

Springer Series in

ADVANCED MICROELECTRONICS 17

Springer Series in

ADVANCED MICROELECTRONICS

Series Editors: K. Itoh T. Lee T. Sakurai W.M.C. Sansen D. Schmitt-Landsiedel

The Springer Series in Advanced Microelectronics provides systematic information on
all the topics relevant for the design, processing, and manufacturing of microelectronic
devices. The books, each prepared by leading researchers or engineers in their fields,
cover the basic and advanced aspects of topics such as wafer processing, materials,
device design, device technologies, circuit design, VLSI implementation, and subsys-
tem technology. The series forms a bridge between physics and engineering and the
volumes will appeal to practicing engineers as well as research scientists.

1 Cellular Neural Networks
Chaos, Complexity
and VLSI Processing
By G. Manganaro, P. Arena,
and L. Fortuna

2 Technology of Integrated Circuits
By D. Widmann, H. Mader,
and H. Friedrich

3 Ferroelectric Memories
By J.F. Scott

4 Microwave Resonators and Filters
for Wireless Communication
Theory, Design and Application
By M. Makimoto and S. Yamashita

5 VLSI Memory Chip Design
By K. Itoh

6 Smart Power ICs
Technologies and Applications
Ed. by B. Murari, R. Bertotti,
and G.A. Vignola

7 Noise in Semiconductor Devices
Modeling and Simulation
By F. Bonani and G. Ghione

8 Logic Synthesis for Asynchronous
Controllers and Interfaces
Chaos, Complexity and
VLSI Processing
By J. Cortadella, M. Kishinevsky,
A. Kondratyev, L. Lavagno,
and A. Yakovlev

9 Low Dielectric Constant Materials
for IC Applications
Ed. by P.S. Ho, J. Leu, W.W. Lee

10 Lock-in Thermography
Basics and Use
for Functional Diagnostics
of Electronic Components
By O. Breitenstein
and M. Langenkamp

11 High Frequency Bipolar Transistors
Physics, Modelling, Applications
By M. Reisch

12 Current Sense Amplifiers
for Embedded SRAM
in High-Performance
System-on-a-Chip Designs
By B. Wicht

13 Silicon Optoelectronic
Integrated Circuits
By H. Zimmerman

14 Integrated CMOS Circuits
for Optical Communications
By M. Ingels and M. Steyaert

16 High Dielectric Constant Materials
VLSI MOSFET Applications
Ed. by H.R. Huff and D.C. Gilmer

Series homepage – springeronline.com

M. Sonza Reorda Z. Peng M. Violante (Eds.)

System-level Test
and Validation of
Hardware/Software
Systems

With 55 Figures

Professor Matteo Sonza Reorda
Politecnico di Torino
Dipartimento di Automatica e

Informatica
Corso Duca degli Abruzzi 24
10129 Torino
Italy

Professor Zebo Peng
Department of Computer and

Information Science
Linköping University
SE-581 83 Linköping
Sweden

Dr. Massimo Violante
Politecnico di Torino
Dipartimento di Automatica

e Informatica
Corso Duca degli Abruzzi 24
10129 Torino
Italy

Series Editors

Dr. Kiyoo Itoh
Hitachi Ltd., Central Research Laboratory, 1-280 Higashi-Koigakubo
Kokubunji-shi, Tokyo 185-8601, Japan

Professor Thomas Lee
Stanford University, Department of Electrical Engineering, 420 Via Palou Mall, CIS-205
Stanford, CA 94305-4070, USA

Professor Takayasu Sakurai
Center for Collaborative Research, University of Tokyo, 7-22-1 Roppongi
Minato-ku, Tokyo 106-8558, Japan

Professor Willy M. C. Sansen
Katholeike Universiteit Leuven, ESAT-MICAS, Kasteelpark Arenberg 10
3001 Leuven, Belgium

Professor Doris Schmitt-Landsiedel
Technische Universität München, Lehrstuhl für Technische Elektronik
Theresienstrasse 90, Gebäude N3, 80290 München, Germany

British Library Cataloguing in Publication Data
System-level test and validation of hardware/software

systems. — (Springer series in advanced microelectronics ; 17)
1. System design 2. Computer systems — Testing 3. Computer
software — Testing
I. Sonza Reorda, Matteo II. Peng, Zebo III. Violante, Massimo
004.2′1

ISBN 1852338997

Library of Congress Cataloging-in-Publication Data
System-level test and validation of hardware/software systems / Matteo Sonza Reorda,

Zebo Peng, Massimo Violante.
p. cm. — (Springer series in advanced microelectronics, ISSN 1437-0387 ; 17)

Includes bibliographical references and index.
ISBN 1-85233-899-7
1. Computer systems—Testing. 2. Computer programs—Testing. I. Sonza Reorda,

Matteo. II. Peng, Zebo. III. Violante, Massimo. IV. Series.
QA76.76.S64S96 2005
004.2′4—dc24 2004057798

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmit-
ted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency.
Enquiries concerning reproduction outside those terms should be sent to the publishers.

ISBN 1-85233-899-7

Advanced Microelectronics Series ISSN 1437-0387
springeronline.com

© Springer-Verlag London Limited 2005

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information con-
tained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be
made.

Typesetting: Camera-ready by editors
Printed in the United States of America
69/3830-543210 Printed on acid-free paper SPIN 10983058

Table of Contents

Table of Figures ... ix

List of Contributors ... xi

1 Introduction

 Z. Peng, M. Sonza Reorda and M. Violante ..1

 Acknowledgments...3

2 Modeling Permanent Faults

 J.P. Teixeira ..5

 2.1 Abstract ...5

 2.2 Introduction...5

 2.3 Definitions...8

 2.4 High-level Quality Metrics..9

 2.5 System and Register-transfer-level Fault Models for Permanent Faults .12

 2.5.1 Observability-based Code Coverage Metrics................................15

 2.5.2 Validation Vector Grade ...15

 2.5.3 Implicit Functionality, Multiple Branch..17

 2.6 Conclusions ...22

 Acknowledgments...23

 References...23

3 Test Generation: A Symbolic Approach

 F. Fummi and G. Pravadelli ...27

 3.1 Abstract ...27

 3.2 Introduction...27

 3.3 Binary Decision Diagrams ..29

 3.4 Methodology ...30

 3.4.1 The Random-based Approach...31

 3.4.2 The Symbolic Approach ...31

 3.4.3 Hardware Design Language to Binary Decision Diagram Transla-

tion ..32

 3.4.4 Functional Vector Generation for a Single Process32

 3.4.5 Functional Vector Generation for Interconnected Processes33

 3.5 The Testing Framework ..33

 3.5.1 Fault Model Definition..35

 3.5.2 Automatic Test Pattern Generation Engines41

 3.6 Experimental Results ..43

 3.7 Concluding Remarks ...44

 Acknowledgments...45

 References...45

vi Table of Contents

4 Test Generation: A Heuristic Approach

 O. Goloubeva, M. Sonza Reorda and M. Violante ..47

 4.1 Abstract ...47

 4.2 Introduction...47

 4.3 Assumptions..50

 4.4 High-level Test Generation ...50

 4.4.1 High-level Fault Models ...50

 4.4.2 High-level Test Generation...51

 4.5 Testing Hardware/Software Systems ..52

 4.5.1 testgen Results ..54

 4.5.2 Results Starting from Random Vectors...55

 4.5.3 Results Starting from Designer Vectors..55

 4.5.4 Result Discussion..56

 4.6 Validating Application-specific Processors ..56

 4.6.1 Design Flow..58

 4.6.2 Experimental Results ..60

 4.6.3 Results of the Processor Customization..61

 4.6.4 Results of the Test Vector Generation ..61

 4.7 Conclusions...63

 References...64

5 Test Generation: A Hierarchical Approach

 G. Jervan, R. Ubar, Z. Peng and P. Eles ..67

 5.1 Abstract ...67

 5.2 Introduction...67

 5.3 Modeling with Decision Diagrams ...68

 5.3.1 State of the Art ..68

 5.3.2 Modeling Digital Systems by Binary Decision Diagrams69

 5.3.3 Modeling with a Single Decision Diagram on Higher Levels71

 5.4 Hierarchical Test Generation with Decision Diagrams...........................73

 5.4.1 Scanning Test..74

 5.4.2 Conformity Test ..78

 5.5 Conclusions...80

 References...81

6 Test Program Generation from High-level Microprocessor Descriptions

 E. Sánchez, M. Sonza Reorda and G. Squillero ..83

 6.1 Abstract ...83

 6.2 Introduction...83

 6.3 Microprocessor Test-program Generation ..85

 6.4 Methodology Description..87

 6.4.1 Architectural Models ..89

 6.4.2 Register-transfer-level Models..90

 6.5 Case Study ..94

 6.5.1 Processor Description ...94

 6.5.2 Automatic Tool Description..96

 Table of Contents vii

 6.5.3 Experimental Setup ...98

 6.6 Experimental Results ..99

 6.6.1 High-level Metrics Comparison..103

 6.7 Conclusions ...104

 Acknowledgments...105

 References...105

7 Tackling Concurrency and Timing Problems

 I.G. Harris...107

 7.1 Abstract ...107

 7.2 Introduction...107

 7.3 Synchronization Techniques ...109

 7.4 A Class of Synchronization Errors..111

 7.5 A Fault Model for Synchronization Errors..113

 7.5.1 Detection of Synchronization Faults ...114

 7.5.2 Fault Coverage Computation ..115

 7.6 Experimental Results ..116

 7.7 Conclusions ...118

 Acknowledgments...118

 References...118

8 An Approach to System-level Design for Test

 G. Jervan, R. Ubar, Z. Peng and P. Eles ..121

 8.1 Abstract ...121

 8.2 Introduction...121

 8.3 Hybrid Built-in Self-test..123

 8.3.1 Hybrid Built-in Self-test Cost Optimization126

 8.4 Hybrid Built-in Self-test for Multi-core Systems..................................129

 8.4.1 Built-in Self-test Time Minimization for Systems with Independ-

ent Built-in Self-test Resources ..130

 8.4.2 Built-in Self-test Time Minimization for Systems with Test Pattern

 Broadcasting ...139

 8.5 Conclusions ...146

 References...147

9 System-level Dependability Analysis

 A. Bobbio, D. Codetta Raiteri, M. De Pierro and G. Francheschinis...........151

 9.1 Abstract ...151

 9.2 Introduction...151

 9.3 Introduction to Fault Trees..153

 9.3.1 Fault Tree Example...154

 9.3.2 Modeling Dependencies in the Failure Mode Using

 Dynamic Gates..155

 9.3.3 Giving a Compact Representation of Symmetric Systems

 through Parameterization ..156

 9.3.4 Modeling the Repair Process Through the Repair Box...............158

viii Table of Contents

 9.4 Reliability Analysis...159

 9.4.1 Qualitative Analysis..159

 9.4.2 Quantitative Analysis..160

 9.4.3 Importance Measures ..161

 9.5 Qualitative and Quantitative Analysis of the Examples........................163

 9.5.1 Minimal Cut-sets Detection ..163

 9.5.2 Quantitative Analysis..164

 9.6 Conclusions...171

 Acknowledgments...172

 References...172

Index ..175

Table of Figures

Figure 2.1. Test objectives ... 7

Figure 2.2. Representativeness of RTL, gate-level LSA faults and physical defects

.. 18

Figure 2.3. Typical RTL fault detectability profile .. 21

Figure 2.4. Typical DC improvement, using IFMB... 22

Figure 3.1. HTD and ETD errors for a GA-based and a BDD-based ATPG 29

Figure 3.2. A BDD for function 42413214321),,,(vvvvvvvvvvvf ++= 30

Figure 3.3. Laerte++ setup flow... 34

Figure 3.4. Laerte++ testbench .. 35

Figure 3.5. Fault hierarchy... 36

Figure 3.6. TransientFault class definition... 36

Figure 3.7. Saboteur VHDL function for bit operands... 39

Figure 3.9. Saboteur VHDL function for integer operands.................................. 39

Figure 3.8. Saboteur VHDL function for bit vector operands.............................. 40

Figure 3.10. Fault-free and generated faulty VHDL code 40

Figure 3.11. Sequence hierarchy.. 41

Figure 3.12. A new sequence class definition... 43

Figure 4.1. The pseudo-code of the HLTG algorithm.. 52

Figure 4.2. Simulation of testgen vectors ... 54

Figure 4.3. Simulation of HLTG vectors ... 54

Figure 4.4. The proposed processor customization and validation flow.............. 60

Figure 5.1. A gate-level circuit and its corresponding SSBDD 71

Figure 5.2. Representing a data path by a DD ... 72

Figure 5.3. DIFFEQ benchmark with testability figures for every individual FU 77

Figure 5.4. Conformity test example.. 79

Figure 6.1. Qualitative description of the methodology....................................... 88

Figure 6.2. Architectural models stage .. 90

Figure 6.3. RT model stage.. 91

Figure 6.4. PLASMA block diagram ... 95

Figure 6.5. µGP general architecture ... 97

Figure 7.1. Synchronization in a producer/consumer example 112

Figure 7.2. Two types of MTE fault .. 114

Figure 7.3. AAL1 MTE fault coverage distribution... 118

Figure 7.4. AAL MTE coverage without the rec_seq signal.............................. 118

Figure 8.1. Cost calculation for hybrid BIST (under 100% assumption)........... 124

Figure 8.2. Cost calculation for hybrid BIST... 125

Figure 8.3. An example of a core-based system, with independent BIST resources

.. 130

Figure 8.4. Ad hoc test schedule for hybrid BIST of the core-based system

example... 131

Figure 8.5. Estimation of the length of the deterministic test sequence............. 134

x Table of Figures

Figure 8.6. Estimation of the length of the deterministic test sequence (core

s1423) ... 135

Figure 8.7. Cost curves for a given core Ck ... 136

Figure 8.8. Minimization of the test length.. 137

Figure 8.9. The final test solution for the system S2 (MLIMIT = 5500) 138

Figure 8.11. A core-based system example with the proposed test architecture 139

Figure 8.12. Hybrid test set example ... 141

Figure 8.13. Iterative cost estimation... 145

Figure 8.14. Final hybrid test structure .. 146

Figure 8.15. Comparison of estimated and real test costs 147

Figure 9.1. The FT for the storage system with hot spare memories 154

Figure 9.2. State-space representation of the dependency of spare S on main

component M .. 156

Figure 9.3. The DFT for the system with warm spares.................................... 157

Figure 9.4. (a) DPFT and (b) RDPFT for the system with warm spares............ 158

Figure 9.5. The MIF values for the components of the system with hot spares. 166

Figure 9.6. The SWN corresponding to the dynamic module whose root is the

event SET ... 167

Figure 9.7. The unreliability values for all the system configurations............... 170

List of Contributors

Bobbio, A.

Dipartimento di Informatica, Università del Piemonte Orientale

Spalto Marengo 33, 15100, Alessandria

Italy

Codetta Raiteri, D.

Dipartimento di Informatica, Università del Piemonte Orientale

Spalto Marengo 33, 15100, Alessandria

Italy

De Pierro, M.

Dipartimento di Informatica, Università di Torino

Corso Svizzera 185, 10149, Torino

Italy

Eles, P.

Dept. of Computer and Information Science, Linköping University

SE-581 83 Linköping

Sweden

Franceschinis, G.

Dipartimento di Informatica, Università del Piemonte Orientale

Spalto Marengo 33, 15100, Alessandria

Italy

Fummi, F.

Dipartimento di Informatica, Università di Verona

Via dell'Artigliere 8, 37129, Verona

Italy

Goloubeva, O.

Dipartimento di Automatica e Informatica, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129, Torino

Italy

Harris, I. G.

Dept. of Information and Computer Science, University of California Irvine

442 Computer Science Building, Irvine, CA 92697-3425

USA

xii List of Contributors

Jervan, G.

Dept. of Computer and Information Science, Linköping University

SE-581 83 Linköping

Sweden

Peng, Z.

Dept. of Computer and Information Science, Linköping University

SE-581 83 Linköping

Sweden

Pravadelli, G.

Dipartimento di Informatica, Università di Verona

Via dell'Artigliere 8, 37129, Verona

Italy

Sánchez, E.

Dipartimento di Automatica e Informatica, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129, Torino

Italy

Sonza Reorda, M.

Dipartimento di Automatica e Informatica, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129, Torino

Italy

Squillero, G.

Dipartimento di Automatica e Informatica, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129, Torino

Italy

Teixeira, J. P.

Instituto Superior Técnico, Technical University of Lisbon

Rua Alves Redol 9, 3º,1000-029, Lisboa

Portugal

Ubar, R.

Tallinn Technical University

Ehitajate tee 5, EE0026, Tallinn

Estonia

Violante, M.

Dipartimento di Automatica e Informatica, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129, Torino

Italy

1 Introduction

Z. Peng, M. Sonza Reorda, M. Violante

Linköping University, Linköping, Sweden

Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy

When looking at the evolution of the electronic circuit’s design process in the past,

one can clearly see a trend going from lower to higher abstraction levels: design-

ers have been focusing their main efforts on designs at higher and higher levels of

abstraction over the years. In this way designers can manage the always-growing

size and complexity of circuits and systems, and leave the handling of details at

the lower levels to computer-aided design tools.

This trend has been particularly visible in recent years, due to the emergence

of new manufacturing technologies that allow the integration of entire systems on

single chips (systems-on-chip, or SOCs). The possibility of manufacturing com-

plex SOCs has paved the road for unprecedented levels of integration, and the

SOC technology has entailed many challenges, in particular to the designers.

To cope with the design challenge, tools and techniques addressing designs at

the system level of abstraction have been developed and used in the industry.

Many SOC implementation details can thus be neglected during the design proc-

ess; designers can, therefore, focus their efforts on the definition of the system’s

behavior that best fits with the user needs while analyzing the cost/benefit trade-

off of several different architectures.

Besides the design practice, the advent of SOCs is also reshaping the way vali-

dation and test activities are handled, which have begun to migrate from the regis-

ter-transfer or gate levels towards the system level. Unfortunately, the current

status is that system-level design tools do not support test and validation, although

some research efforts have already addressed these issues.

The introduction of system-level design tools has indeed unified the process of

specification of the different modules composing SOCs. When their behavior has

been finalized, designers can decide which modules will be implemented in soft-

ware and which ones in hardware, depending on the design’s goals and con-

straints. In this scenario, provided that suitable techniques are available to deal

with system-level specifications, designers have the possibility of addressing vali-

dation and test activities of both hardware and software almost independently

from the final system implementation. Is this reasonable? Are the current obstacles

only connected to the lack of deep understanding of what system-level descrip-

tions can provide, or is there hope for really starting the test and validation process

from system-level descriptions? The European Union funded a research project

2 Z. Peng, M. Sonza Reorda and M. Violante

named COTEST (Testability Support in a Co-design Environment) with the ex-

plicit goal of providing a first answer to these questions.

This book gathers some of the most important results produced in the frame-

work of COTEST, as well as an in-depth overview of the state of the art about sys-

tem-level validation and testing techniques written by several experts in the field.

It covers several important issues of system-level test and validation, including

bug/defects modeling, stimuli generation for validation/test purposes (including

timing errors) and design for testability.

The second chapter of this book, authored by J.P. Teixeira, aims firstly at cor-

relating high-level fault models with lower level ones, and at investigating the

possibility of developing test patterns and strategies without detailed information

about the structure of the final system. Based on the results, new techniques for

developing test patterns are also proposed.

The third chapter, by F. Fummi and G. Pravadelli, assumes that a functional

fault model has been selected, and that some input test pattern targeting it must be

generated out of a high-level description. Symbolic techniques are combined with

random ones and integrated in a high-level environment for test and validation.

The chapter by O. Goloubeva, M. Sonza Reorda, and M. Violante explores the

feasibility of an approach where test vectors are generated out of a system-level

description, before the partitioning between software and hardware modules is

performed. Therefore, test generation is completely independent of the implemen-

tation of each module, and resulting vectors can be exploited either to test the

hardware components, or to validate software code.

The fifth chapter, by G. Jervan et al., proposes some techniques that combine

high-level information with low-level information in order to produce optimal test

vectors. A hierarchical approach is exploited, which leads to high fault-coverage

figures with minimal computational efforts. The method is based on a flexible rep-

resentation of the system, based on decision diagrams.

The sixth chapter, authored by E. Sánchez et al., describes the very specific

problem of testing processor cores starting from high-level descriptions, and re-

ports an analysis of several high-level testing metrics. The authors also show how

an evolutionary-computation paradigm can be applied successfully to the purpose

of testing complex processors.

The seventh chapter, by I.G. Harris, focuses on the very important issue of

tackling with concurrency and timing problems. The author overviews the main

inter-process synchronization mechanisms and proposes a metric that can measure

the effectiveness of a test suite in detecting possible errors in their implementa-

tion.

The subsequent chapter, by G. Jervan et al, covers the last frontier in system-

level testing, i.e., the issue of taking care of test constraints and introducing design

for testability already during the system-level design process. In particular, it dis-

cusses a technique to combine deterministic and random patterns in a hybrid BIST

approach and how to select appropriate hybrid BIST architecture for a given de-

sign.

The final chapter by A. Bobbio et al. gives an insight about formal techniques

that can be exploited for analyzing complex systems. In this chapter most of the

 Introduction 3

details of system components are neglected, and only a few parameters are used to

characterize them. The authors show how these parameters can be exploited effec-

tively for validating the dependability property of the systems studied.

It is our belief that this book represents a good overview of existing system-

level test and validation techniques, and we hope that its publication will boost

new research activities in the field.

Acknowledgments

We would like to thank the European Union, which supported most of the work

this book is based on through the COTEST project, which has been carried out

under the framework of the IST Information Society Technologies FET Open

Programme, VI.1.1 Future and Emerging Technologies.

2 Modeling Permanent Faults

J. P. Teixeira

IST / INESC-ID, Lisboa, Portugal

2.1 Abstract

Test and validation of the hardware part of a hardware/software (HW/SW) system

is a complex problem. Design for Testability (DfT), basically introduced at struc-

tural level, became mandatory to constrain design quality and costs. However, as

product complexity increases, the test process (including test planning, DfT and

test preparation) needs to be concurrently carried out with the design process, as

early as possible during the top-down phase, starting from system-level descrip-

tions. How can we, prior to the structural synthesis of the physical design, estimate

and improve system testability, as well as perform test generation? The answer to

this question starts with high-level modeling of permanent faults and its correla-

tion with low-level defect modeling. Hence, this chapter addresses this problem,

and presents some valuable solutions to guide high-quality test generation, based

on high-level modeling of permanent faults.

2.2 Introduction

Test and validation of the hardware part of a hardware/software (HW/SW) system

is a complex problem. Assuming that the design process leads to a given HW/SW

partition, and to a target hardware architecture, with a high-level behavioral de-

scription, design validation becomes mandatory. Is the high-level description ac-

curately representing all the customer’s functionality? Are customer’s specifica-

tions met? Simulation is used extensively to verify the functional correctness of

hardware designs. Functional tests are used for this purpose. However, unlike

formal verification, functional simulation is always incomplete. Hence, coverage

metrics have been devised to ascertain the extent to which a given functional test

covers system functionality [10]. Within the design validation process, often diag-

nosis and design debug are required.

System-level behavioral descriptions may use software-based techniques, such

as Object-Oriented Modeling techniques and languages such as Unified Modeling

Language [2,8], or more hardware-oriented techniques and Hardware Design Lan-

guages (HDLs), such as SystemC [23], VHDL or Verilog. Nevertheless, sooner or

6 J.P. Teixeira

later a platform level for the hardware design is reached – Register-Transfer Level

(RTL). The synthesis process usually starts from this level, transforming a behav-

ioral into a structural description, mapped into a target library of primitive ele-

ments, which can be implemented (and interconnected) in a semiconductor device.

Hence, a hierarchical set of description levels – from system down to physical

(layout) level – is built, the design being progressively detailed, verified, detailed

again and checked for correctness. This top-down approach is followed by a bot-

tom-up verification phase, in which the compliance of the physical design to the

desired functionality and specifications is ascertained. Such verification is first

carried out in the design environment, by simulation, and later on through proto-

type validation, by physical test, after the first silicon is manufactured. Under-

standably, RTL is a kernel level in the design process, from behavioral into struc-

tural implementation, from high-level into low-level design.

When structural synthesis is performed, often testability is poor. Hence, DfT,

basically introduced for digital systems at structural level, becomes mandatory to

boost design quality and constrain costs. Structural reconfiguration, by means of

well-known techniques, such as scan and Built-In Self-Test (BIST) [4,33], is in-

troduced. Automatic Test Pattern Generation (ATPG) is performed (when deter-

ministic vectors are required), to define a high-quality structural test. Logic-level

fault models, like the classic single Line Stuck-At (LSA) fault model [9], are used

to run fault simulation. The quality of the derived test pattern is usually measured

by the Fault Coverage (FC) metrics, i.e., the percentage of listed faults detected

by the test pattern.

Performing testability analysis and improvement only at structural level is,

however, too late and too expensive. Decisions at earlier design crossroads, at

higher levels of abstraction, should have been made to ease the test process and

increase the final product’s quality. In fact, as product complexity increases, the

test process (including test planning, DfT and test preparation) needs to be concur-

rently carried out with the design process, as early as possible during the top-down

phase. How can we, prior to the structural synthesis of the physical design, esti-

mate and improve system testability, as well as perform useful test generation?

Test generation is guided by test objectives (Figure 2.1). At higher levels of ab-

straction, functional tests are required for design validation. In order to constrain

the costs of functional tests, usually some DfT is introduced. At this level, DfT is

inserted to ease system partitioning in coherent and loosely connected modules,

and to allow their accessibility. Product validation requires a more thorough test.

In fact, the physical structure integrity of each manufactured copy of the design

needs to be checked. This requires a structural test. Certain applications, namely

highly dependable or safety-critical ones, require lifetime test, i.e., the ability to

test the component or system in the field. Lifetime test also requires a structural

test.

Functional tests are usually of limited interest for later production or lifetime

test. Could high-level test generation be useful to build functional test patterns that

could be reused for such purposes? Usually, hardware Design & Test (D&T) en-

gineers are very skeptical about test preparation and DfT prior to structural syn-

thesis. After all, how can we generate a test to uncover faults at a structure yet to

 Modeling Permanent Faults 7

be known? Can we perform test generation that may be independent from the

structural implementation? In fact, how useful can a functional test be to achieve

100% (structural) fault coverage?

Although such skepticism has its arguments (and plain experimental data), it is

relevant to consider the cost issue, as far as test preparation is concerned. Design

reuse [18] has been identified as a key concept to fight the battle of design produc-

tivity, and to lower design costs. If test reuse could also be feasible, it would cer-

tainly be a significant added value to enhance test productivity and lower its costs.

Hence, pushing the test process up-stream, to higher levels of abstraction (and ear-

lier design phases), has been a driving force in current test research efforts. This

chapter focuses on analyzing current trends on modeling PFs using higher levels

of system description, to enable design debug, high-level DfT and to guide high-

level TPG in such a way that test reuse for production or lifetime testing of manu-

factured hardware parts can be performed.

Behavioral

Design validation /
debug

Structural

Production test

Lifetime test

L
o

g
ic

 l
e

v
e

l
S

y
s
te

m
 /

 R
T

 l
e

v
e

l

Completness?

Functional
test

Structural
test

Reuse?

Effectiveness?

Figure 2.1. Test objectives

Modeling PFs to achieve this goal must address two questions:

• What fault models should be used, to generate test patterns, which may be use-

ful for design validation and for structural testing?

• How can we define Quality Metrics (QMs) to ascertain the test development

quality, at RTL, prior to physical synthesis?

This chapter is organized as follows. In Section 2.3, the underlying concepts

and their definitions are provided. Section 2.4 identifies the relevant high-level

QMs to ascertain the usefulness of a given test solution, focusing on the key role

of Test Effectiveness (TE) (defined in Section 2.3). In Section 2.5, a review of the

system-level and RTL fault models available is performed, in order to identify

their usefulness and limitations. Finally, Section 2.6 summarizes the main conclu-

sions of this chapter.

8 J.P. Teixeira

2.3 Definitions

In the context of this work, the following definitions are assumed:

• Time-Invariant System – a HW/SW system which, under specified environ-

mental conditions, always provides the same response Y(X,t) when activated by

a specific sequence of input stimuli, X, applied at its Primary Inputs (PIs),

whatever the time instant, to, at which the system starts being stimulated.

• Defect – any physical imperfection, modifying circuit topology or parameters.

Defects may be induced during system manufacturing, or during product life-

time. Critical defects, when present, modify the system’s structure or circuit

topology.

• Disturbance – any defect or environmental interaction with the system (e.g., a

Single Event Upset, SEU), which may cause abnormal system behavior.

• Fault – any abnormal system behavior, caused by a disturbance. Faults repre-

sent the impact of disturbances on system behavior. Catastrophic faults are the

result of critical defects. The manifestation of disturbances as faults may occur

or not, depending on test stimuli, and may induce abnormal system behavior:

1. Locally (inside a definable damaged module), or at the circuit’s observable

outputs (here referred to as Primary Outputs (POs));

2. Within the circuit’s response time frame (clock cycle), or later on, during

subsequent clock cycles.

• Error – any abnormal system behavior, observable at the system’s POs. Errors

allow fault detection (and, thus, defects detection).

• Permanent Fault (PF) – any abnormal system behavior that transforms the

fault-free time-invariant system into a new time-invariant system, the faulty

one. Non-permanent faults affect system behavior only at certain time intervals,

and are referred as intermittent faults.

Typically, environmental interactions with the system, such as SEUs caused by

alpha particles, induce intermittent faults. Hence, the only disturbances considered

in this chapter are physical defects, causing permanent PFs.

• Fault Model – an abstract representation of a given fault, at a specified level of

abstraction, typically, the same level at which the system or module is de-

scribed. Fault models accurately describe the fault’s valued characteristics

within the model’s domain of validity. A useful glossary of fault models is pro-

vided in [4].

• Test Pattern – a unique sequence of test vectors (input digital words) to be ap-

plied to the system’s PIs.

• TE – the ability of a given test pattern to uncover disturbances (i.e., to induce

errors, in their presence) [40].

 Modeling Permanent Faults 9

2.4 High-level Quality Metrics

Quality is not measured as an absolute value. It has been defined as “the totality of

features and characteristics of a product or service that bear on its ability to satisfy

stated or implicit needs” [20]. Hence, the quality of a product or of its design is a

measure of the fulfillment of a given set of valued characteristics. Nevertheless,

different observers value different characteristics. For instance, company share-

holders value product profitability. Product users value the ability of the product

to perform its required functionality, within a given performance range, in a stated

environment, and for a given period of time. However, a trade-off between quality

and cost is always present. Hence, product quality is bounded by how much the

customer is willing to pay.

Quality evaluation and improvement require the definition of the valued char-

acteristics, and of QMs. As far as electronic-based systems are concerned, QM,

presented in the literature, are basically separated into software metrics [19,25]

and hardware metrics [5,12,14,16,21,24,36,37,38,39]. Software metrics aim at

measuring software design and code quality. Traditional metrics, associated with

functional decomposition and a data analysis design approach, deal with design

structure and/or data structure independently. Valued characteristics are architec-

tural complexity, understandability/usability, reusability and testabil-

ity/maintenance. Hardware metrics also aim at measuring architectural complex-

ity, provided that performance specifications are met. However, product quality

requirements make testability a mandatory valued characteristic. Although these

QMs come from two traditionally separated communities, hardware design is per-

formed using a software model of the system under development. Prior to manu-

facturing, all development is based on the simulation of such a software model, at

different abstraction levels. Therefore, it is understandable that effort is made to

reuse SW quality indicators in the HW domain. For instance, in the SW domain,

module (object) cohesion and coupling metrics are accepted as relevant quality in-

dicators. The image of this, in the HW domain, deals with modularity, intercon-

nection complexity among modules and data traffic among them.

In new product development, it becomes relevant to design, product, process

and test quality. The assessment of design productivity, time-to-market and cost

effectiveness are considered in design quality.

Product quality is perceived from the customer’s point of view: the customer

expects the shipment of 100% defect-free products, performing the desired func-

tionality. A usual metric for product quality is the Defect Level (DL), or escape

rate. The DL is defined as the percentage of defective parts that are considered as

good by manufacturing test and thus marketed as good parts [32]. This metric is

extremely difficult to estimate; in fact, if the manufacturer could discriminate all

defective parts, zero-defects shipments could be made, and customer satisfaction

boosted. Field rejects usually provide feedback on the product’s DL, and they

have a strong impact on the customer/supplier relationship and trust, as well as

heavy costs. DL is computed in Defects Per Million (DPM), or parts per million

10 J.P. Teixeira

(ppm). Quality products have specifications in the order to 50−10 DPM or even

less. DL depends strongly on test quality.

Process quality is associated with the ability of the semiconductor manufactur-

ing process to fabricate good parts. Process quality is measured by the process

yield (Y), and evaluated by the percentage of manufactured good parts. This met-

ric’s accuracy also depends on test quality, as the measured yield is obtained

through the results of production tests and its ability to discriminate between good

and defective parts.

Test quality, from a hardware manufacturing point of view, basically has to do

with the ability to discriminate good from defective parts. This deals with produc-

tion and lifetime testing. However, if validation test is considered, the functional

test quality needs to assess the comprehensiveness of verification coverage [10].

As the test process has a strong impact on new product development, several

characteristics of the test process are valued, and several metrics defined (Table

2.1). The necessary condition for test quality is TE. TE has been defined as the

ability of a given test pattern to uncover physical defects [40]. This characteristic

is a challenging one, as new materials, new semiconductor, Deep Sub-Micron

(DSM) technologies, and new, unknown defects emerge. Additionally, system

complexity leads to the situation of billions of possible defect locations, especially

spot defects. Moreover, the accessible I/O terminals are few, compared with the

number of internal structural nodes. The basic assumption of production test of

digital systems is the modeling of manufacturing defects as logical faults.

However, how well do these logical faults represent the impact of defects? This

issue is delicate, and will be addressed in Section 2.5.

In order to increase TE and decrease the costs of the test process, system recon-

figuration (through DfT techniques) is routinely used. But it has costs, as some

test functionality migrates into the system’s modules (e.g., Intellectual Property

(IP) cores in Systems-on-Chip). Hence, additional, valued characteristics need to

be considered as sufficient conditions for test quality: Test Overhead (TO), Test

Length (TL) and Test Power (TP).

TO estimates the additional real estate in silicon required to implement test

functionality (e.g., 2% Si area overhead), additional pin-count (e.g., four manda-

tory pins for BoundaryScan Test [4]) and degradation on the system’s perform-

ance (lower speed of operation).

TL is the number of test vectors necessary to include in the test pattern to reach

acceptable levels of TE. TL is a crucial parameter; it impacts (1) test preparation

costs (namely, the costs of fault simulation and ATPG), (2) test application costs,

in the manufacturing line, and (3) manufacturing throughput.

Finally, TP addresses a growing concern: the average and peak power con-

sumption required to perform the test sessions [13]. In some applications, the cor-

responding energy, E, is also relevant. In fact, scrutinizing all the system’s struc-

ture may require large circuit activity, and thus an amount of power which may

greatly exceed the power consumption needed (and specified) for normal opera-

tion. This may severely restrict test application time.

In this chapter, we focus on TE for two reasons. First, it is a necessary condi-

tion: without TE, the test effort is useless. Second, in order to develop test patterns

 Modeling Permanent Faults 11

at system or RTL that may be reused at structural level, this characteristic must be

taken into account. Accurate values of TE, TO, TL and TP can only be computed

at structural level.

Table 2.1. Test quality assessment

Valued characteristics Quality metrics

TE FC, Defects Coverage

TL, test application time N, # of test vectors

TP PAVE, E

TO:

• Silicon area

• Pin count

• Speed degradation

Test overhead:

• % area overhead

• # additional pins

• % speed degradation

TE is usually measured, at structural level, through the FC metrics. Given a

digital circuit with a structural description, C, a test pattern, T, and a set of n listed

faults (typically, single LSA faults), assumed equally probable, if T is able to un-

cover m out of n faults, FC = n/m. Ideally, the designer wants FC = 100% of de-

tectable faults. Nevertheless, does FC = 100% of listed faults guarantee the detec-

tion of all physical defects? In order to answer such a question, a more accurate

metric has been defined, Defects Coverage (DC) [32].

Defects occur in the physical semiconductor device. Hence, defect modeling

should be carried out at this low level of abstraction. However, simulation costs

for complex systems become prohibitive at this level. Hence, at minimum, defect

modeling should be performed at logic level, as LSA faults have originally been

used at this level of abstraction. For a manufacturing technology, a set of defect

classes is assumed (and verified, during yield ramp-up). A defects statistics is also

built internally, as yield killers are being removed, and production yield climbs to

cost-effective levels. A list of likely defects can then be built, extracted from the

layout, e.g. using the Inductive Fault Analysis (IFA) approach [31]. However, the

listed defects are not equally probable. In fact, their likelihood of occurrence is an

additional parameter that must be considered. For a given system with a structural

description, C, a test pattern, T, and a set of N listed defects, DC is computed from

=

==
N

i

i

N

j

j

w

w

1

1

d

DC (2.1)

where wj is the fault weight,)1ln(jj pw −−= and pj is the probability of occur-

rence of fault j [32]. Hence, TE is weighted by the likelihood of occurrence of the

Nd defects uncovered by test pattern T.

12 J.P. Teixeira

2.5 System and Register-transfer-level Fault Models for
Permanent Faults

Test and validation aim at identifying deviations from a specified functionality.

Likely deviations are modeled as PFs. PFs, as defined in Section 2, are caused by

defects. If design validation is to be considered, code errors may be viewed as

“PFs”, in the sense that they deviate the system’s behavior from its correct behav-

ior. For software metrics, we assume such an extended meaning of “PF”.

The proposed QMs can be classified as software and hardware metrics. Soft-

ware metrics aim at measuring software design and code quality. In the software

domain, a Control Flow Graph (CFG) can represent a program’s control structure.

Input stimuli, applied to the CFG, allow identifying the statements activated by the

stimuli (test vectors). The line coverage metric computes the number of times

each instruction is activated by the test pattern. Branch coverage evaluates the

number of times each branch of the CFG is activated. Path coverage computes the

number of times every path in the CFG is exercised by the test pattern. High TE

for software testing can be obtained with 100% path coverage. However, for com-

plex programs, the number of paths in the CFG grows exponentially, thus becom-

ing prohibitive. An additional technique, used in the software domain, is mutation

testing. Mutation analysis is a fault-based approach whose basic idea is to show

that particular faults cannot exist in the software by designing test patterns to de-

tect these faults. This method was first proposed in 1979 [7]. Its objective is to

find test cases that cause faulty versions of the program, called mutants, contain-

ing one fault each, to fail. For instance, condition IF (J < I) THEN may be as-

sumed to be erroneously typed (in the program) as IF (J > I) THEN. To create mu-

tants, a set of mutation operators is used to represent the set of faults considered.

An operator is a fault injection rule that is applied to a program. When applied,

this rule performs a simple, unique and syntactically correct change into the con-

sidered statement.

Mutation testing has been used successfully in software testing, in design de-

bug, and has been proposed as a testing technique for hardware systems, described

using HDL [1,21]. It can prove to be useful for hardware design validation. Never-

theless, it may lead to limited structural fault coverage, dependent on the mutant

operators selected. Here, the major issue is how far a mutant injection drives sys-

tem performance away from the performance of the original system. In fact, if its

injection drives system functionality far away, fault detection is easy. This fact can

be computed by the percentage of the input space (possible input vectors) that

leads to a system response different from the mutant-free system. Usual mutants,

like the one mentioned above, may lead to easily detectable faults. However, the

art of a hardware production test is the ability to uncover difficult-to-detect faults.

Even random test vectors detect most easily detectable faults. Deterministic ATPG

is required to uncover difficult-to-detect faults.

When extending software testing to hardware testing, two major differences

need to be taken into account:

 Modeling Permanent Faults 13

• As the number of observable outputs (POs) at a hardware module, or core, is

very limited compared with the number of internal nodes, hardware test pro-

vides much less data from POs than software does through the reading of mem-

ory contents.

• As hardware testing aims at screening the manufactured physical structure of

each design copy, fault models derived at high level (system, or RTL) cannot

represent all logical faults that may be induced by defects in the physical struc-

ture.

The first difference makes observability an important characteristic, which

needs to be valued in hardware testing. The second difference requires that all

high-level fault models, and their usage, must be analyzed with respect to their

representativeness of structural faults. In the following sections, three approaches

(and corresponding metrics) are reviewed, one for design verification (Observabil-

ity-based Code Coverage Metrics (OCCOM)), and two for high level TPG (Vali-

dation Vector Grade (VVG) and Implicit Functionality, Multiple Branch (IFMB)).

But, first let us review the basic RTL fault models proposed in the literature for

hardware testing.

Several RTL fault models [1,11,15,26,27,28,29,34,42] (see Table 2.2) and QMs

[5,12,14,16,21,24,36,37,39] have been proposed. Controllability and observability

are key valued characteristics, as well as branch coverage, as a measure of the

thoroughness by which the functional control and data paths are activated and,

thus, considered in the functional test. In some cases, their effectiveness in cover-

ing single LSA faults on the circuit's structural description has been ascertained

for some design examples. However, this does not guarantee their effectiveness to

uncover physical defects. This is the reason why more sophisticated gate-level

fault models (e.g., the bias voting model for bridging defects) and detection tech-

niques (current and delay) have been developed [4]. In [28] a functional test, ap-

plied as a complement to an LSA test set, has been reported to increase the DC of

an ALU module embedded in a public domain PIC controller. The work reported

in [27, 28, 29] also addresses RTL fault modeling of PFs that drive ATPG at RTL,

producing functional tests that may lead to high DC, at logic level.

Fault models in variables and constants are present in all RTL fault lists and are

the natural extension from the structural level LSA fault model. Single-bit RTL

faults (in variables and constants) are assumed, like classic single LSA faults, at

logic level. The exception is the fault model based in a software test tool [1],

where constants and variables are replaced using a mutant testing strategy. Such a

fault model leads to a significant increase in the size of the RTL fault list, without

ensuring that it contributes significantly to the increase of TE. Remember, how-

ever, that considering single LSA faults at variables and constants, defined in the

RTL behavioral description, does not include single LSA faults at many structural

logic lines, generated after logic synthesis.

Two groups of RTL faults for logical and arithmetic operators can be consid-

ered: replacement of operators [1, 42] and functional testing of building blocks

[15]. Replacement of operators can lead to huge fault lists, with no significant

coverage gains. Exhaustive functional testing of all the building blocks of every

operator is an implementation-dependent approach, which leads to good LSA fault

14 J.P. Teixeira

coverage as shown in [15]. Nevertheless, it may not add significantly to an in-

crease in TE.

Table 2.2. RTL fault model classes

RTL fault model classes [1] [42] [26] [11] [15] [27]

LSA type X X X X X

Logic /

arithmetic operations

X X X

Constant /

variable switch

X

Null

statements

X X X X

IF / ELSE X X X X X X

CASE X X X X X X

FOR X X X X

The Null statement fault consists in not executing a single statement in the de-

scription. This is a useful fault model because fault detection requires three condi-

tions: (1) the statement is reached, (2) the statement execution causes a value

change of some state variable or register, and (3) this change is observable at the

POs. Conditions (1) and (2) are controllability conditions, while (3) is an ob-

servability condition. Nevertheless, fault redundancy occurs when both condition

(IF, CASE) faults and Null statement faults are included in the RTL fault list. In

fact, Null statement faults within conditions are already considered in the condi-

tion fault model. Moreover, a Null statement full list is prohibitively large; hence,

only sampled faults (out of conditions) of this class are usually considered.

The IF/ELSE fault model consists of forcing an IF condition to be stuck-at true

or stuck-at false. More sophisticated IF/ELSE fault models [1] also generate the

dead-IF and dead-ELSE statements. CASE fault models include the control vari-

able being stuck to each of the possible enumerated values (CASE stuck-at), dis-

abling one value (CASE dead-value), or disabling the overall CASE execution. In

[26], a FOR fault model is proposed, by adding and subtracting one from the ex-

treme values of the cycle. Condition RTL faults have proved to be very relevant in

achieving high LSA and defects coverage [29].

The RTL fault models depicted in Table 2.1, when used for test pattern genera-

tion and TE evaluation, usually consider single detection. Therefore, when one test

vector is able to detect a fault, this fault is dropped (in fault simulation, and

ATPG). However, n-detection can significantly increase DC. Thus, as we will see

in Section 2.5.3, the authors in [27, 28, 29] impose n-detection for condition RTL

faults. RTL fault model usefulness is generally limited by the fault list size and by

the fault simulator mechanisms available for fault injection.

 Modeling Permanent Faults 15

2.5.1 Observability-based Code Coverage Metrics

Fallah et al. [10] proposed OCCOM for functional verification of complex digital

system hardware design. An analogy with fault simulation for validating the qual-

ity of production test is used. The goal is to provide hardware system designers an

HDL coverage metrics to allow them to assess the comprehensiveness of their

simulation vector set. Moreover, the metrics may be used as a diagnostic aid, for

design debug, or for improvement of the functional test pattern under analysis.

In this approach, the HDL system description is viewed as a structural inter-

connection of modules. The modules can be built out of combinational logic and

registers. The combinational logic can correspond to Boolean operators (e.g.,
NAND, NOR, EXOR) or arithmetic operators (e.g., +, >). Using an event-driven

simulator, controllability metrics (for a given test pattern) can easily be computed.

A key feature addressed by these authors is the computation of an observability

metric. They define a single tag model. A tag at a code location represents the

possibility that an incorrect value was computed at that location [10]. For the sin-

gle tag model, only one tag is identified and propagated at a time. The goal, given

a test pattern (functional test) and an HDL system description, is to determine

whether (or not) tags injected at each location are propagated to the system’s PO.

The percentage of propagated tags is defined as code coverage under the proposed

metrics. A two-phase approach is used to compute OCCOM: (1) first, the HDL

description is modified, eventually by the addition of new variables and state-

ments, and the modified HDL descriptions are simulated, using a standard HDL

simulator; (2) tags (associated with logic gates, arithmetic operators and condi-

tions) are then injected and propagated, using a flow graph extracted from the

HDL system description.

Results, using several algorithms and processors, implemented in Verilog, are

presented in [10]. OCCOM is compared with line coverage. It is shown that the

additional information provided by observability data can guide designers in the

development of truly high-quality test patterns (for design validation). As it is not

a stated goal of the OCCOM approach, no effort is made to analyse a possible cor-

relation between high OCCOM values (obtained with a given test pattern) and

eventual high values of the structural FC of logical faults, such as single LSA

faults. Hence, no evaluation of OCCOM, with respect to TE, is available. As a

consequence, no guidelines for RTL ATPG are provided.

2.5.2 Validation Vector Grade

Thaker et al. [34,35] also started by looking at the validation problem, improving

code coverage analysis (from the software domain) by adding the concepts of ob-

servability and an arithmetic fault library [34]. In this initial paper, these authors

first explore the relationship between RTL code coverage and LSA gate-level fault

coverage, FC. As a result, they proposed a new coverage metric, i.e., VVG, both

for design validation and for early testability analysis at RTL. Stuck-at fault models

for every RTL variable are used. They analyzed the correlation between RTL code

16 J.P. Teixeira

coverage and logic level FC, and this provided input on the definition of RTL fault

lists which may lead to good correlation between VVG and FC values. Under the

VVG approach, an RTL variable is reported covered only if it can be controlled

from a PI and observed at a PO using a technique similar to gate-level fault grading

[22]. Correlation between VVG and FC is reported within a 4% error margin.

