed?' 
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Oscillator Purity 

A sinusoidal oscillation is described completely by its amplitude and fre- 
quency. The purity of the oscillation pertains typically to only the frequency 
or period of oscillation. This is because an oscillator is typically used to syn- 
chronize events in time. This applies to wireless transceivers as well as digital 
circuits. The amplitude of oscillation, once above a threshold value, is typi- 
cally irrelevant as long as it can generate an action (event) on the subsequent 
circuit block. An oscillation that is perfectly pure has a constant period of rep- 
etition. In frequency domain, the perfect repetition translates into a single 
tone, for a sinusoidal oscillation anyway. 

Historically, observing periodicity in time predates the observation of spectral 
purity for obvious reasons. Ancient Egyptians noted that Sirius rises to its 
place besides the sun exactly every 365 days. They divided the year into 
twelve 30-day months and a short 5 day month that was called the "little 
month". Their calendar is still used today by peasants in the countryside of 
Egypt, side-by-side with the Gregorian calendar, as it fits perfectly the Egyp- 
tian climate and the flooding of the Nile. Their calendar was the basis of the 
modern calendar we use today. The Babylonians of today's Iraq used a lunar 
calendar that follows the periodicity of the moon, a cycle of 29 to 30 days. 
They are the ones who divided the day into smaller units that relate to their 
base-60 numeral system. Around the 1 6 ~ ~  century, in the era of great expedi- 
tions, there was a great need for accurate clocks for navigation. Determining 
longitude accurately was not possible without a tool that can tell time with 
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great accuracy [I]. Galileo sketched out the concept of the first pendulum- 
based clock. It was Harrison who first implemented a clock that can tell time 
within one second of error per day [I]. Various designs of mechanical move- 
ments were implemented over the centuries that followed and are perfected 
today in Swiss mechanical watches. The 1920s witnessed the first quartz 
clock that enabled much higher frequencylperiod stability. Later, this fueled 
the clock industry in Japan. For more accurate time bases, the atomic clock is 
used as a calibration source. The search for the most accurate clock is in 
essence the search for a high long-term stability signal source. The question of 
noise in signal sources was not of concern until World War 11. Only then was 
the study of noise in the oscillator's phase was born. In essence, phase noise 
relates to the short-term stability of the oscillator's period, frequency, or 
phase. 

Signal purity measures can be divided into two main categories: deterministic 
and stochastic. Deterministic impurity comes from spurious signals that show 
in the signal spectrum as delta-Dirac impulses, known as spurs at a fixed fre- 
quency offset from the main tone. Stochastic impurity arises from stochastic 
variation of signal phase and are manifested in noise skirts around the funda- 
mental frequency. Another way of quantifying stochastic purity is by looking 
at the signal in time domain where stochastic perturbations are manifested as 
perturbations in the zero crossings of the sinusoidal waveform. For practical 
RF receiver design purposes, amplitude perturbations are typically of little 
concern because mixers are not sensitive to them. In transmitters, however, 
the situation is somewhat different. Amplitude noise would interfere with 
neighboring channels just as phase or frequency noise does if it spills out of 
its allotted bandwidth. 

In this chapter we briefly describe the basic concepts of signal purity both in 
time and frequency domains. The reader who is familiar with these concepts 
can skip this chapter and advance to chapter 3. 

2 Timing Jitter 
A pure oscillation repeats in time precisely every T seconds, where T is called 
the oscillation period. In other words, if we set a particular threshold voltage 
level, the oscillation waveform will cross this threshold in a given direction 
precisely every T seconds. In the presence of noise, the points in time where 
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the oscillation waveform crosses this threshold are dithered around their ideal 
noiseless locations. In statistical terms, the oscillation waveform is a random 
process described by: 

where $, is a stochastic process that produces a random phase fluctuation. 

Consider now different realizations of this random process, i.e. different pos- 
sible waveforms that fulfill (1). Such realizations are shown in Figure 1. The 
first waveform is an ideal noiseless oscillation. The other two waveforms are 
sample realizations for different values of $,(t) that have the same statistical 
properties. The threshold is held at the V(t) = 0. As shown, each of the two 
realizations rises through the threshold at random time points around the ideal 
waveform crossing points. The difference in the crossing time between the 
ideal waveform and the various realizations is a random process denoted by 
Aji. It is assumed that all of the realizations of the random process V(@,, t )  
start from the same zero initial phase. The subscript j denoted the realization 
number whereas the subscript i denotes the count of the threshold crossing 
starting from the initial phase at i = 0. 

At any particular zero crossing i, the difference in crossing times is a random 
variable that has some particular mean and variance. Consider the zeroth 
crossing, i.e. at the initial point; all values of Ajo are equal to zero because all 
realizations of V(8, t )  start at the same initial phase. Therefore, the random 
variable Ajo has zero mean and zero variance. In other words, the probability 
distribution of Ajo is an impulse, 

where 6 is the delta-Dirac impulse. 

Now comes into play, the most characteristic property of oscillators; they are 
autonomous circuits. The phase of the oscillator is determined only from 
within. This means that the ending point of cycle 1 is the starting point of 
cycle 2 and the phase error incurred in cycle 1 is carried over without correc- 
tion to cycles 2 and 3, .... indefinitely. This is manifested in the basic mathe- 
matical model of oscillators shown in Chapter 1; the oscillator is a phase 
integrator. This means that if we try to evaluate the statistical properties of A 
at the end of cycle m (Ai,), we are actually looking at the accumulation (inte- 



Chapter 2 Oscillator Purhy Fundamentals ( 

FlGU RE 1 Different realizations of a random phase jitter process. 

gration) of all Aji from i = 0 to i = m. If we assume for any realization j = n ,  
the random fluctuations causing phase jitter are due to white noise (uncorre- 
lated from sample to sample), then the variance of Ani grows linearly with 
time. This was experimentally verified on ring oscillators in [2] but is true for 
all oscillators. What we have just described is often called absolute jitter [3]. 
It describes the accumulation of timing jitter with respect to an ideal noiseless 
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source. It was shown that the variance of the absolute jitter A as given by 
McNeil (using his original notation) is: 

2 2 
o* = K t ,  (3) 

where K is a time domain figure of merit of the oscillator. The higher the 
oscillator quality factor, Q, the lower the factor K. The variable t is time or the 
measurement interval. 

The resulting phase jitter from absolute jitter j is given by 

Note that 8, is evaluated only at the zero crossings, unlike the phase noise 
process discussed later, which is defined for all time. Timing jitter measures 
described here are useful in the world of digital circuits and optical communi- 
cations clock recovery. Both application domains use square wave like signals 
and interface to circuits that operate only on the edges of the waveform. 
Therefore, it is rather common to describe the signal purity in the domains in 
terms of jitter in picoseconds. In the world of radio-frequency electronics, jit- 
ter is almost never used. This is because the signals are sine wave like and 
phase noise is more relevant as we will see later. 

Herzel [4] rewrites (3) as 

where D is called the diffusivity. Ham calls D, the diffusion constant by anal- 
ogy to the diffusion equation known as Einstein's relation, commonly used in 
solid-state physics to describe diffusion currents and applicable to any physi- 
cal diffusion process [5]. This particular treatment is based on the seminal 
work of Melvin Lax in 1967 in which he analyzed noise in oscillators and 
showed that the oscillator spectrum (or linewidth) broadens in the presence of 
noise [6]. We will visit this result in the next subsection. Herzel also draws the 
same analogy in [7]. 

As shown by (3) and (5), absolute jitter in a free running oscillator grows 
indefinitely without bound. Note that we assume that noise in the oscillator is 
uncorrelated from one cycle to the next, which means that flicker noise is not 
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considered. Flicker noise is correlated from one sample to the next and repre- 
sents deep system memory. To date, there is no mathematical treatment to 
describe absolute jitter in a free-running oscillator in the presence of flicker 
noise. It is also worth mentioning that if the oscillator is locked to a stable 
source in a phase-locked loop (PLL) absolute jitter does not grow indefinitely. 
Rather, it grows linearly until the measurement interval is within the loop time 
constant. In other words, the PLL cannot correct for fast jitter, but it does 
respond to jitter that is slower than the loop dynamics. This observation is 
shown in Figure 2 depicting, on a log-log scale, the absolute jitter versus time 
in a free-running and a locked oscillator. 

FIGURE 2 Absolute jitter in locked and free-running oscil1ator.s. 
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Absolute jitter is not of much use in practice. Being unbounded, little use can 
be made out of it. A more important jitter measure is called cycle-to-cycle jit- 
ter [8] or period jitter [3]. In any oscillation period, this type of jitter is defined 
as the difference between the true instantaneous period of oscillation and the 
ideal (or long term average) period of oscillation. The name cycle-to-cycle jit- 
ter can be a little misleading and therefore we will use the name period jitter. 
It can defined as 

where tn+l and t, are the end and beginning time points of the nth oscillation 
cycle [3]. T is the period of noise-free oscillation. If we assume that the oscil- 
lation frequency is fixed (pure phase modulation) then T is also the average 
period of the noisy oscillation. Considering again thermal noise only, the jitter 
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in the nth cycle is uncorrelated with the jitter all other cycles. In this case, it 
should be obvious that the absolute jitter variance given by (3) is merely the 
accumulation of oZjn over all cycles from t = 0 until t = nT Therefore, (3) can 
be used to predict the RMS value of the period jitter using the substitution 
t = T, i.e. a measurement interval of one oscillation period, 

3 Recognizing Phase Noise 
Consider a pair of sidebands around an oscillation frequency, as shown in 
Figure 3. Depending on the relative phase of these sidebands, one can have 
amplitude modulation or phase modulation. If, for instance, the sidebands 
sum together such that the sum is co-linear at all times with the carrier phasor, 
amplitude modulation results. On the other hand, if one of the sidebands is 
flipped, the sum is always orthogonal to the carrier, in which case phase mod- 
ulation results. This idea will be used in the subsequent analysis. 

FIGURE 3 Sideband magnitude does not reveal modulation (a). Vector diagram 
shows that ij'sidebands sum co-linear to the carriel; AM (b); iforthogonal, PM (c) 
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For example, if it is assumed the carrier is a cosine, the various modulation 
terms are easily derived and given in (8). 

where the $1 and $2 terms are PM sidebands and al and a2 are AM side- 
bands. 

It is easily seen how each pair contributes either only PM or AM sidebands by 
drawing a phasor diagram. For the a, term, both phasors are parallel to the 
carrier. Likewise the $2 pair are orthogonal. The other two cases are easily 
seen by allowing the phasors to rotate with time until they are either parallel 
or orthogonal with the carrier. 

Working with all of these sine and cosine terms becomes difficult and dis- 
tracting. A simpler notation can be used to capture the AM and PM compo- 
nents. In (9), the a sideband represents PM and the b sideband represents AM. 

Figure 4 illustrates these phasors in the complex domain. 

FIGURE 4 Complex reference phasors indicating PM and AM. 
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4 Single Sideband Contains AM and PM 
A noise spectrum can be approximated by combining a large number of sinu- 
soids whose frequencies are distributed over the range of interest and whose 
phase is random [16]. In particular, for this analysis, the noise is partitioned 
into bins of a particular bandwidth, say 1 Hz, and the noise in that bin is 
approximated by a single sinewave. The frequency of the sinewave is the cen- 
ter frequency of the bin, the amplitude is set such that it has the same power as 
the noise it represents, and the phase is random. This is a good approximation 
as long as you observe the noise for a time substantially less IlAJ where Af is 
the bin bandwidth. The reason is if you observe for longer periods, you can 
resolve the discrete tones in the approximation and so can distinguish the 
approximation from the original system. 

Consider the case where the noise is combined with a large periodic carrier 
signal. If the noise is stationary and is added to the carrier, then the phases of 
each of the sinusoids that make up the approximation of the noise are uncorre- 
lated. In this case, the noise is referred to as "additive noise". Now consider 
only the noise at a fixed offset frequency 60 from the carrier. As shown in 
Figure 5, this additive noise can be decomposed into equal amounts of ampli- 
tude and phase modulation. Both forms of modulation have components at o+ 
= Fo and o- = -So, but in this case the components combine to reinforce each 
other at o+ and cancel each other at m. Thus, additive noise consists of equal 
amounts of AM and PM noise. 

A key observation of this work is that nonlinear circuits respond differently to 
AM and PM. For example, if an AM input is applied to a limiting amplifier, 
the output is clipped, removing the AM sidebands, Figure 6. Therefore, the 
circuit clips voltage or current. However, since it cannot clip along the time 
axis, PM signals are unaffected. For a PM signal to be unaffected means that 
the carrier-to-PM sideband ratio of the input is equal to the carrier-to-PM ratio 
of the output. 

5 Phase Noise 

Phase noise is characterized using the phase perturbation spectral power in a 1 
Hz bandwidth at some offset f, from the center frequency normalized to the 
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FIGURE 5 Single noise component decomposed into AM and PM component. 

FIGURE 6 Limiter removes AM sidebands leaving only the carrier: 

- 

power of the fundamental. If the oscillation waveform is defined by (1) then 
phase noise is given by: 
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where S,,(&) is the power spectral density of the oscillation signal v(t). 

In other words, phase noise is the noise to carrier ratio. Note that this defmi- 
tion does not exclude amplitude perturbations. However, in an oscillator, 
amplitude noise is naturally rejected by the limiting action inherent in any real 
implementation. 

Graphically, phase noise can be explained as in Figure 7 depicting the output 
spectrum of an oscillator. When the oscillator is noise-free, its power spec- 
trum is a delta Dirac impulse. An oscillation that is modulated with white 
noise is known to have the shape of a Lorentzian pulse (the power gain of a 
first order lowpass filter) [4]. While the total power in the modulated oscilla- 
tion remains the same for the noisy and the noise-free oscillation, the broaden- 
ing of the output spectrum is a characteristic of autonomous oscillators. The 
noise power around the average oscillator frequency is also known as the 
phase noise skirt. In any non-autonomous (driven) linear or nonlinear circuit, 
if the input to the circuit is a single tone, the output is an overlay of a single 
tone and noise. That is to say the output spectrum can be decomposed into a 
delta-Dirac impulse and a background noise. In oscillators, since the system 
lacks an external time reference, the output spectrum is not a delta-Dirac 
impulse except in the noiseless case [6]. Instead, the output spectrum is that of 
a Lorentzian pulse. This is known as linewidth broadening by analogy with 
lasers, which are optical oscillators. 

To evaluate phase noise numerically using (lo), it is first necessary to evalu- 
ate the power spectral density of the output voltage. There are a myriad of 
ways to evaluate this for a generic oscillator. One approach was given by 
Edson [9,10] and later by Herzel [4] and is summarized below. 

The starting point is the oscillation voltage waveform given by (1). The 
instantaneous frequency noise is given by 

Phase noise is described by Wiener process and the power spectral density of 
phase noise is characterized by its -20 dB/dec slope. Therefore the jkeyuency 
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FIGURE 7 Phase noise skirt. 
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noise spectrum has to be flat [4]. Implicitly, this assumes that the frequency 
perturbation is a linear function of the noise voltage causing it. 

With the assumption that.fn has a white spectrum, the autocorrelation function 
of fn is given by 

Next we look into the autocorrelation function of v(t) as follows 

Substituting with (1) into (13), and using basic trigonometry, the following 
can be readily shown 
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The quantity given by @(t + z) - $(t) is a random variable with a symmetric 
distribution, which makes the expected value of sin($(t + z) - $ ( t ) )  equal to 
zero. With this in mind, (1 4) reduces to: 

Taking the Fourier transform of (15), we arrive at the power spectral density 
of v(t): 

This shows how the power spectrum of an oscillator takes the shape of a 
Lorentzian pulse if only white noise is considered. It is clear that the spectrum 
at zero frequency does not explode to infinity as could happen in a mixer 
driven by a perfect sinewave. 

Substituting in (lo), oscillator's phase noise is given by: 

For a reasonable quality oscillator, the diffusivity D is a small quantity, mean- 
ing that phase diffusion process is slow. Intuitively, this means that the ini- 
tially synchronized oscillators discussed earlier will take a long time to lose 
coherence. For frequency offsets Am= o - o, )) D , phase noise is given by: 

This explains the statement that phase noise at white-noise-dominated offset 
has a slope of -20 &/decade. Note again that colored noise is not considered 
here at all. 

It should be clear that D establishes the relationship between phase noise and 
timing jitter in an oscillator. It should also be noted that we assume that the 
relationship between the continuous phase modulation @ and the discrete-time 
phase error 9 is given by [3]: 



Se(W = S$("> 

To find an expression for D, first re-write (7) as follows: 

L oe = 2DT 

For the nth oscillation period, the discrete phase error 8, is given by: 
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(19) 

(20) 

Accordingly, the period jitter is given by: 

Finally, we arrive at an expression for D using (20) and (22) 

Substituting from (23) into (17) or (18) establishes the relationship 
jitter and phase noise for an oscillator with only white noise sources. 
much effort, it is trivial to show that 

6 Oscillator Phase Noise Models: Post-Leeson 

The past few years have witnessed an explosion in oscillator phase noise 
research. Various models for the phenomena are built and evaluated. In addi- 
tion, multiple simulators are available in the mass market to accurately predict 
the phase noise performance of the oscillator. The models available are very 
rigorous. The intuition and design guidelines are not always clear. In this sec- 
tion, we discuss what we consider the most important models in recent years 
and show briefly the key idea of the model we build and advocate in this 
book. We will limit the discussion to key ideas without delving into the math- 
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ematical details. We will show briefly the strengths and weaknesses of each 
model. 

6.1 Hajimiris Model 

The model was originally presented in [8] as a general theory for phase noise 
in electrical oscillators. It averts the nonlinear analysis by treating the oscilla- 
tor as a linear but time-varying system. The model further assumes that noise 
in an oscillator is a cyclostationary random process. Cyclostationarity means 
that the first and second-order statistics of the random process are periodic 
with a period T. Where T in an oscillator is the period of oscillation. There- 
fore, the oscillator is called a T-periodic system in that the oscillation wave- 
form repeats itself every T seconds. The model builds on the following 
assumptions: 

1. white noise can be treated as uncorrelated random samples in time 
(impulses) 

2. the response of the oscillator to a noise sample depends on the time that 
sample occurs with respect to the oscillation waveform such that: 

a. noise that occurs at the peak of oscillation can only create amplitude 
noise. 

b. noise that occurs at the zero-crossings of oscillation can only create 
phase noise. 

Based on these assumptions, Hajimiri develops what is called an Impulse Sen- 
sitivity Function (ISF). It measures the sensitivity of the phase of the oscilla- 
tor to a small perturbation current injected at a particular moment in time. The 
ISF has the same period T of the oscillator itself because of the cyclostationar- 
ity assumption. A simulation procedure was also presented in [8], by which 
means, the ISF can be constructed. Using a SPICE-like transient simulator, the 
ISF can be evaluated from each noise source in the oscillator to the output. An 
impulse of current, representing noise in a transistor channel or a resistor etc., 
is injected into the oscillator at one instant 'in time. The effect on the oscillator 
phase is evaluated after multiple cycles when the oscillator is back to its nor- 
mal limit cycle. The position of the impulse is shifted with respect to the oscil- 
lation waveform and simulation is re-run to evaluate the ISF from a particular 
noise source at a different time point. Using a fairly tedious simulation proce- 
dure, the ISF of each noise source is constructed. 
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To graphically explain the model, consider the waveforms of an oscillation 
with an injected noise current into the tank. Injecting an impulse current into 
the tank while the waveform is at the peak, changes only the amplitude of 
oscillation as shown in Figure 8a. This change in amplitude is rejected by the 
oscillator due to the presence of the intrinsic nonlinearity of the oscillator and 
the oscillator manages to restore its original amplitude after a few cyclest. 
Alternatively, if the noise is injected at the zero crossing, only the phase of the 
oscillation changes as shown in Figure 8b. Phase disturbance does not fade 
away because the oscillator has no particular phase preference. The accumu- 
lated phase jitter is given by the integral: 

where qmaX is the maximum charge on the tank capacitance and z is the time 
instant at which noise was injected. r is the ISF from the noise current source, 
in(%), to the oscillator's phase. 

The model assumes linear operation but accounts for time variance. This 
allows the extension of the model to multiple noise sources once correlation 
between these sources is accounted for. To account for the time variance of 
noise in various circuit elements, the noise current is decomposed into a white 
noise part and a time scaling function as follows: 

With the cyclostationarity assumption, a is a T-periodic function. 

It is always instructive to consider the oscillator in the state-space plane. An 
LC oscillator is a second order system, i.e. it possesses two states: capacitor 
voltage and inductor current. Plotting the inductor current versus the capacitor 
voltage shows a closed curve (in signal processing terminology it is called a 
limit cycle). As the voltage across the capacitor changes, so does the inductor 
current such that the locus repeats every T seconds. However, the oscillator 
does not necessarily traverse the locus at constant rotational speed. The forgo- 

T In an ideal lossless LC tank, the amplitude of oscillation never returns to its original value 
after a noise impulse. This is bccause there is no dissipativc loss to change the total cncrgy 
of thc tank nor thcrc is nonlinearity to fix the amplitude of oscillation. 
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FIGURE 8 Impulse response of an oscillator using Hajimirik model. 

ing assumptions of the model can be explained in the state-space plane shown 
in Figure 9. Any perturbation can be decomposed into a tangential component 
to the state-space locus and one perpendicular to it. According to this linear 
time-varying model, the tangential component disturbs only the oscillator's 
phase whereas the perpendicular component is pure amplitude noise. Later we 
will discuss another form of perturbation decomposition. 

The model gave some insight into the operation of oscillators. One of its 
advantages is that it is applicable to any class of oscillators, not only LC or 
ring-based ones. It provides a simulation procedure that shows reasonable 
accuracy using a SPICE-like transient simulator and was published at a time 
where simulators like SpectreRF and EldoRF where not very common. How- 
ever, it does not formally address flicker noise at all. The treatment of flicker 
noise in the original paper [8] is performed in the frequency domain rather 
than the time domain without clear analysis or conclusive answers. The model 
found wide acceptance at least for its thermal noise treatment. Later, it was 
deemed accurate only for cases where injected noise is stationary. As a result, 
the model cannot be used for quadrature oscillators for example [I  11. As we 
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FIGURE 9 Orthogonal decomposition ofperturbation. 

will see in the discussion of Demir's model, the assumption of cyclostationar- 
ity leads to an output spectrum that rises to infinity at the oscillation fre- 
quency [12]. Therefore, the output spectrum under Hajimiri's model does not 
resemble a Lorentzian pulse. This particular inaccuracy does not impact the 
overall accuracy of the model because for a reasonable quality oscillator, the 
Lorentzian pulse shape dies out quickly as given by (1 8). 

In essence, the model was developed as a simulation methodology. The cir- 
cuit intuition is gleaned through extensive simulations rather than analytical 
means. Therefore, there is no systematic way to understand the physics of 
why a particular topology behaves in a particular way, or what happens if the 
device width is changed. Despite following efforts to draw more insights, the 
intuition remains based on extensive simulations and clever observation 
rather than circuit analysis or physical insight [ 5 ] .  

6.2 Demir'.. Model 

Unlike Hajimiri's model, this work by Demir does not assume cyclostationar- 
ity. In fact, the model shows that the oscillator output voltage is a stationary 
random process. This is justified by the fact that the oscillator has no external 
time base to set a cyclostationarity period. The model adopts a nonlinear per- 
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turbation analysis whereby the perturbation is not decomposed into phase and 
amplitude noise components. Instead, the perturbation is decomposed into a 
phase deviation component and an additive component that Demir calls 
orbital deviation. To illustrate the basic concepts, let's resort to the state-space 
plane. Consider the oscillator without noise with a limit cycle traversing a cer- 
tain orbit as shown in Figure 10. When noise sources are considered, the 
oscillator does not follow the original orbit but can have any orbit within a 
particular band of orbits. The model encompasses the decomposition of the 
perturbation into two components: 

FIGURE 10 Kartner S decomposition. 

Unperturbed 
limit cycle "' t B 

1. Phase deviation component responsible for shifting the phase of the oscilla- 
tor. 

2. Orbital deviation, by which means, the oscillator's limit cycle is momen- 
tarily perturbed. 

This decomposition was first proposed by Kartner [13]. Demir distinguishes 
between the two components of perturbation in the following manner: the 
orbital deviation does not accumulate and its impact on the oscillator's limit 
cycle dies to zero if the perturbation is removed. Phase deviation, on the other 
hand, accumulates and if the perturbation source is removed the phase error 
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produced during the time of perturbation remains indefinitely. Consider the 
state-space plot in Figure 10. At a particular point in time, the oscillator was at 
point A on the unperturbed locus. If noise is included, the accumulation of 
phase error can result in the oscillator's state being at point B instead. Clearly, 
point B is not close to point A as the phase error can grow without bound. 
Point B however, can be projected on another point B' that falls on the unper- 
turbed limit cycle as well as a small component for B' to B. The translation of 
the oscillator's phase from A to B' is caused by the phase deviation compo- 
nent. The component from B' to B is the orbital deviation. Using a relatively 
complicated mathematical description, entailing stochastic differential equa- 
tions, Demir manages to find a proper and formal description of the output 
spectrum of the VCO in the presence of thermal noise. Of most significance, 
is the proof that the oscillator output is not cyclostationary but rather a station- 
ary process. The phase of the oscillator is non stationary, as would be 
expected of an integrated noise. Demir's argument for the physical origin of 
stationarity in the output voltage of the oscillator is also interesting. He recog- 
nizes that the oscillator's period is disturbed by noise, which means that it 
cannot set a proper cycle for a cyclostationary random process. Using the 
original terminology, the oscillator is represented by a group of equations in 
the form: 

where x(t) is the oscillator's output voltage. 

