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Preface

This book presents the perspective of the ADRIATIC project for the 
design of reconfigurable systems-on-chip, as perceived in the course of the
research during 2001 - 2004. The project provided: (a) a high-level 
hardware/software co-design and co-verification methodology and tools for
reconfigurable systems-on-chip, supplemented with back-end design tools 
for the implementation of the reconfigurable logic blocks of the chip, (b) the
definition of the technological requirements for reconfigurable processors 
for wireless terminals and (c) the implementation of MPEG-4, WCDMA and 
WLAN design cases to validate the methodology and tools. 

Reconfigurability is becoming an important part of System-on-Chip
(SoC) design to cope with the increasing demands for simultaneous
flexibility and computational power. Current hardware/software co-design
methodologies provide little support for dealing with the additional design 
dimension introduced. Further support at the system-level is needed for the 
identification and modelling of dynamically re-configurable function blocks, 
for efficient design space exploration, partitioning and mapping, and for
performance evaluation. The overhead effects, e.g. context switching and 
configuration data, should be included in the modelling already at the 
system-level in order to produce credible information for decision-making.

This book focuses on hardware/software co-design applied for
reconfigurable SoCs. We discuss  exploration of additional requirements 
due to  reconfigurability,  report extensions  tort  two  C++to  based ++
languages/methodologies, SystemC and OCAPI-XL, to support those
requirements, and present results of three case studies in the wireless and 
multimedia communication domain that were used for the validation of the
approaches.
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The book includes nine chapters, divided in three parts: Part A contains 
Chapters 1 – 3 and provides an introduction to reconfigurable systems-on-
chip; Part B contains Chapters 4 – 6 and describes in detail the proposed
system level design methodology and the associated tools; Part C, which
contains Chapters 7 – 9, provides the details of applying the proposed 
methodology in practice.
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RECONFIGURABLE SYSTEMS 



Chapter 1 

INTRODUCTION TO RECONFIGURABLE 

HARDWARE

Konstantinos Masselos1,2 and Nikolaos S. Voros1

1
INTRACOM S.A., Hellenic Telecommunications and Electronics Industry, Greece 

2
Currently with Imperial College of Science Technology and Medicine, United Kingdom

Abstract: This chapter introduces the reader to main concepts of reconfigurable 
computing and reconfigurable hardware. Different types of reconfiguration are 
discussed. A detailed classification of reconfigurable architectures with respect 
to the granularity of their building blocks, the reconfiguration scheme and the
system level coupling is also presented. 

Key words: Reconfigurable hardware, reconfigurable architectures, reconfiguration, 
reconfigurable computing  

1. RECONFIGURABLE COMPUTING AND 

RECONFIGURABLE HARDWARE  

Reconfigurable computing refers to systems incorporating some form of 
hardware programmability–customizing how the hardware is used using a
number of physical control points [2]. These control points can then be 
changed periodically in order to execute different applications using the
same hardware. Reconfigurable hardware offers a good balance between 
implementation efficiency and flexibility as shown in Figure 1-1. This is 
because reconfigurable hardware combines post-fabrication programmability
with the spatial (parallel) computation style [2] of application specific 
integrated circuits (ASICs), which is more efficient in comparison to the 
temporal (sequential) computation style of instruction set processors.  

Due to the increasing flexibility requirements (e.g. for adaptation to 
different evolving standards and operating conditions) that are imposed by
computationally intensive applications such as wireless communications, 

15
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devices need to be highly adaptable to the running applications. On the other
hand, efficient realizations of such applications are required, especially in 
the resources they use during deployment, where power consumption must 
be traded against perceived quality of the application. The contradictory
requirements for flexibility and implementation efficiency cannot be
satisfied by conventional instruction set processors and ASICs. 
Reconfigurable hardware forms an interesting implementation option in such 
cases.
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Figure 1-1. Positioning of reconfigurable hardware 

There are also other reasons why to use reconfigurable resources in 
system-on-chip (SoC) design. The increasing non-recurring engineering 
(NRE) costs push designers to use same SoC in several applications and 
products for achieving low cost per chip. The presence of reconfigurable
resources allows the fine tuning of the chip for different products or product 
variations. Also, the increasing complexity in the future designs adds the 
possibility of including design flows, which can require costly and slow 
redesign of the chip. Reconfigurable elements are often homogenous arrays,
which can be pre-verified to minimize the possibility of having design
errors. Also the post-manufacturing programmability allows correction or
circumvention of problems later than with fixed hardware. 
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2. TYPES OF RECONFIGURATION 

The next paragraphs describe different types of reconfiguration.

2.1 Logic reconfiguration 

A typical logic block reconfigurable architecture contains a look-up table 
(LUT), an optional D flip-flop and additional combinational logic. The LUT
allows any function to be implemented, providing generic logic. The flip-
flop can be used for pipelining, registers, state holding functions for finite 
state machines, or any other situation where clocking is required. The
combinatorial logic is usually the fast carry logic used to speed up fast carry-
based computations such as addition, parity, wide AND operations and other
functions. The logic blocks located at the periphery of the device can be of 
different architecture dedicated to I/O operations. 

The logic blocks are grouped to matrices overlaid with a reconfigurable
interconnection network of wires. Interconnection network reconfiguration is
controlled by changing the connections between the logic blocks and the 
wires and by configuring the switch boxes, which connect different wires. 
The reconfiguration of both the logic blocks and the interconnection network 
is achieved by using SRAM memory bits to control the configuration of 
transistors. The functionality of the logic blocks, I/O blocks and the 
interconnection network is modified by downloading bit stream of 
reconfiguration data onto the hardware. 

2.2 Instruction-set reconfiguration

The concept of instruction-set reconfiguration refers to the hybrid 
architectures consisting of microprocessor and reconfigurable logic. The key 
benefit is a combination of full software flexibility with high hardware
efficiency. One promising approach is the reconfigurable instruction set 
processors (RISP), which have the capability to adapt their instruction sets to
the application being executed through a reconfiguration in their hardware.
The result is a reconfigurable and extensible processor architecture, which 
could be tailored closely to the designers' specific needs.

Through the adaptation, specialized hardware accelerates the execution
of the applications. If shared resources are used in the adaptation, the
functional density is also improved. By moving the application-specific data-
paths into the processor, a remarkable improvement in performance
compared to fixed instruction-set processors can be achieved. At the same 
time, designing at the level of instruction-set architecture significantly
shortens the design cycle and reduces verification effort and risk. On the 
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other hand, new methodologies, tools and processor foundations are 
required. Automated extension of processor function units and associated
software environment - compilers, debuggers, instruction simulators etc., are 
also the key points to success.

Different systems with different characteristics have been designed.
Usually two main design tasks are involved: 

1. What is the type of interfaces between the microprocessor and the
reconfigurable logic?

2. How to design the reconfigurable logic itself? 
Each of them contains many trade-offs. The common classification of the 
reconfigurable processors could be made according to the coupling levels of 
reconfigurable logic. The concept of coupling levels applies also without a
reference to reconfigurable processors. As shown in Figure 1-2, there are 
three types of coupling levels:

Memory

I/O Bus

Main Bus

Processor

RFU Co-processor

Attached processor

Figure 1-2. Basic coupling levels of reconfigurable logic 

1. Reconfigurable functional unit (RFU) - the logic is placed inside the
processor, the instruction decoder issues instructions to the 
reconfigurable unit as if it were one of the standard functional units of 
the processor. In this way, the communication cost is very small, so 
the speed could be easily increased. This is also the most promising
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approach because it can be used to accelerate almost any  
application [1]. 

2. Coprocessor - the logic is next to the processor. Communication is 
done using a protocol.

3. Attached processor - the logic is placed on some kind of I/O bus. With 
the coprocessor and attached processor approaches, the speed 
improvement using the reconfigurable logic has to compensate for the 
overhead of transferring the data. This usually happens in applications
where a huge amount of data has to be processed using a simple 
algorithm that fits in the reconfigurable logic.

2.3 Static and dynamic reconfiguration

There are two basic reconfiguration approaches: static and dynamic.

2.3.1 Static reconfiguration

Static reconfiguration (often referred as compile time reconfiguration) is 
the simplest and most common approach for implementing applications with 
reconfigurable logic. Static reconfiguration involves hardware changes at a 
relatively slow rate. It is a static implementation strategy where each 
application consists of one configuration. The main objective is to improve
the performance. 

Configure Execute

Figure 1-3. Principle of static reconfiguration 

The distinctive feature of this configuration is that it consists of a single
system-wide configuration. Prior to commencing an operation, the 
reconfigurable resources are loaded with their respective configurations.
Once operation commences, the reconfigurable resources  will remain in this
configuration throughout the operation of the application. Thus hardware
resources remain static for the life of the design (or application). This is 
depicted in Figure 1-3. Much higher performance than with pure software 
implementation (e.g. microprocessor approaches), cost advantage over 
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ASICs in certain cases and conventional CAD tool support are the main 
advantages of this technology.  

2.3.2 Dynamic reconfiguration

Whereas static reconfiguration allocates logic for the duration of an
application, dynamic reconfiguration (often referred to as run time

reconfiguration) uses a dynamic allocation scheme that re-allocates
hardware at run-time. This is an advanced technique that some people regard 
as a flexible realization of the time/space trade-off. It can increase system
performance by using highly optimized circuits that are loaded and unloaded 
dynamically during the operation of the system as depicted in Figure 1-4. In
this way system flexibility is maintained and functional density is 
increased [9].

Configure Execute

Figure 1-4. Principle of dynamic reconfiguration

Dynamic reconfiguration is based upon the concept of virtual hardware,
which is similar to the idea of virtual memory. Here, the physical hardware
is much smaller than the sum of the resources required by all of the
configurations. Therefore, instead of reducing the number of configurations 
that are mapped, we instead swap them in and out of the actual hardware, as
they are needed.

There are two main design problems for this approach: the first is to
divide the algorithm into time-exclusive segments that do not need to (or
cannot) run concurrently. This is referred to as temporal partitioning. 
Because no CAD tools support this step, this requires tedious and error-
prone user involvement. The second problem is to co-ordinate the behaviour 
between different configurations, i.e. the management of transmission of 
intermediate results from one configuration to the next [8].
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3. CLASSIFICATION OF RECONFIGURABLE 

ARCHITECTURES

In this section reconfigurable hardware architectures are classified with 
respect to several parameters. These parameters are described below:  

• Granularity of building blocks This refers to the levels of
manipulation of data. In this chapter we distinguish three types of 
granularity: fine-grain which corresponds to bit-level manipulation of 
data, medium grain manipulating data with varying number of bits and 
coarse-grain granularity which implies word level operations. 

• Reconfiguration scheme Systems can be reconfigured statically or
dynamically. Dynamically reconfigurable systems permit the partial
reconfiguration of certain logic blocks while others are performing 
computations. Statically reconfigurable devices require execution 
interrupt.

• Coupling This refers to the degree of coupling with a host 
microprocessor. In a closely coupled system reconfigurable units are d

placed on the data path of the processor, acting as execution units. 
Loosely coupled systems act as a coprocessor. They are connected to a d

host computer system through channels or some special-purpose 
hardware.

3.1 Classification with respect to building blocks 

granularity 

The granularity criterion reflects the smallest block of which a 
reconfigurable device is made.

In fine-grained architectures, the basic programmed building block d

usually consists of a combinatorial network and a few flip-flops. The logic
block can be programmed into a simple logic function, such as a 2-bit adder. 
These blocks are connected through  a reconfigurable interconnection
network. More complex operations can be constructed by reconfiguring this
network. Commercially available Field Programmable Gate Arrays (FPGAs) 
are based on fine grain architectures.

Although highly flexible, these systems exhibit a low efficiency when it 
comes to more specific tasks. For example, although an 8-bit adder can be
implemented in a fine-grained circuit, it will be inefficient, compared to a
reconfigurable array of 8-bit adders, when performing an addition-intensive 
task. An 8-bit adder will also occupy more space in the fine-grained 
implementation.
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Reconfigurable systems which use logic blocks of larger granularity are 
categorized as medium-grained [6, 7, 10, 11, 17]. For example, Garp [6] is 
designed to perform a number of different operations on up to four 2-bit 
inputs. Another medium-grained structure was designed specifically to 
implement multipliers of a configurable bit-width [7]. The logic block used 
in the multiplier FPGA is capable of implementing a 4x4 multiplication. The 
CHESS architecture [11] also operates on 4-bit values, with each of its cells 
acting as a 4-bit ALU. The major advantage of medium-grained systems
when compared to the fine-grained architecture is, that they better utilize the
chip area, since they are optimized for the specific operations. However, a
drawback of this approach is represented in a high overhead when 
synthesizing operations which are incompatible with the simplest logic block
architecture.

Coarse-grained architectures are primarily intended for thed

implementation of tasks dominated by word-width operations. Because the 
logic blocks used are optimized for large computations, they will perform
these operations much more quickly (and consume less chip area) than a set 
of smaller cells connected to form the same type of structure. However, 
because their composition is static, they are unable to leverage optimizations 
in the size of operands. On the other hand, these coarse-grained architectures
can be much more efficient than finer-grained architectures for
implementing functions closer to their basic word size. An example of 
coarse-grained system is the RaPiD architecture [4]. 

A very coarse granularity is the case when the simplest logic block is 
based on an entire microprocessor with or without special accelerators.
Examples of such architectures are the REMARC [12] and RAW [13]
architectures.

3.2 Classification with respect to reconfiguration scheme 

3.2.1 Statically reconfigurable architectures

Traditional reconfigurable architectures are statically reconfigurable,
which means that the reconfigurable resources are  configured at the start of 
execution and remain unchanged for the duration of the application. In order
to reconfigure a statically reconfigurable architecture, the system has to be
halted while the reconfiguration is in progress and then restarted with the 
new configuration.

Traditional FPGA architectures have primarily been serially programmed 
single-context devices, allowing only one configuration to be loaded at a
time. This type of FPGAs is programmed using a serial stream of 
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configuration information, requiring a full reconfiguration if any change is
required.

3.2.2 Dynamically reconfigurable architectures

Dynamically reconfigurable (run-time reconfigurable) architectures allow 
reconfiguration and execution to proceed at the same time. The different 
reconfigurable styles of dynamic reconfiguration are depicted in Figure 1-5 
and discussed in the following paragraphs.

Single context dynamically reconfigurable architectures

Although single context architectures can typically be reconfigured only
statically, a run-time reconfiguration onto single context FPGA can also be 
implemented. Typically, the configurations are grouped into contexts, and 
each context is swapped as needed. Attention has to be paid on proper
partitioning of the configurations between the contexts in order to minimize
the reconfiguration delay. 

Multi-context dynamically reconfigurable architectures

A multi-context architecture includes multiple memory bits for each
programming bit location. These memory bits can be thought of as multiple 
planes of configuration information [3, 15]. Only one plane of configuration
information can be active at a given moment, but the architecture can 

Figure 1-5. The different basic models of dynamically reconfigurable computing
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quickly switch between different planes, or contexts, of already-programmed 
configurations. In this manner, the multi-context architecture can be
considered a multiplexed set of single-context architectures, which requires 
that a context be fully reprogrammed to perform any modification to the 
configuration data. However, this requires a great deal more area than the 
other structures, given that there must be as many storage units per 
programming location as there are contexts. This also means that multi-
context schemes  are mainly used in coarse-grain architectures.

Partially Reconfigurable Architectures 

In some cases, configurations do not occupy the full reconfigurable
hardware, or only a part of a configuration requires modification. In both of 
these situations a partial reconfiguration of the reconfigurable resources  is 
desired, rather than the full reconfiguration supported by the serial 
architectures  mentioned above.

In partially reconfigurable architectures, the underlying programming
layer operates like a RAM device. Using addresses to specify the target 
location of the configuration data allows for selective reconfiguration of the 
reconfigurable resources. Frequently, the undisturbed portions of the 
reconfigurable resources may continue execution, allowing the overlap of 
computation with reconfiguration. When configurations do not require the 
entire area available within the array, a number of different configurations 
may be loaded into otherwise unused areas of the hardware. Partially run-
time reconfigurable architectures can allow for complete reconfiguration
flexibility such as the Xilinx 6200 [18], or may require a full column of 
configuration information to be reconfigured at once, as in the Xilinx Virtex 
FPGA [19].

4. COUPLING

The type of coupling of the Reconfigurable Processing Unit (RPU) to 
the computing system has a big impact on the communication cost. It can  
be classified into one of the four groups listed below, which are presented 
in order of decreasing communication costs and illustrated in  
Figure 1-6:

• RPUs coupled to the I/O bus of the host (Figure 1-6.a). This group
includes many commercial circuit boards. Some of them are connected 
to the PCI bus of a PC or workstation.  

• RPUs coupled to the local bus of the host (Figure 1-6.b).
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• RPUs coupled like co-processors (Figure 1-6.c) such as the REMARC 
- Reconfigurable Multimedia Array Coprocessor [12].

• RPUs acting like an extended data-path of the processor (Figure 1-6.d) 
such as the OneChip [16], the PRISC - Programmable Reduced 
Instruction Set Computer [14], and the Chimaera [5]. 

Figure 1-6. Coupling of the RPU to the host computer 
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Chapter 2 

RECONFIGURABLE HARDWARE 

EXPLOITATION IN WIRELESS MULTIMEDIA 

COMMUNICATIONS

Konstantinos Masselos1,2 and Nikolaos S. Voros1

1
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2
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Abstract:  This chapter presents cases where reconfigurable hardware can be exploited 
for the efficient realization of wireless multimedia communication systems. 
The various scenarios described are referring to  
(a) the DLC/MAC layer and the baseband part of the physical layer of 
HIPERLAN/2 and IEEE 802.11a WLAN protocols, and (b) the application
layer of a sophisticated personal device. The goal of this chapter is to provide
an insight on the advantages reconfigurable hardware may bring in real life 
applications.

Key words: Reconfiguration, WLAN, application layer, wireless multimedia 
communications

1. RECONFIGURABLE HARDWARE BENEFITS 

FROM A SYSTEM’S PERSPECTIVE 

The presence of reconfigurable hardware resources in a system can be 
exploited in two major directions: 

• To create space for post-fabrication functional modifications e.g. to 
upgrade system functionality or for software like bug fixing. Software
realizations allow post-fabrication functional modifications, however
for complex tasks software realizations might be inefficient. This
feature may allow important time-to-market improvement. 