The work has evolved in [35], where the RTL fault modeling technique has

been explicitly derived to predict, at RTL, the LSA FC at structural gate-level. The

authors show, using a timing controller and other examples, that a stratified RTL

fault coverage provides a good estimate (0.6% error, in the first example) of the

gate-level LSA FC. The key idea is that the selected RTL faults can, to some ex-

tent, be used as a representative subset of the gate-level LSA fault universe. In or-

der to be a representative sample of the collapsed, gate-level fault list, selected

RTL faults should have a distribution of detection probabilities similar to that for

collapsed gate faults. The detection probability is defined as the probability of de-

tecting a fault by a randomly selected set of test vectors. Hence, given a test pat-

tern comprising a sequence of n test vectors, and a given fault is detected k times

during fault simulation (without fault dropping), its detection probability is given

as k/n. If the RTL fault list is built according to characteristics defined in [35], the

two fault lists exhibit similar detection probability distributions and the corre-

sponding RTL and gate-level fault coverages are expected to track each other

closely within statistical error bounds.

The authors acknowledge that not all gate-level faults can be represented at

RTL, since such a system description does not contain structural information,

which is dependent on the synthesis tool, and running options. Therefore, the main

objective of the proposed approach is that the defined RTL fault models and fault

injection algorithm are developed such as the RTL fault list of each system mod-

ule becomes a representative sample of the corresponding collapsed logic-level

fault list. The proposed RTL model for permanent faults has the following attrib-

utes:

• language operators (which map onto Boolean components, at gate level) are as-

sumed to be fault free;

• variables are assigned with LSA0 and LSA1 faults;

• it is a single fault model, i.e., only one RTL fault is injected at a time;

• for each module, its RTL fault list contains input and fan-out faults;

• RTL variables used more than once in executable statements or the instantia-

tions of lower level modules of the design hierarchy are considered to have fan-

out. Module RTL input faults have a one-to-one equivalence to module input

gate-level faults. Fan-out faults of variables inside a module, at RTL, represent

a subset of the fan-out faults of the correspondent gate-level structure.

The approach considers two steps. First, an RTL fault model and injection algo-

rithm is developed for single, stand-alone modules. Second, a stratified sampling

technique [4] is proposed for a system built of individual modules [35]. Hence, the

concept of weighted RTL LSA FC, according to module complexity, has been in-

troduced to increase the matching between this coverage and gate-level LSA FC.

Faults in one module are classified in a subset (or stratum), according to relative

module complexity. Faults in each module are assigned a given weight. The strati-

 Modeling Permanent Faults 17

fied RTL FC is computed taking into account the contribution of all strata and

serves, thus, as an accurate estimation of the gate-level, LSA FC of the system. No

effort is made to relate FC with DC.

2.5.3 Implicit Functionality, Multiple Branch

The majority of approaches proposed in the literature evaluate TE through the FC

value for single LSA faults. The reasons for this are relevant. First, this fault

model is independent on the actual defect mechanisms and location. In fact, it as-

sumes that the impact of all physical defects on system behavior can be repre-

sented as a local bit error (LSA the complementary value driven by the logic),

which may (or not) be propagated to an observable PO. Second, LSA-based fault

simulation algorithms and ATPG tools are very efficient, and have been improved

for decades. Third, the identification of defect mechanisms, defect statistics and

layout data is usually not available to system designers, unless they work closely

with a silicon foundry. Moreover, as manufacturing technology moves from one

node to the following one [17], emerging defects are being identified, as a moving

target. Although the 100% LSA FC does not guarantee 100% DC, it provides a

good estimate (and initial guess) of TE for PFs. Later on in the design flow, TE

evaluation may be improved using defects data.

Modeling all defect mechanisms, at all possible (and likely) locations at the

layout level, is a prohibitive task. As stated, fault models at logic level have been

derived to describe their impact on logic behavior. For instance, a bridging defect

between two logic nodes (X,Y) may, for a given local vector, correspond to a con-

ditional LSA0 at node X, provided that, in the fault-free circuit, the local vector

sets (1) X = 1 and (2) Y (the dominant node, for this vector) = 0. Hence, in the

fault-free circuit, (X,Y) = (1,0) and in the faulty one, (X,Y) = (0,0). Using a test pat-

tern generated to detect single LSA faults, if the X stuck-at 0 fault is detected

many times, thus ensuring the propagation of this fault to an observable output,

there is a good probability that, at least in one case, the local vector forces (in the

fault-free circuit) X = 1 and Y = 0. Hence, the test pattern, generated for LSA fault

detection, has the ability of covering this non-target fault. Therefore, the quality of

the derived test pattern, i.e., its ability to lead to high DC (DL) values, depends on

its ability to uncover non-target faults. This is true not only for different fault

models or classes, at the same abstraction level, but also at different abstraction

levels. This principle is verified in the VVG approach, were RTL fault lists are

built to become a representative sample of logic-level fault lists. If a given test

pattern (eventually, generated to uncover RTL faults) is applied to the structural

description of the same system, it will also uncover the corresponding gate-level

LSA faults.

The IFMB approach uses this principle, in its two characteristics:

• accurate defect modeling is required for DC evaluation [30], but not for ATPG:

in fact, test patterns generated to detect a set of target faults are able to uncover

many non-target faults, defined at the same or at different abstraction levels

[41];

18 J.P. Teixeira

• in order to enhance the likelihood of a test pattern to uncover non-target faults

(which may include defects of emerging technologies, yet to be fully character-

ized), n-detection of the target faults (especially those hard to detect) should be

considered [3].

Hence, as shown in Figure 2.2, consider a given RTL behavioral description

leading to two possible structures, A and B, with different gate-level fault lists

(“Logic LSA”), but with the same RTL fault list (“RTL faults”). Thaker et al. built

the RTL fault list [35] as a representative sample of the gate-level LSA fault list,

but they do not comment on how sensitive the matching between RTL and gate-

level FC is to structural implementation. In the IFMB approach, the authors look

for a correlation between n-detection of RTL faults and single defects detection

(as measured by DC).

Logic
LSA

Defects

RTL
faults Logic

LSA

Defects

Structure A
Structure B

RTL
faults

Logic
LSA

Defects

RTL
faults Logic

LSA

Defects

Structure A
Structure B

RTL
faults

Figure 2.2. Representativeness of RTL, gate-level LSA faults and physical defects

An additional aspect, not considered this far, is the types of test pattern to be

used. An external test uses a deterministic test, to shorten TL and thus test applica-

tion time and Automatic Test Equipment (ATE) resources. On the contrary, BIST

strategies [4, 33] require extensive use of pseudo-random (PR) on-chip TPG, to

reduce TO costs. A deterministic test usually leads to single detection of hard

faults, in order to compact the test set. Moreover, a deterministic test targets the

coverage of specific, modeled fault classes, like LSA; in fact, it is a fault-biased

test generation process. If, however, there is no certainty on which defect (and,

thus, fault) classes will finally be likely during manufacturing, a PR test, being

unbiased, could prove to be rewarding to some extent. In other words, if PR pat-

tern-resistant faults were uncovered by some determinism, built in the PR test

stimuli, then a PR-based test could prove to be very effective to detect physical

defects. The BIST strategy can also be rewarding to perform an at-speed test, at

nominal clock frequency, allowing one to uncover dynamic faults, which become

more relevant in DSM technologies. BIST is also very appropriate to lifetime test-

ing, where no sophisticated ATE is available.

 Modeling Permanent Faults 19

The IFMB coverage metrics are defined as follows. Consider a digital system,

characterized by an RTL behavioral description D. For a given test pattern, T={T1,

T2, ... TN}, the IFMB coverage metrics are defined as

)(FCFCFCIFMB MB

F

MB

IF

F

IF

LSA

F

LSA n
N

N

N

N

N

N
++= (2.2)

where NLSA, NIF, and NMB represent the number of RTL LSA, implicit functional

and conditional constructs faults respectively. The total number of listed RTL

faults, NF , is NF = NLSA + NIF + NMB. Hence, three RTL fault classes are consid-

ered. Each individual FC defined in IFMB is evaluated as the percentage of faults

in each class, single (FCLSA, FCIF) or n-detected (FCMB), by test pattern T.

IFMB is, thus, computed as the weighted sum of three contributions: (1) single
RTL LSA FC (FCLSA), (2) single Implicit Functionality (IF) fault coverage (FCIF)

and (3) multiple conditional constructs faults Multiple Branch (MB) coverage

(FCMB(n)). The multiplicity of branch coverage, n, can be user defined. The first

RTL fault class has been considered in the work of previous authors (Table 2.2,

[1,11,15,26,27,42]). The two additional RTL fault classes and the introduction of

n-detection associated with MB are proposed in [29], and incorporated in the

IFMB quality metric. Here, the concept of weighted RTL FC is used in a different

way than in [35] by Thaker et al. In fact, in the IFMB approach, the RTL fault list

is partitioned in three classes, all listed faults are assumed equally probable, and

the weighting is performed taking into account the relative incidence of each fault

class in the overall fault list. The inclusion of faults that fully evaluate an opera-

tor’s implicit functionality also differs from the model proposed in [34], where

faults are sampled from a mixed structural-RTL operator description.

One of the shortcomings of the classic LSA RTL fault class is that it only con-

siders the input, internal and output variables explicit in the RTL behavioral

description. However, the structural implementation of a given functionality

usually produces implicit variables, associated with the normal breakdown of the

functionality. In order to increase the correlation between IFMB and DC, the

authors add, for some key implicit variables, identified at RTL, LSA faults at each

bit of them. The usefulness of IF modeling is demonstrated in [29] for relational

and arithmetic (adder) operators. For instance, the IF RTL fault model for adders

and subtractors includes the LSA fault model at each bit of the operands, of the

result and at the implicit carry bits. This requires that such implicit variable is

inserted in the RTL code, which needs to be expanded to allow fault injection.

Conditional constructs can be represented in a graph where a node represents

one conditional construct, a branch connects unconditional execution and a path is

a connected set of branches. Branch coverage is an important goal for a functional

test. However, the usual testability metrics do not ensure more than single branch

activation and observation, which is not enough to achieve acceptable DC values.

Hence, a multi-branch RTL fault model for conditional constructs is proposed in

[29]. It inhibits and forces the execution of each CASE possibility and forces each

20 J.P. Teixeira

IF/ELSE condition to both possibilities. Two testability metrics are defined for

each branch:

Branch Controllability:

,1

,/
)(COCO

a

aa

≥
<

==
nn

nnnn

i
b

ii
i

ii
(2.3)

where nai is the number of activations of branch bi, and

Branch Detectability:

,1

,/
)(DODO

d

dd

≥
<

==
nn

nnnn

i
b

ii
i

ii
(2.4)

where ndi is the number of times the non-execution of branch bi was detected. The

contribution of conditional constructs to the IFMB global metric is then defined as

==
NF

d
NF

.NFNF

)(DO
)(

MB
FC

i

i

i

i

n

nn
n

(2.5)

A typical profile of branch detectability is shown in Figure 2.3. The simulation

tool performs RTL fault simulation with, as an example, 5000 random vectors,

and performs fault dropping when a given RTL fault is detected 30 times. As can
be seen in Figure 2.3, a subset of RTL faults is not detected, or detected a few

times. These are the target faults for deterministic generation. After this, the

shaded area (in gray) will be significantly smaller, and both IFMB and DC metrics

will approach 100%.

The authors show in [29] that a correlation of 95% between IFMB and DC is

obtained with n-detection of n = 5, for several ITC’99 benchmarks [6]. The pro-
posed RTL fault models are implemented in a proprietary mixed-level simulation

environment, VeriDOS [30]. Low-cost RTL simulation allows the identification

of parts of the RTL code difficult to exercise (referred as dark corners). Dark cor-

ners contain hard functionality. The identification of the parts of the functionality

difficult to test is then used to identify partially specified test vectors, referred to

as masks, which may significantly increase IFMB. The premise here is that, de-
spite logic minimization performed during logic synthesis (which makes it more

difficult to map the RTL description into the logic description), such hard func-

tionality will be somehow mapped in structural parts that will be hard to scruti-

nize. Hence, multiple RTL fault detection increases the probability of detection of

single defects on the synthesized structure.

For each mask i, mi fixed positional bits in possible input words are identified
and assigned. Typically, mi is much smaller than the total number of PIs. Unas-

 Modeling Permanent Faults 21

signed bits are filled with PR Boolean values, e.g. generated by an on-chip Linear

Feedback Shift Register (LFSR). Performing mask generation for all hard RTL

faults drives the “illumination” of all dark corners, and the generation of a consis-

tent set of ncv constrained vectors, Xi (i = 1,2,..., ncv), or masks. Typically,

20cv <n .

Detectability

0

5

10

15

20
25

30

dat
a_i
n_
1_
0

tx_
co
nta
_7
_0

dat
a_i
n_
3_
0

dat
a_i
n_
1_
1

mp
x_
0

ca
nal
e_
2_
1

S2
_0
_1

ne
xt_
bit
_3
_1

tx_
co
nta
_2
_1

tx_
co
nta
_8
_1

S1
_3
1

S1
_3
0

S2
_3
1

itfc
_st
ate
_3
0

ne
xt_
bit
_3
1

ne
xt_
bit
_3
1

ad
d_
mp
x2
_1

se
nd
_d
ata
_2
0

tx_
en
d_
21

tm
p3
_2
0

RTL faults

Figure 2.3. Typical RTL fault detectability profile

The proposed methodology is thus suitable for a BIST implementation, since

random test generation needs only to be complemented with a few masks,

constraining a few mi positional bits. Hence, only a loosely deterministic self-test

generation is required. As relative by short test sequences can ensure high TE,

low-energy BIST may thus be achieved. A typical example is shown in Figure 2.4.

The authors also refer to the IFMB approach as masked-based BIST, or m-BIST.

22 J.P. Teixeira

70

75

80

85

90

95

100

0 5000 10000 15000 20000
#vector

D
C

 [%
]

Masked (multiple branch)
Pseudo-random
Masked (single branch)

Figure 2.4. Typical DC improvement, using IFMB

2.6 Conclusions

Modeling PFs is a critical factor of success in design validation and product test-

ing. It depends strongly on test objectives. At system level and RTL, design vali-

dation is the main objective. Thus, functional tests need to be derived to assess

how thoroughly system functionality is verified. For production and lifetime test-

ing, a structural test pattern is required. Test reuse makes it very rewarding to de-

velop techniques that allow functional test generation that may be reused (and/or

improved) for product test.

As electronic design is performed, for integrated systems, using a software

model of the system to be manufactured, effort has been made to reuse software

testing techniques in hardware testing. However, two key aspects need to be taken

into account: (1) observability in hardware is much more limited than in software,

and (2) high-level fault models cannot model all logical faults that may occur in

the physical structure.

Design, product, process and test quality need to be ascertained. This chapter

focused on test quality assessment and improvement. Four QMs have been identi-

fied, as valued characteristics: TE, TO, TL and TP. TE is a mandatory characteris-

tic; hence, TE has been in the spotlight. TE, considered at system level or RTL,

must take into account the correlation between high-level FC metrics, and low-

level DC.

Several RTL fault models are available in the literature. However, the TE ob-

tained with a given functional test is usually ascertained only with its ability to un-

cover single LSA faults on the logic structure, generated by logic synthesis tools.

Three approaches have been highlighted. First, OCCOM has been identified as a

valuable observability-based code coverage metric. It is promising for design vali-

 Modeling Permanent Faults 23

dation, design debug and functional test improvement. Nevertheless, it does not

target test pattern generation for later reuse in production or lifetime testing.

The stratified RTL fault coverage approach (and the corresponding VVG met-

ric) is a valuable approach to derive high-quality tests for production testing. The

underlying idea is that, for each module, the assumed RTL faults become a repre-
sentative sample of the gate-level LSA faults of its corresponding structure. Ac-

cording to model complexity, faults associated with each module become a stra-

tum. Stratified sampling techniques are then used to compute the overall RTL FC.

RTL faults are derived that lead to a very accurate matching between RTL FC,

and gate-level LSA FC. However, no data are available on possible DC effective-

ness.

Finally, the IFMB approach (and metric) is reviewed. This approach derives

RTL fault models for explicit and implicit variables in the RTL code, and imposes

n-detection of conditional RTL faults to significantly enhance the correlation be-

tween IFMB and DC. This approach also accommodates different defect models,

by introducing the concept of partially defined test vectors (referred as masks) and

using PR filling of the non-assigned bits. The key idea is to achieve full branch

coverage, by activating hard functionality, identified at RTL. Test length is re-

laxed, compared with a deterministic test, but TE is significantly increased. The

approach is especially suitable for BIST solutions. As no approach can be totally

implementation independent, during the bottom-up verification of the design, test

pattern quality improvement can be performed, but requires a marginal effort.

Acknowledgments

I want to thank Professor Marcelino Santos and Professor Isabel Teixeira for all

the collaborative work and useful discussions on high-level fault modeling and

test preparation.

References

[1] Al Hayek G, Robach C (1996) From specification validation to hardware testing: a

unified method. In: Proc. of IEEE Int. Test Conference, 885-893

[2] Baldini A, Benso A, Prinetto P, Mo S, Taddei A (2001) Towards a unified test proc-

ess: from UML to end-of-line functional test. In: Proc. Int. Test Conference, 600-608

[3] Benware B, Schuermyer Ch, Ranganathan S, Madge R, Krishnamurthy P, Tamara-

palli N, Tsai H-H, Rajski J (2003) Impact of multiple-detect test patterns on product

quality. In: Proc. of IEEE Int. Test Conference, 1031-1040

[4] Bushnel ML, Agrawal VD (2000) Essentials of electronic testing for digital memory

and mixed-signal VLSI circuits. Kluwer Academic Publishers

[5] Chickermane V, Lee J, Patel JH (1994) Addressing design for testability at the archi-

tectural level. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 13(7): 920-934

24 J.P. Teixeira

[6] CMUDSP benchmark (I-99-5, ITC 99 5]),

http://www.ece.cmu.edu/~lowpower/benchmarks.html

[7] DeMillo R, Lipton R, Sayward F (1978) Hints on test data selection: help for the

practicing programmer. IEEE Computer, 11: 34-41

[8] Dias OP, Teixeira IC, Teixeira JP (1999) Metrics and criteria for quality assessment

of testable HW/SW system architectures. Journal of Electronic Testing: Theory and

Application, 14(1/2): 149-158

[9] Eldred RD (1959) Routines based on symbolic logic statements. Journal of ACM,

6(1): 33-36

[10] Fallah F, Devadas S, Keutzer K (2001) OCCOM: efficient computation of observabil-

ity-based code coverage metrics for functional verification. IEEE Transactions on

Computer Aided Design of Integrated Circuits and Systems, 20(8): 1003-1015

[11] Ferrandi F, Fummi F, Sciuto D (1998) Implicit test generation for behavioral VHDL

models. In: Proc. Int. Test Conference, 587-596

[12] Gentil MH, Crestani D, El Rhalibi A, Durant C (1994) A new testability measure: de-

scription and evaluation. In: Proc. of IEEE VLSI Test Symposium, 421-426

[13] Girard P (2002) Survey of low-power testing of VLSI circuits. IEEE Design & Test

of Computers, 19(3): 82-92

[14] Gu X, Kuchcinski K, Peng Z (1994) Testability analysis and improvement from

VHDL behavioral specifications, In: Proc. EuroDAC, 644-649

[15] Hayne JR, Johnson BW (1999) Behavioral fault modeling in a VHDL synthesis envi-

ronment. In: Proc. of IEEE Int. Test Conference, 333-340

[16] Hsing C, Saab DG (1993) A novel behavioral testability measure. IEEE Transactions

on Computer Aided Design of Integrated Circuits and Systems, 12(12): 1960-1970

[17] http://public.itrs.net/Files/2003ITRS/Home2003.htm

[18] Keating M, Bricaud P (1999) Reuse methodology manual for system-on-a-chip de-

signs. 2nd Edition, Kluwer Academic Publishers.

[19] Kitchenham B, Pfleeger SL (1996) Software quality: the elusive target. IEEE Soft-

ware, January 1996: 12-21.

[20] ISO 8402 International Standards (1996) “Quality – vocabulary”, International

Organization for Standardization (ISO)

[21] Le Traon Y, Robach C (1995) From hardware to software testability. In: Proc of

IEEE Int. Test Conference, 710-719

[22] Mao W, Gulati R (1996) Improving gate-level fault coverage by RTL fault grading.

In: Proc. of IEEE Int. Test Conference, 150-159

[23] Muller W, Rosenstiel W, Ruf J (2003) SystemC: methodologies and applications.

Kluwer Academic Publishers.

[24] Papachristou C, Carletta J (1995) Test synthesis in the behavioral domain. In: Proc. of

IEEE Int. Test Conference, 693-702

[25] Pressman RS (1997) Software engineering: a practitioner’s approach. McGraw-Hill

[26] Riesgo Alcaide T (1996) Modelado de fallos y estimación de los processos de

validación funcional de circuitos digitales descritos en VHDL sintetizable. PhD The-

sis, Escuela Téc. Sup. Ing. Industriales, U.P. Madrid

[27] Santos MB, Gonçalves FM, Teixeira IC, Teixeira JP (2002) RTL design validation,

DFT and test pattern generation for high defects coverage. Journal of Electronic Test-

ing: Theory and Application, 18(1): 177-185

 Modeling Permanent Faults 25

[28] Santos MB, Gonçalves FM, Teixeira IC, Teixeira JP (2001) RTL-based functional

test generation for high defects coverage in digital systems. Journal of Electronic

Testing: Theory and Application, 17(3 and 4): 311-319

[29] Santos MB, Gonçalves FM, Teixeira IC, Teixeira JP (2001) Implicit functionality and

multiple branch coverage (IFMB): a testability metric for RT-level. In: Proc. of IEEE

Int. Test Conference, 377-385

[30] Santos MB, Teixeira JP (1999) Defect-oriented mixed-level fault simulation of digital

systems-on-a-chip using HDL. In: Proc. of the Design Automation and Test in

Europe Conference, 549-553

[31] Shen JP, Maly W, Ferguson FJ (1985) Inductive fault analysis of MOS integrated cir-

cuits. IEEE Design & Test of Computers, 2(6): 13-26

[32] Sousa JJT, Gonçalves FM, Teixeira JP, Marzocca C, Corsi F, Williams TW (1996)

Defect level evaluation in an IC design environment. IEEE Transactions on Computer

Aided Design of Integrated Circuits and Systems, 15(10): 1286-1293

[33] Stroud ChE (2002) A designer’s guide to built-in self test. Kluwer Academic Publish-

ers

[34] Thaker PA, Agrawal VD, Zaghloul ME (1999) Validation vector grade (VVG): a new

coverage metric for validation and test. In: Proc. IEEE VLSI Test Symposium, 182-

188

[35] Thaker PA, Agrawal VD, Zaghloul ME (2003) A test evaluation technique for VLSI

circuits using register-transfer level fault modeling. IEEE Transactions on Computer

Aided Design of Integrated Circuits and Systems, 22(8): 1104-1113

[36] Thearling K, Abraham JA (1989) An easily functional level testability measure. In:

Proc. of IEEE Int. Test Conference, 381-390

[37] Vahid M, Orailoglu A (1995) Testability metrics for synthesis of self-testable designs

and effective test plans. In: Proc. IEEE VLSI Test Symposium, 170-175

[38] Vranken HPE, Wittman MF, van Wuijtswinkel RC (1996) Design for testability in

hardware-software systems. IEEE Design & Test, 13(3): 79-87

[39] Wallack JR, Dandapani R (1994) Coverage metrics for functional tests. In: Proc. of

IEEE VLSI Test Symposium, 176-181

[40] Wang LC, Mercer R, Williams TW (1995) On the decline of testing efficiency as

fault coverage approaches 100%. In: Proc. IEEE VLSI Test Symposium, 74-83

[41] Wang LC, Mercer R (1996) Using target faults to detect non-target defects. In: Proc.

of IEEE Int. Test Conference, 629-638

[42] Ward PC, Armstrong JR (1990) Behavioral fault simulation in VHDL. In: Proc. 27th

ACM/IEEE Design Automation Conference, 587-593

3 Test Generation: A Symbolic Approach

F. Fummi, G. Pravadelli

Università di Verona, Dipartimento di Informatica, Verona, Italy

3.1 Abstract

Automatic test pattern generation (ATPG), based on random methods, is widely

applied in different flavors to detect functional faults. In particular, genetic algo-

rithms, which can be considered part of the random-based category, work quite

well for a quick exploration of the test patterns space, achieving good fault cover-

age in a short time. However, a certain number of faults are hard to detect for ran-

dom-based approaches. On the contrary, such faults can be easy to detect for other

strategies, as for example symbolic test pattern generation. Nevertheless, faults

that are easy to detect for random-based ATPG may be, indeed, hard to detect for

symbolic techniques. Addressing this class of faults, a symbolic ATPG can require

longer execution time than a random one, and in some cases it can be unable to

generate test sequences for some faults. This work shows how a hybrid approach,

where symbolic ATPG is applied after a random-based ATPG, may represent a

valuable solution to achieve a very high fault coverage keeping low the execution

time. The testing methodology is implemented in a highly flexible functional veri-

fication framework that is based on a high-level fault model and a test generation

strategy applicable for both random-based and symbolic-based approaches. The

applicability and the efficiency of the functional testing framework presented have

been confirmed by the benchmarks analyzed.

3.2 Introduction

By following the classical literature on testing [1], stuck-at faults in gate-level cir-

cuits can be partitioned into two classes:

• Easy-To-Detect (ETD) faults. ETD faults can be detected by selecting one test

sequence from a large set of test sets. Generally, they are close to the Primary

Inputs (PIs) and/or primary outputs and their activation and propagation can be

simply performed.

• Hard-To-Detect (HTD) faults. HTD faults can be detected by using very few

(sometimes only one) sequences. They are responsible for the consumption of

the largest part of CPU time during the test generation. We can thus say that

28 F. Fummi and G. Pravadelli

HTD faults require a large amount of time to be detected while ETD faults are

detected in a small CPU time. The same concepts can be moved to functional

testing by considering high-level faults instead of stuck-at faults. However, the

concept of HTD and ETD functional faults depends on the Automatic Test Pat-

tern Generation (ATPG) algorithm used to detect them. In fact, a fault can be

ETD for some functional ATPG approaches, but HTD for some other tech-

niques. This consideration is enforced by comparing the characteristics of ran-

dom-based ATPGs with respect to symbolic ATPGs and vice versa.

Let us examine functional testing from the point of view of an ATPG based on

a genetic algorithm (GA), which is considered a very effective approach for ran-

dom-based test pattern generation. Note that analogous considerations can be ar-

gued with respect to other random-based approaches too. A GA-based ATPG

identifies a test pattern for a target fault by performing crossover operations,

which correspond to a move to a different portion of the solution space, to arrive

at an input configuration close to the solution. Each portion of this space is then

more accurately explored by executing mutation operations, until the actual test

pattern is identified. We can say that faults belong to the HTD class if a large

number of crossover operations must be performed before arriving so close to the

solution that mutation operations can identify it. In other words, faults that can be

detected by using few test vectors are HTD for GA, since many crossover opera-

tions must be performed on average to get close to such few test vectors. HTD

faults thus have the same meaning for GA-based ATPG and for traditional gate-

level ATPG.

On the contrary, let us consider functional testing from the point of view of Bi-

nary Decision Diagrams (BDDs) (see Section 3.3), i.e., a symbolic approach. A

typical BDD-based test pattern generator consists of comparing the BDD repre-

senting the fault-free design with the BDD representing the faulty design for each

modeled fault. The fault-free BDD and the faulty BDD are incrementally gener-

ated by analyzing the Control Flow Graph (CFG) extracted from the description of

the Device Under Test (DUT) [12]. A different BDD is created for every node of

the CFG and for every bit of signals, ports and variables involved in the function

represented by the node. All these partial BDDs are collected by a BDD manager

that creates a Compact Representation (CR) of all the BDD nodes involved. The

size of this compact representation, in terms of collected BDD nodes, is propor-

tional to the number of differences between every fault-free partial BDD and the

corresponding faulty partial BDD. If a fault can be detected by using a large set of

test patterns, then there are many different faulty partial BDDs, which are different

from the fault-free BDD, for each faulty behavior. In this case, the CR generated

by the BDD manager is composed of many BDD nodes, since it represents the

fault-free behavior and all faulty behaviors. Therefore, test generation becomes

computationally expensive, since the construction time of the CR is proportional

to its size. Moreover, in this case a state-space explosion problem may arise, mak-

ing the generation of the CR not feasible. Thus, HTD faults, for a BDD-based

ATPG, are those faults that can be detected by using a large set of test patterns;

that is, those faults that are ETD for a GA-based ATPG.

 Test Generation: A Symbolic Approach 29

GA

HTD

BDD

ETD

GA

ETD

BDD

HTD

Figure 3.1. HTD and ETD errors for a GA-based and a BDD-based ATPG

In conclusion, a GA-based testing technique considers as HTD those faults that

are ETD for a BDD-based testing technique and vice versa, as shown graphically

in Figure 3.1. The two testing approaches are thus complementary and can effec-

tively cooperate. This represents the main motivation for defining a hybrid ap-

proach which exploits both random-based ATPG and symbolic-based ATPG to

apply the most appropriate technique to HTD and ETD faults.

This work proposes an efficient testing methodology that exploits the previous

considerations to obtain the highest coverage with the lowest resource require-

ments, for each fault class. By mixing BDD-based and random-based functional

test generation techniques we realized that they are targeted to different sets of

faults; that is, they have disjoined sets of HTD and ETD faults. Particular effort is

dedicated to the symbolic aspect of the methodology and it is shown how the

symbolic ATPG is integrated in a highly flexible functional testing framework.

The chapter is organized as follows. Section 3.3 is a brief introduction to

BDDs. The testing methodology is described in Section 3.4. Section 3.5 is devoted

to present the testing framework that has been used for the experimental results

reported in Section 3.6. Finally, concluding remarks are summarized in Section 0.

3.3 Binary Decision Diagrams

A BDD [3] is a formalism frequently used to implicitly represent digital systems.
A BDD is a Directed Acyclic Graph (DAG); the root node of the DAG identifies
the function, f, represented by the BDD, the internal nodes are labeled with the
variables belonging to the true support of f (i.e., the set of variables on which fac-

30 F. Fummi and G. Pravadelli

tually depends), and the terminal nodes are labeled with the values 0 and 1. As an
example, the BDD for the function 42413214321),,,(vvvvvvvvvvvf ++= is given
in Figure 3.2.

A particular kind of BDD is the Reduced Ordered BDD (ROBDD). These do

not contain duplicated and redundant nodes, and in addition, they are ordered; that

is, all the variables appear in the same order along all paths from the root to the

terminal nodes. Given an ordering, the reduced BDD for a function is unique.

Hence, a BDD is a canonical representation; that is, two functions f and g are

equivalent (i.e., f = g) if and only if they have the same BDD.

Figure 3.2. A BDD for function 42413214321),,,(vvvvvvvvvvvf ++=

3.4 Methodology

The main goal of the proposed methodology is the generation of functional test

patterns by exploiting a two-way strategy. First, a random-based ATPG session is

adopted to address ETD faults. Then, a symbolic ATPG is used to detect the re-

maining HTD faults. This approach optimizes ATPG time because the exhaustive

but time-consuming symbolic session is applied to a limited number of faults that

cannot be detected by a faster, random-based, test pattern generator. The method-

v1

v4

v2

v3

f

0 1

 Test Generation: A Symbolic Approach 31

ology is completely implemented into Laerte++, a highly flexible framework for

functional testing (see Section 3.5, which reports different ATPG engines).

By using the proposed methodology, functional test patterns can be easily gen-

erated for ETD and a large part of HTD faults. In particular, the methodology

guarantees:

• fast detection of ETD faults;

• exact identification of redundancies and HTD faults;

• full code coverage for each single process;

• detailed information to detect design errors.

3.4.1 The Random-based Approach

Generally, random-based ATPG [14,21] works in the following way:

1. An input sequence is generated in a random way or by exploiting some heuris-

tic. For example, in the case of a GA-based ATPG, heuristics are represented

by the fitness function used to guide the test pattern generation.

2. The sequence generated is applied to the fault-free DUT and to all of its faulty

instances obtained by injecting, one by one, every fault modeled.

3. The outputs of the fault-free and of the faulty DUTs are compared for every

fault modeled. A fault is detected if, for at least one output, the corresponding

faulty DUT differs from the fault-free DUT.

4. Steps 1 to 3 are repeated until one of the following conditions is verified:

• full fault coverage is achieved;

• the maximum number of input sequences has been generated;

• the limit for execution time has been reached.

The main problem related to random-based ATPG is represented by lack of ex-

haustiveness. If a fault remains undetected, we cannot state that the fault is unde-

tectable. In fact, it could be the case that only very few sequences are able to de-

tect that fault, and these have a very low probability to be generated by the ATPG

among the infinite space of input sequences. Section 3.5.2 describes how different

random-based ATPGs have been defined within the testing framework adopted in

this work.

3.4.2 The Symbolic Approach

A symbolic-based ATPG session consists of the following three operations:

• Hardware Design Language (HDL) to BDD translation;

• functional test patterns generation for a single process;

• functional test patterns generation for interconnected processes.

32 F. Fummi and G. Pravadelli

3.4.3 Hardware Design Language to Binary Decision Diagram
Translation

VHDL design entities or SystemC modules are directly converted into BDD-based

descriptions. This operation often produces a less complex BDD in relation to the

construction of BDDs starting from the corresponding gate-level descriptions [13].

In fact, a smaller number of registers are involved in a high-level description with

respect to its implementation, because synchronization registers are not included.

Moreover, the device partitioning performed by the designer usually produces un-

related functionalities which depend on few input/output variables. This is a good

criterion for building small BDDs, and the same operation is hard to perform on a

flat gate-level description [4]. However, whenever the size of the BDD increases

considerably (i.e., in the case of circuits including large multipliers) we adopt ap-

proximate techniques.

3.4.4 Functional Vector Generation for a Single Process

Functional vectors identification is based on test pattern generation techniques

[11,12]. A fault model based on signal/variables stuck-at is used to identify func-

tional vectors and possibly code redundancies. The fault model adopted has been

proved [2] to model Register-Transfer-Level (RTL) and gate-level stuck-at faults

accurately. A fault is certified as behaviorally redundant if no vector exists that

distinguishes the fault-free BDD-based representation from the faulty BDD.

Moreover, the behavioral specification is decomposed into several BDD-based de-

scriptions with reduced size. Hence, the test generation solution is to apply the test

generation algorithm multiple times to sub-problems of affordable size, whose so-

lution may be found efficiently. The test generation algorithm works on a BDD-

based description searching a test vector in a restricted domain, whose size is in-

crementally expanded until the entire domain space is explored. This incremental

analysis is very efficient because it allows an early removal from the fault list of

all the simple faults, i.e., all faults that are tested by several test vectors, leaving

the analysis of all HTD faults at the end. This is a scalable approach, allowing the

identification of test vectors in a very large number of cases with a reduced time

complexity and memory size. However, this domain decomposition implies the

possible identification of aborted faults that could be, in principle, either redun-

dant or testable. We can therefore classify as behaviorally redundant faults only if

the entire input domain has been searched, whereas the other faults are classified

as HTD. Whenever all the strategies adopted fail to provide a manageable BDD

description of a process, faults which remain untested are classified as HTD. Our

approach provides the exact code location of the fault, thus allowing the designer

to inspect that portion of code to identify a potential design error.

 Test Generation: A Symbolic Approach 33

3.4.5 Functional Vector Generation for Interconnected Processes

Each process can be correctly designed and simply verified in isolation, but when

connected to other processes can produce design errors due to incorrect connec-

tions or overspecification. This analysis related functional test generation for a

single process to a controllability analysis among a network of processes [10].

To take into account the interaction among processes, we compute a new type

of controllability set for each process. The concept of a controllability-don't-care

set has been defined in logic synthesis [8] as the set of primary input combinations

that never occur. Two sets can be identified: external controllability-don't-care set

(CDC
ext

) and internal controllability-don't-care set (CDC). The first one is the set

containing the input patterns never produced by the environment at the network's

inputs, while the second one refers to internal nodes. To compute the internal

CDC set, the network is traversed by considering different cuts moving from the

inputs to the outputs. A CDC set is defined for each cut, corresponding to the bit

vectors never applied to the nets traversed by the cut. Similar considerations can

be made for the observability-don't-care (ODC) set. CDC and ODC sets are used

for logic optimization and for the synthesis of testable circuits at gate level [8].

The concept of a CDC set can be exploited in the analysis of interacting processes,

for functional testing, because it provides the patterns that are applicable to a

process.

3.5 The Testing Framework

The testing methodology proposed in this work is completely implemented into

Laerte++, which is a functional testing framework for SystemC/VHDL designs. It

tries to address testing issues within the whole design flow of a digital system,

from the system-level description to its structural representation, by using the

same fault model and the same test generation technique.

Laerte++ architecture is based on standard template library (STL) data contain-

ers [20] and native SystemC data types. In this way, the majority of software

structures, necessary to implement this testing framework, are directly built by ex-

ploiting SystemC language characteristics.

The main features of Laerte++ are:

• Fault model. C++ abstract classes are provided in order to model a wide set of

fault models and to evaluate the coverage of the test patterns applied. Each one

of these classes implements a different saboteur function that is able to modify

the behavior of the DUT according to the related fault model. The DUT is

modified by automatically adding instances of the desired saboteur function to

obtain a faulty description of the DUT.

• Design introspection capabilities. Internal signals and memory elements can be

directly observed and controlled from the testbench. This information is used to

guide the test pattern generation efficiently.

34 F. Fummi and G. Pravadelli

• ATPG engine. A set of symbolic and random-based test pattern generators,

which can be customized for the design under test, are defined. Every ATPG

engine generates a test pattern and measures the fault coverage according to the

selected fault model.

• Hierarchical test support. The introspection capabilities are exploited for de-

fining soft-wrappers around internal design modules and for applying a hierar-

chical test procedure.

Fault-free
DUT

Fault
injector Faulty

DUT

Laerte++
testbench

C++
compiler

Laerte++
TPG

executable

Coverage
report

Test
pattern

Fault list

Figure 3.3. Laerte++ setup flow

Figure 3.3 shows the procedure to set up a test session based on the Laerte++

framework. The first stage is completed by the fault injector, which generates the

faulty DUT description. This description is then connected to the defined

Laerte++ testbench and jointly compiled to obtain a single executable program for

generating test patterns for the DUT.

The effort required for defining an ex novo testbench should be considered as

an important parameter to evaluate the effectiveness of a testing environment. The

code reported in Figure 3.4 shows how to define in Laerte++ a complete testbench

for a DUT. The testbench definition for the example considered requires very few

additional C++ code lines, which are so simple to be almost self-explanation. The

DUT is instantiated, as usual in SystemC, then names of its input−output ports are

passed to Laerte++ with some other information related to the clock and reset sig-

nals; finally, a test pattern generation session is activated. The compilation of the

main code produces a single executable program.

 Test Generation: A Symbolic Approach 35

#include <laerte.h>
#include “dut.h”

int sc_main(int ac, char* av[]) {

 sc_signal<int> injfault;
 Lrt_signal<sc_logic> reset(1);
 Lrt_signal<sc_logic> dutclk(1);
 Lrt_signal<sc_logic> start(1);
 Lrt_signal<sc_lv<16> > data_in(16);
 Lrt_signal<bool> wr(1);
 Lrt_signal<sc_lv<16> > accout(16);
 Lrt_signal<sc_lv<10> > addr(10);
 cdut = new cpu_rtl_autl(“module”); //DUT instantiation
 cdut->start(start);
 cdut->clear(clear);
 cdut->clk(dutclk);
 cdut->data_in(data_in);
 cdut->wr(wr);
 cdut->accout(accout);
 cdut->addr(addr);
 cdut->fault_port(injfault);
 Laerte laerte(ac, av); //Command line parameter parsing
 laerte.record_fault(&injfault);//Fault signal registra-
tion
 laerte.record_reset(&reset); // Reset & Clock registra-
tion
 laerte.record_clock(&dutclk);
 laerte.record_pi(&start); // In/Out signals registra-
tion
 laerte.record_pi(&data_in);
 laerte.record_pi(&wr);
 laerte.record_cpo(&accout);
 laerte.record_cpo(&addr);

 laerte.init(); // Laerte++ initialization
 laerte.run(); // Simulation/Test execution
 laerte.print_report(&cout); // Print results
}

Figure 3.4. Laerte++ testbench

3.5.1 Fault Model Definition

The aim of the proposed testing methodology is to detect design errors through

functional testing. Thus, a fault model is necessary to simulate the effects of de-

sign errors on the DUT and to estimate its testability.

Laerte++ defines the pure abstract FaultBase class to represent a generic

fault model (see Figure 3.5). The function inject acts as a saboteur that supplies

the fault free or the faulty value of the target object according to the value of a

control line. Instances of this function are automatically injected into the descrip-

tion of the DUT to generate the faulty description (see section The Fault Injection

Strategy). Different fault models can be implemented by redefining the inject

36 F. Fummi and G. Pravadelli

function. The BitFault class extends the FaultBase class to implement the

bit coverage fault model which is adopted in this work (see section The Bit Cov-

erage Fault Model).

+get_id(): signed int

+virtual inject(): void

-detected: bool

-id: signed int

FaultBase

+inject():void

-…

TransientFault

+inject():void

-…

BitFault

+inject():void

-…

NewFault

+get_next_rand(): signed int

-…

RandomDistributionGenerator

Figure 3.5. Fault hierarchy

New fault models can be simply defined by deriving them from the Fault-
Base class: it is only necessary to implement the virtual method inject (see

Figure 3.5). For instance, let us imagine the defining of a complex transient fault

model. It is sufficient to identify a C++ class for random generation and to select a

random distribution (e.g., normal, Poisson, etc.) to define in which time frame the

fault is active.

class TransientFault : public FaultBase {
 public:
 void inject() {
 if (poisgen->next() > threshold) {
 apply_fault();}}
 private:
 void apply_fault();
 PoissonGen* poisgen;
 void* faulttarget;
}

Figure 3.6. TransientFault class definition

Figure 3.6 shows the definition of a transient fault model, which has a transient

 Test Generation: A Symbolic Approach 37

behavior modeled by a Poisson distribution.

The Bit Coverage Fault Model

The fault model adopted in this work is the bit coverage. During fault simulation

or test pattern generation, at most a one bit coverage fault can be activated accord-

ing to the following failure specification:

• Bit failures. Each occurrence of variables, constants, signals or ports is consid-

ered as a vector of bits. Each bit can be stuck-at-0 or stuck-at-1 independently

from its real value.

• Condition failures. Each condition can be stuck-at-true or stuck-at-false inde-

pendently from its real value, thus removing some execution paths in the faulty

DUT representation.

The original definition of bit coverage [11] directly covers all language charac-

teristics of VHDL and SystemC 1.2, which model RTL descriptions. On the con-

trary, it has been extended to cover the new SystemC 2.0 language features con-

cerning events and channels as follows [16]:

• Event failures. Events are faulted in two different ways: by changing the even-

tual parameter of the notify method and by avoiding the event notification.

Parameter modification is already modeled by the bit coverage fault model,

since the parameter is an sc_time variable or constant. On the other hand, no-

tification avoidance is obtained inserting an extra conditional statement.

• Channels failures. Channels are similar to ports and signals from the fault

model point of view. They can be faulted by modifying data managed by chan-

nels methods. Such data are faulted by following the bit failure strategy of the

bit coverage fault model.

Bit coverage can be easily related to the other metrics, developed in the soft-

ware engineering field [19] and commonly used in functional testing. In particular,

it unifies into a single metric the well-known statements, branches and conditions

coverage. An important part of all paths is also covered and all blocks of a de-

scription are activated several times.

• Statement coverage. Any statement manipulates at least one variable or signal.

The bit failures are injected into all variables and signals on the left-hand and

right-hand side of each assignment. Thus, at least one test vector is generated

for all statements. To reduce the proposed fault model to statement coverage it

is thus sufficient to inject only one bit failure into one of the variables (signals)

composing a statement. In conclusion, the bit coverage metric induces an

ATPG to produce a larger number of test patterns with respect to statement

coverage and it guarantees to cover all statements.

• Branch coverage. The branch coverage metric implies the identification of pat-

terns which verify the execution of both the true and false (if present) paths of

each branch. Modeling of our condition failures implies the identification of

patterns which differentiate the true behavior of a branch from the false behav-

ior, and vice-versa. This differentiation is performed by making stuck at true

(false) the branch condition and by finding patterns executing the false (true)

38 F. Fummi and G. Pravadelli

branch, thus executing both paths. In conclusion, the proposed bit coverage

metric includes the branch-coverage metric.

• Condition coverage. The proposed fault model includes condition failures

which make stuck at true or stuck at false any condition disregarding the stuck-

at values of its components.

• Path coverage. The verification of all paths of a SystemC method can be a very

complex task owing to the possible exponential grow of the number of paths.

The proposed fault model selects a finite subset of all paths to be covered. The

subset of covered paths is composed of all paths that are examined to activate

and propagate the injected faults from the inputs to the outputs of the SystemC

design module within a given time limit.

• Block coverage. In [7] statement coverage has been extended by partitioning

the code in blocks and by activating these blocks a fixed number of times. This

block coverage criterion is included in the proposed fault model in case the

number of bit faults included in a block is larger than the number of times the

block is activated. In fact, a test pattern is generated for each bit fault; thus, the

block including the fault is activated when the fault is detected.

The Fault Injection Strategy

Faults are automatically injected into the design by using an automatic injection

technique which is independent from the HDL adopted to describe the DUT

[15,17]. This allows us to describe the DUT in VHDL as well as in SystemC.

Fault injection is performed by inserting saboteurs (inject function) into a

language-independent intermediate representation of the design. The first version

of fault injector exploited the In-memory Intermediate Representation (IIR) of the

Savant environment [9], while the more recent one is based on the commercial

Arexsys Internal Format (AIF) of Vista [18]. The migration from IIR to AIF al-

lows one to manage the new features of SystemC 2.0 not supported by Savant. In

both cases, front-end and back-end tools for VHDL and SystemC, in conjunction

with an accurate API library, allow us simply to manipulate IIR or AIF descrip-

tions to inject faults in VHDL/SystemC code. After fault injection, the intermedi-

ate representation of the DUT is converted in SystemC to be linked with one of

the ATPG engines of Laerte++.
FUNCTION inject_fault_bit
 (object: BIT; fault_code: INTEGER; start_s0: INTEGER;
 end_s0: INTEGER; start_s1: INTEGER; end_s1: INTEGER)
 RETURN BIT IS
 VARIABLE res: BIT;
BEGIN
 IF (fault_code = start_s0) THEN
 res := '0';
 ELSIF(fault_code = start_s1) THEN
 res := '1';
 ELSE
 res := object;
 END IF;
 RETURN res;
END;

 Test Generation: A Symbolic Approach 39

Figure 3.7. Saboteur VHDL function for bit operands

Every occurrence of signal, variable, constant and condition within statements

of the high-level description of the DUT is replaced by an appropriate bit coverage

saboteur. They are functions which can supply the correct or faulty value of the

corresponding object depending on the value of a control signal. For the bit cover-

age fault model, a saboteur for every language type, i.e., bit, integer, standard

logic, Boolean, etc. has been defined. Faults are enumerated and an integer-type

port, named fault, is added to the design. The fault port drives all control

signals of saboteurs. Figure 3.7, Figure 3.9 and Figure 3.8 respectively show the

saboteur function for VHDL bit, bit_vector and integer operands. Sabo-

teurs for other data types are defined in a similar way referring to the bit case, and

analogous functions are defined for SystemC.