When the oscillator is perturbed by a small perturbation b(t), the output volt- 
age takes the form x(t + e( t ) )  + y(t)  , where y(t) is the orbital deviation. 

The phase noise resulting from the voltage perturbation b(t) can be obtained 
by solving the following equation: 

where v is called the perturbation projection vector and plays a similar role to 
the ISF in Hajimiri's analysis and B captures the response of the system of 
equations in (27) to the perturbation b. 
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The proposed solution is acquired using a nonlinear two-step perturbation 
analysis. Using the perturbation proposed by Kartner, the equation system 
given by (27) is first solved by assuming no orbital deviation to yield a solu- 
tion that has only the accumulated phase error. Later, the resulting solution is 
re-solved including a small perturbation using linear perturbation. 

As shown by other researchers, Demir shows that the spectrum of an oscilla- 
tor is a Lorentzian pulse in the presence of white noise. Demir hrther 
extended his modeling to include colored noise source, which Hajimiri's 
model does not cover. He first redefmes the flicker noise spectrum as that 
which causes 0 dBc at zero frequency in an oscillator and solves a system of 
stochastic differential equations to fmd the output spectrum of an oscillator in 
the presence of colored noise [14]. 

In a recent publication, a comparison between Demir's work on white noise 
and that of Hajimiri was drawn [ll] .  It shows that the two models are identi- 
cal in the case of stationary noise. It also shows that in the case of quadrature 
oscillators Hajimiri's equations collapse whereas those of Demir still yield the 
correct result. Again, Demir's work is valid for all classes of oscillators. No 
independent verification of Demir's flicker noise work is available to date. 

Demir's model is perhaps the most generic and most accurate treatment of 
noise in oscillators. It is mathematically involved and perfectly suited for a 
simulator-type application. It does not help circuit designers know how to 
design the best oscillator or how to improve on existing topologies by show- 
ing the mechanisms of phase noise generation. There is almost no intuition 
into circuits that results from Demir's model but it is definitely a remarkable 
addition to the simulation of phase noise in oscillators. 

6.3 A Mechanistic Physical Model for LC Oscillators 

6.3.1 Yet Another Model! 

The work presented here can be what is expected from a circuit designer ana- 
lyzing oscillators. The basic assumptions are closer to those of Hajimiri. We 
assume a T-periodic system disturbed by cyclostationary noise. This cyclosta- 
tionarity does not appear explicitly in the model equations but it is neverthe- 
less implicit. The model assumes a steady-state solution to the circuitt, by 
which means, a large signal sinusoid exists across the tank and random noise 
sources from circuit elements disturb the amplitude and phase of the oscilla- 



tor. Unlike Demir and Hajimiri, the work presented here is focused on LC 
oscillators. Even though the circuit analysis can perhaps be extended to other 
classes of oscillators, this book does not cover any other than LC oscillators. 
In essence, the model is built by circuit designers and is intended to be used 
also by circuit designers. 

The model is valid, nevertheless, for both single phase and quadrature oscilla- 
tors as we will show in the following chapters. Our model handles flicker 
noise in a systematic way, unlike the linear time-invariant model presented 
earlier. The model results in closed form expressions rather than a numerical 
procedure. Therefore, it is best suited for circuit designers who are interested 
in designing real-life circuits. 

6.3.2 Basics of the Approach 

Noise from any source in the oscillatory system can be represented by a num- 
ber of sinusoids evenly distributed every 1 Hz. These are called conformal 
signals [16]. If the oscillator is disturbed by a small tone at a particular offset 
with any random phase, the FFT of the oscillator output can be tell what hap- 
pens to both the amplitude and phase of the injected tone. Due to the large sig- 
nal operation of the circuit, the gain seen by the injected noise sinusoid can 
possibly entail frequency translation [15]. Therefore, we call this gain the 
translation gain. Determining translation gain is possible using transient simu- 
lation and an FFT step. It can be also determined using a periodic steady state 
simulator like SpectreRF. Translation gain has to take noise folding into 
account. Noise folding occurs because thermal noise has an infinite band- 
width. As a result, noise is under-sampled by both the fundamental tone and 
the harmonics of the oscillation. Aliases of the under-sampled noise fold to 
near the fundamental frequency. As shown in Chapter 1 and also in [16], a 
single-sideband injected into the tank can be decomposed into four compo- 
nents of correlated phases such that it represents both amplitude and phase 
modulation. The phase information of the FFT can easily show AM and PM 
sidebands to any degree of accuracy required. 

The work presented however, does not resort to simulations to determine the 
translation gains from each noise source to the output. Instead, we resort to 
circuit analysis to determine the AM and PM components. 

t This is also the underlying assumption in a simulator like SpectreRF 
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We begin by assuming a steady-state solution, in which there exists the oscil- 
lator tone and four sideband modulation tones representing AM and PM. Of 
course we assume one single source of noise in the oscillator at a time. Each 
sideband is scaled by an unknown coefficient that needs to be determined 
using circuit equations in steady state. Once the coefficients are determined, 
the type of noise (AM or PM) resulting from that noise source is known. The 
analysis is done for all noise sources. The circuit equations used take into con- 
sideration the physical mechanism behind any frequency translations or scal- 
ing. More details on the technique will be shown in the following chapter. 

Dealing with noise sources in frequency domain rather than time domain has 
its advantages. The most important one is that it facilitates the analysis of col- 
ored noise sources. For example, flicker noise at any frequency is uncorre- 
lated with flicker noise at any other frequency. This greatly simplifies the 
analysis. However, as we will show, normal frequency translations of flicker 
noise can only result in amplitude noise. We will also show that flicker noise 
can create phase noise in the oscillator by means of frequency modulation 
processes. 

The collective analysis presented in the following chapters is what we call a 
physically-based mechanistic model. It is physical because it relates to actual 
operation of the circuit elements. It is mechanistic as it describes the behavior 
of the oscillator using a group of mechanisms rather than a unified numerical 
methodology. This allows the full optimization of the oscillator by under- 
standing the mechanisms in action that are responsible for phase noise gener- 
ation. The model is very intuitive while resulting in a reasonable accuracy, 
within 1 dB of what SpectreRF predicts. 
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Current Biased 
Oscillator 1 

The well-known tail-current biased differential LC oscillator is analyzed in 
this chapter. This oscillator is very popular and has been analyzed by many 
people [1,2]. Because it is a truly-differential circuit, the analysis here is 
greatly simplified. 

1 Steady-State Operation 

The tail-current biased differential LC oscillator is shown in Figure 1 a. It con- 
sists of a differential pair, which commutates a tail current to provide an effec- 
tive negative resistance across the resonator. The resonator is drawn as shown 
because differential inductors provide a higher Q and consume a smaller area 
than single-ended inductors. The I-V characteristic of the cross-coupled dif- 
ferential pair characteristic is shown in a piecewise linear fashion in 
Figure lb. In the linear region, the I-V characteristic has a negative slope that 
corresponds to the negative resistance of the device. The curve then flattens 
out and the effective admittance is zero. In this region, the circuit does not 
provide any negative resistance nor does it provide a loss that would load the 
resonator. The curve does not have any hysteresis or "loops" and so indicates 
that the circuit is memoryless. 

In steady-state, the oscillation switches this differential pair to produce a dif- 
ferential square-wave current at the output that excites the resonator, making 
up for losses in the resistor, Figure 2a. The square wave has a frequency spec- 
trum consisting of a fundamental, with amplitude 2Idn, and odd harmonics. 
The resonator filters out the higher harmonics and the fundamental flows 
through the resistors, with a value R, to determine the differential steady-state 
amplitude of oscillation. The amplitude is given in (1) and is shown graphi- 
cally in Figure 2b, [3]. Note that the current in each of the switching transis- 
tors switches between 0 and I. with a bias value of 10/2. The signal current 
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FIGURE 1 (a) A cross-coupled differential oscillator and (b) the differential IV 
characteristic of the cross-coupled differential pair: 

9 9 'out 
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into the differential tank resistance is thus switching between Id2  and -Io/2. 
Some references use a different notation where the output current is taken as 
the difference between the currents in each side of the oscillator. In that case, 
the switching waveform moves between -Io and I. but flows into R/2 to build 
the amplitude. 

The frequency of oscillation is determined by the resonator and occurs when 
the energy in the inductor is balanced by the energy in the capacitor. If the 
current flowing into the resonator consists of only a sinewave, the balance 
occurs at the resonance frequency of the tank. 



2 Linear Analysis of Differential Oscillator 

FIGURE 2 (a) Cross-coupled differentialpair output current in time and frequency 
domain. (b) Output di#erential voltage in time and frequency domain. 
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As the tail current is increased, the amplitude of oscillation rises in proportion 
to the tail current, as shown in Figure 3. However when the swing is so large 
that the current source is driven into the triode region, the oscillation clips at a 
level of 2 Vdd. At this point, the current source is supplying as much current as 
the oscillator can support. Here, the current source can be replaced with a 
short to ground [4]. The linear region of operation is called current limited 
and the clipped region is called supply limited [I]. 

2 Linear Analysis of Differential Oscillator 

Phase noise in an LC oscillator is typically modeled by the ratio defined by 
Leeson and classically given in (3), [5] .  Here, P, is the power of the signal and 
F is a circuit specific constant. 
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FIGURE 3 Initially, as the current is increased, the amplitude is current limited and is 
proportional to the current. Once the current source is driven into the linear region, 
the amplitude becomes supply limited. 
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Leeson's ratio is re-written in (4). Here the noise, kTIC, is filtered by the reso- 
nator and normalized by the power of the signal [4]. 

This ratio is scaled by a circuit-specific noise factor F. This noise factor is 
similar to other noise factors used in RF circuits like LNAs, except instead of 
normalizing the total circuit noise to that of 5 0 4  it is normalized to the noise 
of the resonator loss [4]. 

Since all resonators are lossy, an active element is required to sustain oscilla- 
tion. Consider Figure 4a, where an ideal negative resistance is used to com- 
pensate for the resonator loss. The noise of the negative resistance is equal to 
the resonator loss but is not correlated with it. This results in a noise factor of 
2. Nonlinear active circuits are used to implement the negative resistance, as 
shown in Figure 4b. Assuming the noise factor of the non-linear circuit is y, 
the noise factor of the whole oscillator becomes 1 + y. 
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FIGURE 4 Ideal oscillators with noisefigure 

3 Thermally Induced Phase Noise 

At high offset frequencies, the major source of phase noise is due to thermal 
noise. Many techniques have been developed to analyze this process but none 
provide simple methods that enable simple hand analysis of phase noise in 
oscillator circuits. Here, the tools to analyze the time-varying nature of phase 
noise are oscillators are developed. 

A little-known property of nonlinear circuits greatly simplifies the analysis of 
phase noise in oscillators. It can be proven that if a narrow-band, phase modu- 
lated signal is applied to a zero-memory non-linear circuit and it is followed 
by a narrowband filter centered at the carrier, the carrier-to-sidebands of the 
phase modulation at the input is preserved at the output, Figure 5 .  
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FIGURE 5 Any memory-less circuit followed by a bandpass,filterpresewes the PM 
input carrier-to-sideband ratio at the output. The filter removes any harmonics and 
sidebands generated by the nonlinear circuit. 
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This property is hinted at by Rice [6] and by Belinkiy [7]. Davenport's classic 
work on limiters [8] compares SNRi, to SNROut for white noise but not phase 
modulated sidebands. Finally, Malyshev has shown that in any non-linear cir- 
cuit without any reactive elements, no AM to PM conversion occurs (sic. 
AM-FM conversion) [9]. 

While this property was originally proved for the differential oscillator using 
previous work on noise in mixers [ l l] ,  a more general proof that is easier to 
apply to a wider class of nonlinear circuits is given here. After reviewing the 
analysis of various aspects of phase noise from AM to PM in the varactors 
[12] to frequency modulation in the current source, it was found that the deri- 
vation by Samori was the most consistent with the ideas presented here [3]. 
The following derivation is based on his paper. 

Assume the input of a nonlinear transconductor consists of a carrier, V,, and a 
lower sideband, Vlsb, located om below the carrier. 

If the characteristic of the transconductor is I,,,(t) = I(Vout(t)) and the ampli- 
tude of Vl is much larger than V,, then a Taylor series can be used to approx- 
imate the response of the nonlinear circuit. 

The derivative dI/dV is the transconductance of the nonlinear device and is 
shown in gray in Figure 6a. 
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For the case of a differential pair or a limiting amplifier, the transconductance 
is an even function with a nonzero value appearing at the zero crossings of the 
output voltage. This is clearly seen when the transconductance is plotted as a 
finction of time, Figure 6b. The resulting Fourier Series will only contain 
terms located at even multiples of the carrier frequency, 

FIGURE 6 (a) Characteristic of a differential pair with transconductance. (b) 
Transconductance turns on at twice the carrier frequency and is an even function. 

A reactive current, injected by the differential pair or the limiting amplifier, is 
captured by the quadrature terms given by For the ideal differential pair, 
there is no reactive current so the quadrature terms are equal to zero. 

The amplitude of the fundamental of the output current is derived using (6). 
This term is written as Ic(t). Since: 

Ic(t) may be written as 
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This equation shows that mixing between the transconduction function and 
the derivative causes different terms of g(V) to fall at 0,. For example, the 
second harmonic of g(V) mixes with the carrier to produce components at o, 
and 30,. For oscillators, only the terms at w, are of interest since the resona- 
tor attenuates any out of band tones. 

High Q resonators drastically attenuate higher harmonics. For this case, a 
final value of IJ t )  is easily calculated and is given below. The transconduc- 
tance terms are combined and referred to as the effective transconductance. 

The intermodulation tones that result from the lower sideband, Vlsb, are 
described by the second term of (6). The resulting current tones that fall near 
the carrier are given as 

If the lower sideband was part of a phase modulation pair, then the upper side- 
band, Vusb, must be 

The resulting current tones from this side band are 

The total output sidebands are given as 

The output carrier-to-sideband ratio is easily calculated by using (11) and 
(1 51, 
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This completes the proof that in a nonlinear element, the ratio of the carrier to 
the PM sidebands at the input is equal to the output. 

Based on this property, if a pair of phase modulation sidebands is applied to a 
limiting amplifier, the amount of phase modulation remains unchanged. 
Therefore, in a transimpedance limiting amplifier, the carrier-to-sideband 
ratio of a voltage input is equal to the carrier-to-noise ratio of the current out- 
put. An example of this circuit is the differential pair in the switched current 
oscillator, Figure 7. If it is driven by an oscillation on which phase noise side- 
bands are superimposed, the output current carrier-to-noise ratio is the same 
as the carrier-to-noise ratio of the input. This fact greatly simplifies the phase 
noise analysis. Using this simple property, the various sources of noise can be 
easily analyzed beginning with noise in the resonator. 

FIGURE 7 SNR ofphase modulated signal is preserved at the output of an ideal 
limiter: (b) The differential pair is an example of a limiter. 

II + I,cos((o, + wm)t) 
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3.1 Resonator Noise 

Figure 8a shows a simplified model of the cross-coupled oscillator. The resis- 
tance models the loss in the resonator. Also shown is the associated thermal 
noise current. Any noise can be decomposed into a series of sinewaves all 
uncorrelated in phase, Figure 8b [6].  The analysis begins with a sinewave 
component of this noise just above the oscillation frequency, Figure 8c. This 
can be decomposed into equal parts of PM and AM sidebands. 

FIGURE 8 Noise in resonator is modeled as a series of sinewaves. One component, 
just above the oscillation frequency, is decomposed into equal parts of PM and AM 
noise. 

First, assume that in steady state there is an oscillation voltage across the res- 
onator. Surrounding it are some unknown PM and AM sidebands shown by 
the frequency spectrum in Figure 9a. In general, these are unequal and each 
would have an arbitrary phase. The PM sidebands have a level of a and the 
AM sidebands have a level of b. The output voltage is 
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FIGURE 9 Assumed steady-state voltage and the response of the active circuit. 

Assume Steady State Response - Output Current 

The cross coupled differential pair will react to this voltage and produce a cur- 
rent. However, as was shown earlier, this output will not contain AM, 
Figure 9b. The output is calculated using (16). 

In parallel with the resonator loss resistor is a noise current source. Only a sin- 
gle 1 Hz component of this current source located above the oscillation fre- 
quency is analyzed. This component is described by 

Next, KCL is performed on the left side of the resonator. Each frequency 
component is summed separately beginning with the tones at the oscillation 
frequency: 
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Take complex conjugate of (22): 

Next, subtract (23) from (21), 

It is easy to show the following approximations: 

and 

Substituting these approximations into (24) results in 

By using (20) and assuming that the PM sidebands are much larger than the 
AM sidebands leads to the gain from a noise current to PM sidebands. 
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The phase noise of the oscillator due to the loss in the resonator is easily cal- 
culated by including noise from the lower sideband and normalizing with the 
RMS value of the amplitude of output oscillation. Note that the power of the 
resistor noise current is 4kT/R. 

With the final expression simplified as 

To understand visually what is happening, a simple model is derived by sepa- 
rating the resonator noise current into PM and AM components: 

If only PM noise is injected into the resonator, the analysis is identical to that 
just performed. The results show that this is equivalent to injecting a PM noise 
current into a lossless tank, as shown in Figure 10. The PM component of the 
noise sinewave will now flow in this lossless resonator and be shaped, decay- 
ing inversely with frequency. The gain from the noise tone to the phase noise 
at the output is simply half the noise amplitude (to account for the PM compo- 
nent) times the impedance of a lossless tank. This is consistent with modeling 
the cross coupled differential pair as a negative resistance that exactly cancels 
the loss resistor at the carrier and PM sidebands at all other frequencies. 

If only AM noise is injected, the analysis is slightly different. Following the 
same steps as before, KCL at the upper and lower sidebands is given below. 
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FIGURE 10 For the PM component of the noise, (a) the active circuit cancels the 
resistor and all the noise currentjlows into a (b) lossless resonator: 

When the complex conjugate is taken of the lower sideband and the two equa- 
tions are subtracted from each other, the noise current is canceled, leaving 

The approximations given before reduce this equation to 
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If oscillation occurs near the resonant frequency of the oscillator, the second 
term in (36) is equal to zero. This results in a = 0, or no PM due to the AM 
current. Setting a = 0 from above into (33) and (34): 

Equations (37) and (38) show the result is the same if the AM noise was 
driven into the lossy tank. This is shown in Figure 11. (3 9) 

FIGURE 11 For the AM component of the noise, the active circuit cancels the resistor 
and the noisej7ows into the lossless resonator and the resistor: 
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This circuit was simulated in SpectreRF as a function of tail current and with 
various combinations of transistor size and quality factors. As the current was 
increased, the resistance was decreased to keep the amplitude of the carrier 
constant. The complete simulation parameters are given in Table 1. From that, 
simulated gain from the noise current to phase noise at the output is plotted in 
Figure 13b. The expression derived in (32) matches the simulations exactly. 

TABLE 1 Simulation parameters for the results given in Figure 12: L = IOOnH, 
C=lpE f, = 10 Hz. 

In summary, while noise near the oscillation frequency is important, the reso- 
nator filters noise farther away, Figure 13a. Furthermore, the phase noise 
expression shows that as the quality factor of the resonator increases, the 
oscillation amplitude increases as Q-squared before the supply limit, whereas 
the sidebands will go down as Q. As a result, the total phase noise improves as 
l/Q-cubed, Figure 13b. 

3.2 Differential Pair Noise 

Next, the noise in the differential pair transistors is analyzed. Noise is injected 
into the resonator only when the differential pair is in its active region, 
Figure 14a. For example, if one switch is ofi it obviously contributes no 
noise, and neither does the other switch that is on because it acts as a cascode 
transistor whose tail current is fixed to IO by the current source. So, if the sin- 
ewave in Figure 14b drives the differential pair, pulses of noise carrying cur- 
rent appear at the output of the differential pair. 

An expression for the output current for a single component of noise located 
just above the carrier is easily derived. Using the fact that the PM SNR is pre- 
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FIGURE 12 Simulation results of "phase noise gain" versus bias current, resonator 
loss, and transistor transconductance. (32) has excellent agreement with the 
simulation results. See Table I for the circuit parameters. 
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served in a nonlinear device and that a noise tone can be decomposed into half 
AM and half PM, the output noise is given in (40). 

Multiplying this expression by the impedance of a lossless tank results in the 
gain from a single noise component to phase noise. 

Again, SpectreRF simulations give the gain from the noise voltage to the 
phase noise at the output and are plotted for swept tail current and for various 
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FIGURE 13 (a) Noise far from the carrier is filtered by the tank. (b) As the Q of the 
resonator increases, the amplitude increases by Q-squared and the noise Ievel drops 
by Q, resulting in a Q-cubed improvement 

other conditions in the oscillator, with all the values appearing in Table 1. The 
expression in (41) exactly predicts the simulation results, Figure 15. 

The complete noise mechanism is based on the mixer noise paper by Darabi 
[1 11. His analysis is more rigorous but is equivalent to that presented here. As 
stated before, noise only appears at the output when the devices are in the 
active region. At this time, the transconductance of the differential current, the 
current that actually flows through the resonator, is Gm=Io/Vw, Figure 6a. 
This is half the transconductance of the individual devices, (42). This impor- 
tant difference is due to only the differential current flowing through the reso- 
nator. 

As oscillation occurs, the instantaneous transconductance toggles with time 
from Gm to 0,  Figure 6b. The noise current that appears at the output is given 
in (43) where v, is the input referred voltage noise and G,(t) is the transcon- 
ductance envelope. 
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FIGURE 14 Noise in the switching devices is injected into the resonator as pulses only 
when the transistors are in the linear region. These noise pulses have a width, t, 

+ Vout - 

Since the transconductance is varying with time, the output noise appears as 
pulses of noise current with a pulse width equal to the duration the differential 
pair is in the linear region. Figure 16a shows the envelope of the noise pulses 
in the time domain and Figure 16b shows them in the frequency domain. In 
the frequency domain, the envelope is shaped with a sin(x)lx envelope with 
the first null at one over t, where t ,  is the pulse width. An important charac- 
teristic is the pulses only appear at even harmonics of the oscillation fre- 
quency. 

This mixing process causes noise folding to occur, allowing noise from many 
frequency locations to congregate at one point near the oscillation frequency. 
The frequency spectrum of the noise pulses is convolved with the white noise 
density of the noise voltage, Figure 16c, to produce the output noise, 
Figure 16d [lo]. To understand process, the convolution is examined one 
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FIGURE 15 Simulated comparison of the phase noise gain from a noise component 
near the oscillation frequency. Simulations agree with (41). 

Gate Gain 

component at a time. Suppose there is noise just above the oscillation fre- 
quency (labeled "1" in Figure 16c), this convolves with the first two compo- 
nents of the noise pulses located at DC and 2w0 and produces a pair of 
sidebands around the carrier. These sidebands have a phase relationship that 
shows they are phase noise. Further, noise located below the oscillation fre- 
quency will likewise produce phase noise sidebands around the carrier. Next, 
consider noise near the second harmonic (labeled "2" in Figure 16c). This 
convolves with the first three components of the noise pulses (DC, 20,, and 
40,) to produce phase noise sidebands, which are far away from the oscilla- 
tion frequency. Finally, noise at the third harmonic convolves with the second 
and third component to again produce phase noise around the carrier. From 
this example it is clear that noise at the oscillation frequency and at odd multi- 
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ples is important. Also, the noise is eventually band-limited by the sinc enve- 
lope. 

FIGURE 16 Noise in the differentialpair appears as noise pulse in the time domain, 
(a). In the frequency domain, these pulses are the result of a convolution between a 
sin(x)/xfuncktn, (b), and the white noise PSD of the transistol; (c). Only noise near 
odd harmonics fall within the bandwidth of the resonator: 

Noise Pulses 
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There are a number of ways to calculate the summation of the convolution 
terms as the sin(x)lx function decays. Darabi presents a theoretically rigorous 
method. A simplified method is presented here that produces the same result 
as Darabi but is easier to visualize. To simplify the analysis, the sin(x)lx func- 
tion in the frequency domain is approximated as having impulses with con- 
stant amplitude up to llt, and zero elsewhere, Figure 17. 

The DC component, g[O] is simply the DC value of the time-domain wave- 
form. 
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FIGURE 17 Noise pulses are approximated as having constant amplitude up to the null 
of the sin(x)/x function. 

Noise Pulses 

Since all the non-zero terms are equal to g[O], the frequency domain function 
is fully described. 

To verify this value, the gain from a noise located above the carrier to output 
noise is again calculated. Recall that the DC term mixes with the upper side- 
band of the voltage noise to produce an output current located at the upper 
sideband. This is shown in (45) which matches (40). 

Since each frequency term convolves with white noise, the final answer is 
simply the sum of the square of the frequency domain envelope times the 
white noise. Since all the frequency terms are equal, only the number is 
required. This is just the bandwidth divided by 2f0: Nfold = (lltw)l(2fo) = 11 
2Jbt,. Equation 46 gives the final output noise where Ndev is the two devices 
in the differential pair. 

i2 = V"N N 
o,n 4R2 fold dev 

The equivalent voltage noise is set by the transconductance of the individual 
devices, 
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After substituting for the value of the voltage noise, the folding term, and the 
number of devices, the final output noise is calculated, 

This equation shows that the output noise density at the switches only 
depends on the amplitude and the bias current, and not on the transistor size! 