• To allow sharing of hardware resources among tasks that are not active
simultaneously thus reducing the total area cost of the system. Such 
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tasks may belong to different modes of operation of a given system, to 
different applications or standards realized on the same platform or 
even to time non-overlapping tasks of a single system.  

Given an application, tasks that are suitable for realization on
reconfigurable hardware are those that may share hardware resources with
other tasks over time or are likely to be modified/upgraded in the future and 
also have high computational complexity (that prevents efficient realization 
on instruction set processors). 

In the rest of this chapter, reconfiguration scenarios are discussed from 
the wireless communications and multimedia domains. Real life complex 
systems are used for this analysis namely the HIPERLAN/2 and IEEE 
802.11a WLAN systems (covering MAC and physical layers functionality) 
and the MPEG system (covering the application layer).

2. RECONFIGURATION SCENARIOS FOR 

HIPERLAN/2 AND IEEE 802.11a WLAN 

SYSTEMS

In this section reconfiguration scenarios for the HIPERLAN/2 and IEEE
802.11a WLAN systems are discussed. The two systems targeted 
functionalities cover the DLC/MAC layer and the baseband part of the
physical layer. 

2.1 HIPERLAN/2 and IEEE 802.11a systems 

HIPERLAN/2 [1] is a connection-oriented time-division multiple access 
(TDMA) system. Physical layer is based on coded OFDM modulation 
scheme [2]. The physical layer is multi-rate type allowing control of link 
capability between access point and mobile terminal according interference
situations and distance.

The flow graph of the HIPERLAN/2 transmitter is shown in Figure 2-1. 
The blocks in the inputs and outputs of the different tasks give the input and 
output rates of the tasks respectively. The input rate of a given task 
corresponds to the minimum amount of data required for the task to produce
a given output (output rate). 

The computational complexity and the type of processing of the
transmitter tasks are analytically presented in Table 2-1. The analysis of 
computational complexity is done by estimating the number of required 
basic operations per output data item in each function. The basic operations
include arithmetic, logic and memory read/write operations. It is assumed, 
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that a processing of transmitted or received data should be possible at a
sustained nominal data rate of each physical layer mode. The input and 
output operations included in this complexity analysis correspond to data
coming from previous tasks and being passed to following tasks (in a real
implementation these operations are likely corresponding to accesses to data 
storage locations). 
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Figure 2-1. HIPERLAN/2 transmitter

From the computational complexity analysis it can be seen that there are 
some algorithms that generate a constant computational complexity in all
physical layer modes. The most important is IFFT that is dominating the
overall transmit side complexity in the low bit rate modes. The complexities
of channel coding functions are naturally related to the used bit rate. 
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Table 2-1. Computational complexity of transmitter tasks in different physical layer modes 
Task Type of processing Computational complexity (MOPS) / PHY mode (Mb/s)

6 9 12 18 27 36 54

Scrambling
bit level - shift

register, XOR 
108 162 216 324 486 648 972

Convolutional 

encoding

bit level - shift

register, XOR 
174 261 348 522 783 1044 1566 

Puncturing (Rate

dependent)

bit level – logic

operations
0.31 0.31 0.31 0.31 0.31 0.31 0.31

Puncturing (Rate

dependent)

bit level – logic

operations
0 33 0 66 105 132 198

Interleaving
Group of bits – 

LUT accesses 
48 48 96 96 192 192 288

Constellation

mapping

Group of bits – 

LUT accesses 
30 45 36 54 54 72 90 

Pilot insertion
Word level - 

memory accesses
56 56 56 56 56 56 56

IFFT

Word level –

multiplications,

additions, memory

accesses

922 922 922 922 922 922 922

Cyclic prefix

insertion

Word level - 

memory accesses 
72 72 72 72 72 72 72

Sum 1410 1599 1746 2112 2670 3138 4164
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Figure 2-2. HIPERLAN/2 receiver
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The flow graph of a reference HIPERLAN/2 receiver is presented in 
Figure 2-2. The receiver chain of the HIPERLAN/2 is left open by the 
standard so there is more freedom for algorithm selection for certain blocks 
such as the timing and frequency synchronization and the channel estimation
(different chains of tasks can be adopted for these two generic blocks). The
computational complexity and the type of processing of the receiver tasks
are analytically presented in Table 2-2.

Table 2-2. Computational complexity of receiver tasks in different physical layer modes

Task Type of processing Computational complexity (MOPS) / PHY mode (Mb/s)

6 9 12 18 27 36 54

Cyclic prefix 

extraction

Word level  memory

accesses
96 96 96 96 96 96 96 

Frequency error 

correction

Word level –

multiplications,

additions, memory

accesses

208 208 208 208 208 208 208

FFT

Word level –

multiplications,

additions, memory

accesses

922 922 922 922 922 922 922

Frequency

domain

equalization

Word level –

multiplications,

additions, memory

accesses

132 132 132 132 132 132 132

Constellation

demapping

Group of bits – LUT

accesses
48 48 240 240 288 288 336

Deinterleaving
Group of bits – LUT

accesses
48 48 96 96 192 192 288

Depuncturing

(Rate dependent) 

bit level – logic

operations 
0 50 0 99 118 198 297 

Depuncturing

(Rate

independent)

bit level – logic

operations 
0.16 0.20 0.16 0.20 0.28 0.20 0.20

Viterbi decoding

Bit level I/O  word 

level additions,

comparisons 

1170 1755 2340 3510 5265 7020 10530

Descrambling
bit level  shift register,

XOR
108 162 216 324 486 648 972

Sum 2732 3421 4250 5627 7707 9704 13781
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As it can be deduced, the Viterbi decoding dominates the overall
complexity figures in all physical layer modes. It can be also seen that the 
receiver side processing is up to three times more complex than transmit side 
processing.

Figure 2-3. IEEE 802.11a and HIPERLAN/2 preambles

The baseband part of the IEEE 802.11a system [3] is almost similar to
that of HIPERLAN/2 system. Only some minor differences exist. IEEE 
802.11a uses only one preamble sequence (shown in Figure 2-3) of 320 
samples. HIPERLAN/2 uses 4 different types of preamble sequences for the
different types of PDUs with sizes ranging from 160 samples to 320 
samples. The contents of the first half of the PREAMBLE sequences of 
HIPERLAN/2 are always different to that of IEEE 802.11a. From an 
implementation point of view this may affect the synchronization block of 
the receiver.

Different sequences are used by the two systems for the initialization of 
the (de)scrambler. In IEEE 802.11a the initialization is performed using the 
first 7 bits of the service field which are always set to zero. In HIPERLAN/2
the initial state of the scrambler is set to pseudo random non-zero 7-bit state
determined by the frame counter field in the BCH (first four bits of BCH) at 
the beginning of the corresponding MAC frame. The initial state is derived 
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by appending the first four bits of BCH to the fixed binary number (111)2.
This difference is small from an implementation point of view. 

In the encoder side, IEEE 802.11a supports 1/2, 3/4 and 2/3 code rates 
while HIPERLAN/2 supports 1/2, 3/4 and 9/16 code rates. Two code rates 
are in common while each system supports a third different extra one.
HIPERLAN/2 applies two puncturing stages (a rate independent one 
followed by a rate dependent one) while IEEE 802.11a applies a single
puncturing stage. The puncturing patterns applied by the two systems to
achieve the different code rates are presented in Figure 2-4 (no puncturing 
pattern is required for 1/2 code rate). The difference from an implementation
point of view is small. 

The combinations of modulation, coding rate and achieved nominal bit 
rate (physical modes of operation) supported by IEEE 802.11a and 
HIPERLAN/2 are presented in Table 2-3. Six modes of operation are 
common, IEEE 802.11a supports two extra modes while HIPERLAN/2
supports one extra mode. From an implementation point of view the number
of modes of operation supported affects the modem controller from which
the modem control words are issued.

1 1 1 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0

X

Y

HIPERLAN/2 rate

independent

puncturing patterns

1 1 1 1 1 1 1 1 0

1 1 1 1 0 1 1 1 1

HIPERLAN/2 9/16

puncturing pattern

1 1 0

1 0 1

Common 3/4

puncturing pattern

X

X

Y

Y

1 1

1 0

IEEE802.11a 2/3

puncturing pattern

X

Y

Figure 2-4. Puncturing patterns used by IEEE 802.11a and HIPERLAN/2 

The MAC frame duration of the HIPERLAN/2 is fixed to 2 ms. The 
HIPERLAN/2 MAC frame structure described in Figure 2-5 comprises time 
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slots for broadcast control (BCH), frame control (FCH), access feedback
control (ACH) and data transmission in downlink (DL), uplink (UL) and
directlink (DiL) phases, which are allocated dynamically depending on the
need for transmission resources.  A mobile terminal (MT) first has to request 
capacity from the access point (AP) in order to send data. This can be done 
in the random access channel (RCH), where contention for the same time
slot is allowed. Downlink, uplink and directlink phases consist of two types
of PDUs. The long PDUs have a size of 54 bytes and contain control or user
data. The payload is 49.5 bytes and the remaining 4.5 bytes are used for the
PDU Type (2 bits), a sequence number (10 bits, SN) and cyclic redundancy
check (CRC-24). Long PDUs are referred to as the long transport channel 
(LCH). Short PDUs contain only control data and have a size of 9 bytes. 
They may contain resource requests, ARQ messages etc and they are 
referred to as the short transport channel (SCH). A physical burst is 
composed of the PDU train payload and a preamble and is the unit to be 
transmitted via the physical layer. 

Table 2-3. Physical modes of operation of IEEE 802.11a and HIPERLAN/2 

Modulation
Coding

Rate R 

Nominal bit rate 

(Mbit/s)

Coded bits

per OFDM symbol 

BPSK 1/2 6 48 
BPSK 3/4 9 48 
QPSK 1/2 12 96
QPSK 3/4 18 96
16 QAM
(HL/2 only)

9/16 27 192 

16 QAM
(IEEE 802.11a only) 

1/2 24 192

16 QAM 3/4 36 192
64 QAM 3/4 54 288
64 QAM
(IEEE 802.11a only)

2/3 48 288 

The structure of the IEEE 802.11a PPDU frame is described in  
Figure 2-6. The header contains information about the length of the 
exchanged data and the transmission rate. The RATE field conveys 
information about the type of the modulation and the coding rate used in the 
rest of the packet. The LENGTH field takes a value between 1 and 4095 and 
specifies the number of bytes to be exchanged (PSDU). The six tail bits are 
used to reset the convolutional encoder and to terminate the code trellis in
the decoder. The first 7 bits of the service field are set to zero and are used to
initialise the (de)scrambler. The remaining 9 bits are reserved for future use. 
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The pad bits are used to ensure that the number of bits in the PPDU frame 
maps to an integer number of OFDM symbols. A cyclic redundancy check 
(CRC-32) is included in the IEEE 802.11a PSDU. 

54 bytes

BCH FCH ACH DL phase DiL phase UL phase RCH

2 ms

MAC Frame

PDU Type (2 bits) SN (2 bits) Payload (49.5 bytes) CRC (3 bytes) Long PDUs (LCH)

Preamble Physical Burst FormatPDU Train

Long PDUs (LCH)

Short PDUs (SCH)

Figure 2-5. HIPERLAN/2 MAC frame, Long PDU and Physical Burst format

An important issue is that the transmission duration (TXTIME) for a 
PPDU frame in IEEE 802.11a is not fixed but a function of LENGTH field 
as shown in the following equation:  

)1()/)6816(( DBPSSYMSIGNALPREAMBLE NDLENGTHCeiling((TSTSTPTXTIME +×+×++=

where NDBPS  is the number of data bits per symbol and can be derived from
the DATARATE parameter. From an implementation point of view this fact 
imposes a strict timing requirement to the MAC/PHY interface for the
decoding of the SIGNAL symbol in order to determine the number of 
OFDM symbols to be exchanged.
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Figure 2-6.  IEEE 802.11a PPDU frame format 
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The major differences between IEEE 802.11a and HIPERLAN/2 systems
occur in the MAC sublayer. In HIPERLAN/2 the medium access is based on
a TDD/TDMA approach. The control is centralized to an AP, which informs
the MTs at which point in time in the MAC frame they are allowed to
transmit their data. IEEE 802.11a uses a distributed MAC protocol based on
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). 

2.2 WLAN Reconfiguration scenarios 

Some reconfiguration scenarios for the MAC and baseband parts of the 
HIPERLAN/2 and IEEE 802.11a WLAN systems are described in this 
section. HIPERLAN/2 and IEEE 802.11a baseband processing algorithms
are quite simple as far as control flow is concerned and their functionality 
does not depend in principle on the physical layer mode that is used in 
transmission or reception. The baseband processing computational 
complexity depends very much on the used physical layer mode in the
transmission or reception.

ISP
Reconfigurable

Hardware

Distributed

Shared

Memory

Interconnect Network I/O

Algorithm

Architecture

Complex

Task 1

Complex

Task N

Figure 2-7. Realization on a highly flexible platform

The most computationally complex tasks are the Viterbi decoding and 
the FFT on the receiver side and the IFFT in the transmitter side. Assuming
a highly flexible implementation using instruction set processors (ISP) and 
reconfigurable hardware (alongside interconnect, memory, I/Os etc.) these 
tasks should be assigned to reconfigurable hardware (for increased speed and 
reduced power). This scenario is illustrated in Figure 2-7. However almost 
no flexibility is required for these tasks on a stand-alone basis (no different 
candidate implementation choices exist). If ASIC blocks were included in 
the target implementation platform these tasks should be preferably moved 
to them.
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Reconfigurable hardware resources can be shared among baseband 
processing tasks that are not active simultaneously. This may lead to silicon
area optimization (taking into consideration reconfiguration related 
overheads). This scenario is described in Figure 2-8. For example under a 
half duplexing scenario the transmitter and the receiver will not be active 
simultaneously. In this case, tasks of the transmitter and the receiver may 
share the same reconfigurable hardware resources. 
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Figure 2-8. Reconfigurable hardware sharing among tasks with non-overlapping lifetimes
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Figure 2-9. Realization of different algorithmic instances of the same task on reconfigurable
hardware

Certain tasks in the receiver chain of the baseband processing allow
different algorithmic implementations with different trade-offs between 
algorithmic performance and computational complexity (e.g. channel
estimation). Lower algorithmic performance requirements (e.g. SNR, BER)
may allow the use of less sophisticated and computational complex
algorithmic instances leading to improved implementation efficiency (speed,
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power). Furthermore realization of different algorithmic instances for the
same task in a given system may be beneficial e.g. allowing adaptation to 
different operating conditions. Such tasks are good candidates for
implementation on reconfigurable hardware (with their different instances 
sharing the same reconfigurable hardware resources) if their complexity is
high (preventing efficient realization on instruction set processors). This 
scenario is described in Figure 2-9. 
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Figure 2-10. Post shipment modification scenario
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Figure 2-11. Multi-standard realization scenario

Another opportunity for reconfigurable hardware exploitation is towards 
post-shipment modification/enhancement of the system’s functionality (e.g. 
with more sophisticated realizations of certain tasks). Baseband processing 
tasks that are candidates for being upgraded are those that are left open by 
the standard. This scenario is described in Figure 2-10.

More opportunities for reconfiguration and reconfigurable hardware 
sharing exist in the case of realization of multiple standards on the same 
reconfigurable implementation platform. This scenario is described in  
Figure 2-11. Let assume a HIPERLAN/2 – IEEE 802.11a dual standard 
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realization with the two systems not being active simultaneously. Given that 
the major differences between the two standards are in the MAC layers 
reconfigurable hardware can be used for the realization of the most complex 
and performance demanding parts of the MAC layers (and the MAC to
baseband interfaces) of the two systems.

3. RECONFIGURATION SCENARIOS AT THE 

APPLICATION LAYER 

As portable devices become more powerful, it also becomes possible to
run more computationally intensive services on these appliances. Due to the 
increasing flexibility requirements that are imposed by these applications,
the devices need to be highly adaptable to the running applications. At the
other hand, efficient realizations of these applications are required, 
especially in the resources they use during deployment, where power 
consumption must be traded against perceived quality of the application. To
be able to realize a variety of applications or services, the implementation
platform needs to be highly adaptable. 

Assume a wireless communication terminal as is shown in Figure 2-12,
which consists out of instruction set processors (ISP) and reconfigurable
hardware that are connected to a common interconnect network and to
memory. This device is powerful enough to support various applications, 
including video. Because of the high computational demand of such a video
application, it will be run on the reconfigurable hardware (see Figure 2-12) 
as that part can be configured for optimal performance for a given 
application.

When the user decides to view the video in a small window and to start 
up a 3D game, the situation changes. Then the video application can be run 
with much less resources, while the game becomes the most computationally
intensive application. This means that this 3D game will need to be run on
the reconfigurable hardware. To enable that, the video application is moved
to run further in software on an instruction set processor (ISP). The hardware 
is then reconfigured for the 3D game and that application is started  
(see Figure 2-13).

By moving the video application to software and running it in a smaller
window also implies that a lower data rate can be used on the wireless 
terminal interconnect. This means that the wireless appliance should send 
back to the server that a lower resolution (and thus a lower bit-rate) is
allowed for the video application. The application quality as perceived by
the user is still satisfying.
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Figure 2-12. A video application is running on the reconfigurable hardware 

Figure 2-13. A 3D application  is  running on the reconfigurable hardware, while the video 
application continues in a reduced window and on a software processor

From the application scenario above, it is clear that it must be possible to 
run many different applications on the reconfigurable hardware. This means
that general reconfigurable hardware is needed, in contrast to incorporating
dedicated hardware blocks, like FFT processor, FIR filter etc. Also we notice 
that applications are very different in nature, as already described in the case 
of video streaming and interactive 3D applications. A selection of the 
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reconfiguration characteristics is also based on general characteristics of the
multi-media applications and on the usage scenario above. 

Requirements on reconfiguration time are modest: because
reconfiguration is user-initiated, fast reconfiguration times (< 1 msec) are
not needed. When e.g. switching a video application from hardware to
software, it is not important that a numbers of frames are not decoded. As
soon as the application is running in software, it decodes the next incoming 
frame.

Requirements on the reconfiguration granularity are complicated by the
unknown nature of the application, the granularity should be fine enough so 
that for each application an optimal implementation in reconfigurable
hardware is possible. However due to power requirements, word level coarse
grain reconfiguration is more appropriate than bit-level reconfiguration. This 
is especially the case when the word-lengths are matched to the application 
at hand.