FUNCTION inject_fault_integer
 (object: INTEGER; fault_code: INTEGER; start_s0:
INTEGER;
 end_s0: INTEGER; start_s1: INTEGER; end_s1: INTEGER)
 RETURN INTEGER IS
 VARIABLE length : INTEGER;
 VARIABLE res: INTEGER;
BEGIN
 length := end_s0 - start_s0 + 1;
 res := to_int(inject_fault_bit_vector(
 to_bit_vector(object, length),
 fault_code, start_s0, end_s0,
 start_s1, end_s1));
 RETURN res;
END;

Figure 3.8. Saboteur VHDL function for integer operands

FUNCTION inject_fault_bit_vector
 (object: BIT_VECTOR; fault_code: INTEGER; start_s0:
INTEGER;
 end_s0: INTEGER; start_s1: INTEGER; end_s1: INTEGER)
 RETURN BIT_VECTOR IS
 VARIABLE left : INTEGER;
 VARIABLE right : INTEGER;
 VARIABLE index : INTEGER;
 VARIABLE index_s0 : INTEGER;
 VARIABLE index_s1 : INTEGER;
 VARIABLE length : INTEGER;
 VARIABLE res_downto: BIT_VECTOR(end_s0–start_s0 DOWNTO
0);
 VARIABLE res_to : BIT_VECTOR(0 TO end_s0 -
start_s0);
BEGIN
 left := object'left;
 right := object'right;
 length:= end_s0 - start_s0;
 IF (left > right) THEN -- vector range is downto

40 F. Fummi and G. Pravadelli

 res_downto := object;
 FOR index IN length DOWNTO 0 LOOP
 index_s0 := index + start_s0;
 index_s1 := index + start_s1;
 res_downto(index) := inject_fault_bit(object(index),
 fault_code, index_s0, index_s0,
 index_s1, index_s1);
 END LOOP;
 RETURN res_downto;
 ELSE -- vector range is to
 res_to := object;
 FOR index IN 0 TO length LOOP
 index_s0 := index + start_s0;
 index_s1 := index + start_s1;
 res_to(index) := inject_fault_bit(object(index),
 fault_code, index_s0, index_s0,
 index_s1, index_s1);
 END LOOP;
 RETURN res_to;
 END IF;
END;

Figure 3.9. Saboteur VHDL function for bit vector operands

Considering the signature of the saboteur functions, the parameter object is the

target of the fault, while fault_code is the value of the fault port. Parame-

ters start_s0-1 and end_s0-1 show the range for fault_code to activate

the stuck-at 0-1 on the target object. The fault injection process generates a unique

faulty description of the design that includes all bit coverage faults. Figure 3.10

shows an example of fault-free and faulty VHDL descriptions by using bit cover-

age saboteurs. It illustrates how the faults are inserted recursively in complex

statements as an if-then-else statement. For example, to activate the fault

stuck-at 0 on the third bit of the integer signal rmax the signal fault must be set

to 1456, since the range for faults stuck-at 0 on rmax is from 1454 to 1461. On

the other hand, to activate the fault stuck-at true on the if-then-else condi-

tion the signal fault must be set to 1473.

IF (data_in > rmax) THEN
 ack <= '1';

IF (inject_fault_bool(
 inject_fault_integer(data_in,fault,1438,1445,1446, 1453)
>
 inject_fault_integer(rmax, fault, 1454, 1461, 1462,
1469),
 fault, 1470, 1470, 1471, 1471)) THEN
 ack <= inject_fault_bit('1',fault,1472,1472,
1473,1473);

Figure 3.10. Fault-free and generated faulty VHDL code

 Test Generation: A Symbolic Approach 41

3.5.2 Automatic Test Pattern Generation Engines

The core of the ATPG engine is the pure abstract class Sequence. It is the base

class for all kinds of derived sequence classes; see Figure 3.11.

+virtual init()

+write()

+get_det_faults(): unsigned int

+get_next_vector()

-totdetfault: unsigned int

-vector<TestVector*> seq

Sequence

+init()

-…

BDDSequence

+init()

-…

WeigthedRandomSequence

+init()

-…

ProbDistributedSequence

+init()

-…

ControlBasedSequence

+get_next_rand(): signed int

-…

RandomDistributionGenerator

+init()

-…

ControlPattern

Figure 3.11. Sequence hierarchy

In the current Laerte++ implementation, five subclasses have been derived.

Four of them implement random-based ATPG algorithms and one implements a

symbolic BDD-based approach:

• Weighted random sequences. The virtual method init of the Sequence
class is implemented to generate test sequences with a predefined percentage α
of bits set to 1 and (1 − α) bits set to 0.

• Probabilistic distributed sequences. Test sequences with the most appropriate

distribution can be generated by including into the ProbDistributedSe-
quence class a random number generator. Such a random number library al-

lows us to define random permutations. This feature can be efficiently ex-

ploited for generating a DUT highly tailored test sequences. For example, a

CPU can be tested by generating opcodes with a required distribution (e.g.,

40% of memory access, 30% of logic operations, 10% of arithmetic instructions

and 20% of stack access). This allows us to test the DUT with test sequences

approximating such software applications executed on it.

• Control-based sequences. This Sequence sub-class allows us to explicitly

define the value of the bits related to the control PIs of the DUT, in the case

where a partition between control PIs and data PIs can be done. Whenever con-

trol PIs are set to some constrained values, and data PIs are unspecified, the

init method completes the unspecified bits of a test sequence by generating

random values for the data PIs only, thus preserving control values. The Con-
trolBasedSequence class allows us to test the same functionality with al-

ternative input data in order to analyze specific design behaviors deeply.

• GA-based sequences. Most of the high-level ATPG engines based on GAs

[5,6] can be reproduced by exploiting combinations of the Laerte++ features. In

fact, fitness functions, which require one to sample the memory element’s ac-

42 F. Fummi and G. Pravadelli

tivity, can exploit the RegWatcher. Moreover, the methods control and

observe of the Lrt_signal<> class can be used to measure the target fault

propagation effects and can be exploited for defining complex fitness functions.

For example, the fitness functions presented in [5,6]:

• f(s) = ()
BasicBlock

,ountExecutionC
i

is β

• f(s) = ()
BasicBlock

,ountExecutionC
i

iti cs β

• f(s) =)(Exc)(Ons)(Det 321 fkfkfk
if

++
Ω∈

where βi is the activated basic block, cit is the correlation factor for the basic

block i and the target fault t, where Det(f), Obs(f) and Exc(f) are respectively

the number of detected faults, internally observed fault effects and propagated

fault effects. k1, k2 and k3 are the assigned weights to such factors. They can be

reproduced by exploiting Lrt_signal<> for measuring fault effect propaga-

tion. The fault effects on the memory elements are observed by the Reg-
Watcher objects.

• BDD-based sequences. This class implements a BDD-based ATPG [12] which

adopts the symbolic approach described in section 3.4.2.

New Test Sequence Definition

The C++ class inheritance paradigm allows the easy definition of new sequence

classes by single or multiple class derivation. For instance, a control-based se-

quence with a Gaussian probabilistic distribution for the input data values can be

obtained by deriving it from the ControlBasedSequence class, but adding a

reference to a Gaussian random generator. Figure 3.12 shows the source code

sketching it.

 Test Generation: A Symbolic Approach 43

class ControledGaussianSequence : public ControlBasedSe-
quence
{
 public:
 void init() {
 Control-BasedSequence::init();
 InitDataBit();
 }
 void InitDataBit();
 ...
 private:
 GaussianGen* gausgen;
}

Figure 3.12. A new sequence class definition

3.6 Experimental Results

The effectiveness of the proposed methodology has been evaluated on some

benchmarks, whose characteristics are summarized in Table 3.1. For each bench-

mark three different data sizes (8, 16, and 32) have been considered as shown in

Column 2. Columns 3−5 report respectively the number of bits for PIs, primary

outputs and internal signals and variables. Then Column 5 and Column 6 show the

number of gates and memory elements for every design. The number of bit cover-

age injected faults is indicated in the last column.

Table 3.1. Characteristics of the benchmarks analyzed

Name BUS-
size

In.bits Out.bits Int.
bits

Gates FFs Faults

 8 42 24 104 2012 100 5188
diffeq 16 82 48 128 3438 180 10008

 32 162 96 256 9520 356 24196

 8 66 64 232 2239 141 5714
ellipf 16 130 128 464 4684 277 11260

 32 258 256 928 9244 549 20764

 8 194 8 40 2233 118 6482

fir 16 384 16 80 4570 262 14704

 32 768 32 160 8827 204 23672

 8 18 8 24 636 35 1588

gcd 16 34 16 48 1143 67 3338

 32 66 32 96 2153 131 6386

The genetic-based engine of Laerte++ has been used to generate test patterns

and achieve an initial estimation of the fault coverage. Most of the injected faults

are detected by the GA-based ATPG; however, a certain number of faults remain

undetected. We consider these faults HTD for random-based ATPG (RAND-

HTD). Then, a further ATPG session has been launched by exploiting the BDD-

44 F. Fummi and G. Pravadelli

based engine to detect only these RAND-HTD faults. Actually, the BDD-based

engine sensibly increases fault coverage, spending a low amount of time for all

benchmarks. These results empirically show that the most part of RAND-HTD are

ETD for a symbolic approach. Experimental results are summarized in Table 3.2.

Column 2 and Column 3 show the fault coverage and the execution time related to

the GA-based ATPG. Column 4 shows the fault coverage achieved after the BDD-

engine was applied to detect remaining RAND-HTD faults, while Column 5 re-

ports the execution time required by the BDD-engine to generate test patterns for

RAND-HTD faults. The total ATPG time (RANDOM+BDD) appears in Column

6.

Table 3.2. Random-based ATPG versus BDD-based ATPG

Name %FC Time (s) %FC Time (s) Total time (s)

diffeq_8 92.9 1200.2 98.1 6.8 1207.0

diffeq_16 95.2 640.7 98.9 19.9 660.6

diffeq_32 96.2 5630.4 99.7 114.3 5744.7

ellipf_8 93.9 245.9 98.4 2.1 248.0
ellipf_16 94.6 476.2 99.4 34.5 510.7

ellipf_32 94.4 1438.9 99.2 78.6 1517.5

fir_8 80.8 793.4 91.8 30.8 824.2

fir_16 66.7 8637.0 89.2 246.9 8883.9

fir_32 96.3 5616.7 98.7 116.8 5732.8

gcd_8 92.8 289.9 98.9 1.7 291.6

gcd_16 64.1 890.0 96.0 211.3 1101.3

gcd_32 67.5 4020.1 96.2 675.4 4695.5

FC: Fault Coverage.

3.7 Concluding Remarks

This chapter presents a functional testing environment that exploits a BDD-based

engine to increase the fault coverage achieved by random-based ATPGs. Consid-

erations about the different meaning of HTD and ETD faults with respect to the

ATPG approach adopted have been explained. In particular, we have shown how

ETD faults for a random-based ATPG are HTD for a BDD-based ATPG and vice

versa. The experimental results strengthen this conjecture, and they show how a

hybrid approach where a BDD ATPG session is applied to faults not detected by a

random-based ATPG allows us to sensibly increase fault coverage. This hybrid

approach has been implemented in the Laerte++ framework, where object-oriented

principles and native SystemC characteristics have been used to simplify the set-

up and run of ATPG sessions. Basic tasks of any functional ATPG have been im-

plemented by extending standard SystemC classes. This includes testbench set-up,

fault models, run-time coverage measurements and ATPG engines. This deep in-

 Test Generation: A Symbolic Approach 45

tegration allows the setting up and running of an ex novo ATPG session by adding

very few C++ code lines to any DUT description.

Acknowledgments

We would like to thank Fabrizio Ferrandi, Donatella Sciuto and Alessandro Fin

for their contributions on previous versions of this work.

References

[1] Breuer MA, Abramovici M, Friedman AD (1990) Digital systems testing and testable

design. IEEE Press

[2] Buonanno G, Ferrandi L, Ferrandi F, Fummi F, Sciuto D (1997) How an evolving

fault model improves the behavioural test generation. In: Proc. of ACM Great Lake

Symposium on VLSI, 124-129

[3] Bryant R (1986) Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, 35(8): 79-85

[4] Cho H, Hachtel GD, Macii E, Plessier B, Somenzi F (1993) Algorithms for approxi-

mate FSM traversal based on space state decomposition. In: Proc. of ACM/IEEE De-

sign Automation Conference, 25-30

[5] Corno F, Cumani G, Sonza Reorda M, Squillero G (2000) An RT-level fault model

with high gate level correlation. In: Proc. of IEEE International High Level Design

Validation and Test Workshop, 3-8

[6] Corno F, Cumani G, Sonza Reorda M, Squillero G (2001) Arpia: A high-level evolu-

tionary test signal generator. In: Proc. of IEEE Workshop on Evolutionary Image

Analysis, Signal, Processing and Telecommunications, 298-306

[7] Corno F, Prinetto P, Sonza Reorda M (1997) Testability analysis and ATPG on be-

havioural RT-level VHDL. In: Proc. of IEEE Int. Test Conference, 753-759

[8] Damiani M, De Micheli G (1993) Don’t care set specification in combinational and

synchronous logic circuits. IEEE Transactions on Computer Aided Design of Inte-

grated Circuits and Systems, 12(3): 365- 388

[9] Dept. of ECECS, University of Cincinnati (1999) Savant programmer's manual.

Technical report

[10] Ferrandi F, Fummi F, Pravadelli G, Sciuto D (2003) Identification of design errors

through functional testing. IEEE Transactions on Reliability, 52(4): 400-412

[11] Ferrandi F, Fummi F, Sciuto D (1998) Implicit test generation for behavioural VHDL

models. In: Proc. of IEEE Int. Test Conference, 436-441

[12] Ferrandi F, Fummi F, Sciuto D (2002) Test generation and testability alternatives ex-

ploration of critical algorithms for embedded applications. IEEE Transactions on

Computers, 51(2): 200-215

[13] Ferrandi F, Fummi F, Macii E, Poncino M, Sciuto D (1996) BDD-based testability

estimation of VHDL designs. In: Proc. of IEEE European VHDL Conference, 444-

449

46 F. Fummi and G. Pravadelli

[14] Fin A, Fummi F (2003) LAERTE++: An object oriented high-level TPG for SystemC

designs. In: Proc. of ECSI Forum on Design Languages

[15] Fin A, Fummi F, Pravadelli G (2001) Amleto: A multi-language environment for

functional test generation. In: Proc. of IEEE Int. Test Conference, 821-829

[16] Fin A, Fummi F, Pravadelli G (2003) SystemC: methodologies and application. In:

SystemC as a Complete Design and Validation Environment, Kluwer Academic Pub-

lishers, 127-156

[17] Fummi F, Marconcini C, Pravadelli G (2003) Redundant functional faults reduction

by saboteur synthesis. In: Proc. of IEEE Int. High Level Design Validation and Test

Workshop, 108-113

[18] Moussa I, Grellier T, Nguyen G (2003) Exploring SW performance using SOC trans-

action-level modelling. In: Proc. of IEEE Design Automation and Test in Europe,

120-125

[19] Myers GJ (1979) The Art of Software Testing. Wiley-Interscience, New York

[20] Silicon Graphics. Standard Template Library Documentation.

http://www.sgi.com/tech/stl/.

[21] Yu X, Fin A, Fummi F, Rudnick EM (2002) A genetic testing framework for digital

integrated circuits. In: Proc. of IEEE Int. Conference on Tool with Artificial Intelli-

gence, 521-526

4 Test Generation: A Heuristic Approach

O. Goloubeva, M. Sonza Reorda, M. Violante

Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy

4.1 Abstract

The adoption of the System-on-Chip design paradigm creates new challenges for

designers and test engineers. In this chapter a high-level test generation approach

is presented, which is able to produce high-quality vectors that can be fruitfully

exploited for test and validation purposes of both the hardware and software com-

ponents of System-on-Chip designs. Experimental results are reported showing

that our high-level test generation algorithm produces high-quality vectors in

terms of stuck-at fault coverage for hardware components and code mutants for

software components. The vectors produced can also be exploited for validation

purposes, as the results gathered while validating a processor core suggest.

4.2 Introduction

In recent years, new techniques have been developed to integrate an entire system

on a single chip, resulting in a new design paradigm known as System-on-Chip

(SOC). SOC products represent a real challenge not only from the manufacturing

point of view, but also when design issues are concerned.

To cope with the challenges faced by SOC designers, tools and techniques deal-

ing with design at high levels of abstraction are becoming an industrial reality.

Thanks to the availability of design tools supporting the system level of abstrac-

tion, most of the implementation details can be neglected; the designers can thus

focus their effort on the definition of the system behavior that best fits with the

user needs and analyze the cost/benefit trade-off of any given solution.

In particular, behavioral-level synthesis tools and the more recently introduced

co-design environments are starting to play an important role in the initial phases

of the design process. The major benefit stemming from these design environ-

ments is the possibility of quickly evaluating the costs and benefits of different ar-

chitecture alternatives, including both hardware and software components, starting

from the algorithm on SOC should implement.

While the design practice is quickly moving toward higher levels of abstrac-

tion, test issues are still mainly considered only when a detailed description of the

48 O. Goloubeva, M. Sonza Reorda and M. Violante

design is available. For the hardware modules composing SOCs, the test is typi-

cally addressed at the gate level for test-sequence generation and at the Register-

Transfer (RT) level for design-for-testability structure insertion. As far as software

modules are concerned, the exploitation of formal verification techniques has been

advocated by some authors [9] as a viable solution for assessing their correctness,

but its widespread adoption is limited by the overhead, both in terms of expertise

and resource, it implies. Several approaches have been proposed to overcome

these limitations. Symbolic evaluations [7,17] consist in first assigning symbolic

values to variables; the paths composing the program control flow graph are then

traversed, and a list of symbolic representations of each condition predicate along

the paths is recorded. Through the analysis of the constraints obtained it is then

possible to determine if paths are executable as well as the conditions for their ac-

tivation. Simpler approaches are those based on path testing [14] and test cover-

age metrics [1], where the number of paths, branches and statements executed are

counted, and those based on functional testing [1,15], where programs are consid-

ered as black boxes and the outputs they produce in response to a set of input

stimuli are checked for conformity with the expected behavior. Finally, an ap-

proach inspired by those adopted in the hardware test community is mutation test-

ing [8,19]. During mutation testing, faults are introduced into a program by creat-

ing many versions of the program, each of which contains one fault. A faulty

program is thus a mutant of the original one. The programs obtained are then exe-

cuted under a given set of input stimuli to observe which faults produce wrong re-

sults. Usually, input stimuli used during the mutation-testing process are either

provided by designers, or they are randomly generated within a Monte Carlo

simulation procedure. As a result, the input stimuli do not guarantee complete

coverage of all the mutants possibly affecting the software tested.

Today, the aforementioned scenario is rapidly changing. The introduction of

system-level design tools has unified the process of specification of the software

and hardware modules of SOCs. As an example, the users of co-design tools start

the design process by just describing the system behavior, exploiting a system-

level specification language such as SystemC [23], while neglecting which mod-

ule will be implemented in hardware and which one in software. In this scenario,

provided that a test generation process is available to deal with behavioral

specifications, the automatic generation of a single set of input stimuli suitable for

testing both hardware and software becomes possible.

The availability of an effective behavioral-level test generation process man-

dates the definition of suitable fault models and test generation algorithms sup-

porting them.

As far as the fault model is considered, the following characteristics should be

met. On the one hand, the fault model must be applicable to behavioral specifica-

tions e.g. composed of variable assignments, arithmetic/logical operations among

variables and control flow instructions. On the other hand, the fault model should

be representative of faults that can affect either the hardware or the software com-

ponents of SOCs. Several high-level fault models can be found in the literature,

which are inspired by those known in the software testing [1] domain, and that ex-

tend them to cope with hardware descriptions. The state of the art of high-level

 Test Generation: A Heuristic Approach 49

fault models is described in [12], where bit failures and conditions failures are

used to model faults affecting the memory elements and the control logic of hard-

ware components, while only their behavioral specifications are known.

As far as the test generation algorithm is considered, several approaches have

been proposed in the past that are able to maximize the coverage figure of the

high-level fault model adopted. Most of them are able to generate test patterns of

good quality, sometimes comparable or even better than those of gate-level Auto-

matic Test Pattern Generation (ATPG) tools. However, lacking general applicabil-

ity, these approaches are still not accepted by the industry. The different ap-

proaches are based on different assumptions and on a wide spectrum of distinct

algorithmic techniques. Some are based on extracting from a behavioral descrip-

tion the corresponding control machine [18] or the symbolic representation based

on binary decision diagrams [11], while others also synthesize a structural descrip-

tion of the data path [10]. Some approaches rely on a direct examination of the

Hardware Design Language (HDL) description [3], or exploit the knowledge of

the gate-level implementation [21]. Some others combine static analysis with

simulation [6,22].

The common denominator of the approaches proposed already is that they only

aim at generating input stimuli targeting faults affecting hardware components.

They are indeed intended to be exploited in design flows based on behavioral syn-

thesis, where the system is a purely hardware one. Furthermore, the goodness of

the produced input stimuli is evaluated as the gate-level stuck-at fault coverage

they attain.

In this chapter we propose a high-level test generation approach which is able

to provide input stimuli (called test vectors in the following) that can be effec-

tively used for testing both hardware [16] and software modules.

In our work, we target purely behavioral system descriptions, where the behav-

ior of each module composing the SOC is coded resorting to the SystemC specifi-

cation language. The approach we propose exploits a high-level fault model for

driving a test generation procedure, which is performed by a simple test genera-

tion algorithm based on a heuristic search. Effective test vectors can be generated

without any knowledge about the system tested except its behavior. Moreover, it

can be used to refine input vectors already available (e.g., provided by designers).

During the design process the designers already produce many input vectors,

which are used in the simulations required to assess the correctness of the imple-

mentation. These hand-produced vectors are very powerful, since they are in-

tended for highlighting bugs the designers may introduce during the development

process; they can thus also be fruitfully exploited in the test phase. Obviously, the

input vectors the designers produce are not exhaustive, since subtle bugs may exist

that cannot be easily identified. Moreover, hardware faults may correspond to the

modification of system behavior that is too complex to be dealt with by hand by

designers. As a result, an automatic procedure for test vectors generation is still

required (as well as a fault model supporting it), but it can greatly benefit from ex-

ploiting vectors that already exist.

In this chapter we first describe the assumptions at the base of our work, as well

as the test generation algorithm we developed. We then propose two possible ap-

50 O. Goloubeva, M. Sonza Reorda and M. Violante

plications of vectors generated at the high level while neglecting the implementa-

tion of the behavioral specification we are dealing with.

The first application is the test of hardware/software systems, where high-level

generated vectors are used to discover manufacturing errors in the hardware mod-

ules and bugs in the software modules. To investigate the effectiveness of the

high-level generated vectors better, we also report coverage figures obtained by a

classical ATPG tool working at the gate level.

The second application we present is the validation of application-specific

processors. These are processors that have been customized for running software

implementations of the behavioral specification for whom test vectors have been

computed.

4.3 Assumptions

The system we consider is modeled as a network of modules that are described in

a purely behavioral fashion. Variable assignments, arithmetic and logical opera-

tions among variables, and control flow instructions are used to describe how the

modules react to a set of input stimuli to produce the corresponding output values.

The communication among modules is assumed to be synchronous. Moreover,

given a set of input stimuli arranged as a sequence of input vectors, we assume

that a new vector is applied to the system inputs only when the system is in a

steady state, i.e., when the previous vector has been evaluated and the correspond-

ing output values have been produced.

The behavioral descriptions we consider are coded in SystemC [23]. Each

module in the system is an instance of the SC_MODULE class whose behavior is de-

scribed through the SC_METHOD primitive.

4.4 High-level Test Generation

In this section we describe the high-level test generation environment we devel-

oped. In particular, Section 4.4.1 discusses the fault models adopted, and Section

4.4.2 presents the test generation algorithm we implemented.

4.4.1 High-level Fault Models

Several high-level fault models are available in the literature that can be used for

assessing the goodness of test vectors while working at abstraction levels higher

than the gate-level one. For the sake of this chapter, we considered the high-level

fault models described in [12], which provide an accurate estimation of the test

capabilities of input vectors while working on behavioral descriptions.

The fault models considered are:

 Test Generation: A Heuristic Approach 51

• Bit coverage: each bit in every variable, signal or port in the model can be stuck

to zero or one. The bit coverage measures the percentage of bit stuck-at that are

propagated on the model outputs by a given test sequence.

• Condition coverage: each condition can be stuck-at true or stuck-at false. Then,

the condition coverage is defined as the percentage of condition stuck-at that is

propagated on the model outputs by a given test sequence.

In order to fruitfully exploits the aforementioned high-level fault models within

a test generation tool, we developed a high-level fault simulation environment,

which implements the Saboteur [2] approach through a two-step process:

1. The behavioral model under analysis is first instrumented by adding suitable

statements that fulfill two purposes:

• They alter the behavior of the model according to the supported fault mod-

els.

• They allow observing the behavior of the model to gather meaningful statis-

tics (in particular, they provide access to the contents of all the variables in

the model).

During this phase, the list of faults to be considered during fault simulation is

computed and stored.

2. A given set of input vectors is applied to the inputs of the model by resorting to

the simulation environment adopted. During the execution of the model, a pre-

liminary simulation is performed without injecting faults, and the output trace

of the model is recorded. Then, each fault in the previously computed fault list

is injected and faulty output trace is recorded. By comparing the faulty trace

with the fault-free one, we then compute the high-level coverage figure the vec-

tors attain.

4.4.2 High-level Test Generation Algorithm

The test generation algorithm we developed is intended for refining an already ex-

isting set of test vectors, which can be either randomly generated or hand pro-

duced by designers.

For this purpose, our High-Level Test Generator (HLTG) implements a Ran-

dom Mutation Hill Climber (RMHC) algorithm, whose pseudo-code is reported in

the Figure 4.1.

An RMHC is a Hill Climber that, given a current solution, evaluates neighbor

solutions in a completely random order until an improvement is found. When an

improvement is found, the process is iterated over the new solution. The process is

repeated until a given termination condition is not met.

In our algorithm, a solution is a sequence S of test vectors; each test vector is

applied over the model inputs according to the assumptions stated in Section 4.3.

Starting from an initial solution S, a new solution S′ is computed by applying a

random mutation operator. This operator supports three types of mutation:

• It complements one randomly selected bit within a randomly selected vector of

S.

52 O. Goloubeva, M. Sonza Reorda and M. Violante

• It increases the number of vectors in S by adding a randomly generated vector

in a randomly selected position in the test sequence.

• It decreases the number of vectors in S by removing a randomly selected vector

in the sequence.

The new solution S′ is accepted if and only if it increases the goodness of the

previous solution S.

HLTG(S)
{
 while(termination condition not met)
 {

S′ = apply_random_mutation(S)

 if(Fitness(S′) > Fitness(S))
 {

S = S′
 if(new faults are detected)
 save_solution(S)
 }
 }
}

Figure 4.1. The pseudo-code of the HLTG algorithm

In the HLTG algorithm, the goodness of a solution is defined as follows:

Fitness(S) = K1·Coverage(S) + K2·NS (4.1)

where:

• Coverage(S) is the sum of the bit coverage and condition coverage as meas-

ured by the high-level fault simulator described in Section 4.4.1.

• NS is the number of different states the model traverses during the evaluation

of a set of vectors. The state of the model is defined as the content of every

variable in the model at the end of the evaluation of one input vector. This fig-

ure is computed by exploiting the information provided by the high-level fault

simulator.

These two figures are linearly combined through two constants K1 and K2,

whose values are selected to let the first term prevail over the second one. This as-

sumption guarantees that a new solution is accepted only if it does not reduce the

number of faults that the previous solution detects.

 Test Generation: A Heuristic Approach 53

4.5 Testing Hardware/Software Systems

In this section we show how high-level generated vectors may be exploited for ef-

fectively testing hardware/software systems. In the following we consider hard-

ware testing as the process of identifying manufacturing defects, while software

testing is the process of identifying coding bugs.

The quality of vectors in testing hardware modules is measured as the number

of stuck-at faults the vectors detect when the gate-level model of the hardware

modules tested is fault simulated. The figure obtained through this process is

called gate-level stuck-at fault coverage.

Conversely, the quality of vectors in testing software modules is measured as

the number of software mutants the vectors detect; the figure obtained is called

mutant coverage. The following mutants, which are a representative subset of

possible coding bugs, were considered:

1. Replacement of arithmetic operators

2. Changing of the value of constants

3. Replacement of relational operators

4. Replacement of variables in operations and assignments

5. Replacement of logical operators

6. Deletion of operands from arithmetical operations.

In our analysis we considered five benchmarks coded in SystemC, whose char-

acteristics are described in Table 4.1. Each benchmark is equipped with an initial

set of vectors provided by the benchmark developer. The benchmarks come in part

from the high-level synthesis’92 suite and in part from a set of in-house-developed

models.

Table 4.1. Benchmark characteristics

 Lines of SystemC

code

[#]

Variables

[#]

Operations

[#]

Inputs

[#]

Outputs

[#]

BARCODE 119 5 4 4 4

BIQUAD 132 14 9 2 2

DIFFEQ 126 13 10 5 3

ELLIPF 81 29 26 8 8

LRU 91 13 4 1 1

We produced the hardware implementation of the benchmarks by synthesizing

them through the SystemC compiler. Conversely, we produced the software im-

plementation of the benchmarks by hand coding them in standard C language.

Since the benchmarks are composed of one module only, they are implemented as

a single task and thus we do not need to include any scheduler or any sort of oper-

ating system.

For comparison sake, we firstly created a hardware version of each benchmark

and then computed a set of test vectors by exploiting a commercial gate-level test

generation program (Synopsys testgen), whose results are reported in Section

54 O. Goloubeva, M. Sonza Reorda and M. Violante

4.5.1. Then, we generated a set of test vectors by exploiting a prototypical imple-

mentation of the HLTG tool, which amount to about 1000 lines of C code. We

performed two types of test generation: one starting from random vectors (Section

4.5.2) and one starting from designer-supplied vectors (Section 4.5.3).

We then fault simulated the testgen and HLTG vectors for measuring their

gate-level fault coverage, and we measured the number of mutants the vectors at-

tain when the software implementation is considered.

All the experiments have been performed on Sun Enterprise 250 machines

equipped with two processors running at 400 MHz and equipped with 2 Gb of

RAM.

The experimental flows we exploited are shown in Figures 4.2 and 4.3. In our

experiments, we adopted the Synopsys faultsim tool for gate-level stuck-at

fault simulation, and the in-house-developed mSIM for simulating software mu-

tants. We simulated the vectors computed by testgen and HLTG, resorting to

the same tools and exploiting the same hardware/software descriptions; the ob-

tained coverage figures are thus comparable.

Behavioral
model

Hardware
implementation

Software
implementation

testgen

Gate-level
vectors

faultsim

Fault
coverage

mSIM

Mutant
coverage

Figure 4.2. Simulation of testgen vectors

Behavioral
model

Hardware
implementation

Software
implementation

HLTG

Behavioral-level
vectors

faultsim

Fault
coverage

mSIM

Mutant
coverage

Figure 4.3. Simulation of HLTG vectors

4.5.1 testgen Results

In order to assess the goodness of the HLTG vectors, we performed a test genera-

tion experiments by exploiting the Synopsys testgen gate-level ATPG. The re-

sults obtained are shown in Table 4.2, where the gate-level stuck-at fault coverage

 Test Generation: A Heuristic Approach 55

(fault coverage for simplicity) and the mutant coverage are reported, as well as the

test length and the time for running the ATPG.

Table 4.2. testgen results

 Test length

[#]

Time for running
testgen
[s]

Mutant

coverage

[%]

Fault

coverage

[%]

BARCODE 2142 6430 100.0 68.7

BIQUAD 399 68,162 82.3 62.5

DIFFEQ 1162 14,901 100.0 97.4

ELLIPF 534 1736 100.0 98.3

LRU 397 22,146 84.9 65.2

4.5.2 Results Starting from Random Vectors

The results we gathered starting from randomly generated vectors are reported in

Table 4.3. Columns Initial report the initial coverage, i.e., the coverage we re-

corded for the randomly generated sequences before starting the HLTG tool. Con-

versely, columns Final report the final coverage we measured by simulating the

vectors HLTG produced.

Table 4.3. HLTG results for random vectors

 Test length

[#]

Time for

running

HLTG

[s]

Mutant coverage

[%]

Fault coverage

[%]

 Initial Final Initial Final Initial Final

BARCODE 25 10,372 955 68.9 100.0 46.7 68.7

BIQUAD 25 7,229 8959 47.9 100.0 30.8 85.6

DIFFEQ 25 6,579 3979 98.1 98.1 54.9 98.5

ELLIPF 25 5,435 439 100.0 100.0 95.1 97.7

LRU 25 7,152 1213 31.5 100.0 1.7 73.7

These results show the effectiveness of the HLTG tool, which is able to pro-

duce high-quality vectors by exploiting just the knowledge of the behavior of the

benchmark considered. For all the benchmarks, both mutant coverage and fault

coverage are always greater (or at least equal to) that obtained by vectors gener-

ated by testgen.

4.5.3 Results Starting from Designer Vectors

The results we gathered starting from already-existing vectors are reported in Ta-

ble 4.4.

56 O. Goloubeva, M. Sonza Reorda and M. Violante

Table 4.4. HLTG results for designer vectors

 Test length

[#]

Time for

running

HLTG

[s]

Mutant coverage

[%]

Fault coverage

[%]

 Initial Final Initial Final Initial Final

BARCODE 700 7902 463 100.0 100.0 74.7 79.4

BIQUAD 200 10,348 7401 100.0 100.0 80.9 83.4

DIFFEQ 100 6162 4923 100.0 100.0 80.4 98.5

ELLIPF 25 5435 439 100.0 100.0 94.1 97.7

LRU 200 5837 353 100.0 100.0 60.2 75.6

For the sake of these experiments, we exploited the vectors the benchmark de-

signer developed for validation purposes. These are vectors the designer used to

identify bugs possibly introduced in the benchmark behavior during its design

stage.

These results show that, although the designer already produced high-quality

vectors, HLTG is able to improve them further.

4.5.4 Result Discussion

By comparing the figures in Tables 4.2, 4.3, and 4.4 we can observe that:

• The number of vectors HLTG produced is usually higher than that coming from

the gate-level ATPG. This result is not surprising, due to the limited complexity

of the high-level algorithm, where few efforts are devoted to reducing the test

length.

• For all the benchmarks considered, HLTG is able to finish the test generation

procedure in an amount of time 3 to 60 times lower than that spent by

testgen. By addressing the test on behavioral descriptions, and thus

neglecting all the details that gate-level models imply, we can effectively

reduce the test generation time.

• Although very simple, the HLTG is able to produce high-quality test vectors.

The coverage results that the HLTG vectors provide are indeed comparable to

that of vectors generated by a commercial gate-level ATPG, and in most cases

better, as far as both mutant and stuck-at fault coverage are considered.

4.6 Validating Application-specific Processors

In this section we show how high-level generated vectors may be exploited for ef-

fectively validating processor cores that have been customized for being deployed

in embedded applications.

Thanks to the availability of deep sub-micron technologies, designers have now

plenty of silicon area for their designs, up to the point that it is now common to

 Test Generation: A Heuristic Approach 57

find embedded systems integrated on a single chip that features memory modules,

processor cores and even embedded programmable logic modules. To support the

design of such kinds of system effectively, which are known as SOCs, vendors

started offering Intellectual Property- (IP-) cores ready for implementing complex

tasks; for example, processor cores are now available ranging from simple control-

lers (like those implementing the Intel 8051 instruction set) to more complex pipe-

lined processors (like those based on the SPARC v8 architecture). Now that such

IP-cores are available, most of the work in SOC design consists in integrating dif-

ferent IP-cores: designers can indeed implement an SOC by properly customizing

and connecting the IP-cores needed coming from potentially very different

sources. To foster this design approach, several attempts have been made to pro-

vide IP-cores with standard interfaces. The idea behind them is to simplify the

communications between heterogeneous IPs during both normal operations (like

for example the WISHBONE interface [20]) and test operations (like the IEEE

P1500 standard).

Although silicon area is available in quantity, designers still face the need to

minimize the size of their designs. Large-area occupation still has several draw-

backs: high manufacturing costs, low yield, high power consumption, just to men-

tion a few of them. In an IP-core-based design flow, this implies the possibility of

customizing the IPs adopted to make them implement just the features needed. IP

customization is particularly efficient when the SOC is intended for deployment in

an embedded application. In this case all the IP-cores the SOC employs perform a

very specific task that does not change during the SOC lifetime, and which is well

defined from the beginning of the SOC design. Moreover, the customization is ef-

fective only when very complex IP-cores are considered, as in the case of proces-

sors. For example, if the SOC designed is using a processor IP whose architecture

embeds a parallel multiplier, but the embedded application it is aimed at does not

require multiplication operations, designers can save a huge amount of area by

removing the parallel multiplier from the IP.

Vendors must implement processor customization when IPs come under the

form of hard cores. In this case, designers cannot modify the IP architecture and

thus they have to rely fully on their suppliers. This may have a dramatic impact on

the IP cost, but it also greatly simplifies the task for the IP end users, which are

freed from the very complex task of guaranteeing IP correctness. It is indeed up to

IP suppliers to identify possible bugs introduced in the core during the customiza-

tion process.

Conversely, when processor cores are available as soft IPs, i.e., designers have

full access to the IP source code, the process of core customization may be per-

formed by the end user, who also becomes responsible for guaranteeing the cor-

rect operation of the IP, i.e., of the validation of the resulting IP, after its unused

components have been removed.

The problem of validating processor cores may be tackled either by means of

formal methods or by means of simulation-based techniques. Formal methods

have been successfully applied even to very complex architectures [13,24,25], but

their limitations often make them suitable only for validating single components.

As a result, most of the validation effort is demanded by simulation-based tech-

58 O. Goloubeva, M. Sonza Reorda and M. Violante

niques: the processor is stimulated extensively with a wide range of workloads,

whose aim is to cover all the possible corner cases, possibly highlighting design

errors. To achieve such a goal successfully, the process of generating the workload

is crucial, since from its goodness it depends the possibility of effectively discov-

ering design bugs. Several approaches have been proposed in the literature to

solve the complex problem of generating suitable workloads for general-purpose

processors. They rely either on high-level behavioral HDL descriptions of the

processors, or on more detailed RT models to generate and evaluate the goodness

of the computed workloads versus predefined metrics [4,5]. No matter which ap-

proach is adopted, the workloads produced consist of test programs the processor

core should execute and suitable input stimuli for the test programs.

The workload computation problem can be greatly simplified when the proces-

sor cores to be validated are intended for being deployed in embedded applica-

tions. In this case the program that a core should run is known in advance, while

for general-purpose processors the executed program may change from time to

time. The processor is indeed intended for running just one application and, there-

fore, the test program coincides with the embedded application. Designers should

thus focus their efforts in the development of the input stimuli for the test pro-

gram, only.

This observation suggests that high-level generated vectors that extensively test

the behavioral model of an embedded application may also be successfully

adopted for validating the processor core that has been customized for running the

application.

To validate this novel idea, we developed an automatic flow that, starting from

the high-level model of the embedded application and a description of the proces-

sor core devoted to its execution, performs the following operations:

• It automatically customizes the selected processor by removing from its de-

scription all the unused instructions, so that the resulting core embeds only

those hardware components that are actually needed by the embedded applica-

tion.

• It automatically generates a set of input stimuli suitable for being used during

the validation of the processor core obtained.

Conversely, from the already available approach, input stimuli are generated

while analyzing only the high-level model of the application the processor exe-

cutes, while all the details about the underlying hardware, i.e., the processor, are

neglected.

After describing the design flow we developed, we report some experimental

results we gathered on a soft core implementing the Intel 8051 instruction set,

showing the effectiveness of the approach we propose.

4.6.1 Design Flow

In this section we describe the approach we developed for customizing a given

processor core and generating suitable validation inputs. In developing our ap-

 Test Generation: A Heuristic Approach 59

proach, we assumed that the embedded application considered is composed of

three phases:

• An acquisition phase, during which the data the application is intended to proc-

ess are read from input devices.

• A processing phase, during which the acquired data are elaborate by the algo-

rithms the embedded application implements.

• A presentation phase, during which the results obtained are sent to output de-

vices.

These phases can be intermingled; indeed, our approach does not mandate that

one phase is completed before another one is started.

We also assumed that the processor core targeted is available as a synthesizable

RT model. The processor source code is not encrypted and all its details are acces-

sible to designers. Finally, we assumed that a simulation-based approach is ex-

ploited for performing the validation of the considered processor.

The flow we developed under the aforementioned assumptions is shown in Fig-

ure 4.4. Three main phases compose our flow. The Instruction Set Extraction flow

is shown in the leftmost part of Figure 4.4. According to this, the embedded-

application source code is first compiled and then linked with the libraries needed,

thus obtaining the binary code the processor core should execute. The source code

is obtained starting from the application high-level model by translating it from

SystemC to the C language as we already did in Section 4.5. Then, a binary code

analyzer tool identifies the subset of the processor instruction set that is needed for

executing the given embedded application. The result of the Instruction Set Ex-

traction flow is thus the list of assembly instructions the processor should imple-

ment in order to execute correctly the embedded application it is devoted to.

The information obtained is then forwarded to the Processor Configuration

flow (shown in the center of Figure 4.4), which takes care of generating the proper

processor model implementing only the required subset of the processor instruc-

tion set. A previously defined processor core database is exploited during this step,

which contains for each instruction in the processor instruction set, the list of

VHDL statements needed for its decoding, sequencing and execution. The data-

base is exploited by the processor configurator tool for generating the VHDL

source code of all the modules in the processor that are devoted to instruction

management, namely: decoding unit, control unit, arithmetic/logic unit. At the end

of the Processor Configuration flow an instance of the adopted processor core is

available that has been customized for executing the given embedded application.

The last phase is the Input Generation flow, which is depicted in the rightmost

part of Figure 4.4. According to this flow, the embedded application high-level

model is processed by the HLTG tool described in Section 4.4.2, which is in

charge of computing a set of input stimuli, i.e., test vectors. While performing the

simulations needed for validating the processor, the test vectors generated are pro-

vided to the embedded application as inputs for its acquisition phase. At the end of

this flow, a set of validation input stimuli is available that designers may use to

prove the correctness of the customized processor core obtained while running the

given embedded application.

60 O. Goloubeva, M. Sonza Reorda and M. Violante

Embedded application

source code

Compiler &
linker

Embedded application

binary code

Binary code
analyzer

Instruction
sub-set

Processor core
database

Processor
configurator

Processor
VHDL model

HLTG
tool

Validation
input stimuli

Instruction set
extraction

Processor
configuration

Input
generation

Embedded application

high-level model

Figure 4.4. The proposed processor customization and validation flow

4.6.2 Experimental Results

In this section we report the results coming from several experiments we per-

formed to analyze the capabilities of the design flow described in Section 4.6.1.

Section 4.6.3 reports results concerning our processor-customization approach,

which show that an instruction set may be significantly pruned when a given em-

bedded application is concerned. Section 4.6.4 reports results about the test vec-

tors generation approach we developed. These results confirm the soundness of

the proposed approach, and they show that the high-level fault models adopted,

which are applied only to the application running on the processor and that we

used to drive the test generation algorithm, are in very good agreement with lower

level metrics measured on the processor hardware description.

4.6.3 Results of the Processor Customization

The processor we selected for developing some benchmark applications is a soft

core that implements the Intel 8051 instruction set. The soft core is coded in about

 Test Generation: A Heuristic Approach 61

7200 lines of synthesizable VHDL, and its instruction set implements 106 instruc-

tions.

As a preliminary step for the application of our design flow, we manually in-

spected the VHDL code of the processor, and we identified all the information

needed by the binary code analyzer tool and for building the processor core data-

base depicted in Figure 4.4. This step lasted for about 3 days and was performed

by a skilled VHDL designer. It is worthwhile underlining that, although expen-

sive, this step needs to be performed only once, whenever a new processor core is

introduced in the design flow. The information obtained can then be re-used for

any new embedded application exploiting the core already analyzed.

Table 4.5. The applications considered

Application

name

Lines of

C code

[#]

Instruction set

[#]

Validation input

stimuli

[#]

CPU

time

[s]

BARCODE 198 27 4731 955

ELLIPF 113 19 130 439

LRU 107 36 6810 1213

After this preliminary step, we considered the three applications summarized in

Table 4.5, taken from the high-level synthesis’92 suite. For each of them, we ap-

plied the design flow in Figure 4.4, thus generating a customized processor core,

and the corresponding validation input stimuli. The binary code of each applica-

tion was obtained through the KEIL C compiler [26].

Table 4.5 reports for each application the number of C lines in its source-level

code. Moreover, it reports the number of instructions within the Intel 8051 instruc-

tion sets that are needed for running it and that are implemented by the customized

version of the processor obtained. Finally, it reports the number of test vectors in

the validation input stimuli set HLTG computed, as well as the CPU time for

processor customization and HLTG execution. The figures in Table 4.5 show the

relevancy of the processor customization approach we adopted: for the applica-

tions considered, just a relatively low number of instructions are needed among

the whole Intel 8051 instruction set. By pruning the initial instruction set of the

unused instructions we can thus significantly reduce the area occupation of the

processor core synthesized.

4.6.4 Results of the Test Vector Generation

We adopted the number of processor instructions that have been fully tested by S

as a measure of the goodness of a given set of validation input stimuli S, obtaining

the figure we called instruction coverage. An instruction is considered tested when

simulating S all the statements and the branches belonging to the VHDL imple-

mentation of the instruction are executed.

62 O. Goloubeva, M. Sonza Reorda and M. Violante

Table 4.6. Coverage results for HLTG and randomly generated validation input stimuli

Application

name

Instruction set

[#]

Instructions tested

by HLTG vectors

[%]

Instructions tested

by random vectors

[%]

BARCODE 27 100.0 96.2

ELLIPF 19 100.0 100.0

LRU 36 100.0 97.2

To measure the instruction coverage, we applied a given set of input stimuli to

the application by simulating1 the execution of its binary code on the VHDL

model of the customized processor. In order to implement the input/output com-

munications needed by the acquisition and presentation phases described in Sec-

tion 4.6.1, we resorted to the four input/output ports the Intel 8051 offers. They are

8-bit-wide bi-directional ports, which are memory mapped in the Intel 8051

addressing space. From the application developer point of view, the input/output

ports correspond to C variables (P0, P1, P2 and P3) that can be either read or writ-

ten. Read operations on one of these variables correspond to data transfers from

input devices to the processor, while write operations correspond to data transfers

from the processor to output devices.

Two sets of input stimuli have been used. The first set is composed of the vec-

tors computed by HLTG, and the second set is composed of randomly generated

vectors. In both the experiments the same number of test vectors have been simu-

lated.

From the results reported in Table 4.6, we can observe that HLTG vectors are

able to test all the instructions successfully in the processor cores considered,

while random vectors fail short in achieving such a goal for two of the three appli-

cations considered. In these cases, random vectors were not able to cover part of

the VHDL statements implementing the JNZ instruction (for the LRU application)

and JNE instruction (for the BARCODE application).

These results suggest the importance of cleverly selecting the test vectors to be

used during simulation-based validation. Although simple, the test vector genera-

tion approach adopted is rapidly able to provide useful test vectors that overcome

the limitations of purely randomly generated vectors.

To investigate better the capabilities of the high-level fault models described in

Section 4.4 to describe low-level errors accurately, in Table 4.7 we compared the

coverage figures (as defined in Section 4.4.2) measured on the high-level model of

the applications considered with those reported in Table 4.6, which have been

measured by simulating the VHDL model of the processor.

1 Simulations have been performed through the ModelSim VHDL simulator on a Sun En-

terprise/250 machine running at 400 MHz and equipped with 2 Gbytes or RAM.