The constant noise is because the noise in the differential pair is not sampled 
by impulses, but by time windows of finite width. The window height is pro- 
portional to transconductance, and the width is set by the tail current and the 
slope of the oscillation waveform at the zero crossing. The input-referred 
noise spectral density of the differential pair is inversely proportional to 
transconductance. Thus, the narrower the sampling window - that is, the 
larger the sampling bandwidth - the lower the noise spectral density [l I]. 

The final phase noise due to the switching devices is calculated by scaling the 
output noise by the loss tank and normalizing it by the amplitude of the fknda- 
mental. 

Again, the total phase noise in (49) depends only on the current, the resis- 
tance, and the amplitude of oscillation and is independent of the size or the 
transconductance of these devices. Also, as the quality factor improves, we 
get a l/Q-cubed improvement in phase noise below the supply-limited ampli- 
tude, Figure 18. 

3.3 Tail Current Noise 

Finally, the third source of noise is in the tail current, Figure 19. Any noise in 
this transistor is commutated and frequency translated by the switching pair as 
in a single balanced mixer and injected into the tank. It is assumed that the 
amplitude of oscillation is much larger than the transition region of the differ- 
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FIGURE 18 Once again, as Q increases, the amplitude increases at Q-squared while 
the sidebands are attenuated by Q, resulting in a Q-cubed improvement in phase 
noise. 

-- 
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ential pair. When this is the case, the mixing fimction is more of a square 
wave than a sinewave. 

FIGURE 19 Noise in the current source is the third source ofphase noise. 

Therefore, noise at low frequencies is mixed up into a pair of sidebands 
around the carrier and injected into the tank. However, these are AM side- 
bands and therefore not important, Figure 20. Any varactor connected to the 
resonator will convert the AM envelope into FM and that will produce phase 
noise [12]. Noise located at the oscillation frequency produces sidebands at 
low frequencies and at the second harmonic, which are far away from the car- 
rier. 
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Noise originating at the second harmonic is converted around the carrier and 
around the third harmonic. The noise translated around the third harmonic is 
attenuated by the resonator and is ignored. The noise that is translated near the 
carrier arrives there from two components of the mixing function. The funda- 
mental component of the square wave will down convert the noise at the sec- 
ond harmonic to one side of the carrier while the third harmonic of the square 
wave will down convert the noise to the other side of the carrier. However, the 
third harmonic has a conversion gain of 113 of the fundamental so the mixing 
process is not symmetric. 

The resulting noise is decomposed in a third that appears as AM while the 
remaining two-thirds appear as a single sideband noise that lands in-band. So, 
in the absence of varactors, the only noise that produces phase noise is that 
which lies at the second harmonic and all even multiples. 

FIGURE 20 Only noise located at even harmonics will translate in-band andproduce 
phase noise. 

Current Noise PSD 
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For example, the noise is modeled as in = sin(2w0+w,)t and the square wave 
mixing function is approximated in (50). If the square wave hnction is mod- 
eled with a cosine, the third harmonic is negative to allow the zero crossings 
of the harmonic to align. 

The terms of the product between the noise and the mixing function are trun- 
cated to the frequency of interest and are given in 
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These terms are separated into PM and AM components. 

Equation 53 below describes the resulting phase noise sidebands correspond- 
ing to the second harmonic input. It is simply the PM sideband in ( 5 2 )  times 
the impedance of the lossless tank. Again, SpectreRF simulations are shown 
for this transfer function as a function of tail current and various other param- 
eters in the oscillator. And again, a good fit is obtained for this equation, 
Figure 2 1. 

The small departures from ( 5 3 )  arise from the fact that the frequency conver- 
sion process is sensitive to the square-wave mixing that was used to derive 
this equation. Since the commutation will often be less than a square-wave, 
( 5 3 )  is pessimistic as Figure 21 clearly shows. 

To calculate the total noise, all the noise locations must be included. The 
noise located on the other side of the second harmonic contributes an equal 
amount of noise. Since the square-wave mixing process is rich in harmonics, 
noise from higher harmonics will all be down converted to near the oscillation 
frequency. Since all these noise sources are uncorrelated, they must be 
summed powerwise. Additionally, only the PM component is included. 

The summation conveniently sums to n2/4. The simplified expression is given 
in 
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FIGURE 21 Simulation vs. equation for the transfer function from znd harmonic in the 
current source to phase noise sidebands. 

Current Source 

Normalizing (55)  results in the expression for total phase noise, including all 
the important harmonics. 

Where y is the noise factor of a single FET, classically 213. Here, as the qual- 
ity factor improves, the amplitude rises as Q squared but the sideband levels 
remain constant. As a result, the improvement in phase noise is l/Q-squared, 
Figure 22. 

It is important to note that the AM noise resulting from up conversion, if 
impressed across a varactor at the resonator, will modulate the varactor, 
resulting in AM-to-FM conversion [12,13]. Although the process is different, 
the sidebands are indistinguishable from PM noise sidebands. Unlike the 
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FIGURE 22 As Q changes, only the amplitude increases, resulting in a Q-squared 
improvement in phase noise. 

other mechanisms of phase noise, this effect depends on the varactor charac- 
teristics and VCO tuning range and it may be significant only in certain situa- 
tions. 

The total phase noise is derived by summing 

3.4 Proving LeesonS Hypothesis 

Recall Leeson's original equation from Section 2 contains a circuit specific 
factor F. Equation (57) derives a precise expression for this unknown noise 
factor and is given in (58). It contains the circuit specific parameters and vari- 
ous other terms, which are all well understood. 

The differential oscillator it consists of three terms. The first is due to noise in 
the resonator. The second term is due to noise in the differential pair, which 
by the way, is independent of the differential pair transistors themselves. And 
the final term results from the current source noise. This completely specifies 
the phase noise in the white noise region. 

Herzel ignored the noise due to the current source, and through simulation, 
derived a similar expression [14]. The results derived here are similar to those 
by Samori [3]. Samori's derivation is similar in spirit to that presented here 
but is much more mathematical and does not lead to the same intuitive under- 
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standing of the oscillator. Additionally, he was unable to obtain a closed-form 
expression for this last term. 

The simple expression (58) captures all nonlinear effects and frequency trans- 
lations. At low bias currents, while the amplitude of oscillation is smaller than 
the power supply, the differential pair acts as a pure current switch driving the 
resonator and V1 = (2/n)RIo [15]. For this case, the second term comprising F 
simplifies to 2 ~ .  This means that as tail current increases and assuming 
g, biasR is held constant, the noise factor remains constant and phase noise 
improves as a function of lo-squared. Others [15] have observed this. How- 
ever, beyond a critical tail current the amplitude V, is pegged constant, lim- 
ited by supply voltage. Further increases in I. will cause the differential pair's 
contribution to noise factor to rise, degrading phase noise proportional to Io. 
Recall, the amplitude of oscillation rises with the tail current until it is limited 
by the supply voltage, Figure 3. From this expression, it is clear that phase 
noise decreases rapidly as the amplitude rises. Once it goes beyond the supply 
limit, the amplitude is pegged and the noise factor worsens with more bias 
current, degrading phase noise beyond that point. So there is a clear optimum 
point of operation for least phase noise. Therefore, to minimize phase noise, 
the tail current should be just enough to drive the amplitude to its maximum 
possible value. 

4 Validation of Thermal Noise Analysis 

Now, the total expression for phase noise was validated on two widely differ- 
ent differential oscillators. Figure 23 is the measured phase noise of two sam- 
ples of an oscillator fabricated in 0.35pm CMOS with on-chip inductors with 
a low Q of 6, and oscillation frequency of 1.1 GHz and a tail current of 3.4 
mA. It also contains a SpectreRF simulation of the phase noise. 

Figure 24 is the measured phase noise of an oscillator fabricated in 0.25 pm 
CMOS with off-chip inductors with a high-Q of 25 but biased with a very low 
current of O.3mA and an oscillation at 830 MHz. 

Applying the formulas developed previously to these two oscillators and 
without using any fudge factors, excellent agreement is found in both cases 
within 1 dB of measurement. This serves as validation of these formulas. 
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FIGURE 23 Measured and calculated phase noise of an oscillator with integrated 
inductors. Measurements from two chips are shown along with a SpectreRF 
simulation. The SpectreRF simulation error at low frequencies is due to a poorjlicker 
noise model. The oscillation frequency is 1.1 GHz, the inductors have a Q of 6, and 
the circuit draws 3.4 mA. 
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FIGURE 24 Measured and calculatedphase noise match well for a 0.25pm oscillator 
with off-chip inductors. The oscillation frequency is 830 MHz, the Q of the inductors 
is 25 and the circuit draws 0.3mA of current. 
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Colpitts Oscillator 

1 Introduction 
The universe of oscillators can be divided between the differential LC oscilla- 
tor, where the zero crossing of the oscillating voltage switches the active 
devices, and the Colpitts oscillator, where only the peaks of the oscillation 
voltage inject current from the active device. 

Historically, when transistors were expensive, the Colpitts oscillator was the 
topology of choice because it required only a single transistor [I]. Now that 
transistors are essentially free, the Colpitts oscillator remains popular because 
it only requires a single pin to connect to an external resonator and no coupled 
inductors. However, its steady state behavior is poorly understood, and its 
phase noise is outright misunderstood. . 

Using complicated mathematical expressions, Huang analyzed the phase 
noise of the Colpitts oscillator in 1998 [2]. He gave a detailed analysis of the 
Colpitts oscillator and his methods served as a motivation for this work. In 
this chapter, the techniques developed in Chapter 3 are used to simplify the 
analysis of phase noise in the white noise region. As a historical note, Kulagin 
analyzed the Colpitts oscillator in a similar manner [I]. He specifically looked 
at a Colpitts oscillator with automatic gain control. 

2 Steady-State 
Figure 1 shows the Colpitts oscillator that is analyzed. This topology is 
exactly the same as the circuit analyzed by Huang except the location of the 
ground node has been moved to the source terminal. This change greatly sim- 
plifies the analysis. 

The analysis begins with a large-signal steady-state analysis. Once oscillation 
starts, the capacitors charge up to a DC voltage which biases the transistor in a 
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nominally off position. The amplitude builds up to a point such that the peaks 
of the oscillation voltage across capacitor C,  turn on the transistor for a con- 
duction angle, 0, which is a fraction of the phase of one period, 2n, Figure 2c. 
"Steady-state" implies the selection of 0 such that various circuit constraints 
are met. First, the average current through the transistor must equal the bias 
current lo because the capacitors cannot carry DC current. Second, the hnda- 
mental component of the periodic transistor current, ID, must support the 
amplitude across C1 responsible for setting 0. 

FIGURE 1 Schematic of a Colpitts oscillator: The noise in the oscillator is modeled as 
a current source in parallel with the bias current source. 

As in the analyses of other large-signal circuits, the transistor characteristics 
are simplified to capture its essential action. Here, the simplification entails 
representing it as a constant transconductance, g,, above a threshold VT, 
Figure 2a. The transistor carries an average current IDo while its physics andl 
or its aspect ratio will determine g,. Eventually g, will be represented in 
terms of 0. To further simplify the analysis, the output voltage is taken as the 
voltage across C1 and it is assumed to consist of an oscillation and DC com- 
ponent, (1). 



FIGURE 2 (a) Ideal model o f  transistor in the Colpitts oscillator: (b) Transistor turns 
on only at the peak of oscillation. (c) The transistor output consists of tips of 
sinusoids. 

The transistor current waveform is given by: 

where V1 is the amplitude of sinewave on Vcl and 9 = mot. The DC compo- 
nent of ID is denoted IDo and is 
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The fundamental frequency component of ID is denoted ID1 and is 

Later, the mean-square value of a unit rectangular window spanning the con- 
duction angle 8 is used. This is calculated as follows: 

Turning to circuit equations, the sum of the voltages around the resonator 
leads to (10). 

Collecting terms of Vcl and only looking at harmonics near the oscillation 
frequency leads to (1 1). 

From the operation of the circuit, it is known that V,  is in phase with IDI. 
Therefore (1 I) is simplified by first equating real parts on both sides. 



This leads to the frequency of oscillation, 

Next, equate the imaginary parts. 

Equations (7) and (13) simplify (14) and specify the relation between g, and 
the transistor conduction angle, 9. 

which leads to 

As expected, when g,,, gets very large, 9 tends to 0. Finally, using DC balance 
between the circuit bias current and IDo from (3). 

Limiting Case: What is the amplitude of oscillation if the transistor g, is 
very large, as in a BJT? V, is found by eliminating g, between (15) and (17): 
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Next, the limit as 8 tends to 0 is found. Initially this leads to an indeterminate 
answer. However, by applying L'Hopital's rule successively until the numer- 
ator and the denominator are no longer both zero results in: 

These results are exactly the same as both equations (14) and (15) in Huang 
PI .  

The interesting thing to note is that the amplitude, and therefore the funda- 
mental component of the transistor current, stays almost constant over a very 
large range of conduction angle. This is shown in Figure 3, which plots the 
first part of (18) for various values of 8. Therefore, for a reasonable conduc- 
tion angle, the Fourier series of ID is accurately approximated as: 

3 Phase Noise Analysis 

While the noise analysis by Huang is accurate, the mathematics involved are 
so complicated it is difficult to develop insight into the phase noise processes 
of the Colpitts oscillator [2,3]. The following analysis is simpler than Huang's 
but leads to exactly the same conclusion. 

3.1 Noise Sources 

The analysis of the noise in the oscillator begins by identifying the three noise 
sources in the circuit. First there is the resistor noise, which is represented as a 
series noise voltage with constant spectral density: 

Second is the noise in the bias current source, which is represented as a shunt 
noise current with constant spectral density: 
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FIGURE 3 TheJrst term of (18) as a function of conduction angle 0. For narrow 
conduction angles, this is accurately approximated by 2. 

Amplitude vs. Conduction Anglc - 
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where F,  is the appropriate noise factor. Finally, there is the noise in the 
switching transistor. This noise is gated in time; that is, it is zero everywhere 
except when the transistor turns on for the conduction angle 0. The equivalent 
continuous spectral density of this noise is derived below. 

The output current noise of the transistor is described along the angle axis 
(equivalently o t  axis) as: 

in,(t) = inO(t)w(t) (23) 

where the noise of a transistor is ;io(f) = 4kTygIn and y is 213 for MOS 
devices. The window function w(t) was defined earlier. Multiplication in time 
corresponds to convolution in the frequency domain. Using the fact that the 
original noise is white, the resulting spectral density is: 
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In the right-most term, the sum of the squares of all the harmonics is equal to 
the mean-square value of the periodic window, which can be directly com- 
puted in the time domain. This was computed previously in (8). 

This is a constant spectral density representing gated noise and is equivalent 
to Huang's expression, whose derivation he explains in the text that precedes 
it. Using (16), this is simplified by expressing g, in terms of conduction angle 
and circuit constants. 

Limiting case: The question is, what is this spectral density as g, gets very 
large and 8 tends to zero? Applying L'Hopital's rule, we find that this output 
current noise spectral density grows without bound. This does not seem credi- 
ble, but Huang's expression has the same property, as his P approaches infin- 
ity (infinitely strong MOSFET) and x tends to 1 (conduction angle goes to 
zero). However, it must be true since the noise is present for an infinitesimally 
small interval of time. 

Since the current source noise and the noise from the transistor are essentially 
in parallel and are uncorrellated, they can be added powerwise. 

3.2 Noise in the Resistor 

First, the phase noise of the current source is analyzed. The resonator filters 
all the noise in the current source that does not lie near the frequency of oscil- 
lation. Therefore, only noise around the carrier is important. A noise current 
located at the upper sideband is analyzed. 
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The first step is to assume an output voltage, (28). This equation is slightly 
different from the solution that was assumed in Section 3.1 in Chapter 3. It 
consists of a noiseless carrier plus PM sidebands. It is assumed and AM side- 
bands are negligible near the carrier. The level of the PM components (repre- 
sented by a) are unknown but the amplitude of the noiseless oscillation is. The 
amplitude can be calculated from (1 8). 

An output current is also assumed. However because of the highly nonlinear 
shape of the current, the relative amount of AM is unknown and must be 
included in the expression. This is shown in (29). 

* jO-t * jO-t 
I D = I D O + ~ , ~ l d m t + ~ , ( a e ' w + t - a e  + b J w " + b e  ) (29) 

This is simplified by using (20). 

As was done before in (lo), the voltages around the resonator are summed. 
However, this time the noise of the resistor, defined in (21), is included. 

Once again, the terms in Vcl are collected and only the harmonic near the fun- 
damental are kept. Effectively, the noise voltage of the resistor induces a volt- 
age on Vcl . 

where 
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Assuming that v, is the amplitude of an injected tone representing the resistor 
noise, and its frequency is a+ ,  the following equation governs harmonic bal- 
ance at this frequency: 

whereas harmonic balance at o- leads to: 

Taking the conjugate of both sides of this expression: 

This last expression can be used to find the AM sidebands, b, in terms of the 
PM sidebands, a: 

Substituting this in (34), leads to: 

This can be rewritten as: 

The numerator of the RHS is a small number. As the offset frequency 
approaches zero, the sum of the first two terms in the numerator are equal and 
opposite to the third term. Therefore, it is expected to be proportional to the 
offset frequency, which is exactly the format expected for phase noise side- 
bands. The following expression is arrived at by ignoring 2nd order terms in 
(o,/mo): 
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Now, rewriting (1 9), the expression for amplitude of oscillation, 

the phase noise sideband strength simplifies to: 

As expected in an oscillator where the restoring current cancels the resistor 
loss, and where PM passes unchanged through the restoring current source, 
the phase noise sidebands rise without limit approaching the carrier. 

However, the response to AM should be different. Substituting the PM result, 
(43), into the expression for AM sideband, (37), we get: 

which simplifies to: 
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This shows that, as expected, close to the oscillation frequency, the AM side- 
bands are constant and depends on the resonator Q, which defines the resona- 
tor resistance. There is a slight inconsistency, however. It was assumed that 
there were no AM sidebands on Vcl, whereas the presence of b will induce 
AM voltage sidebands on C1 . 

3.3 Noise of the Current Source and the Transistor 

Next, analyze the response of the circuit to current noise in parallel with the 
current source. The governing equation is: 

The analysis proceeds identically to that with the noise in the resistor. Indeed, 
all it requires is the substitution of vn by i,/joC2. Thus, the PM on Vcl is: 

which is identical to the outcome of Huang's analysis. 

3.4 Noise Factor of Colpitts Oscillator 

Next, the noise factor of the Colpitts oscillator, as specified by the normalized 
expression taken from Leeson for phase noise in any oscillator, is determined: 

where 4kTRp is the voltage noise spectral density across the standalone reso- 
nator at resonance. The amplitude of oscillation across the resonator is Vo and 
Q is the quality factor of the tank. The noise factor F allows comparison of 
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different types of oscillators. Since all the calculations for noise were done 
with respect to the voltage across the capacitor, they must be scaled. 

The total PM white noise voltage spectral density is found by squaring and 
combining (43) and (49). Next this sum is scaled by the factor in (5 1): 

After some simplification: 

Finally, expand the noise current to include the noise from the current source 
and the switching device using (27). 

where 

Taking into account that while noise above and below the oscillation fre- 
quency will contribute to phase noise at a given offset, the spectral density of 
phase noise is: 
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where Rp = Q ~ R .  

Compare with (57) from Chapter 3 for the phase noise in a differential LC 
oscillator: 

The noise factor expressions are remarkably alike for both oscillators, except 
for the capacitor tapping factor C1/C2 that scales the 2nd and 3rd terms in the 
sum. Also, R is the equivalent series resistance representing tank loss, and Rp 
the shunt resistor. 

If anything, asfl0) appears to grow without bound, the Colpitts oscillator will 
be noisier than the differential LC oscillator at narrow conduction angles! 
This would be true even if we filter white noise in the bias current using 
Hegazi's technique [4]. 

4 Conclusions 
The Colpitts oscillator does not appear to be an inherently better topology 
than the differential pair oscillator. For example, some of the current supplied 
by the transistor to overcome the loss in the resonator flows through C2 mak- 
ing this topology less efficient than the differential LC oscillator. This should 
result in a lower figure of merit. However, even though the Colpitts does not 
offer inherently better phase than the current biased oscillator, it is still a use- 
ful circuit in application where exceptional phase noise is required dictating a 
high Q off-chip single-pin resonator. 
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Low Thermal 1 
Phase Noise 

1 Introduction 
A single chip radio remains a challenging problem due to technology limita- 
tions on passive component quality and lack of efficient optimization proce- 
dures. Of all RF blocks, voltage controlled oscillators, VCOs, have received 
highest attention in recent years as evidenced by the large number of publica- 
tions reporting improving performance [1][2], higher operating frequency [3] 
or using a different passives technology to achieve the stringent requirements 
of wireless standards [4]. Integrated LC oscillator circuits published so far use 
tuning inductors that are fully integrated, partly integrated, or discrete, with 
quality factors spanning a large range. However, lacking a clear understand- 
ing of the physical processes of phase noise, it is difficult to compare the rela- 
tive merits of these VCOs in a normalized sense. In this chapter, we present a 
non-exhaustive set of differential CMOS LC oscillators illustrating a system- 
atic design methodology that builds on the phase noise theory presented ear- 
lier. 

1.1 Oscillator Figure of Merit 

The design space of LC oscillators entails phase noise, power consumption 
and oscillation frequency, and to a lesser degree, tuning range. These design 
dimensions are not always orthogonal and a well-formed cost function is nec- 
essary for comparing the relative merits of various designs. The best defini- 
tion of a normalized Figure Of Merit (FOM) proposed so far is [5]: 



Chapter 5 Design for Low Thermal Phase Noise 

where P is the power consumption in mW, 4o) is the phase noise at an offset 
o from a center frequency o,. 

The appeal of this definition is that it relates and normalizes the quantities 
given by Leeson's proportionality. The power of two in the frequency offset 
dependence indicates that flicker noise-induced phase noise is not normalized, 
suggesting that the FOM is useful only in comparing oscillators at large- 
enough offsets such that flicker noise is not the dominant source of phase 
noise. This chapter focuses on minimizing thermal noise's impact on oscilla- 
tor phase noise. The FOM described above will be used as the inverse cost 
function to be maximized. 

2 Note About Harmonic Balance in LC Oscillators 

The LC tank, assuming no losses, is a typical physics textbook oscillator. 
Magnetic energy in the inductor converts to electric energy in the capacitor 
and vice versa. The oscillation is governed by the energy equation, which 
states that the total energy stored on the capacitor and in the inductor is con- 
stant. 

The energy balance equation is not sufficient to describe the oscillation. The 
reason for that is the need to know the total oscillator energy, which is set by 
the initial current in the inductor and the initial voltage on the capacitor. 

In practical oscillators, there are losses that must be overcome if the oscilla- 
tion is to continue forever. In LC oscillators, the losses are overcome by 
employing a negative resistance, which in practice is implemented with one or 
more nonlinear components. They are represented in Figure 1 as the "non- 
sinusoidal" current source. The negative resistance current enters the tank and 
builds an oscillation amplitude that equals the product of the tank resistance at 
resonance and the fundamental of the current waveform. 

'4 = Rlfund (2) 

The capacitor offers little impedance to the harmonics of the injected current 
flow. On the other hand, the inductor impedes the harmonics from passing 
through it. The fundamental of the injected current flows only through the 
resistor since the inductor and the capacitor represent an open circuit at reso- 
nance. Only the reactive current can flow through the tank. The power in the 
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inductor has to balance with that in the capacitor. However, the harmonics 
result in a power imbalance since they flow in unequal amounts through the 
capacitor and the inductor. How does the oscillator handle the situation? By 
forcing the power in the harmonics to be smaller. This is achieved by shifting 
the oscillation frequency down [6]. Therefore, in the presence of the harmon- 
ics of the negative resistance current, the tank is always oscillating below its 
natural frequency. The tank appears more inductive and the power in the fun- 
damental tone through the inductor is higher than that through the capacitor. 
This excess of fundamental's power, balances the power in the harmonics that 
flow through the capacitor. We will revisit this result later when we analyze 
flicker noise. 

FIGURE 1 Current split in an LC oscillator. 
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3 Amplitude in Differential LC Oscillators 

3.1 Current-Biased Differential Oscillators 

A popular implementation of an LC oscillator is the current-biased negative- 
g, topology shown in Figure 2. The reasons for its popularity are that it pro- 
vides differential and often quadrature differential outputs in addition to its 
well-controlled power consumption and its easy-to-guarantee start-up, which 
makes it a "safe" topology. In the oscillators shown in the figure, the resona- 
tor capacitors take the form of M3 and M4, which are acting as varactors, or 
voltage controlled capacitors. 