Table 2-4. Operational power requirements for MPEG2 video decoding
MPEG-2 MP@ML Decoder

Function MOPS Input Output

Bitstream parsing and VLD 12 4 40
Dequantization and IDCT 105 40 70 
Motion Compensation 273 70 70
YUV to RGB color conversion 299 70 35 
Total 689 184 215

Table 2-5. Operational power requirements for a 3D application 
Quality CPU time #triangles #pixels Architecture 

31 dB 40 ms 5000 5 % SW 
31 dB 2   ms 5000 5 % HW
25 dB 70 ms 5000 19% SW 
30 dB 80  ms 8000 19% SW 
43 dB 118 ms 17500 19 % SW
43 dB 21  ms 17500 19 % HW

To summarize the requirements on applications, it is not only emphasized 
that different applications must be able to run on the wireless LAN platform,
but also that they can have huge computational demands for which dedicated
or reconfigurable hardware is needed. To have an indication of the required
operational power, we refer to literature [4, 5] the results of which are
summarized in Table 2-4 for MPEG2 and in Table 2-5 for a 3D application. 
In the latter application the CPU time, and thus the frame rate, is closely 
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related to the required quality (application QoS) but also depends on the 
architecture, be it a hardware or a software realization. 
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Abstract:  A large number of reconfigurable hardware technologies have been proposed 
both in academia and commercially (some of them in their first market steps).
They can be roughly classified in three major categories: a) Field 
Programmable Gate Arrays (FPGAs), b) integrated circuit devices with 
embedded reconfigurable resources and c) embedded reconfigurable cores for
Systems-on-Chip (SoCs). In this chapter representative commercial 
technologies are discussed and their main features are presented1.   

Key words: Field Programmable Gate Arrays (FPGAs), embedded reconfigurable cores, 
fine grain reconfigurable architecture, coarse grain reconfigurable architecture 

1. FIELD PROGRAMMABLE GATE ARRAYS 

(FPGAS)

Field programmable gate arrays currently represent the most popular and 
mature segment of reconfigurable hardware technologies. Technology 
advances keep increasing the gates counts and memory densities of FPGAs
while they also allow the integration of functions ranging from hardwired
multipliers through high speed transceivers and all the way up to (hard or 
soft) CPU cores with associated peripherals. These advances make possible
the realization of complete systems on a single FPGA chip improving end-
system size, power consumption, performance, reliability and cost. Equally

1 The information included in this chapter is up-to-date until November 2004. 
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important FPGAs can be reconfigured in seconds either statically or
dynamically/partially. Reconfiguration can take place in the workstation, in 
the assembly line or even at the end user premises. These capabilities 
provide flexibility:

• to react to last minute design changes 
• to prototype ideas before implementation
• to meet time-to-market deadlines
• to correct errors and upgrade functions once the end system is in users’ 

hands
• or even to implement reconfigurable computing i.e. using a fixed 

number of logic gates to time-division-multiplex multiple functions.  

Mapping of applications on FPGAs has been based on VHDL and 
Verilog languages for input descriptions. C based approaches are also
currently under consideration. The integration of CPUs on FPGAs 
introduced design flows and tools supporting hardware/software codesign
and software development.   

There are a number of companies building FPGAs including Actel,
Altera, Atmel, Lattice Semiconductor, Quicklogic and Xilinx; Xilinx and 
Altera currently being the market leaders. In order to differentiate, FPGA 
vendors have introduced devices to address different intersections of
performance, power, integration and cost targets. Some representative FPGA
devices are briefly discussed in the following subsections.

1.1 ALTERA Stratix II

Altera claims that Stratix II devices [11] are industry’s fastest and highest
density FPGAs. Stratix II devices extend the possibilities of FPGA design,
allowing designers to meet the high-performance requirements of today’s
advanced systems and avoid developing with costly ASICs.

1.1.1 Architecture

The Stratix II architecture has been designed to primarily optimize
performance but also logic density in a given silicon area. Its logic structure
is constructed with Altera’s new adaptive logic modules (ALMs). The
Stratix II architecture reduces significantly the logic resources required to 
implement any given function and the number of logic levels in a given 
critical path. The architecture accomplishes this by permitting inputs to be

    Because of all these advantages, FPGAs have been making significant 
inroads into ASIC territory. It is a matter of the per-gate cost decreases 
and the gates per device increases to decide whether FPGAs can replace
ASICs.
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shared by adjacent look-up tables in the same ALM. Multiple, independent 
functions can also be packed into a single ALM, further reducing
interconnect delays and logic resource requirements. The structure of a
Stratix II ALM is shown in Figure 3-1. 

Stratix II FPGAs utilize the TriMatrix memory structure. TriMatrix 
memory includes the 512-bit M512 blocks, the 4-Kbit M4K blocks, and the
512-Kbit M-RAM blocks, each of which can be configured to support a 
wide range of features. Each embedded RAM block in the TriMatrix
memory structure targets a different class of applications: the M512 blocks 
can be used for small functions such as first-in first-out (FIFO) applications, 
the M4K blocks can be used to store incoming data from multi-channel I/O 
protocols, and the M-RAM blocks can be used for storage-intensive
applications such as Internet protocol packet buffering or program/ data
memory for an on-chip Nios embedded processor. All memory blocks 
include extra parity bits for error control, embedded shift register
functionality, mixed-width mode, and mixed-clock mode support. 
Additionally, the M4K and M-RAM blocks support true dual-port mode and 
byte masking for advanced write operations.

Figure 3-1.  Stratix II adaptive logic module structure 

Stratix II DSP blocks are optimized to implement processing intensive
functions such as filtering, transforms, and modulation. Capable of running 
at 370 MHz, Stratix II DSP blocks provide maximum DSP throughput (up to
284 GMACs) that is orders of magnitude higher than leading-edge digital 
signal processors available today. Each DSP block can support a variety of 
multiplier bit sizes (9x9, 18x18, 36x36) and operation modes (multiplication,
complex multiplication, multiply-accumulate and multiplyadd) and can 
generate DSP throughput of 3.0 GMACS per DSP block. In addition, 
rounding and saturation support has been added to the DSP block. 
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Stratix II FPGAs support many high-speed I/O standards and high-speed 
interfaces such as 10 Gigabit Ethernet (XSBI), SFI-4, SPI 4.2, 
HyperTransport™, RapidIO™, and UTOPIA Level 4 interfaces at up to 1 
Gbps. These allow interfacing with anything from backplanes, host 
processors, buses and memory devices to 3D graphics controllers. 

Stratix II devices support internal clock frequency rates of up to 500
MHz and typical design performance at over 250 MHz. Logic densities of 
Stratix II devices range from 15,600 to 179,400 equivalent logic elements. 
Total memory densities can be up to 9 Mbits of RAM, which can be clocked 
at a 370 MHz maximum clock speed. Stratix II FPGAs may include up to 12 
PLLs and up to 48 system clocks per device. 

1.1.2 Granularity

Stratix II architecture is a fine grain architecture with embedded 
hardwired word level modules.

1.1.3 Technology

Stratix II FPGAs are manufactured on 300-mm wafers using TSMC’s 90-
nm, 1.2-V, all-layer copper SRAM, low-k dielectric process technology.  

1.1.4 Reconfiguration

Stratix II devices are configured at system power-up with data stored in 
an Altera configuration device or provided by an external controller. The
Stratix II device's optimized interface allows microprocessors to configure it 
serially or in parallel, and synchronously or asynchronously. The interface 
also enables microprocessors to treat Stratix II devices as memory and 
configure them by writing to a virtual memory location, making 
reconfiguration easy. Remote system upgrades can be transmitted through 
any communications network to Stratix II devices. 

1.1.5 Other issues 

• Nios embedded processors allow designers to integrate embedded 
processors on Stratix II devices for complete system-on-a-
programmable-chip (SOPC) designs. The Nios soft embedded 
processor has been optimized for the advanced architectural features 
of the Stratix II device family. 
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• Stratix II family enables design security through non-volatile, 128-bit 
AES design encryption technology for preventing intellectual property 
theft.

• A seamless, cost-reduction migration path to low-cost HardCopy
structured ASICs exists for Stratix II devices.

1.1.6 Design flow

Design flow for Stratix II FPGAs is based on the Quartus II software for
high-density FPGAs, which provides a comprehensive suite of synthesis,
optimization, and verification tools in a single, unified design environment.
Quartus II includes integrated development environment for Nios II
embedded processors. Using the SOPC Builder design tool in the Quartus II 
software, designers select from the wide array of IP components, including
memory, interface, control, and user-created functions, customize them for
the particular application, and connect them  automatically generating
hardware, software, and simulation models for the custom implementation.

1.1.7 Application area

STRATIX II FPGAs are very flexible allowing realization of different 
applications. Due to their high memory density Stratix II devices are an ideal 
choice for memory intensive applications. Using DSP blocks, Stratix II 
FPGAs can easily meet the DSP throughput requirements of emerging
standards and protocols such as JPEG2000, MPEG-4, 802.11x, code-
division multiple access 2000 (CDMA2000), HSDP and W-CDMA.

1.2 ALTERA Cyclone II  

Cyclone II FPGAs [3] have been designed from the ground up for the
lowest cost. The Cyclone II FPGA family offers a customer-defined feature
set, high performance and low power consumption combined with high 
density. Altera claims that Cyclone II FPGAs offer the lowest cost per logic
element among all commercially available devices and thus can support 
complex digital systems on a single chip at a cost that rivals that of ASICs. 

1.2.1 Architecture

Cyclone II devices contain a two-dimensional row- and column-based 
architecture to implement custom logic. Column and row interconnects of 
varying speeds provide signal interconnects between logic array blocks
(LABs), embedded memory blocks and embedded multipliers. The logic 
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array consists of LABs, with 16 logic elements (LEs) in each LAB. A logic 
element (LE) is a small unit of logic providing efficient implementation of 
user logic functions. LABs are grouped into rows and columns across the 
device.

The smallest unit of logic in the Cyclone II architecture, the LE, is
compact and provides advanced features with efficient logic utilization. Each
LE features:

• A four-input look-up table (LUT), which is a function generator that 
can implement any function of four variables,  

• a programmable register,
• a carry chain connection,  
• a register chain connection
• and ability to drive all types of interconnects.  

Each LE operates either in normal or in arithmetic mode (each one using LE
resources differently). The architecture of LE is shown in Figure 3-2.

Figure 3-2. Cyclone II logic element structure

The Cyclone II embedded memory consists of columns of M4K memory
blocks. The M4K memory blocks include input registers that synchronize
writes and output registers to pipeline designs and improve system 
performance. Each M4K block can implement various types of memory with
or without parity, including true dual-port, simple dual-port, and single-port 
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RAM, ROM, and first-in first-out (FIFO) buffers. Each M4K block has a 
size of 4,608 RAM bits. 

Cyclone II devices have up to 150 embedded multiplier blocks optimized 
for multiplier-intensive digital signal processing (DSP) functions. Designers
can use the embedded multiplier either as one 18-bit multiplier or as two
independent 9-bit multipliers. Embedded multipliers can operate at up to 250
MHz (for the fastest speed grade) for 18 × 18 and 9 × 9 multiplications when 
using both input and output registers. Each Cyclone II device has one to 
three columns of embedded multipliers that efficiently implement 
multiplication functions. 

Cyclone II devices support differential and single-ended I/O standards, 
including LVDS at data rates up to 805 megabits per second (Mbps) for the 
receiver and 622 Mbps for the transmitter, and 64-bit, 66-MHz PCI and PCI-
X for interfacing with processors and ASSP and ASIC devices.  

Cyclone II devices range in density from 4,608 to 68,416 LEs. Cyclone II
devices offer between 119 to 1,152 Kbits of embedded memory with a
maximum clock speed of 250 MHz. Cyclone II devices provide a global
clock network and up to four phaselocked loops (PLLs). The global clock
network consists of up to 16 global clock lines that drive throughout the
entire device.

1.2.2 Granularity

Cyclone II architecture is a fine grain architecture with embedded 
hardwired word level modules.

1.2.3 Technology

Cyclone II devices are manufactured on 300-mm wafers using TSMC’s 
90-nm, 1.2-V, all-layer copper SRAM, low-k dielectric process technology,
the same proven process used with Altera’s Stratix II devices.  

1.2.4 Reconfiguration

Cyclone II FPGAs are statically reconfigurable. Cyclone II devices are 
configured at system power-up with data stored in an Altera configuration
device or provided by a system controller. Serial configuration allows 
configuration times of 100 ms. After a Cyclone II device has been
configured, it can be reconfigured in-circuit by resetting the device and 
loading new configuration data.
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1.2.5 Other issues

The Cyclone II FPGA family is fully supported by Altera’s recently
introduced Nios II family of soft processors. A Nios II design in a Cyclone II
FPGA offers more than 100 DMIPs performance. With a Nios II processor, a 
designer can build a complete system on a programmable chip (SOPC) on 
any Cyclone II device, providing new alternatives to low- and mid-density
ASICs.

1.2.6 Design flow

All Cyclone II devices are supported by the no-cost Quartus II Web
Edition software. Quartus II software provides a comprehensive suite of 
synthesis, optimization and verification tools in a single, unified design
environment. Designers can select from a large portfolio of intellectual 
property (IP) cores and download Altera's unique OpenCore Plus version of 
the chosen core(s). The Quartus II software is used to integrate and evaluate
the cores in Cyclone II devices. Quartus II includes integrated development 
environment for Nios II embedded processors. 

1.2.7 Application area 

Cyclone II FPGAs are ideal for cost sensitive applications.  

1.3 Xilinx Virtex 4 

The Virtex-4 family [12] is the newest generation FPGA from Xilinx. 
Virtex-4 FPGAs include three families (platforms): LX, FX and SX. Choice 
and feature combinations are offered for all complex applications. The basic 
Virtex-4 building blocks are an enhancement of those found in the popular 
Virtex devices allowing upward compatibility of existing designs.
Combining a wide variety of flexible features, the Virtex-4 family enhances
programmable logic design capabilities and is a powerful alternative to 
ASIC technology.

1.3.1 Architecture 

The configurable logic block (CLB) resource of Xilinx Virtex 4 is made
up of four slices. Each slice is equivalent and contains: two function
generators, two storage elements, arithmetic logic gates, large multiplexers, 
fast carry look-ahead chain and horizontal cascade chain. The function
generators are configurable as 4-input look-up tables (LUTs). Two slices in a
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CLB can have their LUTs configured as 16-bit shift registers, or as 16-bit 
distributed RAM. In addition, the two storage elements are either edge-
triggered D-type flip-flops or level sensitive latches. Each CLB has internal
fast interconnect and connects to a switch matrix to access general routing
resources.

The general routing matrix (GRM) provides an array of routing switches
between each component. Each programmable element is tied to a switch 
matrix, allowing multiple connections to the general routing matrix. The 
overall programmable interconnection is hierarchical and designed to 
support high-speed designs. All programmable elements, including the 
routing resources, are controlled by values stored in static memory cells.
These values are loaded in the memory cells during configuration and can be
reloaded to change the functions of the programmable elements.

The block RAM resources are 18 Kbit true dual-port RAM blocks,
programmable from 16Kx1 to 512x36, in various depth and width
configurations. Each port is totally synchronous and independent, offering 
three "read-during-write" modes. Block RAM is cascadable to implement
large embedded storage blocks. Additionally, back-end pipeline registers,
clock control circuitry, built-in FIFO support and byte write enable are new
features supported in the Virtex-4 FPGA.

The Xtreme DSP slices contain a dedicated 18x18-bit 2’s complement 
signed multiplier, adder logic and a 48-bit accumulator. Each multiplier or
accumulator can be used independently. These blocks are designed to
implement extremely efficient and high-speed DSP applications. 

Most popular and leading-edge I/O standards (both single ended and 
differential) are supported by programmable I/O blocks (IOBs).  In larger
devices 10-bit, 200 kSPS analog-to-digital converter is included in the built-
in system monitor block.

Additionally, FX devices support integrated hardwired high-speed serial 
transceivers that enable data rates up to 11.1 Gb/s per channel and 
10/100/1000 Ethernet media-access control (EMAC) cores.

Virtex 4 FX devices support one or two hardwired IBM PowerPC 405 
RISC CPUs (up to 450 MHz) with the auxiliary processor unit interface, 
which allows optimized FPGA based coprocessor connection. PowerPC 405
CPU is based on a 32-bit Harvard architecture with a five-stage execution
pipeline supporting a CoreConnect bus architecture. Instruction and data L1 
caches of 16 KB each are integrated.   

Virtex 4 devices achieve clock rates of 500 MHz. Virtex 4 devices have
logic densities of up to 200000 logic cells. Memory densities of up to 9935 
kbits for block RAM and up to 1392 kbits distributed RAM are supported.
DSP slices of up to 512 may be included leading to a 256 GMACs DSP
performance. 
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1.3.2 Granularity

Virtex 4 architecture is a fine grain architecture with embedded 
hardwired word level modules and complete PowerPC CPUs. 

1.3.3 Technology

Virtex-4 devices are produced on a state-of-the-art 90 nm triple oxide
(for low power consumption) copper process, using 300 mm (12 inch) wafer
technology. The core voltage of the devices is 1.2 V.

1.3.4 Reconfiguration

Virtex 4 FPGAs are dynamically (partially) reconfigurable devices.

1.3.5 Other issues 

Optional 256-bit AES decryption is supported on-chip (with software 
bitstream encryption) providing Intellectual Property security. 

1.3.6 Design flow 

Xilinx ISE development system is used to map applications on the logic
part of Virtex 4 devices. Advanced verification and real-time debugging is 
offered by ChipScope Pro tools. More than 200 pre-verified IP cores are 
available for Virtex 4 devices. The EDK PowerPC development kit is used 
for the realization of functionality on PowerPC CPUs. 

1.3.7 Application area

Virtex-4 LX FPGAs are suitable for high-performance logic applications. 
Virtex-4 FX devices are well suited for high-performance, full-featured 
solution for embedded platform applications. Virtex-4 SX devices are a good 
solution for high-performance Digital Signal Processing (DSP) applications. 