 Test Generation: A Heuristic Approach 63

Table 4.7. Comparing high-level with low-level metrics

Application

name

High-level

coverage of

HLTG vectors

[%]

High-level

coverage of

random vectors

[%]

Instructions

coverage of

HLTG vectors

[%]

Instructions

coverage of

random

vectors

[%]

BARCODE 97.2 75.6 100.0 96.2

ELLIPF 99.9 99.9 100.0 100.0

LRU 98.8 98.2 100.0 97.2

As the reader can observe from Table 4.7, the high-level coverage has the same

trend as the instruction coverage. For both BARCODE and LRU, HLTG vectors

perform better than random ones when coverage figures are measured both at the

high level (on the application source code) and at the low level (on the processor

VHDL model). Similarly, random vectors and HLTG vectors provide the same

figures for ELLIPF when evaluated either on the application source code or on the

processor model. These results indicate that accurate testability estimation can be

performed starting from purely behavioral descriptions (such as in the case of the

source-level code of an application) while all the details of the underlying hard-

ware (the processor devoted to executing the application) are neglected.

4.7 Conclusions

This chapter presents an approach to high-level test generation suitable for provid-

ing designers with high-quality vectors at low cost. By exploiting a heuristic algo-

rithm and by working only on the purely behavioral system descriptions, our ap-

proach is able to provide high-quality vectors, or to improve already existing ones,

making them suitable for different purposes. In this chapter we reported experi-

mental evidence of goodness of high-level generated vectors in testing both the

hardware and the software modules of complex systems, as well as their capability

of validating processor cores that have been customized for running a given em-

bedded application.

High-level generated vectors are not the ultimate solution for the test and vali-

dation problem; indeed, they are not able to cover all the possible faults in a sys-

tem, mostly due to the existence of faults that can be hardly modeled at abstraction

levels higher than the gate-level one.

Nevertheless, high-level generated vectors can be of great help in reducing test

generation costs thanks to the exploitation of abstract models that require less

CPU resources for simulation and test generation. Moreover, high-level generated

vectors can be used for both testing the hardware components and for validating

the software components.

64 O. Goloubeva, M. Sonza Reorda and M. Violante

References

[1] Beizer B (1990) Software testing techniques. Van Nostrand Rheinold, New York

[2] Boué J, Pétillon P, Crouzer Y (1998) MEFISTO-L: a VHDL-based fault injection

tool for the experimental assessment of fault tolerance. In: Int’l Symposium on Fault

Tolerant Computing, 168-173

[3] Chiusano S, Corno F, Prinetto P (1999) Exploiting behavioral information in gate

level ATPG. The Journal of Electronic Testing: Theory and Applications, Kluwer

Academic Publishers, (14): 141-148

[4] Corno F, Sonza Reorda M, Squillero G, Violante M (2001) On the test of

microprocessor IP cores, In: IEEE Design, Automation & Test in Europe, 209-213

[5] Corno F, Cumani G, Sonza Reorda M, Squillero G (2003) Fully automatic test pro-

gram generation for microprocessor cores. In: IEEE Design, Automation & Test in

Europe, 1006-1011

[6] Corno F, Sonza Reorda M, Squillero G (2000) High level observability for effective

high level ATPG. In: 18th IEEE VLSI Test Symposium, 411-416

[7] Coward PD (1990) Symbolic execution and testing. In: IEE Colloquium on Software

Testing for Critical Systems, 2/1-2/3

[8] DeMillo RA, Guindi DS, McCracken WM, Offutt AJ, King KN (1988) An extended

overview of the Mothra software testing environment. In: IEEE Workshop on Soft-

ware Testing, Verification, and Analysis, 142-151

[9] Edwards S, Lavagno L, Lee EA, Sangiovanni Vincentelli A (1997) Design of embed-

ded systems: formal models, validation, and synthesis. Proceedings of IEEE, 85(3):

366-390

[10] Fallah F, Ashar P, Devadas S (1999) Simulation vector generation from HDL de-

scriptions for observability-enhanced statement coverage. In: Design Automation

Conference, 666-671

[11] Ferrandi F, Fummi F, Sciuto D (1998) Implicit test generation for behavioral VHDL

Models. In: IEEE Int’l Test Conference, 587-596

[12] Ferrandi F, Fummi F, Sciuto D (2002) Test generation and testability alternatives ex-

ploration of critical algorithms for embedded applications. IEEE Transactions on

Computers, 51(2): 200-215

[13] Harman NA, Verifying a simple pipelined microprocessor using MAUDE, In: Lec-

ture Notes in Computer Science, 2001, vol. 2267, 128-142

[14] Howden WE (1976) Reliability of the path analysis testing strategy. IEEE Transac-

tions on Software Engineering, 2(3): 208-215

[15] Howden WE (1978) Functional program testing. In: IEEE Int’l Conference on Soft-

ware and Applications, 321-325

[16] Jervan G, Peng Z, Goloubeva O, Sonza Reorda M, Violante M (2002) High-level and

hierarchical test sequence generation. In: IEEE Int’l Workshop on High Level Design

Validation and Test, 169-174

[17] King JS (1976) Symbolic execution and program testing. Communications of the

ACM, (19): 385-394

[18] Moundanos D, Abraham JA, Hoskote Y (1996) A unified framework for design vali-

dation and manifacturing test. In: IEEE Int’l Test Conference, 875-884

[19] Offutt AJ (1994) A practical system for mutation testing: help for the common pro-

grammer. In: IEEE Int’l Test Conference, 1994, 824-830

 Test Generation: A Heuristic Approach 65

[20] OPENCORES, WISHBONE system-on-chip (SOC) interconnection architecture for

portable IP cores, Revision B.3, September 2002

[21] Rudnick EM, Vietti R, Ellis A, Corno F, Prinetto P, Sonza Reorda M (1998) Fast se-

quential circuit test generation using high level and gate level techniques. In: IEEE

European Design Automation and Test Conference, 570-576

[22] Santos MB, Goncalves FM, Teixeira IC, Teixeira JP (2000) RTL-based functional

test generation for high defects coverage in digital SOCs. In: IEEE European Test

Workshop, 99-104

[23] SystemC User’s Guide, Synopsys, CoWare, Frontier Design

[24] Van Campenhout D, Mudge TN, Hayes JP, High-level test generation for design veri-

fication of pipelined microprocessors, In: Design Automation Conference, 1999, 185-

188

[25] Velev MN, Bryant RE, Formal verification of superscalar microprocessors with mul-

ticycle functional units, Exception, And Branch Prediction, In: Design Automation

Conference, 2000, 112-117

[26] www.keil.com

5 Test Generation: A Hierarchical Approach

G. Jervan, R. Ubar, Z. Peng, P. Eles

Linköping University, Linköping, Sweden

Tallinn University of Technology, Tallin, Estonia

5.1 Abstract

Advances in design tools and methods have led to an increasing amount of design

activities being performed at higher levels of abstraction. Testability, on the other

hand, is usually considered only when the detailed structural information of the

design is available. This is mainly due to the lack of general applicability of the

existing high-level test generation and design-for-test methods. In this chapter we

will present an improvement of the classical hierarchical test generation approach

by extending it to the higher levels of abstraction, while still considering the struc-

tural information from the lower levels. The approach proposed makes successful

use of both high-level fault models and the classical gate-level fault models, and

obtains results that are better than those obtained by a pure high-level test genera-

tor.

5.2 Introduction

As described in the previous chapters, the introduction of System-on-Chip (SOC)

entails several challenges with respect to the design, test and manufacturing of

such systems. To cope with the challenges faced by SOC designers, tools and

techniques dealing with design at higher levels of abstraction have been devel-

oped. For example, behavioral-level synthesis tools and hardware/software co-

design techniques are starting to play an important role in the initial phases of the

design process. The main advantage of deploying such high-level design tools is

the possibility to evaluate quickly the costs and benefits of different architecture

alternatives, including both hardware and software components, starting from a

high-level functional specification of the system implemented.

While the main design focus is quickly moving toward higher levels of abstrac-

tion, the test issues are still considered only when a detailed description of the de-

sign is available, typically at the gate level for test sequence generation and at reg-

ister transfer (RT) level for design for testability structure insertion.

To address the problems associated with test generation and design-for-test

(DfT), when performed at the later design stages, intensive research efforts have

been devoted to devise solutions to test sequence generation and DfT in the early

68 G. Jervan, R. Ubar, Z. Peng and P.Eles

design phases, mainly at the RT level. For high-level test generation, several pro-

posed approaches are able to generate test patterns of good quality, sometimes

even better than those of gate-level Automatic Test Pattern Generation (ATPG)

tools. However, owing to the lack of general applicability, most of these ap-

proaches are still not used in the industry.

This chapter presents a high-level hierarchical test generation (HTG) approach

for improving the results obtained by a pure high-level test generator. The hierar-

chical test generator takes into account structural information from lower levels of

abstraction while generating test sequences on the behavioral level. We will start

our discussion with the description of the modeling technique we use to model the

design under test and the corresponding fault modeling techniques. Then later in

this chapter the HTG approach will be described.

5.3 Modeling with Decision Diagrams

Test generation for digital systems encompasses three main activities: selecting a

description method, developing a fault model, and generating tests to detect the

faults covered by the fault model. The efficiency of test generation (quality and

speed) is highly dependent on the description method and fault models which have

been chosen. In order to generate tests at the high abstraction levels, we need a

modeling technique that can capture designs at the levels in concern. Since the

HTG approach takes advantages of both high-level and low-level design informa-

tion, we need a modeling technique which spans several levels of abstraction. This

section will describe such a model, called Decision Diagrams (DDs).

5.3.1 State of the Art

For high-level test generation, different high-level design and fault models have

been introduced. The main idea of high-level modeling is to capture the high-level

description of the system in a formal model, and to obtain different incorrect ver-

sions of the design by introducing a fault into the model. This approach is called

model perturbation [6]. The models can be “perturbed” in certain ways, e.g., by

truth-table modification, micro-operation modification, etc. In one way or the

other, this idea is implemented in different high-level fault models for different

classes of digital systems.

In the case of microprocessors, individual functional fault models and their cor-

responding test strategies have been developed for different function classes, such

as register decoding, instruction decoding, control, data storage, data transfer, data

manipulation, etc. [2, 14]. The main disadvantage of this approach is that only mi-

croprocessors are handled and the results obtained cannot be extended to cover the

general digital systems testing problem. When using Register Transfer Level

 Test Generation: A Hierarchical Approach 69

(RTL) languages, a formal definition of an RTL statement is defined, and nine

categories of functional faults for components of RTL statements are identified

[12, 13]. Recently, a lot of attention has been devoted to generating tests directly

from high-level description languages [4, 5, 18]. Some attempts to develop special

functional fault models for different data-flow network units like decoders, multi-

plexers, memories, Programmable Logic Aarrays (PLAs), etc. are described in [1].

The drawback of traditional multi-level and hierarchical approaches to test gen-

eration lies in the need of different languages and models for different levels. For

example, one might use logic expressions for combinational circuits; state transi-

tion diagrams for Finite-State Machines (FSMs); abstract execution graphs, sys-

tem graphs, instruction-set architecture descriptions, flow-charts, hardware de-

scription languages, or Petri nets for system-level description, etc. All these

models need different manipulation algorithms and fault models which are diffi-

cult to merge into a coherent hierarchical test method. To address this problem,

DDs can be used [3, 9, 11, 15, 16, 17]. Binary DDs (BDDs) have already found

very broad applications in logic design and in logic testing [3, 9]. Structurally

Synthesized BDDs (SSBDDs) are able to represent gate-level structural faults di-

rectly in the graph [15, 16]. Recent research has shown that generalization of

BDDs for higher levels provides a uniform model for both gate- and RT-level [11,

17], and even behavioral-level test generation [7, 8].

In our approach, a method for describing digital systems and for modeling

faults is based on DDs. DDs serve as a basis for a general theory of test design for

mixed-level representations of systems, in a manner similar to the Boolean algebra

for the plain logical level. DDs can be used to represent systems uniformly either

at the logic level, high level or simultaneously at both levels. The fault model de-

fined on DDs represents a generalization of the classical gate-level stuck-at fault

model.

5.3.2 Modeling Digital Systems by Binary Decision Diagrams

Let us first consider BDDs in order to illustrate the basic notations. BDDs are a

special case of DDs that are described later in this chapter for behavior-level diag-

nostic modeling of digital systems. We will first describe logic-level BDDs to pre-

pare the readers for a better understanding of the generalization of BDDs for

higher level system representation. We will use the graph-theoretical definitions

instead of traditional logic-oriented ite expressions [3, 9], because all the proce-

dures defined further for DDs are based on the topological reasoning rather than

on graph symbolic manipulations as in the case of BDDs.

Definition 5.1: A BDD that represents a Boolean function y = f(X), X = (x1,

x2, …, xn), is a directed acyclic graph Gy = (M, , X), with a set of nodes M and a

mapping from M to M. M = MN ∪ MT
 consists of two types of node: nontermi-

nal MN
 and terminal MT

 nodes. A terminal node mT ∈ MT
 = {mT,0

, mT,1
} is labeled

by a constant e ∈ {0, 1} and is called a leaf; all nonterminal nodes m ∈ MN
 are la-

beled by variables x ∈ X, and have exactly two successors. Let us denote the vari-

70 G. Jervan, R. Ubar, Z. Peng and P.Eles

able associated with node m as x(m), then m0
 is the successor of m for the value

x(m) = 0 and m1
 is the successor of m for x(m) = 1.

Definition 5.2: By the value of x(m) = e, e ∈ {0, 1}, we say the edge between

nodes m ∈ M and me ∈ M is activated. Consider a situation where all the variables

x ∈ X are assigned by a Boolean vector Xt ∈ {0, 1}
n
 to some value. The activated

edges by Xt
 form an activated path l(m0, m

T
) ⊆ M from the root node m0 to one of

the terminal nodes mT∈ MT
.

Definition 5.3: We say that a BDD Gy = (M, , X) represents a Boolean func-

tion y = f(X) iff for all the possible vectors Xt ∈ {0, 1}
n
 a path l(m0, m

T
) ⊆ M is

activated so that y = f(Xt
) = x(mT

).

Definition 5.4: Consider a BDD Gy = (M, Γ, X) where X is the vector of liter-

als of a function y = P(X) represented in the equivalent parenthesis form [16], the

nodes m ∈ MN
 are labeled by x(m) where x ∈ X and M = X . The BDD is

called an SSBDD iff there exists a one-to-one correspondence between literals x ∈
X and nodes m ∈ MN

 given by the set of labels {x(m) x ∈ X, m ∈ MN
}, and for all

the possible vectors Xt ∈ {0,1}
n
 a path l(m0, m

T
) is activated, so that y = f(Xt

) =

x(mT
).

Unlike the traditional BDDs [3, 9], SSBDDs [16] support structural represen-

tation of gate-level circuits in terms of signal paths. By superposition of DDs [16],
we can create SSBDDs with one-to-one correspondence between graph nodes and

signal paths in the circuit. The whole circuit can then be represented as a network

of tree-like subcircuits (macros), each of them represented by an SSBDD. Using

SSBDDs, it is possible to ascend from the gate level to a higher macro level with-

out losing accuracy in representing gate-level signal paths.

Our intention is to make use of the SSBDDs to capture both the structural and

functional properties of a given circuit in order to generate high-quality test pat-

terns.

Figure 5.1 shows a representation of a tree-like combinational circuit by an

SSBDD. For simplicity, values of variables on edges of the SSBDD are omitted

(by convention, an edge going to the right corresponds to 1, and an edge going

down corresponds to 0). Also, terminal nodes with constants 0 and 1 are omitted:

leaving the graph to the right corresponds to y = 1, and down to y = 0. The SSBDD

graph contains seven nodes, and each of them represents a signal path in the given

subcircuit (denoted as a macro in Figure 5.1). An activated path in the graph cor-

responding to the input pattern x1x2x3x4x5x6 = 110100 is highlighted in bold. The

value of the function y = 1 for this pattern is determined by the value of the vari-

able x5 = 1 in the terminal node of the path.

Procedure 1: Test generation. To generate a test for a node m ∈ MN
 in Gy, the

following paths have to be activated:

(1) l(m0, m),

(2) l(m1
, mT,1

), and

(3) l(m0
, mT,0

).

 Test Generation: A Hierarchical Approach 71

To generate a test pattern for the path from x7,1 to y in the circuit by using

SSBDDs means to generate a test pattern for the corresponding node x7,1 in the

graph. To test the node x7,1, according to Procedure 1, the following paths should

be activated; (6,¬1, 2, 71), (¬1, mT,1
), and (¬1, mT,0

), which produces the test pat-

tern: x1x2x3x4x5x6 = 11xx00. For example, to test a physical defect of a bridge be-

tween the lines 6 and 7, which is activated on the line 7, additional constraint

176 =∧¬= xxW has to be used, which updates the test vector to 111x00.

Figure 5.1. A gate-level circuit and its corresponding SSBDD

5.3.3 Modeling with a Single Decision Diagram on Higher Levels

Consider now a digital system S = (Z, F) as a network of components (or proc-

esses), where Z is the set of variables (Boolean, Boolean vectors or integers) that

represent connections between components, as well as inputs and outputs of the

network. Denote by X ⊂ Z and Y ⊂ Z, correspondingly, the subsets of input and

output variables. V(z) denotes the set of possible values for z ∈ Z, which are finite.

Let F be the set of digital functions on Z: zk = fk (zk,1, zk,2, ... , zk,p) = fk (Zk)

where zk ∈ Z, fk ∈ F, and Zk ⊂ Z. Some of the functions fk ∈ F, for the state vari-

ables z ∈ ZSTATE ⊂ Z, are next state functions.

Definition 5.5: A decision diagram is a directed acyclic graph G = (M, Γ, Z)

where M is a set of nodes, Γ is a relation in M, and Γ(m) ⊂ M denotes the set of

successor nodes of m ∈ M. The nodes m ∈ M are marked by labels z(m). The la-

bels can be variables z ∈ Z, algebraic expressions fm(Z(m)) of Z(m) ⊆ Z, or con-

stants.

For nonterminal nodes m ∈ MN
, where Γ(m) ≠ ∅, an onto function exists be-

tween the values of z(m) and the successors me ∈ Γ(m) of m. By me
 we denote the

successor of m for the value z(m) = e. The edge (m, me
) which connects nodes m

and me
 is called activated iff there exists an assignment z(m) = e. Activated edges,

&

&

&

&

&

&

&

1

2

3

4

5

6

7

71

72

73

a

b

c

d

e

y

Macro

&

&&

&&

&&

&

&

&

1

2

3

4

5

6

7

71

72

73

a

b

c

d

e

y

Macro
6 73

1

2

5

7271

y

1

6 73

1

2

5

7271

0

72 G. Jervan, R. Ubar, Z. Peng and P.Eles

which connect mi and mj, make up an activated path l(mi, mj) ⊆ M. An activated

path l(m0
, mT

) ⊆ M from the initial node m0
 to a terminal node mT

 is called a full
activated path.

Definition 5.6: A decision diagram Gz,k represents a high-level function

zk = fk (zk,1, zk,2, …, zk,p) = fk (Zk), zk ∈ Z iff for each value

v(Zk) = v(zk,1)×v(zk,2)×...×v(zk,p), a full path in Gz,k to a terminal node mT ∈MT
 in

Gz,k is activated, so that zk = z(mT
) is valid.

Depending on the class of the system (or its representation level), we may have

various DDs, where nodes have different interpretations and relationships to the

system structure. In RTL descriptions, we usually partition the system into control

and data parts. Nonterminal nodes in DDs correspond to the control path, and they

are labeled by state and output variables of the control part serving as addresses or

control words. Terminal nodes in DDs correspond to the data path, and they are

labeled by the data words or functions of data words, which correspond to buses,

registers, or data manipulation blocks.

When using DDs for describing complex digital systems, we first have to repre-

sent the system by a suitable set of interconnected components (combinational or

sequential subcircuits). Then, we have to describe these components by their cor-

responding functions, which can be represented by DDs.

if (y
1
=0)

 c:=R
1
+R

2
;

else
 c:=IN+R

2
;

endif;

if (y
2
=0)

 d:=R
1
*R

2
;

else
 d:=IN*R

2
;

endif;

case y
3

 0: e:=c;
 1: e:=IN;
 2: e:=R1;
 3: e:=d;
end case;
if (y

4
=2)

 R
2
:=e;

Figure 5.2. Representing a data path by a DD

Figure 5.2 depicts an example of a DD describing the behavior of a digital sys-

tem together with its possible RT-level implementation. The variables R1, R2 and

R3 represent registers, IN represents the input bus, the integer variables y1, y2, y3,

y4 represent the control signals, M1, M2, M3 are multiplexers, and the functions

R1+R2 and R1*R2 represent the adder and multiplier respectively. Each node in the

y4

y3 y1 R1 + R2

IN + R2

R1* R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

#0

R2

IN

R1

2

3

4

y3 1 1 + 2

IN + R2

R1* R2

IN* R2

2

2 0

1

2 0

1

0

1

0

1

#0

R2

IN

1

2

3

R2M 3

e
+M 1

a

*M 2

b

•

•

R1

IN •

•

•

c

d

 y1 y2 y3 y4

2M 3

+M 1

a

*2

b

•

•

R1

IN •

•

•

c

d

1 2 3 4

 Test Generation: A Hierarchical Approach 73

DD represents a subcircuit of the system (e.g. the nodes y1, y2, y3, y4 represent

multiplexers and decoders). The whole DD describes the behavior of the input

logic of the register R2. To test a node means to test the corresponding subcircuit.

For test pattern simulation, a path is traced in the graph, guided by the values of

input variables until a terminal node is reached, similar to the case of SSBDDs. In

Figure 5.2 the result of simulating the vector y1, y2, y3, y4, R1, R2, IN =

0,0,3,2,10,6,12 is R2 = R1*R2 = 60 (bold arrows mark the activated path). Instead

of simulating all the components in the circuit by a traditional approach, in the DD

only three control variables are visited during simulation, and only a single data

manipulation R2 = R1*R2 is carried out.

5.4 Hierarchical Test Generation with Decision Diagrams

One possible approach to deal with test generation complexity is to raise up the

level of design abstractions at which the basic test generation procedure is per-

formed. In the following we will describe an approach that performs the test gen-

eration procedure using the high-level behavioral description captured by DDs,

but at the same time takes into account some detailed information of the basic

components at the lower levels.

At the behavioral level we can represent digital system with a single DD or to

partition the system into control-flow and data-flow DDs. For illustrative purposes

we will use the latter approach here. The control-flow DD carries two types of in-

formation: state transition information and path activation information. The state

transition information captures the state transitions that are given in the FSM cor-

responding to the specified system. The path activation information holds condi-

tions associated with state transitions.

Depending on the partition of a system into a network of subsystems, we can

represent the whole DD model as a set of DDs, so that for every output of a sub-

system a DD will be associated with it.

A test for a system represented by DDs can be created in two parts [15]:

• A scanning test, which makes sure that the different functional blocks are

working correctly.

• A conformity test, which makes sure that the different working modes chosen

by control signals are properly carried out.

In [8] it has been shown that in some cases there exists a gap between the fault

coverage figures obtained by test sequences generated purely on a high level and

those by the gate-level ones. This gap can be reduced by integrating structural in-

formation to the test generation process by employing the HTG approach to be

discussed here.

The main idea of the HTG technique [10] is to use information from different

abstraction levels while generating tests. One of the main principles is to use a

modular design style, which allows us to divide a larger problem into several

smaller subproblems and to solve them separately. This approach allows the gen-

74 G. Jervan, R. Ubar, Z. Peng and P.Eles

eration of test vectors for the lower level modules based on different techniques

suitable for the respective entities.

The HTG algorithm of interest to us generates conformity tests from pure be-

havioral descriptions. This test set targets errors in branch selection (nonterminal

nodes of the DDs). During the second test generation phase the functional blocks

(e.g., adders, multipliers and arithmetic and logic units) composing the behavioral

model are identified (terminal nodes of the data-flow DDs), and suitable test vec-

tors are generated for the individual blocks. During the block-level test-generation

phase each block is considered as an isolated and fully controllable and observable

entity; and a gate-level test-generation tool is used for this purpose. The test vec-

tors generated for the basic blocks are then justified and their fault effects propa-

gated in the behavioral model of the circuit under test. In this way we can incorpo-

rate accurate structural information into the high-level test pattern generation

environment while keeping propagation and justification task still on a high ab-

straction level. In the following the test pattern generation algorithm is described

in detail.

5.4.1 Scanning Test

Consider a terminal node mT ∈ MT
 in Gz,k, labeled by a functional expression

fm(Z(mT
)). To generate a test for the node mT

 means to generate a test for the func-

tion fm(Z(mT
)).

For generating a test for fm(Z(mT
)) we have to solve two tasks:

1. To activate a path l(m0, m
T
) ⊆ M, from the root node m0 of the DD up to

mT
 by choosing proper values z(m)

 *
 for all the control variables z(m) in

the nodes m ∈ l(m0, m
T
)\ mT

.

2. To find the proper sets of data values D = (D1
, D2

,…, Dp
) for the variables

Z(mT
) to test the function fm(Z(mT

)).

For executing these two tasks, we can use the following test program:

FOR all the values of t = 1, 2, …, p

BEGIN

Load the data registers Z(mT
) with Dt

;

Carry out the tested working mode at the control values z(m)* for all z(m),

m ∈ l(m0, m
T
)\ mT

;

Read the value of zk and compare it with the reference value fm(Dt
).

END.

The task of the scanning test is to detect the faults in registers, buses and data

manipulation blocks. In terms of DDs, the terminal nodes are tested by the scan-

ning test.

Example 5.1: We illustrate how a test can be generated for testing the multi-

plier in Figure 5.2. In the DD of Figure 5.2 we have two terminal nodes with the

 Test Generation: A Hierarchical Approach 75

multiplier function. Let us choose the node R1*R2 for testing. By activating the

path to this node (shown by bold in Figure 5.2) we generate a control word y2, y3,

y4 = 0,3,2. To find the proper values of R1 and R2 we need to descend to the lower

level (e.g., gate level) and generate test patterns by a low-level ATPG for the im-

plementation of the multiplier. Let us have a test set of n test patterns (D11, D21;

D12, D22; … D1p, D2p) generated for the multiplier with inputs R1 and R2.

Based on the above information, the following test program can be used:

FOR all the values of i = 1, 2, …, p

BEGIN

Load the data registers R1 = D1i, R2 = D2i;

Carry out the tested working mode at the control values y2, y3, y4 = 0,3,2;

Read the value of R2 and compare with the reference D1i * D2i.

END.

Scanning Test in the Hierarchical Test Generation Environment

One of the most important parameters guiding the design synthesis process is the

technology and module library that will be used in the final implementation. By

defining the technology and module library, we can have information about the

implementation of functional units that will be used in the final design. The HTG

algorithm can employ this structural information for generating tests. Tests are

generated by cooperation of high-level and low-level test pattern generators. It is

usually performed one by one for every arithmetic operator given in the specifica-

tion.

In the HTG environment we describe here, the algorithm starts by choosing an

operator not yet tested from the specification, and uses a gate-level ATPG to gen-

erate a test pattern targeting structural faults in the corresponding functional unit.

In this approach an ATPG inspired to the Path Oriented Decision Making

(PODEM) algorithm is used, but in the general case any gate-level test pattern

generation algorithm can be applied. If necessary, pseudorandom patterns can be

used for this purpose as well.

The test patterns, which are generated by this approach, can have some unde-

fined bits (don’t cares). As justification and propagation are performed at the be-

havioral level by using symbolic methods, these undefined bits have to be set to a

given value. Selecting the exact values is an important procedure, since not all

possible values can be propagated through the environment and it can, therefore,

lead to the degradation of fault coverage.

A test vector that does not have any undefined bits is thereafter forwarded to a

constraint solver, where together with the environmental constraints it forms a test

case. Solving such a test case means that the low-level test vector generated can be

justified till the primary inputs and the fault effect is observable at the primary

outputs. If the constraint solver cannot find an input combination that would sat-

isfy the given constraints, another combination of values for the undefined bits has

to be chosen and the constraint solver should be employed again. This process is

continued until a solution is found or timeout occurs.

76 G. Jervan, R. Ubar, Z. Peng and P.Eles

If there is no input combination that satisfies the test case generated, the given

low-level test pattern will be abandoned and the gate-level ATPG will be em-

ployed again to generate a new low-level test pattern. This task is continued until

the low-level ATPG cannot generate any more patterns.

Figure 5.3 illustrates the results of applying the above HTG algorithm to the

DIFFEQ benchmark. We have annotated the VHDL behavioral description of the

design with the test generation results. With every functional unit (FU), the fol-

lowing information is attached:

1. The total number of stuck-at faults in it, when implemented in the target

technology.

2. The number of vectors, which were generated by the gate-level ATPG and

successfully justified to the primary inputs and propagated to the primary

outputs.

3. The final stuck-at fault coverage for the FU.

As can be seen, fault coverage of FUs differs significantly, depending of the lo-

cation and type of every individual FU. This information can be successfully ex-

ploited at the latter stage of the DfT flow, when selecting modules for DfT modi-

fications.

 Test Generation: A Hierarchical Approach 77

ENTITY diff IS
 PORT
 (x_in : IN integer;
 y_in : IN integer;
 u_in : IN integer;
 a_in : IN integer;
 dx_in : IN integer;
 x_out : OUT integer;
 y_out : OUT integer;
 u_out : OUT integer
) ;
END diff ;

ARCHITECTURE behavior OF diff IS
BEGIN
 PROCESS

 variable x_var, y_var, u_var,
 a_var, dx_var : integer;
 variable t1,t2,t3,t4,t5,
 t6,t7: integer ;
 BEGIN
 x_var := x_in;
 y_var := y_in;
 a_var := a_in;
 dx_var := dx_in;
 u_var := u_in;

 while x_var < a_var loop

 t1 := u_var * dx_var;
 -- Tested 5634 faults
 -- Untestable 0
 -- Aborted 14
 -- Fault coverage: 99.75
 -- Fault efficiency: 99.75
 -- 52 Vectors

 t2 := x_var * 3;
 -- Tested 4911 faults
 -- Untestable 0
 -- Aborted 737
 -- Fault coverage: 86.95
 -- Fault efficiency: 86.95
 -- 11 Vectors

 t3 := y_var * 3;
 -- Tested 4780 faults
 -- Untestable 0
 -- Aborted 868
 -- Fault coverage: 84.63
 -- Fault efficiency: 84.63
 -- 10 Vectors

 t4 := t1 * t2;
 -- Tested 5621 faults
 -- Untestable 0
 -- Aborted 27
 -- Fault coverage: 99.52
 -- Fault efficiency: 99.52
 -- 38 Vectors

 t5 := dx_var * t3;
 -- Tested 5616 faults
 -- Untestable 0
 -- Aborted 32
 -- Fault coverage: 99.43
 -- Fault efficiency: 99.43
 -- 35 Vectors

 t6 := u_var - t4;
 -- Tested 368 faults
 -- Untestable 0
 -- Aborted 60
 -- Fault coverage: 85.98
 -- Fault efficiency: 85.98
 -- 9 Vectors

 u_var := t6 - t5;
 -- Tested 424 faults
 -- Untestable 0
 -- Aborted 4
 -- Fault coverage: 99.06
 -- Fault efficiency: 99.06
 -- 15 Vectors

 t7 := u_var * dx_var;
 -- Tested 1123 faults
 -- Untestable 0
 -- Aborted 4525
 -- Fault coverage: 19.88
 -- Fault efficiency: 19.88
 -- 1 Vectors

 y_var := y_var + t7;
 -- Tested 389 faults
 -- Untestable 0
 -- Aborted 39
 -- Fault coverage: 90.88
 -- Fault efficiency: 90.88
 -- 11 Vectors

 x_var := x_var + dx_var;
 -- Tested 414 faults
 -- Untestable 0
 -- Aborted 14
 -- Fault coverage: 96.72
 -- Fault efficiency: 96.72
 -- 15 Vectors

 end loop ;

 x_out <= x_var;
 y_out <= y_var;
 u_out <= u_var;

 END PROCESS ;

END behavior;

Figure 5.3. DIFFEQ benchmark with testability figures for every individual FU

78 G. Jervan, R. Ubar, Z. Peng and P.Eles

5.4.2 Conformity Test

Consider a nonterminal node m labeled by a control variable z(m) in a given DD

Gz,k, representing a digital system with a function zk = fk (Zk). Let Z = (ZC, ZD),

where ZC is the vector of control variables and ZD is the vector of data variables.

To generate a test for the node m means to generate a test for the control variable

z(m) ∈ ZC. Suppose that the variable z(m) may have n = |z(m)| different values.

For testing z(m) we have to activate and exercise all the proper working modes

controlled at least once by each value of z(m). At the same time, for each such

working mode, a current state of the system should be generated, so that every

possible faulty change of z(m) should produce a faulty next state different com-

pared with the expected next state for the given working mode.

Let us denote by me
 the successor node of the node m for the value z(m) = e,

where e = 1, 2, …, n. For generating a test for m we have to solve the following

tasks on the DD:

1. To activate a path l(m0, m)\m ⊆ M from the root node of the DD up to the

node m by choosing proper values z(m′)* for all the control variables

z(m′) ∈ ZC in the nodes m′ ∈ l(m0, m)\ m.

2. To activate for all neighbors me
 of m nonoverlapping paths l(me

, me,T
)

from me
 up to the nonoverlapping terminal nodes me,T

 by choosing proper

values z(m′)* for all the control variables z(m′) ∈ ZC in the nodes of m′
∈ l(me

, me,T
).

3. To find the proper set of data (the values z* of the variables z ∈ ZD), by

solving the inequality z(mT,1
) ≠ z(mT,2

) ≠ … ≠ z(mT,n
) where n = | v(z(m))|.

Consider the resulting test as a set of symbolic test patterns T = {(z(m) = e, ZC*,

ZD*, z(mT,e
)) e ∈ v(z(m))}, where e is the symbolic value of the tested variable

z(m); ZC* is the constant vector of the other control signals corresponding to the

set of variables ZC ⊆ Z, and generated by the first two steps of the algorithm; ZD*

is the constant vector of the data values corresponding to the set of variables ZD ⊆
Z, and generated by the third step of the algorithm; and, finally, z(mT,e

) is the ex-

pected output value of the system corresponding to the value e of the tested con-

trol variable z(m). The final conformity test of the control variable z(m) created

from the symbolic test pattern T consists of the following program:

FOR each value of e = 1, 2, …, |z(m)|
BEGIN

Load the data registers with ZD*;

Carry out the tested working mode at the control signals z(m) = e, and

ZC*;

Read the value of zk, and compare with the reference value z(mT,e
).

END.

The task of the conformity test is to detect the control faults and the faults in

multiplexers. In terms of DDs, the nonterminal nodes are tested by the conformity

test.

For example, in order to test nonterminal node IN1 in Figure 5.4, one of the

output branches of this node should be activated. Activation of the output branch

 Test Generation: A Hierarchical Approach 79

means activation of a certain set of program statements. In our example, activation

of the branch IN1 < 0 will activate the branches in the data-flow DD where q = 1

(A := X). For observability, the values of the variables calculated in all the other

branches of IN1 have to be distinguished from the value of the variables calcu-

lated by the activated branch. In our example, node IN1 is tested, in the case of

IN1 < 0, if X Y. The path from the root node of the control-flow DD to the node

IN1 has to be activated to ensure the execution of this particular specification

segment and the conditions generated here should be justified to the primary in-

puts of the module. This process will be repeated for each output branch of the

node. In the general case there will be n(n − 1) tests, for every node, where n is the

number of output branches.

q q'
0

...

IN1 1

2

<0

A q
1

2

X

Y

Figure 5.4. Conformity test example

Example 5.2: Let us consider how to generate a test program for testing the

node m labeled by y3 in Figure 5.2. First, we activate the path l(m0, m)\m, which

results in y3 = 2. Then we activate four paths l(m, me,T
) for each value e = 1, 2, 3,

4 of y3, which results in y1 = 0 and y2 = 0. Two of the four paths for values y3 = 1

and y3 = 2 are “automatically” activated, since the successors of the node y3 for

these values are terminal nodes. The test data R1 = D1, R2 = D2, IN = D3 are found

by solving the inequality

R1 + R2 ≠ IN ≠ R1 ≠ R1 * R2 (5.1)

From the procedure described above, the following conformity test for the

control variable y3 is generated:

FOR e = 1, 2, 3, and 4

BEGIN

Load the data registers R1 = D1, R2 = D2;

Carry out the tested working mode at

y3 = e, y1 = 0, y2 = 0, y4 = 2 and IN = D3;

Read the value of R2, and compare it with the reference value z(mT,e
).

END.

≠

≠

Control-flow DD:

Data-flow DD:

80 G. Jervan, R. Ubar, Z. Peng and P.Eles

In the case when the control values are data dependent the algorithms then

become more complicated, since the data found for nonterminal nodes by activat-

ing the paths in the DD should be consistent with data found in processing the

terminal nodes.

In the general case, a digital system cannot be represented by a single DD. In

this case a system will be represented as a network of components or subsystems

where each subsystem is modeled by its own DD. The test sequences generated

for a subsystem with its DD by the procedures described above are to be treated as

local test sequences. To generate the whole test sequence in a global sense, the

classical fault propagating and line justification tasks should be solved on the sys-

tem level. For solving these tasks, DDs can also be used.

To justify a value D for a variable zk represented by a DD Gz,k, a path should

be activated in Gz,k from the root node to a terminal node mT
 labeled by a regis-

ter, bus or input variable z, and the value D is assigned to z. If z corresponds to an

input or any other directly controllable point, the line justification task is finished.

Otherwise, if z is a register or a bus represented by its own DD Gz, the line

justification tasks will be iteratively solved for z using the graph Gz.

To propagate the fault from the point represented by a variable z through a

subsystem which is represented by a DD Gz,k, a test generation procedure de-

scribed above should be carried out in Gz,k for the node m labeled by z. The test

generated for the node m is propagating any erroneous value of z(m) to the output

variable zk of the subsystem.

5.5 Conclusions

This chapter describes a modeling technique, the DD, which is used to capture a

digital design at several levels of abstraction. We illustrate first how DDs can be

used to capture a gate-level design, with respect to both functional and structural

information. The use of DDs to capture designs at the RT and behavioral levels

was then described.

With the help of the DDs, an HTG approach could be developed to generate

test patterns efficiently based on information from several abstraction levels. The

hierarchical test pattern generation technique described generates test sequences

with higher fault coverage than those of a pure behavioral test generator. This im-

provement in fault coverage has been obtained by integrating structural informa-

tion coming from lower level design. The algorithm maintains a fast efficacy in

terms of execution speed by mainly working at the behavioral level for test vector

justification and propagation. In the particular HTG implementation, a constraint-

solving algorithm is used to solve the vector justification and propagation prob-

lems.

 Test Generation: A Hierarchical Approach 81

References

[1] Abraham JA (1986) Fault modeling in VLSI. VLSI testing. North-Holland, 1-27

[2] Brahme D, Abraham JA (1984) Functional testing of microprocessors. IEEE Transac-

tions On Computers, 33(6): 475-485

[3] Bryant RE (1986) Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, 35(8): 667-690

[4] Ghosh S, Chakraborty TJ (1991) On behavior fault modelling for digital designs.

Journal of Electronic Testing: Theory and Applications, (2): 135-151

[5] Giambiasi N, Santucci JF, Courbis AL, Pla V (1991) Test pattern generation for be-

havioral descriptions in VHDL. In: Proc. of the VHDL conference, 228-234

[6] Gupta AK, Armstrong JR (1985) Functional fault modeling and simulation for VLSI

devices. In: 22nd Design Automation Conference, 720-726

[7] Jervan G, Eles P, Peng Z (1999) A hierarchical test generation technique for embed-

ded systems. In: Proc. Electronic Circuits and Systems Conference, 21-24

[8] Jervan G, Peng Z, Goloubeva O, Sonza Reorda M, Violante M (2002) High-level and

hierarchical test sequence generation. In: Proc. of IEEE International Workshop on

High Level Design Validation and Test, 169-174

[9] Minato S (1996) BDDs and applications for VLSI CAD. Kluwer Academic Publish-

ers

[10] Murray BT, Hayes JP (1998) Hierarchical test generation using precomputed tests for

modules. In: Proc. IEEE International Test Conference, 221-229

[11] Raik J, Ubar R (1999) Sequential circuit test generation using decision diagram mod-

els. In: Proc. of IEEE Design Automation and Test in Europe, 736-740

[12] Shen L, Su SYH (1988) A functional testing method for microprocessors. IEEE

Transactions on Computers, 37(10): 1288-1293

[13] Su SYH, Lin T (1984) Functional testing techniques for digital LSI/VLSI systems. In:

21st ACM/IEEE Design Automation Conference, 517-528

[14] Thatte SM, Abraham JA (1980) Test generation for microprocessors. IEEE Transac-

tions on Computers, 29(6): 429-441

[15] Ubar R (1996) Test synthesis with alternative graphs. IEEE Design&Test of Com-

puters, Spring 1996: 48-57

[16] Ubar R (1998) Multi-valued simulation of digital circuits with structurally

synthesized binary decision diagrams. Multiple Valued Logic, 4: 141-157

[17] Ubar R (1998) Combining functional and structural approaches in test generation for

digital systems. Microelectronics Reliability, 38(3): 317-329

[18] Ward PC, Armstrong JR (1990) Behavioral fault simulation in VHDL. In: 27th

ACM/IEEE Design Automation Conference, 587-593

6 Test Program Generation from High-level
Microprocessor Descriptions

E. Sánchez, M. Sonza Reorda, G. Squillero

Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy

6.1 Abstract

This chapter describes and analyzes a methodology for gathering together test-

programs for microprocessor cores during the complete design cycle starting from

early design phases. The methodology is based on an almost automatic tool and

could be applied to generate test-programs for stand-alone microprocessor cores as

well as for these embedded in systems-on-chip. The main idea is to take advantage

of all possible microprocessor descriptions delivered through the whole design cy-

cle to generate test-programs able to achieve a high FC% at gate-level. Most of the

efforts of the methodology presented are focused on test program generation from

high-level microprocessor descriptions. A case study is presented tackling a pipe-

lined microprocessor core.

6.2 Introduction

As sketched by the SIA02 roadmap, today most of the integrated circuit (IC)

manufacturing cost is brought about by the test processes. Only a few years ago,

the testing cost represented a small percentage of the total cost in the whole manu-

facturing budget, but, among other reasons, the increasing difficulty in generating

appropriate testing patterns and the expensive elaboration times required to test an

IC raised these costs up to near 70%. Moreover, test methodologies do not pro-

gress at the same pace as manufacturing technology does, contributing to enlarg-

ing the cost gap. While the production costs continue to go down, the testing cost

slope remains flat or trends upward [19].

The problem of testing is especially critical in the case of microprocessors and

microcontrollers. Modern designs contain complex architectures taking advantage

of the current copiousness of resources brought by technological advances. For

example, most of the modern microprocessors are based on pipeline structures;

thus, performance and functionality are enhanced, but at the same time the test

84 E. Sánchez, M. Sonza Reorda and G. Squillero

complexity is increased. Indeed, pipelined and superscalar designs have been

demonstrated to be random pattern resistant.

Nowadays, new integration trends make it possible to design an entire system

into a single chip, the so-called System-on-a-Chip (SOC). SOCs commonly in-

clude one or more microprocessor cores. These cores may be purchased as Intel-

lectual Properties (IPs) from a third-party core vendor, or designed in-house. Mi-

croprocessor cores are following the same trend as high-end microprocessors, and

quite complex units may be easily found in modern SOCs. The incredible diffu-

sion of these kinds of core is increasing the challenges in the test arena.

Through their lifecycle, microprocessor cores undergo several tests and audits.

At earlier stages, validation and verification tests aim at guaranteeing that the final

unit conforms to the initial specifications. Each time that a new step into the de-

sign cycle is reached, the new design must be verified. Comparing the behavior of

the new model with the previous one is a required step, but also the new features

should be checked. Once the processor is produced, manufacturing tests must be

performed to determine the correctness of the final product. At this point, paramet-

ric and functional tests are commonly applied by the manufacturers. Parametric

tests guarantee a general acceptance of the Device Under Test (DUT), avoiding,

for example, shorts or open circuits. Functional tests check for proper operation of

the DUT. The final user may carry out new tests to eventually assert the received

unit functionality or to detect possible errors in the microprocessor during its in-

field lifecycle.

Traditionally, tests have been applied using external Automatic Test Equip-

ments (ATEs) [1]. However, technological progress is pushing up the complexity

and operating frequencies of low-end microprocessor cores. It has become appar-

ent that parametric testing alone is not sufficient to achieve the high quality goals

required. Moreover, even though ATE effectiveness on applying parametric test is

unquestionable, the costs for an ATE able to run at-speed functional tests are be-

coming prohibitive for manufacturers of moderate quantities of units [19]. As a

consequence, the test community headed to alternative solutions.

To overcome these problems, industries are trying to reduce the use of expen-

sive ATEs. One interesting strategy is to perform part of the test plan resorting to

the so called Software-Based Self-Test (SBST) [4], where the test consists in a

mere set of assembly programs and does not rely on any special test point to force

values or observe behaviors during test application. Such programs could be

loaded in RAM (e.g., resorting to a DMA or other mechanisms), and executed to

test the core. A minimum effort is needed to extract test results.

Clearly, an SBST test is executed at-speed, and requires a very simple ATE and

little hardware overhead to download and upload the test information. Further-

more, the SBST is a suitable solution for stand-alone microprocessors as well as

for those embedded in an SOC. However, the problem of generating effective test-

programs is still open.

This chapter describes a methodology for devising effective test-programs us-

ing a test strategy based on an SBST. The resulting methodology is almost auto-

mated and takes benefit from the information available in the different design

stages, from the Instruction Set Architecture (ISA) to Register Transfer level (RT-

 Test Program Generation from High-level Microprocessor Descriptions 85

level), and eventually netlist. The key idea is to build a set of test-programs

through the whole design cycle of the processor, using the microprocessor high-

level descriptions delivered during the design process. Indeed, the most of the ef-

forts and analysis in the presented methodology are focused on automatic genera-

tion of test-programs for microprocessors at RT-level; in fact, a systematic exploi-

tation of the available coverage metrics at this design abstraction level reports

interesting results.

Following the proposed methodology, a complete set of programs suitable to

appropriate test the tackled microprocessor core will be available. In addition, the

generated test-programs can also be exploited for design verification in the earlier

phases of the design.

Additionally, the framework set up for performing the experiments allows a

quantitative comparison of the different metrics at RT-level. A detailed analysis of

the effectiveness of programs devised for maximizing different metrics, and their

usability for testing is also reported.

The chapter organization is as follows: the next section presents an outline

about the state of the art in test-program generation for microprocessors; Section

6.4 describes the proposed methodology in detail. Once the methodology basic

elements have been described, an experimental setup developed to analyze the

method suitability is presented in Section 6.5: a pipelined microprocessor core is

used as a case study and an evolutionary tool based on the genetic programming

paradigm is used as an automatic test-program generator. The experimental results

are shown in Section 6.6. Finally, Section 6.7 presents an analysis of the results

obtained and concludes the chapter.

6.3 Microprocessor Test-program Generation

Microprocessor test-programs have traditionally been devised resorting to func-

tional approaches based on exciting functions and resources. The canonical meth-

odology is described in [22]; however, it involves a high amount of manual work

performed by skilled programmers, and does not provide any quantitative measure

about the gate-level fault coverage obtained. In addition, this methodology leads

to very long test sequences which, for example, test all registers, test all transfer

paths between registers, test every instruction with every possible operand, and so

on.

Different approaches (such as [3]) proposed interesting techniques for efficient

compilation of self-test programs, but they left the responsibility for generating the

self-test programs to the test engineers.

In [21] the program VERTIS was presented, which is able to generate both test

and verification programs based only on the processor’s ISA. The final program

exploits almost all the possible operands for each instruction of the GL85 micro-

processor, leading to very large programs. The VERTIS program was compared

against the patterns generated automatically by two Automatic Test Pattern Gen-

eration (ATPG) tools, giving excellent results. However, users need to determine

86 E. Sánchez, M. Sonza Reorda and G. Squillero

the heuristics to assign values to instruction operands to achieve high stuck-at fault

coverage. In some cases, this might not be a trivial task.