The differential negative-g, oscillator comes in different variants. First, it is 
either voltage biased or current biased. The voltage-biased VCO is similar to 
those shown in Figure 2 with the current source device Mo replaced by a short 
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FlGU RE 2 Current-biased differential LC oscillator: tail and top-biased. 

circuit to ground. The current-biased oscillator comes in various forms: top- 
biased, tail-biased and complementary-differential. The top-biased and the tail 
biased topologies, shown in Figure 2, seem isomorphic at first glance with the 
difference being the reference point, which is supposedly arbitrary. In other 
words, if we consider the VCO core to be the LC tank and the cross coupled 
differential pair providing the negative resistance, feeding the bias current 
from the top or from the bottom seems like a minor detail. However, when we 
look closer at the grounded parasitic capacitors and the current paths within 
the oscillator, differences between the two topologies become clear. These 
differences can lead to different trade-offs in the design procedure as we will 
illustrate later. 

Consider the cross-coupled differential pair formed by M I  and M2 in Figure 2. 
It provides a small signal negative differential conductance of -g, across the 
tuned circuit. When properly designed, the negative conductance overcomes 
the positive loss conductance of the LC tank. The natural response of this two 
pole circuit is a growing oscillation that is eventually limited in amplitude by 
circuit nonlinearity. When the differential pair is biased at low currents, this 
nonlinearity stems from bias current exhaustion. When the current is fully 
switched from one side to the other, the current in one device is doubled from 
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that at the quiescent condition. Suppose the oscillation amplitude is larger 
than the voltage required to commutate the differential pair current, 
J2(), the differential pair sustains the oscillation by injecting an 
energy-replenishing square wave current into the LC resonator. The second 
order bandpass LC resonator rejects the harmonics and responds to the funda- 
mental frequency in the current waveform with a single-ended voltage ampli- 
tude of oscillation: 

In that the amplitude of oscillation is proportional to the bias current, this is 
known as the current-limited regime. Note that R is the single-ended tank 
resistance. 

R = Q o L  (4) 

We will define the ratio between the single-ended fundamental current (that 
flows through the tank resistor at f,) and the bias current to be, the current 
switching efficiency q: 

In the current-biased oscillator shown, the current injected into the tank is ide- 
ally a square wave between I, and 0 leading to a current efficiency of 217~. In 
real designs, the switching efficiency is closer to 0.5 than 217~. Since the cur- 
rent is switched between the two sides of the tank, the differential swing is 
twice that given by (3). As the tail current is raised in value, the amplitude 
also rises until, approaching a single-ended amplitude of almost VDD, nega- 
tive peaks momentarily force the current source transistor into triode region. 
This is a self-limiting process. Raising the gate bias on the current source 
forces this FET to spend a greater fraction of the oscillation cycle in triode, 
resulting in no appreciable rise in the amplitude. This is called the voltage- 
limited regime, whose onset is defined by entry of the current source transistor 
into triode region. Further increase of the gate source voltage of the current 
source will lead to smaller growth of oscillation amplitude as the current 
source device is pushed more and more into triode operation and the common 
mode point is pulled closer to ground. In the limiting case, if we assume that 
the gate oxide of the current source device can withstand an infinite voltage, 
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the common mode point is at zero volts and the oscillator is identical to a volt- 
age biased oscillator. The former description suggests that the oscillator core 
has a particular maximum current that cannot be exceeded. The oscillator core 
"resists" the increase of the current by pushing the current source into triode 
more and more. The maximum current that can be fed into the core is, there- 
fore, equal to that of the voltage-biased VCO, which sets the VCO at maxi- 
mum amplitude equal to the supply voltage. That is: 

where Qloaded is the loaded quality factor or the resonator. The amplitude 
dependence on the bias current is shown in Figure 3 where the amplitude 
grows linearly with current and once the current source enters triode, the 
amplitude growth with current slows down significantly but the differential 
amplitude keeps on growing until it reaches a maximum value of 2 VDD when 
the current consumption is at its maximum value given by (6). 

3.2 Voltage-Biased Oscillator 

In a voltage-biased oscillator, Figure 4, the sum of the currents in the two 
transistors, MI and M2, is not fixed. In fact the circuit is not t d y  differential 
but rather pseudo-differential. When one transistor is switched on, it enters 
triode region deeply. The triode FET shorts one side of the resonator to 
ground with a low output resistance. The oscillation amplitude is limited 
finally by the power supply. The single ended oscillation voltage sweeps from 
0 to 2 VDD. For most of the time, half the tank impedance is shorted. Using 
simulations the single-ended current switching efficiency is found to be 
around 0.35 assuming that the effective tank impedance has not been 
degraded by the triode switches. Alternatively, we can elect to assume the 
current switching efficiency of 2/?c ( 4 1 ~  differentially). In other words, we 
ascribe the drop in the fundamental current to a lower "loaded" quality factor 
rather than switching efficiency. This leads to the following approximation 

because in a voltage-biased oscillator the effective tank impedance is halved 
because of the triode FET loading. The conclusion is that voltage-biased 
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FIGURE 3 

Current 

oscillators are less efficient in utilizing bias current to build-up swing. There- 
fore, they inherently have a lower figure of merit. Almost 6 dB lower than a 
current-biased oscillator with the same unloaded tank quality. 

3.3 Colpifts Oscillators 

Wang describes the problem of current switching efficiency in a general oscil- 
lator [7]. He concludes that, in the domain of real waveforms, the most effi- 
cient current waveform is the impulse. This is realized in a Colpitts oscillator 
(Figure 5) where the transistor conducts for a very short duration (small con- 
duction angle) resulting in an impulse of negative resistance current. The cur- 
rent switching efficiency of the Colpitts oscillator is qimpulse = l .  The 
resulting amplitude of oscillation is given by: 
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FIGURE 4 Voltage-biased oscillator. 

'h/ 

FIGURE 5 Single-ended Colpitts oscilkutor. 

(not true in CMOS designs) 

In a bipolar transistor implementation, the current waveform is indeed impul- 
sive thanks to the high transconductance of BJTs. The current switching effi- 
ciency is very close to unity. Unfortunately, the current switching waveform 
in a CMOS implementation is far from impulsive due to the low transconduc- 
tance of FETs compared to BJT. This lowers the current switching efficiency. 
Furthermore, the transistor can go into triode (or saturation in a BJT imple- 
mentation) at a fairly small amplitude, further limiting the amplitude growth. 
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The typical design strategy thus entails limiting the swing to avoid pushing 
the transistor into triode. Therefore, it cannot yield good phase noise with the 
low-quality inductors available in monolithic implementations. This has kept 
the fully integrated Colpitts implementation from achieving high FOM. Fur- 
thermore, CMOS Colpitts oscillators are hard to start-up because they require 
a large transconductance. For all of these reasons, a Colpitts oscillator is not 
suitable for CMOS implementation. 

It is worthwhile, however, to analyze the amplitude build up in a Colpitts 
oscillator. When MI is off, the current source charges C1 until the gate-source 
voltage of M1 exceeds VT, at which time M1 conducts and resulting current 
rushes through capacitors C1 and C2. This recharges C2 and shuts off the tran- 
sistor. The resulting current is a train of narrow current pulses, in the limiting 
case, impulses that are T seconds apart, where T is the period of oscillation. 
The current into point A is a constant positive current for the entire oscillation 
cycle except when during the narrow sliver of time where MI  conducts as 
shown in (Figure 5). The average current must equal zero because the capaci- 
tors do not allow DC current. Therefore, the impulse intensity is equal to IJ  
Performing Fourier transform on the impulse train to get the fundamental cur- 
rent results in: 

'fund = 2'o 

Note that this implementation is single-ended. In practice, the conduction 
angle of MI  is not zero. Therefore, the current switching efficiency is lower 
than 2. In BJT designs, 7 is close to 1.5 whereas in CMOS designs, q is close 
to 0.9! A detailed analysis of the amplitude limiting in Colpitts oscillator due 
to the triode operation of Ml was performed by Mayaram [8]. 

A pseudo-differential version of the Colpitts oscillator is also possible by 
building a mirror oscillator and joining C2 with its counterpart in the mirror 
circuit (Figure 6). This topology is rarely used in CMOS implementation as it 
does not offer any solution to the swing limiting problem neither does it 
improve the current switching efficiency since it consumes double the bias 
current to build double the swing. Again, the current switching efficiency is 
close to 1.5 in a BJT implementation and close to 0.8-0.9 in a CMOS imple- 
mentation with a limited swing. 
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FIGURE 6 Pseudo-differential Colpitts oscillator: 

Can the two current sources in the pseudo-differential Colpitts be commutated 
to boost the current switching efficiency to 2 [9]? To answer this question we 
need to go back to the amplitude build-up process in the Colpitts oscillator. 
The negative resistance current strikes the tank for a very short time, almost 
like an impulse. For the rest of the cycle, the current is constant and equal to 
the bias value. If a single current source is commutated (Figure 7), the current 
into the capacitors still needs to have zero average. Assume that the current is 
fully switched into one side. Transistor M I  cannot carry the current until a 
large enough voltage has developed on C1. Therefore the voltage at node A 
will keep on dropping linearly in a relaxation process until enough voltage 
develops on C1 and momentarily, M1 turns on for a very short time. An impul- 
sive current passes through M1 into the capacitors and shuts MI off. This hap- 
pens when the voltage at A is at minimum. Therefore this is the moment 
where the switching transistors flip polarity. The relative phases of this ideal- 
ized model are depicted in Figure 8. The intensity of the impulsive current is 
set by the zero average condition. That is the net current passing through the 
capacitor per cycle is zero. Since a current Ipasses for a time T/2, the impulse 
current is given by: 

l o  * i M l  ( t )  = --6(t) 
2 (10) 

As can be seen, the switched current by M3 and M4 is 90 degrees away from 
that of M I  and M2. The amplitude of oscillation is set by the fundamental cur- 
rent passing through the capacitors. Since the two currents in MI and M3 are 
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orthogonal, a vector sum of the currents has to be calculated. In practice how- 
ever, the impulsive current is not a train delta-dirac impulses (particularly if 
MI, M2 are FETs). In addition, the limited swing in this topology makes the 
switching of M3 and M4 rather soft. In a practical implementation, the phase 
difference is between 45 and 60 degrees, which makes the vector sum even 
smaller. Therefore, this circuit never reaches a switching efficiency of 2 (even 
in a BJT implementation of MI and M2). In addition, like all Colpitts oscilla- 
tor the circuit suffers from limited swing and amplitude degradation due to tri- 
ode operation of Ml and M2 [S]. A more realistic value for q in this topology 
is 0.6 in a full CMOS implementation. This is very close to what a differential 
current-biased VCO can achieve. 

Fl GU RE 7 Current-coinmutated dzfferential Colpitts. 

T Parasitic Colpitts 

It should be noted that the common point joining C1 and C1 ' should not be left 
floating if points A and A' have appreciable parasitic capacitance. If this node 
is left floating in the presence of a large parasitic capacitance at node A, the 
oscillator has a potential for common-mode oscillation. Recall that this topol- 
ogy is formed using two separate Colpitts oscillators glued back-to-back. 
Each half of the circuit has the potential of oscillating on its own. If points A 
and A' have a sizable parasitic capacitance, the parasitic can play the role of 
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FIGURE 8 Current waveforms in a commutated Colpitts oscillator: 

C1 and initiates a separate oscillation on one half of the circuit. Note that the 
presence of the cross-coupled switches cannot help because in the case of a 
common mode oscillation, M3 and M4 can go into triode together and main- 
tain an equal split of the bias current at all times. Grounding the common 
point between C1 and C, ' lowers the gain for each individual side formed by 
MI and C,, C2, and L. Then the only oscillation mode left is the differential 
one. However, grounding this point lowers the current switching efficiency to 
a value close to that of the current-biased VCO. 

3.4 Complementary Differential Oscillator 

Current reuse was extensively utilized in amplifiers and later oscillators to 
save power consumption. One such circuit is often called complementary dif- 
ferential oscillator [lo]. 

The idea of a current-reuse oscillator is simple and interesting. Since the cur- 
rent is fully-switched from one side to the other then it makes sense to provide 
that current through a commutator switch operating on a current source of half 
that required to for a regular current biased oscillator. As shown in Figure 9 
the current is commutated through a cross-coupled differential pair and driven 
into a single inductor of twice the value of that in a normal oscillator. In other 
words, the center tap of the two inductors in the tank is left floating instead of 
putting it to a fixed potential. For the same bias current, this topology offers 
twice the differential swing of that in a current biased oscillator. This is 
because the current switching efficiency is doubled. However, now there are 
more devices to contribute noise. The topology promises a 3 dB improvement 
in FOM over the topologies in Figure 2. In practice, an improvement of 
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around 2 dB is achievable with this arrangement. the reason for that has to do 
with the extra parasitic capacitance to ground incurred due to the extra 
crossed coupled pair. Particularly since PMOS FETs have larger junction 
capacitance per unit of transconductance. Later, we will show that the peak 
FOM achievable using this topology is the same as that of a regular tail-biased 
oscillator. The difference is that the complementary differential circuit 
reaches its peak FOM at a lower current consumption. i.e. at lower output sig- 
nal swing. 

Let's consider two cases: first assume an off-chip inductor, in this case there 

FlGU RE 9 Complementary differential oscillator: 

-r 

is a large fixed capacitance due to the pad and package. The additional capac- 
itance is not the limiting factor for the inductor value because it is not domi- 
nant. In the second case, we consider either a bondwire or an on chip spiral 
inductor to be used in the tank. The original fixed capacitance is not very large 
and to maintain a particular tuning range, the tank inductance must be reduced 
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and the current is increased to maintain the swing. Therefore, the performance 
advantage of this topology is for oscillators with off-chip inductors. There are 
other reasons that favor the complementary implementation that will be dis- 
cussed in Section 11. Applying the noise filter technique described in Section 
10 yields the best performance possible from this topology. 

Many issues regarding the flicker noise up-conversion in the complementary 
differential topology have been reported in the literature [11,12]. Based on 
time domain waveforms, it is believed that if the pull-up and pull-down 
switching times of the oscillator are matched then llf noise up-conversion is 
eliminated [13]. In addition, if the oscillator is laid out in a perfectly symmet- 
ric manner, common mode signals are eliminated, leading to lower flicker 
noise up-conversion. However, the more recent analysis of flicker noise 
mechanisms shows that most up-conversion mechanisms are due to frequency 
modulation processes rather than mixing processes. In fact, mixing low fre- 
quency noise, predominantly flicker, can only yield amplitude modulation 
because it produces two side bands around the carrier with their phases 
arranged as such of AM noise. In Section 10, a practical way of eliminating 
flicker noise is shown while the oscillator layout is not necessarily fully sym- 
metric [14]. 

4 Design of Current-Biased Differential Oscillators 
In this section we will develop a design methodology and an optimization 
procedure that makes use of the physical model of phase noise processes 
developed in the previous chapter. 

The heart of the oscillator is its LC tank. For practical and technological con- 
siderations, the inductor is the determinative element in the oscillator. In fully 
integrated oscillators the low nominal quality factor of on-chip inductors is 
the limiting factor to high performance. Quality factors of on-chip fixed and 
voltage controlled capacitors tend to be much higher. On-chip inductors are 
difficult to design and optimize, therefore, the oscillator designer typically 
needs to pick an inductor out of a library of inductors, much like discrete 
bipolar circuit design. The appeal of on-chip inductors, despite their limited 
and often poor quality, is because they have less parasitics compared to the 
off-chip or bondwire inductors since the overhead of bonding pad and pack- 
age parasitics is not present. They also save the cost and board space of off- 
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chip inductor. With this in mind, we will explain how to design and optimize 
an LC oscillator assuming that the designer has to choose an inductor from a 
predefined set rather than precisely calculating the required inductance for a 
particular performance measure. The approach we follow here is useful in 
quickly-limiting the design space to a particular range of inductance values 
that meet the required performance. Later, using the same set of equations, a 
more accurate calculation of the required inductance value is possible even 
though we don't see much practical value in this calculation without the abil- 
ity to continuously sweep the inductance. 

Let's start again with Leeson's proportionality, only this time, we cast it in a 
different form in terms of the tank capacitance. 

The conversion from Leeson's equation, to the form in (1 1) is done using par- 
allel LC model of the tank and assuming the oscillation frequency to be equal 
to the resonance frequency of the LC tank. The purpose of the reformulation 
is to arrive at an expression of phase noise that is free of the inductance value 
for the reasons illustrated in the preceding paragraph. The inductance is 
implicitly present in (1 1) since the quality factor of the inductor is a function 
of L. Here, phase noise is given as kT/C noise that is shaped in frequency by 
the LC tank and normalized to the power in the oscillation amplitude. Phase 
noise is further scaled by a circuit specific noise factor, F, the constant of pro- 
portionality that comprises noise contributions from various circuit elements. 
Being circuit specific, the noise factor, needs to be identified for each oscilla- 
tor topology in terms of device sizes, current, and other circuit parameters. 

The noise factor of an LC oscillator is analogous to the noise factor of any 
other RF circuit. The difference, however, is that in other RF circuits the noise 
factor is the total noise of the circuit normalized to the noise of the input char- 
acteristic impedance, typically 50 Q, whereas in LC oscillators, the noise fac- 
tor is equal to the total oscillator phase noise normalized to phase noise due to 
the resonator loss, which is the tank's characteristic impedance. 

An ideal LC oscillator is composed of an inductor and a capacitor. The noise 
factor of such a circuit is equal to one if the tank is lossless while the oscillator 
has no phase noise since the tank quality is infinite. Since practical LC tanks 



Chapter 5 Design for Low Thermal Phase Noise 

are lossy, a means of providing negative resistance is required to sustain the 
oscillation. Consider the oscillator shown in Figure 10a where the resonator 
has a finite loss resistance. An ideal negative resistance compensates the sine- 
wave signal current through the tank loss resistor. The noise of this ideal neg- 
ative resistance is equal but uncorrelated to the noise in the resonator loss. 
This gives rise to a noise factor of 2, the sum of the unity noise factors of both 
resistors. In practice, a nonlinear active circuit as shown in Figure lob pro- 
vides the negative resistance. The average negative resistance over a full cycle 
is equal to the tank loss even though it might well be operative only over 
small portions of the oscillation cycle. Assuming the noise factor of the non- 
linear active circuit to be y, the noise factor of the whole oscillator becomes 
1-t-y. Note that this is the fundamental minimum noise factor for a negative- 
resistance LC oscillator. As we will show later, bias circuits significantly add 
to this noise factor. 

What (11) reveals is that doubling the tank capacitance while keeping the 
oscillation frequency and amplitude constant, gives a 3 dB reduction in phase 
noise. To retain the oscillation frequency, the inductance value needs to be 
halved. To keep the oscillation amplitude constant, the bias current needs to 
be doubled as the tank impedance is halved. This is, of course, assuming the 
tank quality to be independent of the tank inductance in place. The physical 
interpretation of this result is as follows: an LC tank with half the inductance 
and double the capacitance will have half the characteristic impedance R = 

QoL. The noise current associated with tank is increased by A,  as noise 
power is doubled. Since the impedance is halved, the noise voltage at the 
oscillator output is reduced by a factor of $! or 3 dB. This is exactly the 
resulting improvement in phase noise if the oscillation amplitude is kept con- 
stant by doubling the current. 

The design methodology we will follow stems from this simple remark. Let's 
first ignore the noise factor F and consider it independent of the oscillation 
current. This incorrect approximation is made to reach a first glimpse of the 
design. Now for particular phase noise specifications, we set a power budget, 
a maximum current that cannot be exceeded and a particular supply voltage. 
We choose the smallest inductor possible to result in a particular maximum 
swing at the oscillator output for the specified current. This means that we 
select the inductor that has the largest impedance at the frequency of oscilla- 
tion. Any larger inductor will need a smaller capacitor to tune with it at the 
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FIGURE 10 Basic LC oscillator: (a) ideal negative resistance, and (b) nonlinear 
negative resistance. 

(a) (b) 

oscillation frequency leading to higher phase noise. To finish one design iter- 
ation, the resulting phase noise needs to be compared against the required 
phase noise specifications. If phase noise is not satisfactory, then the allocated 
power budget is needs to be increased. 

- 

5 A Design Example 
In this section we will go through the design phases of a tail-biased oscillator 
in CMOS. The discussion is carried out from the Fist steps in design all the 
way towards layout and measurement results. 

5.1 Design Requirements 

GSM has phase noise requirements shown in Figure 11. From this plot, it 
appears that phase noise requirements for low frequency offsets, like 200 
kHz, are fairly relaxed. On the other hand, at high frequency offsets, the 
requirements are stringent. The GSM receive band is 25 MHz centered at 945 
MHz. We will assume a high-side injection receiver with LO frequency 
around 11 00 MHz. A tuning range of at least 10% is required to cover for pro- 
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cess variations. Target phase noise at 3 MHz offset is below -142 dBc/Hz and 
maximum current consumption is 3.4 mA fi-om 2.5 V supply. 

FIGURE 1 1  GSMphase noise requirements. 

I 
0.2 0.4 0.6 1.6 3 20 

frequency offset (MHz) 

In addition, an inductor library of widespread values and different qualities is 
provided. A chart of the inductor library values and qualities is given in 
Figure 12. Using the phase noise expression in (11) and assuming the over- 
drive voltage of the bias transistor to be 0.4 V, ybias to be 213 and y to be 413, 
the achieved phase noise is calculated. The distinction between y and ybias in 
value is because for the bias device it is possible to use longer-than-feature 
channels bringing the channel noise coefficient down to its minimum [15]. 

The resulting phase noise goes to a minimum close to a tank inductance of 
around 15-17 nH. In addition, it is necessary to check the startup condition of 
the oscillator assuming a minimum loop gain of 3. If the overdrive at startup 
of the switching devices is assumed to be 1 V then a minimum inductance of 
8-10 nH is necessary to supply enough impedance to secure startup with a 
bias current of 3.4 mA. The reader can easily check this claim by calculating 
the transconductance of the switches and then find the tank impedance 
required from the loop gain equation. 
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FIGURE 12 Sample inductor library. 
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With more optimization of the tank inductor [16], the quality factor of the 
inductor can be further increased to about 8.4 for a 17 nH inductor, resulting 
in -142 dBc/Hz at 3 MHz offset. To improve the inductor quality factor, the 
spiral was altered from a rectangular to an octagonal shape, yielding smaller 
footprint for a particular inductance. A patterned polysilicon ground shield is 
also added to reduce displacement current loss [17]. The single-stack metal-4 
spiral is also connected in parallel with a similar spiral drawn on metal-3 to 
reduce the series resistance. Combined, an increase of 15% in Q is achieved. 

To make sure that this design is optimal, a plot of the FOM is given in 
Figure 13. Calculated at 3 MHz offset (thermal noise dominated), the FOM 
plot shows that small-value inductors result in lower FOM at low currents 
because of the limited oscillation swing. High-value inductors result in low 
FOM at high currents due to the higher RTIC noise and the saturation of the 
amplitude growth with current increase. The peak figure of merit can be 
shown to be proportional to e2 and is independent of the value of the induc- 
tance. Therefore various inductors reach different FOM depending only on 
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FIGURE 13 VCOJigure o f  merit in dB using various library inductors. 
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their quality factor and each inductor needs an optimal current to provide peak 
swing. 

Once the output swing is set, the overdrive voltage of the current source 
device can be optimized. Using (3), the single ended oscillation amplitude is 
2.1 V, which means that the current source has headroom of 0.4 V. This is the 
exact headroom we assume for the noise calculation. That means that our cir- 
cuit optimization is almost over and the rest of the optimization can be done 
on the layout level. 

The choice of the switching pair device size is almost arbitrary. The use of 
minimum feature transistors is best because it results in least parasitics. 
Though a rigorous relationship between the fr of the switching transistors and 
their phase noise contribution has not been established to date, simulations 
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show that it is better to go for shorter channel devices. The current source 
device can be implemented using longer channels as shown later. 

This oscillator is fabricated in 0.35 pm CMOS process from STMicroelec- 
tronics. The process has 4 metal layers and the inductor is implemented as a 
parallel stack of metal 4 and metal 3. The current source is implemented as a 
group of square gate transistors as shown in Figure 14. Phase noise is mea- 
sured using frequency discrimination method. The resulting phase noise is 
shown in Figure 14. 

FIGURE 14 Measuredphase noise of the VCO. 
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6 Intuitive Explanation of Phase Noise Sources 

As already shown, the noise factor, F, for the differential LC CMOS oscillator 
is given by: 

where I is the bias current, y is the channel noise coefficient of the FET (equal 
to 213 for a long channel FET, and larger than that for shorter channels) and 
g, bias is the transconductance of the current source FET. The expression in 
(12) describes three noise contributions: fiom the tank resistance, the differen- 
tial pair FETs, and from the current source. Note that thermal noise in the dif- 
ferential pair FETs produce phase noise that is independent of the FET size. In 
typical oscillators operating at high current levels with moderate to high reso- 
nator quality factors, the current source contribution dominates other sources 
of phase noise. Suppose that the current source contribution, the third term, is 
removed fiom (12). Since (3) states that the oscillation amplitude is directly 
proportional to the current I, the oscillator noise factor simplifies to its mini- 
mum value: 

This can be understood by considering the circuit in steady state. A cross-cou- 
pled differential pair biased at the balance point by an ideal noiseless current 
presents a negative resistance g,, with a noise voltage spectral density of 
4kQgm due to the FET pair. However, if the differential pair is switched to 
one side or the other, there is no differential output noise. Therefore, the oscil- 
lation samples the FET noise at every differential zero crossing, that is, at 
twice the oscillation frequency. Meanwhile, the fundamental component of 
the differential pair current relative to the oscillation voltage presents a steady 
state negative conductance exactly equal to the resonator loss conductance. 
Figure 15 shows an equivalent circuit representing these two actions. [ la]  
analyzes sampled noise in the switched differential pairs of mixers. Although 
the noise is cyclostationary [19], its spectrum is white. The analysis shows 
that the noise spectral density out of the sampled transconductance current is 
equal to that of a linear resistor, 2R, but with a noise factor of y. Referring to 
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Figure 1 Ob, it is now evident how (1 3) arises. In a sensibly designed oscillator 
circuit, the third term in (13) can raise the noise factor typically by 75%. 