1.4 Xilinx Spartan-3 

The Spartan-3 family of Field-Programmable Gate Arrays [10] is 
specifically designed to meet the needs of high volume, cost-sensitive
consumer electronic applications. The Spartan-3 family builds on the success 
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of the earlier Spartan-IIE family by increasing the amount of resources, the 
use of the state-of-the-art Virtex-II technology and the advanced process
technology.

1.4.1 Architecture

Each Configurable Logic Block (CLB) comprises four interconnected 
slices, as shown in Figure 3-3. These slices are grouped in pairs. Each pair is
organized as a column with an independent carry chain. All four slices have
the following elements in common: two logic function generators, two 
storage elements, wide-function multiplexers, carry logic, and arithmetic 
gates. Both the left-hand and right-hand slice pairs use these elements to
provide logic, arithmetic, and ROM functions. Besides these, the left-hand 
pair supports two additional functions: storing data using Distributed RAM
and shifting data with 16-bit registers. The RAM-based function generator
(Look-Up Table) is the main resource for implementing logic functions.

Figure 3-3. Spartan-3 CLB structure 

Spartan-3 devices support block RAM, which is organized as 
configurable, synchronous 18Kbit blocks. Block RAM stores efficiently
relatively large amounts of data. The aspect ratio  i.e., width vs. depth of 
each block RAM is configurable. Furthermore, multiple blocks can be
cascaded to create still wider and/or deeper memories. The blocks of RAM 
are equally distributed in 1 to 4 columns.
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There are four kinds of interconnect: Long lines, Hex lines, Double lines, 
and Direct lines. Long lines connect to one out of every six CLBs; hex lines
connect one out of every three CLBs; double lines connect to every other
CLB. Direct lines afford any CLB direct access to neighboring CLBs.

Spartan-3 devices provide embedded multipliers that accept two 18-bit
words as inputs to produce a 36-bit product. The input buses to the multiplier
accept data in two’s-complement form (either 18-bit signed or 17-bit 
unsigned). One such multiplier is matched to each block RAM on the die. 
The close physical proximity of the two ensures efficient data handling.
Cascading multipliers permits multiplicands more than three in number as
well as wider than 18-bits. Two multiplier versions are possible: one 
asynchronous and one with registered output.  

Spartan-3 devices have logic densities of up to 74880 logic cells
(corresponding to 5 million system gates). A system clock rate of up to 326 
MHz is supported. Memory densities range from 72 to 1872 kbits of block 
RAM and 12 to 520 kbits of distributed RAM. The number of hardwired
multipliers can be up to 104. Spartan devices include up to 784 I/O pins with
622 Mb/s data transfer rate per I/O. Seventeen single-ended signal standards 
and seven differential signal standards including LVDS are supported.

1.4.2 Granularity

Spartan-3 architecture is a fine grain architecture with embedded 
hardwired word level modules.

1.4.3 Technology

Spartan-3 FPGAs are manufactured on a 90 nm process technology.
Three power rails are included in the devices: for core (1.2V), I/Os (1.2V to 
3.3V) and auxiliary purposes (2.5V). 

1.4.4 Reconfiguration

Spartan-3 FPGAs are dynamically (partially) reconfigurable devices. 

1.4.5 Other issues

Spartan-3 devices allow integration of MicroBlaze soft processor, PCI,
and other cores.
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1.4.6 Design flow

Implementation of applications on Spartan-3 devices is fully supported 
by Xilinx ISE development system, which includes tools for synthesis,
mapping, placement and routing. The EDK Microblaze development kit is
used for the realization of functionality on Microblaze cores.

1.4.7 Application area

Because of their low cost, Spartan-3 FPGAs are ideally suited to a wide 
range of consumer electronics applications, including broadband access,
home networking, display/projection and digital television equipment.

2. INTEGRATED CIRCUIT DEVICES WITH 

EMBEDDED RECONFIGURABLE RESOURCES 

Integrated circuits with embedded reconfigurable resources represent an
alternative to FPGA ICs. These architectures are in principle based on a 
combination of a programmable CPU and a reconfigurable array of word 
level (coarse grain) data path units. Such devices mainly target DSP 
applications and are competitors of conventional DSP instruction set 
processors as well. The technology is less mature than FPGAs, however it 
promises important advantages over FPGAs such as power and silicon area
efficiency. The major issue is the efficient compilation on the coarse grain 
reconfigurable resources.

2.1 ATMEL Field Programmable System Level 

Integrated Circuits (FPSLICs) 

The Atmel’s AT94 Series of Field Programmable System-Level
Integrated Circuits (FPSLICs) [2] are combinations of the Atmel AT40K 
SRAM FPGAs and the Atmel AVR 8-bit RISC microcontroller with
standard peripherals.

2.1.1 Architecture

The architecture of AT94K family is shown in Figure 3-4. The embedded
AVR core is based on an enhanced, C code optimized, RISC architecture 
that combines a rich instruction set (more than 120 instructions) with 32
general-purpose working registers. All 32 registers are directly connected to 
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the ALU, allowing two independent registers to be accessed in one single 
instruction executed in one cycle. AVR includes the full complement of 
peripherals such as SPI, UART, timer/counters and a hardware multiplier.

SRAM delivers one-cycle operation at up to 40 MHz, which translates 
into about 30 MIPS for the AVRs pipeline RISC design. For flexibility, the 
36 KB of dynamically allocated AVR SRAM can be partitioned between
x16 program store and x8 data RAM. For example, one setup might dedicate 
20 and 16 KB for program and data respectively, another 32 and 4 KB.

Figure 3-4. Atmel FPSLIC AT94K Architecture

The AVR core and FPGA connection is based on a simple approach that 
treats the FPGA much like another onboard 8-bit peripheral. There is an 
address decoder for generating up to 16 pseudochip selects into the FPGA 
and, going the other way, 16 interrupt lines that are fed from the FPGA into 
the AVR. The MCU has access to the FPGA’s eight global clocks and can
drive two of them relying on its own combination of internal and external 
oscillators, clock dividers, timer/counters and so on.  

The FPGA core is based on a high-performance DSP optimized cell.
FPSLIC devices include 5,000 to 40,000 gates of SRAM-based AT40K 
FPGA and 2 - 18.4 Kbits of distributed single/dual port FPGA user SRAM.
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2.1.2 Granularity

The architecture of AT94 devices represents fine-grained architecture as 
far as programmable logic is concerned.

2.1.3 Technology

FPSLIC devices are fabricated on high-performance, low-power, 3.0V
3.6V, 0.35µ CMOS five-layer metal process.  

2.1.4 Reconfiguration

The AT40K SRAM FPGA family is capable of implementing Cache
Logic (Dynamic full/partial logic reconfiguration, without loss of data, on-
the-fly) for building adaptive logic and systems. As new logic functions are
required, they can be loaded into the logic cache without losing the data 
already there or disrupting the operation of the rest of the chip, replacing or
complementing the active logic.

Figure 3-5.  System Designer design flow

2.1.5 Design flow

Atmel provides System Designer tool suite (see Figure 3-5) that 
coordinates microcontroller and FPGA development with source-level debug

–
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and full hardware visibility. For implementation, the package includes place-
and-route, floor planning, macro generators and bitstream utilities. 

2.1.6 Application area 

Atmel's AT94K series FPSLIC device provides the logic, processing, 
control, memory and I/O functions required for low-power, high-
performance applications including among others: PDA and cell phone after-
market products, GPS, portable test equipment, point-of-sale and security or
wireless Internet appliances. 

2.2 QuickSilver ADAPT2000 Adaptive Computing 

Machine System IC Platform 

QuickSilver Technology Adapt2000 system platform [1], based on
adaptive computing technology, attempts to integrate the silicon capability
of ASIC, DSP, FPGA and microprocessor technologies within a single IC, 
an Adaptive Computing Machine (ACM). Adapt2000 platform aims at 
achieving custom-silicon capability designed in software – in weeks or
months instead of years – with faster time to market, reduced development 
costs and the ability for designers to focus on innovating and developing IP. 
The Adapt2000 ACM system platform comprises the Adapt2400 ACM
architecture, the InSpire Node Control Kernel and the InSpire SDK tool set.

2.2.1 Architecture

Adapt2400 architecture consists of two major types of components: 
Nodes and Matrix Interconnect Network (MIN). A generic view of 
Adapt2400 architecture is shown in Figure 3-6.

Nodes are the computing resources in the ACM architecture that perform
the processing tasks. Nodes are heterogeneous by design, each being
optimized for a given class of problems. Each node is self-contained with its 
own controller, memory, and computational resources. As such, a node is
capable of independently executing algorithms that are downloaded in the 
form of binary files. Nodes are constructed of three basic components: The
Node Wrapper, Nodal Memory and the Algorithmic Engine.  The Node 
Wrapper has two major functions: a) to provide a common interface to the 
MIN for the heterogeneous Algorithmic Engines and b) to make available a 
common set of services associated with inter-node communication and task
management. Each node is nominally equipped with 16 kilobytes of nodal 
memory organized as four 1k x 32 bit blocks. When building an ACM, 
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memories can be adjusted in size, larger or smaller, to optimize cost or
increase the flexibility of a specific node. Each heterogeneous node type is
distinguished by its Algorithmic Engine. The computational resources of 
each node type are closely matched and optimized to satisfy a finite range of 
algorithms. 

Figure 3-6.  Generic view of Adapt2400 architecture 

There are three classes of nodes in adaptive computing: 
• Adaptive nodes support the heavy algorithmic elements that require

complex control. They have a high degree of programmability and
computational unit adaptability.  

• Domain nodes are designed for the really complex pieces of the 
algorithms. Domain Nodes perform at speeds comparable to pure 
ASIC designs. Their control mechanisms are finite state machines. 

• Programmable nodes are designed to support large code bases that 
do not demand much processing power. Designers are also able to 
build their own fully customized Algorithmic Engines and memory
structures, and place them inside the Node Wrapper.

The Matrix Interconnect Network (MIN) ties the heterogeneous nodes 
together, and carries data, configuration binary files, and control information
between ACM nodes, as well as between nodes and the outside world. This
network is hierarchical in structure, providing high bandwidth between 
adjacent nodes for close coupling of related algorithms, while facilitating
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easy scaling of the ACM at low silicon overhead. Each connection between 
blocks within the MIN structure simultaneously supports 32 bits of data
payload in each direction. Data within the MIN is transported in single 32-
bit word packets, with addressing carried separately. Each 32-bit transfer
within the MIN can be routed to any other node or external interface, with 
the MIN bandwidth fully shared between all the nodes in the system.

An Adapt2400 ACM has a built-in System Controller connected to the
MIN Root. The System Controller is responsible for the management of 
tasks within an ACM. In this role, the System Controller sets up the
individual Node Hardware Task Managers (HTMs), and once set up, the 
HTMs are given control of the tasks on the node without the need for
intervention by the System Controller to perform a task swap. 

2.2.2 Granularity

Adapt2400 architecture is a (task level) coarse grain architecture. 

2.2.3 Technology

ADAPT2000 platform instances have been realized on 0.13 µm
technologies.

2.2.4 Reconfiguration

Adapt2400 ACM architecture dynamically reconfigures during operation. 
ACM nodes are configured/programmed using a binary file (SilverWare), 
which is much smaller than that of a typical FPGA configuration file, and is 
comparable to the program size of a DSP or RISC processor. The smaller 
binary file size, combined with hardware specifically designed to adapt on 
the fly, allows the function of a node to change in as little as a few clock 
cycles.

2.2.5 Design flow 

The Inspire SDK Tool Set by QuickSilver is a complete development 
system for the Adapt2400 ACM Architecture that provides a unified design
environment that enables realization of an ACM within a single IC. The 
Inspire SDK comprises the SilverC development language (ANSI-C 
derivative), module linker, assembler for each node type and the InSpire 
Simulation Platform, including the ACM Verification SwitchBoard. The 
latter, provides multi-mode verification of ACM designs using any
combination of the C Virtual Node (CVN), Inspire Simulation Platform,
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InSpire Emulator, and an actual ACM device. The Inspire SDK is
completely software-based and supports all phases of development, from 
high-level system simulation to compiled binaries running on an emulator or
target IC. Its Adapt2400 SilverStream Design Flow enables developers to
freely express system functionality without the need to consider hardware 
partitioning, task threading, or memory allocation. The InSpire SDK also
enables engineers to create custom Adapt2400 architecture cores in 
simulation and assemble new nodal combinations for exploring a wide 
variety of ACM hardware configurations.

Figure 3-7. ACM design flow 

The development flow for the Adapt2400 ACM Architecture is based on
the use of a dataflow model of the system under development. In this
methodology the system is represented in a series of top-down dataflow 
models that use successive refinement techniques to build up to a final
hardware implementation. The ACM SilverStream Design Flow supports the
task-based “execute when ready” asynchronous nature of the Adapt2400
ACM Architecture without requiring expert hardware knowledge on the part 
of the developer. The design flow consists of up to six steps as shown in 
Figure 3-7: 
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• The first step consists of: (a) modeling the dataflow of the system
under development by using SilverC to define tasks, and pipes
between the tasks, (b) assigning a cycle budget to each task and  
(c) simulating the data throughput of the system.  

• The second step is to define the function of each task using ANSI-C,
and then verifying the behavioral integrity of the system using C
Virtual Nodes (CVN).

• The third step is node type and node instance assignment.  
• The fourth step is hardware optimization with node verification using

the node-type compilers or assemblers, and the appropriate node 
simulators. Step four provides an I/O accurate model of the system
operation. Each node can be simulated using the ACM Verification
SwitchBoard. This module in the InSpire Simulation Platform allows 
developers to model the hardware system as CVNs on the InSpire 
Adapt2400 Platform Emulator, InSpire Development Board, or a
target device. Any of these models can be used in combination or
individually at any time. 

• The fifth step is run-time optimization, which consists of assignment of 
multiple tasks to nodes. The InSpire Simulation Platform and 
Performance Analyzer are used to determine which tasks can be
assigned to the same node without affecting system operation. In this 
step, performance and hardware- size trade-offs can easily be made 
and analyzed to provide the best fit for system requirements.  

• The sixth step is final system simulation and verification using the
InSpire Simulation Platform to ensure overall system compliance
with design specifications. The final system models contain SystemC
APIs for inclusion into ESL modeling environments. 

2.2.6 Application area

QuickSilver claims that ACM-enabled devices provide high
performance, small silicon area, low power consumption, low cost and 
architecture flexibility and scalability – the ideal attributes for handheld, 
mobile and wireless products that span multiple generations. They 
particularly target signal and image processing applications. 

2.3 IPflex DAPDNA-2 processor 

The DAPDNA Dynamically Reconfigurable Processor [4] developed by
IPFlex Inc. aims at providing  “hardware performance” while maintaining
“software flexibility. 
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2.3.1 Architecture 

The DAPDNA-2 dynamically reconfigurable processor is a dual-core
processor, comprised of IPFlex's own DAP high-performance RISC core,
paired with the DNA two-dimensional processing matrix.  The DAPDNA-2 
processor can operate at 166 MHz. The DAP RISC core (32 bit with 8 
kbytes data cache and 8 kbytes instruction cache) controls the processor's 
dynamic reconfiguration, while portions of an application that require high-
speed processing are handled by the DNA matrix, which provides both
parallel and pipelined processing. The DNA matrix is an array of 376
Processing Elements (PE)  comprised of computation units, memory,
synchronizers, and counters. The total RAM of the DNA array is 576 kbytes. 
The DNA matrix circuitry can be reconfigured freely into the structure that 
is most optimal for meeting the needs of the application in demand. One
foreground and three background banks are available on-chip to store
different configurations. Additional banks can be loaded from external
memory on demand. The architecture of DAPDNA-2 processor is shown in
Figure 3-8. 

Figure 3-8. DAPDNA-2 processor architecture

Large on-chip memory reduces the need to access off-chip memory a
process that often becomes a performance bottleneck. This feature allows the
DNA to provide the maximum possible parallel processing performance. 
Since the memory is distributed throughout the processing array, there is 
plenty of available memory bandwidth. 
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The DAPDNA-2 has six channels of DNA Direct I/O, which provides the 
interface for transfering data directly onto or out of the DNA matrix. Each 
channel of DNA Direct I/O is 32-bit wide and operates at the maximum 
DAPDNA-2 system clock frequency of 166 MHz. The DNA Direct I/O can
be also used to communicate directly with external devices, bringing data in
for processing on the DNA matrix, bypassing the Bus Switch and memory 
interface.

2.3.2 Granularity

The DNA matrix architecture is a coarse grain reconfigurable 
architecture.

2.3.3 Technology

The DAPDNA-2 processor comes in a 156-pin FCBGA package. The
power supply for the core is 1.2 V while for the I/Os is 2.5 V. 

2.3.4 Reconfiguration

DAPDNA processor is dynamically reconfigurable and can change its
hardware configuration in one clock cycle according to the application on 
demand.

2.3.5 Design flow

The integrated development environment for the DAPDNA dynamically
reconfigurable processor is designed around the concept of “Software to 
Silicon”. The Software to Silicon concept means that even someone who
doesn't know how to design hardware can develop a product by designing an 
application using a high-level language, and having that application
seamlessly implemented as a hardware.   

The DAPDNA processor series is provided with the DAPDNA-FW II
Integrated Development Environment, a full-featured tool set covering
everything from algorithm design to validation of an application running on 
the actual hardware. DAPDNA-FW II provides compilers for algorithms
written in MATLAB/Simulink and C with data flow extension. 

DAPDNA-FW II environment supports three different design 
methodologies, giving the designer the flexibility to choose the most 
appropriate design method. The first option is to use the Data Flow C (DFC) 
Compiler. In this case it is possible to use the C programming language to
directly create code for the dynamically reconfigurable processor. In a 
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development process built around the DFC compiler, the designer can create 
code directly using the C programming language, which reduces the
development time. The second option is to use the DNA Blockset , which 
allows algorithm design and verification using MATLAB, Simulink (from
The MathWorks Inc).   DNA Blockset enables a seamless design flow from 
algorithm design to implementation in the DAPDNA-2 processor, all within
the MATLAB/ Simulink environment. The third option is the DNA designer
which is a GUI-based development environment allowing the designer to
drag-and-drop representations of the DAPDNA Processing Elements (PEs),
supporting graphical construction of processing algorithms.