Chen and Dey [5] propose DEFUSE, a deterministic method to generate test-

programs able to reach good fault coverage on the Arithmetic and Logic Unit

(ALU) of a microprocessor, and to compact the result. The approach is very effec-

tive with combinationally testable parts (i.e., ALUs), but shows some limitation

when hard-to-test sequential modules (e.g., control units) are addressed. On the

other hand, [2] is based on generating random sequences of instructions. It is able

to attain a fairly high level of fault coverage; however, it assumes that all instruc-

tions are single-cycle and buses are never floating. Both approaches require the in-

sertion of Built-In Self-Test (BIST) circuitry.

Regarding test application, a possible architecture supporting software-based

self-test solutions was described in [14] and [9]. To make this approach feasible,

RAM of sufficient size should be available on the SOC and easily accessible ex-

ternally. An ATE can load into the memory the test-program when required, and

the processor core can execute it. Test execution is always performed at-speed, in-

dependently of the speed of the mechanisms used for loading the RAM and check-

ing results.

Corno et al. [9] propose a semi-automated approach to test-program generation

based on a library of macros. A genetic algorithm chooses those macros. The ap-

proach is shown able to attain reasonable fault coverage (85%) on a common mi-

croprocessor core, and requires no additional hardware or scan structures. How-

ever, test generation relies on a library carefully compiled by experts.

Kranitis et al. [11] describe a methodology that allows devising an effective

test-program for a microprocessor core. However, the method requires that test

engineers create deterministic test patterns to excite the entire set of operations

performed by each component of the core.

Paschalis et al. [16] propose an evolution of [11]: a component-based divide-

and-conquer approach is proposed for on-line test generation for microprocessors.

Program generation is based only on the processor ISA and RT-level description.

The methodology is developed going through three phases: information extraction,

classification of the processor components, and test code development for compo-

nents. At the end, the authors take advantage of the deterministic routines devel-

oped earlier to tackle specific components.

An automated functional self-test method based on generation of random in-

struction sequences with pseudorandom data, generated by software Linear Feed-

back Shift Register while the approach uses the on-chip cache to apply these, is

presented in [15]. The results obtained reflect the method effectiveness; however,

strong constraints, such as that the loaded program can produce neither cache

misses nor bus cycles, make the method hardly transportable.

 More recently, in [18] a mixed methodology using SBST and low-overhead

BIST has been applied to test embedded Digital Signal Processors (DSPs) core

components. Test routines are generated taking into account the instructions’ ob-

servability and controllability over the component. These test routines are exe-

cuted within a loop with different random numbers delivered by the appropriate

hardware-inserted random generators to enhance the final fault coverage. As the

 Test Program Generation from High-level Microprocessor Descriptions 87

results show, the method is suitable for functional components but not for control

components.

An almost automatic framework was proposed in [7]. The approach is based on

an evolutionary algorithm and it is capable evolving small test-programs able to

capture quite interesting target corner cases. The approach demonstrated its effec-

tiveness when it was compared against an instruction randomizer method tackling

a pipeline microprocessor. At the end, not only sharper programs were developed,

but also smaller ones.

Available high-level routines have also been used, but despite the effortless-

ness, this is not a good solution for test. Owing to the intrinsic nature of the algo-

rithms and of compiler strategies, these programs are seldom able to excite all

functionalities and do not take into account observability.

On the other side, generating verification programs for microprocessor cores

could be performed using two different approaches: formal and simulation based.

Formal methods try to verify the correctness of a system by using mathematical

proofs, whereas simulation-based design verification tries to uncover design errors

by detecting a circuit faulty behavior when deterministic or pseudorandom tests

are applied. Formal methods implicitly consider all possible behaviors of the mod-

els representing the system and its specification, so the accuracy and completeness

of the system and specification models, as well as required computation resources,

are a fundamental limitation. On the contrary, simulation-based methods do not

suffer from the same constraints, but they can only consider a limited range of be-

haviors and will never achieve 100% confidence of correctness.

Formal verification methods for complex microprocessor designs have been

targeted by several authors, for instance [10], [24] and [25]. Although results were

significant, these methods require considerable human efforts.

Simulation-based methods have demonstrated their suitability for verifying

complex microprocessors; [20] proposed a technique where the processor itself

generates a test at run-time by self-modifying code. Similarly, [23] showed a

method for generating instruction sequences for validating the branch prediction

mechanism of the PowerPC604. Generated sequences are very effective, but

methodologies exploit a deep knowledge of the target processors and cannot be

easily applied on general designs.

In [8], the experimental results show that automatic simulation-based methods

are able to reach high coverage levels of the RT-level processor description, de-

spite the fact that in that case the microprocessor tackled was quite complex.

6.4 Methodology Description

The proposed methodology is based on a step-by-step approach that allows

generating and collecting test-programs through the whole design cycle. Test-

program generation is performed each time a new microprocessor model is

delivered; thus, it is not necessary to wait to the end of the design cycle to start the

generation of programs. Moreover, being a cumulative process that tackles high-

level descriptions, the approach minimizes the use of explicit low-level fault

88 E. Sánchez, M. Sonza Reorda and G. Squillero

tions, the approach minimizes the use of explicit low-level fault simulation to

drive the test-program generation, greatly reducing computational efforts. In fact,

fault simulation is only used at the end of the generation to complete the set of

test-programs. Figure 6.1 is a graphical representation of the possible progress of

the final fault coverage (FC) percentage (FC%) at gate-level obtained by the test-

programs devised in the different phases.

RTArchitectural Gate

Tu
ni

ng

100%

Design

abstraction level

µProcessor

Specifications

Fu
nc

tio
na

l

C
od

e
co

ve
ra

ge

St
at

em
en

t

co
ve

ra
ge

B
ra

nc
h

co
ve

ra
ge To

gg
le

co
ve

ra
ge

To
gg

le
Ac

tiv
ity Fa

ul
t

Si
m

ul
at

io
n

RTArchitectural Gate

Tu
ni

ng

FC

100%

Design

µProcessor

specifications

To
gg

le
ac

tiv
ity

Fa
ul

t
si

m
ul

at
io

n

Figure 6.1. Qualitative description of the methodology

To determine if a logic circuit is good, patterns or test vectors are applied to the

circuit inputs, and then the circuit responses are compared with the expected out-

puts. If the responses match, the circuit can be considered as good. However, the

results of the test process are directly correlated with the quality of the patterns

[1]. The performance measure of the test patterns is commonly called the FC. This

percentage value represents the patterns’ ability to detect specific faults in the

logic circuit. A fault is a model of one or more possible physical defects. In most

cases, when an FC value is provided, the single stuck-at fault is chosen as the fault

model. However, other fault models can be adapted, such as the delay fault model.

A general microprocessor design lifecycle is shown in Figure 6.1. The whole

cycle has been split into three successive macro phases. Each phase is character-

ized by a different kind of design abstraction model: architectural, RT level and

gate level.

A pure simulatable model, like the one embedded in an Instruction Set Simula-

tor (ISS), characterizes the first phase; architectural simulatable models, such as

high-level programs possibly catching some peculiar aspects of the internal de-

sign, may be found too. In the second phase, more structured models such as RT-

level descriptions are available; hybrid models, where some blocks have been de-

tailed down to gate level, but others are still at the RT level, could be included in

 Test Program Generation from High-level Microprocessor Descriptions 89

this phase. Behavioral simulators drive this section of the process. Finally, in the

last phase of the design, before the manufacturing stage, the processor netlist is as-

sumed available.

Figure 6.1 gives a qualitative idea of the FC% that could be obtained by gener-

ating test-programs using different microprocessor models; these percentages re-

flect the potential performance of test-programs generated on each stage. As esti-

mated, test-programs generated in the early stages provide poorer results in terms

of FC%; however, these collected programs are a good initial point regarding the

entire process. In particular, this chapter shows that test-programs generated in the

second part of the design cycle, when RT level and hybrid descriptions are avail-

able, are able to reach an important contribution of fault coverage regarding the

complete set of programs.

The descriptions available in the final phase lead to a more expensive test-

programs generation process; consequently, this phase should mainly be devoted

to completion and tuning regarding FC%.

As outlined before, the main goal of the generation process is to gather a set of

programs able to reach a high FC%; in the following, a more detailed explanation

about both models and metrics used in each stage is presented.

6.4.1 Architectural Models

In the first steps of a microprocessor design, a model may not be available, and

designers can only rely on the ISS based on the microprocessor ISA. Later, a more

complete simulatable model may be built in some high-level language. This situa-

tion is depicted in Figure 6.2.

Simulatable models are used directly to verify the system behavior against the

specifications. Compatibility proofs may be performed to check, for example,

whether new microprocessor enhancement conforms with previous version speci-

fications. Most of the programs used to audit those models are functional ones.

Usually an ISS is available from the first design stages. The ISS is able to simu-

late the program flow execution on the microprocessor and occasionally could

even be considered a kind of specification. At this time, the ISA could be evalu-

ated through functional programs. In the first stage, verification programs are gen-

erally hand written; those programs exercise specific functionalities according to

the design engineer experience; for example, very simple programs containing all

possible instructions or performing an intricate mathematical function can be

developed.

Since functional or hand-written programs do not target the FC, by examining

those programs’ results against the FC% it is possible to observe very low cover-

age; however, most of them cover special corner cases.

More interesting, simulatable models are sometimes available, especially when

microprocessor complexity is higher. Those models are typically processor high-

level descriptions composed of a set of functional boxes that more closely match

the planned architecture. Normally, these blocks represent complete functional en-

90 E. Sánchez, M. Sonza Reorda and G. Squillero

tities like closed and independent blocks, but different solutions are also possible

at this description level.

Devising test-programs at this level is not a trivial task. Currently, test-

programs for such simulatable models can target code coverage metrics such as

line coverage of the program implementing the microprocessor, sometimes called

architectural coverage.

There is not a very strong correlation between simulatable models’ metrics and

final processor faults, mainly because the observability is lacking. Thus, the FC%

results obtained using these programs are low.

Accordingly, in the effort to increment test-program effectiveness, it is possible

to use clever metrics such as the Toggle Activity (TA) undergone by all intercon-

nection paths between functional blocks. However, using new metrics could re-

quire one to instrument the architectural model with new macro blocks able to

compute the specific metric, which do not belong to the final processor descrip-

tion, and in addition could decrease the model performance. Another option to en-

hance test-program generation at this stage consists in the use of more detailed

microprocessor descriptions, but usually they are not available.

Architectural

100%

µProcessor

Specifications

Fu
nc

tio
na

l

C
od

e
co

ve
ra

ge

Architectural

FC

100%

µProcessor

specifications

Figure 6.2. Architectural models stage

6.4.2 Register-transfer-level Models

Most of the efforts in the methodology presented are on test-program generation

for RT-level models, because those microprocessor representations are light

enough to work on today’s simulation tools. Figure 6.3 is a representation of this

stage.

 Test Program Generation from High-level Microprocessor Descriptions 91

Different logic models of the processor, such as RT-level descriptions or hybrid

RT-gate level ones, are found in the middle of the design cycle. As a part of their

model verification process, and before manufacturing, a set of verification pro-

grams is generated to discover design flaws. Usually, those programs aim at excit-

ing almost all the microprocessor functionalities.

Pure Register-transfer-level Models

RT models are more detailed microprocessor descriptions than simulatable ones.

Each time the design process advances, new RT-level models are delivered corre-

sponding to more and more detailed structures belonging to the microprocessor

architecture. To assert whether those models correspond to the specifications,

early audits are performed using verification programs.

Generation of verification programs is a time-demanding task; therefore, those

programs represent valuable material for the whole design cycle. According to this

methodology, if verification programs have been generated using a refinement

method, these programs could be suitable test-programs.

RT

ge

St
at

em
en

t

co
ve

ra
ge

Br
an

ch
co

ve
ra

ge To
gg

le
co

ve
ra

ge

To
gg

le
Ac

tiv
ity

RT

To
gg

le
ac

tiv
ity

Figure 6.3. RT model stage

The core provider could supply verification programs, but in the case they are

not available, automatic tools such as those described in [21] or in [7] can be used

to perform the task. Independently from the origin, formal and software-based

methods provide sets of programs able to cover special corner cases of the proces-

sor.

Targeting verification, statement coverage (SC) has until now been the most

popular coverage metric to evaluate the effectiveness of programs. However,

many authors hold that it is not possible to accept a single coverage metric as the

most reliable and complete one [6]; thus, a 100% coverage on any particular met-

92 E. Sánchez, M. Sonza Reorda and G. Squillero

ric cannot guarantee a 100% flaw-free design. Nowadays, thanks to modern logic

simulators’ features, different metrics can be exploited to guarantee better per-

formance of the test-programs devised at logic stages. Therefore, the verification

trend is to combine multiple coverage metrics together to obtain better results.

However, not all metrics could be sensibly exploited in the earlier stages of the

design flows. Consequently, it is extremely useful to complete a verification set to

reach complete coverage on different metrics.

Currently RT-level simulators support an ample set of coverage metrics useful

to assert that the test patterns exercise the circuit design thoroughly. Since these

simulators are not devised specifically as debugging instruments, designers are

pushed to extract code coverage statistics to ensure verification process. The cov-

erage metrics commonly available in commercial simulators are:

• Statement coverage is the most basic form of code coverage: SC is a measure

of the number of executable statements within the model that have been exer-

cised during the simulation run. Executable statements are those that have a

definite action during runtime and do not include comments, compile directives

or declarations. SC counts the execution of each statement on a line individu-

ally, even if there are multiple statements on that line.

• Branch coverage reports whether Boolean expressions tested in control struc-

tures (such as the if-statement and while-statement) evaluated to both true and

false. The entire Boolean expression is considered a true-or-false predicate re-

gardless of whether it contains logical-and or logical-or operators. Branch cov-

erage is sometimes called decision coverage.

• Condition coverage can be considered as an extension of branch coverage: it

reports the true or false outcome of each Boolean sub-expression, separated by

logical-and and logical-or if they occur. Condition coverage measures the sub-

expressions independently of each other.

• Expression coverage is the same as condition coverage, but instead of cover-

ing branch decisions it covers concurrent signal assignments. It builds a fo-

cused truth table based on the inputs to a signal assignment using the same

technique as condition coverage.

• Toggle coverage reports the number of bits that toggle at least once from 0 to 1

and at least once from 1 to 0 during the execution of a program. At the RT-

level, registers are targeted and, since RT-level registers correspond to memory

elements with an acceptable degree of approximation, the toggle coverage is an

objective measure of the activity of the design. Indeed, this is a very peculiar

metric and can be sensibly used in all late stages of the design cycle.

The metrics described stress different aspects of the RT-level microprocessor de-

scription. On the one hand, SC, branch coverage and condition coverage deal with

the test-program’s ability to cover most of the code lines, focusing on program

flow. On the other hand, expression coverage and toggle coverage monitor the in-

formation behavior through the program execution; they thus check both the mi-

croprocessor variables and signals.

In our approach we suggest taking advantage of the available coverage metrics

in modern simulators and firstly face the metrics regarding the program flow, and

in a refinement phase the use of metrics observing internal information.

 Test Program Generation from High-level Microprocessor Descriptions 93

Of course, this must be a gradual process that starts maximizing the SC of the

microprocessor description; then, when a satisfactory program or set of programs

has been obtained, the next metric to deal with is the branch coverage. But this

new program generation must not start from scratch; instead, a kind of coverage

grading could be devised. The performance metric of the new program set will not

be the total branch coverage, but the branch coverage without the branches already

covered by the first program set.

In the same way, a third program or set of programs could be developed target-

ing the condition coverage metric.

The second phase consists of the generation of suitable programs able to attain

high coverage regarding data elements inside the microprocessor description. To

accomplish this goal, expression coverage and toggle coverage will be used as

performance metrics. Again, the program generation can start from the coverage

level reached by the previous programs.

Hybrid Register-transfer–Gate-level Models

When coming closer to the final design stage, the microprocessor descriptions

could contain mixed modules; some of them, for example, can be gate-level repre-

sentations of specific blocks, but others could remain at RT-level. Thus, the

boundary between RT-level and gate-level descriptions is not quite sharp.

When mixed microprocessor descriptions are offered, an additional stage of

test-program generation can be devised. In this case, the TA related to all the sig-

nals belonging to the components at the gate-level becomes a suitable perform-

ance metric for this microprocessor description.

Again, a new set of programs can be generated starting from the results ob-

tained by the previously stages. Consequently, starting from a pre-obtained cover-

age level decreases the time demand to generate complementary programs.

Once the step-by-step sequence described is devised at this abstraction design

level, a set of suitable programs for verification and testing has been acquired. In

this way, considerable quantities of development time have been saved because

generated programs can be used twice. However, the test-program generation

process is not still complete.

Gate Models

The following microprocessor description is usually represented by a complete

netlist interconnecting all the gates of the whole system. This description is the

real gate-level or transistor level, also called the component-level description. The

different types of fault available in these models are known as technology-

dependent faults.

The higher is the FC% obtained by the test-programs, the higher is the reliabil-

ity of the design experiments. Then, before manufacturing, a suitable set of test-

programs must be available.

As described in the previous sections, a set of test-programs had been collected

through the processor design cycle; however, it is possible that the maximum FC

94 E. Sánchez, M. Sonza Reorda and G. Squillero

has not been reached by the set of programs gathered. Then a completion and tun-

ing processes must be performed at this level.

The first step is to perform a fault grading using the set of accumulated pro-

grams. Thus, an updated scenario about the remaining faults is presented. At this

point, a new test-program generation process can be implemented using as feed-

back value the FC% regarding the uncovered faults. This process could demand an

excessive amount of time, and so it might not be possible to perform this program

generation loop from scratch.

The resulting programs of this process are also collected test-programs; their

performance depends on the available time to carry out the generation; usually,

heavy time restrictions pushed by the time to market guide this generation.

At the last stage, an expert engineer performs the final tuning phase. Then,

hand-written programs will tackle specific uncovered faults. This practice is again

very expensive and very time demanding because it relies on a skilled engineer.

6.5 Case Study

As a case study, the proposed methodology was implemented by tackling a pipe-

lined processor. The core is available in two different descriptions: by the first is

an RT-level microprocessor description and the second is the microprocessor net-

list. An automatic test-program generator tool called µGP was exploited, follow-

ing the step-by-step method.

In the following, when an FC% value is provided, the single stuck-at fault is

chosen as the fault model.

6.5.1 Processor Description

The processor chosen is called PLASMA. This is a free microprocessor core

available in [17]. The microprocessor conforms to the MIPS I™ architecture [13],

and supports interrupts and all MIPS
®
 user-mode instructions except unaligned

load and store operations. The original core is implemented in VHDL with a three-

stage pipeline.

The PLASMA core presents a 32-bit architecture, 32 general-purpose registers

forming the register bank, and additionally two specific registers for the multipli-

cation and division operations; the RAM memory available is addressed by a 13

bits address bus and the Coprocessor 0 (CP0) is incorporated on the CPU chip and

supports the virtual memory system and exception handling. CP0 is also referred

to as the System Control Coprocessor.

A block diagram description of the PLASMA core is presented in Figure 6.4.

 Test Program Generation from High-level Microprocessor Descriptions 95

Figure 6.4. PLASMA block diagram

Regarding the ISA, the microprocessor supports the following kinds of instruc-

tions:

• 14 load and store

• 39 arithmetic-logic

• 23 jump and branch

• 2 coprocessor instructions.

No floating-point instructions are supported by this microprocessor.

PLASMA Descriptions

The original PLASMA core is an RT-level microprocessor description available in

VHDL. Table 6.1 is a general description of the core at this level.

Once synthesized, the PLASMA gate-level implementation consists of about

37K gates (1466 are flip-flops). The complete fault list consists of 98,140 perma-

nent single-bit stuck-at faults (95,810 of them are detectable). Table 6.2 summa-

rizes the characteristics of the gate-level description.

96 E. Sánchez, M. Sonza Reorda and G. Squillero

Table 6.1. PLASMA: RT-level description characteristics

PLASMA RT-level description

Active statements 720

Active branches 379

Active conditions 40

Active expressions 43

Nodes at RT-level 1436

Table 6.2. PLASMA: gate-level description characteristics

PLASMA gate-level description

Gates 36,991

Flip-flops 1,466

Nodes 17,290

Faults 98,140

6.5.2 Automatic Tool Description

This section describes µGP. This is an evolutionary tool based on the genetic pro-

gramming paradigm.

µGP is able to generate Turing-complete assembly programs. These are gener-

ated for a specific target microprocessor, and take advantage of the assembly syn-

tax, exploiting addressing modes and instruction set asymmetries.

µGP has mainly been used for test-program generation, but it is flexible enough

to allow many other activities to be tackled. Indeed, it is not even limited to as-

sembly program generation, but it can be used to generate any kind of source code

with the same type of syntactic limitations (e.g., state machine descriptions, trees,

and so on). The general architecture of µGP is shown in Figure 6.5.

This flexibility comes from the subdivision of µGP into three clearly separated

blocks: an evolutionary core, an instruction library, and an external evaluator. The

evolutionary core cultivates a population of individuals. It uses self-adaptation

mechanisms, dynamic operator probabilities, and dynamic operator strength. The

instruction library is used to map individuals to valid assembly language pro-

grams. It contains a highly concise description of the assembly syntax or more

complex, parametric fragments of code. Finally, the external evaluator simulates

the assembly program, providing the necessary feedback to the evolutionary core.

Individuals (representing programs) are stored as loosely linked Directed

Acyclic Graphs (DAGs). Each DAG can be considered a collection of sub-DAGs,

each one belonging to a defined frame. Every frame, in turn, directly maps into a

different program section.

Every frame also contains a prologue and an epilogue, to cater for the declara-

tive parts of the different sections and also for general call/return standard proce-

dures.

 Test Program Generation from High-level Microprocessor Descriptions 97

Evolutionary
core

Population
(DAGs)

External
evaluator

Test
program

Instruction
library

Coverage

µGP model

Figure 6.5. µGP general architecture

Instruction Library

The instruction library describes the assembly syntax, listing each possible in-

struction with the syntactically correct operands. It is written as a collection of

macros. All these macros, including prologue and epilogue, can correspond to a

series of zero or more assembly instructions.

The instruction library also contains the specification of all frames and the list

of possible instructions in each frame.

This allows the use of subroutines, data segments and interrupt handlers in the

generated programs, fully exploiting the target microprocessor's functions.

A different set of instructions can be specified in every program section, thus

allowing (or avoiding) certain program constructs in specific contexts, e.g., allow-

ing the use of supervisor-level instructions in an interrupt handler only.

µGP core

The evolutionary core is able to generate new individuals from an existing popula-

tion by means of mutation and crossover operators. It implements a (µ + λ) evolu-

tion strategy. This means that a population of µ individuals is cultivated, and λ
genetic operators are applied over the population to obtain an offspring.

The µGP core can generate a random starting population, load an existing one,

or a combination of both.

Several different genetic operators are defined in the µGP core, belonging to

two main groups: crossover operators and mutation operators. A mutation operator

98 E. Sánchez, M. Sonza Reorda and G. Squillero

can generate a new individual starting from just one parent, while crossover opera-

tors need two. The genetic operators to use are randomly selected according to

their activation probabilities.

The parents needed for every operator are chosen using tournament selection,

with tournament size τ: τ individuals are randomly selected and the best one is

chosen.

The activation probabilities are self-adapted, as is the size of the tournament.

After creation the new individuals are added to the population and evaluated,

then the best µ individuals of this population are kept for the next generation.

This process goes on until a predefined number of generations is reached, a

specified fitness value is obtained, or a steady state is found, which means that

evolution is performed for a predetermined number of generations without any

improvement in the best fitness value.

Currently, two crossover operators and four mutation operators are imple-

mented, but more may be added in the future.

A number of techniques have gradually been added to the µGP core to improve

its performance: clone detection (and optional extermination) to avoid evaluating

identical individuals and to preserve diversity in the population; a fitness hole in

the tournament selection, again to preserve genetic variability; parallel evaluation;

a bigger initial population to exploit the random phase better.

External Evaluator

The external evaluator is in charge of computing the fitness of the individuals

generated. It is external to keep the µGP approach flexible and generic. It is in-

voked by a system call, and usually has the form of a small script or program that

in turn launches a simulator, emulator or the like, collecting and elaborating its re-

sults.

In the specialized fields of microprocessor test and validation, this usually

means starting a fault simulator or a model simulation to extract different coverage

metrics, such as SC or TA, but the method is flexible enough to allow other very

different activities to be performed.

6.5.3 Experimental Setup

Exploiting both the microprocessor descriptions and the automatic test-program

generator, a sequence of experiments as launched obeying the proposed rules of

the step-by-step method.

The elements used to devise the experiments are as follows:

• The µGP (i.e., the test-program generator): it consists about 10,000 lines of

ANSI C. No special modifications were required to perform this set of experi-

ments.

• External evaluators: two computer-aided design tools were required to com-

plete the µGP generation loop:

• Modelsim v5.8b by Mentor Graphics at RT-level.

 Test Program Generation from High-level Microprocessor Descriptions 99

• Faultsim 1999.10-TG4.1-2150 by Synopsys for gate-level fault simulations.

• The microprocessor core: two PLASMA descriptions, mentioned previously.

• The instruction library: including about 60 macros and devised in two pro-

grammer working days.

In addition, to interface the µGP code with the external evaluators, a few scripts

accessing the different metrics were required.

All experiments were run on a Sun Enterprise 250 with two 400 MHz UltraS-

PARC-II CPUs and 2 Gb of RAM.

For the completeness of the method, test-programs were devised using both

manual and automatic methods considering the actual microprocessor design

process. At the end of the process, when gate-level stuck-at FC% was targeted, the

observability points used were the buses around the register bank.

6.6 Experimental Results

Table 6.3 shows the results obtained through the complete test-program generation

process. It is necessary to highlight again that the process was performed as a cu-

mulative collection of test-programs.

Table 6.3 reports the results of the complete step-by-step test-program collec-

tion process. The first column, called Generation process describes the method

used for program generation of each step. Manual means that engineers have gen-

erated those programs, while µGP denotes automatically generated programs.

The second column illustrates the level of abstraction of the microprocessor de-

scription, ranging from the ISA to gate-level. Taking advantage of our automatic

test-program generator, i.e., the µGP, in our collecting approach, automatic test-

program generation can be applied at all description levels; however, manual gen-

eration is only allowed at the beginning and at the end of the process. In the spe-

cific case study, the automatic generation of test-programs starts at the RT-level of

microprocessor description.

The Metric column shows the target metrics used to generate test-programs.

These metrics were described previously as those suitable for each microprocessor

design stage. Since no PLASMA architectural models are available, it was not

possible to face this phase.

Along with the information about the final FC obtained in the cumulative proc-

ess, for each set of test-programs the total programs size, expressed as number of

instructions, and the time to develop the appropriate set, in days, are presented in

the columns 4 and 5.

The final resulting test-set is composed of 15 test-programs: the first one, at

ISA level, was developed targeting quite simple functionalities. At RT-level, eight

programs compose the entire set, and all of them were created exploiting the

automatic tool; out of the eight, three programs were devised targeting the SC, one

the branch coverage, one the condition coverage, two the expression coverage, and

the last one aimed at maximizing the toggle coverage. At gate-level, three pro-

grams exploit the µGP potentiality; among these, two maximize the TA, but one

100 E. Sánchez, M. Sonza Reorda and G. Squillero

faces directly the fault coverage. A skilled engineer finally constructed the three

remaining programs.

The whole test-set elaboration process requires about 80 working days; how-

ever, as sketched before, test-programs generated up to the logic design macro

stage were also exploited in the verification process.

Table 6.3. Test-program generation results

Generation

process

Processor

description

Metric Size

[# inst]

Time

[days]

FC

[%]

Manual ISA Functional 57 7.0 27.12

µGP RT level SC 1325 5.0 41.92

µGP RT level Branch Coverage 344 2.1 44.31

µGP RT level Condition Coverage 1187 2.4 44.81

µGP RT level Expression Coverage 2017 2.7 46.18

µGP RT level Toggle Coverage 226 2.9 46.28

µGP Gate level TA 514 8.1 70.36

µGP Gate level Fault simulation 260 21 83.57

Manual Gate level Tuning FC 720 28 91.97

Trying to understand where test-programs better stress the unit under evalua-

tion, the following tables present the microprocessor split into its component

blocks, showing the FC% of each block achieved by the test-programs.

Table 6.4 shows the performance of the test-programs generated at high de-

scription levels starting from the functional one, up to the program automatically

generated to maximize the toggle coverage. Additionally, the percentage of faults

contained in each unit is supplied in the first column.

As mentioned earlier, the functional program performance is poor; from Table

6.3 it is possible to see that this program never achieves more than the 50% of FC

in any microprocessor module. These kinds of program are never devised as test

programs, but occasionally they can get together interesting pieces of code that are

able to exercise microprocessor singularities, such as the corner cases in the ALU

behavior known only by the implementer engineer. In this way, these programs

are still suitable for inclusion in the complete test-set of programs.

The PLASMA microprocessor components could be divided into control and

functional units; additionally, the core description allows the pipeline to be ob-

served as a singular module. The control units and the pipeline are usually devised

as sequential modules conformed by several states and without large combina-

tional parts; these modules are able to handle the complete microprocessor design

on each particular situation. Usually, these units present a pattern resistance be-

havior when they are tested. Thus, it is interesting to see that satisfactory perform-

ance was achieved in the early stages dealing with these components. In fact, the

 Test Program Generation from High-level Microprocessor Descriptions 101

most important blocks, such as the memory controller, the control and the pipe-

line, overcome 70% of FC. On the contrary, the program counter logic and the bus

multiplexer have not achieved high coverage because, on the one hand, the final

programs do not exercise all possible memory locations nor execute all possible

jumps. On the other hand, not all the possible operand combinations were used.

Table 6.4. High-level metrics vs gate-level stuck-at FC%

Module faults

[%]

Funct

[%]

µGP-ST

[%]

µGP-BR

[%]

µGP-CO

[%]

µGP-EX

[%]

µGP-TX

[%]

pc_next 2.33 44.49 50.04 50.04 50.09 50.09 50.09

mem_ctrl 5.68 43.02 62.29 66.83 66.94 70.03 70.12

control 1.51 49.65 81.54 84.02 85.20 85.55 85.55

reg_bank 49.36 31.18 40.66 44.59 45.40 47.32 47.47

bus_mux 3.64 42.98 59.89 60.72 61.07 62.70 62.82

alu 6.36 47.29 65.15 66.20 66.34 67.02 67.20

shifter 5.20 18.70 38.09 38.09 38.71 38.71 38.71

mult 22.31 1.14 23.02 23.02 23.03 23.03 23.03

pipeline 3.62 46.40 68.51 69.84 70.59 74.48 74.48

The results obtained in dealing with the control and pipeline modules denote

that the test-programs generated at the RT-level facing a defined set of coverage

metrics are able to stimulate most of the gates included in the synthesized mod-

ules, because those modules are complex sequential structures that require appro-

priate instruction successions to be excited and those special pieces of code can be

obtained when high-level coverage metrics are faced.

Dealing with functional blocks, such as the register bank and the multiplier, the

program’s performance is not exceptional, as is shown in Table 6.4. Generally,

these modules are homogeneous combinational circuits, whose RT-level descrip-

tions do not include much detail about the final gate-level implementation; thus,

coverage metrics used at RT-level are not able to provide enough information to

generate satisfactory test-programs. Actually, as mentioned in [12], such homoge-

neous circuits can be well excited using deterministic subroutines.

Table 6.5 focuses on test-programs generated at gate-level using both automatic

and manual techniques. Table 6.5 also reports the microprocessor block details.

In the Table 6.5, the third column was added to ease the comparative analysis

between results obtained at RT and gate levels.

Table 6.5 shows an interesting performance improvement in the FC reached by

test-programs generated at gate-level. However, as mentioned before, along with

this progress, test-programs generation at low levels requires time-expensive proc-

esses. In fact, the elaboration time to obtain the µGP-TA programs is at least three

times longer than for those generated at RT-level.

102 E. Sánchez, M. Sonza Reorda and G. Squillero

Table 6.5. Low-level metrics vs gate-level stuck-at FC%

Modules Faults

[%]

µGP-TX

[%]

µGP-TA

[%]

µGP-FC

[%]

TUNING

[%]

pc_next 2.33 50.09 72.31 75.13 59.05

mem_ctrl 5.68 70.12 74.64 86.93 77.10

control 1.51 85.55 89.83 92.39 81.33

reg_bank 49.36 47.47 77.21 90.92 97.32

bus_mux 3.64 62.82 69.90 76.38 74.40

alu 6.36 67.20 89.40 93.26 96.98

shifter 5.20 38.71 44.36 69.59 65.13

mult 22.31 23.03 44.50 66.91 80.68

pipeline 3.62 74.48 89.48 92.04 91.70

Comparing the columns µGP-TX and µGP-TA in Table 6.5, it is possible to ob-

serve that in all control-oriented modules, like pipeline and control unit, the in-

crease in FC% is limited to about 10%. On the other hand, in functional blocks in-

volving relevant combinational blocks, like alu, the increase is much higher. In

such blocks, the gate-level TA is able to provide better information about internal

structures, allowing the automatic test-program generator to explore the real cir-

cuit more deeply. A notable exception is the program counter logic, where the in-

crease can be more easily explained with the increased length of test programs,

since only long programs are able to activate almost all bits in the program

counter.

When comparing µGP-TA with µGP-FC in Table 6.5, a general FC% im-

provement is reached in all modules. This time, the selected metric is directly the

FC obtained by the test-program. The fundamental idea in this stage is the inclu-

sion of the observability as part of the test-program generation loop. As mentioned

previously, the buses around the register bank were selected as observability

points for the test evaluation. Again, the best improvements are observed in the

register bank and the shifter. However, control and pipeline blocks achieve better

performance too.

At the end of the automatic test-program generation process, the control and

pipeline modules are still the best covered by the generated programs. The tuning

process then performed by an expert engineer looks to improve the performance in

three specific functional modules: the register bank, the ALU and the multiplier.

Those modules were selected as the tuning target because all of them conform

more than 70% of all microprocessor faults. In this fashion, three new programs

are devised to cover those modules better. The final results are shown in the col-

umn named TUNING in Table 6.5.

 Test Program Generation from High-level Microprocessor Descriptions 103

6.6.1 High-level Metrics Comparison

The framework set up for the experiments allowed a qualitative comparison of the

different metrics. Test programs devised in the RT-level stage for maximizing the

different metrics were compared with respect to other metrics such as the TA at

gate-level and the final FC. This comparison is shown in Table 6.6, where we re-

ported comparisons with the following metrics: Statement Coverage (SC), Branch

Coverage (BC), Code Coverage (CC), Expression Coverage (EC), and Toggle

Coverage (TC).

Table 6.6. High-level metrics comparison

Program/metric SC

[%]

BC

[%]

CC

[%]

EC

[%]

TC (RT)

[%]

TA

[%]

FC

[%]

SC 98.49 85.49 90.00 69.77 83.91 37.52 41.92

BC 99.04 92.35 95.00 74.42 84.05 38.62 44.31

CC 99.04 92.61 97.50 74.42 84.05 39.73 44.81

EC 99.04 92.61 97.50 74.42 84.26 41.30 46.18

TC (RT) 99.04 92.61 97.50 74.42 90.32 42.04 46.28

The grayed cells in Table 6.6 represent the value on the metric that the set was

intended to maximize. The last two columns contain the results regarding the TA

at gate level and the FC reached by the same set of test programs.

 First of all, it is interesting to notice the relationship between the different veri-

fication metrics, e.g., maximizing the branch coverage leads to almost fully

maximizing the SC. All code coverage metrics probably saturated: 99.04% SC,

92.61% branch coverage, 97.50% condition coverage and 74.42% expression cov-

erage are probably the highest values attainable on the microprocessor description.

It is possible to see that the expression coverage saturated earlier than the condi-

tion coverage. In contrast, the toggle coverage, the amount of signal that toggles

from zero to one and one to zero, is not probably reaching its maximum.

Despite this fact, the final FC obtained by the different test sets is increasing,

showing that a stable but smooth relationship exists when RT-level metrics are

maximizing.

It should be remarked that, while the first four metrics are similarly fast to be

calculated, the toggle coverage requires a more considerable effort. However, the

toggle coverage is an interesting metric in subsequent stages in the design cycle,

when the design is eventually synthesized to logic gates.

6.7 Conclusions

This chapter has shown and analyzed a methodology for collecting effective test-

programs for microprocessor cores through the complete design cycle. The meth-

odology employed is based on an almost automatic technique and could be applied

104 E. Sánchez, M. Sonza Reorda and G. Squillero

to test-program generation for stand-alone microprocessor cores as well as the

embedded ones in SOCs.

The main idea behind the test-program gathering process is to take advantage

of all possible microprocessor descriptions delivered through the whole design cy-

cle to generate suitable test programs able to attain a high FC% on gate-level de-

scriptions. In fact, the proposed methodology’s main efforts are on generation and

analysis of test programs at the RT-level. However, the methodology presented is

able to bring test programs together coming from the complete design life cycle.

Thus, verification programs delivered before the manufacturing process can be

used twice, for verification and for testing, in this way allowing the saving of time

in the test-program generation process.

The proposed methodology is based on a step-by-step approach: test-program

generation is performed each time a new microprocessor model is delivered.

Moreover, being a cumulative process, which tackles high-level descriptions, the

approach minimizes the use of explicit fault simulation to drive the test-program

generation, greatly reducing computational efforts. In fact, fault simulation is only

used at the end of the generation to complete the set of test programs.

In order to be applied, the approach requires that a wide set of metrics, mainly

related to high-level descriptions, is available, and that the input stimuli generated

when targeting these metrics are able to reach a significant coverage when fault-

simulated on gate-level descriptions.

As a case study, the proposed methodology was implemented by tackling the

PLASMA microprocessor. Along with this pipelined microprocessor, an ATPG

tool called µGP was exploited, following the step-by-step method. The final test-

set was composed of 15 test programs collected during the whole design process.

Finally, the results obtained were presented and analyzed using different tables

that summarize the test-programs’ performance in each design abstraction stage.

Additionally, metrics comparison was performed by focusing on test programs

generated at the RT-level, and the FC% they attain.

Acknowledgments

We wish to thank Marco Giacomo Loggia and Massimiliano Schillaci for their

crucial contributions.

References

[1] Agrawal V, Bushnell M (2000) Essentials of electronic testing for digital, memory

and mixed-signal VLSI circuits. Norwell: Kluwer Academic Publishers

[2] Batcher K, Papachristou C (1999) Instruction randomization self test for processor

cores. In: IEEE VLSI Test Symposium, 34-40

 Test Program Generation from High-level Microprocessor Descriptions 105

[3] Bieker U, Marwedel P (1995) Retargetable self-test program generation using con-

straint logic programming. In: 32nd ACM/IEEE Design Automation Conference,

605-611

[4] Chen L, Dey S (2001) Software-based self-testing methodology for processor cores.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

20(3): 369-380

[5] Chen L, Dey S (2000) DEFUSE: a deterministic functional self-test methodology for

processors. In: IEEE VLSI Test Symposium, 255-262

[6] Liu C-NJ, Chang C-Y, Jou J-Y, Lai M-C, Juan H-M (2000) A novel approach for

functional coverage measurement in HDL circuits and systems. In: ISCAS2000: The

2000 IEEE International Symposium on Circuits and Systems, 217-220

[7] Corno F, Sanchez E, Sonza Reorda M, Squillero G (2004) Automatic test program

generation − a case study. IEEE Design & Test, Special issue on Benchmarking for

Design and Test, 21(2): 102-109

[8] Corno F, Sonza Reorda M, Squillero G (2003) Automatic test program generation for

pipelined processors, In: SAC2003: The Eighteenth Annual ACM Symposium on

Applied Computing, 736-740

[9] Corno F, Sonza Reorda M, Squillero G, Violante M (2001) On the test of microproc-

essor IP cores. In: IEEE Design, Automation & Test in Europe, 209-213

[10] Harman NA (2001) Verifying a simple pipelined microprocessor using Maude. In:

Lecture Notes in Computer Science, vol 2267, 128-142

[11] Kranitis N, Paschalis A, Gizopoulos D, Zorian Y (2002) Effective software self-test

methodology for processor cores. In: IEEE Design, Automation & Test in Europe,

592-597

[12] Kranitis N, Xenoulis G, Gizopoulos D, Paschalis A, Zorian Y (2003) Low-cost soft-

ware-based self-testing of RISC processor cores. Computers and Digital Techniques,

IEE Proceedings, 150(5): 355-60

[13] MIPS TECHNOLOGIES. (2002) MIPS32™ architecture for programmers volume I:

introduction to the MIPS32™ architecture. Revision 1.90. http://www.mips.com

[14] Papachristou CA, Martin F, Nourani M (1999) Microprocessor based testing for core-

based system on chip. In: ACM/IEEE Design Automation Conference, 586-591

[15] Parvathala P, Maneparambil K, Lindsay W (2002) FRITS – a microprocessor func-

tional BIST method. In: IEEE International Test Conference, 590-598

[16] Paschalis A, Gizopoulos D (2004) Effective software-based self-test strategies for on-

line periodic testing of embedded processors. In: Design, Automation and Test in

Europe Conference and Exhibition, Volume: 1, 578-583

[17] Plasma CPU Model. http://www.opencores.org/projects/mips

[18] Rizk H, Papachristou C, Wolff F (2004) Designing self test programs for embedded

DSP cores. In: IEEE Design Automation and Test in Europe Conference and Exhibi-

tion, 816-821

[19] Semiconductor Industry Association (2002) International Technology Roadmap for

Semiconductors 2002 Update, http://www.semichips.org/pre_stat.cfm

[20] Shen J, Abraham J, Baker D, Hurson T, Kinkade M (1999) Functional verification of

the Equator MAP1000 microprocessor. In: 36th ACM/IEEE Design Automation Con-

ference, 169-174

[21] Shen J, Abraham JA (1998) Native mode functional test generation for processors

with applications to self-test and design validation. In: IEEE International Test Con-

ference, 990-999

106 E. Sánchez, M. Sonza Reorda and G. Squillero

[22] Thatte S, Abraham J (1980) Test generation for microprocessors. IEEE Transactions

on Computers, C-29: 429-441

[23] Utamaphethai N, Blanton RD, Shen JP (1999) Superscalar processor validation at the

microarchitecture level. In: 12th IEEE International Conference on VLSI Design,

300-305

[24] Van Campenhout D, Mudge TN, Hayes JP (1999) High-level test generation for de-

sign verification of pipelined microprocessors. In: ACM/IEEE Design Automation

Conference, 185-188

[25] Velev MN, Bryant RE (2000) Formal verification of superscalar microprocessors

with multicycle functional units, Exception, And Branch Prediction. In: ACM/IEEE

Design Automation Conference, 112-117

7 Tackling Concurrency and Timing Problems

I. G. Harris

University of California Irvine, Department of Computer Science, USA

7.1 Abstract

Concurrent systems, either hardware or software, are notoriously difficult to de-

sign correctly in large part due to the complexities of nondeterministic execution.

A concurrent system can perform many different correct computations for a given

input sequence because the absolute order of execution is dependent on factors

which cannot be known at design/compile time. Synchronization constructs are

used to restrict the set of possible computations to correct computations only, but

insertion of synchronization constructs is a manual and error-prone task. The de-

tection of synchronization errors is made difficult because the manifestation of an

error can depend on operation timing, which can change between executions. We

define a class of synchronization errors and define the timing requirements to en-

sure the detection of these errors. We provide a coverage metric which can be

used to determine whether or not a given test execution is sufficient to detect the

defined class of synchronization errors.

7.2 Introduction

Timing is an important part of the correctness of hardware/software systems. Al-

though timing correctness and functional correctness are often evaluated sepa-

rately, they are equally important aspects of a system's behavior. The significance

of timing derives from the applications which use hardware/software systems.

Many applications are embedded controllers which perform a time-sensitive activ-

ity, such as an automatic braking system in a car in which a timing failure can be

life threatening. Other applications include soft timing constraints, such as a video

display system, which must process video frames at some minimum rate to main-

tain the illusion of continuous motion for the user. Systems like this may not be

life critical, but timing failures result in a loss of output quality and a loss of reve-

nue when potential customers purchase competing products.

We will loosely define timing correctness as the ability of a system to produce

a result within a predefined time limit. This can be contrasted with functional cor-

rectness, which describes the ability of a system to produce a correct result, re-

108 I.G. Harris

gardless of time. By this definition it is possible for a system to have correct tim-

ing but not correct function if an incorrect result is produced but it is produced on

time. Strict timing goals have always been a part of the hardware design process,

but the general software community traditionally considers performance as a sec-

ondary goal. Evidence for the low degree of importance placed on timing re-

quirements in software is the lack of explicit timing constructs in software lan-

guages. Because timing in hardware must be well controlled, all hardware

description languages have features which allow designers to explicitly state tim-

ing relationships between events. Embedded software, however, shares the need

for strict timing requirements, in part because embedded software must interact di-

rectly with hardware. Hardware/software timing covalidation requires the use of

techniques that can be applied in both the hardware and software domains.

Hardware/software systems are typically built from a number of concurrently

executing processes, which must coordinate to complete system tasks. The degree

of concurrency directly impacts system timing, and so it must be considered to-

gether with timing analysis. Concurrency is particularly relevant in the context of

testing because systems containing concurrent execution are much more difficult

to design than purely sequential systems. The difficulty stems largely from the fact

that many different interleavings of concurrent operations are feasible for a given

input sequence. This greatly increases the number of control flow possibilities,

making it more difficult for a human to follow. As a result, the aspects of system

design which involve concurrency are the source of a disproportionately large

number of design errors. The importance of concurrency in hardware/software

codesign and the difficulty of concurrent design make the detection of concur-

rency-related design errors a serious problem.

The main reason for the difficulty in analyzing timing and concurrency is the

presence of nondeterminism in the execution sequence. That is, there may exist

many correct instruction execution sequences for a given system input sequence.

Nondeterminism is a useful design tool because it allows the designer to ignore

detailed instruction sequences which do not impact functional correctness. Several

major sources of nondeterminism exist in hardware/software systems.

Operating System Scheduling − The scheduling algorithms applied by most op-

erating systems are nondeterministic because they employ runtime information

that cannot be known prior to execution. This impacts the instruction sequence di-

rectly and also the performance. Scheduling algorithms are typically designed to

optimize the average case schedule, but the variation in timing between schedules

may be significant. In practice, this type of nondeterminism is sometimes avoided

by foregoing the use of an operating system entirely and implementing the

changes of control flow directly into the application processes.

Microarchitectural Scheduling − Microprocessors often use dynamic schedul-

ing techniques, such as scoreboarding and Tomasulo's algorithm, to improve per-

formance through instruction reordering. In practice, this type of nondeterminism

may be avoided by using simple embedded processors that do not employ dy-

namic scheduling.

Memory Hierarchy − Using multiple levels of memory hierarchy makes mem-

ory delay nondeterministic because it depends on the hierarchy level at which the

 Tackling Concurrency and Timing Problems 109

required data are found. Variable memory delays change timing but they do not

directly impact instruction sequencing, although they may be used in scheduling.

For example, an out-of-order processor may decide to delay the execution of an

instruction because the data it requires may be in main memory rather than cache.

It is possible to eliminate this type of nondeterminism by using only one level of

memory hierarchy, but the performance will suffer. If the system can be designed

to use no more memory than is contained in the L1 cache, then using only one

level of hierarchy is feasible.

Nondeterminism is a problem for testing and validation because traditional (i.e.

sequential) testing approaches assume that the correct execution sequence can be

compared with a single known correct sequence to determine whether the system

executed correctly under test. In the presence of nondeterminism, a system with a

design error has the potential to produce an incorrect execution sequence, but

there is no guarantee whether or not that will occur. As a result, it is entirely pos-

sible that a system with a design error could produce correct sequences during

testing and produce an incorrect sequence later after the system is deployed for

use. Another test problem associated with the existence of multiple, correct in-

struction sequences is that all correct sequences must be specified for comparison

during test. This increases the memory required for testing, which is an issue in

hardware testing, and it increases the time required to perform comparisons to

check correctness.