The proof of the model in Figure 15 is not very difficult. The following analy- 
sis is based on the analysis performed by Darabi [18] for CMOS mixers. For 
simplification, we consider the switching pair to be fast switching. The output 
current is switched between I and -I within a time of AVIS where S is the 
slope of the differential oscillation waveform at the zero crossing and AV is 
twice the differential voltage required to fully switch the cross-coupled pair. 
As shown in Figure 16, the differential transconductance of the pair can there- 
fore be approximated in time by a sequence of square pulses of height -2IlAV 
and width of AVIS. The time average of this transconductance is given by 

where T is the period of oscillation and the slope S is given by 

where A is the single-ended oscillation amplitude. 

Therefore, the average transconductance of the switching pair is equal and 
opposite in sign to that of the total tank loss, 2R. This is exactly what one 
would expect for a constant amplitude oscillation where there is no excess 
negative resistance beyond the tank loss. 

Noise associated with the switching pair is treated in the same manner. The 
transistors produce an input referred noise spectral density of 

Again, with the aid of (3), (14), and (1 5) it is easy to prove that the effective 
output noise current is equal to 
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FIGURE 15 Model of the switch S noise. 

Q Noiseless 

which is equivalent to that of a 2R resistor magnified by y. 

The only remaining part of this analysis is to prove that the sampled white 
noise of the transistors is white and cyclostationary. Since the transistor noise 
is white and the switching action of the transistors does not entail energy stor- 
age, the sampled noise at any time instant is uncorrelated with the noise at any 
other instant in time and therefore the sampled noise is still white. The power 
spectral density of the sampled noise is indistinguishable from that of the 
unsampled noise [IS]. Note that the preceding analysis is correct only when 
the amplitude of oscillation is much larger than A x  which is always the case 
in differential oscillators and mixers. 

7 Loading in Current-Biased Oscillators 
First consider the differential LC oscillator where the current source is 
replaced by a low impedance to ground, in the extreme case a short circuit 
(Figure 17a). Let us take a closer look at the role of the two transistors across 
the oscillation cycle. First note that the oscillator topology forces VGD of the 
two FETs to be equal in magnitude but with opposite signs to the differential 
voltage across the resonator. At zero differential voltage, both switching FETs 
are in saturation, and the cross-coupled transconductance offers a small-signal 
negative differential conductance that induces startup of the oscillation. As 
the rising differential oscillation voltage crosses VT, the VGD of one FET 
exceeds VT, forcing it into the triode region and the VGD of the other FET falls 
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FIGURE 16 Transconductance of the switchingpair: 

below VT, driving it deeper into saturation. The g,,~ of the FET in triode 
grows with the differential voltage, and adds greater loss to the resonator 
because the current flowing through it is in-phase with the differential volt- 
age. In the next half cycle, g,,~ of the other FET adds to resonator loss. The 
two FETs lower the average resonator quality factor over a full oscillation 
cycle. 

Now suppose an ideal noiseless current source is present in the tail of the dif- 
ferential pair, as shown in Figure 17b. Close to zero differential voltage, the 
two FETs conduct and present a negative conductance across the resonator. 
Suppose that in the balanced condition when each FET carries 112, the WIL 
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ratio is chosen such that VGS - VT < VT. When the differential voltage drives 
one FET into triode, it turns off the other FET. As no signal current can flow 
through the g~~ of the triode FET, this FET does not load the resonator, thus 
preserving quality factor of the unloaded resonator. The differential pair 
injects noise into the resonator only over the short window of time while both 
FETs conduct. Referring to the earlier analysis, this means that the noise fac- 
tor is l+y, which is the fundamental minimum for a practical oscillator. 

FIGURE 17 Role of the current source: (a) no current source, and (b) ideul noiseless 
current source. 
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8 Sizing of the Current Source Device 

As it appears from (12), the contribution of the switches to phase noise is 
independent of transistor sizing, to a first order at least. The contribution of 
the current source, however, is dependent on the sizing and biasing of the cur- 
rent source transistor. It is clear that the smaller the product of the current 
source transconductance and the tank resistance, the smaller the contribution 
of the current source to the oscillator noise factor, F. Reducing the effective 
tank resistance, R, is not an option once the power budget and supply are set. 
The reduction of the current source device transconductance is a more viable 
alternative. This transistor is not required to have any "dynamic" behavior and 
therefore, it need not have high transconductance. Increasing its VGS is there- 
fore an effective way of reducing its transconductance. However, the transis- 
tor needs to remain in saturation throughout the cycle to operate as a current 
source. A higher VGS pushes the current source transistor into triode at a 
lower current level and hence limits the maximum amplitude. 

To gain more insight, let's plot the oscillator phase noise versus current in 
light of (12). We will assume the tank quality to be constant as well as the 
tank inductor and capacitor. In other words, for an already designed oscillator 
we will sweep the current and look at the resulting phase noise. The result is 
shown in Figure 18. In the current-biased regime, phase noise drops with the 
increase in bias current at a rate of approximately 20 dBc/Hz/A. The break- 
point in the curve occurs when the current source transistor enters triode 
allowing the switches to load the tank and reduce its average quality factor. 
This effect balances the amplitude increase and makes phase noise constant 
despite the increase in current. For a current source device with a larger WlL, 
the overdrive is smaller and therefore, the lowest "available" phase noise is 
lower than that with a larger WIL. In addition, larger size for the current 
source transistor reduces the device flicker noise, which is inversely propor- 
tional to the transistor area. 

The size of the current source transistor cannot be arbitrarily large. The reason 
for that is the parasitic capacitance that is inevitably incurred with a larger 
size. The large parasitic capacitance gives a lower impedance path of the even 
harmonics to ground. This, again, allows the triode switches to load the tank 
and reduce the apparent average quality factor, degrading phase noise perfor- 
mance, much like the voltage-biased oscillator. The other problem with a very 
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FIGURE 18 Phase noise versus current. 

L 4  

large current source transistor size is flicker noise up-conversion. It is true that 
the larger size reduces the amount of flicker noise however, flicker noise 
appears around the oscillation frequency only through up-conversion typically 
through some FM modulation process. Higher parasitic capacitance at the 
common mode point increases flicker noise up-conversion gain from the 
switching transistors. the only solution known to this paradox is through the 
use of noise filtering technique to break the trade-off [20]. A more compre- 
hensive discussion of the noise filtering technique is given later in this chap- 
ter. At this point it is enough to point out that the capacitance at the common 
mode point can be reduced by better layout. In particular, through the use of 
ring-shaped transistors. A ring shaped device, as shown in Figure 19, has an 
effective width equal to its centerline perimeter [21] and has the smallest 
drain area achievable while the source area is highest. For a grounded source 
transistor used in the current source, the use of ring-shaped transistors is the 
best choice. If rings are not allowed by design rules, a square approximation is 
still very helpful. 

9 Noise Filtering in Oscillators 

9.1 Role of the Current Source 

The mechanistic analysis in [22] shows how current source noise creates 
phase noise in the oscillator. The switching differential pair, which acts as a 
single-balanced mixer for noise in the current source, commutates and up- 
converts low frequency noise (modeled by a single tone) into two correlated 
AM sidebands around the fundamental. Therefore, low frequency noise in the 
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FIGURE 19 Layout of the current source device. 

current source does not directly produce phase noise. Noise frequencies 
around the fundamental tone are translated far away from the passband of the 
tuned circuit. However, noise frequencies around the 2nd harmonic down-con- 
vert close to the oscillation frequency, and up-convert to around the 3rd har- 
monic where they are rejected by bandpass LC tank. A tone injected into the 
tuned circuit passband may be decomposed into half AM and half PM side- 
bands around the oscillation frequency [23]. Thus, half the noise in the current 
source lying at frequencies close to the 2nd harmonic produces phase noise. 
Odd harmonics of the commutating waveform might down-convert higher 
noise frequencies close to the oscillation, but for a first-order calculation these 
are ignored because the mean square contributions fall off rapidly (113~, 115~, 
1 / 7 ~ ,  ...). The role of noise around even harmonics of the oscillation was first 
noted based on the similarity between the switching pair of an oscillator and a 
commutating mixer [24] and later based on an analysis of the time-domain 
waveforms [25]. 

The current source plays a two-fold role in the differential LC oscillator: it 
sets the bias current, and it also inserts a high impedance in series with the 
switching FETs of the differential pair. In any balanced circuit, odd harmon- 
ics circulate in a differential path, while even harmonics flow in a common- 
mode path, through the resonator capacitance and the switching FETs to 
ground. Therefore, strictly speaking the current source need only provide high 
impedance to even harmonics of the oscillation frequency, of which the 2nd 
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FIGURE 20 Current source impedance requirements. 

harmonics 

harmonic is usually dominant. Shrinking the requirement of high impedance 
to a narrow band of frequencies offers some unique opportunities to realize 
this concept. 

9.2 Noise Filtering 

To recapitulate, for the current source: 

1. Only thermal noise in the current source transistor around the 2nd harmonic 
of the oscillation causes phase noise, and 

2. a high impedance at the tail is only required at the 2nd harmonic to stop the 
differential pair FETs in triode from loading the resonator. 

This suggests use of a narrowband circuit to suppress the troublesome noise 
frequencies in the current source-making it appear noiseless to the oscillator. 
This gives a high impedance in the narrow band of frequencies where it is 
needed. Placing a large capacitor in parallel with the current source, as shown 
in Figure 21a shorts noise frequencies around 2co, to ground. Then, to raise 
the impedance, an inductor is inserted between the current source and the tail, 
as shown in Figure 2 1 b. 
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FIGURE 21 Tail-biased VCO with noiseJ1tering: (a) capacitov alone, and (6) 
complete topology. 

?- 

The inductance is chosen to resonate at 20, in parallel with any capacitance 
present at the common sources of the differential pair. The impedance at the 
tail is limited only by the quality factor of the inductor. The inserted inductor 
and the large capacitor comprise what we term a noise filter. 

A variant of the tail-biased LC oscillator described in literature is the top- 
biased differential LC oscillator, where the current source is connected from 
the positive supply to the center tap of the differential inductor (Figure 22). If 
the junction capacitors to ground are ignored, these two oscillators are identi- 
cal in that the bias current source is in series with the supply voltage source, 
and the position of the two can be exchanged without affecting the circuit 
topology. However, the two circuits are different when the junction capacitors 
are included. These differences have some practical consequences. For 
instance, the top-biased oscillator is more immune to substrate noise because 
the current source is placed in an n-well, rather than in the substrate. Also, the 
top-biased oscillator up converts less flicker noise into phase noise. 
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FIGURE 22 Top-biased VCO with noisefilter: 

High Z at 20, ++I 

One important consequence of the difference is in the noise filter circuit for 
the top-biased oscillator. As before, a large capacitor in parallel with the cur- 
rent source shunts noise frequencies around the 2nd harmonic to ground. 
However, the filter inductor must be inserted at the common source point of 
the switching pair to resonate in parallel with the capacitance at that node at 
20,. This blocks 2nd harmonic current from flowing through the grounded 
junction capacitors comprising the resonator, and through the switching FETs 
to ground. 

A properly designed noise filter brings the noise factor of the differential LC 
oscillator down to its fundamental minimum of I +y. Of course this is assum- 
ing the filter inductor to have high-enough Q. Once the constant of propor- 
tionality F is minimized, (12) prescribes that, given a resonator Q and current 
limited operation, for least phase noise the oscillation amplitude V, must be as 
large as possible. The positive peak of the oscillation at the drains of M I ,  M2 
is limited by breakdown. The negative peak can, in principle, be as low as a 
forward-biased junction voltage below ground. The instantaneous negative 
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voltage is absorbed across the filter inductor, and the large filter capacitor 
holds the VDs constant across the current source FET, maintaining it in satura- 
tion. In practice, the highest differential voltage swing across the LC resona- 
tor is roughly 2 VDD peak. 

What was ignored in (13) is the noise of the filter inductor. This noise has the 
same transfer function as noise from the current source transistor before with- 
out the noise filter. Therefore, the actual noise factor with the filter present is: 

Clearly, using a low quality inductor in the noise filter defeats the purpose of 
lowering common mode noise originating around 20, in the current source. 
No matter how low the quality factor is, the current source noise will be elim- 
inated however, low quality inductors can be even noisier if poorly selected. 

In the extreme, if a very large gate bias is applied to the current source FET, it 
is continuously in triode region and almost appears as a short circuit to ground 
(an example is given in 1261). This reverts to the voltage-biased oscillator 
(Figure 23). Without a noise filter, the FETs will load the resonator through- 
out the oscillation while the differential resonator voltage is larger than VT. 

FIGURE 23 Voltage-biased VCO with thefilter: 

"r 

High Z at 20, i J - 5  
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A noise filter in the tail tuned to the 2nd harmonic removes this loading 
(Figure 23). This circuit oscillates with the largest possible amplitude because 
there is no current source FET in series with the differential pair to take up 
voltage headroom. As there is no 2nd harmonic with DC content, the circuit 
biases at a current that relates to the differential oscillation amplitude accord- 
ing to (6) because whatever this current is, it will be commutated into the res- 
onator by the periodic FET switching. In other words, with the noise filter the 
circuit acts as if biased by a tail current source that consumes zero voltage 
headroom, yet produces the largest possible amplitude. As a result the phase 
noise of this topology is least, although its current is largest. 

10 Prototype Oscillator 

It was the intent of this work to show how a noise filter can lower phase noise 
to a record level in a prototype CMOS oscillator with fully on-chip resonator. 
As such F must be low (the task of the noise filter), the amplitude V, should 
be large, and the inherent quality factor of the resonator, Q, must also be 
large. The latter two yield quadratic improvement in phase noise, and are also 
related in that the higher the resonator Q, the higher the amplitude for a given 
bias current. In an entirely integrated resonator, losses in the on-chip spiral 
inductor usually limit Q. 

Before describing the design of the spiral, it is necessary to first specify the IC 
fabrication process. The ST Microelectronics BiCMOS6M process used here 
offers four layers of metal, and a substrate resistivity of 15 Ohm-cm. The 
Metal 4 film is almost 2.5 pm thick, while the lower layers of metal are all 
about 0.8 ,urn thick. 

The inductor is designed using a custom fast simulator that models self-induc- 
tance, parasitic capacitance, and all losses, including dissipation due to dis- 
placement and eddy currents in the substrate [16]. The differential resonator 
uses a single balanced octagonal spiral with a center tap (Figure 24). 
Although the obvious geometrical symmetry of this structure is discussed in 
the literature [27], we believe its main benefit is that it offers higher Q than 
two independent spirals in series, each of half the required inductance. For the 
same dimension of the inner hollow area, the differential spiral requires 
roughly 112 the length of metal of two spirals in series, which lowers metal 



loss, and it occupies a smaller footprint over the substrate, which lowers sub- 
strate losses. 

FIGURE 24 Differential inductol: 

The balanced spiral in Metal 4 implements a total differential inductance of 
26 nH, and is optimized for 1.1 GHz. At this frequency, simulation shows that 
displacement current loss is important in the lightly doped substrate. Simula- 
tions also show that a Metal 1 patterned shield is more effective in blocking 
displacement currents from entering the substrate than a polysilicon shield 
[17]. However, the shield geometry must be designed very carefully because 
the high conductivity of metal, which improves shielding of the electric field, 
makes it more susceptible to strong eddy currents induced by the magnetic 
field under the inductor. The shield is patterned as a checkerboard of small 
squares connected diagonally with narrow tracks, which locally cancel the 
magnetic fields induced by miniature loops of current within the squares 
(Figure 25). The patterning ensures there is no closed loop of metal at the 
scale of the inductor, which might allow image current to flow. The simulated 
Q of this inductor at 1.1 GHz is about 13, which is verified by measurement. 

A tail-biased differential oscillator is implemented in 0.35pm CMOS. The 
oscillator consumes 3.7 mA from 2.5 V supply. Measured phase noise 3 MHz 
away from a 1.2 GHz oscillation is -153 dBc/Hz as shown in Figure 26. A 
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FIGURE 25 Shieldpatterning. 

reference oscillator, which is identical except it has no noise filter, is fabri- 
cated on the same wafer. Its phase noise at 1.2 GHz and the same offset is 7 
dB worse. 

A top-biased oscillator was also fabricated on the same wafer. This circuit 
tunes from 1 to 1.2 GHz and also consumes 3.7 mA. Measured phase noise at 
3 MHz offset is -152 dBc/Hz, an 8 dB improvement over its reference oscil- 
lator, (Figure 27). The noise filter uses a 10 nH square on-chip spiral and a 
40 pF MiM capacitor. A third oscillator implemented in the same process 
oscillates at 2.1 GHz. Consuming 4 mA fiom a 2.7 V supply, its measured 
phase noise at 3 MHz offset is -134 dBc1Hz. The 5.5 nH on-chip differential 
inductor has a Q at 2 GHz of about 10. 

The phase noise of a commercially available discrete transistor module oscil- 
lator, the Vari-L VC0190-1100AT, that tunes over the same frequency range 
was measured on the same instrument, and is plotted alongside. The VCO 
core of the module is estimated to consume 1 1 3 ~ ~  the total current, which is 
roughly the same current as the 1 GHz VC07s described above, but from a 
5 V supply. Measured phase noise at 1 GHz and 3 MHz offset is -1 50 dBc/Hz 
(Figure 26). 

Now let us use Leeson7s proportionality combined with our definition of the 
noise factor to manually calculate this oscillator's phase noise. The foundry 
specifies y=  413 for the FETs, and the various other parameters are 
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FIGURE 26 Tail-biased VCOphase noise measurement. 
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L=13nH, Q = 1 4  at 1.2GHz, I=3.'l'mA, f0=1.2GHz, fm=3MHz,  and 
VDD = 2.5 V. The calculated Yf,) = -1 53.2 dBc/Hz is remarkably close to 
the measured value. This further validates the mechanistic phase noise analy- 
sis presented earlier. 

1 1 Practical Considerations 

1 1.1 Power Supply Rejection with Noise Filtering 
Does the noise filter adversely affect power supply rejection in this differen- 
tial oscillator? Consider the tail-biased differential oscillator (Figure 2) with- 
out noise filter or parasitic capacitances. If the varactor is biased with respect 
to VDD, fluctuations at any frequency in VDD with respect to ground cannot 
modulate the varactor, creating no FM. Furthermore, the current source in the 
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FIGURE 27 Phase noise measurement for the top-biased VCO. 
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tail when biased at constant VGS will not permit any AM. However, low fre- 
quency noise on VDD passes through the resonator inductors to modulate the 
voltage on the FET drains, and voltage-dependent junction capacitors to 
ground there will create FM noise. An analysis of this effect was given in the 
previous chapter. 

With the filter present (Figure 21b) the oscillator responds in exactly the same 
way to low frequency noise on the supply. At high frequencies the filter 
capacitor bypasses the current source FET and couples supply fluctuations 
directly into the filter inductor. 

The oscillator can only respond with a common-mode current, which as 
explained earlier must be either around zero frequency or at even harmonics. 
But the filter inductor in parallel resonance with the tail capacitance blocks 
any 2nd harmonic. In this way the oscillator better rejects noise on the power 
supply. The same analysis applies to the top-biased oscillator, where the 
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FIGURE 28 Switching FET noise conversion gain at 10 kHz. 

grounded filter capacitor shunts power supply noise and the series inductor 
blocks noise currents. 

Cadence's SpectreRF is found to be a useful and accurate aid in understand- 
ing mechanisms of phase noise. It allows the simulation of conversion gain 
from voltage noise at any node in the oscillator to phase noise. Figure 28 plots 
the simulated conversion gain from gate-referred voltage noise in one of the 
differential pair FETs to phase noise, versus discrete frequencies of voltage 
noise that will produce close-in phase noise. The noise filter reduces up-con- 
version of low frequency noise, but does not affect the noise at harmonics of 
the oscillation frequency as much. 

As predicted, this simulation shows that noise in the differential pair FE'l's 
close to the oscillation frequency is mainly responsible for phase noise. 
Figure 29 shows that the noise filter dramatically lowers the conversion gain 
of noise in the current source at frequencies around the 2nd harmonic. Finally, 
Figure 30 shows that the noise filter improves power supply rejection at all 
frequencies. 

In sum, these simulations verify the qualitative description in Section 9.2 that 
with the filter present, only noise in the differential pair and the resonator loss 
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FIGURE 29 Current source FETnoise conversion gain at 10 kHz. 
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matters. As a side note, when 2nd harmonics no longer flow in the resonator, 
the oscillation frequency increases slightly [6]. 

11.2 Device Limitations on Maximum Swing 

In a tail-biased oscillator, the single ended oscillation is centered on a com- 
mon mode level equal to the supply voltage. Being a large signal, the drain of 
the switching transistors inevitably rises to large voltage levels that are not 
appropriate for reliable continuous time operation [28]. As a rule of thumb for 
most technologies, the maximum voltage on the transistor cannot exceed 1.5 
VDD where VDD is the maximum allowed supply voltage. This limits the max- 
imum oscillation amplitude to 0.5 VDD, which is half the maximum achiev- 
able or 6 dB higher phase noise than the achievable minimum. Some 
processes are even more stringent and the limit on maximum swing is set at 
1.25 VDD. 
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From a reliability perspective, the complementary differential topology is bet- 
ter than a typical tail-biased oscillator because the common mode level of the 
oscillation is situated at a voltage level below the supply giving more head- 
room for swing. If not for any other reason, this fact gives the complementary 
differential topology a performance advantage over tail-biased topology. With 
a noise filter in place this advantage is even more eminent. The best arrange- 
ment for a noise filter for this topology is shown later in Figure 32, 

1 1.3 Extending the Tuning Range 

A CMOS oscillator must be designed with a large tuning range to overcome 
process variations, which create a large spread in the center frequency from 
wafer to wafer. The simplest way to do so is with a strong varactor, that is, 
one that gives a large capacitance swing relative to the fixed resonator capaci- 
tance as the tuning voltage is swept over its h l l  range limited by the power 
supply, VDD. Irrespective of how the varactor is realized, whether as a MOS 
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capacitor or a PN junction [21], the larger its area the stronger it is. The result- 
ing high sensitivity of frequency tuning, though, is at the price of worse phase 
noise, as discussed in the previous chapter. 

Varactor capacitance depends continuously on control voltage. Clearly, addi- 
tive noise on the control voltage will convert through frequency modulation 
into phase noise sidebands. However, the varactor whose incremental capaci- 
tance is a function of the instantaneous voltage across it offers an average 
capacitance to the resonator that depends on the envelope and duty cycle of 
the oscillating waveform. As described in Section 9, even if the control volt- 
age is noiseless, the varactor will detect envelope fluctuations due to AM 
noise on the oscillation and by modulating the average capacitance convert 
this into FM noise [22][29]. This process may add several dB to the phase 
noise sidebands. 

By combining discrete and continuous tuning, it is possible to lower FM sen- 
sitivity while spanning a wide tuning range [21]. For instance, a three-bit 
binary-weighted switched capacitor array, Figure 3 1, tunes the oscillator cen- 
ter frequency to 8 discrete frequencies. Then, a small MOS varactor interpo- 
lates continuously around these frequencies, giving rise to a family of 
overlapping tuning curves to guarantee continuous frequency coverage over 
the tuning range, as shown. This requires a mixed analog-digital PLL, whose 
design has been described elsewhere [30], to tune such a VCO. 

FIGURE 31 Mixed tuning using switched capacitors. 
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When designing the switched capacitor array, there are two design goals that 
trade-off against one another: The quality of the switched capacitor arrange- 
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ment and its tunability. In the on-state, the switch represents a hopefully-small 
series resistance. Therefore, the quality factor of the switch and the capacitor 
is given by Q = lI(ooCRo,). The quality factor of the switched capacitor 
increases with the larger device size due to the reduction in the on-resistance 
of the switch. The tunability of switched capacitor defined here as the ratio of 
the on-capacitance to the off-capacitance. When the switch is on, the capaci- 
tance of the arrangement is basically that of the switched capacitor. When the 
switch is off, the capacitance drops to the series combination of the capacitor 
and the parasitic capacitance of the switch. Therefore, the tunability decreases 
with the larger device size. Good layout improves the varactor tunability and 
allows for higher quality switched capacitor. In particular, having a square- 
gate layout reduces the parasitic drain junction capacitance and in turn, the 
off-capacitance by a factor of 2-3, which translates linearly to quality factor. 
In practical oscillators around 1 GHz, the quality factor of the switched capac- 
itor is not limiting the overall tank quality as a Q of 40 is reasonably achiev- 
able. At 5 GHz, the achievable Q is one fifth of that (around 8) and can 
potentially limit the tank quality. 

1 1.4 Noise Filtering in Earlier Works 

For completeness, we now summarize previous work suggestive of filtering in 
oscillators, and compare it with the ideas presented here. 