2.3.6 Application area 

IPflex claims that the DAPDNA-2 is the world's first general-purpose 
dynamically reconfigurable processor. It is suitable for applications that 
demand, high performance and support for a wide range of processing tasks.
It also provides a solution that is optimal for today's marketplace, with its 
demand for short-run, mixed-model production. Target applications include
industrial performance image processing (for factory automation, inspection
systems), broadcast and medical equipment, high precision high speed image 
processing (multi-function peripherals, laser printers etc), base stations 
(cellular, PHS, etc), accelerators for image processing, data processing and 
technical computation, security equipment, encryption accelerators and 
software defined radio.

2.4 Motorola MRC6011 Reconfigurable fabric device 

The MRC6011 device is the first reconfigurable compute fabric (RCF)
device from Freescale Semiconductor [7]. It is a highly integrated system on 
a chip (SoC) that combines six reconfigurable compute fabric (RCF) cores 
into a homogeneous compute node. The programmable MRC6011 device
aims at offering system-level flexibility and scalability similar to a
programmable DSP while achieving the cost, power consumption and 
processing capability of a traditional ASIC-based approach. 

2.4.1 Architecture

The MRC6011 RCF cores are accessible in two scalable modules, each 
containing three RCF cores, via two multiplexed data input (MDI) interfaces 
and two slave I/O Interfaces. Each MDI interface can communicate with up 
to 12 channels (antennas for example), and each RC controller can 
manipulate the data from two channels. The data processed by the RCF
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cores goes either to one of the two slave I/O bus interfaces (compatible with 
industry-wide DSPs) or to another core within the same module or the
adjacent module. External interfaces include the MDI interfaces and slave 
I/O bus interfaces (supporting DSP bootstrapping) operating at up to 100
MHz, and a JTAG port for real-time debugging. The architecture of the 
MRC6011 device is shown in Figure 3-9.

Figure 3-9. Architecture of MRC6011 device

Each RCF core includes an optimized 32-bit RISC processor (allowing 
efficient C code compilation) with instruction (4 kbytes) and data caches (4 
kbytes). The reconfigurable computing (RC) array includes 16 
reconfigurable processing units with 16 bit data paths including a pipelined 
MAC unit. The RCF core also includes a two-channel input buffer (8
kbytes), a large frame buffer (40 kbytes) with eight address generation units
(AGUs), a special-purpose complex correlation unit supports spreading, 
complex scrambling, complex correlation on 8-bit and 4-bit samples and a
single and burst transfer DMA controller.

At 250 MHz, the six-core MRC6011 device delivers a peak performance
of 24.0 Giga complex correlations per second with a sample resolution of 8 
bits for I and Q inputs each, or even 48.0 Giga complex correlations per
second at 4-bit resolution.
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2.4.2 Granularity

The architecture of the MRC6011 is a coarse grain architecture based on
the word level reconfigurable data paths of the RC arrays. 

2.4.3 Technology 

MRC6011 devices are manufactured on a 0.13 µm process technology. 
The internal logic voltage is 1.2 V while the input/output voltage is 3.3 V. 
The core maximum operating frequency is 250 MHz while the maximum 
operating frequency for all off-core buses is 100 MHz.

2.4.4 Reconfiguration

MRC6011 is a dynamically reconfigurable multi-context device. 

2.4.5 Design flow 

Design flow for MRC6011 is based on C and assembly programming.
The CodeWarrior Development Studio for Freescale RCF Baseband Signal
Processors is a complete development environment for Freescale
Reconfigurable Compute Fabric (RCF) based devices. The CodeWarrior
Development Studio is a complete code development studio and includes: 
a) the Project Manager that provides anything required for configuring and 
managing complex projects, b) the Editor and Code Navigation System that 
allows creation and modificaton of source code and c) the graphical level
debuggers.

CodeWarrior Development Studio, in concert with the PowerTAP Pro
hardware target interface, provides a multi-core debugging environment that 
allows for quick single stepping as well as fast downloads of very large 
target files. In case of multiple MRC6011 products, it is possible to connect 
the JTAG connections in a way allowing talking to any of the MRC6011's
through a single PowerTAP device. Since PowerTAP has Ethernet as it's 
connection method to CodeWarrior, debugging can be done remotely as well
as providing a mechanism to share a single resource among several
engineers. Functional testing effort can be minimized through utilization of 
CodeWarrior Development Studio's full scripting capability.

2.4.6 Application area 

Highly flexible and programmable, the MRC6011 processor provides an
efficient solution for computationally intensive applications, such as
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wideband code division multiple access (WCDMA), CDMA2000 and  
TD-SCDMA baseband processing, including chip rate, symbol rate and
advanced 3G functions such as adaptive antenna (AA) and multi-user
detection (MUD).

2.5 picoChip PC102  picoArray processor 

The PC102 is the 2nd generation of the picoArray highly parallel 
processing architecture developed by picoChip [9]. The picoChip's PC102
picoArray processor is a signal processing device optimised for next 
generation wireless infrastructure. The solution can be described as a 
“Software System on Chip” (SSoC): fast enough to replace FPGAs or ASICs 
but with the flexibility and ease of programming of a processor. PC102 
picoArray processor offers scalability allowing extremely large systems to 
be built by connecting dozens of processors. 

2.5.1 Architecture 

The architecture emphasises ease of design/verification and deterministic
performance for embedded signal processing – especially wireless. The 
picoArray combines hundreds of array elements, each with a versatile 16 bit 
RISC processor (3 way LIW with Harvard architecture) with local data and 
program memory connected by a high-speed interconnect fabric. The
architecture is heterogeneous with four types of element optimised for
different tasks such as DSP or wireless specific functions. As well as the 
standard array elements, others handle control functions, memory intensive
and DSP-oriented operations. Multiple array elements can be programmed 
together as a group to perform particular functions ranging from fast 
processing such as filters and correlators, through to the most complex
control tasks.

Within the picoArray core, array elements are organised in a two 
dimensional grid, and communicate over a network of 32 bit buses (the 
picoBus) and programmable bus switches. Array elements are connected to 
the picoBus by ports. The ports act as nodes on the picoBus and provide a 
simple interface to the bus based on put and get instructions in the
instruction set. The inter-processor communication protocol is based on a
time division multiplexing (TDM) scheme, where data transfers between 
processor ports occur during time slots, scheduled in software, and 
controlled using the bus switches. The bus switch programming and the 
scheduling of data transfers is fixed at compile time. 

Around the picoArrray core are system interface peripherals including a 
host interface and an SRAM interface. Four high speed I/O interfaces 

–



3. Reconfigurable Hardware Technologies 69

connect to external systems or link picoArray devices together to build 
scalable systems. The basic concept of picoArray architecture is shown in 
Figure 3-10. 

Figure 3-10.  Basic concept of picoArray architecture

PC102 picoArray has huge processing resources for compute intensive
datapath. It also has enormous amounts of general-purpose MIPS to handle
the ever more complex control operations. The PC102 uses 348 array 
elements running at 160MHz, and with peak use can handle over 197,100
million instructions per second (MIPS), 147,800 million operations per
second (MOPS) or 38,400 million multiply accumulate (MMAC)
instructions per second over 10 times the performance of other 
programmable solutions. The microprocessor interface is used to configure 
the PC102 device and to transfer data to and from the PC102 device using 
either a register transfer method or a DMA mechanism. The interface has a
number of ports mapped into the external microprocessor memory area. Two 
ports are connected to the configuration bus within the PC102 and the others
are connected to the picoBus. These enable the external microprocessor to 
communicate with the array elements using signals. Alternatively, the 
PC102 can self-configure (or boot) in standalone mode from a supported 
memory. 

2.5.2 Granularity

PC102 processor’s picoArray architecture is a (CPU level) coarse grain
reconfigurable architecture based on 16 bit CPUs. 
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2.5.3 Reconfiguration

The picoArray architecture is totally programmable and can be 
configured at run time (single context device).

2.5.4 Technology

PC102 devices have been manufactured on a 0.13 µm process 
technology. High performance flip chip BGA packages have been used for
packaging. The core voltage is 1.2 V while the input/output voltage is 2.5 V.

2.5.5 Design flow

picoChip's picoTools is a fully-integrated homogeneous (over the whole
system) development environment for the picoArray which includes C 
compiler, assembler, debugger and cycle-accurate simulator, in which
system performance is guaranteed by design (with complete predictability).
picoChip also supplies a Library of Example Designs and a range of 
Development platforms. 

The developer defines the structure and relationships between processes,
completely specifying signal flows and timings. The individual processors
are then programmed in standard C or assembler as blocks to be embedded 
within the structure. The entire design (structure, data-path and control) is 
debugged at the source level. This allows engineers to work on the whole 
system in an integrated way, rather than having to debug different 
technologies separately. The programming of the array is completely
automatic, and the designer is abstracted from this implementation details.
The output is a hardware configuration file containing the design and the
timing information to run in the simulation. This creates a seamless “closed 
loop” flow from the simulator to the development kit through to the system.
The picoChip architecture is extremely scalable, and applications can be run
across multiple linked devices. The tools allow large designs to be 
simulated, placed and verified as easily as small ones. The architecture gives 
high levels of confidence in using multiple pre-verified blocks in a series of 
static software architectures that can be implemented at different times on
the same hardware to give a truly reconfigurable system. 

2.5.6 Application area

The PC102 is a communications processor, optimized for high capacity
wireless digital signal processing applications. The device enables all layer 1
(physical layer) signal processing and layer 1 control to be implemented in 
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software. The device is able to run any wireless protocols including 
WCDMA (FDD and TDD), cdma2000 and TD-SCDMA, or emerging
standards such as 802.16 (WiMAX).

2.6 Leopard Logic Gladiator Configurable Logic Device 

The Gladiator configurable logic device (CLD) [6] family represents the
only digital logic device that combines Field Programmable Gate Array
(FPGA) technology with hardwired Application Specific Integrated Circuit 
(ASIC) logic. Gladiator CLD aims at achieving much lower NRE charges 
than ASICs in combination with dramatically lower unit cost than complex 
FPGAs.

In its first steps Leopard Logic provided embedded FPGA IP cores for 
ASIC/SoC and foundry suppliers but industry’s interest with respect to this 
approach was limited. Then Leopard Logic reinvented itself as a silicon 
supplier.

2.6.1 Architecture

The architecture of Gladiator CLD is shown in Figure 3-11. The basic 
building blocks of Gladiator CLD are the HyperBlox FP (Field 
Programmable) and the MP (Mask Programmable) fabrics, which are 
combined with optimized memories, Multiply-Accumulate units (MACs) 
and flexible high-speed I/Os. 

Gladiator CLD is available in densities ranging from 1.6M up to 25M
system gates with up to 10 Mbits of embedded memory. It supports system
speeds up to 500MHz. Gladiator CLD includes high speed MAC units for 
fast arithmetic and DSP, up to 16 PLL controlled clock domains with 
frequency synthesis and division and, up to 16 DLL for phase shifting to
support interface timing adjustment. Gladiator CLD offers flexible I/O 
options and supports several general purpose I/O standards. Gladiator CLD
also supports DDR/QDR.
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Figure 3-11. Architecture of Gladiator CLD

2.6.2 Granularity

The architecture of Gladiator CLD represents a fine grain architecture. 

2.6.3 Technology

The HyperBlox FP fabric is based on Leopard Logic’s proprietary
HyperRoute FPGA technology that utilizes the industry s first fully
hierarchical, multiplexer-based, point-to-point interconnect. This technology 
enables superior speed, utilization, predictability and reliability compared to 
legacy FPGA architectures. The HyperBlox MP fabric uses the same logic
core cell architecture as HyperBlox FP but replaces the SRAM configuration 
with a single-layer via-mask configuration, called HyperVia. This 
technology provides significantly higher density, as well as increased 
performance and lower power.

2.6.4 Reconfiguration

The Gladiator CLD is statically field-upgradeable through embedded 
SRAM-based FPGA.

’
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2.6.5 Design flow

The Gladiator CLD design flow is based on leading industry standard 
design tools and flows combined with Leopard Logic s highly optimized
ToolBlox back end tools. Partitioning between the HyperBlox MP and FP
sections of the device is done intuitively. Fixed and stable blocks of the 
design are mapped into the HyperBlox MP fabric, while high-risk blocks
that are still in flux are mapped into the FP fabric. Designs are quickly and 
easily synthesized from RTL into a CLD device. Full timing closure is 
achieved based on accurate timing extraction performed by the user.
Bitstreams for the FPGA sections of the device are generated automatically 
and can be downloaded into the device instantly. Partitioning between hard 
(MP) and soft (FP) functions is a snap with the ToolBlox design flow and 
the unified hardware architecture allows the allocation of design blocks even 
post-synthesis.

Starting from pre-processed wafers, users can implement substantial
amounts of high speed logic in the mask-programmable (MP) section of the 
device. After sending the generated configuration data to Leopard Logic, 
first samples are delivered within weeks. This process is referred to as 
marketization because it transforms the generic device into a user or

market segment specific device. Due to minimum mask and processing 
requirements, the Non-Recurring Engineering (NRE) costs for this process
are an order of magnitude lower than for a traditional cell-based ASIC.

The marketized devices can be further customized and differentiated by
programming the HyperBlox FP fabric. Like any other SRAM-based FPGA, 
this fabric allows for an unlimited number of reconfigurations by simply 
downloading a new bistream into the device, thus offering optimal in-field 
programmability.

2.6.6 Application area

Gladiator Configurable Logic Device is suitable for areas that today use a
combination of Application Specific Standard Product (ASSP)/ASIC with 
standalone FPGAs such as networking (edge, access, aggregation, framers,
communications controllers, backplane interfaces), storage (bridges,
controllers, interfaces, glue logic) and wireless (DSP acceleration, chip rate
processing, smart antenna, bridges, backplanes, glue logic). Across all
markets, Gladiator is an ideal fit for the fast and cost-effective
implementation of flexible format converters, protocol bridges, bus
interfaces and glue logic functions.

’
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3. EMBEDDED RECONFIGURABLE CORES 

As the System-on-Chip (SoC) world began to develop at the end of the 
1990s, it was recognised that, to make the devices more useful, some form of 
programmable fabric would be needed. ASIC developers also considered 
embedded reconfigurable logic as one way to bring some form of field 
programmability to an otherwise dedicated product. The industry responded 
in an enthusiastic fashion and a number of reconfigurable hardware cores
that can be embedded in SoCs/ASICs have been proposed since late 1990s. 
Two major architectures have been mainly considered: embedded FPGAs 
(fine grain) and reconfigurable arrays of word level data paths (coarse grain).
Despite the initial enthusiasm several of these attempts failed commercially
(Adaptive Silicon disappeared while Actel stopped their embedded FPGA
technology activities). Major reasons were the high silicon area (it could 
require half the chip area to put a decent amount of programmable logic on
it), and the power overheads of embedded FPGAs and the immature
compilation techniques for the coarse grain reconfigurable arrays. 

In October 2004 during the EDA Tech Forum in San Jose, it was 
projected that until the first quarter of 2005 two embedded FPGA cores for
ASICs/SoCs will be put on the market - one by a combination of IBM and
Xilinx and the other by STMicroelectronics. The major reason that could 
lead these attempts to commercial success is the use of 90 nm technologies.

3.1 Morpho Technologies MS1 Reconfigurable DSP 

cores

Morpho technologies reconfigurable DSP (rDSP) cores MS1-16 and 
MS1-64 [8] aim at providing hardware flexibility in implementing multiple
applications, minimized levels of obsolescence, and low power consumption
while lowering hardware costs. The cores are available as is, or may be 
custom designed and/or quickly integrated into any SoC, to fit the needs of 
the customer and application(s).

3.1.1 Architecture 

The MS1 family of rDSPs is fully autonomous IP (soft, firm or hard) 
cores that function as co-processors to a host processor in a system. The
MS1 rDSP architecture consists of a 32-bit RISC with 5 pipeline stages and 
built-in direct-mapped data and instruction cache, an RC Array with 8 to 64
Reconfigurable Cells (each having an ALU, MAC and optional complex 
correlator unit), Context memory with 32 to 512 context planes, a Frame 
Buffer with up to 2048 Kbytes in size, and three optional blocks specific to 
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3G-WCDMA base station applications (namely a Sequence Generator), an 
Interleaver and an IQ Buffer (16 bytes to 4Kbytes per antenna). A multi-
master 128-bit DMA bus controller supporting burst transfers with both
synchronous and asynchronous memory interface is also included in the 
MS1 architecture. The architecture of the RC array is shown in Figure 3-12. 

Figure 3-12. Architecture of Reconfigurable Cells array

3.1.2 Granularity

The reconfigurable cells array (RC) of Morpho technologies rDSP cores 
is a reconfigurable array of coarse grain data paths.

3.1.3 Technology 

Evaluation devices are available in 0.18 µm and 0.13 µm process 
technologies with core voltages at 1.8V/1.2V and 3.3V digital I/O voltage.

3.1.4 Reconfiguration

Morpho technologies reconfigurable DSP (rDSP) cores are dynamically
reconfigurable and can adapt on the fly to realize different applications. 
Switching from one application specific set of instructions to another is done
on a single clock cycle.
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3.1.5 Design flow

The MS1 rDSP cores and associated evaluation devices are accompanied 
with a complete tool chain that includes software development tools such as 
a compiler and translator, a simulator and a debug tool. 

Morpho Technologies developed an extension to the C Programming
language called “MorphoC” allowing for fast and simple programming to
the MSI rDSP cores. MorphoC is designed to describe the Single Instruction 
Multiple Data (SIMD) execution model of the MS1 rDSP architecture.
MorphoTrans reads the MorphoC program and kernel library mapping
information and generates a standard C program that is recognizable by the
compiler (gcc). The output of MorphoTrans is compiled and linked with the 
kernel library object files to generate an executable file. The outcome of this
process may be executed in the MorphoSim software simulator and 
debugged by the debugger (gdb). In addition, the same executable code can 
also be run on the MS1 development board.

MorphoSim provides an environment for behavioral simulation of the 
MS1 rDSP cores. To make the latest wired, wireless and imaging standards 
into production application reality, the debugger is used in conjunction with
MorphoSim to debug application programs that utilize various kernels 
supplied by the Morpho Technologies extensive list or from customer
specific kernel libraries. 

3.1.6 Application area 

Morpho technologies reconfigurable DSP cores are capable of 
implementing the baseband processing of air interfaces such as WCDMA in
addition to source processing such as MPEG4 and vocoders. In general
Morpho technologies reconfigurable DSP cores are suitable for signal
processing based products including communications equipment for wireless 
and wireline terminals and infrastructure, home entertainment and computer
graphics/image processing.