Nondeterminism is managed in concurrent programs through the use of syn-

chronization methods that restrict scheduling options to ensure correct operation.

For example, if two processes cannot access some shared data at the same time,

synchronization primitives must be added to the code to disallow the concurrent

scheduling of operations which access the shared data. The task of using synchro-

nization primitives in concurrent code is complicated and highly error prone. This

chapter focuses on the errors involved in the synchronization between concurrent

processes. We describe the most common methods of interprocess synchronization

and then we describe the types of error that commonly occur and their effects on

behavior. We discuss the detection requirements of synchronization errors and

present a fault model which can be used as a coverage metric to indicate the abil-

ity of a given test sequence to detect synchronization errors.

7.3 Synchronization Techniques

Any model for concurrent computation must enable process interaction of two

forms [1]:

• Contention − two processes competing for the same resource.

• Communication − two processes passing information from one to the other.

Both types of process interaction depend on the ability to perform synchroniza-

tion. Synchronization can be defined as the task of limiting the allowable inter-

leavings between the execution of multiple processes. For example, managing

contention typically requires that the execution of critical sections of code in two

110 I.G. Harris

processes is mutually exclusive. Ensuring mutual exclusion necessitates synchro-

nization, because an interleaving of the processes should not be possible if it in-

cludes both processes executing their critical regions at the same time. Communi-

cation also requires synchronization, because the existence of communication

implies a data dependency between processes, which cannot be violated. For ex-

ample, if process X sends data to process Y, then the part of process Y which uses

the data cannot execute until after process X has computed and sent the data.

Synchronization is accomplished by forcing processes to agree that a certain

event has taken place. The occurrence of the event is used as a synchronization

point around which the allowable interleavings can be constrained. There are sev-

eral synchronization techniques used in hardware and software languages that are

summarized here.

Event synchronization identifies some changes in system state (such as a signal

changing value) to be an event that synchronizes a process. Events may come

from outside of the system or from other processes. Event synchronization pro-

vides two primitives: the wait primitive, which causes a process to wait for an

event, and the post primitive, which causes the event to occur. The placements of

the wait and post primitives in each process defines the synchronization points.

The wait primitive can be synchronous, which causes the invoking process to be

blocked until the event occurs, or the wait may be asynchronous, which does not

cause the process to block. In the asynchronous case, some type of event handler

must be provided to be executed when the event does eventually occur. Event syn-

chronization with synchronized wait is the common technique in hardware de-

scription languages such as Verilog and VHDL.

The semaphore technique [2] introduces two synchronization primitives called

P and V which operate on natural numbers called semaphores. The semaphores are

visible to all communicating processes, and events on semaphores are used for

synchronization. V(s) increments the value of s while P(s) tests the value of s and

decrements the value of s if it is greater than zero. If the value of s = 0 then P(s)

will block, suspending the execution of the process invoking P(s) until the value

of s > 0. A key property of the P and V primitives is that they are atomic, meaning

that once they are initiated they cannot be interrupted until they are complete. If

multiple processes invoke P or V at the same time, then the executions occur se-

quentially in an arbitrary order. When a semaphore is incremented while there are

several processes suspended by invoking P(s) on the semaphore, the processes are

chosen to complete the P operation in an arbitrary order. Using semaphores, the

incrementing and decrementing of semaphores are the events whose occurrence is

agreed upon by all communicating processes. Possible interleavings are restricted

by invoking P in a process to suspend it until V is invoked on the same semaphore

by another process. The synchronization points are defined by the locations of the

invocations of P and V in the processes.

A monitor [3,4] is an object whose access is limited to only one process at a

time. All data inside the object is private and can only be accessed using the ac-

cess functions of the class. Only one access function can be executed at a time. If a

process attempts to access the monitor while it is being accessed, the process is

suspended until the current access is complete. To accomplish synchronization, a

 Tackling Concurrency and Timing Problems 111

monitor defines a set of condition variables. A wait operation is defined to cause a

process to suspend until an event occurs on a condition variable, and a signal op-

eration causes an event to occur on a condition variable. The locations of the invo-

cations of the wait and signal operations are the synchronization points. The use of

condition variables is similar to synchronous event synchronization.

Unlike the event, semaphore, and monitor synchronization methods, message-

based communication does not assume that processes share memory. Instead, data

are transferred between processes using the send and receive operations. It is well

known, however, that message passing and shared memory communication

schemes are equivalent. Any concurrent system implemented using one communi-

cation technique can also be implemented using the other. The send and receive

operations can be either blocking or nonblocking, allowing the emulation of a

range of synchronization methods. For example, the use of a nonblocking send

and a blocking receive is equivalent to the synchronous event synchronization

method used in most hardware description languages.

Another method of synchronization in a message-passing architecture is the use

of Remote Procedure Calls (RPCs) [5], or the more general rendezvous [6]. An

RPC enables a client process to invoke a function in another server process by us-

ing a procedure call which is similar to a normal procedure call within a single

process. The client uses a send function to pass the name of the remote procedure

to be invoked and the parameters of the procedure. The server process must in-

voke an accept function to indicate that it is ready to execute the requested proce-

dure and the caller's send function must block until the request is accepted. Once

the server process has completed the procedure it uses a return function to return

the results to the caller. The caller must invoke a receive function to receive the

function results from the server and the server's return function will block until the

results are received. RPCs are asymmetric because the client can call procedures

in the server, but the server cannot make requests of the client. Rendezvous is a

generalized version of an RPC which allows processes to invoke procedures from

each other in a symmetrical way.

7.4 A Class of Synchronization Errors

Each synchronization method requires the programmer to insert synchronization

points manually into each process and this insertion process is a common source

of errors in concurrent system design. We define this class of design errors and we

describe the detection of errors in this class.

To understand synchronization errors it is necessary to establish the relation-

ship between the placement of synchronization points in a system description and

the behavior of that system. We will use the simple concurrent system depicted in

Figure 7.1 to describe the impact of synchronization point placement on behavior.

Figure 7.1 shows the outline of a system with two concurrent processes: a pro-

ducer process and a consumer process. The code for the producer and consumer

processes shown is minimal in order to highlight only the features of interest to

112 I.G. Harris

this discussion. The producer sends data to the consumer through a variable

sh_data which both processes share access to. The statement in the producer

which assigns a value to the sh_data variable is referred to as a definition of

sh_data, def(sh_data). The statement in the consumer which reads the value of

sh_data is a use of sh_data, use(sh_data). In this example, event synchronization is

assumed and the variable ready is used to indicate when the consumer is ready to

receive new data. The synchronization point shown in the producer is the wait

(ready) statement and the synchronization point in the consumer is the ready <= 1

statement.

wait (ready)

use(sh_data)

def (sh_data)

ready < = 1

Producer Consumer

...A

B

C

D
...

...

...

Figure 7.1. Synchronization in a producer/consumer example

The producer and consumer descriptions in Figure 7.1 are partitioned into four

sequential blocks, A, B, C, and D, as determined by the placement of the synchro-

nization points in the description. Each sequential block is a sequence of contigu-

ous sequential instructions containing no synchronization points. The placement of

the synchronization points establishes a dependency between sequential block B

and C, so block B cannot execute until block C has completed. The dependency

between B and C is needed to enforce the data dependency between the definition

and use of the sh_data variable in blocks B and C. The definition and use of the

sh_data variable represents a potential Write-After-Read (WAR) hazard, which is

prevented using synchronization points.

If the synchronization points are incorrectly placed, the sequential blocks are

redefined and the WAR hazard may occur. If the wait statement in the producer is

placed after the definition of sh_data, it is possible for the definition to occur be-

fore the use, causing the incorrect value of sh_data to be used. The same problem

occurs if the ready <= 1 statement were accidentally placed before the use of the

sh_data variable.

Incorrect placement of synchronization points can allow data dependency errors

to exist between processes, but the manifestation of these errors depends on the

scheduling. If the wait statement is misplaced, the definition of sh_data in the pro-

ducer could be incorrectly scheduled before the use in the consumer and the error

could be detected. However, it is possible that the wait could be misplaced but that

the definition is never scheduled before the use during testing, and so the error is

not detected. Such an undetected error could still manifest itself later in the prod-

 Tackling Concurrency and Timing Problems 113

uct lifetime. This example demonstrates that the detection of synchronization er-

rors depends on the schedule, which is in general nondeterministic.

7.5 A Fault Model for Synchronization Errors

To facilitate testing for synchronization errors a model is needed which enumer-

ates all of the synchronization errors that will occur in an arbitrary design. The

large number of potential design errors makes direct enumeration infeasible, so the

model must be an abstract one. We refer to this model as a fault model, which de-

fines a set of faults for an arbitrary design. Each fault described by the model

represents a set of potential errors in a design and the detection of all faults en-

sures the detection of all errors of the type covered by the fault model.

According to their manifestation in time, design faults can be grouped into two

classes: static faults, whose observation is independent of absolute event timing;

and timing faults, whose observation depends on a specific timing of events on

shared data. The observation of a static fault depends on the sequence of test pat-

tern application, but not the absolute time of the application of each pattern. An

example of a static fault is the replacement of the expression x = y +1 with the in-

correct expression x = y + 2, where the variable x is shared between two processes.

Once this fault is activated, its effects can be observed at any time before the sig-

nal x is redefined. A timing fault exists when a signal is assigned to the correct

value, but the event occurs at the incorrect time. A timing fault will cause a signal

value to endure for the incorrect length of time. The timing fault effect can be ob-

served only during the incorrect time period, which we will refer to as the error

span. The difference between static faults and timing faults is that a timing fault is

active during only a subset of the time period between two definitions, whereas a

static fault is active during the entire time period between two definitions. Such a

timing fault is a result of a synchronization error, because correct synchronization

would prevent a process from using the value of x until it has the correct value.

Correct synchronization can be seen as a mechanism to make concurrent execu-

tion independent of timing. In the case of incorrect synchronization, the behavior

of the system becomes timing dependent and timing faults can occur.

114 I.G. Harris

Def Use Def

Time

Incorrect Correct

Error span

(a) MTE early fault

Def Use Def

Correct Incorrect

Error span

(b) MTE late fault

Figure 7.2. Two types of MTE fault

We refer to these faults as Mis-Timed Event (MTE) faults because they are

caused by timing relationships between access to shared data. The MTE fault

model [7] is derived from the all−definition−use pair metric [8] developed for the

testing of sequential programs. An MTE fault is associated with each Defini-

tion−Use (DU) pair for each shared variable or object. The existence of an MTE

fault indicates that the associated definition and use occur in the wrong sequence

due to incorrect synchronization between the processes accessing the shared data.

Two types of MTE fault can exist between a DU pair: MTEearly indicates that the

definition occurs earlier than the correct time, and MTElate indicates that the defi-

nition occurs later than the correct time. Figure 7.2a shows an MTEearly fault

whose error span extends forward in time from the incorrect time step, and Figure

7.2b shows an MTElate fault whose error span extends backward in time from the

incorrect time step. Figure 7.2 assumes a discrete time model, which is common in

hardware simulation, but the concept applies to continuous time as well.

 Tackling Concurrency and Timing Problems 115

7.5.1 Detection of Synchronization Faults

An MTE fault associated with a signal is detected only if there is a use of the

shared variable inside the error span of the fault, as shown in Figure 7.2. The error

span extends from the erroneous time step to the correct time step. Unfortunately,

the precise position of the error span is not known, since simulation of the faulty

circuit reveals only the erroneous time step. It is clear, however, that the error span

must extend, either forward or backward in time, from the erroneous time step. In

order to ensure that a use occurrence is within the error span of a fault, the use oc-

currence must be close to the corresponding definition occurrence in time. Also, a

use occurrence must exist both earlier than the definition and later than the defini-

tion to detect both late and early MTE faults. These circumstances exist in Figure

7.2a and b where, in each case, the use occurrence is immediately adjacent to the

erroneous time step. The detection of the MTElate fault is accomplished by the

Use−Definition (UD) pair where the use occurs before the erroneous definition

time step, and the MTEearly fault is detected by the DU pair where the use occurs

after the erroneous definition time step.

To ensure the detection of an MTE fault the associated DU or UD pair must be

close in time. An error span threshold value d must be provided to define the

maximum time difference between the definition and the use which is assumed to

detect the fault. The error span threshold determines the sensitivity of the testing

process to small perturbations in timing, so a small threshold ensures high sensi-

tivity. However, if the threshold is too small then the timing behavior of the sys-

tem may make the fault undetectable. For example, the operating system may im-

pose a minimum delay to perform a context switch between two processes, and if

the error span threshold is smaller than that minimum delay then MTE faults be-

tween the two processes will be undetectable. Identification of the minimum al-

lowable threshold requires a solution to the minimum time separation problem [9],

which is known to be NP-complete. We assume that the error span threshold is

provided by a design/test engineer who has knowledge of the system timing be-

havior.

7.5.2 Fault Coverage Computation

The practical use of a fault model requires that there be an efficient procedure to

determine which faults are detected when a given test sequence is applied to a de-

sign. We implemented MTE coverage computation using Verilog PLI, which al-

lows MTE coverage to be computed for designs described in Verilog. The compu-

tation algorithm contains three main steps.

1. DU/UD pairs identification. In this step, we generate lists of DU/UD pairs for

each signal by analyzing the behavioral description. Since a signal can be de-

fined and used in multiple modules in a hierarchical design, it may have differ-

ent names in different modules. In order to catch any occurrence of the signal,

we first find the top module in which the signal is first declared as a signal.

Along the connection down to the submodules we recursively find all modules

116 I.G. Harris

using the signal. In each such a module, we locate the definition and use state-

ments and register a callback function for each occurrence statement. After lo-

cating all definition and use occurrence, all DU pairs sharing the same use are

associated with that use occurrence and all UD pairs sharing the same defini-

tion are associated with that definition occurrence. The initial value of time

separation for each DU/UD pair is set to a negative number, which is updated

during the simulation.

2. Simulation. The behavioral description is simulated with the test sequence. For

each signal there is a record of the current definition which defines the current

value of the signal. The record includes the location of the current definition

and the time step when the definition occurred. The record of the current defini-

tion is updated every time a new definition occurs. During the simulation, a

callback function is called when a statement with definition or use occurrence

is executed. The callback function then records the time step of the occurrence.

For a definition occurrence, the callback function updates the record of the cur-

rent definition and calculates the new value of time separation for each UD pair

associated with the current definition. If the new value of separation is less than

the old one, the callback function updates the time separation of the UD pair.

For a use occurrence, the callback function calculates the value of time separa-

tion for the DU pair from the current definition to the use and updates the value

of separation if the new value is smaller.

3. MTE fault coverage analysis. In this step, the simulation results are analyzed

and the MTE fault coverage is calculated for a range of thresholds. For a given

threshold, the MTE fault coverage is the ratio of the number of the DU/UD

pairs executed within threshold to the number of all DU/UD pairs. Since the

value of the threshold strongly affects the fault coverage, the coverage result is

presented by a curve rather than a number. The resulting curve shows the trend

of coverage over a range of threshold values.

7.6 Experimental Results

We experimented with the MTE fault analysis tool using four industry designs that

were provided to us with functional test sequences which we evaluated for MTE

coverage. Each benchmark was provided in Verilog and the Cadence Verilog-XL

simulator was used to gather coverage information. The first benchmark is an im-

plementation of type 1 ATM Adaptation Layer protocol that abstracts the ATM

layer from higher level communication protocols. The type 1 AAL protocol is

used to provide a Constant Bit Rate (CBR) service such as conventional voice ser-

vice and existing leased line service. The second benchmark is an implementation

of a four-ports data switch that contains an arbiter and four ports to receive and

send data. Each port sends requests for the internal bus and the arbiter chooses one

to allow access. The third benchmark is an implementation of Dual Tone Multi-

Frequency (DTMF) receiver. DTMF signals are the control tones generated by

standard touch-tone telephones. Pressing a key causes the telephone to generate a

 Tackling Concurrency and Timing Problems 117

pair of tones, one from the high-frequency group, and one from the low-frequency

group. To detect the tones, the DTMF receiver utilizes Goertzel’s algorithm to

calculate the frequency response at the DTMF center frequencies. Once calcu-

lated, the frequency response is analyzed to determine which DTMF digit was

found. The fourth benchmark is a simple RISC CPU core.

Table 7.7. Benchmark information and coverage summary

Benchmark Lines Blocks Signals Pairs Stmt MTE

AAL1 2068 54 22 1732 0.70 0.10

Switch 1269 28 29 200 0.93 0.65

Risc8 2302 50 37 1032 0.60 0.54

DTMF 8383 77 17 262 0.54 0.46

Table 7.1 summarizes the benchmark information and the coverage results. The

first four columns in order show the benchmark names, lines of Verilog code,

number of always (concurrent) blocks, and number of signals used. The number of

signals is relevant because each signal acts as a shared variable and the MTE

faults are associated with definitions and uses of the signals. The fifth column con-

tains the number of DU/UD pairs for all of the signals, which is also the number

of MTE faults in the design. The sixth column shows the statement coverage pro-

duced during test application, the fraction of statements covered during simula-

tion. The seventh column shows the maximum MTE coverage values, the fraction

of MTE faults which are detected by the test sequence. The MTE coverages re-

ported in Table 7.1 are maximal because the error span threshold was set to the

maximum value.

Detailed MTE coverage results for the AAL1 benchmark are shown in Figures

7.3 and 7.4. Figure 7.3 shows the variation in MTE coverage over a range of error

threshold values. The MTE coverage rises as the error threshold increases, be-

cause larger separation between DU/UD pairs is allowed. The maximum MTE

coverage in this example is quite low, only 0.10, and MTE coverage is used to

identify weaknesses in the test sequence and locate coverage holes. Upon examin-

ing the benchmark, we find that 87% of the DU/UD pairs are associated with one

signal rec_seq that has 28 definitions and 27 uses. This results in 1512 DU/UD

pairs.

118 I.G. Harris

0

0.05

0.1

0.15

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000

Time separation

M
T

E
fa

u
lt

 c
o
v

er
a
g
e

Figure 7.3. AAL1 MTE fault coverage distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000 5000 6000 7000 8000

M
T

E
fa

u
lt

 c
o
v
er

a
g

e

Time separation

Figure 7.4. AAL MTE coverage without the rec_seq signal

However, only 35 out of these 1512 pairs were executed during simulation. The

rec_seq signal is defined 28 times in the receiver.rec_CPU.chk1 module, whose

statement coverage is only 0.22, and is used 23 times in the receiver.rec_cpu.fsm1

module, whose statement coverage is 0.40. Therefore, most of the definitions and

uses are not executed and the MTE fault coverage of this signal is only 0.02,

which results in the overall low MTE coverage on the design. Figure 7.4 shows

the distribution of MTE coverage without consideration of signal rec_seq and the

 Tackling Concurrency and Timing Problems 119

coverage increases to 0.63. The test sequence needs to be enhanced to cover the

DU/UD pairs involving uses in the receiver.rec_cpu.fsm module. In this case the

MTE fault model identifies a weakness in the test sequence and provides direction

on how the sequence should be changed to improve the completeness of testing.

7.7 Conclusions

As hardware/software codesign is increasing applied for the design of embedded

applications, both functional and timing correctness of these designs becomes

more important. Process synchronization is manually intensive and has proven to

be a difficult task due to the complex interprocess dependencies that must be con-

sidered. Many synchronization methods are in use, which attempt to ease the syn-

chronization task by providing abstract primitives for use by the designer. How-

ever, it is not possible to enable efficient design while completely hiding the

intricacies of the synchronization task from the designer. As a result, synchroniza-

tion is likely to be a difficult and error-prone process for the foreseeable future. A

significant body of research is dedicated to hardware and software validation [10],

but little of this existing research focuses on the synchronization problem. Given

the inherent difficulty in synchronization, further research in this area can be ex-

pected.

Acknowledgments

Work on this chapter was supported in part by the National Science Foundation

under grant number 0204134

References

[1] Ben-Ari M (1990) Principles of concurrent and distributed programming. Prentice Hall

International (UK) Ltd

[2] Dijkstra EW (1968) Cooperating sequential processes, programming languages, 43-

112

[3] Hoare CAR (1974) Monitors: an operating system structuring concept. Communica-

tions of the ACM 17(10): 549-557

[4] Brinch Hansen P (1973) Operating system principles. Prentice Hall, Englewood Cliffs,

NJ

[5] Brinch Hansen P (1978) Distributed processes: a concurrent programming concept.

Communications of the ACM 21: 934-941

[6] Hoare CAR (1978) Communicating sequential processes. Communications of the

ACM 21: 666-667

120 I.G. Harris

[7] Zhang Q, Harris IG (2001) A Validation fault model for timing-induced functional er-

rors. In: International Test Conference, 813-820

[8] Rapps S, Weyuker EJ (1985) Selecting software test data using data flow information.

IEEE Transactions on Software Engineering SE-11(4): 367-375

[9] Chakraborty S, Dill DL (1997) Approximate algorithms for time separation of events.

In International Conference on Computer-Aided Design, 190-198

[10] Harris IG (2003) Fault models and test generation for hardware-software covalidation.

IEEE Design and Test of Computers 20(4): 40-47

8 An Approach to System-level Design for Test

G. Jervan, R. Ubar, Z. Peng, P. Eles

Linköping University, Linköping, Sweden

Tallinn University of Technology, Tallinn, Estonia

8.1 Abstract

In this chapter we will describe a Design-for-Test (DfT) methodology for systems-

on-chip. We have developed a hybrid Built-In Self-Test (BIST) approach, where

the test set is assembled from pseudorandom test patterns that are generated online

and deterministic test patterns that are generated offline and stored in the system.

We have analyzed the aspects related to the cost calculation of such a hybrid BIST

approach and will propose a test cost minimization strategy for single-core de-

signs. We have then extended the same approach for multi-core designs and de-

veloped a test time minimization methodology under tester memory constraints.

We will demonstrate the applicability and efficiency of the proposed approach for

cores with different core-level DfT structures and for systems with different sys-

tem-level test architectures.

8.2 Introduction

The rapid advances of the microelectronics technology in recent years have

brought new possibilities to integrated circuits (ICs) design and manufacturing.

Many systems are nowadays designed by embedding predesigned and preverified

complex functional blocks, usually referred to as cores, into one single die. While

this core-based design technique has led to increased design productivity, it intro-

duces additional test-related problems, which are due to, among others, intellec-

tual property protection. These additional testing problems, together with the test

problems induced by the complexity and heterogeneous nature of System-On-

Chip (SOC), pose great challenges to the SOC testing community.

It should first be noted that, even though the core-based design strategy is, to a

certain extent, similar to traditional system-on-board (SOB) design, where indi-

vidual chips are designed and then integrated into a board, production tests of

SOC and of SOB are very different. In SOB testing, the individual chips are

manufactured and tested first before they are integrated into the board. The indi-

vidual SOC cores, while predesign and preverified, will not be tested until they are

integrated into a system chip. Therefore, a core is not tested individually, but

rather as a part of the overall system chip test. This means that the divide-and-

122 G. Jervan, R. Ubar, Z. Peng and P. Eles

conquer testing strategy traditionally used to deal with the complexity of testing a

complex board cannot be applied directly in SOC testing.

Besides the increased complexity, the difficulty of SOC testing is due to its

heterogeneous nature. Typically, a SOC consists of microprocessor cores, digital

logic blocks, analog devices, and memory structures. These different types of

component were traditionally tested, as separate chips, by dedicated automatic test

equipment of different types. Now they must be tested all together as a single chip,

either by a super tester, which is capable of handling the different types of cores

and is very expensive, or by multiple testers, which is very time consuming due to

the handling time of moving from one tester to another.

Another problem related to testing embedded cores as a part of system test is

due to the limited knowledge the system integrator has about the internal structure

of a core. This may be due to intellectual property protection or the use of com-

plex hard cores. In this situation, the core developer will provide the test patterns

and insert Design-for-Test (DfT) mechanisms into the core. Since the core devel-

oper has no idea about the overall SOC design and test strategy to be used, the in-

serted DfT mechanism may not be compatible with the overall design and test phi-

losophy, leading usually to low test quality or high overhead. This problem needs

to be solved in order to guarantee the high quality level of SOC products.

Another key issue to be addressed for SOC testing is the implementation of

test access mechanisms on chip. For traditional SOB design, direct test access to

the peripheries of the basic components, in the form of separate chips, is usually

available. For the corresponding cores embedded deeply in a SOC, such access is

impossible. Therefore, additional test access mechanisms must be included in a

SOC to connect the core peripheries to the test sources and sinks, which are the

SOC pins when testing by an external tester is assumed.

The design of the test access mechanism must be considered together with the

test-scheduling problem, in order to reduce the silicon area used for test access and

to minimize the total test application time, which includes the time to test the indi-

vidual cores and user-defined logic as well as the time to test their interconnec-

tions. The issue of power dissipation in test mode should also be considered in or-

der to prevent the chip being damaged by overheating during test. Since the

problems of test access mechanism design, test scheduling, test application time

minimization, and test power consideration are interdependent, they must be

solved together in an integrated design environment.

Many of the testing problems discussed above can be overcome by using a

Built-In Self-Test (BIST) strategy. For example, the test access cost can be sub-

stantially reduced by putting the test sources and sinks next to the cores to be

tested. BIST can also be used to deal with the discrepancy between the speed of

the SOC, which is increasing rapidly, and that of the tester, which will soon be too

slow to match typical SOC clock frequencies. The introduction of BIST mecha-

nisms in a SOC will also improve the diagnosis ability and field-test capability,

which are essential for many applications where regular operation and mainte-

nance testing is needed.

Since the introduction of BIST mechanisms into a SOC is a complex task, we

need to develop powerful automated design methods and tools to optimize the test

 An Approach to System-level DfT 123

function, together with the other design criteria and to speed up the design proc-

ess. Such methods and tools are collectively called DfT methods. In this chapter

we are going to concentrate on one of those methods, namely BIST. We will de-

scribe hybrid BIST methodology as an improvement of a classical BIST approach,

and describe optimization methods for such architectures.

A classical BIST architecture consists of a Test Pattern Generator (TPG), a

Test Response Analyzer (TRA) and a BIST Control Unit (BCU), all implemented

on the chip. Different implementations of such BIST architectures have been

available, and some of them have got wide acceptance. Unfortunately, the classi-

cal BIST approaches suffer the problems of inducing additional delay to the cir-

cuitry and requiring a relatively long test application time.

In particular, one major problem of the classical BIST implementation is due to

the fact that the TPG for BIST is implemented by linear feedback shift registers

(LFSRs) [1], [2], [20]. Since the test patterns generated by an LFSR are pseudo-

random by nature and have linear dependencies [6], the LFSR-based approach of-

ten does not guarantee a sufficiently high fault coverage (especially in the case of

large and complex designs), and demands very long test application times in addi-

tion to high area overheads. Therefore, several proposals have been made to com-

bine pseudorandom test patterns, generated by LFSRs, with deterministic patterns

[4], [7], [8], [14], [15], [21], to form a hybrid BIST solution.

The main concern of the hybrid BIST approaches has been to improve the fault

coverage by mixing pseudorandom vectors with deterministic ones, while the is-

sue of test cost minimization has not been addressed directly.

In the following sections, we will analyze first the aspects related to the cost

calculation of hybrid BIST. We will explain the basic concepts based on single-

core designs. Thereafter, we will demonstrate how those concepts can be ex-

panded for multi-core designs.

8.3 Hybrid Built-in Self-test

As described earlier, a typical self-test approach usually employs some form of

pseudorandom TPGs. These test sequences are often very long and not sufficient

to detect all the faults. To avoid the test quality loss due to random pattern-

resistant faults and to speed up the testing process, we can apply deterministic test

patterns targeting the random resistant and difficult-to-test faults. Such a hybrid

BIST approach usually starts with a pseudorandom test sequence of length L. Af-

ter the application of pseudorandom patterns, a stored test approach will be used

[9]. For the stored test approach, pre-computed test patterns are applied to the core

under test in order to reach the desirable fault coverage level. For offline genera-

tion of the deterministic test patterns, arbitrary software test generators may be

used based on deterministic, random or genetic algorithms.

In a hybrid BIST technique the length of the pseudorandom test is an important

design parameter, as it determines the behavior of the whole test process. A

shorter pseudorandom test sequence implies a larger deterministic test set. This

124 G. Jervan, R. Ubar, Z. Peng and P. Eles

requires additional memory space, but at the same time it shortens the overall test

time. A longer pseudorandom test, on the other hand, will lead to larger test appli-

cation time with reduced memory requirement. Therefore, it is crucial to deter-

mine the optimal length of pseudorandom test in order to minimize the total test-

ing cost.

Figure 8.1 illustrates graphically the total cost of a hybrid BIST consisting of

pseudorandom test patterns and stored test patterns generated offline. The horizon-

tal axis in Figure 8.1 denotes the fault coverage achieved by the pseudorandom

test sequence before switching from the pseudorandom test to the stored test. Zero

fault coverage is the case when only stored test patterns are used and, therefore,

the cost of the stored test is greatest at this point. The figure illustrates the situa-

tion where 100% fault coverage is achievable with pseudorandom vectors alone.

C min

CTOTAL

Cost of stored

test CMEM

to reach 100%

fault coverage

Cost of

pseudorandom

test CGEN

100%

Test

Cost

Pseudorandom test

coverage (%)

Figure 8.1. Cost calculation for hybrid BIST (under 100% assumption)

The total test cost of the hybrid BIST CTOTAL can therefore be defined as

CTOTAL = CGEN + CMEM = αL + βS (8.1)

where CGEN is the cost related to the effort for generating L pseudorandom test pat-

terns (number of clock cycles), CMEM is related to the memory cost for storing S

pre-computed test patterns to improve the pseudorandom test set, and α, β are

constants to map the test length and memory space to the costs of the two parts of

the test solutions.

We should note that defining the test cost as a sum of two costs, the cost of

time for the pseudorandom test generation and the cost of memory associated with

storing the TPG-produced test, is a rather simplified cost model for the hybrid

BIST technique. In this simplified model, neither the basic cost of memory (or its

equivalent) occupied by an LFSR-based generator, nor the time needed for gener-

 An Approach to System-level DfT 125

ating deterministic test patterns are taken into account. However, these aspects can

easily be added to the cost calculation formula after the desired hardware architec-

ture is chosen. In this chapter we are going to provide the algorithms to find the

best trade-off between the length of pseudorandom test sequence and the number

of deterministic patterns. For making such a trade-off, the basic implementation

costs are invariant and will not influence the optimal selection of the hybrid BIST

parameters.

On the other hand, the attempt to add “time” to “space” (even in terms of their

cost) seems rather controversial, as it is very hard to specify which one costs more

in general (or even in particular cases) and how to estimate these costs. This was

also the reason why the total cost of the BIST function is not considered in this

chapter. The values of parameters α and β in the cost function are left to be deter-

mined by the designer and can be seen as one of the design decisions. If needed, it

is possible to separate these two different costs (time and space), and consider, for

example, one of them as a design constraint.

Figure 8.1 illustrates also how the cost of pseudorandom testing is increasing

when striving to higher fault coverage (the CGEN curve). In general, it can be very

expensive to achieve high fault coverage with pseudorandom test patterns alone.

The CMEM curve describes the cost that we have to pay for storing additional pre-

computed tests at the given fault coverage level reached by pseudorandom testing.

The total cost CTOTAL is the sum of the above two costs. The CTOTAL curve is illus-

trated in Figure 8.1, where the minimum point is marked as Cmin.

Total Cost

CTOTAL

Cost

Cost of

pseudorandom test

patterns CGEN

Number of remaining

faults after applying k

pseudorandom test

patterns rNOT(k)

Cost of stored

test CMEM

Time/memory

Figure 8.2. Cost calculation for hybrid BIST

As mentioned earlier, in many situations 100% fault coverage is not achievable

with only pseudorandom vectors. Therefore, we have to include this assumption in

the total cost calculation. The situation is illustrated in Figure 8.2, where the hori-

zontal axis indicates the number of pseudorandom patterns applied, instead of the

fault coverage level. The curve of the total cost CTOTAL is still the sum of two cost

curves CGEN + CMEM, with the new assumption that the maximum fault coverage is

achievable only by either the hybrid BIST or a pure deterministic test.

126 G. Jervan, R. Ubar, Z. Peng and P. Eles

8.3.1 Hybrid Built-in Self-test Cost Optimization

In the following we will describe different methods to find the global minimum of

the Total Cost curve, while testing every core in isolation. Creating the curve CGEN

= αL is not difficult. For this purpose, only a simulation of the behavior of the

LSFR used for pseudorandom test pattern generation is needed. A fault simulation

should be carried out for the complete test sequence generated by the LFSR. As a

result of such a simulation, we find for each clock cycle the list of faults which are

covered at this clock cycle.

As an example, in Table 8.1 a fragment of the results of BIST simulation for

the ISCAS’85 circuit c880 [3] is given, where

• k denotes the number of the clock cycle,

• rDET(k) is the number of new faults detected (covered) by the test pattern gener-

ated at the clock signal k,

• rNOT(k) is the number of remaining faults after applying the sequence of pat-

terns generated by the k clock signals,

• FC(k) is the fault coverage reached by the sequence of patterns generated by the

k clock signals

Table 8.1. Pseudorandom test results

k rDET(k) rNOT(k) FC(k) k rDET(k) rNOT(k) FC(k)

0 155 839 15.593561% 148 13 132 86.720322%

1 76 763 23.239437% 200 18 114 88.531189%

2 65 698 29.778671% 322 13 101 89.839035%

3 90 608 38.832996% 411 31 70 92.957748%

4 44 564 43.259556% 707 24 46 95.372231%

5 39 525 47.183098% 954 18 28 97.183098%

10 104 421 57.645874% 1535 4 24 97.585510%

15 66 355 64.285713% 1560 8 16 98.390343%

20 44 311 68.712273% 2153 11 5 99.496979%

28 42 269 72.937622% 3449 2 3 99.698189%

50 51 218 78.068413% 4519 2 1 99.899399%

70 57 161 83.802818% 4520 1 0 100.000000%

100 16 145 85.412476%

In the list of BIST simulation results, not all clock cycles should be presented.

We are only interested in the clock numbers at which at least one new fault will be

covered, and the total fault coverage for the pseudorandom test sequence up to this

clock number increases. Let us call such clock numbers and the corresponding

pseudorandom test patterns efficient clocks and efficient patterns. The rows in Ta-

ble 8.1 correspond to the efficient, not all, clocks for the circuit c880.

If we decide to switch from pseudorandom mode to the deterministic mode af-

ter the clock number k, then L = k.

More difficult is to find the values for CMEM = βS. Let t(k) be the number of test

patterns needed to cover rNOT(k) not yet detected faults (these patterns should be

 An Approach to System-level DfT 127

pre-computed and used as stored test patterns in the hybrid BIST). As an example,

these data for the circuit c880 are depicted in Table 8.2. Calculation of the data in

the column t(k) of Table 8.2 is the most expensive procedure. In the following sec-

tion the difficulties and possible ways to solve the problem are discussed.

Table 8.2. Automatic TPG (ATPG) results

k t(k) k t(k)

0

1

2

3

4

5

10

15

20

28

50

70

100

104

104

100

101

99

99

95

92

87

81

74

58

52

148

200

322

411

707

954

1535

1560

2153

3449

4519

4520

46

41

35

26

17

12

11

7

3

2

1

0

The Optimization Algorithms

There are two approaches to find t(k): ATPG based and fault-table based. Let us

have the following notations:

• i – the current number of the entry in the tables for PRG and ATPG;

• k(i) – the number of the clock cycle of the efficient clock i;

• RDET(i) – the set of new faults detected (covered) by the pseudorandom test pat-

tern which is generated at the efficient clock signal number i;

• RNOT(i) – the set of not-yet-covered faults after applying the pseudorandom test

pattern number i;

• T(i) – the set of test patterns needed and found by the ATPG to cover the faults

in RNOT(i);

• N – the number of all efficient patterns in the sequence created by the pseudo-

random test;

• FT – the fault table for a given set of tests T and for the given set of faults R:

the element jk (j is ranged over the test set T, and k over the fault set R) in the

table is defined as jk = 1 if the test tj ∈ T detects the rk ∈ R; otherwise jk = 0.

Algorithm 1: ATPG-based approach for finding test sets T(i)

1. Let q := N;

2. Generate for RNOT(q) a test set T(q), T := T(q), t(q) := |T(q)|;

3. For all q = N – 1, N – 2, … 1:

Generate for the faults RNOT(q) not covered by test T a test set T(q),

T := T+ T(q), t(q) := |T|.

128 G. Jervan, R. Ubar, Z. Peng and P. Eles

The above algorithm generates a new deterministic test set for the not-yet-

detected faults at every efficient clock cycle. In this way we have the complete test

set (consisting of pseudorandom and deterministic test vectors) for every efficient

clock, which can reach to the maximal achievable fault coverage. The number of

deterministic test vectors at all efficient clocks is then used to create the curve

CMEM(βS). The algorithm is straightforward; however, it is very time consuming

because of the repetitive use of ATPG.

Algorithm 2: Fault-table-based approach for finding test sets T(i)

1. Let q = 1; calculate the test T(q) for the whole set of faults R, create the fault

table FT;

2. For all q = 2, 3, …, N:

Create a new fault table FT by removing from it the faults RDET(q – 1),

and optimize the test set T(q – 1) in relation to the new FT. The optimized

test set is T(q).

This algorithm starts by generating a test set T for all detectable faults. Based

on the fault simulation results, a fault table FT will be created. By applying k

pseudorandom patterns we can remove all faults from the original fault table,

which were covered by the pseudorandom vectors and by using static test compac-

tion reduce the original deterministic test set. These modifications should be per-

formed iteratively for all possible breakpoints to calculate the curve CMEM(βS) and

to use this information to find the optimal CTOTAL. More details about the algo-

rithms can be found in [17].

The main limitation of the above algorithms is that, in the case of very large

circuits, both of them are very time consuming and not applicable in the case of

large and complex designs. It would be desirable, therefore, to find a solution that

is close to the optimum of the total cost curve by only few sampled calculations of

the total cost for selected values of i, 1 ≤ i ≤ N.

For this purpose a fast estimation algorithm to search the close to optimum so-

lution by using just a few samples from the whole test generation experiments set

can be used. As available data for such a kind of estimation, the number of not-

yet-covered faults in RNOT(k) can be used. The value of RNOT(k) can be acquired

directly from the PRG simulation results and is available for every significant time

moment (see Table 8.1). Based on the value of ⏐RNOT(k)⏐ it is possible to reason

about the expected number of test patterns needed for covering the faults in

RNOT(k), and this information can be used to estimate the total cost of the hybrid

BIST solution [9], [11].

The estimation procedure does not provide, in most cases, the final solution, but

can be used as a good starting point to search for the close to the optimum solution

by sampled calculation of the real cost. Estimated cost would suggest the first so-

lution for dividing the BIST into two parts (PRG and deterministic based). Based

on this starting point, the exploration can be carried out by using some classical

methods, like Tabu search [5] or simulated annealing [12]. The results are pre-

sented in Table 8.3 [10], [18].

 An Approach to System-level DfT 129

Experiments were carried out on the ISCAS’85 benchmark circuits for compar-

ing Algorithms 1 and 2, and for investigating the efficiency of the Tabu method

for optimizing the hybrid BIST. The Turbo Tester toolset [16] was used for deter-

ministic TPG, fault simulation, and test set compaction.

In the columns of Table 8.3 the following data are depicted: ISCAS’85 bench-

mark circuit name; LPR, the length of the pseudorandom test sequence; FC, the

fault coverage; SDET, the number of deterministic test patterns, generated by the

ATPG, without using any pseudorandom patterns; T1 and T2, the time (seconds)

needed for calculating the cost curve by Algorithms 1 and 2; T3, the time (sec-

onds) to find the optimal cost by using Tabu search; Acc, the accuracy of the Tabu

search solution as a percentage compared with the exact solution found from the

exact cost curve (Algorithm 1). In the hybrid BIST column we have presented the

optimized hybrid BIST solution. L is a number of pseudorandom patterns and S is

a number of deterministic patterns in the optimized hybrid BIST sequence. The

hybrid BIST cost has been optimized based on assumption that one clock cycle

equals one byte of memory. As can be seen, in a typical case less than half of the

deterministic vectors and only a small fraction of pseudorandom vectors are

needed; however, the maximum achievable fault coverage is guaranteed and

achieved. Obviously, by changing the ratio of the cost parameters (time and mem-

ory) we will drive the optimization algorithm to the different solutions, e.g., longer

pseudorandom sequence and less deterministic patterns or vice versa.

Table 8.3. Experimental results of creating optimized hybrid BIST

Pseudorandom

test

Stored

test

Hybrid

BIST

Calculation cost

Circuit

LPR FC SDET C L S T1 T2 T3 Acc

C432 780 93.0 80 93.0 91 21 1632 21 2.85 100.0

C499 2036 99.3 132 99.3 78 60 74 3 0.50 100.0

C880 5589 100.0 77 100.0 121 48 17 2 0.26 99.7

C1355 1522 99.5 126 99.5 121 52 133 5 0.83 99.5

C1908 5803 99.5 143 99.5 105 123 2132 25 3.83 100.0

C2670 6581 84.9 155 99.5 444 77 230 13 0.99 99.1

C3540 8734 95.5 211 95.5 297 110 22601 122 7.37 100.0

C5315 2318 98.9 171 98.9 711 12 2593 38 1.81 97.2

C6288 210 99.3 45 99.3 20 20 200 6 1.70 100.0

C7552 18704 93.7 267 97.1 583 61 15004 129 3.70 99.7

8.4 Hybrid Built-in Self-test for Multi-core Systems

In the previous section we described the basic principles of hybrid BIST and dis-

cussed methods for test cost calculation and optimization for individual cores in

isolation. In this section we concentrate on hybrid BIST optimization for multi-

core designs. As total cost minimization for multi-core systems is an extremely

complex problem and is rarely used in reality, the main emphasis here is on test

time minimization under memory constraints with different test architectures. The

130 G. Jervan, R. Ubar, Z. Peng and P. Eles

memory constraints can be seen as limitations of on-chip memory or automatic

test equipment, where the deterministic test set will be stored, and therefore with

high practical importance. We will concentrate on two large classes of test archi-

tectures. In one case we assume that every core is equipped with its own pseudo-

random pattern generator and only deterministic patterns have to be transported to

the cores. In the second case we assume test pattern broadcasting, where both

pseudorandom and deterministic test patterns have to be transported to the cores

under test. For both architectures we will describe test-per-clock as well as test-

per-scan application schemes.

It is important to mention here that the following approaches do not take into

account test power, nor do we propose any methods for test access mechanism op-

timization. Those problems can be solved after the efficient test set for every indi-

vidual core has been developed and, therefore, are not considered here.

8.4.1 Built-in Self-test Time Minimization for Systems with
Independent Built-in Self-test Resources

We start with a test architecture where every core has its own dedicated BIST

logic that is capable producing a set of independent pseudorandom test patterns,

i.e., the pseudorandom test sets for all the cores can be carried out simultaneously.

SOC

C3540

C1908 C880 C1355

Embedded tester
C2670

Test access
mechanismBIST BIST

BISTBISTBIST

Test
controller

Tester
memory

Figure 8.3. An example of a core-based system, with independent BIST resources

The deterministic tests, on the other hand, can only be carried out for one core

at a time, which means only one test access bus at the system level is needed. An

example of a multi-core system with such a test architecture is given in Figure 8.3.

This example system consists of five cores (different ISCAS benchmarks). Us-

ing the hybrid BIST optimization methodology, we can find the optimal combina-

tion between pseudorandom and deterministic test patterns for every individual

core (Figure 8.4). Considering the test architecture assumed, only one determinis-

tic test set can be applied at any given time, while any number of pseudorandom

 An Approach to System-level DfT 131

test sessions can take place in parallel. To enforce the assumption that only one

deterministic test can be applied at a time, a simple ad hoc scheduling method can

be used. The result of this schedule defines the starting moments for every deter-

ministic test session, the memory requirements, and the total test length t for the

whole system. This situation is illustrated in Figure 8.4.

0 100 200 300 400 500

c3540

c1355

c2670

c880

c1908
Random
Idle
Deterministic

Core Random Det.

C1908 105 123

C880 121 48

C2670 444 77

C1355 121 52

C3540 297 110

Clock cycles
t

Figure 8.4. Ad hoc test schedule for hybrid BIST of the core-based system example

As can be seen from Figure 8.4, the solution where every individual core has

the best possible combination between pseudorandom and deterministic patterns

usually does not lead to the best system-level test solution. In the example, we

have illustrated three potential problems:

• The total test length of the system is determined by the single longest individual

test set, while other tests may be substantially shorter.

• The resulting deterministic test sets do not take into account the memory

requirements, imposed by the size of the on-chip memory or the external test

equipment.

• The proposed test schedule may introduce idle periods, due to the test conflicts

between the deterministic tests of different cores.

There are several possibilities for improvement. For example the ad hoc solu-

tion can easily be improved by using a better scheduling strategy. This, however,

does not necessarily lead to a significantly better solution, as the ratio between

pseudorandom and deterministic test patterns for every individual core is not

changed. Therefore, we have to explore different combinations between pseudo-

random and deterministic test patterns for every individual core in order to find a

solution where the total test length of the system is minimized and memory con-

straints are satisfied. In the following sections we will define this problem more

precisely, and describe a fast iterative algorithm for calculating the optimal com-

bination between different test sets for the whole system.

Basic Definitions and Problem Formulation

Let us assume that a system S consists of n cores C1, C2,…, Cn. For every core

Ck ∈ S a complete sequence of deterministic test patterns TD
F

k and a complete se-

132 G. Jervan, R. Ubar, Z. Peng and P. Eles

quence of pseudorandom test patterns TP
F

k can be generated. It is assumed that

both test sets can obtain by itself maximum achievable fault coverage Fmax.

Definition 8.1: A hybrid BIST set THk = {TPk, TDk} for a core Ck is a sequence

of tests constructed from the subsets of pseudorandom test sequence TPk ⊆ TP
F

k

and a deterministic test sequence TDk ⊆ TD
F

k. The sequences TPk and TDk com-

plement each other to achieve the maximum achievable fault coverage.

Definition 8.2: A pattern in a pseudorandom test sequence is called efficient if

it detects at least one new fault that is not detected by the previous test patterns in

the sequence. The ordered sequence of efficient patterns form an efficient pseudo-

random test sequence TPEk = (P1, P2,…, Pn) ⊆ TPk. Each efficient pattern Pj ∈
TPEk is characterized by the length of the pseudorandom test sequence TPk, from

the start to the efficient pattern Pj, including Pj. Efficient pseudorandom test se-

quence TPEk, which includes all efficient patterns of TP
F

k, is called a full efficient

pseudorandom test sequence and denoted by TPE
F

k.

Definition 8.3: The cost of a hybrid test set THk for a core Ck is determined by the

total length of its pseudorandom and deterministic test sequences, which can be char-

acterized by their costs, COSTP,k and COSTD,k respectively:

kkkkkk TDTPCOSTCOSTCOST D,P,T, βα +=+=

and by the cost of recourses needed for storing the deterministic test sequence TDk in

the memory:

kkk TDCOSTM, γ=

The parameters α and βk can be introduced by the designer to align the application

times of different test sequences. For example, when a test-per-clock BIST scheme is

used, a new test pattern can be generated and applied in each clock cycle and in this

case α = 1. The parameter βk for a particular core Ck is equal to the total number of

clock cycles needed for applying a deterministic test pattern from the memory. In a

special case, when deterministic test patterns are applied by external test equipment,

application of deterministic test patterns may be up to one order of magnitude slower

than applying BIST patterns. The coefficient γk is used to map the number of test pat-

terns in the deterministic test sequence TDk into the memory recourses, measured in

bits.