Tchamov and Jarske proposed adding an inductor in series with the current 
source biasing each delay stage in a ring oscillator, with the object of improv- 
ing sinusoidal purity of the signal and the output impedance of the current 
source at high frequency [31]. However, there is no recognition of the induc- 
tor's benefits on internally generated phase noise. 

Hajimiri and Lee recommended a large capacitor in parallel with the current 
source, because, they argued, this shrinks the duty cycle of switching current 
in the differential pair, which lowers the instantaneous FET current at differ- 
ential zero crossing, thus lowering phase noise due to the differential pair 
FETs [13]. This idea was implemented by De Muer et al. to lower the up-con- 
version of flicker noise into phase noise [12]. However, this argument over- 
looks the effect described in Section 9.2, that the large capacitance at the tail 
offers a low impedance path for the triode-region FETs in the differential pair 
to load the resonator and degrade Q. Moreover, the tail capacitance leads to 
greater up-conversion of flicker noise from the differential pair into oscillator 
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phase noise [22][14]. Our analysis shows that a large filter capacitor alone can 
only lower thermally generated phase noise in one case. That being when the 
current source contributes such a large phase noise (3rd term in (12)) that its 
elimination by the capacitor outweighs the higher phase noise due to degraded 
Q. We believe that in practice this is unlikely. 

1 1.5 Noise Filtering in Other Oscillators 

It is straightforward to extend the noise filter to other oscillators. The voltage- 
biased oscillator is improved as shown in Figure 23. Other differential oscilla- 
tors such as the complementary differential [lo] and quadrature oscillators 
[26] fall into the category of top-biased, tail-biased, or voltage biased, and the 
appropriate filter reduces their phase noise down to the fundamental mini- 
mum. 

Figure 32 shows the noise filtered version of the complementary differential 
oscillator. This topology is the best-suited for commercial implementation. 
The oscillation is superimposed on a bias of VDD/2 resulting in best reliability. 
Moreover, the current switching efficiency is better than all other topologies 
including Colpitts oscillator that never reaches its theoretical efficiency. Add- 
ing the noise filter as shown lowers the noise figure of this oscillator to the 
minimum. This noise-filtered topology can indeed give 3 dB improvement 
over the regular tail-biased oscillator with a noise filter. The noise factor of 
this topology is given here without proof as 

Figure 33 shows a noise filter at the bias current source in a Colpitts oscilla- 
tor. The capacitor C2 should remain unaffected by insertion of the filter, 
which means that additional capacitance may be required to cancel the induc- 
tor reactance at the oscillation frequency. Here, given the single-ended FET 
circuit, the filter inductor tunes the parasitic capacitance to the oscillation fre- 
quency instead of the 2nd harmonic as in differential oscillators. SpectreRF 
simulations confirm that the noise filter lowers phase noise in the Colpitts 
oscillator. 

The commutated-current Colpitts can also make use of the noise filtering 
technique. Note that one objective is to deliver a high impedance atJi to the 
Colpitts transistors M I  and M2 (Figure 34). The other objective is filter noise 
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FlGU RE 32 Noise--1tered complementary dzfSerentia1 oscillator: 

Tuned to 2% 
l- 

Tuned 

around 2f0 from the current source. Inserting an inductor Lf and a large capac- 
itor Cf and tuning the filter inductor with parasitics to provide high impedance 
at 2f0 serves both purposes. The impedance of the noise filter is sampled by 
the commutating switches M3, and M4 at the oscillation frequency therefore 
the filter impedance referred to A or A' will peak atft,,, - fo whereft,,, is the 
filter tuning frequency or 2f0. Therefore a tank circuit tuned at 2f0 at the com- 
mon mode point provides a high impedance at fo seen from A or A'. We refer 
to this filter as the sampled noise filter. 
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FIGURE 33 Colpitts oscillator with noisefilter 

FIGURE 34 Commutated-current Colpitts and sampled noise filter 
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12 Example: Redesign of GSM VCO 

In this section, we re-design the GSM VCO presented earlier taking into 
account all the practical constraints discussed in Section 5. The design imple- 
ments a noise-filtered tail-biased oscillator (Figure 21b). This time we con- 
sider all practical aspects discussed in the previous sections. 

First the swing has to be limited to accommodate reliability concerns. This 
means that the design has a sub-optimal FOM. However, this is necessary for 
product reliability. We will employ a noise filter so we can assume a noiseless 
current-source. Now assume the maximum single-ended amplitude allowed 
for oscillation is 0.65 VDD (or 1.3VDD differentially). Again, just like the 
design in Section 5, the supply is 2.5 V. We shall use the inductor library 
shown in Figure 12. Assume that a phase noise of -145 dBc/Hz @ 3 MHz is 
required to cover process variations. Using (1 I), and assuming y of 413 we can 
write the following, 

Assuming a tank Q > 7 results in a capacitance of around 1.6 pF. This capaci- 
tance should tune with the tank inductor at 1.1 GHz. The resulting inductor is 
about 13 nH. However, the inductor library in Figure 12 doesn't have a 13 nH 
inductor. The closest values are 10 and 15 nH. The 15 nH inductor will not 
tune with the specified capacitance at 1.1 GHz, therefore, we use a 10 nH 
instead. The capacitance that tunes with this inductor is given as: 

The selected inductor has a Q of 8 and with the capacitor given by (22) we are 
sure that (2 1) is satisfied. 

The bias current is determined as follows: 
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This is certainly more than the 3.4 mA we used in the implementation in Sec- 
tion 5 however, this is necessary to ensure the reliability of the design as well 
as having a comfortable margin over the specifications. 

We note that the capacitance given by (22) is the total tank capacitance. This 
capacitance is divided into three categories, inductor's self-capacitance, var- 
actor tunable capacitance, and parasitic capacitances across the tank from 
both devices and the varactor itself. We can go around the issue of tuning with 
different approaches as we will now show. 

Consider first a single varactor solution. Assume a self-resonance frequency 
of 2.5 GHz for the inductor (or 0.4 pF of self-capacitance). As a rule of 
thumb, the varactor parasitic capacitance is 40-50% of the total tunable capac- 
itance of the varactor. This should be at most 0.8 pF (assuming that all the 
remaining 1.6 pF are used for a single varactor). Another rule of thumb is that 
in any CMOS technology, the gate parasitic capacitance of a minimum-fea- 
ture MOS transistor is given by 

In other words, a transistor with a minimum channel length in any process has 
a gate capacitance of 1.5 fF per 1 pm of channel width. Note that this is the 
maximum varactor capacitance and is achieved in strong inversion. 

This means that the NMOS varactor device width is around 500 pm for a 
maximum tuning range. The capacitance in (24) corresponds to the maximum 
NMOS varactor capacitance. The minimum capacitance is 2-3 times smaller. 
In this example, the minimum varactor capacitance is therefore around 300 
fF. Therefore, the maximum fkequency that this oscillator can reach is below 
1.3 GHz, which can only be achieved when the varactor capacitance is at min- 
imum for the entire oscillation cycle?. More information about the precise cal- 
culation of varactor tunability and the resulting oscillator sensitivity, are given 
in a later chapter about the role of the varactor in tuning and noise. For the 
moment, we can say that a single varactor at a limited oscillator swing can 
result in large phase noise performance degradation. 

P The extremes of the frequency range are achievable under certain amplitudes and supply 
voltages. This topic is further discussed in the varactor chapter. 
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One other alternative is to limit the size of the varactor and add switchable 
fixed capacitance. This solution allows for the same tuning range only with 
lower VCO sensitivity as we discussed earlier. 

The remaining element is the noise-filter. The filter capacitance can be as 
large as possible. As for the inductor, we select an inductor that is large 
enough to provide large impedance around 2 f,. The inductor should be com- 
parable in size to the main oscillator inductor with the highest Q. There are no 
unique component values for the noise filter. The three considerations in the 
design are: 

1. filter corner frequency (of): should be set below -1110 of the oscillation 
frequency. 

2. filter impedance: inductor must be comparable to the main tank inductor. 

3. inductor noise: Q must be high enough so that the inductor's thermal noise 
is much smaller than the current source thermal noise. 

Finally, the device sizes for the transistors are to be selected. To guarantee 
startup, the loop gain has to exceed 1 and in practice should be 2-3. The tank 
impedance is equal to Qo&, which equals 553 R Therefore g ,  of the 
switches has to exceed 5 mS. Consequently, the device size can be calculated: 

As for the current source, in the presence of a noise filter, the filter inductor 
allows the common source point of the FET switches to go below the drain of 
the current source. However, it is still a good practice to reduce the transcon- 
ductance of the current source FET. The single-ended swing is limited to 0.65 
VDD or 1.625 V. Therefore the current source device, without a noise filter, 
could have a VDs as low as 0.875 V. Assuming a threshold voltage of about 
0.6 V, the gate-source voltage of the current source should not exceed 1.5 V. 
Using (25), the device ratio can be calculated. For reasons that will be clear 
when we discuss flicker noise, we choose a large channel length, much larger 
than the feature size, for example, 2 pm. Our oscillator design is now com- 
plete. 
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FIGURE 35 Complete VCO schematic. 

13 Anatomy of the Figure-of-Merit 
The FOM given in (1) can be re-written in terms of circuit parameters using 
the phase noise model presented earlier, 

Assume the oscillation amplitude is related to the supply voltage by a factor 
a. 

The differential oscillation amplitude is related to the bias current as follows: 
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where L is the single-ended tank inductance. 

Substituting from (27) and (28) into (26) we obtain the following simplified 
expression for FOM: 

rl a ~ '  FOM = - 
2kTF'  

Notice that the FOM is not a function of the inductance or the capacitance of 
the tank. However, it is a quadratic function of the tank quality. 

To compare the relative merits of various oscillator topologies, we suggest the 
elimination of the dependence of FOM on Q. The new Topological FOM, 
TFOM is given by 

L 

"0 1 TFOM = -- . 
" 2 Q 2 p L ( ~ )  

Using the former substitutions, TFOM can be reduced to: 

77a TFOM = - 
2kTF 

Furthermore, to compare the merits of the topologies without considering the 
specifics of the design, or the designer's skill for that matter, we set a to the 
maximum value for all topologies. This simply means that we bias the oscilla- 
tor for maximum amplitude disregarding reliability considerations. It is worth 
noting that if a is below the maximum value given in Table 1 then TFOM is 
no longer independent of the tank Q. To illustrate, it is possible to rewrite (3 1) 
as 

2 

TFOM = 
rl Q"oLIo 
2kTFVDD ' 

which is directly derivable from (31) using (27) and (28). 

In other words, TFOM given by (31) is the maximum "available" FOM per 
unit of Q. The designer may elect to design a suboptimal oscillator for reli- 
ability or power consumption as we saw in the GSM redesign example. 
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TABLE 1 Maxim~lm TFOM for current-biased VCO. 

Tail-biased wl filter 2 2/n 2 
nkT( 1 + y )  

Complementary differential 1 41n 2 
W/ filter nkT( 1 + 2y) 

From Table 1 it appears that the maximum TFOM for the tailltop biased VCO 
with a noise filter is higher than that of the complementary differential oscilla- 
tor with a noise filter. The difference is about 2 dB if y is equal to 413. This 
seems conflicting with what we stated in Section 11.4 about the advantages of 
the noise-filtered complementary differential topology. 

To clarify, consider the other definition of TFOM given in (32), for two oscil- 
lators with the same current consumption, supply voltage, frequency and tank 
inductance, the noise-filtered complementary differential VCO has always a 
higher TFOM until the point where its amplitude, or a, is at maximum. 
Beyond that point, the regular tail-biased VCO with a noise filter has a better 
TFOM. This is the reason that the best-published VCO performance is always 
achieved using a tail-biased VCO rather than the complementary differential. 
However, for reliability concerns, the VCO is rarely operated in the very large 
amplitude region. Therefore, the complementary differential topology with a 
noise filter presents the best reliable topology. 
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1 Flicker Induced Phase Noise 

Approaching the carrier, the slope of the phase noise spectrum in CMOS 
VCOs increases from -20 to -30 dB/decade. This is ascribed to the up conver- 
sion of flicker noise in FETs. The analysis presented in the previous chapter is 
reviewed to see if it explains this up conversion. 

Flicker noise in the tail current source at a low frequency of om indeed up 
converts to o&om and enters the resonator, but as AM, not PM noise. There- 
fore, in the absence of a high gain varactor to convert AM to FM [I], flicker 
noise in the tail current will not appear as phase noise. Next, consider flicker 
noise in the differential pair. The preceding analysis says that this modulates 
zero crossings, and injects a noise current into the resonator consisting of 
flicker noise sampled by an impulse train with frequency 200. Thus, noise 
originating at frequency om produces currents at om and at 2c00fom. Both 
frequencies are strongly attenuated by the resonator, and neither explains 
flicker-induced phase noise at o&om. 

Therefore, the model presented so far predicts that none of the noise at low 
frequencies produces phase noise around the carrier. Yet measurements show 
that close to the carrier, there is up converted flicker noise, therefore there 
must be another mechanism. 

2 FM Due to Modulated Frequency Content 

Figure l a  shows a model of the oscillator where it is normally assumed that 
the negative resistance produces a sinusoidal current to compensate for the 
loss in the resonator. However, because the negative resistance is typically 
implemented with a non-linear circuit, this current is more like a square-wave, 
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which is rich in harmonics, Figure lb. Normally, these harmonics are 
neglected, but they must flow somewhere in the circuit and in fact at these 
high frequencies, the capacitor offers the lowest impedance path. 

FIGURE 1 The output current from the active circuit is a square wave, not a sine wave. 
The fundamental componentJlows into the loss resistance, while the high frequency 
harmonicsJlow into the capacitor, resulting in a shift between the zero crossings of 
the output voltage and the output current. 

"out 

lout 

'out 
4 

As a result, the phase relationship between the zero crossings of the current 
and the voltage is upset, as shown in Figure lc. This shift in phase due to har- 
monics produces a change in oscillation frequency given by (I), which was 
predicted by Groszkowski in 1933 [2]. 



1 2 FM Due to Modulated Frequency Content 

The normalized change in frequency depends on the harmonic levels, m,, and 
the quality factor, Q, of the resonator. Now if noise modulates the harmonic 
level, it will cause frequency modulation and that will be a mechanism of 
phase noise. 

In the LC oscillator, the amount of harmonic content is a function of the bias 
current, Io. A larger current produces a larger amplitude (relative to the transi- 
tion region of the differential pair), which generates a current waveform that 
is switched more quickly and contains a higher harmonic content. The sensi- 
tivity aw/aI,  is responsible for "indirect" FM [3] due to flicker noise in Io. 

While the concept of the oscillation frequency being a function of amplitude 
may seem such a minor effect that it can be ignored, it is often used in the 
design of precision frequency references such as crystal oscillators for 
watches. In such a watch, an error as minor as 20 ppm in the oscillation fre- 
quency results in a loss of 10 minutes in a year's time. Often, amplitude con- 
trol loops with very slow response times are used in watch applications, 
allowing the minimum amount of excess gain to be used and still insure that 
the circuit will start oscillating. Vittoz describes the use of an AGC circuit in a 
crystal oscillator to "reduce distortions" since nonlinearities have a "devastat- 
ing effect on frequency stability" [4]. His paper also includes a graphical 
method to determine the frequency of oscillation. 

These ideas can be found elsewhere as well. Gavra and Ermolenko, in a Rus- 
sian journal, describe how "for high-frequency stability, it is necessary to sta- 
bilize the amplitude of oscillation at the lowest possible level" [5] .  From these 
examples, it is clear that these are not obscure or useless ideas. 

Typically, a frequency offset due to this effect is not as important in low cost 
mobile applications because low cost crystals are used with inherent fre- 
quency errors up to 20 ppm. It is possible to use such poor references because 
the time period of interest is so short (i.e. the length of a data packet). 
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2.1 Groszkowski in a van der Pol Oscillator 

Next, consider the use of a third order non-linear g,,, circuit, as shown in 
Figure 2. The analysis is simplified by only considering energy at fo and 3fo. 
While this analysis is not thorough, it is accurate for circuits with only a small 
amount of non-linearity and provides intuition into the operation of the cir- 
cuit. A more thorough analysis would include more frequency terms. This 
type of analysis is very similar to what occurs within a harmonic-balance type 
simulator, where the same errors occur if only a few harmonics are used. 

FIGURE 2 A third-ordel; non-linearity in the active circuit is considered in this 
oscillator: 

Typically the active circuit is designed to over-compensate for the loss in the 
resonator, ensuring the oscillator will self-start on noise in the circuit. The 
product g,R is referred to as the small signal loop gain and is typically larger 
than unity to ensure "self-start" operation. As the amplitude increases, the 
third order nonlinearity reduces the amount of compensation current that is 
injected into the resonator. Steady-state occurs when the amplitude of oscilla- 
tion generates a current that exactly equals the current flowing through the 
resistor. However, this built in amplitude control does not come without cost. 
The nonlinearity also generates a current at the third harmonic, which flows 
through the capacitor, producing a quadrature voltage at 3f0. This harmonic 
mixes with the fundamental in the active circuit and generates a quadrature 
current at the fundamental. 
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V,,, z V, cos(ot)  + V3Q~in(3 a t )  (2) 

One result of the quadrature current is a phase shift between the output volt- 
age and the active circuit current. This phase shift is simply the inverse tan- 
gent of the ratio of the quadrature and in-phase component. 

Previously, all the current from the active circuit flowed into the resistor. 
Since the resistor current must be in-phase, the quadrature component must 
flow into the resonator. When KCL is performed, the quadrature component 
contains a new term and is given in (5) .  

This results in oscillation no longer occurring at wo but rather at a slightly 
lower frequency. Figure 3 shows the calculated frequency of oscillation as 
well as the simulated frequency of oscillation. This is a simplified version of 
the rigorous analysis performed by Groszkowski and given in (1) [2]. 

This quadrature current can be modeled with a "Groszkowski" capacitance as 
given in (6). This expression was simplified by approximating o with oo. For 
small frequency deviations, the error is acceptable. This Groszkowski capaci- 
tance is added to the tank capacitance resulting 
accurately predicts the frequency of oscillation. 

in a total capacitance that 

(6) 
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FIGURE 3 Frequency of oscdlation versus small signal gain. 

1.2 1.4 1.6 
Small Signal Gain 

2.2 Groszkowski in the Differential Pair Oscillator 

While Groszkowski's model of the oscillator is accurate, the derivation is 
complicated and is not intuitive. Further, to use it in the context of phase 
noise, an expression for the sensitivity of the frequency shift as a function of 
harmonic content is required. In this section, a simplified model is derived 
using the same methods previously developed. 

First, the cross-coupled differential pair is modeled as a hyperbolic tangent 
function. 

Where I. is the tail current and V, is approximately the "linear" region of the 
I-V characteristic. The output current in these oscillators varies from a sine 
wave to nearly a square wave depending on the excess gain in the loop. The 
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current consists of a fbndamental component, a 3rd harmonic, and higher har- 
monics, which are ignored. 

Next, assume the voltage across the tank, v,,, consists of the following terms: 

The 3rd harmonic in vOut arises from the 3rd harmonic of current flowing 
mostly through the capacitor. In the extreme case, the output current is a 
square wave resulting in the following values for the voltage terms: 

Proving that even in the extreme case of high excess loop gain, the most non- 
linear case, the third harmonic voltage is much less than the fundamental. 

This fact allows (7) to be expanded into a Taylor series. The first few terms 
are given below. 

V ,  sinot 
i t  - t a n h  + 1 - 

The first term corresponds to the disturbance-free square-wave form. The sec- 
ond term is a third harmonic tone that is in quadrature with the waveform. The 
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third term is a mixing term that operates on the third harmonic term. Next, 
consider two cases: low loop gain which operates at critical oscillation and 
high loop gain which results in hard limiting. 

2.3 Critical Oscillation 

In the first case, the amplitude of the fundamental, V1, is comparable to the 
transition region of the tanh function, Figure 4a. The negative of the mixing 
waveform is shown in Figure 4b. The waveform bares a strong resemblance 
to a full-wave rectified sine wave and will be approximated as such. The Fou- 
rier series for a full-wave rectified sine wave is given in (1 5). 

FIGURE 4 At critical oscillation, the V,  component of v,,, is comparable to the 
transition region, V,, of the oscillator. Other than an inversion and a DC offset, the 
resulting waveform is roughly the same as full-wave rectified sine wave. 

The mixing action between the second harmonic of (15) and the third har- 
monic of the waveform produces a term at the fundamental frequency: 

+ 4 I = IoY,Qcos30t-cos2ot = -lo- 
3n 

v 3 ~  cos o t +  . . . 
Vw 3n V, 
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This current component is in quadrature with the fundamental and looks 
capacitive relative to the fundamental of the tank voltage. The effective 
capacitance is: 

Qualitatively, as Vl increases slightly and enters soft clipping, the 3rd har- 
monic rises dramatically. Thus, the capacitor changes sharply. 

The equivalent circuit for the active circuit portion of the oscillator is given in 
Figure 5. As before, the active circuit produces a negative resistance that com- 
pensates for the loss in the tank. This analysis shows an additional reactive 
component that is dependent on the harmonic content of the waveforms. As 
the harmonic content changes, the effective capacitance changes, modulating 
the frequency of oscillation. This FM effect is a source of flicker induced 
phase noise. 

FIGURE 5 The equivalent impedance of the differentialpair consists of a negative 
resistance and a modulated capacitance. 

The equation above was developed by assuming a shape of the multiplying 
function and only looking at the amplitude of the signal that results when the 
3rd harmonic of the output signal is multiplied by the tone of the multiplying 
function at twice the fundamental frequency. However, the multiplier func- 
tion tone at four times the fundamental will also produce an output at the fun- 
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damental frequency. Further, other disturbance tones at the output voltage 
such as the 5th and 7th harmonic will produce an output at the fundamental. 
These contributions drop off in amplitude quickly and a close formed solution 
is easily derived. First, V3 in (1 2) is modified. 

Assume the relative level of the harmonics beyond the 3rd is equal to the ratio 
in the square wave case. The amplitude of the output at the fundamental is 
given below. The tones are grouped as harmonics of tanh function mixing 
with the harmonics of the full rectified sine wave, as in (1 5).  

This can be generalized as: 

In the single tone derivation, the value of (2 1) was kl27. Since each term con- 
tributes a quadrature current that sums to generate an effective capacitance, 
the equation in (17) can be scaled by the ratio between the two. The final 
equation for Ceg is given below. 
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2.4 Hard Limiting 
In this case, the excess loop gain forces the oscillator into hard limiting. Here, 
the waveforms now look entirely different than before, Figure 6. The multi- 

FIGURE 6 The multiplying waveform for the hard limiting case approaches an impulse 
train. 

- [l - tanh2 (x)] time time 

plying waveform has narrowed and approaches an impulse train. Each pulse is 
tw wide. The train of pulses can be approximated by delta functions with the 
same area. Thus, in the time-domain the multiplying waveform is: 

After multiplication with the third harmonic of the tank voltage, the second 
and third term of the Fourier series contribute a current at the fundamental fre- 
quency, 

which defines a capacitance relative to the tank voltage. The effective capaci- 
tance is 

- 2  C,, = - - v 3 ~  - 2 V 3 ~  -I0otw- - -Iotw- 
n V w o V l  n Vw V ,  ov 
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In hard limiting, we can use the following relationships: 

where Q is the tank quality factor. Substituting into (26), the effective capaci- 
tance is: 

C is the fixed capacitance in the tank. 

In the hard limiting case, the level of the harmonics does not change. There- 
fore, the Groszkowski effect in hard limiting leads to a fixed shift in oscilla- 
tion frequency. From the above expression, the normalized frequency shift 
resulting from 3rd harmonic generation is: 

This equation has the same format as (1). 

Just as before, the expression for the equivalent capacitance can be expanded 
to include more harmonics. Again, using the definition in (25), the total sum is 
given below. 

+ 
[: ; 1 1  I =  k o t ,  - . - (  l + l ) + - . - ( l + l ) +  ... 

5 5 I 
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In the initial analysis, the second term in (32) was equal to 119. A more accu- 
rate model for the capacitance is derived by scaling (30) by the ratio. The final 
equation for Ceq is given below. 

To verify these equations, the oscillator is simulated with a simple macro 
model where the nonlinearity is captured by a hyperbolic tangent, Figure 7a. 
SpectreRF is used to simulate the effective capacitance of the tanh fimction. 

FIGURE 7 A simple oscillator is used to ve& the Groszkowski effect. 

This is plotted as a function of gain, which is defined as the inverse of V,. The 
multi-tone equations predict the simulation very well, (8). 

3 Switch Voltage Noise Modulates Capacitance 

Groszkowski is not the only mechanism of indirect FM. Flicker noise in the 
differential pair also appears around the carrier but through a different pro- 
cess. Consider the oscillation at the two nodes Vp and V, shown in Figure 9b. 
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FIGURE 8 Effective Groszkowski capacitance versus gain (l/V,). Excellent agreement 
between simulation results and equations (23) and (35). 

Simulation v. Groszkowski Model 
-- 

Assume a differential voltage across the tank that is given by (36) and is 
shown in Figure 9b. 

This oscillation will produce a voltage waveform at the tail at twice the oscil- 
lation frequency. Next, suppose the noise in this differential pair is modeled 
with a single noise source. When the right transistor is on, the tail voltage 
rises to a nominal value and goes down Figure 9c. On the other half cycle, 
when the left transistor turns on, the tail voltage rises to a noisy value. This 
results in a common-mode voltage that can be approximated as in Figure 9c. 
The minimum occurs when the differential output voltage is equal to zero 
while the maximum voltage occurs just when one side enters the linear region. 
This maximum occurs at time tl in Figure 9c. The value of t l  is given in (37). 