3.2 PACT XPP IP cores 

A PACT XPP processor or coprocessor [13] can be integrated in a 
System-on-Chip (SoC) and can be designed from a small set of macro blocks
of which the largest is in the range of 90 kgates. The homogeneous
architecture of XPP allows synthesizing each of the blocks separately and, in
the second step, arranging the synthesized blocks hierarchically to the final 
array.
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3.2.1 Architecture 

An array of configurable processing elements is the heart of the XPP. 
The array is built from a very small number of different processing elements 
(PEs). ALU-PEs perform the basic computations. RAM-PEs are used for
storage of data. The I/O elements connect the internal elements to external 
RAMs or data ports. The configuration manager loads programs onto the 
array. The architecture of the array is shown in Figure 3-13.

The ALU is a two input  two output ALU providing typical DSP 
functions such as multiplication, addition, comparison, sort, shift and 
boolean. All operations are performed within one clock cycle. The ALU can 
be utilized for addition, barrel shift and normalization tasks. The Forward 
Register is a specialized ALU that provides data stream control such as 
multiplexing and swapping. It introduces always one cycle pipeline delay.

The Communication Network allows point to point and point to 
multipoint connections from outputs to inputs of other elements. Up to 8 
data channels are available for each horizontal direction. Switches at the end 
of the lines can connect the channel to the channel of the neighboring
element.

Figure 3-13. Architecture of XPP’s array of configurable processing elements

The RAM Elements are arranged at the edges of the array and are nearly
identical to the ALU PEs, however the ALU is replaced by a memory. The 
dual ported RAM has two separate ports for independent read and write 
operations. The RAM can be configured to FIFO mode (no address inputs 
needed) or RAM with 9 or more address inputs. The IP model allows to
define the storage capacity. Typical values range from 512 to 2 k words.
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Back Register and Forward Register can be configured to build a linear
address generator. Thereby DMA to or from RAM can be done within one
RAM-PE. Several RAM-PEs can be combined to a larger RAM with a 
contiguous address space.

I/O Elements are connected to horizontal channels. The standard I/O-
Element provides two modes:

• Streaming Two ports per I/O Elements are configured to input or g

output mode. The XPP Packet handling is performed by a Ready-
Acknowledge handshake protocol. Thus external data streams (e.g.
from a A/D-converter) must not be synchronous to the XPP clock.  

• RAM One output provides the addresses to the external RAM, the other M

is the bi-directional data port. External Synchronous Static RAMs are
directly connected to the address ports, data ports and control signals. 
The maximum size of external RAMs depends on the data bus width 
of the XPP (e.g. 16 Mwords for the 24-bit architecture).

The Configuration Manager (CM) microcontroller handles all 
configuration tasks of the array. Initially it reads configurations through an
external interface directly from S-RAMs into its internal cache. Then it loads 
the configuration (i.e. opcodes, routing channels and constants) to the array. 
As soon as a PE is configured, it starts its operation if data is available. 
Further on, the CM loads subsequent configurations to the array. The local
operating system ensures, that the sequential order of configuration is 
maintained without deadlocks.

The structure of XPP array of configurable elements is very simple
making the array homogeneous and simplifying programming and placing of 
algorithms. The IP model of XPP allows defining the size and arrangement 
of the processing elements according to the needs of the applications. In
addition, the width of the Data Paths and ALUs can be defined between 8 
and 32 bit. XPP is designed to simplify the programming task and to allow 
high level compilers to tap the full parallel potential of the XPP. The most 
important XPP feature to support this, is the packet handling. Data packets 
contain one processor word (e.g. 24-bit) and are created at the outputs of 
objects as soon as data is available. From there, they propagate to the 
connected inputs. If more then one input is connected to the output, the 
packet is duplicated. On the other hand, an XPP object starts its calculation 
only when all required input packets are available. If a packet can not be 
processed, the pipeline stalls until the packet is processed. This mechanism
ensures correct operation of the algorithm under all circumstances and, the
programmer does not need to care about pipeline delays in the array and how 
to synchronize to asynchronous external data streams. 
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3.2.2 Granularity

PACT XPP arrays architecture is a coarse grain reconfigurable 
architecture.

3.2.3 Technology 

XPP cores are technology independent. PACT provides XPP cores as 
synthesizable Verilog RTL code.

3.2.4 Reconfiguration

XPP arrays allow fast dynamic reconfiguration. In contrast to FPGAs, 
XPP needs only Kbits for a full configuration; internal RAMs buffer data 
between the configurations. For optimal performance the number of data, 
which is calculated in one configuration, should be as high as possible to
minimize the effect of the reconfiguration latency. Small parts of the array 
can be reconfigured without the need to stop calculations of other
configurations on the same array.

3.2.5 Design flow 

The XDS development suite supports co-development and co-simulation
of systems with the XPP-array. The XDS is a complete set of tools for 
application development. Since in most applications XPP is used as a
coprocessor to micro-controllers, the XDS provides seamless design-flow 
for both, the micro-controller and the XPP.

Derived from a data flow graph, algorithms are directly mapped onto the
array. The Graphs's nodes define directly the functionality and operation of 
the ALU or other elements, whereas the edges define the connections
between the elements. Such a configuration remains statically on the array 
and a set of data packets flows through this net of operators. 

Applications are written in C or C++. In an environment with a micro-
controller and the XPP as coprocessor, the software tasks are divided into
two sections. The control-flow tasks are processed with the standard tools 
for the micro-controller and the high bandwidth data-flow tasks, that need 
support by the XPP, are compiled by the XPP-VC. This vectorizing C-
compiler maps a subset of C to the XPP, and allows integrating optimized
modules. These modules originate from a library, or are written for the
application in the Native Mapping Language, NML. API functions for
loading and starting of configurations, configuration sequencing, data 
exchange via DMA and task synchronization provide a comfortable
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environment for C-programmers who are familiar with embedded designs.
The linker combines code of both sections, which can either be simulated by
software, or uploaded to the target hardware. The integrated debugging tool
for the micro-controller and the XPP, allows interactive test and verification
of the simulation results or the hardware. The configuration and the dataflow
in the XPP are visualized in a graphical tool.

3.3 Elixent DFA1000 

The Elixent DFA1000 accelerator [5] was designed from the ground up
to deliver on the promise of Reconfigurable Signal Processing (RSP). 
Utilizing the advanced D-Fabrix processing array. It aims at delivering huge
benefits in performance, power consumption and silicon area. These 
attributes make it ideal for integration with RISC processors in
mobile/consumer/communications applications that need the ultimate in
signal or media processing. These advantages are delivered through silicon
reuse. The DFA1000 accelerator implements “virtual hardware” – hardware 
accelerators for specific algorithms, implemented as simple configurations 
on the D-Fabrix processing array. When one algorithm completes, a new
“virtual hardware” accelerator is loaded, performing the next task in the 
system’s dataflow.

3.3.1 Architecture

The basis for Elixent s DFA1000 is the D-Fabrix processing array  a
platform that realises the potential of Reconfigurable Algorithm Processing.
The structure of D-Fabrix is simple  the components are 4-bit ALUs,
registers and the switchbox . Two of each are combined into a building
block, the tile Hundreds or thousands of tiles are combined to create the
D-Fabrix array.  Special functions can be distributed through the array  for 
example, memory is always distributed to give fast, local storage with
massive bandwidth.  Creating wider execution units is simply a matter of 
combining ALUs – typically into 8, 12 or 16-bit units, but occasionally into
far larger units. Much of the task of linking the ALUs together in this way is
performed by the array’s routing switchboxes. The architecture of the D-
Fabrix array is shown in Figure 3-14. 

The DFA1000 accelerator integrates several banks of local high-speed 
RAM next to the array. These are for often-used data; for example, they may
be used as image linestores, or as audio buffers. These RAMs eliminate 
many high bandwidth accesses off-chip, improving power consumption
while at the same time enhancing performance.

“

’



3. Reconfigurable Hardware Technologies 81

Figure 3-14. Architecture of D-Fabrix array

The DFA1000 also includes a peripheral set to facilitate its integration
into SOC designs. The architecture offers high-speed data interfaces to the
D-Fabrix core array. This allows high-speed data to be driven into the array
directly, with low latency and no overhead on the system bus. These high-
speed data interfaces are supplemented by the AMBA bus interface, used for 
programming the array, and transferring data to and from the host processor. 
This is typically a much lower bandwidth control and configuration path.
The architecture also integrates local high-speed RAMs, directly accessible
by the array or by the RISC; and of course the D-Fabrix array itself. 

3.3.2 Granularity

DFA1000 architecture is a medium granularity architecture based on 4-
bit ALUs.

3.3.3 Technology

DFA1000 will be made available in different industry standard processes.
First realization was on a 0.18 µm technology.

3.3.4 Reconfiguration

DFA1000 can be dynamically reconfigured in microseconds.
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3.3.5 Design flow 

The key to using the DFA1000 accelerator is creating the high-
performance virtual hardware configurations. D-Sign, the D-Fabrix
algorithm processor's toolset offers, three main design styles for this 
purpose:

• HDL entry, using either Verilog or VHDL  
• C-style entry, using Celoxica's Handel-C 
• Matlab entry, using Accelchip's Accel-FPGA 
All the design entry tools feed a common back-end. This performs

optimisations to the code, before mapping resources to the D-Fabrix array. 
The entire process is automatic. Once the array description has been 
“compiled” for the architecture, it is placed and routed. This stage is 
analogous to the resource allocation phases that a compiler uses for a VLIW
processor, allocating array resource to the functions within the algorithm. 
The output of the “place and route” tool is the final program. 

3.3.6 Application area 

D-Fabrix is suitable for several applications from networked multimedia 
(MPEG-4, JPEG, camera, graphics, rendering) to wireless (3G, CDMA, 
OFDM etc) or even security (RSA, DES, AES...). 
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1. INTRODUCTION

Heterogeneous Systems-on-Chip (SoCs) with embedded reconfigurable 
resources form an interesting option for the implementation of wireless 
communications and multimedia systems. This is because they offer the 
advantages of reconfigurable hardware combined with the advantages of 
other architectural styles such as general purpose instruction set processors
and application specific integrated circuits (ASICs). Furthermore, such SoCs 
allow customization on the way reconfigurable resources can be used (type
and density of resources) depending on the targeted application or set of 
applications.

A generic view of a heterogeneous reconfigurable System-on-Chip is 
shown in Figure 4-1. Such a SoC will normally include instruction set 
processors (general purpose, DSPs, ASIPs), custom hardware blocks
(ASICs) and reconfigurable hardware blocks. The embedded reconfigurable 
blocks can be either coarse grained (word level granularity) or FPGA like 
(bit level granularity). The different processing elements may communicate 
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through a bus, however current trends are more towards communication 
networks on chip (for scalability, flexibility and power consumption issues).  

Communication Network

Distributed

shared memory

organization

Direct Mapped

Hardware

(ASIC)

Coarse grain

reconfigurable

hardware

Instruction Set

Processors

Fine grain

reconfigurable

hardware

Figure 4-1. Abstract view of targeted implementation platform 

The design of a SoC with reconfigurable hardware is not a trivial task. To 
obtain an efficient implementation an extended design flow is needed in 
order to cope with the reconfiguration aspects on a wide scale of 
commercially available platforms. In addition, a high abstraction level 
methodology needs to be developed for helping in deciding the instances of 
the implementation technologies, both for fine grained and coarse grained
reconfigurable hardware. The requirements and the principles of such design
methodology are further discussed in the rest of this chapter. It must be 
noted that the design flow and high level design methods described in the 
rest of this chapter can be equally apply to off-the-shelf system level FPGAs 
that include embedded hardwired blocks (including software processors and
ASIC blocks).

2. DESIGN FLOW REQUIREMENTS FOR 

RECONFIGURABLE SYSTEMS-ON-CHIP 

The introduction of reconfigurable resources in Systems-on-Chip creates
the need for modifications and extensions to conventional design flows with
emphasis on the higher abstraction levels, where most important design
decisions are made. In this section, conventional system level design flows 
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are briefly presented and then system level design flow requirements for 
reconfigurable Systems-on-Chip are discussed. 

2.1 Overview of conventional system level design flows  

Driven by the SoC design growth, the demand for system level co-design
methodologies is also increasing [6]. Academic and commercial sources 
have provided co-design methodologies/tools for a variety of application 
domains, with many hardware/software partitioning opportunities, synthesis, 
simulation and validation mechanisms, at different degrees of automation 
and levels of maturity. 

As far as system specification is concerned, a variety of languages (HDL, 
object oriented, proprietary) are being used for system level specification. 
Some methodologies exploit a combination of languages in order to properly 
describe the hardware or software parts of the design. The trend is however 
to unify the system design specification in one description language capable
of representing the system at the high level of abstraction [6]. 

The goal of hardware/software partitioning is the optimized distribution
of system functions among software and hardware components. With respect 
to that, most beneficial are the methodologies that provide the partitioning at 
different levels of modeling without the necessity of rewriting the hardware 
or software specifications. This not only reduces the design iteration steps,
but also enables easy inclusion of predefined library elements or IP blocks. 

The important feature that should be taken into account during co-
synthesis is the possibility of interface synthesis. The different possible
inter-process communication primitives are covered in different 
methodologies. They are either fixed to the particular methodology or with 
the optional possibility of creating new primitives based on the existing
ones.

Co-simulation techniques range from commercial simulation based on
methodology specific simulation engines to combination of multiple 
simulation engines. Most of the methodology dependent co-simulators are 
based on event driven simulation, while some of them come with an option
for co-simulation with other simulators [8].

Co-verification is mainly simulation based, meaning that the results of 
the HDL, ISS or proprietary simulations at different levels of the co-design
flow are compared for correct functionality and timing, with the initial 
specifications. Debugging is enabled in some methodologies by exploiting a 
graphical tool or a proprietary user interface environment.

The main features of representative system level hardware/software co-
design methodologies are summarized in Table 4-1.
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As a natural consequence of what has been mentioned in the previous 
paragraphs, it is concluded that a generic traditional system level design flow
usually involves the following key phases:  

• System specification  
• Hardware/software partitioning and mapping
• Architecture design
• System level (usually bus cycle accurate) simulation and 
• Fabrication of hardware and software using tools provided by

technology vendors.

Table 4-1. Summary of the main features of system level hardware/software co-design
methodologies

System

Specification 

HW/SW

Partitioning

Co-

synthesis 

Co-simulation

Co-verification 
Remark

O
C

A
P

I-
X

L Using C++ for
functionality
and
architectural
properties

Concurrent
processes,
partitioning on
these processes
can be made
anywhere in
the design flow 

Interface
synthesis and 
industrial
tools for RTL
synthesis

Unified co-simulation 
environment, performance
estimation, co-simulation 
with other simulation
engines

Future
versions
build on top 
of SystemC 

S
ys

te
m

C Using
SystemC 
(based on
C++) for
functionality
and
architecture

System
specifications
can be refined
to mixed SW 
and HW
implementa-
tions

Channels,
interfaces
and events
enable to
model
communi-
cation and
synchroni-
zation

Simulation engine included, 
performance estimation

Becoming 
industry 
standard

V
C

C Using
C/VHDL for
architecture
and
functionality

Template 
models of
architecture
where software
and hardware
area mapped 

Unified co-simulation 
environment with emphasis
on performance estimation 

Perhaps the
most
complete 
tool set

C
h
es

s/
C

h
ec

ke
rs Using

proprietary
nML language
for processor
architecture, C
for application 

Retargetable instruction set 
simulator simulates the
execution of code on target
processor

Useful for
the design of 
embedded
processors

continued
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System

Specification

HW/SW

Partitioning

Co-

synthesis

Co-simulation

Co-verification 
Remark

C
H
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O

O
K Using Verilog

for
functionality
and pre-
defined
components
for architecture

Allocate
functionality to 
processors

Interface
synthesis and 
industrial
tools for RTL 
synthesis

HW/SW co-simulation 
engine included

Includes
interface
synthesis but 
requires tool
specific
models of
processors
and buses

C
O

O
L Using a subset 

of VHDL for
architecture
and
functionality

Synthesis and 
compilation
tools used to
compute the
value for the
cost metrics;
specific
algorithms to
solve the
HW/SW
partitioning

Netlist &
controllers
for
communi-
cation
between HW
and SW
generated in
VHDL

Commercial VHDL 
simulator to simulate
functionality of the system
specification and its
implementation after co-
synthesis

Precise
modeling of 
cost and
performance 
metrics

C
O

S
Y

M
A One processor

and Verilog 
functionality

Allocate all to
SW, then move
slowest parts 
to HW. 

Interface
synthesis,
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tools for RTL
synthesis 

HW/SW co-simulation
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only to one 
processor
architecture
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hardware co-
processor

N
2
C C/C++,

SystemC for
system level 
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hardware.

Manual Automatic
interface
synthesis and 
industrial
tools for RTL
synthesis 

Simulation environment;
co-simulation with 
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instruction set simulators
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IP cores

E
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language
BDD and temporal logic
based verification techniques

Compilation
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programs
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continued
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System

Specification

HW/SW

Partitioning

Co-

synthesis

Co-simulation

Co-verification 
Remark

L
Y

C
O

S Subset of C for
SW, subset of
VHDL for HW

Different
partitioning
models and
algorithms
available

HW/SW
communi-
cation
through 
memory
mapped I/O 

Experimental 
co-synthesis
environment

M
E

S
H Textual  Modeling 

three
independent
layers for
SW,
scheduler/
protocol and 
HW resource 

Project in
early
research
phase

P
to

le
m

y Many models 
of
computations
that can be
used in single
design

Some code-
generation
tools

Powerful co-simulation
engine for different models
of computation

Features
vary with 
models of
computation

2.2 System level design flow requirements for 

reconfigurable Systems-on-Chip 

The way in which the presence of embedded reconfigurable resources
affects the major stages of a system level design flow, and the additional
requirements it creates are discussed in this subsection. 

2.2.1 System specification

In the system specification phase, the requirements, restrictions and 
specifications are gathered as when not using reconfigurable resources, but 
extra effort must be spent on identifying parts of the applications that serve
as candidates for implementation with reconfigurable hardware. The
incorporation of reconfigurable hardware brings new aspects to the 
architecture design task and to the partitioning and mapping task. In the
architecture design task, a new type of architectural element is introduced. In
architectural design space, the reconfigurable hardware can be viewed as
being a time slice scheduled application specific hardware block. One way 
of incorporating reconfigurable parts into an architecture is to replace some
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hardware accelerators with a single reconfigurable block. The effects of 
reconfigurable blocks on the area, speed and power consumption should be 
completely understood before they can be efficiently used. 