Definition 8.4: When assuming the test architecture described above, a hybrid test

set TH = {TH1, TH2, …, THn} for a system S = {C1, C2, …, Cn} consists of hybrid

tests THk for each individual core Ck, where pseudorandom components of the TH can

be scheduled in parallel, whereas the deterministic components of TH must be sched-

uled in sequence due to the shared test resources.

Definition 8.5: J = (j1, j2,…, jn) is called the characteristic vector of a hybrid test set

TH = {TH1, TH2, …, THn}, where jk = |TPEk| is the length of the efficient pseudoran-

dom test sequence TPEk ⊆ TPk ⊆ THk.

According to Definition 8.2, for each jk there corresponds a pseudorandom sub-

sequence TPk(jk) ⊆ TP
F

k, and, according to Definition 8.1, any pseudorandom test

sequence TPk(jk) should be complemented with a deterministic test sequence, de-

noted with TDk(jk), that is generated in order to achieve the maximum achievable

fault coverage. Based on this we can conclude that the characteristic vector J de-

termines entirely the structure of the hybrid test set THk for all cores Ck ∈ S.

 An Approach to System-level DfT 133

Definition 8.6: The test length of a hybrid test TH = {TH1, TH2, …, THn} for a

system S = {C1, C2, …, Cn} is given by

}TD),TDTP(max{maxCOSTT kk

k

kkk
k

ββα +=

The total cost of resources needed for storing the patterns from all deterministic

test sequences TDk in the memory is given by
=

k

kk TDCOSTM γ

Definition 8.7: Let us introduce a generic cost function COSTM,k = fk(COSTT,k)

for every core Ck ∈ S, and an integrated generic cost function COSTM =
fk(COSTT) for the whole system S.

The functions COSTM,k = fk(COSTT,k) will be created in the following way. Let

us have a hybrid BIST set THk(j) = {TPk(j), TDk(j)} for a core Ck with j efficient

patterns in the pseudorandom test sequence. By calculating the costs COSTT,k and

COSTM,k for all possible hybrid test set structures THk(j), i.e., for all values j = 1,

2, …, ⏐TPE
F

k⏐, we can create the cost functions COSTT,k = fT,k(j), and COSTM,k =

fM,k(j). By taking the inverse function j = f’T,k(COSTT,k), and inserting it into the

fM,k(j), we get the generic cost function COSTM,k = fM,k(f’T,k(COSTT,k)) =

fk(COSTT,k), where the memory costs are directly related to the lengths of all pos-

sible hybrid test solutions.

The integrated generic cost function COSTM=f(COSTT) for the whole system is

the sum of all cost functions COSTM,k = fk(COSTT,k) of individual cores Ck ∈ S.
From the function COSTM = f(COSTT), the value of COSTT for every given

value of COSTM can be found. The value of COSTT determines the lower bound

of the length of the hybrid test set for the whole system. To find the component jk

of the characteristic vector J, i.e., to find the structure of the hybrid test set for all

cores, the equation fT,k(j)= COSTT should be solved.

The objective here is to find a shortest possible (min(COSTT)) hybrid test sequence

THopt when the memory constraints are not violated COSTM ≤ COSTM,LIMIT.

 Hybrid Test Sequence Computation Based on Cost Estimates

By knowing the generic cost function COSTM = f(COSTT), the total test length COSTT

at any given memory constraint COSTM ≤ COSTM,LIMIT can be found in a straightfor-

ward way. However, the procedure to calculate the cost functions COSTD,k(j) and

COSTM,k(j) is very time consuming, since it assumes that the deterministic test set TDk

for each j = 1, 2, …, |TPE
F

k| has to be available. This assumes that after every efficient

pattern Pj ∈ TPEk ⊆ TPk, j = 1, 2, …, |TPE
F

k| a set of not-yet-detected faults FNOT,k(j)
should be calculated. This can be done either by repetitive use of the ATPG or by sys-

tematically analyzing and compressing the fault tables for each j (see Section 8.2.1).

Both procedures are accurate but time consuming and, therefore, not feasible for larger

designs. To overcome the complexity explosion problem we propose an iterative algo-

rithm, where costs COSTM,k and COSTD,k for the deterministic test sets TDk can be

found based on estimates. The estimation method is based on fault coverage figures

and does not require accurate calculations of the deterministic test sets for not-yet-

detected faults FNOT,k(j).

134 G. Jervan, R. Ubar, Z. Peng and P. Eles

In the following we will use FDk(i) and FPEk(i) to denote the fault coverage figures

of the test sequences TDk(i) and TPEk(i) respectively, where i is the length of the test

sequence.

Procedure 1: Estimation of the length of the deterministic test set TDk.

1. Calculate, by fault simulation, the fault coverage functions FDk(i), i = 1, 2, …,

|TD
F

k|, and FPEk(i), i = 1, 2, …, |TPE
F

k|. The patterns in TD
F

k are ordered in such

the way that each pattern put into the sequence contributes with maximum in-

crease in fault coverage.

2. For each i* ≤ |TPE
F

k|, find the fault coverage value F* that can be reached by a

sequence of patterns (P1, P2, …, Pi*) ⊆ TPEk (see Figure 8.5).

3. By solving the equation FDk(i) = F*, find the maximum integer value j* that satis-

fies the condition FDk(j*) ≤ F*. The value of j* is the length of the deterministic

sequence TDk that can achieve the same fault coverage F*.

4. Calculate the value of |TD
E

k(i*)| = |TD
F

k| − j* which is the number of test patterns

needed from the TD
F

k to reach to the maximum achievable fault coverage.

i

F

FDk(i)
FPEk(i)

i*

F*

|TDE
k(i*)|

100%

|TDF
k|j*

Figure 8.5. Estimation of the length of the deterministic test sequence

The value |TD
E

k(i*)|=|TD
F

k| − j*, calculated by Procedure 1, can be used to es-

timate the length of the deterministic test sequence TDk in the hybrid test set THk

= {TPk, TDk} with i* efficient test patterns in TPk, (|TPEk|= i*).

By finding |TD
E

k(j)| for all j = 1, 2, …, |TPE
F

k| we get the cost function estimate

COST
E

D,k(j). Using COST
E

D,k(j), other cost function estimates COST
E

M,k(j),

COST
E

T,k(j) and COST
E

M,k = fk
E
(COST

E
T,k) can be created according to the Defini-

tions 8.3 and 8.7.

Finally, by adding cost estimates COST
E

M,k = fk
E
(COST

E
T,k) of all cores, we get

the hybrid BIST cost function estimate COST
E

M = fE
(COST

E
T) for the whole sys-

tem.

This estimation mechanism is illustrated on Figure 8.6. It depicts fault simula-

tion results of both pseudorandom (TP) and deterministic (TD) test sets for a given

core. The length of the pseudorandom sequence has to be only so long as poten-

 An Approach to System-level DfT 135

tially interesting. By knowing the length of the complete deterministic test set and

fault coverage figures for every individual pattern we can estimate the size of the

additional deterministic test set for any length of the pseudorandom test sequence,

as illustrated in the Figure 8.6. Here, we can see that for a given core 60 determi-

nistic test cycles are needed to obtain the same fault coverage as 524 pseudoran-

dom test cycles and it requires an additional 30 deterministic test cycles to reach

100% fault coverage. Based on this information, we assume that if we apply those

30 deterministic test cycles on top of the 524 pseudorandom cycles, we can obtain

close to the maximum fault coverage. This assumption is the basis of the cost es-

timation procedure. Obviously, this cannot be used as a final solution; but, as we

will demonstrate, it can be used as a good starting point for a test time minimiza-

tion algorithm.

60

524

30

476

0 200 400 600 800 1000

Pseudorandom test sequence

Deterministic test sequence

|TP| FC% |TD| FC%

1 21.9 1 43.3

2 34.7 2 45.6

 …

524 97.5 60 97.5

 …

1000 98.9 90 100

Figure 8.6. Estimation of the length of the deterministic test sequence (core s1423)

Test Length Minimization Under Memory Constraints

As described above, the exact calculations for finding the cost of the deterministic

test set COSTM,k = fk(COSTT,k) are very time consuming. Therefore, we will use

the cost estimates, calculated by Procedure 1 in the previous section, instead. Us-

ing estimates can give us a quasi-minimal solution for the test length of the hybrid

test at given memory constraints. After obtaining a quasi-minimal solution, the

cost estimates can be improved and another, better, quasi-minimal solution can be

136 G. Jervan, R. Ubar, Z. Peng and P. Eles

calculated. This iterative procedure will be continued until we reach the final solu-

tion.

Procedure 2: Test length minimization.

1. Given the memory constraint COSTM,LIMIT, find the estimated total test length

COST
E*

T as a solution to the equation fE
(COST

E
T) = COSTM,LIMIT.

2. Based on COST
E*

T, find a candidate solution J* = (j*1, j*2,…, j*n) where each

j*k is the maximum integer value that satisfies the equation COST
E

T,k(j*k) ≤
COST

E*
T.

3. To calculate the exact value of COST*M for the candidate solution J*, find the

set of not-yet-detected faults FNOT,k(j*k) and generate the corresponding deter-

ministic test set TD*k by using an ATPG algorithm.

4. If COST*M = COSTM,LIMIT, go to the Step 9.

5. If the difference |COST*M − COSTM,LIMIT| is bigger than that in the earlier itera-

tion make a correction ∆t = ∆t/2, and go to Step 7.

6. Calculate a new test length COST
E,N

T from the equation fE
k(COST

E
T) =

COST
*

M, and find the difference ∆t = COST
E,*

T − COST
E,N

T .

7. Calculate a new cost estimate COST
E,*

T = COST
E,*

T + ∆t for the next iteration.

8. If the value of COST
E,*

T is the same as in an earlier iteration, go to Step 9, oth-

erwise go to Step 2.

9. END: The vector J* = (j*1, j*2,…, j*n) is the solution.

To illustrate the above procedure, an example of the iterative search for the short-

est length of the hybrid test is given in Figures 8.7 and 8.8. Figure 8.7 represents

all the basic cost curves COST
E

D,k(j), COST
E

P,k(j), and COST
E

T,k(j), as functions of

the length j of TPEk where jmin denotes the optimal solution for a single core hy-

brid BIST optimization problem [9].

COST
P,k

COST

 j min

COST
E*

T

 j*k

Solution

COST T,k

E

COST D,k
E

 j

Figure 8.7. Cost curves for a given core Ck

Figure 8.8 represents the estimated generic cost function COST
E

M =

fE
(COST

E
T) for the whole system. First (Step 1), the estimated COST

E*
T for the

given memory constraints is found (point 1 on Figure 8.8). Then (Step 2), based

 An Approach to System-level DfT 137

on COST
E*

T the length j*k of TPEk for the core Ck in Figure 8.7 is found. This pro-

cedure (Step 2) is repeated for all the cores to find the characteristic vector J* of

the system as the first iterative solution. After that the real memory cost COST
E*

M

is calculated (Step 3, point 1* in Figure 8.8). As we see in Figure 8.8, the value of

COST
E*

M in point 1* violates the memory constraints. The difference ∆t1 is de-

termined by the curve of the estimated cost (Step 6). After correction, a new value

of COST
E*

T is found (point 2 on Figure 8.8). Based on COST
E*

T, a new J* is

found (Step 2), and a new COST
E*

M is calculated (Step 3, point 2* in Figure 8.8).

An additional iteration via points 3 and 3* can be followed in Figure 8.8.

COST T

COST M

Real cost

Estimated
cost

Memory
constraint

1

1*

2
3

2*

3*

∆t1 Correction for∆t1

∆M

∆t2
Correction for∆t2

E

E

Figure 8.8. Minimization of the test length

It is easy to see that Procedure 2 always converges. By each iteration we get

closer to the memory constraints level, and also closer to the minimal test length at

given constraints. However, the solution may be only near-optimal, since we only

evaluate solutions derived from estimated cost functions.

138 G. Jervan, R. Ubar, Z. Peng and P. Eles

0

2000

4000

6000

8000
Memory usage: 5357 bits

1000 150050

5500

542

M
em

or
y

(b
its

)
Memory
usage:
1353
480

1025
363

2136
0
0

Core:
c499
c880
c1355
c1908
c5315
c6288
c432

Det. Test
length:

33
8

25
11
12
0
0

Total test length (clocks)

Estimated cost

Real cost
Cost estimates

for individual cores

Memory constraint

Figure 8.9. The final test solution for the system S2 (MLIMIT = 5500)

In Figure 8.9 we present the estimated cost curves for the individual cores and the

estimated and real cost curves for one of the systems with seven cores (different

ISCAS benchmarks). We also show in this picture a test solution point for this system

under given memory constraint that has been found based on our algorithm. In this ex-

ample we have used a memory constraint MLIMIT = 5500 bits. The final test length for

this memory constraint is 542 clock cycles, and that gives us the test schedule depicted

in Figure 8.10.

This approach can easily be extended to systems with full-scan sequential

cores. The main difference lies in the fact that in the case of the test-per-scan

scheme the test application is done via scan chains and one test cycle takes longer

than one clock cycle. This is valid for both pseudorandom and deterministic tests.

As every core contains scan chains with different lengths, the analysis procedure

has to follow this, and switching from one core to another has to honor the local,

core-level test cycles. In the following the experimental results with systems

where every individual core is equipped with a Self-Test Using MISR and a Paral-

lel Shift Register Sequence Generator (STUMPS) [2] are presented.

 An Approach to System-level DfT 139

56

31

8

19

33

25

12

11

8

453

486

511

523

534

542

542

0 100 200 300 400 500

c499

c1355

c5315

c1908

c880

c6288

c432

Deterministic

Pseudorandom

Total test length: 542

Figure 8.10. Test schedule for the system S2 (MLIMIT = 5500)

Embedded tester

Test
controller

Tester
memory

Scan path

Scan path

Scan path

Scan path

LF
S

R

LF
S

R

Scan path

Scan path

Scan path

Scan path

LF
S

R

LF
S

R

Scan path

Scan path

Scan path

Scan path

Scan path

Scan path

Scan path

Scan path

LF
S

R

LF
S

R

LF
S

R

LF
S

R

s838s1423

s3271 s298

SOC

TAM

Figure 8.11. A core-based system example with the proposed test architecture

While every core has its own STUMPS architecture, at the system level we as-

sume the same architecture as described earlier: every core’s BIST logic is capable

of producing a set of independent pseudorandom test patterns, i.e. the pseudoran-

dom test sets for all the cores can be carried out simultaneously. The deterministic

tests, on the other hand, can only be carried out for one core at a time, which

means only one test access bus at the system level is needed. An example of a

multi-core system with such a test architecture is given in Figure 8.11.

140 G. Jervan, R. Ubar, Z. Peng and P. Eles

Experiments have been performed with several systems composed from differ-

ent ISCAS’89 benchmarks as cores. All cores have been redesigned to include full

scan path (one or several). The STUMPS architecture was simulated in software

and for deterministic test pattern generation a commercial ATPG tool was used.

The results are presented in Table 8.4.

Table 8.4. Experimental results

In Table 8.4 we compare our approach, where the test length is found based on

estimates, with an exact approach where deterministic test sets have been found by a

brute force method (repetitive use of a TPG) for every possible switching point be-

tween pseudorandom and deterministic test patterns. As can be seen from the results,

our approach can give significant speed up (several orders of magnitude), while re-

taining very high accuracy.

8.4.2 Built-in Self-test Time Minimization for Systems with Test
Pattern Broadcasting

In the previous section we analyzed systems where every core has its own dedi-

cated BIST logic that is capable of producing a set of independent pseudorandom

test patterns. This approach can be extended for multi-core systems where both

combinational cores and sequential cores with full scan are used. This, however,

may lead to high area overhead and may require redesign of the cores, as not all

cores may be equipped with self-test structures. Therefore, we have recently pro-

posed a novel self-test architecture that is based on test pattern broadcasting [19].

In this approach, only a single pseudorandom TPG is used and all test patterns are

broadcast simultaneously for all cores in the system. These patterns will be com-

plemented with dedicated deterministic patterns for every individual core, if

needed. Those deterministic test vectors are generated during the development

process and are stored in the system.

Exhaustive approach Optimized approach

System

name

Number

of cores

Memory

constraint

(bits)

Total

test length

(clocks)

CPU

time (s.)

Total

test length

(clocks)

CPU

time (s.)

25 000 5750 5775 270

22 000 7100 7150 216 J 6

19 000 9050

57540

9050 335

22 000 5225 5275 168

17 000 7075 7075 150 K 6

13 000 9475

53640

9475 427

15 000 3564 3570 164

13 500 4848 4863 294 L 6

12 200 9350

58740

9350 464

 An Approach to System-level DfT 141

Pseudorandom patterns

Pseudorandom patterns

Deterministic patterns

LP LD

Test
length

M

AX

IN

P

LDk

Figure 8.12. Hybrid test set example

Let us assume a system S, consisting of n cores C1, C2, …, Cn, that are all con-

nected to a bus. A hybrid test set TH = {TP, TD} for parallel testing of all the

cores Ck ∈ S is composed from the pseudorandom test set TP and deterministic

test set TD. The deterministic test sequence is assembled, in general, from deter-

ministic test sequences for each individual core TD = {TD1, TD2, …, TDn}. Test-

ing of all cores is carried out in parallel, i.e., all pseudorandom patterns as well as

each deterministic test sequence TDk are applied to all cores in the system. The de-

terministic test sequence TDk is a deterministic test sequence generated only by

analyzing the core Ck ∈ S. For the rest of the cores Cj ∈ S, 1 ≤ j ≠ k ≤ n, this se-

quence can be considered as a pseudorandom sequence. This form of parallel test-

ing is usually referred to as test pattern broadcasting [13]. The width of the hybrid

test sequence TH is equal to MAXINP=max{INPk}, k=1, 2, …, n, where INPk is

the number of inputs of the core Ck . For each deterministic test set TDk, where

INPk < MAXINP, the not-specified bits will be completed with pseudorandom

data, so that the resulting test set TDk* can be applied in parallel to the other cores

in the system as well. An example of such a hybrid test set is presented in Figure

8.12.

In Figure 8.12, we denote with LP the length of the pseudorandom test set, with

LD the length of the entire deterministic test set, and with LDk the length of the

deterministic test set of core Ck. Since some of the cores may be 100% testable by

using only the pseudorandom test sequence and the deterministic test sequences of

other cores, the deterministic test sequence TDk for such a core Ck is not needed

and LDk = 0.

The memory size for storing the deterministic part of the hybrid test set can be

found from the following formula:

=

=
n

k

kk

1

M)INP*LD(COST (8.2)

The main problem is to minimize the total length

=

+=
n

k

k

1

LDLPLH (8.3)

of the hybrid test set TH = {TP, TD} under given memory constraint COSTM ≤
COSTM,LIMIT.

142 G. Jervan, R. Ubar, Z. Peng and P. Eles

The problem of minimizing the hybrid BIST length at the given memory con-

straints for parallel multi-core testing is extremely complex. The main reasons of

this complexity are the following:

• The deterministic test patterns of one core are used as pseudorandom test pat-

terns for all other cores; unfortunately, there will be n*n relationships for n
cores to analyze to find the optimal combination; on the other hand, the deter-

ministic test sets are not readily available (see Algorithm 5, later in this section)

and calculated only during the analysis process.

• For a single core an optimal combination of pseudorandom and deterministic

patterns can be found by rather straightforward algorithms; but, as the optimal

time moment for switching from pseudorandom to deterministic testing will be

different for different cores, the existing methods cannot be used and the paral-

lel testing case is considerably more complex.

• For each core, the best initial state of the LFSR can be found experimentally;

but, to find the best LFSR for testing all cores in parallel is a very complex and

time-consuming task.

To cope with the high complexity of the problem we propose the following al-

gorithm:

Algorithm 3:

1. Find the best initial state for the LFSR that can generate the shortest common

pseudorandom sequence TPINITIAL, sufficient for testing simultaneously all the

cores with maximum achievable fault coverage. For practical reasons the

TPINITIAL might be unacceptably long and, therefore, an adequately long

TP’INITIAL should be chosen and complemented with an initial deterministic test

set TDINITIAL in order to achieve maximum achievable fault coverage and to sat-

isfy the basic requirements for the test length.

2. Based on our estimation methodology (Section 8.3.1) find the length LDk
E
 of

the estimated deterministic test set TDk
E

and calculate the first iteration of the

optimized test structure TH
E
 = {TP*, TD

E
}, so that the memory constraints are

satisfied. TP* denotes here a shortened pseudorandom sequence, found during

the calculations.

3. Find the real total test length LH and the real memory cost COSTM of the hy-

brid test sequence TH = {TP*, TD} for the selected pseudorandom sequence

TP*.

4. If the memory constraints are not satisfied, i.e., COSTM > COSTM,LIMIT, im-

prove the estimation, choose a new pseudorandom sequence TP*, and repeat

step 3.

5. If the memory limit has not been reached, i.e., COSTM < COSTM,LIMIT, reduce

the length of TH by moving efficient pseudorandom patterns [19] from the

pseudorandom test set to the deterministic test set. A pattern in a pseudorandom

test sequence is called efficient if it detects at least one new fault for at least one

core that is not detected by previous test patterns in the sequence.

 An Approach to System-level DfT 143

Hybrid Test Sequence Computation Based on Cost Estimates

In this section we explain the first two steps of Algorithm 3. It is assumed that we

have found the best configuration (polynomial and initial state) for the parallel

pseudorandom TPG. Let us call this an initial pseudorandom test sequence

TPINITIAL.

Estimation of the Cost of the Deterministic Test

By knowing the structure of the hybrid test set TH, the total hybrid test length LH

at any given memory constraint COSTM ≤ COSTM,LIMIT could be found in a

straightforward way. However, calculation of the exact hybrid test structure is a

costly procedure, since it assumes that for each possible length of TP the determi-

nistic test sets TDk for each core should be calculated and compressed while fol-

lowing the broadcasting idea. This can be done either by repetitive use of the

ATPG or by systematically analyzing and compressing the fault tables. Both pro-

cedures are accurate but time consuming and, therefore, not feasible for larger de-

signs.

To overcome the high complexity of the problem we propose an iterative algo-

rithm, where the values of LDk and COSTM,k for the deterministic test sets TDk can

be found based on estimates. The estimation method, which is an extension of the

method proposed for sequential hybrid BIST (see Section 8.3.1), is based on the

fault coverage figures of TDk only, and does not require accurate calculations of

the deterministic test sets for not-yet-detected faults.

The estimation method requires the following: a complete deterministic test set

for every individual core, TDk, together with fault simulation results of every indi-

vidual test vector FDk and fault simulation results of the pseudorandom sequence

TPINITIAL for every individual core, FPk. Let us denote with TPINITIAL(i) a pseudo-

random sequence with length i.

The length of the deterministic test sequence LDk(i) and the corresponding

memory cost COSTM,k(i) for any length of the pseudorandom test sequence i LP

can be estimated for every individual core with the following algorithm:

Algorithm 4:

For each i =1, 2, …, LDk:

1. Find fault coverage value F(i) that can be reached by a sequence of pseudoran-

dom patterns TPINITIAL(i).

2. Find the highest integer value j, where FDk(j) ≤ F(i). The value of j is the re-

quired length of the deterministic sequence TDk to achieve fault coverage F(i).

3. Calculate the estimated length of the deterministic test subsequence TD
E

k(i) as

LD
E

k(i) = LDk – j. This is the estimated number of deterministic test patterns

needed to complement the pseudorandom sequence TPINITIAL(i), so that 100%

fault coverage can be achieved.

This algorithm enables us to estimate the memory requirements of the hybrid

BIST solution for any length of the pseudorandom sequence for every individual

core, and by adding the memory requirements of all individual cores Ck ∈ S also

for the entire system. In a similar manner, the length of the pseudorandom se-

144 G. Jervan, R. Ubar, Z. Peng and P. Eles

quence LP for any memory constraint can be estimated, and this defines uniquely

the structure of the entire hybrid test set.

Computation and Minimization of the Hybrid Test Sequence

The memory cost estimation function helps us to find the length LP* of the pseu-

dorandom test sequence TP* for the estimated hybrid test sequence TH
E={TP*;

TD
E
}. The real length LH of the estimated hybrid test sequence TH

E
can be found

with the following algorithm.

Algorithm 5:

1. Simulate the pseudorandom sequence TP* for each core Ck ∈ S and find a set

of not-detected faults FNOT,k. Generate the corresponding deterministic test set

TD’k by using any ATPG tool. As a result, a preliminary real hybrid test set will

be generated: TH = {TP*; TD’}.

2. Order the deterministic test set TD’ = (TD’1, TD’2, …, TD’n) in such the way

that for each i < n, INPi ≤ INPi+1.

3. Perform the analysis of the test pattern broadcasting impact for i = 2, 3, …n:

- calculate a set of not-detected faults FNOT,i for the test sequence (TP*; TD’1,

TD’2, …, TD’i-1);

- compress the test patterns in TD’i with respect to FNOT,k by using any test

compacting tool.

As a result of Algorithm 5, the real hybrid test sequence TH = {TP*; TD} =

{TP*; TD1, TD2, …, TDn} will be generated. The length of the resulting sequence

LH ≤ LH
E
 as deterministic test patterns of one core, while broadcast to the other

cores, may detect some additional faults. In general, LDk ≤ LD
E

k for every k = 2, 3,

…, n.

The length of the deterministic test sequence, generated with Algorithm 5, can

be considered as a near-optimal solution for the given test access mechanism, for

all the cores. Ordering of the deterministic test sets according to step 2 in Algo-

rithm 5 has the following result: the larger the number of inputs of core Ck the

more patterns will broadcast to Ck from other cores, and hence the chances to re-

duce its own deterministic test set TDk are bigger and larger amounts of memory

can be reduced.

After finding the real deterministic test sequence according to Algorithm 5, the

following three situations may occur:

1. If COSTM > COSTM,LIMIT a new iteration of the cost estimation should be car-

ried out. The initial estimation of the pseudorandom test sequence length LP

should be updated, and a new cost calculation, based on Algorithm 5, should be

performed.

2. If COSTM = COSTM,LIMIT the best possible solution for the given pseudoran-

dom sequence TP* is found. TH = {TP*; TD1, TD2, …, TDn}.

3. If COSTM < COSTM,LIMIT the test length minimization process should be con-

tinued by moving efficient test patterns from the pseudorandom test set to the

deterministic sequence.

In the following, possible steps for further improvement are described in detail.

 An Approach to System-level DfT 145

Iterative Procedure for Cost Estimation

Let us suppose that our first estimated solution, based on pseudorandom test se-

quence TP, with length LP, produces a test structure with total memory require-

ment “Real COSTM” higher than accepted (see Figure 8.13). A correction of the

estimated solution should be made LPNEW = LP + ∆LP and a new solution “New

real COSTM” should be calculated based on Algorithm 5. Those iterations should

be repeated until the memory constraint COSTM ≤ COSTM,LIMIT is satisfied.

It should be mentioned that Algorithm 5 is the most expensive procedure of the

whole approach, due to repetitive use of ATPG and test compaction tools. There-

fore, we cannot start with an arbitrary initial solution, and an accurate estimation

procedure minimizes the number of iterations considerably.

Figure 8.13. Iterative cost estimation

Total Test Length Reduction by Reducing the Pseudorandom Test
Sequence

Suppose that the real cost of the solution found is below the memory constraint

COSTM < COSTM,LIMIT. There are two alternatives for further reduction of the test

length:

1. Additional iterations by using Algorithm 5 to move the solution as close to the

memory limit COSTM,LIMIT as possible. As mentioned earlier, Algorithm 5 is an

expensive procedure and, therefore, recommended to be used as little as possi-

ble.

2. It is possible to minimize the length of the hybrid test sequence TH by shorten-

ing the pseudorandom sequence, i.e., by moving step-by-step efficient patterns

from the beginning of TP to TD and by removing all other patterns between the

efficient ones from TP, until the memory constraint COSTM COSTM,LIMIT gets

violated. This procedure is based on the algorithm used in [19] for straightfor-

ward optimization of the parallel hybrid BIST. As a result, the final hybrid test

sequence is created: THF = {TPF; TDF} = {TPF; TD1, TD2, …, TDn, ∆TD}

where ∆TD is a set of efficient test patterns moved from TP to TD. This will

lead to the situation where the length of the pseudorandom sequence has been

COST
M

LP

COSTM,LIMIT

Real COSTM

LP

∆LP

LPNEW

Correct ion by ∆LP

New real COSTM

146 G. Jervan, R. Ubar, Z. Peng and P. Eles

reduced by ∆LP and the length of the deterministic test sequence has been in-

creased by ∆LD. The total length LHF of the resulting hybrid test THF = {TPF;

TDF} is shorter, LHF < LH, because in general ∆LD << ∆LP (not every pattern

in the pseudorandom test set is efficient).

The final hybrid BIST test structure THF = {TPF; TDF} with the total length

LHF is represented in Figure 8.14.

Pseudorandom

patterns

Pseudorandom patterns

Deterministic patterns

LP
LD

Test

length

Bits

LDk

∆L

Figure 8.14. Final hybrid test structure

The accuracy of the solution (proximity of the total length LHF to the global

minimum LHMIN) for the given initial pseudorandom sequence TPINITIAL can be es-

timated by the length of ∆LD, assuming that the deterministic test set was opti-

mally compacted. Since efficient patterns, moved from TP to TD, were not taken

into account during the compaction procedure for TD’ (Algorithm 5), the new de-

terministic test sequence TDF = {TD1, TD2,…, TDn, ∆TD} is not optimal and

should be compacted as well. However, since TD’ was compacted optimally, the

upper bound of the gain in test length cannot be higher than ∆LD. Hence, the dif-

ference between the exact minimum LHMIN and the current solution LHF for the

given pseudorandom sequence TPINITIAL cannot be higher than LHF − LHMIN =

∆LH.

We have performed experiments with three systems composed from different

ISCAS benchmarks as cores. In Table 8.5 the results are compared with the

straightforward approach, i.g., in fact, the fifth step of the Algorithm 3 [19]. The

length of the pseudorandom test sequence, deterministic test sequence and the hy-

brid test sequence, together with required CPU time, are compared. The first com-

ponent in the deterministic test column represents the result of Algorithm 5, and

the second component represents the last improvement, when efficient patterns

were moved from the pseudorandom part to the deterministic part. As can be seen,

the proposed approach gives a noteworthy reduction of the test length over the

straightforward approach, while the analysis time is approximately the same.

 An Approach to System-level DfT 147

Table 8.5. Comparison with straightforward approach

 Straightforward approach

System Memory

constraint

(bits)

PR length

(clocks)

DET length

(clocks)

Total length

(clocks)

CPU time

(s)

S1 (6 cores) 10000 232 105 337 187.64

 10000 250 133 383

S2 (7 cores) 5000 598 71 669 718.49

 3000 819 48 867

S3 (5 cores) 10000 465 161 626 221.48

 Our approach

S1 (6 cores) 10000 145 58 + 49 = 107 252 289,73

 10000 163 110 + 14 = 124 287 1093,5

S2 (7 cores) 5000 469 51 + 18 = 69 538 1124,4

 3000 783 23 + 19 = 42 825 1109,4

S3 (5 cores) 10000 262 130 + 10 = 140 402 334,28

0

2000

4000

6000

8000

10000

12000

14000

1 251 501 751 1001 1251 1501 1751 2001 2251 2501 2751

Total test length (clocks)

M
em

o
ry

 r
eq

u
ir

em
en

ts
 (

b
it

s)

Test cost estimate for
the entire system

Real test cost for
different test lengths

Cost estimates for
individual cores

Figure 8.15. Comparison of estimated and real test costs

Figure 8.15 depicts the estimated memory cost as a function of the total test

length for different cores in system S2 together with the estimated total memory

cost. For comparison, the real cost values for four different test lengths are shown

as well. As can be seen, the accuracy of the estimation procedure is rather good.

148 G. Jervan, R. Ubar, Z. Peng and P. Eles

8.5 Conclusions

This chapter presented the hybrid BIST optimization problem as an example of

system-level DfT methods. The main objective of deploying the hybrid BIST

technique is to improve fault coverage by mixing pseudorandom vectors with de-

terministic ones. We have mainly discussed the issues related to test cost minimi-

zation and, in particular, test time minimization with several different implementa-

tions of the hybrid BIST architecture. The optimization algorithms have been

presented together with experimental results to demonstrate their efficiency.

References

[1] Agrawal VD, Kime CR, Saluja KK (1993) A tutorial on built-in self-test. IEEE De-

sign and Test of Computers, (March): 69-77.

[2] Bardell PH, McAnney WH, Savir J (1987) Built-in test for VLSI pseudorandom

techniques. John Wiley and Sons.

[3] Brglez F, Fujiwara H (1985) A neutral netlist of 10 combinational benchmark circuits

and a target translator in Fortran. In: Proc. IEEE Int. Symp. on Circuits and Systems,

663-698.

[4] Chatterjee M, Pradhan DK (1995) A novel pattern generator for near-perfect fault-

coverage. In: Proc. IEEE VLSI Test Symposium, 417-425.

[5] Glover F (1986) Future paths for integer programming and links to artificial intelli-

gence. Computers & Ops. Res., (5): 533-549.

[6] Golomb SW (1982) Shift register sequences. Aegan Park Press, Laguna Hills.

[7] Hellebrand S, Tarnick S, Rajski J, Courtois B (1992) Generation of vector patterns

through reseeding of multiple-polynomial linear feedback shift registers. In: Proc.

IEEE Int. Test Conference, 120-129.

[8] Hellebrand S, Wunderlich H-J, Hertwig A (1998) Mixed-mode BIST using embedded

processors. Journal of Electronic Testing: Theory and Applications, (12): 127-138.

[9] Jervan G, Peng Z, Ubar R (2000) Test cost minimization for hybrid BIST. In: Proc.

IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 283-

291.

[10] Jervan G, Peng Z, Ubar R, Kruus H (2002) A hybrid BIST architecture and its opti-

mization for SOC testing. In: Proc. IEEE International Symposium on Quality Elec-

tronic Design, 273-279.

[11] Jervan G, Eles P, Peng Z, Ubar R, Jenihhin M (2003) Test time minimization for hy-

brid BIST of core-based systems. In: Proc. 12th IEEE Asian Test Symposium, 318-

323.

[12] Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing.

Science, 220(4598): 671-680.

[13] Lee K-J, Chen J-J, Huang C-H (1999) Broadcasting test patterns to multiple circuits.

IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,

18(12): 1793-1802.

[14] Sugihara M, Date H, Yasuura H (2000) Analysis and minimization of test time in a

combined BIST and external test approach. In: Proc. IEEE Design, Automation &

Test In Europe Conference, 134-140.

 An Approach to System-level DfT 149

[15] Touba NA, McCluskey EJ (1995) Synthesis of mapping logic for generating trans-

formed pseudo-random patterns for BIST. In: Proc. IEEE Int. Test Conference, 674-

682.

[16] Tallinn Technical University (1999) Turbo Tester Reference Manual. Version

3.99.03, http://www.pld.ttu.ee/tt

[17] Ubar R, Jervan G, Peng Z, Orasson E, Raidma R (2001) Fast test cost calculation for

hybrid BIST in digital systems. In: Proc. Euromicro Symposium on Digital Systems

Design, 318-325.

[18] Ubar R, Kruus H, Jervan G, Peng Z (2001) Using Tabu search method for optimizing

the cost of hybrid BIST. In: Proc. 16th Conference on Design of Circuits and Inte-

grated Systems, 445-450.

[19] Ubar R, Jenihhin M, Jervan G, Peng Z (2004) Hybrid BIST optimization for core-

based systems with test pattern broadcasting. In: Proc. IEEE Int. Workshop on Elec-

tronic Design, Test and Applications, 3-8.

[20] Yarmolik VN, Kachan IV (1993) Self-checking VLSI design. Elsevier Science Ltd

[21] Zacharia N, Rajski J, Tyzer J (1995) Decompression of test data using variable-length

seed LFSRs. IN: Proc. IEEE 13th VLSI Test Symposium, 426-433.

9 System-level Dependability Analysis

A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

Università del Piemonte Orientale, Dipartimento di Informatica, Alessandria, Italy

Università di Torino, Dipartimento di Informatica, Torino, Italy

9.1 Abstract

The focus of this work is on the dependability analysis of safety or mission-critical

systems; in particular, we concentrate on the control subsystem, which is made up

of several components. We assume that the components, which may be designed

with the support of hardware−software codesign tools, are characterized by de-

pendability (e.g. failure rate) parameters, which may derive from simulators of the

components while they are under development, or as a result of testing (possibly

combined with fault injection techniques). By using combinatorial and state-

space-based techniques it is possible to derive the reliability of the whole system

as a function of the system configuration and of the component parameters values,

and to identify the criticality of a given component or subset of components. The

analysis is performed by applying Fault Tree Analysis (FTA) techniques enhanced

with recently introduced features that allow one to remove the components’ inde-

pendence assumptions imposed by classical FTA, and to include the possibility of

component as well as subsystem repair.

9.2 Introduction

This work is about dependability analysis of safety or mission-critical systems; in

particular, we concentrate on the control subsystem, which is made up of several

components, both hardware and software, which may be distributed and commu-

nicate through some kind of interconnection network. The components, which

may be designed with the support of hardware−software codesign tools, are char-

acterized by dependability (e.g. failure rate) and performance parameters (e.g. av-

erage response time), which may derive from simulators of the components while

they are under development, or as a result of testing (possibly combined with fault

injection techniques) after a prototype is available. By using combinatorial and

state-space-based models it is possible to derive dependability measures or per-

formance measures of the whole system, as a function of the system configuration

and of the component parameters values.

152 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

The components may be subject to faults, which can be internal faults due to

the component characteristics (perhaps due to some undetected problem in the test

phase), or externally induced faults, due to interference of the environment in

which the control system operates (e.g., bit flips in memory components due to

electromagnetic interference). Component faults may occur independently, or may

exhibit some form of correlation. Moreover, if faults can be detected, appropriate

recovery actions can be taken (e.g., the faulty component may be replaced).

The dependability analysis of such systems can be performed by means of

combinational models representing the structure of the system in terms of error

propagation from components to subsystems, up to the whole system, or by means

of behavioral models, representing the reachable system states and the possible

state transitions, that can be simulated (or, under some constraints, solved analyti-

cally). Usually, the former types of model can be solved by resorting to (rather ef-

ficient) combinatorial methods, while the latter are more expensive (depending on

the number of possible states of the model). Efficient combinatorial methods,

however, can be applied only in the hypothesis of independence of the compo-

nents failure.

In [28] a hierarchy of models of increasing expressive power has been pre-

sented: among the combinatorial models, Fault Tree (FT) with repeated events is

the more powerful; however, FT Analysis (FTA) techniques can be applied only

under some restrictive assumptions, namely the failure of each component cannot

depend on the state of other components; moreover, once a component is down it

cannot be repaired. When these assumptions are not realistic for the system under

study, state-space-based methods can be applied (in [28] Continuous Time

Markov Chains (CTMCs), stochastic Petri nets and Markov reward models are

proposed to this purpose): the problem in this case is due to the state-space size,

which grows exponentially with respect to the number of components, so that their

analysis might have very high computational costs, or even be unfeasible.

Several research studies have recently been published that try to combine the

advantages of combinatorial and state-space-based analysis methods; the common

underlying idea is to isolate minimal subsystems that must be treated by resorting

to state-space-based methods, and then combine them in an FT-like structure, ex-

ploiting combinatorial analysis techniques at the overall system level. In order to

avoid exposing the system designer to several different dependability model lan-

guages, the description of the subsystems including dependencies should prefera-

bly be expressed by using a language similar to the original FT formalism; for this

reason, several extensions of the FT formalism have been proposed, which can be

translated by means of automatic tools into state-space models. Also, the hybrid

combinatorial−state-space analysis techniques must be applied transparently by

isolating and solving the submodels requiring state-space-based analysis, and then

combining the results by means of classical FT combinatorial techniques [5], [9],

[13], [23], [27], [29].

In this chapter we show the evolution of FT models by means of intuitive ex-

amples, from the classical version to increasingly more powerful extensions. First,

the FT language extensions are motivated and described on practical examples.

 System-level Dependability Analysis 153

Then the types of measure that can be derived from such models are defined; fi-

nally, the analysis results for the illustrative examples are shown and discussed.

9.3 Introduction to Fault Trees

The FT [15],[37] is a widespread stochastic model for the reliability analysis of

complex systems because it provides an intuitive representation of the system fail-

ure mode, it is easy to manipulate and it is currently supported by several software

tools for its analysis. An FT models how combinations of failure events relative to

the components of the system can cause the failure of subsystems or of the whole

system. Let us introduce the FT formalism by means of the example depicted in

Figure 9.1.

The FT is a bipartite Direct Acyclic Graph (DAG) whose nodes can belong to

one of two categories: events and gates. Events concern the failure of components,

subsystems or of the whole system, and they are in general graphically represented

as a box; we can consider an event as a Boolean variable: it is initially false and it

becomes true after the failure occurrence.

The events represented as a box with an attached circle are called Basic Events

(BEs) and model the failure of the elementary components of the system; the oc-

currence time of such events is ruled by a probability distribution, typically a

negative exponential, whose parameter λ is called failure rate and is equal to the

inverse of the mean life time of the component. The BEs are the leaves1 of the FT.

The events represented simply by a box are non-terminal nodes and represent the

failure of subsystems; we call them “Internal Events” (IEs) and their occurrence is

not ruled by a probability distribution as in the case of BEs, but they are the output

of a gate node; gates are the other category of nodes an FT can contain, and they

are connected by means of arcs to several input events and to a unique output

event; the effect of a gate is the propagation of the failure to its output event if a

particular combination of its input events occurs; in the standard version of the FT

model, three combinational gates corresponding to the AND, OR and “K out of N”

(K:N) Boolean functions, are defined.

The Boolean value of the output event of a gate is determined by applying the

function associated with the gate to the values of the gate input events: consider-

ing an IE that is the output of an AND gate, it will occur (it is set to true) if all the

input events of such a gate have occurred (all of them have a true value); if an IE

is the output of an OR gate, it will occur if at least one of the gate input events has

occurred; in the case of the K:N gate, the output event occurs if at least K of the N

input events have occurred. The occurrence of an IE is immediate, as soon as the

particular combination of input events required by the gate is verified. In the FT

graphical notation, arcs have no orientation, but we can say that they respect a

1 We call “leaves of the FT” the BE abusing terminology, even if the FT is actually a DAG,

not a tree.

154 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

logic circuit orientation: from the input events to the gate, and from the gate to the

output event.

Finally, we have a unique event, represented as a black box, called a Top Event

(TE), modeling the failure of the whole system; the TE must be the output of a

gate (moreover, it must be the unique node which is not input to any gate) and

cannot be the input of any gate; we can consider it as the root of the FT.

9.3.1 Fault Tree Example

Let us consider a simple real case of a system whose failure mode we want to

model using the FT formalism: the state variables storage for the control system of

a primary station in a power distribution mesh. The storage system is composed by

a set of memories to store the variables, and by a voter unit; the values stored in-

side a single memory may not be correctly updated (or may be corrupted due to

electromagnetic interference), so when the value of a variable is requested, the

voter forwards a request to every memory and the correct value of the variable is

obtained by voting on the several values returned by the several memories or it

will answer with a value different than the others, so that the voter shall detect the

failure and exclude the faulty memory from later requests. In order to increase the

dependability of the system, a set of hot spare memories have been added to the

system; in other words, the spare memories are updated each time the variable is

modified, but initially they do not belong to the voting set. At the same time, spare

memories may fail as the main ones if one of the memories does not respond to

the voter request or returns a value in disagreement with the majority.

Figure 9.1. The FT for the storage system with hot spare memories

Figure 9.1 shows the system FT assuming that the voting group must be com-

posed of three memories and two spare memories are available; the TE represents

the failure of the whole system and is the output of an OR gate with the two input

events SET and VOTER, which are an IE and a BE respectively; this means that

the system fails if the voting cannot be performed because there are not enough

 System-level Dependability Analysis 155

working memories to compose the voting set or the voter unit has failed. The

event SET is the output of a K:N gate (in this case K=3 and N=5) whose input

events are the BEs called MEM1, MEM2, MEM3, SP1 and SP2 to represent the

failures of the three main memories and of the two spare memories. Since the vot-

ing set is assumed to be composed of three elements and at most two main memo-

ries can be replaced in the voting set by the spare memories, the voting cannot be

performed if at least three failures occur among the main and the spare memories;

in other words, the system is tolerant of one or two memory failures, but it is not

tolerant of three or more failures.

9.3.2 Modeling Dependencies in the Failure Mode Using Dynamic
Gates

The FT formalism has a very intuitive notation, but it suffers from the inability to

model dependencies among failure events or component states; this is due to the

assumption in the standard version of this model that BEs are statistically inde-

pendent. In order to overcome this limitation, some new gates called dynamic

gates [17],[26],[27] were introduced with the aim of modeling several kinds of

dependency among the events, leading to the Dynamic FT (DFT) formalism; let us

give the definition of such gates:

• Functional Dependency (FDEP) gate – given as input events a trigger event T
and a set of dependent events D1, ..., Dm, the dependent events are forced to

occur when the trigger event occurs; the output of the gate corresponds to the

state of T. Note that D1, …, Dm can be the input events of other gates.

• Priority And (PAND) gate − given X1, ..., Xn as input events and Y as output

event, Y fails if all X1, ..., Xn have occurred and only in a specified order.

• Sequence Enforcing (SEQ) gate - given X1, ..., Xn as input events and Y as

output event, X1, ..., Xn are forced to occur in a specified order; Y corresponds

to the state of Xn.

• Warm Spare (WSP) gate − this gate models the presence of a set of warm spare

components able to replace a main component when it fails; warm spares differ

from hot spares by the fact that they can be in three states instead of two: dor-

mant (or stand-by), working, failed; a spare is initially dormant and it turns to

the working state if it has to replace the main component or another spare; at

the same time, a spare may fail both in the dormant and in the working state;

the spare failure rate changes depending on its current state: if the failure rate of

the spare is λ in the working state, αλ is its failure rate in the dormant state,

with 0<α<1; α is called the dormancy factor and its aim is to express the fact

that spares have a reduced failure probability during the dormancy period. The

input events of this gate are the events corresponding to the failure of the main

component and the events corresponding to the failure of the spares; the output

event occurs if the main component fails and there are no available spares to

replace it. Figure 9.2 shows the dependency of a spare on the main component.

156 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

Dormant Working

Failed

λM

λSλSαS

Figure 9.2. State-space representation of the dependency of spare S on main component M

Considering our example, we can apply the WSP gate to the memories with the

resulting DFT shown in Figure 9.3: the IE named SET is now the output of an OR

gate whose input events are MEM1, MEM2 and MEM3; all of them are the output

of a WSP gate having as first input MAIN1, MAIN2 and MAIN3 respectively,

while all the WSP gates are connected to SP1 and SP2; MEM1, MEM2 and MEM3

represent the failure of the first, the second and the third main memory respec-

tively, while SP1 and SP2 represent the spare memories; such a DFT represents the

system with two warm spare memories that can replace any of the main ones; the

event MEM1 occurs when the first main memory has failed and there are no avail-

able spares to replace it; a spare is not available if it is already replacing another

main component or it has failed2; MEM2 and MEM3 have the same meaning as

MEM1, but with regard to the second and the third main memory respectively; the

event SET still represents the fact that the number of working memories is insuffi-

cient for the voting to take place, but now SET occurs when a main memory can-

not be replaced; the failure of the whole system still occurs when the voting set

elements are not enough or when the voter fails.

9.3.3 Giving a Compact Representation of Symmetric Systems
Through Parameterization

We can give a more compact representation of the failure mode of a system con-

taining symmetries or redundancies using the Parametric FT (PFT) [3],[4] formal-

ism; in the PFT, subtrees with the same structure, the same failure rates corre-

sponding to the BEs, and connected to the same gate, are folded in a unique

parameterized subtree. The PFT formalism can be combined with the dynamic

gates generating the Dynamic PFT (DPFT) formalism [5].