3 Switch Voltage Noise Modulates Capacitance 

FIGURE 9 Flicker noise in switching devices 
capacitance. 

results in equivalentjuctuating negative 

If the noise is modeled as an offset voltage, simulations show the common- 
mode does not rise to the full value but instead shifts the whole common- 
mode up by half the voltage and affected half rises by an addition half. So the 
height of the gray region of Figure 9c is simply v,,/2. 

The waveform at the common-mode point induces a current in the tail capaci- 
tor, Figure 9d, which is simply the time derivative of the waveform in 
Figure 9c. Since the time difference is known and the amplitude is known, the 
height of Figure 9d is given in (38). 
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Now, the capacitor current flows through the cross-coupled switching differ- 
ential pair and is commutated at the output before injection into the resonator, 
as shown in Figure 9e. The fundamental component of this commutated cur- 
rent describes a phase relationship with the voltage, which corresponds to a 
negative capacitance. 

This value is easily found by calculating the quadrature component of the 
gray squares in Figure 9e; include a half term for the differential component. 

As a result, the effective capacitance is a function of the noise. Therefore, the 
differential pair presents to the resonator a negative resistance and a fluctuat- 
ing capacitance due to the capacitor and the noise. This fluctuating capacitor 
causes frequency modulation within the resonator and up-converts flicker 
noise around the carrier. 

The capacitance is simply the quadrature current in (40) scaled by the output 
voltage and oscillation frequency. 
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The effective capacitance is proportional to the tail capacitance and is 
strongly attenuated by the amplitude of oscillation. In actual designs, the tail 
capacitance should be minimized to reduce this source of modulation. 

Even though drastic simplifications were made, these equations still accu- 
rately predict the quadrature current and the effective capacitance. Table 1 
compares (40) and (43) versus simulation. The parameters of the simulation 
are also given in Table 1. 

TABLE 1 Comparison of calculated and simulated values. Parameters: V1 = 882mq 
c, = 5of; v, = 0.5 

Parameter 

This simplified model is easily expanded to take into account the Cgs capaci- 
tance of the switching devices. The Cgs capacitors are lumped with the tail 
capacitance, (46). 

Quadrature Current, i, lq 

Capacitance, Ceff 

The factor of 112 in the Cgs term comes from the fact that together, the Cgs 
capacitors form a series path. This was also simulated and matched very well. 

Calculated 

4 Frequency Modulation by the Current Source 

Simulated 
v,, = + 1 0mVI-10mV 

475.2nA 

0.1704fF 

The next mechanism for flicker induced phase noise is similar to the Grosz- 
kowski effect described in Section 2. However, it only appears when parasitic 
capacitances are present at the tail and across the Cgs of the differential pair 
devices, Figure 10. In the theoretical case where these capacitances are zero, 

478.5nA1384.6nA 

-0.1729fF/O.l390fF 



Chapter 6 Flicker Noise 

only the Groszkowski effect produces frequency modulation due to the cur- 
rent source. 

FIGURE 10 FM due to jicker noise in current source 

First some basic frequency modulation theory is reviewed. The bias current 
source is decomposed into a noise-free bias component and an equivalent 
flicker noise component, (47). 

'0 = 'bias + 'flicker (47) 

The change in oscillation frequency that occurs due to a change in the bias 
current is modeled as a bias dependent capacitance that appears in parallel 
with the tank. This concept was shown previously in Figure 3 in Chapter 3. If 
the bias dependent capacitance is linearized at the operating point, it can be 
modeled as (48). 

The frequency of oscillation with this modulated capacitance is easily calcu- 
lated, (49). 
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'"0 . w,,, = w0 - -kAl 
2C 

Next, the FM coefficient is defined, (5 1). 

Finally, the equivalent phase noise sidebands are calculated with FM theory. 

Returning to the oscillator in Figure 10, the analysis of the equivalent capaci- 
tance is based on the varactor paper by Hegazi [I]. In this paper, Hegazi real- 
ized that the instantaneous capacitance seen by the tank is not constant but 
changes with time. Since the frequency of the varying capacitance is periodic 
with frequency 2w0, it can be described with a Fourier series: 

After accounting for the harmonics in the output voltage and the mixing that 
occurs, Hegazi derived an effective capacitance that is seen by the oscillator 
and is given in (54). 

1 C,, = C, - - C 
2 

This same idea is used to analyze how the effective capacitance of the oscilla- 
tor changes as a function of bias current, capacitance at the tail, and the Cg, of 
the switching devices, Figure 10. During the course of the oscillation, the tank 
sees a time varying capacitance, as shown in Figure 11. 

It is straight forward to derive equations for the capacitance at each point. In 
the balanced condition, both transistors act as simple transconductance stages. 
Since the circuit is truly differential at this point, the common-mode point is a 
virtual ground, shorting the tail capacitor leaving only Cg, in parallel with the 
resonator. The equivalent capacitance is given in Equation 55. 
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FIGURE 11 The resonator sees a time varying capacitance. When in the balanced 
condition the capacitance is a positive value. As the oscillation amplitude increases, 
the capacitance becomes negative. Finally, at the peak of oscillation, the capacitance 
is positive. 

From the balanced condition, the differential voltage increase to the point that 
all the current is switch to one side. Here, one device is off and the other is 
modeled as a simple transconductance stage. The instantaneous capacitance at 
this point is given in (56). 

By assuming small values for Cgs and C ,  this equation is simplified by ignor- 
ing terms that are small at the oscillation frequency. 

This results in an instantaneous capacitance that is given in (58) 
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Finally, the last point occurs at the peak of the oscillation. Here all the current 
is switched to one device that is in triode while the other device is off. The tri- 
ode region of a long channel device can be modeled as two back-to-back satu- 
rated device as shown in Figure 12a. 

FIGURE 12 (a) Triode device can be modeled with back-to-back saturated devices. (b) 
Oscillator with one device offand the other in triode. 

Since the first device is off, all the bias current must flow through the triode 
device, Figure 12b. This is captured in (59), where 12s is the saturated current 
and 12, is the reverse flowing triode current. Since the oscillator output volt- 
ages are know for each amplitude level, the currents are easily found by first 
solving for 12, and then Iz, Once the currents are known, the transconduc- 
tance is calculated. 

KCL is performed on the small signal model of the circuit and solved in 
Mathematica for the equivalent impedance. This is given in (60). 
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This complicated equation can be simplified for the frequency of interest to 
(6 1 ). 

The equivalent capacitance is given below. 

Equation (62) is compared to simulation in Figure 13. An ideal current source 
was used in the simulation to drive the oscillator to unrealistic amplitudes. It 
is only at these amplitudes that the equivalent capacitance approaches the 
asymptotic value. 

FIGURE 13 Instantaneous capacitance across amplitude of oscillation for Region 3: 
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At the peak amplitude, the triode device can be modeled as a short circuit. 
This is equivalent to setting gmz=g,2 in (62) since the drain and the source 
have the same voltage. Here, (62) simplifies to (63). 

A piece-wise linear model of the instantaneous capacitance, as shown earlier, 
can be created with the equations for all three regions. However, it was found 
that fitting a polynomial to the two Region 1 and 2 points gave a better result. 

Simple Matlab code generates a sine wave with a given amplitude and maps it 
to the corresponding instantaneous capacitance using the model just 
described. The instantaneous capacitance seen by the tank as the circuit oscil- 
lates is shown in Figure 14. 

FIGURE 14 Modeled and simulated instantaneous capacitance. 

-0.4 -0.2 0 0.2 0.4 
Oscillation Amplitude, V 

The Fourier Transform of the time domain waveform is taken and the equiva- 
lent capacitance is calculated using (54). This is compared to a direct calcula- 
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tion of the equivalent capacitance base on the simulated oscillation frequency 
as shown in (64). 

- 
'tot - 'tank + ' ~ r  + 'mod (65)  

The Groszkowski capacitance, CGr, is calculated by simulating the oscillator 
without any capacitance and attributing any change in oscillation frequency to 
this effect. This capacitance is simulated for three separate bias currents. The 
capacitors are replaced and resimulated for the three bias currents. The addi- 
tional change in oscillation frequency is attributed to this modulation effect 
and labeled Cmod. 

The accuracy of this model is tested for three cases: reasonable tail and gate 
capacitances, very large tail capacitance, and very large gate capacitance. All 
three cases are show in table form below. 

TABLE 3 Ct = loof%: Cg, = 0.1 fF 

- 

Bias Current 

1390 pA 

Cmod (Simulation) 

2.94 fF 

Bias Current 

1390 pA 

1400 pA 

1410 pA 

c ~ o d  (Model) 

6.77 fF 

Cmod (Simulation) 

-8.00 fF 

-7.94 fF 

-7.88 fF 

Cmod (Model) 

-8.56 fF 

-7.85 fF 

-7.15 fF 
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TABLE 4 Ct = 0.1E Cgs = 1 0 0 p  

While the model seems to generally capture the modulation effect, it fails to 
do so with sufficient accuracy to accurately predict the equivalent capacitance 
and thus the modulation coefficient. The model could be refined by using 
higher order equations to fit the various points. Also, more points across the 
oscillation curve could be identified to allow a better fit. However, both of 
these methods make the model less intuitive. 

To predict phase noise using this model, first the frequency modulation con- 
stant is calculated from the tables above. Using (52) and the amount of flicker 
noise current present in the bias current leads to the level of phase noise at a 
given frequency. 

In practice, the gate capacitances are time dependent and their values along 
with the tail capacitance values are not accurately know. RF simulators like 
SpectreRF can be used to accurately predict the phase noise that occurs in 
these oscillators. 

It is hoped that the model developed in this section adds understanding to the 
complicated mechanisms for flicker noise up conversion in oscillators. 
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Phase Noise 

Despite numerous papers on oscillators, flicker noise has not received much 
attention. In part, this is because until recently RF oscillators were usually 
built using the bipolar junction transistors, which have relatively little flicker 
noise. The need for low flicker noise oscillators became apparent only in 
CMOS implementations that date to around 10 years ago. Today, almost all 
integrated LC oscillators are CMOS. This is true even when implementing the 
RF system in BiCMOS. The fundamental reason is that MOS devices can 
handle a larger signal swing, which is the most effective means of lowering 
phase noise. 

Flicker noise's behavior in oscillators and mixers is quite distinct from that of 
thermal noise. Flicker noise is localized in the low frequency portion of the 
noise spectrum. To affect the phase of a multi-gigahertz oscillator, a fre- 
quency translation mechanism must be involved. However, it was shown in 
an earlier chapter that mixer-based up-conversion of flicker noise can only 
result in amplitude noise [I]. Flicker noise can only become phase noise 
through frequency modulation mechanisms. Frequency noise is indistinguish- 
able from phase noise and corrupts communication systems in the same man- 
ner. Concepts like noise folding seldom apply to flicker noise in oscillators 
because, unlike thermal noise, its power is localized in low frequencies. 

In a current-biased LC oscillator, the three sources of flicker noise are the cur- 
rent source, the varactor, and the switching pair transistors. Minimization of 
flicker noise makes use of a variety of techniques discussed in earlier chap- 
ters. In this chapter, we will re-visit these techniques from the perspective of 
minimizing flicker noise. 
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2 Flicker Noise Minimization 

In Chapter 6, the mechanisms by which flicker noise disturbs the oscillator 
phase were discussed in detail. It is important to recall that while flicker noise 
of MOS transistors can be lowered by using larger transistors, the amount of 
frequency noise created by flicker is not a linear function of the transistor's 
flicker noise. While this might seem a little surprising, it is simply because of 
the nonlinearity of frequency modulation mechanisms responsible for flicker 
noise. 

Consider the case where only the current source transistor has flicker noise 
and ignore the nonlinearity of junction capacitances associated with the out- 
put transistor. Consider also that the oscillator has no varactor to tune it. In 
this case, the flicker in the current source transistor does not modulate the fre- 
quency of the oscillator output. This is simply because the fluctuation in the 
bias current only disturbs the amplitude of oscillation, creating amplitude 
noise. Combined with a nonlinear varactor, the same fluctuation in the source 
current can disturb the bias point of the varactor, which modulates the fre- 
quency of oscillation creating frequency noise as discussed in detail in our 
varactor treatment in Chapter 8 [2]. 

Consider a different scenario where the bias current has no flicker noise while 
the switching pair transistors do. This is a practical case where the bias tran- 
sistor is replaced with a fixed resistor for example. Assume the common mode 
point is capacitance-free, including the devices' self-capacitance. In this case, 
regardless of the amount of flicker noise present in the transistors, the fre- 
quency of oscillation is flicker-free. This should be obvious from the discus- 
sion in Chapter 6 where the switching FETs flicker noise was shown to 
modulate the effective capacitance of the active circuit built using the switch- 
ing pair and the current source. The effective capacitance was shown to 
depend on the amount of capacitance at the common mode point. 

Thermal noise is present in the entire frequency spectrum. Therefore, ther- 
mally generated phase noise in an oscillator cannot be eliminated. With clever 
design, this type of phase noise can be lowered, possibly to its topology- 
dependent lower bound. Flicker noise on the other hand can be eliminated 
altogether by intelligently attacking the mechanisms responsible for its up 
conversion. 
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In analyzing mechanisms for flicker noise up conversion in Chapter 6, we 
demonstrated the role the common mode capacitance plays in flicker noise up 
conversion. The current source device can have an arbitrary WL product for 
any specific WlL ratio. Larger WL leads to lower flicker noise in the transistor 
itself. However, it comes with larger parasitic capacitance at the common 
mode point. This increases the flicker noise up conversion gain and the result 
is more, not less, flicker in the oscillator frequency. It should be remembered 
that it is always good to increase the channel length of the current source 
device beyond the minimum feature size. This reduces the excess channel 
noise coefficient and increases the device's output resistance. However, this 
reduction in thermal noise is traded for higher up converted flicker noise due 
to the extra parasitic capacitance at the common mode point. 

To alleviate this trade-off, a square-gate layout for the current source is favor- 
able. This layout minimizes the drain junction and maximizes the grounded 
source junction. This can reduce the capacitive loading on the common-mode 
point by 50% or more. An array of such devices can be used to implement 
larger transistors as shown in Figure 1.  Simulation shows an optimum point 
for flicker noise while sweeping the size of the current source transistor. 
Unfortunately, this optimum point does not coincide with the optimum point 
for thermal noise. 

FIGURE 1 Layout of the current source device. 

Some researchers argue for inherently low flicker noise topologies using con- 
jectures from the impulse sensitivity function analysis. Based on such analy- 
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sis, a complementary differential topology can have no flicker noise from the 
switching devices if the rise and fall times are equal leading to elimination of 
the even harmonics [3]. However, no analysis has confirmed such conjectures 
despite the effort of other researchers to using fully symmetric layout [4]. 
While symmetric layout always helps the suppression of even harmonics in 
differential circuits, it has not been shown that equal rise and fall times truly 
lead to suppression of flicker noise. Fully symmetric layout helps by not mak- 
ing flicker noise higher. However, even in simulation with perfectly matched 
devices, flicker noise shows up in the output spectrum of the VCO. 

3 Nulling Flicker Noise 
The trade-off between flicker noise of the transistors and flicker noise up con- 
version gain can be broken with a noise filter [6]. Since the filter inductor 
splits the common mode point from the current source, the device can be 
increased in width and length without fear of enhancing the flicker noise up- 
conversion gain. No special layout is necessary in this case. Proper tuning of 
the common mode point pushes the flicker noise up-conversion gain from the 
switching devices into a null. These techniques combined with a switched 
capacitor arrangement to reduce the oscillator sensitivity leads to large reduc- 
tion in flicker noise up conversion gain. These techniques combined were 
implemented by Hoshino et a1 in a design targeting the FLEX pager specifica- 
tions [5]. The narrow channel spacing of FLEX requires the very low noise of 
-1 10 dBc/Hz at 25 kHz offset. A typical well-designed CMOS oscillator will 
have an up converted flicker noise corner of around 100-150 kHz. Flicker 
noise at 25 kHz offset increases the oscillator phase noise by at least 10 log(5) 
or 7 dB. More than four times the power is required to compensate for the 
excess noise. Shown in Figure 2 is a sample phase noise measurement with 
and without the noise filter. 

For such stringent specifications, a high-Q off-chip inductor is used in the 
tank. A combination of a small on-chip inductor and a bond wire inductor is 
used to implement the noise filter inductor. A large-sized transistor is used for 
the current source and a 4-bit switched capacitor array is used in parallel with 
a small varactor. Due to the low supply voltage of 1.5V, the varactor is AC- 
coupled to the oscillator while biased through a resistor as shown in Figure 3. 
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FIGURE 2 Phase noise measurements with and without noiseJltel: 

Offset Frequency (Hz) 

The combination of all the techniques mentioned above resulted in an up-con- 
verted flicker noise corner as low as 2 kHz. 

However, it is true that the filter nulling effect occurs at a single frequency 
[ 5 ] .  Sweeping across the entire frequency range showed an up converted 
flicker noise corner as high as 60 kHz at the edges of the tuning band. Sam- 
ples of measured phase noise at various frequencies are shown in Figure 4. 

One technique to widen the null in flicker noise up conversion gain was given 
by Hegazi and Abidi [7] .  There, a small-sized switched-capacitor is used in 
the filter. The auxiliary array is controlled by the same control lines of the 
main switched-capacitor tank array. This technique allows for multiple nulls 
by making the noise filter tuning roughly tracking the main tank. This lowers 
flicker noise for the entire band. 

By decoupling the common mode point of the oscillator from the current 
source, it is possible to increase the size of the current source transistor. Using 
a channel length that is much larger than the feature size achieves two goals: it 
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FIGURE 3 Schematic of a FLEX oscillator: 
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FIGURE 4 Sample phase noise measurement at the null and at the tuning band limit. 

Offset Frequency (Hz) 

lowers the amount of flicker noise in the transistor, and it lowers the excess 
channel noise coefficient lowering thermal noise. Finally, as will be presented 
in Chapter 8, the varactor characteristics can be linearized with the aid of a 
fixed linear capacitor, either in parallel or in series with the varactor. Such 
arrangements lower the AM-FM conversion gain [7] .  
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4 Wideband Nulling of Flicker Noise Up Conversion 

A technique for nulling the flicker noise up conversion was presented by 
Ismail and Abidi [S]. This technique, too, relies on eliminating the common 
mode capacitance. However, they do not tune it out with an inductor. Instead, 
they realize the elimination of flicker noise through the construction shown in 
Figure 5. Here, the capacitor C is sized to appear as a low impedance for the 
fimdamental tone that circulates differentially in the cross coupled pair. The 
capacitor appears as very high impedance to flicker noise in the switching 
pair. In this topology, there is no common-mode point. With proper choice of 
the capacitance value, the fundamental oscillation is hardly disturbed and 
flicker noise is prevented from modulating the oscillation frequency. 

FIGURE 5 Wide-bandflicker noise suppression. 

T' 

An insightful way to look at flicker noise in the switching pair is by consider- 
ing it as a slowly varying offset. Without loss of generality, flicker noise can 
be assigned to one of the two transistors since the switches noise is uncorre- 
lated. First, ignore the parasitics points A and B in Figure 5. The switching 
transistors are degenerated though a capacitor which reduces the effective 
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negative transconductance of the pair. Therefore, too small a capacitor would 
prevent start-up of the oscillator. Now how does flicker noise from the switch- 
ing pair behave? The mixer noise analysis by Darabi proves to be of impor- 
tance in understanding this circuit. In a regular cross-coupled oscillator, a 
small flicker noise disturbance of the switching instant modulates the switch- 
ing moment of the switching pair [9]. The result is duty-cycle modulation of 
the current fed into the tank. The duty cycle modulation appears at low fre- 
quency and at twice the oscillation frequency. In a mixer, this is a mechanism 
by means of which, flicker noise and clock feed-through make their way to 
the output (taken at zero intermediate frequency (IF). This was coined the 
direct mechanism [9]. In the context of an oscillator however, this mechanism 
is of no harmful consequence. Why? Because flicker noise is translated by 
this mechanism away from the oscillation fundamental. In other words, any 
flicker noise translated to the tank via this mechanism is rejected by the nar- 
row-band tank characteristic. 

In this topology, there is no path for the low-frequency flicker noise to a com- 
mon mode capacitance. Flicker noise is stored on the floating capacitor such 
that it re-balances the crossing point and frequency modulation cannot occur. 
True wideband nulling of flicker noise based on this topology, with the cur- 
rent sources replaced by resistors and a noise filter is added to suppress ther- 
mal noise around the second harmonic, was reported by Ismail and Abidi [8]. 
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1 Fundamentals 
Over the oscillation cycle, the varactor capacitance spans a portion of their C- 
V curve that depends on the bias and control voltages as well as the signal 
amplitude. If the active device nonlinearity is memoryless, the oscillation fre- 
quency is determined by the balance of reactive currents in the tank capaci- 
tance and inductance [lo]. In a differential oscillator, if the parasitic 
capacitances, other than those across the tank inductance, are negligible, the 
active negative resistance is nonlinear but memory-free. Furthermore, in an 
LC oscillator, it is reasonable to assume the oscillation waveform to be quasi- 
sinusoidal even in the presence of circuit and varactor nonlinearities. This 
allows the approximation of the frequency of oscillation by 

where L is the effective inductance and C,,, is the effective capacitance at 
balance. 

To find the effective capacitance, we resort to basic principles. The oscillator 
is modeled as a lossy parallel LC tank. The loss is compensated by a negative 
resistance current that switches from -I to I at the zero crossing of the voltage 
across the tank. This model captures all nonlinearities of the oscillator while 
assuming the nonlinear negative resistance is memoryless. 

The fundamental component of the negative resistance current flows through 
the tank loss resistor because the inductor and the capacitor are at resonance at 
that frequency and so present an open circuit to the fundamental. As such, the 
amplitude of oscillation is 
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FIGURE 1 Parallel resonance tank with switched current drive 

Harmonics of the negative resistance current elect to flow in the capacitor 
rather than the inductor because it provides a lower impedance path. With 
quasi-sinusoidal operation, harmonics of the negative resistance current can- 
not flow in the tank resistor which provides a higher impedance path. Note in 
Figure 2 that current switching affects only the current in the capacitor within 
a narrow time window around the oscillation voltage-zero-crossings causing 
more harmonics to flow into the capacitor. For moderate quality factors, 8 or 
above, the impact of these harmonics on the oscillation frequency can be 
neglected, in part because the current in the capacitor is Q times the resistor 
current at resonance and because the switching event occurs in a narrow time 
window depending on the oscillation amplitude and the switching transistors 
transconductance. 

Having neglected the harmonics of the negative resistance current, the induc- 
tor current must balance the capacitor current at all times. Figure 2 shows the 
inductor and capacitor currents to be equal at all times except at the zero 
crossing of the oscillation voltage. This moment is when the current is 
diverted from one side to the other. The sharp transition in current can go 
through the capacitor but not through the inductor. Under large oscillation 
amplitude, this transition time is very short and the following applies: 

The oscillation voltage can be represented in general by its Fourier series 
expansion as follows 
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FIGURE 2 
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of which only the second term, for n = 1, is significant. 

The nonlinear capacitance is driven by the sinusoidal voltage and can, in 
steady state, be represented as a function in time. Note that looking differen- 
tially, the capacitance Fourier series becomes a function only of the even har- 
monics. 

We will neglect for the moment all the sine terms and focus only the cosine 
terms for reasons that will be explained later. The inductor and capacitor cur- 
rents are given by: 
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1 
l L  = .-IV(t)dt 

Substituting in the KCL equation 

For the fundamental current 
true 

to balance, the following condition must hold 

(9) 

Where Co is the time average capacitance and C2 is the fundamental of the 
capacitance waveform, which has a frequency of 20,. It is important to note 
that Co and C2 are frequency independent and need not be evaluated at exactly 
the oscillation frequency. 

The analysis can be interpreted as follows; fundamental current in the induc- 
tor balances with the fundamental current in the capacitor. Differential volt- 
age is odd-symmetric and the capacitance is even symmetric in time. The 
fundamental of the capacitor current is a sum of products of mixing terms. 
The time average capacitance mixes with the fundamental of the voltage 
waveform to produce a current at the fundamental frequency. The second har- 
monic of the capacitance mixes with fundamental of the voltage derivative to 
produce a capacitive current at the fundamental frequency and a component at 
the third harmonic frequency. Owing to the quasi-sinusoidal approximation, 
(9) neglects the effect of mixing higher harmonics (at 4f0, 6f0, . . .) of the 
capacitance waveform with higher-order derivatives of the voltage waveform 

t An alternate fonnulation of this equation is considered in Appendix B 



(at 3f0, 5f,, . . .). These terms will also contribute a small capacitive current at 
the fundamental 

If the sine terms in (5) are considered in addition to the cosine terms, they pro- 
duce a current component that is in phase with the oscillation voltage and in 
quadrature with both the capacitor and inductor currents, i.e. resistive current, 
and therefore are not part of the reactive current balance considered in (3). 
The amount of even harmonics in the differential oscillation voltage is very 
small and arises fundamentally from circuit mismatches. 