2.2.2 Hardware/software partitioning and mapping

During this phase, a new dimension is added to the problem. The parts of 
the targeted system that will be realized on reconfigurable hardware must be
identified. There are some rules of thumb that can be followed to give a 
simple solution to this problem:

• If the application has several roughly same sized hardware accelerators 
that are not used in the same time or at their full capacity, a 
dynamically reconfigurable block may be a more optimized solution
than a hardwired logic block. 

• If the application has some parts in which specification changes are
foreseeable, the implementation choice may be reconfigurable 
hardware.

• If there are foreseeable plans for new generations of application, the 
parts that will change should be implemented with reconfigurable 
hardware.

Furthermore, for the design of reconfigurable hardware instead of 
considering just area, speed and power consumption  as it happens in
traditional hardware design the temporal allocation and scheduling

problem must also be addressed. This is achieved in a way similar to the 
policies followed for software tasks running on a single processor. This leads 
to increased complexity in the design flow, since the cost functions of the
functionality implemented with reconfigurable technology include the
problems of both hardware and software design.

There are basically two partitioning/mapping approaches supported by 
the existing commercial design flows: (a) the tool oriented design flow, and 
(b) the language oriented design flow. Examples of tool oriented design
flows are the N2C by CoWare [7] and VCC by Cadence [5]. The design
flows supported by these tools work well on traditional hardware/software
solutions. Nevertheless, the refinement process of a design from unified and 
un-timed model towards RTL is tool specific, and the incorporation of new 
reconfigurable parts is not possible without unconventional trickery.
Examples of language oriented design flows are OCAPI-XL [12] and 
SystemC [13]. Especially for the latter, since it promotes the openness of the
language and the standard, the addition of a new domain can be made to the
core language itself. However, the method mostly preferred is to model the 
basic constructs required for modeling and simulation of reconfigurable
hardware, using basic constructs of the language. In this way, the language

–
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compatibility with existing tools and designs is preserved. SystemC
extensions for reconfigurable hardware design and OCAPI-XL are 
thoroughly covered in Chapters 5 and 6 respectively. 

2.2.3 Architecture design

A design flow that supports system descriptions at high abstraction level,
must also support the reconfigurable technologies of different types and 
vendors. The main question that must be answered, even at the highest level
of abstraction, is: What to implement with reconfigurable technology and 

which reconfigurable technology to use?2 The design flow may answer these
questions by using different techniques. First, analysis based tools compile
the unified representation of the application functionality and produce 
information on which parts of the application are never run in parallel. This
information can be used to determine what functionality can be implemented 
in different contexts of a reconfigurable block.  

An alternative method is the use of cost functions for each
implementation technology. Cost functions help in making quick design
decisions using several parameters and optimization criteria at the same 
time. Another category of tools use profiling information gathered in 
simulations in order to partition the application and to produce a context 
scheduler to be used in the final implementation. Example of this approach
is a toolset for MorphoSys [14] reconfigurable architecture. 

Finally, the most realistic alternative for industrial applications is the 
simulation based approach. In this approach, the partitioning, mapping and 
scheduling are accomplished manually by the designer, while the results and 
the efficiency are verified through simulations. This approach is also the
easiest to incorporate into an existing flow, since the required tool support is
limited compared to the previous approaches. This also leaves all the design
decisions to the designer, which is preferred by many industrially used 
design flows.

When considering designing additions to a language or a tool that can 
support modeling and simulation of reconfigurable technologies, a set of 
parameters that differentiate the implementation technologies need to be 
identified: (a) the reconfigurable block capacity in gates,  
(b) the amount of context memory required to hold configurations, (c) the 
reconfiguration time and support for partial reconfiguration, (d) typical clock
or transaction speed, and (e) power consumption information. The

2 A brief introduction to existing reconfigurable hardware technologies is presented in
Chapter 3. 
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aforementioned parameters are adequate for modeling any type of 
homogenous reconfigurable technology. The simulation accuracy resulting
from using these parameters is not optimal, but it is sufficient for giving the 
designer an idea of how each different reconfigurable technology affects the 
total system performance.

The results needed for steering the design space exploration, and 
verifying that the design decisions fulfill the total system performance, are:  

• Spatial utilization, which is needed to validate the correct size of the 
block and also granularity of the contexts. 

• Temporal utilization, that is measured to compare the time spent in 
configuring the block, waiting for activation and actively doing the 
computation.

• Context memory bus load, which is measured to analyze the effects of 
the reconfiguration memory bus traffic on the performance of system 
buses.

• Area and power consumption which are compared against hardware or
software implementation.

The aforementioned results should be used as additional information in order
to decide which reconfigurable technology to use and which parts of the
application will be implemented with it.  

When comparing the requirements pertaining to reconfigurability in
existing design flows, it can be seen that the existing design flows and tools 
do not support any of the requirements directly. Either the tools and 
languages should be improved or company specific modifications are needed 
[1, 2, 3].

3. THE PROPOSED DESIGN FLOW FOR 

RECONFIGURABLE SoCs 

This section provides the general framework of the proposed design flow 
for designing complex SoCs that contain reconfigurable parts. The flow aims
to improve the design process of a SoC in order to use the available tools in 
an optimal way [11]. 

The main idea of the design flow proposed is to identify the parts of a co-
design methodology, where the inclusion of reconfigurable technologies has 
the greatest effect. This is very important since there are no commercial
tools or methodologies to support reconfigurable technologies, yet. The
design flow is divided in three parts as shown in Figure 4-2. The System-

Level Design (SLD) refers to the high level part of the proposed flow, while 
the Detailed Design (DD) and Implementation Design (ID) refer to the back
end part of the methodology. 
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Details on the formalisms used are thoroughly covered in Chapters 5 and 
6, while Chapters 7, 8 and 9 provide information how the proposed 
framework can be applied for the design of real world case studies.

3.1 System Level Design (SLD) 

At the SLD phase, the main targets are: 
• to develop a specification of the application associated with the

requirements captured (and analyzed),
• to design the architecture of the SoC, 
• to select major implementation technologies,
• to partition the application for implementation in hardware, software

or reconfigurable hardware and, 
• to evaluate the performance of the partitioned system. 

The requirements are captured and analyzed in the specification phase
and the results are fed to the next phases of the design flow. Architecture 
templates can be used to derive an initial architecture. They can be based on 
previous versions of the same product, a different product in the same
product family, a design/implementation platform provided by the design 
tool or semiconductor vendor or even on information of a similar system by
a competitor.

At the architecture definition phase, bus cycle accurate models of the
architectural units are created, so that the performance of the architecture can 
be evaluated using system level simulations. 

In the partitioning phase, the functional model of the application is 
partitioned in software, hardware and reconfigurable hardware. These 
partitions are then mapped onto the architecture, annotated with estimations 
of timing and other characteristics needed in the mapping phase.  

At the SLD, the reconfiguration issues emerge in the following forms:
• The goals for reconfiguration (e.g. flexibility for specification

changes and performance scalability) with associated constraints 
are identified at the requirements and specification step.

• At the design space exploration step, the reconfigurable hardware 
manifests itself as a computing resource in a similar way as an 
instruction set processor or a block of fixed hardware, thus 
bringing a new dimension to the design space exploration.

3.2 Detailed Design (DD) 

At the DD phase, the specifications are refined and verification is
planned according to targeted implementation technologies, processors etc.
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The design tools used are fixed according to the selected processors and the 
chosen reconfigurable and fixed hardware technologies. Additionally, the
verification and testing strategy are planned. After this, the individual
partitions of hardware, software and reconfigurable hardware are designed
and verified.

When all parts are finished, the designed modules of hardware, software
and reconfigurable hardware are integrated into a single model. In the co-
verification step, the functionality of the integrated model is checked against
the reference implementation or the executable specification. Moreover, 
implementation related issues like timing and power consumption are
modeled. If the results are satisfactory, the design is moved to the
Implementation Design phase, otherwise iterations to Detailed Design or
even to System Level Design phases are required. 

At the DD, the reconfiguration issues emerge in the following ways:
• At the specification refinement and technology specific design, the

reconfigurable hardware requires communication mechanisms to
software and/or fixed hardware to be added; in case of dynamic
reconfiguration mechanisms to handle context multiplexing are
also needed.

• The integration and co-verification combines the reconfigurable 
hardware components with other hardware and software 
components onto a single platform that accommodates also 
external IP (e.g. processor, memory and I/O sub-system models)
and provides co-verification of the overall design. The
reconfigurable hardware is simulated in a HDL simulator or 
emulated in an FPGA emulator.

• Specific HDL modeling rules need to be followed for multiple 
dynamically reconfigurable contexts [2, 3].  

• The reconfigurable hardware modules must be implemented using 
the selected technology, including the required control and support 
functions for reconfiguration.  

• In the integration and verification phases, the vendor specific design
and simulation/emulation tools must be used.

3.3 Implementation Design (ID) 

At the ID, the reconfiguration issues emerge in the following forms: 
• Dynamic reconfiguration requires configuration bit streams of 

multiple contexts to be managed.
• Specific design rules and constraints must be followed for multiple

dynamically reconfigurable contexts [2, 3]. 
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4. RECONFIGURATION ISSUES IN THE 

PROPOSED DESIGN FLOW 

As indicated in the previous section, there are several issues regarding 
reconfiguration. The next sections emphasize how these aspects are
addressed in the context of the proposed design framework. The focus is on
system level design issues, although detailed and implementation design
apsects are briefly discussed to complete the picture. 

4.1 Reconfiguration issues at System Level Design 

4.1.1 Needs and Requirements for Reconfiguration

The requirements and specification capture identifies the required
functionality, performance, critical physical specifications (e.g. area, power)
and the development time required for the system. All the aforementioned 
characteristics are described in the form of an executable model, where the 
goals for reconfiguration (e.g. flexibility for specification changes and 
performance scalability) are identified as well. 

In general, simultaneous flexibility and performance requirements form 
the basic motivation for using reconfiguration in System-on-Chip designs.
Otherwise either pure software or fixed hardware solutions could be more 
competitive. Reconfigurable technologies are a promising solution for
adding flexibility, while not sacrificing performance and implementation
efficiency. They combine the capability of post fabrication functionality
modification with the spatial/parallel computation style.

The inclusion of reconfigurable hardware to a telecommunication system
may introduce significant advantages both from market and implementation 
points of view:

• Upgradability
− Need to conform to multiple or migrating international standards 
− Emerging improvements and enhancements to standards 
− Desire to add features and functionality to existing equipment 
− Service providers are not sure what types of data services will 

generate revenue in the wireless communications world 
− Introduction of bug fixing capability for hardware systems.

• Adaptivity
− Changing channel, traffic and applications 
− Power saving modes.

Although the reconfigurable hardware is beneficial in many cases,
significant overheads may also be introduced. These are mainly related to
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the time required for the reconfiguration and to the power consumed for
reconfiguring a system. Area implications are also introduced (memories
storing configurations, circuits required to control the reconfiguration 
procedure).

The requirements capture should identify and define the following
reconfiguration aspects: 

• Type of reconfiguration wanted in the system
− Static or dynamic (single or multiple contexts)
− Level of granularity (from coarse to fine)
− Style of coupling (from loosely to closely coupled).

• Requirements and constraints on system properties (performance,
power, cost, etc)

• Requirements and constraints on design methodology (pre-defined 
architecture, pre-selected technologies and IPs, tools, etc) 

The information outlined above is needed in the later stages of the design
flow. However, the techniques for identification of needs and capture of 
requirements are company specific. 

4.1.2 Executable Specification

The specification capture is similar to the case of systems that employ
only traditional hardware. The functionality of the system is described using
a C-like formalism e.g. SystemC, OCAPI-XL. The executable specification
can be used for several purposes:

• The test bench used in all phases of the design flow can be derived 
from the executable specification. 

• The compiler tools and profiling information may be used to determine
which parts of an application are most suitable for implementing with
dynamically reconfigurable hardware. This is achieved in the 
partitioning phase of the design flow.

• The ability to implement executable specification validates that the 
design team has sufficient expertise on the application.

Executable specification is a must in order to be able to tackle 
reconfigurability issues at the system level design.

4.1.3 Design Space Exploration 

The design space exploration phase analyses the functional blocks of the
executable model with respect to reconfigurable hardware implementations.
More specifically:

• It defines architecture models containing reconfigurable resources 
based on templates.
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• It decides the system partitioning onto reconfigurable resources (in 
addition to hardware and software) based on the analysis results. 

• It maps the partitioned model onto selected architecture models.
• It performs system level simulation to estimate the performance and 

resource usage of the resulting system.  
The architecture of the device is defined partly in parallel and partly 

using the system specification as input. The initial architecture depends on 
many factors in addition to the requirements of the application. For examples 
a company may have experience and tools for certain processor core or
semiconductor technology, which restricts the design space. Moreover, the
design of many telecom products does not start from scratch, since they 
implement advanced versions of existing devices. Therefore the initial 
architecture and the hardware/software partitioning is often given at the
beginning of the system level design. There are also cases where the reuse
policy of each company mandates designers to reuse architectures and code
modules developed in previous products. The old models of an architecture
are called architecture templates.

As far as dynamic reconfiguration is concerned, it requires partitioning to 
address both temporal and spatial dimensions. Automatic partitioning is still
an unsolved problem, but in specific cases solutions for temporal
partitioning [4], task scheduling and context management [10] have been 
proposed. In the context of industrial SoC design, however, the system
partitioning is mostly a manual effort. Based on the needs and requirements
for reconfiguration, the executable specification is analyzed in order to
identify parts that could gain benefits from implementation on
reconfigurable resources. This analysis can be supported by estimations of 
performance and area done with respect to pre-selected technologies,
architectures and IPs, e.g. specific ISP and reconfigurable technology. 

During the mapping phase, the functionality defined in executable
specification is refined according to the partitioning decisions so that it can
be mapped onto the defined architecture. In order to include in the system
level simulation the effects of the chosen implementation technology, 
different estimation techniques can be used:

• Software parts may be compiled for getting running time and memory 
usage estimates.

• Hardware parts may be synthesized at high level to get estimates of 
gate counts and running speed.

• The functional blocks implemented with reconfigurable hardware are 
also modelled so that the effects of reconfiguration can be estimated.

Finally simulations are run at the system level, to get information 
concerning the performance and resource usage of all architectural units of 
the device.
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Efficient design space exploration is the core of the proposed design 
framework. With respect to the design of reconfigurable systems parts, it 
supports:

• Early estimation of function blocks/processes for performance 
(hardware, software and reconfigurable), cost (area) etc. 

• System partitioning, especially multi context partitioning and 
scheduling

• Architecture definition
• Mapping
• Performance evaluation.

4.2 Reconfiguration issues at Detailed Design 

The specification refinement and technology specific design transform 
the functional blocks of the executable model to design components
targeting reconfigurable hardware (in addition to hardware and software) 
according to the partitioning decisions. Important issues at this stage include
iterative improvements in hardware, software and reconfigurable hardware
specification. The designers take into account not only design (modeling 
language, targeted platform, co-simulation and testing strategy), but also 
economical and product support aspects of the design, exploiting the specific 
reconfigurable hardware features. 

The integration phase combines the hardware, software and
reconfigurable hardware components into a single platform that 
accommodates also external IP e.g. processor, memory, I/O sub-system 
models. The integration phase considers two different approaches: language

based approach (SystemC, OCAPI-XL) and tools oriented approach

(CoWare N2C) to combine the heterogeneous components of the target 
system on a single platform. 

The reconfigurable hardware requires communication mechanisms to 
software and/or fixed hardware to be added. Different types of mechanisms 
can be chosen to handle communication between the components: memory 
based communication, bus based, coprocessor style and even datapath 
integrated reconfigurable functional units. Bus based communication 
between the components requires specific interfaces for both the
reconfigurable fabric and hardware/software sides of the system. On the 
software side, drivers are required to turn software operations into signals on 
the hardware. On the FPGA fabric and hardware side, interfaces to the
system bus must be built. The FPGA fabric and CPU can also communicate
directly by shared memory.

Regarding the software and fixed hardware design flows, they do not 
differ from traditional ones. For statically reconfigurable hardware the 



4. Design Flow for Reconfigurable Systems-on-Chip 103

design flow is similar to that of fixed hardware. For dynamically
reconfigurable hardware, the module interfaces, communication and 
synchronization are designed according to the principles of a context 
scheduler. Specific HDL modeling rules need to be followed for multiple
dynamically reconfigurable contexts [3, 9]. In the case of dynamic
reconfiguration, mechanisms to handle context multiplexing are also needed.
A high level scheme for describing dynamic reconfiguration should address
how dynamically reconfigurable circuits compose with other circuits over a 
bus structure.

4.3 Reconfiguration issues at Implementation Design 

Reconfiguration partitions the application temporally and multiplexes in 
time the programmable logic to meet the hardware resource constraints. 
When reconfiguration takes place at run time, the reconfiguration time is 
part of the run time overhead and has to be minimized. Also, multiple
reconfiguration bit streams need to be stored for the different contexts being
multiplexed onto the programmable logic. This problem is exacerbated for
System-on-Chip implementations where the entire application needs to be 
stored in on-chip memory.

When multiple context reconfigurable techniques are considered [3, 9], 
dedicated partitioning and mapping techniques are applied during System
Level Design phase. Later, during Implementation Design step, an inter- 
context communication scheme has to be provided. Inter-context 
communication refers to how data or control information is transferred
among different contexts. Usually, transfer registers are used for
interconnecting between the previous  last, and current  next context.
Backup registers are also used to store the status values when the context 
switches out and later switches in. When bulk buffers are more practical for
inter-context communication, memory regions can be allocated anywhere in
the chip by using memory mode of the reconfigurable cells. These memory
regions can be accessed from all the contexts as shared buffers. It is
instructive to compare this high bandwidth for inter-context communication
with a multiple FPGA situation, where bandwidth is inherently limited to 
external pins. The huge bandwidth makes multi-context partitioning much 
easier than the multi-FPGA partitioning. 