2 The failure of a warm spare component may occur while it is dormant or while it is work-

ing, as explained in the formal definition of the WSP gate.

 System-level Dependability Analysis 157

Figure 9.3. The DFT for the system with warm spares

Considering the version of our example with warm spares (Figure 9.3), the

corresponding DPFT is shown in Figure 9.4a: assuming that all the main

memories have the same failure rate and that all spare memories have the same

failure rate and the same dormancy factor, the subtrees having as root MEM1,

MEM2 and MEM3 have been folded in the parameterized subtree whose root is the

Replicator Event (RE) labeled as MEM(i); an RE is indicated as a dotted box and

indicates the root of a parameterized subtree; one or more parameters are

associated with the RE with the purpose of defining the number of identical

distinct subtrees that are represented compactly; in the case of MEM(i), the

parameter i has a variation range from 1 to 3 in order to express that three subtrees

have been folded; the same parameter may also be associated with the events

below the RE in order to indicate that a distinct copy of them is present in each

folded subtree; in our case, we have MAIN(i).

In the PFT formalism, if an event does not have the same parameter(s) as the

RE at the root of the parameterized subtree, it means that such an event belongs to

all the folded subtrees; a parameterized subtree may contain other (basic) REs in

order to express that each folded subtree may contain other folded subtrees. In our

case, we have the Basic RE (BRE) called SP(j) with j equal to 1 or 2; such a BRE

(graphically represented as a dotted box with an attached circle) provides a com-

pact notation for SP1 and SP2; SP(j) belongs to the parameterized subtree having

MEM(i) as root, to express compactly that any of the main memories can be re-

placed by any of the spare ones. In our case, the reduction in the dimensions of the

model is quite visible by comparing the DFT in Figure 9.3 and the DPFT in Figure

9.4a representing the failure mode of the same system; moreover, using a DPFT,

we can arbitrarily change the number of the main and spare memories without

modifying the DPFT structure, just by changing the range of the parameters.

158 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

(a) (b)

MEM(i)
i: 1, 2, 3

SP(j)
j: 1, 2

MAIN(i)

MEM(i)
i: 1, 2, 3

MAIN(i)

SP(j)
j: 1, 2

Repair
box

SET SET

TE TE

VOTER VOTER

Figure 9.4. (a) DPFT and (b) RDPFT for the system with warm spares

9.3.4 Modeling the Repair Process Through the Repair Box

The DPFT formalism is not able to model a recovery or repair process; we have to

extend it introducing a new type of node called a Repair Box (RB) [5],[13]. A re-

pair box models the presence in the system of a repair process in order to turn a

failed component or subsystem back to the working state. An RB is connected by

means of an arc to the event corresponding to the failure event of the component

or of the subsystem we want to be repairable; the repair time is a random variable

ruled by a probability distribution function; we will use an exponential distribution

whose parameter µ is called repair rate and is equal to the inverse of the mean

time necessary to repair the component. The model we obtain introducing the RBs

is called a Repairable DPFT (RDPFT) [5].

Let us provide now an example of the use of an RB in our case study, in its ver-

sion with warm spares; Figure 9.4b is the corresponding RDPFT: MAIN(i) is con-

nected to an RB, graphically represented as a wrench inside a square, to represent

that this failure is repairable; since the repair box is connected to a parameterized

event, we can imagine having a single RB for each main memory. Considering the

events as Boolean variables, we can say that the effect of the repair box action

consists of resetting the value of MAIN(i) to false and this may lead to resetting to

false even the values of those events depending on the repaired component; in this

case, they are SET and TE. So, the repair of a single component may influence

even the state of a subsystem or of the whole system.

In this case, since some warm spares are present, the RB influences their state

too; a main memory repair process begins when the main memory fails; during the

 System-level Dependability Analysis 159

repair period the main memory may be replaced by a spare one which turns from

the dormant state to the working state; when the repair ends, the spare that is cur-

rently replacing the main memory can turn back again into the dormant state and

can be used again into replace a main memory. So, the state of a spare depends

both on the failure and the repair of the main memory.

Several repair policies can be associated with an RB; in our case, we assume

that the repair process is enabled as soon as the failure of the component occurs

and its duration is ruled by the repair rate, with no limits regarding the number of

components that must be simultaneously repaired.

The introduction of the RBs in our modeling formalism allows us to represent

both the failure and the repair mode of the system; an RB can also be connected to

an IE with the purpose of modeling the repair of a subsystem; in this case, the RB

action is enabled when the IE occurs. The RB may affect either the whole subsys-

tem or we can specify which components of the subsystem are repairable by con-

necting the corresponding BEs to the RB by means of arcs. In general, the RB has

to be connected to the event enabling it (the subsystem failure) and to the BEs

corresponding to the failures of the elementary components we want to be

repairable. When the repair process involves several components, a repair rate for

each of them must be specified or we can suppose to have a general repair rate for

the subsystem repair.

Other features which may be specified for the repair process are the maximal

number of components the RB can repair at the same time and the time that the

RB needs to detect the failure and consequently to begin its action.

9.4 Reliability Analysis

In this section the FTA techniques for the (un)reliability analysis are discussed,

and in the next section the application of such methods will be applied to the ex-

amples introduced above.

9.4.1 Qualitative Analysis

FTA provides a set of techniques enabling one to derive both qualitative results

and quantitative measures useful for the assessment of mission-critical or safety-

critical systems. Qualitative analysis supplies information about functional and

logic properties of the system failure modes. The Minimal Cut-Set (MCS) [33]

analysis makes available to the engineer the information about the minimal sets of

basic component failures leading to a system failure; MCSs represent sets of nec-

essary and sufficient component failures able to cause the top event. The path-set

analysis is dual to MCS analysis and provides the sets of components that when all

are working cause the system to work. Section 9.5.1 shows the MCS analysis re-

sults for the FT depicted in Figure 9.1.

160 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

The number of basic events in an MCS is called the order of the MCS. The or-

der is a significant qualitative parameter, since it highlights failure sets of events

that might be more critical for the system. In fact, an MCS of order 1 means that

the failure of a single basic component is sufficient to determine the TE, indicating

no fault tolerance with respect to that component. In an MCS of order 2, two si-

multaneous failures of basic components are needed. Many FTA tools catalog the

MCS in increasing order, so that the list starts with those that are potentially most

critical.

9.4.2 Quantitative Analysis

FT quantitative analysis presents the engineer with measures of system

(un)reliability or (un)availability. The reliability of either a component or the sys-

tem is defined as the probability that the component or the system is working

properly at a given time. Several reliability measures can be computed on the FT;

these are the top-event probability Pr{TE}, the occurrence probability of each

MCS and the system Mean-Time To Failure (MTTF). Finally, the component im-

portance factors, discussed in the next section, which give quantitative information

on the criticality of each component, are also important and efficiently derivable

from the FT.

Quantitative analysis is performed by providing quantitative information about

the basic component unreliability or unavailability, expressed as a failure prob-

ability (i.e., the probability of the component being down). From this information

the whole system unreliability or unavailability can be derived according to the FT

structure. Often, the failure probability of components is not directly expressed in

the FT; instead, a time-to-failure distribution is provided, from which a failure

probability at time t can be derived. Typically, the distribution is a negative expo-

nential with parameter λi, so that the probability that component i is down at time t
can be computed through the following formula:

t

i
itq

λ−−= e1)((9.1)

If the basic components can be repaired then they can move from the up (working)

to the down state and back, so that it is possible to compute the unavailability of

the component in a given time interval (ratio between the down time and the

global interval duration). The unavailability of the whole system can then be com-
puted as a function of the unavailability of its components by applying the same

procedure used for computing the system unreliability.

The most common measure used to assess the system safety is its unreliability

in time. The system unreliability, denoted by Q, is a function of the basic compo-

nent unreliability q
i
(t) :

Q(q(t)) (9.2)

where q(t) is the vector of basic component failure probabilities. In an FT such an

indicator corresponds to the top-event occurrence probability, Pr{TE}. When the

 System-level Dependability Analysis 161

basic components are stochastically independent, such as in an FT, Pr{TE} may

be computed by resorting to combinatorial formulas. In fact, for a given time in-

stant t and fixed basic component failure occurrence probabilities q(t), the TE

probability can be derived. This can be done by exploiting the results of the MCS

analysis by using the following inclusion−exclusion expansion, where Ci is the

MCS:

∀∀=

∧−=
ji

ji

n

i

i CCC
,1

}Pr{}Pr{}TEPr{

+ Pr{Ci ∧ C j ∧ Ck } +
∀i,∀j ,∀k

... + (−1)
n+1

Pr{C1 ∧ ... ∧ Cn}

(9.3)

For complex systems the above formula may be prohibitive to derive due to the

huge amount of calculation to be performed; as a result, most FTA tools compute

an approximation based on the kinetic tree theory [41]. Recently, the computation

of both qualitative results and quantitative measures has improved notably by the

introduction of Binary Decision Diagrams (BDDs) by Bryant [8]. BDDs allow one

to encode the Boolean function characterizing the TE in a very compact way. The

BDD representation had an enormous practical impact on the computational effi-

ciency of the FTA algorithms allowing one to derive the exact value of the indices

of reliability even for a large system, without resorting to an approximate solution.

However, the nature of the worst-case complexity does not change. In

[7],[32],[35] innovative BDD-based algorithms showing improvement in qualita-

tive and quantitative FTA of safety-critical industrial systems are provided.

9.4.3 Importance Measures

Among the risk-assessment and safety-analysis objectives, the classification of a

system’s components according to their criticality is very important. So, in addi-

tion to the reliability measure of a system or its own subcomponent, it is central to

assess the role a component takes on with regard to the system reliability. This

analysis is significant to the engineer both during the design phase and succes-

sively in quantifying the risk-importance of the various system components. Im-

portance analysis allows us to assess which component of the system is most criti-

cal to its un-reliability, so as to find out the more cost-effective solution to

improve reliability. Moreover, it permits us to evaluate how much the results de-

pend on the accuracy of the input parameters. To this purpose, several indices,

commonly called the importance factors, have been proposed. Importance factors

are time-dependent measures and may be divided into two groups: measures cal-

culated at one point in time, such as those discussed later, and measures whose

values are obtained averaging on a time period [30].

Among the various importance factors introduced in the context of importance

analysis using an FT, the most popular is due to Birnbaum [2] and is defined as

the partial derivative of the system unreliability with respect to the unreliability of

the component addressed. This measure is also known as the Marginal Impact

162 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

Factor (MIF). The importance of component i to system unreliability is defined by

Birnbaum as

)(

))((
)(

tq

tqQ
tG

i
i ∂

∂=
(9.4)

It is possibile to show that for a standard FT Gi(t) is equal to:

[] []itQitQtGi ,0)(,1)()(−= (9.5)

where []itQ ,1)(and []itq ,0)(are the system unreliability given that basic compo-

nent i is respectively working and not working.

Others measures of component importance have been proposed in the literature

and they may be found in textbooks [24],[25]. Table 9.1 shows some of them.

Table 9.1. Importance factors

Criticality measure Acronym Definition

Critical Importance Factor CIFi(t) }TEPr{}Pr{)(itGi ⋅

Diagnostic Impact Factor DIFi(t) }TEPr{}TEPr{}TE|Pr{ ii ⋅=

Risk Achievement Worth RAWi(t) }TEPr{}|TEPr{ i

Risk Reduction Worth RRWi(t) }|TEPr{}TEPr{ i

The Birnbaum measure for component i does not depend on the component re-

liability. Nevertheless, it is useful to evaluate the criticality that an improvement

in the component i reliability may play in the system reliability. CIF extends the

Birnbaum index to take into account such factor. DIF is also known as the

Vesley−Fussel Importance factor [42] and it measures the fraction of the system

unreliability involving the situations in which component i has failed. RAW for a

given component i measures the increase in system failure probability, and when

calculated for different values of qi it is a meter of the importance of maintaining

the current level of reliability for the component i. The RRW of a component is

the decrease in risk if the component is assumed to be perfectly reliable. It is ex-

pressed in terms of the ratio of the risk level to the risk with the component guar-

anteed to succeed.

Several studies [20],[21],[22],[32],[36] presented efficient algorithms to derive

exactly the importance factors described above using techniques based on BDD

representations. Many FTA tools exploit these techniques.

In the above discussion, only single-component importance factor measures

have been introduced, but in principle it may also be relevant to compute impor-

tance factors for sets of components (e.g., for the MCS). In [6],[31] Bayesian net-

work are used to derive the posterior failure probability of a given subset of

events, i.e., the probability that when the TE is observed, then that subset of events

has occurred.

 System-level Dependability Analysis 163

9.5 Qualitative and Quantitative Analysis of the Examples

In this section, the qualitative and quantitative analysis is performed for each con-

figuration of our system; first, we detect the MCSs of the system, then we calcu-

late the unreliability and the importance measures for each configuration of the

system.

Several tools have been used to obtain the results reported in this section; the

unreliability analysis of the standard FT has been performed using SHARPE [34]

and ASTRA [16]; SHARPE allows us to compute exactly the system MTTF on

the FT and the whole system unreliability at several times; ASTRA returns an up-

per bound for the system unreliability and is useful to calculate exactly the com-

ponents and MCSs’ unreliability on the FT; the unreliability analysis of DPFT and

RDPFT has been performed using a specific solver [14] based on modularization

[1] and interacting with other tools such as DrawNET [42] (its graphical inter-

face), GreatSPN [12] (for the state-space analysis, based on SWN) and SHARPE

(for the combinatorial analysis). The unreliability analysis of the DPFT can also

be performed on the corresponding DFT using the Galileo [18],[39] tool. The un-

reliability of the MCSs and of the dependent components concerning the DPFT

and DRPFT have been calculated using state-space analysis by translating the

model in SWN and solving it by means of GreatSPN.

ASTRA and Galileo allow one to calculate the importance measures of the

components on the FT and DFT respectively, but ASTRA always returns ap-

proximated results because it does not calculate the system unreliability exactly;

Galileo uses an approximated formula to compute the MIF when the system con-

tains dynamic gates; so, in order to have exact importance measures always, we

had to calculate them in a semi-automatic way by modifying properly the Bes’

probabilities and calculating the system unreliability with SHARPE for the FT,

and with GreatSPN for DPFT and RDPFT, once the model has been translated in

SWN.

9.5.1 Minimal Cut-sets Detection

Considering the FT of Figure 9.1, the MCS analysis provided 11 MCSs: one of

them has order 1, while all the others have order 3; they are as follows:

TE = { VOTER, MEM1MEM2MEM3, MEM1MEM2SP1,

MEM1MEM2SP2, MEM1MEM3SP1, MEM1MEM3SP2,

MEM2MEM3SP1, MEM2 MEM3SP2, MEM1SP1SP2, MEM2SP1SP2,

MEM3SP1SP2 }

(9.6)

Observing the MCSs list and excluding the MCS composed only by VOTER,

we can note that all the MCSs are composed of two main memories and one spare

memory, or by one main memory and two spare ones; moreover, the main or spare

memories composing these MCSs have a common failure rate, so the probability

164 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

to occur of all the MCS having order 3, is the same; for these reasons, we can ex-

press such MCSs in a parametric form, in this way:

1. VOTER

2. MEM1 MEM2 MEM3

3. MEMx MEMy SPz ∀ x, y, z : x, y ∈ {1, 2, 3} ∧ z ∈ {1, 2} ∧ x ≠ y.

4. MEMi SPj SPk ∀ i, j, k : i ∈ {1, 2, 3} ∧ j, k ∈ {1, 2} ∧ j ≠ k.

Using this notation, a parametric MCS represents a class of ordinary MCSs that

are composed of the same types of component with the same failure rate; for all

the ordinary MCSs that are compactly represented by the same parametric MCS,

we obtain the same values concerning the unreliability; in our case, MEMxME-

MyMEMz is the compact representation of six ordinary MCSs (from the second to

the eighth one, in the list), while MEMxSPySPz is the parametric form of three or-

dinary MCSs (the last three in the list). The parametric form allows a compact and

intuitive notation to express the MCSs of a system containing some kinds of

symmetry or redundancy, as in our example.

Considering the DPFT of Figure 9.4a and the RDPFT of Figure 9.4b, the MCSs

listed above are still valid because the combinations of components causing the

TE are always the same: in the DPFT we have warm spares instead of hot spares,

but the system is still tolerant to two memories failures; in the RDPFT we intro-

duced the possibility of repairing the main memories, but the TE can still be

caused by one of the MCSs listed above. Even if the MCSs of our system are al-

ways the same, their probability of occurring changes with respect to the system

configuration, as we can verify by calculating the MCSs’ unreliability values,

which are presented in the next section.

9.5.2 Quantitative Analysis

Table 9.2 shows the failure rates for the components of the system, with the corre-

sponding MTTF (the inverse of the failure rate); such rates are assigned to the cor-

responding BEs; all the main and spare memories have a common failure rate.

Table 9.2. Failure rates for the system components

Component Failure rate (1/h) MTTF (h)

VOTER 2.0E−05 50000

MEM(i) 1.0E−04 10000

SP(j) 1.0E−04 10000

Quantitative Analysis on Fault Tree

The MTTF of the whole system modeled as an FT (Figure 9.1) is equal to 7074 h;

such measure has been calculated by means of the SHARPE tool. Table 9.3 shows

the unreliability values for the system components at several times; the main and

the spare memories have the same unreliability since they have the same failure

rate and they are independent from each other; Table 9.4 shows the unreliability

 System-level Dependability Analysis 165

values at several times, for the MCSs and for the whole system; in such a table the

unreliability of the MCS composed only by VOTER has been omitted since it is

equivalent to the VOTER unreliability, while all the others MCSs have the same

unreliability because all of them have the same order and are composed of com-

ponents with the same unreliability at the given time.

Table 9.3. The unreliability values for the

components of the system with hot spares

Table 9.4. Unreliability of all the

MCSs with order 3, and the system

Hours q(VOTER) q(MEM) = q(SP)

2000 0.03921 0.18126

4000 0.07688 0.32967

6000 0.11307 0.45118

8000 0.14785 0.55067

10000 0.18126 0.63212

Hours Q(MCS) Q(TE)

2000 0.00595 0.08200

4000 0.03583 0.26565

6000 0.09184 0.47588

8000 0.16698 0.65433

10000 0.25258 0.78421

Importance factors are time dependent; Table 9.5 shows the MIF calculated at

several times on the components; let us consider the MIF values for the voter;

such a measure indicates the contribution of the voter to system failure, though the

voter unreliability is generally lower than the unreliability of a memory, the voter

failure is more important than a memory failure with respect to the system, espe-

cially for the lowest time values; this is due to the fact that the voter failure causes

system failure directly, while a failed memory may be replaced.

Considering the highest times of Table 9.5, the MIF values of the voter and of a

memory do not differ so much as for the lowest time values: the unreliability of

the memories has increased enough that the probabilities of the MCSs concerning

the memories are similar to the probability of the voter failure. The MIF values of

the voter and of the memories are represented graphically in Figure 9.5.

Table 9.5. The MIF values for the components of the system with hot spares

Hours MIF(VOTER) MIF(MEM) = MIF(SP)

2000 0.95545 0.12697

4000 0.79550 0.27049

6000 0.59094 0.32628

8000 0.40564 0.31302

10000 0.26356 0.26564

Quantitative Analysis on Dynamic Parametric Fault Tree

Owing to the presence of dependencies among some components in the system,

the unreliability values cannot always be calculated with the same procedure used

for the FT; considering the DPFT of Figure 9.4a, the voter and the main memories

166 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

are independent of the rest of the system, so their unreliability has not changed

from the previous case; the presence of the WSP gate causes a dependency of the

spare memories on the main ones, so the spares’ states and the corresponding fail-

ure rates depend on the main memories’ states at the current time; for this reason,

the calculation of the unreliability values for the spares needs an analysis of the

system behavior in the state space. In this representation, every state is a descrip-

tion of the working and not working components, and transitions between states

are the failure and repair events.

T

M
IF

 a
t

ti
m

e
 T

Figure 9.5. The MIF values for the components of the system with hot spares

State-space analysis is typically computationally expensive, so modular ap-

proaches have been developed for DFT solution; in other words, such analysis is

applied only to the minimal parts of the system that need it, specifically because

they contain dynamic gates. The state-space analysis can be performed by translat-

ing the minimal independent subtree containing dynamic gates (referred as a dy-

namic module [5]) in a state-space-based stochastic model such as CTMC or Sto-

chastic Petri Nets (SPNs).

Generally, modules can be detected by means of a linear algorithm [19] which

has been adapted to be used on DFT [1] and (R)DPFT [5]. In our example, the dy-

namic module consists of the subtree whose root is the event SET; such a module

is parameterized, so we have a compact representation of the system behavior

which can be conserved in the corresponding state-space model by translating the

dynamic module in a particular form of colored stochastic Petri net called a Sto-

chastic Well-formed Net (SWN) [10],[11]. An SWN allows one to generate a

compact (symbolic) state space of the system, instead of the ordinary one, with a

 System-level Dependability Analysis 167

significant reduction [5] of the state-space dimensions and with a corresponding

reduction of the computational costs.

SET_dn

MEM_dn

MAIN_fail SP_fail_OFF

SP fail ON

SP_cur

MAIN_dn

i

i

i

i

i

i

i i

i, j

j

j j
j

C
1
,C

2

C
1

C
1

= i1,i2 ,i3

C
2

= j1,j2

S
S

S
C

2

i, j

SP_dn

Figure 9.6. The SWN corresponding to the dynamic module whose root is the event SET

The SWN for the dynamic module whose root is SET is shown in Figure 9.6;

we can arbitrarily calculate several indices on it, such as the unreliability value of

a spare memory at a given mission time. Table 9.6 shows the unreliability values

of the spare memories, of the MCSs concerning the memories, and of the whole

system. The spare memories now have a lower unreliability due to their condition

of warm spare (in Table 9.6 it is assumed to have a dormancy factor equal to 0.1);

for the same reason, the reliability of the MCSs concerning both main and spare

memories, and of the whole system, is lower than the corresponding value in the

previous configuration; the probability to occur of the MCS composed of all the

main memories has not changed, because the unreliability of the main memories

has not changed.

On a DPFT, we can have dependency among the BEs, so the unreliability of the

MCSs cannot be computed with the formula used for the FT, where BEs are as-

sumed to be all statistically independent; on a DPFT, the unreliability of an MCS

must be calculated by considering all the possible occurrence sequences of the

BEs composing the MCS [40]; every sequence may have a different probability to

occur, with respect to the other ones; for instance, the probability of the sequence

MEM1 → MEM2 → SP1, is different from the probability of SP1 → MEM1 →
MEM2; this is due to the fact that SP1 occurs in the first sequence during its dor-

mant period, while in the second one it occurs during the working period, with a

higher failure rate.

168 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

Considering our example, the unreliability of the MCSs concerning the main

and the spare memories can be calculated on the SWN, relative to the dynamic

module.

Table 9.6. The unreliability values for the components of the system with warm spares (α =

0.1).

Hours q(SP)
Q(MEM1

MEM2 MEM3)

Q(MEMx

MEMy SPz)

Q(MEMi SPj

SPk)
Q(TE)

2000 0.10825 0.00596 0.00471 0.00346 0.06334

4000 0.22491 0.03583 0.02955 0.02327 0.19613

6000 0.33915 0.09185 0.07842 0.06498 0.36606

8000 0.44414 0.16698 0.14665 0.12632 0.53191

10000 0.53676 0.25258 0.22703 0.20148 0.67122

The unreliability of the whole system modeled as a DPFT can be calculated

through these steps: we have to calculate the unreliability at a given time of the

dynamic module whose root is SET, in the state space, and replace it with a BE

with a fixed probability to occur, equal to the unreliability of the module. Once we

have replaced it, we have no dynamic gates, so we can solve the model as an FT.

Such a procedure must be repeated for each time value.

Table 9.7 shows the MIF values for the components in the case of the DPFT;

from such values we can see that the importance of the voter is higher than in the

previous configuration; this is due to the fact the unreliability of the MCSs includ-

ing spare memories has decreased because the spare memories now have a lower

failure probability. So the memories have become less important as a failure

cause of the system, both in the case they are main and in the case they are spare;

to balance such a decrease, the voter has become more important as a failure cause

than before.

Table 9.7. The MIF values for the components of the sytem with warm spares

Hours MIF(VOTER) MIF(MAIN) MIF(SP)

2000 0.97489 0.11160 0.10635

4000 0.87082 0.26888 0.24403

6000 0.71476 0.36578 0.31602

8000 0.54931 0.39455 0.32444

10000 0.40158 0.37528 0.29371

Quantitative Analysis on Repairable Dynamic Parametric Fault Tree

The introduction of the RB establishes for some components a dependency on the

RB action; in our example the RB first influences the state of a main memory by

 System-level Dependability Analysis 169

repairing it, but also the state of the spare memories and maybe of the whole sys-

tem. An analysis in the state space is necessary also in this case of using an SWN

including both the failure and the repair mode of the system (we omit the corre-

sponding figure); we have assumed that more than one main memory can be re-

paired at the same time, and that the repair process starts as soon as the main

memory fails. Observing the results for the unreliability in Table 9.8, these show

that the unreliability of a repairable main memory is the same for all the times in-

dicated; this is due to the fact that the alternation for such a component of working

and repairing periods whose durations are ruled by an exponential distribution

with a constant rate leads to having a constant probability of the component being

in the working or in the failed state, for times exceeding a certain limit.

The unreliability of the warm spares has decreased with respect to the previous

configuration, because now a warm spare memory which is replacing a main one

under repair can turn back to the dormant state when the repair ends, reducing its

probability of failure.

Table 9.8. The unreliability values for the components of the system with repairable main

memories and warm spares

Hours Q(MAIN) q(SP)

2000 0.00990 0.02195

4000 0.00990 0.04395

6000 0.00990 0.06552

8000 0.00990 0.08664

10000 0.00990 0.10734

The probabilities of the MCSs to occur are calculated using the SWN, including

the repair process too; Table 9.9 shows such values whose reduction is evident and

is due to the repair action directly involving the main memories and, as a secon-

dary effect, the spare ones. The RB also influences the state of the whole system,

so its unavailability can be calculated with the same method used for the DPFT;

the results are shown in Table 9.9, with a significant reduction of the failure

probability of the system.

Table 9.9. The unavailability values for the MCSs of the system with repairable main

memories and warm spares

Hours
U(MEM1 MEM2

MEM3)

U(MEMx MEMy

SPz)
U(MEMi SPj SPk) U(TE)

2000 0.00005 0.00007 0.00009 0.03864

4000 0.00011 0.00024 0.00044 0.07641

6000 0.00017 0.00048 0.00119 0.11272

8000 0.00023 0.00081 0.00244 0.14762

10000 0.00028 0.00122 0.00424 0.18117

170 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

Table 9.10 shows the MIF values for the system components. The action of the

RB has influenced the importance measures too; now the memories can be re-

placed and repaired at the same time, so a system failure due to a combination of

failed memories is very unlikely, so the voter, is typically the system failure cause

at any time; the MIF values of the voter compared with those of the memories, are

the evident proof of this situation. The evaluation of the components, importance

can be performed by resorting to other importance factors, but, due to the system

structure, we would obtain similar results, so we limited our attention only on the

MIF, the simplest to be calculated.

Table 9.10. The MIF values for the components of the system with repairable main

memories and warm spares

Hours MIF(VOTER) MIF(MAIN) MIF(SP)

2000 0.99993 0.00174 0.00144

4000 0.99985 0.00228 0.00201

6000 0.99975 0.00274 0.00252

8000 0.99961 0.00313 0.00298

10000 0.99946 0.00346 0.00338

T

S
y
st

e
m

 u
n
re

lia
b
ili

ty
 a

t
ti
m

e
 T

No spare

Hot spares

Warm
spares

Warm spare
and repair

Figure 9.7. The unreliability values for all the system configurations

Figure 9.7 graphically compares the whole system unreliability (unavailability)

for each configuration, including as upper bound the case with no spare memories,

but only three main memories, which has not been considered above. The figure

shows how the introduction of warm spares instead of hot spares reduces the sys-

 System-level Dependability Analysis 171

tem unreliability, while the action of an RB determines a further evident reduction

of such a measure.

9.6 Conclusions

An FT representation of complex systems embedding several components allows

one to express the failure propagation logic of the system, and to assess the system

(un)reliability as a function of the components’ (un)reliability. Several extensions

to the standard FT language have been proposed in the literature, to enhance its

expressive power and allow one to account for component dependencies or the

possibility of repair. Such extensions require more expensive state-space-based

analysis methods in contrast to the efficient combinatorial ones applicable to stan-

dard FTs: the analysis complexity can, however, be kept under control by applying

hybrid and modular approaches, restricting state-space analysis only to those sub-

systems that actually need it to be solved, and then composing the results on the

subsystems into a new FT representing the failure event propagation from the sub-

systems up to the TE, which can be solved by combinatorial methods. Such a de-

composition and composition method can be done in a completely automated

fashion for the classes of DPFT and DRPFT.

Several measures can be obtained from the FT models: system and MCS reli-

ability indices, component or subsystem importance measures, MTTF of the sys-

tem and of its components. In order to obtain these measures, the elements of the

FT corresponding to basic components must be enriched with the quantitative pa-

rameters indicating their reliability (failure probability) or availability; these pa-

rameters can be obtained by measures performed directly on the components

themselves, which could be derived through simulation at the design stage, or di-

rectly measured on the component (possibly tested in both normal mode and with

fault injection).

Besides the consideration on models and tools for reliability assessment, it

would be also important to have the possibility of evaluating the so-called per-

formability measures, which are measures expressing the performance degradation

of a (fault-tolerant) system as a function of the number and type of the component

failure that have occurred. This aspect can be dealt with by using several tech-

niques, typically state-space-based ones: in [38] a heterogeneous system perform-

ability and reliability study has been proposed, exploiting a hierarchical simulation

environment integrating low-level simulators (the ones available in the context of

synthesis of hardware−software components), able to represent in some detail the

behavior of the system components, with higher level simulators capturing the

structure and behavior of the system as a whole. Measures can flow from bottom

to top and vice versa, until the method converges to a stable value. This tech-

nique, in conjunction with the extended FT analysis discussed in this chapter, can

help both system and component designers to evaluate the adequacy of the design

choices with respect to the reliability and performance requirements from the early

design phases.

172 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

Acknowledgments

This work has been partially funded by the MIUR FIRB project PERF

(RBNE019N8N).

References

[1] Anand A, Somani K (1998) Hierarchical analysis of fault trees with dependencies, us-

ing decomposition. In: Proc. Annual Reliability and Maintainability Symposium, 69-

75

[2] Birnbaum ZW (1969) On the importance of different components and a multicompo-

nent system. In: Korishnaiah P.R., editor, Multivariable Analysis II. Academic Press,

New York

[3] Bobbio A, Franceschinis G, Gaeta R, Portinale L (2003) Parametric fault-tree for the

dependability analysis of redundant systems and its high level Petri net semantics.

IEEE Transactions on Software Engineering, 29: 270-287

[4] Bobbio A, Franceschinis G, Gaeta R, Portinale L (2001) Dependability assessment of

an industrial programmable logic controller via parametric fault-tree and high level

PN. In: Proc. 9th International Workshop on Petri Nets and Performance Models, 29-

38

[5] Bobbio A, Codetta Raiteri D (2004) Parametric fault trees with dynamic gates and re-

pair box. In: Proceedings of the Annual Reliablity and Maintainability Symposium,

459-465

[6] Bobbio A, Portinale L, Minichino M, Ciancamerla E (2001) Improving the analysis of

dependable systems by mapping fault trees into Bayesian networks. Reliability Engi-

neering and System Safety, 71: 249-260

[7] Bouissou M, Bruyère F, Rauzy A (1997) BDD based fault-tree processing: a compari-

son of variable ordering heuristics. In: C. Guedes Soares, editors, Proceedings of

European Safety and Reliability Association Conference, vol. 3, 2045-2052, Perga-

mon, ISBN 0-08-042835-5

[8] Bryant R (1987) Graph based algorithms for Boolean function manipulation. IEEE

Transactions on Computer, 35(8): 677-691

[9] Buchacker K (1999) Combining fault trees and Petri nets to model safety-critical sys-

tems. In: Tentner A., editor, High Performance Computing, The Society for Computer

Simulation International

[10] Chiola G, Duthuillet C, Franceschinis G, Haddad S (1991) Stochastic well-formed

colored nets and multiprocessor modelling applications. In: Jensen K., Rozenberg G.,

editors, High-Level Petri Nets. Theory and Application, Springer Verlag

[11] Chiola G, Duthuillet C, Franceschinis G, Haddad S (1993) Stochastic well-formed

colored nets and symmetric modeling applications. IEEE Transactions on Computers,

42: 1343-1360

[12] Chiola G, Franceschinis G, Gaeta R, Ribaudo M (1995) GreatSPN 1.7: Graphical edi-

tor and analyzer for timed and stochastic Petri nets. Performance Evaluation, (24): 47-

68

 System-level Dependability Analysis 173

[13] Codetta Raiteri D, Franceschinis G, Iacono M, Vittorini V (2004) Repairable fault tree

for the automatic evaluation of repair policies. In: Conference on Dependable Systems

and Networks. Performance and Dependability Symposium

[14] Codetta Raiteri D (2003) Development of a dynamic fault tree solver based on colored

Petri nets and graphically interfaced with DrawNET. In: Technical Report TR-INF-

2003-10-06-UNIPMN, http://www.di.unipmn.it/Tecnical-R/index.htm

[15] Contini S, Poucet A (1990) Advances on fault tree and event tree techniques. In: A.

Colombo G., Saiz de Bustamante A., editors, System Reliability Assessment, 77-102,

Kluwer Academic Publishers

[16] Contini S (1998) Astra Knowledge Handbook. Logical and probabilistic analysis

methods. Special publication of the European Commission Joint Research Centre,

98(138)

[17] Dugan JB, Bavuso SJ, Boyd MA (1992) Dynamic fault-tree models for fault-tolerant

computer systems. IEEE Transactions on Reliability, 41: 363-377

[18] Dugan JB, Sullivan KJ, Coppit D (1999) Developing a low-cost, high-quality software

tool for dynamic fault tree analysis. Transactions on Reliability, (12): 49-59

[19] Dutuit Y, Rauzy A (1996) A linear-time algorithm to find modules of fault trees. IEEE

Transactions on Reliability, 45: 422-425

[20] Dutuit Y, Lemaire O, Rauzy A (2000) New insight on measures of importance of

components and systems in fault tree analysis. In: Kondo S., Furuta K., editors, Pro-

ceedings of the International Conference on Probabilistic Safety Assessment and Man-

agement, 729-734, Universal Academy Press, ISBN 4-946443-64-9

[21] Dutuit Y, Rauzy A (1999) New algorithms to compute importance factors CPr, MIF,

CIF, DIF, RAW and RRW. In: Proc. of the European Safety and Reliability Associa-

tion Conference, 1015-1020

[22] Dutuit Y, Rauzy A (2000) Efficient algorithms to assess components and gates impor-

tances in fault tree analysis. Reliability Engineering and System Safety, 72: 213-222

[23] Franceschinis G, Gribaudo M, Iacono M, Mazzocca N, Vittorini V (2002) Towards an

object based multi-formalism multi-solution modeling approach. In: Proc. of the Sec-

ond International Workshop on Modelling of Objects, Components, and Agents, 47-66

[24] Hoyland A, Rausand M (1994) System reliability theory, John Wiley & Son

[25] Kovalenko IN, Kuznetsov NY, Pegg PA (1997) Mathematical theory of reliability of

time dependent systems with practical applications. Wiley Series in Probability and

Statistics, John Wiley & Son

[26] Manian R, Coppit DW, Sullivan KJ, Dugan JB (1999) Bridging the gap between sys-

tems and dynamic fault tree models. In: Proceedings Annual Reliability and Maintain-

ability Symposium, 105-111

[27] Manian R, Dugan JB, Coppit D, Sullivan K (1998) Combining various solution tech-

niques for dynamic fault tree analysis of computer systems. In: Proc. Third IEEE In-

ternational High-Assurance Systems Engineering Symposium, 21-28

[28] Malhotra M, Trivedi K (1994) Power-hierarchy of dependability-model types. IEEE

Transactions on Reliability, 43(3): 493-502

[29] Malhorta M, Trivedi K (1995) Dependability modeling using Petri nets. IEEE

Transactions on Reliability, 44: 428-440

[30] Natvig B (1985) New light on measures of importance of system components. Scandi-

navian Journal of Statistics, 12: 43-52

174 A. Bobbio, D. Codetta Raiteri, M. De Pierro, and G. Franceschinis

[31] Portinale L, Bobbio A (1999) Bayesian networks for dependability analysis: an appli-

cation to digital control reliability. In: 15th Conference Uncertainty in Artificial Intel-

ligence, 551-558

[32] Rauzy A (1993) New algorithms for fault trees analysis. Reliability Engineering and

System Safety, 40: 203-211

[33] Rauzy A (2001) Mathematical foundation of minimal cutsets. IEEE Transactions on

Reliability, 50(4): 389-396

[34] Sahner RA, Trivedi KS, Puliafito A (1996) Performance and reliability analysis of

computer systems; an example-based approach using the SHARPE software package,

Kluwer Academic Publishers

[35] Sinnamon RM, Andrews JD (1996) Quantitative fault tree analysis using binary deci-

sion diagrams. Journal Européen des Systèmes Automatisés, 30(8): 1051-1071

[36] Sinnamon RM, Andrews JD (1997) Improved accuracy in qualitative fault tree analy-

sis. Quality and Reliability Engineering International, 13: 285-292

[37] Schneeweiss WG (1999) The fault tree method, LiLoLe Verlag

[38] Sonza Reorda M, Violante M, Mazzocca N, Venticinque S, Franceschinis G, Bobbio

A (2002) A hierarchical approach for designing dependable systems. In: 7th Annual

IEEE International Workshop on High Level Design Validation and Test, 63-67

[39] Sullivan KJ, Dugan JB, Coppit D (1999) The Galileo fault tree analysis tool. In: Proc.

of the 29th Annual International Symposium on Fault-Tolerant Computing, 232-235

[40] Tang Z, Dugan JB (2004) Minimal cut set/sequence generation for dynamic fault trees.

In: Annual Reliability and Maintainability Symposium

[41] Vesley VE (1970) A time dependent methodology for fault tree evaluation. Nuclear

Engineering and Design, 13: 337-360

[42] Fussel JB How to hand-calculate system reliability characteristics. IEEE Transactions

on Reliability, 24(3)

[43] Vittorini V, Franceschinis G, Gribaudo M, Iacono M, Bertoncello C (2002)

DrawNET++: a flexible framework for building dependability models. In: Proc. Inter-

national Conference on Dependable Systems and Networks

Index

µGP, 97

Arexsys Internal Format, 38

ASTRA, 163

ATM, 116

ATM Adaptation Layer protocol,

116

Automatic Test Equipment, 84, 86

Automatic Test Pattern Generation,

6

Basic Events, 153

Basic Replicator Event, 157

Bayesian network, 162

BDD-based sequences, 42

behavioral-level synthesis tools, 47,

67

behaviorally redundant, 32

behavioural descriptions, 6

Binary Decision Diagram, 28, 29,

49, 69, 161

bit coverage, 36, 37, 51

bit failures, 37, 49

block coverage, 38

Boolean algebra, 69

BoundaryScan Test, 10

Branch Controllability, 20

branch coverage, 12, 13, 38, 92

Branch Detectability, 20

bridging defects, 13

Built-In Self-Test, 6, 18, 23, 86, 122

Catastrophic faults, 8

Channels failures, 37

characteristic vector, 133

code coverage, 15, 31

colored stochastic Petri net, 166

Communication, 109

concurrent computation, 109

Concurrent systems, 107

Condition coverage, 38, 51, 92

Condition failures, 37

conditional stuck-at faults, 17

conditions failures, 49

conformity test, 73, 78

Constant Bit Rate, 116

Contention, 109

Continuous Time Markov Chains,

166

Control Flow Graph, 12, 28

Control-based sequences, 42

controllability-don't-care set, 33

coverage metric, 5

Critical defect, 8

Critical Importance Factor, 162

dark corners, 20

Decision Diagrams, 68, 71

Deep Sub-Micron technologies, 18,

10, 56

Defect, 8, 11

Defect Coverage, 11

Defect Level, 9

defects statistics, 11

DEFUSE, 86

dependability, 3, 151

design debug, 5

design errors, 31

design for testability, 2

design quality, 9

Design reuse, 7

176 Z. Peng, M. Sonza Reorda, M. Violante

design validation, 5

design verification, 87

detection probability, 16

deterministic test, 18, 132

deterministic test patterns, 86

Device Under Test, 28, 34, 38, 84

diagnosis, 5, 123

Diagnostic Impact Factor, 162

Digital Signal Processors, 86

Directed Acyclic Graph, 29, 71, 96,

153

Disturbance, 8

divide-and-conquer testing strategy,

123

DMA, 84

dormancy factor, 155

DrawNET, 163

Dual Tone Multi-Frequency, 116

dynamic gates, 155

Dynamic Parametric Fault Tree, 156

Easy-To-Detect faults, 27

efficient clocks, 127

efficient patterns, 127

energy, 10

error span, 113

error span threshold, 115

Errors, 8

escape rate, 9

Event failures, 37

Event synchronization, 110

execution graph, 69

Expression coverage, 92

failure rate, 151, 153

Fault, 8

Fault Coverage, 6

fault dropping, 16

fault injection, 38, 151

fault library, 15

fault model, 2, 5, 7, 8, 68

fault propagating, 80

fault table, 129

Fault Tree, 153

Fault Tree Analysis, 151

Faultsim, 54, 99

formal techniques, 2

formal verification, 48, 87

functional correctness, 107

Functional Dependency, 155

functional fault models, 68

functional testing, 5, 22, 28, 33, 37,

48

functional verification, 27

GA-based sequences, 42

Galileo, 163

gate-level description, 1, 67

genetic algorithm, 27, 28, 86, 124

GL85, 85

Goertzel’s algorithm, 117

GreatSPN, 163

Hard-To-Detect faults, 27

Hardware metric, 9

hardware/software codesign, 67,

119, 151

hardware/software systems, 107

hierarchical test generation, 68, 73

HLTG, 51

hybrid ATPG, 27

hybrid Built-in Self-test, 124, 130,

149

IEEE P1500, 57

Implicit Functionality, 13, 17, 19, 20

implicit variables, 19

importance factor, 161

Inductive Fault Analysis, 11

Input Generation, 59

instruction coverage, 61

instruction randomizer, 87

Instruction Set Architecture, 84

Instruction Set Extraction, 59

Instruction Set Simulator, 88

Intel 8051, 57, 60

Intellectual Property cores, 10, 57,

84, 122

Interconnected Processes, 33

interconnection network, 151

intermittent fault, 8

ISCAS benchmark circuits, 130, 139

 Index 177

ITC’99 benchmarks, 20

ite expression, 69

KEIL C compiler, 61

Laerte++, 31, 33

lifetime test, 6, 10

line coverage, 12

line justification, 80

line stuck-at fault, 6

Linear Feedback Shift Register, 21,

86, 124

logic synthesis, 33

manufacturing throughput, 10

Marginal Impact Factor, 162

Markov reward models, 152

masked-based BIST, 21

masks, 20, 23

Memory Hierarchy, 108

message-based communication, 111

Microarchitectural Scheduling, 108

Minimal Cut-Set, 159

minimal independent subtree, 166

minimum time separation problem,

115

MIPS, 94

MISR, 139

mission-critical systems, 151

Mis-Timed Event, 114

model perturbation, 68

ModelSim, 62, 98

module cohesion, 9

module coupling, 9

monitor, 110

Monte Carlo simulation, 48

mSIM, 54

multi-branch Register-Transfer-

Level fault model, 19

Multiple Branch coverage, 19

mutant coverage, 53, 55

mutants, 12, 48

mutation, 51

mutation operator, 12

mutation testing, 12, 48

n-detection, 14, 18, 23

observability, 13, 15

Observability-based Code Coverage

Metrics, 13, 15, 22

Operating System Scheduling, 108

Parametric FT, 156

Path coverage, 12, 38

path testing, 48

path-set analysis, 159

pattern-resistant faults, 18

performance parameters, 151

permanent fault, 7, 8

Petri nets, 69

pipeline structures, 83

PLASMA, 94

PODEM, 75

post primitive, 110

power consumption, 10

power dissipation, 123

PowerPC604, 87

Priority And gate, 155

Probabilistic distributed sequences,

42

Process quality, 10

process yield, 10

Processor Configuration, 59

Product quality, 9

Product validation, 6

production test, 10

pseudorandom patterns, 75, 124

pseudorandom Test Pattern

Generator, 124

Quality Metrics, 7

random methods, 27

Random Mutation Hill Climber, 51

random pattern-resistant faults, 124

random-based ATPG, 27, 31

Reduced Ordered BDD, 30

redundancies, 31

Register-Transfer-Level description,

1, 67

178 Z. Peng, M. Sonza Reorda, M. Violante

reliability, 151

Reliability Analysis, 159

Remote Procedure Call, 111

rendezvous, 111

Repair Box, 158

repair rate, 158

Repairable Dynamic Parametric

Fault Tree, 158

Replicator Event, 157

RISC, 117

Risk Achievement Worth, 162

Risk Reduction Worth, 162

Saboteur, 38, 39, 51

safety-critical systems, 151

Savant, 38

scanning test, 73, 74

scheduling algorithm, 108

scoreboarding, 108

self-adaptation mechanism, 96

semaphore, 110

Sequence Enforcing gate, 155

SHARPE, 163

SIA02 roadmap, 83

simulated annealing, 129

Single Event Upset, 8

Single-bit Register-Transfer-Level

faults, 13

Software metrics, 9, 12

Software-Based Self-Test, 84

SPARC v8, 57

state transition diagrams, 69

Statement coverage, 37, 92

Stochastic Petri Nets, 152, 166

Stochastic Well-formed Net, 166

stratified Register-Transfer-Level

fault coverage, 16

stratified sampling technique, 16, 23

structural descriptions, 6

structural test, 22

Structurally Synthesized BDD, 69

stuck-at faults, 11, 47, 69

STUMPS, 139

superscalar design, 84

symbolic ATPG, 27

Symbolic evaluation, 48

symbolic method, 75

Symbolic technique, 2

synchronization, 2, 107

synchronization error, 107

synchronization point, 110

system graph, 69

system level descriptions, 1

system reconfiguration, 10

SystemC, 32, 33, 37, 38, 48, 49, 50,

53

system-on-board design, 122

System-on-Chip, 1, 47, 57, 67, 83,

122

Tabu search, 129

test, 1

test coverage metrics, 48

Test Effectiveness, 7, 8, 10

Test Efficiency, 68

test length, 10, 55, 132, 146

Test Overhead, 10

test pattern, 2, 8

test pattern broadcasting, 141

Test Pattern Generator, 124

test planning, 5

Test Power, 10

test preparation, 5

Test Program Generation, 83

test quality, 10, 22

Test Response Analyzer, 124

test reuse, 7

test vector, 8

testgen, 53

test-scheduling problem, 123

Time-Invariant System, 8

timing, 2, 107

timing correctness, 107

Toggle Activity, 90

Toggle coverage, 92

Tomasulo's algorithm, 108

Turbo Tester, 130

Unified Modeling Language, 5

validation, 1, 10, 15, 47, 57

Validation Vector Grade, 13, 15, 23

 Index 179

VeriDOS, 20

Verilog, 5, 15, 110, 115

VERTIS, 85

Vesley−Fussel Importance factor,

162

VHDL, 5, 32, 33, 37, 38, 59, 61, 76,

94, 110

Vista, 38

wait primitive, 110

Warm Spare gate, 155

Weighted random sequences, 42

WISHBONE, 57

Write-After-Read hazard, 112

yield ramp-up, 11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