This analysis is a reduced form of Volterra series expansion. It is shown in 
Appendix A that the average capacitance can be evaluated using a different 
method that, in some cases, is more convenient numerically. The average 
capacitance is given by: 

Where A is the area enclosed by the integral 

and V, and o, are the amplitude and angular frequency of the fundamental 
component of oscillation. In Section 4 we will look into methods for calculat- 
ing A both analytically and numerically. Note that the capacitance of the var- 
actor in (6) is the small signal capacitance defined as 

where Q is the charge on the capacitor as a function of the applied voltage E 
This definition is equivalent to the small signal capacitance obtained by AC 
analysis on a SPICE-like simulator. 

2 Types of Varactors 

The most commonly used varactors today are PN junctions, inversion-mode 
MOS and accumulation-mode MOS varactors and to a much lesser degree 
MEMS capacitors. Inversion-mode MOS varactors are most common in 
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CMOS designs due to their natural compatibility with standard MOS pro- 
cesses as well as their capability of enduring large signal swings. PN junction 
varactors are more common in bipolar designs with the drawback being their 
limited signal dynamic range. 

All varactors share one common feature; their capacitance varies with the 
application of a control voltage, generally, in a highly nonlinear manner. As 
will be shown later, the shape of the nonlinearity has a great impact on the 
noise performance of the varactor. 

3 Varactor Tuning 

Harmonic balance mandates equality between the inductive and capacitive 
currents. The average capacitance is calculated starting from a small signal 
C(v) expression. Such an expression is often given as C(v,,vk) where "a" and 
"k" subscripts stand for anode and cathode respectively. In this notation the 
anode is connected to the control voltage while the cathode connects to the 
oscillator output. The average capacitance is calculated with the aid of (1 1) as 
a fkction of the cathode voltage, which is assumed a sinusoidal waveform. 
Since the capacitor is a lossless element, once steady state has been reached, 
the energy stored on it through one-half of the cycle must be extracted from it 
in another half of the cycle. With sinusoidal stimulus, a linear capacitor 
responds with a sinusoidal current leading by 90 degrees while a nonlinear 
capacitor responds with a non-sinusoidal current as shown in Figure 3. 
Energy is delivered to the capacitor over the first and third quarters of the 
oscillation cycle while it is extracted throughout the second and fourth quar- 
ters. The locus of the voltage versus current in a linear capacitor is a perfect 
ellipse and in a nonlinear capacitor it is a distorted one depending on the 
shape of the nonlinearity. For a capacitor driven by a sinusoidal voltage, the 
increase in voltage amplitude, leads to an increase in current amplitude shown 
in Figure 4. In a linear capacitor, the area A is proportional to the square of the 
amplitude such that the capacitance in ( l l ) ,  is independent of the amplitude 
and so is the frequency of oscillation. In a nonlinear capacitor, the current 
amplitude is also proportional to the voltage amplitude but the total area is not 
proportional to the square of the amplitude. Therefore a nonlinear capacitor 
exhibits a conversion of amplitude variation to frequency variations, 
Figure 4b. 
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FIGURE 3 Energy cycle in a nonlinear capacitor 
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Since the average capacitance is a smooth function, the oscillator-tuning 
curve is also a smooth function with no abrupt changes in frequency even in 
an MOS varactor that has a rapid transition in capacitance due to strong inver- 
sion. 

4 Analytical Evaluation of Noise Sensitivity 

The C-V curve of a MOS varactor given in [12] defies a simple expression. 
However, with some approximation, C- V characteristics, can be represented 
by a hyperbolic tangent function that can be curve fitted to the measured or 
simulated characteristics shown in Figure 5. Moreover, in can be approxi- 
mated by a step function without much loss of accuracy. The capacitance of 
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FIGURE 4 I-VLocus for (a) linear and (6) nonlinear capacitors. 

I 

the varactor is therefore switching between the maximum and minimum val- 
ues at a threshold E, which is determined by the supply voltage and tuning 
voltage. With a step-function approximation the capacitance and the sensitiv- 
ity are now derived. 

The small signal capacitance can be approximated by 
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FIGURE 5 Varactor 's small signal capacitance versus voltage. 
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where U is the unit step function and x, is given by 

where E(V,) is the threshold voltage of the varactor (including bulk effect), is 
generally close in value to 0.9 V, and is a weak function of the control volt- 
age, V,. Vg is the gate voltage. 

With a step-like capacitance characteristics, the area enclosed by the varac- 
tors's V-I locus is given by 
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(16) 

where 

(:I2 + ( 2 I 2  = 1 for V<xo, and 
~ ' m i n ~  

where a is the horizontal axis of the ellipse. 

The V-l locus therefore, looks like two ellipses merged together at V = x,, 
Figure 6 

All the expressions in (15) through (20) are valid only for x, < a. For x, > a 
the expressions saturate to the value at x, = a. Note that k changes from posi- 
tive to negative as x, transition from positive to negative, suggesting that it 
must pass through a zero (a null). 

The factor k in (20) represents the tuning sensitivity of the VCO. As shown 
later, noise fluctuations in the VCO can perturb this average capacitance, and 
hence the oscillation frequency, resulting in frequency noise sensitivity. 

The MOS varactor is characterized by a null in its noise sensitivity curve as 
shown in Figure 10. This null occurs when the control voltage is such that the 
varactor remains for exactly half the time at minimum capacitance and the 
other half at the maximum capacitance. The average capacitance at this partic- 
ular tuning voltage is constant regardless of the amplitude of oscillation. 
Therefore, assuming symmetric C- Vcurve around an inflection point, the var- 
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FIGURE 6 Voltage-current loci,for various control voltages. 

actor shows zero sensitivity to amplitude variations and average capacitance 
is the numerical average between the maximum and minimum values. The 
condition for the null is given by: 

or simply: 

where Vg, is the common mode level of the gate voltage, equal to VDD in the 
tail-biased topology. 

For PN junction diode varactors, the C(v) curve is smoother than that of MOS 
varactors, leading to less sensitivity to amplitude variation. However, the ana- 
lytical evaluation of the integration in (1 6) is far more complicated and must 
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be evaluated numerically. Since the capacitance curve does not have an 
inflection point, there exists no null in the sensitivity curve. 

5 AM-to-FM Noise Conversion 

In a current-biased oscillator, low frequency noise from the current source is 
sampled by the commutating switching pair. This is up-converted as two cor- 
related sidebands around the fundamental creating pure amplitude noise 
[11[21[111. 

The use of a noise filter does not prevent the AM modulation as it allows low 
frequency noise from the current source to pass almost unattenuated [3]. The 
nonlinear varactor capacitance is modulated by the noise-induced amplitude 
variation leading to change in frequency of oscillation. The spectra of FM 
noise and phase noise are indistinguishable on a spectrum analyzer and 
degrade communication systems in the same manner. In this section we 
develop a simple model of the AM-to-FM conversion process. 

For an AM noise component to up-convert around the fundamental frequency 
it needs to have originated at low frequency. This is a slowly varying process, 
therefore, only the average behavior of the varactor, namely its average 
capacitance, determines the AM-to-FM noise conversion gain. AM noise of 
interest can therefore be regarded as low-frequency envelope variations that 
allow the oscillator enough time to change its frequency before the noise level 
changes. Finally the average capacitance is assumed a linear function of the 
noise voltage at the tank terminals. The average capacitance is however, a 
nonlinear function of the output signal voltage at the tank. This is the typically 
adopted small signal assumption in treating noise and can be expressed as fol- 
lows: 

Where Cf is the fixed capacitance at the oscillator output node, Cavg is the 
average varactor capacitance and k is the sensitivity of Cavs to amplitude vari- 
ations given by the partial derivative of the average capacitance with respect 
to amplitude. 

With the aid of (1) and given that the noise voltage is small, it can be easily 
shown that the oscillation frequency can be approximated by 
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where CT is the sum of the fixed and varactor average capacitances and w, is 
the nominal oscillation frequency. 

With the aid of narrowband FM, NBFM, theory, phase noise due to capaci- 
tance modulation is given by 

where JI is first order Bessel's function of the first kind. 

The current source device, is accountable for most of the AM noise in a VCO 
[2]. The switching devices produce pure phase noise. Therefore, the current 
source device is responsible for most of the AM-to-FM noise. 

The noise voltage due to a noise current in in the current source is given by the 
following expression 

Note that the noise current represents the sum of thermal and flicker noise 
currents as they are referred to the output of the current source transistor. 

where Kf is the flicker noise coefficient. The remaining part of the analysis 
presented is the calculation of the sensitivity parameter, k. It can be calculated 
by one of two methods, analytically or numerically as shown earlier. 

6 Tuning and Supply Sensitivity 
The tuning sensitivity of the varactor can be evaluated using the average 
capacitance expression in (19). The result is 
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which is a monotonic function of x,, unlike the noise sensitivity, which 
changes signs at x, = 0. 

Now the tuning sensitivity of the VCO can be predicted accurately as follows: 

Power supply noise is also a source of phase noise in the oscillator. Noise on 
the supply line around the even harmonics of oscillation is responsible for 
phase noise at the output. In a previous work, [4] it was shown how the noise 
filter can remove the noise around the second harmonic. In the presence of 
varactor nonlinearity, low frequency fluctuations on the supply line modulate 
the varactor capacitance and result in FM noise skirts. The noise filter reduces 
the translation gain of low frequency noise to phase noise but cannot stop this 
noise from modulating the varactor. To quantify this effect, we note that the 
average capacitance of the varactor is a function of the voltage difference 
between its terminals. In a tail-biased VCO for example, the varactor is con- 
nected from one side to the supply. Therefore, the power supply noise sensi- 
tivity is opposite of the tuning sensitivity, 

Therefore, phase noise due to low frequency supply fluctuations is given by 

To account for low frequency noise on the control line, the RMS noise power 
in a 1 Hz bandwidth in this equation should be replaced by the sum of the 
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noise power spectral density on the control line and on the supply line since 
they both have the same gain to the output. 

The crossing point corresponds to the null in the noise sensitivity plot as 
shown in the 3-D plot shown in Figure 7. This is because, at this tuning volt- 
age, the change in the amplitude of oscillation does not yield a change in the 
average capacitance as described earlier. Note that the higher the amplitude, 
the lower the noise and tuning sensitivities become. Larger oscillation ampli- 
tudes lead to more averaging of the nonlinear capacitor and hence lower tun- 
ing sensitivity as shown in Figure 8. However, the tuning sensitivity variation 
is also reduced which means that the oscillator tuning sensitivity remains 
almost constant across the tuning range, resulting in a more linear frequency- 
tuning curve. In addition, larger bias current brings the oscillator closer to 
amplitude limiting and AM noise is less effective in perturbing the oscillation 
fi-equency. As a result, the noise sensitivity coefficient is reduced as shown in 
Figure 7. 

FIGURE 7 AM-FM noise sensitivity. 
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7 Measurements and Simulation Results 

The analytical results and physical insights developed so far are validated in 
two different ways: by direct measurement on fabricated integrated circuit 
oscillators and by SpectreRF simulations. The first set of measurements is 
carried out on varactors in a BiCMOS6G 0.35 pm process from STMicroelec- 

FIGURE 8 Tuning sensitivity. 

tronics. NMOS inversion mode varactors are used in an LC oscillator along 
with switched capacitors for discrete tuning. The varactor consists of 64 paral- 
lel NMOS transistors of 5 f l 0 .35~  each. A three bit switched capacitor array 
of a 60 pF unit capacitor implements the switched-tuning network. The total 
fixed capacitance is 1060 fF in parallel with a 13 nH inductor. The supply 
voltage of this tail-biased VCO is 2.5 V. We compare the measured fre- 
quency-tuning curve with analytical predictions. The oscillator is operated in 
the current limited regime, where the amplitude is proportional to tail current. 
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A tail current less than 4 mA guarantees that the supply voltage does not limit 
the amplitude. To verify the dependence of the varactor's effective capaci- 
tance on the oscillation amplitude, the frequency-tuning curve is measured at 
two different amplitudes set by the tail currents. As expected, the two curves 
are different (Figure 9a). The tuning sensitivity lowers with amplitude as the 
oscillation sweeps across a greater portion of the varactor characteristic, aver- 
aging it more. This test oscillator has a noise filter. In the presence of a noise 
filter, the effects of higher harmonics described in [lo] are minimized [3]. 

FIGURE 9 Measured VCO tuning curves versus model. 
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We predict the frequency-tuning curve with the formulas given above by 
approximating the MOS varactor characteristic with a step. In spite of this 
simplification, the prediction lies close to the measurement. The tuning sensi- 
tivity (the slope) predicted by the model is notably accurate. Next, we search 
for the predicted nulls in AM-FM conversion. Low-frequency noise in the 
oscillator's tail current first up-converts into AM sidebands [2], and the varac- 
tor converts AM into FM. We study this effect by simulating the periodic 
transfer function with SpectreRF from low frequencies (1 kHz) in the tail cur- 
rent to the phase noise sidebands in the oscillator output (Figure lob). We 
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compare the simulated transfer function versus the gate overdrive voltage, 
Cff at Ibias= 2.3 rnA with analytical predictions. Although simulation does not 
yield perfect nulls, there is a clear drop in simulated sensitivity at the two 
anticipated bias points. Note that the translation gain in SpectreRF is scaled 
by the signal power and then compared to that predicted by (25). The transla- 
tion gain null at low control voltage is dependent on signal amplitude (current 
and tank quality) while the null at 1.6 V is not. The null at 1.6 V depends only 
on the common-mode voltage on the varactor gate as well as the threshold 
voltage. Note that the discrepancy between SpectreRF simulation results and 
those of the model are higher at low values of V,. This is mainly because the 
hand calculations assume &(Vc) to be always 0.9 V while at low values of Vc, 
bulk effect is less pronounced and &(VC) is smaller. 

The nulls are also verified by measurements. It is difficult to directly measure 
the small signal response simulated in SpectreRF, but we can deduce the pres- 
ence of nulls by superimposing the frequency-tuning characteristics at the 
three different tail currents, Ibias= 2.1, 3, and 4 mA (Figure 10a). Over this 
range of currents, the amplitude is proportional to Ibias Measurements show 
that all three tuning curves intersect at Vc of 0 and 1.6 V. This means that at 
both intersection points the frequency is independent of amplitude, that is, 
AM does not cause FM. The tuning voltage at each intersection point is as 
predicted, which confirms the analysis. 

Finally, we validate the phase noise in an oscillator caused by AM-FM con- 
version in the varactor. This is a difficult experiment because in a practical 
circuit many mechanisms are at work simultaneously to produce phase noise. 
We have shown that in a differential oscillator, FM through the varactor is 
only one of three different mechanisms responsible for the up-conversion of 
low frequency (llj) noise around the carrier [2]. Therefore, for our purposes, 
the required test oscillator is one with a strong varactor (large KAMFM) to 
emphasize AM-FM conversion, while at the same time is designed to sup- 
press the two other mechanisms responsible for up-converting low frequency 
noise. Close-in phase noise will also appear through additive mechanisms, but 
in a differential oscillator this arises from device noise near the oscillation fre- 
quency and its multiple as we showed earlier in the discussion on thermally- 
generated phase noise. Since this additive noise is originated at high frequen- 
cies (multiples of the oscillation frequency), it must be thermal not flicker 
noise. In CMOS, noise originating at low frequencies is immediately dis- 
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cerned by the fact that the slope of its spectrum is 10 dB/decade higher than 
that for white noise. This makes it easy to discriminate between phase noise 
due to additive mechanisms and due to AM-FM conversion; the slope of the 
former is 20 dB/decade, whereas it is 30 dB/decade for the latter. 

The test oscillator is fabricated in 0.35pm CMOS with STMicroelectronics' 
BiCMOS6M process. To suppress up-converted flicker noise originating in 
the differential pair, the parasitic capacitance at the common mode point is 
lowered by laying out the current source FET as a group of annular gates; this 
lowers the capacitance of the drain junction, which lies inside the annulus. 
The differential pair FETs are themselves of small size, 15 pd0.35 pm. 
While this raises the input-referred flicker noise of the FETs, their smaller 
capacitance more than compensates by lowering the up-conversion gain [2]. 

Simulations confirm that the dominant mechanism for flicker noise up-con- 
version in this VCO is varactor nonlinearity. The tank inductance is 17 nH 
with a Q of 8. The oscillation frequency ranges from 1040-1 140 MHz over the 
full tuning range from 0 to 2.5 V. Using the formulas given by Rae1 and Abidi 
[2], phase noise at 3 MHz offset that arises from white noise only is predicted 
to be -142 dBc/Hz; this is verified by direct measurement. By straight for- 
ward extrapolation, we can say that at 10 kHz offset white noise accounts for 
a phase noise of -91 dBc/Hz. A higher phase noise than this must then be due 
to up-converted llf noise. Figure 11 shows the measured phase noise at 10 
kHz offset across the full tuning range versus the prediction of (1 8). At a tun- 
ing voltage of VDD - VT, which is 1.6 V in this circuit, the measured phase 
noise falls to the floor imposed by white noise. The analytical prediction is 
based on flicker noise in the bias current in (19) and the well-known expres- 
sion for the spectral density of MOS flicker noise 

where we use Kf = 1.58 x K Model accuracy is improved by including 
the variations of VT due to changing V,. The control voltage is taken from a 
battery, which has very low noise; thus the main source of noise is the tail cur- 
rent. This mechanism of phase noise can vary by up to 10 dB at low offset fre- 
quencies if the varactor is nonlinear; that is, its C-V curve departs from a 
straight line. Linearity may be improved by connecting a linear capacitor 
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either in series or in parallel with the varactor. Series connection achieves lin- 
earization at the expense of tuning range. With the parallel connection the loss 
in tuning range can be regained using a mixed signal control over the VCO. 

8 Discussion 

AM-to-FM noise conversion is an inevitable consequence of the nonlinear 
varactor characteristics. Different varactors show different AM-to-FM noise 
conversion coefficients. PN junction varactors have the smoothest C-V curve 
amongst the three most common varactors and therefore generate the least 
amount of AM-to-FM conversion. Junction capacitors of the switching tran- 
sistors as well as any other nonlinear capacitances across the tank convert AM 
noise into FM noise. However, the dominant nonlinear capacitance is typi- 
cally that of the tuning varactor. The noise conversion can be mitigated 
through linearization of the varactor characteristic. This can be done using 
switched capacitor arrays for discrete tuning to reduce the contribution of the 
nonlinear capacitor to the total tank capacitance [13]. Another alternative is to 
add a linear capacitor in series with the varactor. The parallel solution requires 
mixed signal control of the VCO whereas the series solution comes at the 
expense of tunability. It is worth mentioning that adding a series linear capac- 
itor is typical for PN junction varactors to lower the signal swing seen by the 
PN junction and avoid forward bias. One other effective method is noise fil- 
tering in LC oscillators [3]. It is important to recognize that the presence of 
the noise filter allows the use of extremely large current source devices that 
have a channel length much larger than the technology's feature size. The 
large size current source has less flicker noise and therefore creates less AM 
noise in the first place. Noise filtering has proven useful for the total elimina- 
tion of flicker noise in LC oscillators [4]. 

Appendix A 

The basic premise behind finding an average capacitance is to use small sig- 
nal capacitance simulations, which are performed on a driven capacitor to 
approximate the behavior of the capacitor in an autonomous oscillator. There- 
fore, the characterization of the capacitor to obtain the average capacitance 
should be frequency independent. The way to do that is to assume quasi-sinu- 



FIGURE 10 Measured VCO tuning curves meet at nulls of the AM-FM conversion 
(top). PXFgain at I kHz from the tail current source to phase noise (bottom). 

0 0.5 1 1.5 2 2.5 3 
Control Votlage (V) 

0 0.5 1 1.5 2 2.5 3 

Control Voltage (V) 



Chapter 8 The Role of the Varactor 

FIGURE 11 Measured and analyticalprediction ofphase noise at I0 kHz offset. 

soidal operation of the oscillator. What this really means is that we assume 
most of the nonlinearity of the circuit comes from the varactor not from the 
negative resistance. This is not so true for low quality oscillators. However, 
when the oscillator is of reasonable quality, which is currently feasible in filly 
integrated oscillators, this approximation holds. The integral 

a 
V) 

can be proven proportional to the average capacitance calculated in Section 1. 
With the quasi-sinusoidal assumption, the voltage V can be expressed as 

P 
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These integrals are the exact definitions of the coefficients of the Fourier 
series of the capacitance, 

From which is follows that the average capacitance is given by 

Appendix B 
In analyzing large signal behavior of nonlinear capacitors, the question 
always arises about the definition of capacitance. 

The definition of capacitance is 

First consider a nonlinear capacitor subjected to a large single tone voltage. 
This is not exactly the case of a varactor in an LC oscillator because of the 
presence of noise. For the moment, we shall neglect noise and consider only 
the large oscillation signal. 

The charge on the capacitor is described in general by a nonlinear function: 
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Using the first three terms of the Taylor series expansion ofJ; we can approx- 
imate Q with 

Assuming a single tone sinusoidal voltage, V  is given by 

V  = Asin(ot)  . (43) 

The varactor current is given as: 

Now evaluate the following expression: 

This is identical to (44). This result can be shown to apply to any order of the 
Taylor series expansion of J This conforms to the capacitance definition 
adopted in (6). The former analysis shows that the instantaneous capacitance 
of an arbitrarily nonlinear capacitor driven by a noise-free single tone is given 
by: 

Next consider small signal perturbation is added to the varactor voltage K We 
use upper-case V  for the large signal and lower-case v for the perturbation. 
The small v can model a noise disturbance to the periodic steady state varactor 
voltage. 

Again, the charge on the capacitor is given by: 

Q(t) + 4(t) = f (  V +  v) 

Using Taylor approximation leads to: 

Using (41) leads to 
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where 

and 

. d dC(t) 
I c  = -y (t)  = ~(t)dv(t) + v(t)- 

d t d t d t 

Which is different from (6). 

The small noise perturbation voltage in (51) produces a perturbation charge 
that is linearly proportional to v. This is what can be expected from a small 
signal approximation around a periodic steady state solution. 

Comparing (5 1) to (6), it turns out that our previous analysis missed the term 
v(t) dC(t)ldt. This term may potentially up-convert some low-frequency noise 
and alter the results we obtained earlier. Note that this extra term appears only 
in the presence of a small perturbation signal v(t) added to the large signal 
V(t> 

The question is whether this is the case under investigation for AM-FM noise 
conversion in varactors. To answer this question, take a closer look at (51). 
The small signal perturbation v(t) represents flicker noise and hence it has 
energy at low frequencies only. This is also the case for its derivative dv(t)ldt. 
The terms C(t) and dC(t)ldt have energy around 20,, 4o,, ..., 2no,. The mix- 
ing of these terms in (51) cannot result in noise around the fundamental. To 
the contrary, the model in (6) is based on the mixing of C(t) with V(t) which is 
the large signal oscillation voltage. V(t) has energy around o,, 300, ..., (2n- 
l)oo. Therefore, V(t) is modulated in amplitude by flicker noise, the average 
capacitance can be modulated as shown in (23) and (24). 

The effective capacitance of the varactor is calculated with only the VCO 
large signal applied to the varactor. In presence of flicker noise the situation 
will not change. Flicker noise is very slow compared to the oscillation fre- 
quency and the oscillator has an ample time to stabilize its amplitude before a 
new sample of flicker noise is applied. Note that the model used to calculate 
frequency fluctuations relies entirely of the concept of average capacitance 
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perturbation which is only valid if the perturbation is much slower than the 
oscillator dynamics. 

Appendix C 

In the analysis of circuits involving nonlinear capacitors, there is always con- 
fusion about whether to use the capacitance definition in (46) or the following 
definition: 

The reader is cautioned here that V in the above expression is the large signal 
voltage not the noise perturbation. Therefore (52) is not the same as (49). It 
follows that the capacitive current is given by: 

We now express the capacitance C(t) in terms of its Fourier series harmonic 
content 

Note that we use here the symbol D instead of C to describe the harmonics so 
that we don't confuse them with those used in the original analysis (see (8)). 

The reader can carry the analysis as before by substituting from (54) above 
into (53) and equate the fundamental of the capacitive current with that of the 
inductive current. The resulting expression for the effective capacitance is 
given as follows: t 

Ceff = Do + D2/2 (55) 

Comparing (55) with (lo), the two expressions for the effective capacitance 
seem very similar except for the plus (+) sign instead of the minus (-) sign. 

The expression in (55) was derived by Z. Tang who substituted (54) into (53) but ended 
with the wrong expression CeR= C,, + C2/2 instead of (55). [I41 

I 200 
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We now show that D2 = -C2 hence prove the two approaches identical. 

Let's start by the area enclosed by the i-v locus of the capacitor which is given 
by: 

Again if we make the substitution from (54) and carry out the analysis 
as before, it can be shown that the area is given by: 

where A is the area enclosed by the i-v locus 

Compare (57) above with . The two right-hand sides have to be identical. 
It follows that 

Hence, the two analyses are identical. Moreover, the expression for the effec- 
tive capacitance is identical using either definitions of the capacitance. 

Finally, we answer the following question: why choose the capacitance defi- 
nition in (40) over that in (52)? 

The choice is based on the way varactors are characterized experimentally. 
Capacitance is typically measured by applying a small signal voltage around a 
constant bias voltage. By varying the bias current, a curve of capacitance ver- 
sus bias voltage can be obtained. This conforms to the definition of capaci- 
tance given in (40). Therefore the only way to map the vendor-provided 
measurements to a mathematical model is that used in Section 4. 
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