5. CONCLUSIONS

The design flow for reconfigurable SoCs presented in the previous 
sections is divided in three phases: In the system level design phase, where 
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the requirements and specifications are captured; functionality in the form of 
executable specification is analyzed, partitioned and mapped onto the
architecture, and the performance of the system is validated. In the detailed

design phase, the communication and modules are refined and transformed,
integrated and co-verified through co-simulation or co-emulation. The
implementation design maps the design onto the selected implementation 
platform. The implementation technologies treated in this methodology are
software executed in an instruction set processor, traditional fixed hardware
and dynamically reconfigurable hardware.

Emphasis is given on the system level part of the design flow where
methods for the modeling and simulation of reconfigurable hardware parts of 
a reconfigurable SoC are required. Methods and tools towards this direction
are presented in Chapters 5 and 6 respectively.
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Chapter 5 

SYSTEMC BASED APPROACH 

Yang Qu and Kari Tiensyrjä
VTT Electronics, P.O.Box 1100, FIN-90571 Oulu, Finland 

Abstract: This chapter describes the SystemC based modelling techniques and tools that 
support the design of reconfigurable systems-on-chip (SoC). For designing of 
reconfigurable parts at system level, we developed: 1) an estimation method 
and tool for estimating the execution time and the resource consumption of 
function blocks on dynamically reconfigurable logic to support system
partitioning, 2) a SystemC based modeling method and tool for reconfigurable
parts to allow fast design space exploration through 3) system-level simulation 
using transaction-level models of the system.

Key words: Configuration overhead; context switching; design space exploration; dynamic 
reconfiguration; estimation; mapping; partitioning; reconfigurable;
reconfigurability; SystemC; system-on-chip; workload model. 

1. INTRODUCTION

Reconfigurability does not appear as an isolated phenomenon, but as a 
tightly connected part of the overall SoC design flow. The SystemC-based 
approach is therefore not intended to be a universal solution to support the 
design of any type of reconfigurabily. Instead, we focus on a case, where the
reconfigurable components are mainly used as co-processors in SoCs.

SystemC 2.0 is selected as the backbone of the approach since it is a 
standard language that provides designers with basic mechanisms like 
channels, interfaces and events to model the wide range of communication 
and synchronization found in system designs. More sophisticated 
mechanisms for the system-level design can be built on top of the basic 
constructs. Due to the standard language and open source reference 
implementation, SystemC 2.0 has become a language of choice for a
growing number of system architects and system designers. 
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The SystemC based approach covers the reconfiguration extension and 
the related methods and tools that can be easily embedded into a SoC design
flow. The system-level design part of the design flow presented in Chapter 4
is shown in Figure 5-1. 
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Figure 5-1. System-level design part of proposed design flow. 

The following new features are identified in each phase of system-level 
design when reconfigurability is taken into account:

• System Requirements and Specification Capture needs to identify
requirements and goals of reconfigurability. 

• Architecture Definition needs to treat the reconfigurable resources as 
abstract models and include them in the architecture models.

• System Partitioning needs to analyze and estimate the functions of theg

application for software, fixed hardware and reconfigurable hardware.
• Mapping needs to map functions allocated to reconfigurable hardwareg

onto the respective architecture model.
• System-Level Simulation needs to observe the performance impacts of 

architecture and reconfigurable resources.
In the SystemC based approach, we assume that the design does not start 

from scratch, but it is a more advanced version of an existing device. The
new architecture is defined partly based on the existing architecture and 
partly using the system specification as input. The initial architecture is often 
dependent on many things not directly resulting from the requirements of the 
application. The company may have experience and tools for certain
processor core or semiconductor technology, which restricts the design space
and may produce an initial hardware/software (HW/SW) partition.



5. SystemC Based Approach 109

Therefore, the initial architecture and the HW/SW partition are often given
in the beginning of the system-level design. The SystemC extension is
designed to work with a SystemC model of the existing device to suit the
design considering dynamically reconfigurable hardware Figure 5-2 (a)
gives a graphical view of the initial architecture, and Figure 5-2 (b) shows
the modified architecture with using the SystemC based extensions.

The way that the SystemC based approach incorporates dynamically
reconfigurable parts into architecture is to replace SystemC models of some
hardware accelerators with a single SystemC model of reconfigurable block.
The objective of the SystemC based extensions is to provide a mechanism
that allows designers to easily test the effects of implementing some 
components in the dynamically reconfigurable hardware. The provided 
supports in the SystemC based approach include:

• Analysis support for design space exploration and system partitioning. 
• Reconfigurability modelling by using standard mechanisms of 

SystemC. 
• System-level simulation using transaction-level models of the 

application workload and the architecture. 
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Figure 5-2. (a) Typical SoC architecture and (b) modified architecture using dynamically 
reconfigurable hardware. 
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2. SYSTEMC 2.0 OVERVIEW 

SystemC is a standard modelling language based on C++. Its version 1
provides a class library that implements objects like processes, modules, 
ports, signals and data types for hardware modelling. The model is compiled
by a standard C++ compiler for execution on an event based simulation
kernel. The version 2 introduces a language architecture shown in  
Figure 5-3 [1]. It provides core language constructs like channels, interfaces
and events for system-level modelling. Elementary and more sophisticated 
channels can be built using the core language to support various 
communication, synchronization and model of computation paradigms. 

The basic system-level constructs of the language are introduced in 
following sections, but for more complete information it is advisable to read 
the Functional Specification for SystemC 2.0 [2].
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Figure 5-3. SystemC language architecture. 

2.1 Channels

SystemC 2.0 channels implement one or many interfaces and they
contain the functionality of the communication. Channels are used especially 
in designing and simulating functionality of buses. Functionality such as 
addresses, addressing schemes, priorities buffer sizes etc. can be configured
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runtime and therefore the effect of these design decisions can be simulated
easily without large modifications to the code. 

Also, since it is possible to attach multiple ports to an interface the
number of bus masters or slaves can be chosen in compile time without 
modifying the bus code. When system level modules are implemented 
correctly for use of parameters and variable number of connected ports,
design space exploration becomes an easy task.

2.2 Ports and Interfaces 

The model of communication in SystemC 2.0 can be more abstract than 
in register-transfer level (RTL) description. User can define a set of interface
methods that modules use for communication. For example a system level 
model of a memory controller can contain three interface methods, a read 
method, a write method and a burst read method. The actual behavioural 
implementation of a method is left to the module that provides the interface. 
The module that uses an interface does this via a port. This way the detailed
implementation of an interface can be separated from the object that is using 
the interface. Using interfaces makes it also simpler to simulate and measure 
the effect of for example burst reading to the performance of a system. This
is called transaction level modelling (TLM).

2.3 Events and Dynamic Sensitivity 

Events are low-level synchronization mechanisms. They can be used to 
transfer control from one process to another. The effect can occur
immediately, after next delta cycle or after some defined time. Dynamic 
sensitivity in SystemC 2.0 means that a process can alter its sensitivity list 
during runtime. Process can wait any set of events or time making for
example design and simulation of state machines easy and errors are reduced 
since the sensitivity list can be suppressed in each state to minimum.

3. OVERVIEW OF SYSTEMC BASED EXTENSIONS 

Since SystemC promotes the openness of the language and the standard, 
the addition of new domain can be made to the core language itself.
However, a preferred method is to model the basic constructs required for
modelling and simulation of reconfigurable hardware (RHW) using basic 
constructs of the language and therefore preserving the compatibility with
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existing tools and designs. For this reason, the extension does not intend to 
extend the System 2.0 language itself. 

The terms and concepts specific to the SystemC based approach used in 
the following sections are defined as follows:

• Candidate Component: Candidate components denote those application 
functions that are considered to gain benefits from their
implementation on a reconfigurable hardware resource. The decision
whether a task should be a candidate component is clearly application
dependent. The criterion is that the task should have two features in 
combination: flexibility (that would exclude an ASIC
implementation) and high computational complexity (that would 
exclude a software implementation). Flexibility may come either from 
the point that the task will be upgraded in the future or in view of 
hardware resources sharing with other tasks with non-overlapping 
lifetimes for global area optimization.

• Dynamically reconfigurable fabric (DRCF): The dynamically
reconfigurable fabric is a system-level concept that represents a set of 
candidate components and the required reconfiguration support 
functions, which later on in the design process can be implemented on 
a reconfigurable hardware resource.

• DRCF component: The DRCF component is a transaction-level 
SystemC module of the DRCF. It consists of functions, which mimic 
the reconfiguration process, and the instances of SystemC modules of 
the candidate components to present their functionality during
system-level simulation. It can automatically detect reconfiguration 
request and trigger the reconfiguration process when necessary.

• DRCF template: The DRCF template is an incomplete SystemC 
module, from which to create the DRCF component.

The SystemC based extensions [3] are highlighted in the modified 
version of the System-Level Design diagram as shown in Figure 5-4. The
three focuses are estimation support, DRCF modelling method and system
simulation.

• The estimation approach [4] is based on a prototype tool that can
produce the estimates of software execution time on an instruction-set
processor (ISP) and the estimates of hardware execution time and 
resource consumption on an FPGA. The estimates provide
information for system partitioning and selection of candidate
components. When a full SW/HW/RHW system partitioning is
considered, traditional analysis methods and tools are still required.

• The DRCF modelling method [5, 6] focuses on the modelling of the 
reconfiguration overhead. Modelling the functionality of the 
candidate components that are mapped onto the reconfigurable 
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resources is not affected by the extension. Different features
associated with reconfiguration technology are not directly modelled.
Instead, the model describes the behaviour of the reconfiguration
process and relates the performance impact of the reconfiguration
process to a set of parameters that are extracted and annotated from
the reconfiguration technology. Thus, by tuning the parameters, 
designers can easily evaluate trade-offs among different technology
alternatives and perform fast design space exploration at the system
level.

• The system-level simulation is based on the transaction-level SystemC 
model and uses abstract workload and capacity models of application 
and architecture for performance evaluation and studying of 
alternative architectures and mappings.
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Figure 5-4. SystemC reconfigurability extensions for system-level design.

4. ESTIMATION APPROACH TO SUPPORT 

SYSTEM ANALYSIS 

System analysis is applied in two phases in the SystemC based approach.
In the first phase, it focuses on HW/SW partitioning and helps designers to 
create the initial architecture based on an agreed partitioning decision. The 
initial architecture sets the starting point from which the SystemC based
approach produces the system-level model for the architecture including the
DRCF component that is a corresponding SystemC model of the 
dynamically reconfigurable hardware with the modules to be implemented in
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it. In the second phase, system analysis focuses on studying the trade-off of 
performance and flexibility and helps designers to identify candidate 
components to be implemented in the dynamically reconfigurable hardware.
System analysis is performed by designers mainly based on their experience, 
which may not produce reliable results in all cases especially if designers
have to carry out system analysis from the scratch. In this section, an
estimation approach to support the work of system analysis is presented. 

The estimation approach focuses on a reconfigurable architecture in
which there is a RISC processor, an embedded FPGA, and a system bus as a
communication channel. It starts from function blocks represented using C-
language and produces the following estimates for each function block:
software execution time in terms of running the function on the RISC core, 
mappability of the function and the RISC core, hardware execution time in
terms of running the function on the embedded FPGA, and resource 
utilization of the embedded FPGA. The framework of the estimation
approach is shown in Figure 5-5.
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Figure 5-5. Estimation framework.

Blocks inside the shaded area are the functions performed by the
estimation approach, and data representations used by the estimation 
approach. Detailed explanations are given in the following sections. Outside
the shaded area, the blocks with the name “Function block” serves as input 
to the estimation approach. These function blocks can either be the results
from system decomposition, with the granularity decided by designers, or
they can be the corresponding SystemC modules from the initial 
architecture. In the former case, the estimation approach is meant for the first 
phase of system analysis, which is to help designers to make trade-off 
between hardware implementation and software implementation. In the latter
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case, the estimation approach is meant for the second phase of system
analysis, which is to help designers to evaluate the trade-off between 
performance and flexibility when comparing fixed hardware implementation
and dynamically reconfigurable hardware implementation.

Estimates of hardware resource utilization of the modules are fed into the
SystemC extension as separate parameters.

4.1 Creation of Control/Data Flow Graph from C Code 

Control/data flow graph (CDFG) is a combined representation of data 
flow graph (DFG), which exposes the data dependence of algorithms, and 
control flow graph (CFG), which captures the control relation of DFGs. C-
based function block is used as the starting point and CDFG is used as the 
intermediate representation of the estimation approach. SUIF compiler [7] is
used as a front-end tool to analyze the C code, and a purpose-specific code 
converter is used to transform the SUIF intermediate representation into
CDFG. The main process in conversion is to find basic blocks, which 
contain only sequential executions without any jump in between, and to map
each of them onto a single DFG and the jump statements between the basic 
blocks onto the control relation of DFGs. The characteristics of the C
functions are studied though profiling, and the profiling data are attributes in
the target CDFG.

4.2 High-Level Synthesis-Based Hardware Estimation 

A graphical view of the hardware estimation is shown in Figure 5-6.
Taking the CDFG with corresponding profiling information and a model of 
embedded FPGA as inputs, the hardware estimator carries out a high-level
synthesis-based approach to produce the estimates. 

Main tasks performed in the hardware estimator as well as in a real high-
level synthesis tool are scheduling and allocation. Scheduling is the process
in which each operator is scheduled in a certain control step, which is 
usually a single clock cycle, or crossing several control steps if it is a multi-
cycle operator. Allocation is the process in which each representative in the 
CDFG is mapped to a physical unit, e.g. variables to registers, and the
interconnection of physical units is established. 

The embedded FPGA is viewed as a co-processing unit, which can 
independently perform a large amount of computation without constant 
supervision of the RISC processor. The basic construction units of the 
embedded FPGA are static random access memory (SRAM)-based look-up 
tables (LUT) and certain types of specialized function units, e.g. custom-
designed multiplier. Routing resources and their capacity are not taken into 
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account. The model of the embedded FPGA is in a form of mapping-table.
The index of the table is the type of the function unit, e.g. adder. The value 
mapped to each index is hardware resources in terms of the number of LUTs
and the number of specialized units, required for this type of function unit. 
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Figure 5-6. High-level synthesis-based hardware estimation. 

As-soon-as-possible (ASAP) scheduling and as-late-as-possible (ALAP)
scheduling [8] determine the critical paths of the DFGs, which together with 
the control relation of the CFGs are used to produce the estimate of 
hardware execution time. For each operator, the ASAP and ALAP
scheduling processes also set the range of clock cycles within which it could 
be legally scheduled without delaying the critical path. These results are 
required in the next scheduling process, a modified version of force-
directed-scheduling (FDS) [9], which intends to reduce the number of 
function units, registers and buses required by balancing the concurrency of 
the operations assigned to them without lengthening the total execution time. 
The modified FDS is used to estimate the hardware resources required for 
function units.

Finally, allocation is used to estimate the hardware resources required for
interconnection of function units. The work of allocation is divided into 3
parts: register allocation, operation assignment and interconnection binding.
In register allocation, each variable is assigned to a certain register. In
operation assignment, each operator is assigned to a certain function unit. 
Both are solved using the weighted-bipartite algorithm, and the common 
objective is that each assignment should introduce the least number of 
interconnection units that will be determined in the last phase, the 
interconnection binding. In this approach, multiplexer is the only type of 
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interconnection unit, which ease the work of interconnection binding. The
number and type of multiplexers can be easily determined by simply 
counting the number of different inputs to each register and each function
unit.

4.3 Mappability Based Software Estimation 

Software estimator produces two estimates: software execution time, and 
mappability of an architecture-algorithm pair. A profile-directed operation-
counting based static technique is used to estimate software execution time.
The architecture of the target processor core is not taken into account in the 
timing analysis. The main idea of estimating the software execution time is
as following. Firstly, the number of operations with each type is counted
from the CDFG. Then, each type of operation nodes in the CDFG is mapped 
to one or a set of instructions of the target processor in a pre-defined manner. 
Then the total number of instructions is calculated from the results of the
first two steps simply using multiplication and addition. Finally, with the 
assumption that these instructions are performed with an ideal pipeline, the 
software execution time is the multiplication result of the total number of 
instructions and the period of the clock cycle. 

Mappability of an architecture-algorithm pair means the degree of 
matching between resources provided by the processor architecture and the 
requirements described by the algorithm [10]. The mappability estimate is 
calculated via a set of correlation functions, which take into account the 
instruction set, register structure, bus efficiency, branch effect, pipeline 
efficiency and parallelism. CAMALA is a prototype tool to study
mappability of an architecture-algorithm pair. It takes CDFG as input and 
produces estimate of mappability within the range from 0 to 1. An optimal 
mapping is an exact mapping with a value of one, and both over-required 
resources and under-utilized resources are reflected as poor mapping results
with values near zero.

4.4 Candidate Component Selection 

Candidate component selection is an application-dependent procedure.
When global resource saving is an issue, the resource estimates are 
important inputs. However, to make justified decisions, other information,
such as power consumption should be included as inputs. More importantly,
control/data dependence between candidate components should be analyzed. 
Obviously, there should be control dependence between candidate 
components that are mapped to different contexts. Current approach does not 
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include automated tools to support the analysis. Other tools and manual 
analysis are the solutions for now. 

5. MODELLING RECONFIGURATION OVERHEAD 

The modelling method of the DRCF focuses on how to represent the
reconfiguration overhead and how to reveal its performance impact during
system simulation. 

The candidate components that are mapped onto the reconfigurable 
resources are hardware accelerator tasks. Reconfiguration is required when a 
called task is not loaded in the reconfigurable resources. The difference of 
handling incoming messages between tasks mapped to a fixed accelerator
and tasks mapped to reconfigurable resources is shown in Figure 5-7. 
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Figure 5-7. (a) Handling incoming messages as a fixed hardware accelerator (b) Handling
incoming messages as a reconfigurable task.

The idea of the DRCF is to automatically capture the reconfiguration
request and trigger the reconfiguration. In addition, a tool to automate the
process that replaces candidate components by a DRCF component is
developed, so system designers can easily perform the test-and-try and the 
design space exploration process is easier. In order to let the DRCF
component be able to capture and understand incoming messages, the 
SystemC modules of the candidate components must implement the read(),
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write(), get_low_addr() and get_high_addr() interface methods showed in 
the code below.

class bus_slv_if: public virtual sc_interface 
{
  public:
     virtual sc_uint<ADDW> get_low_addr() =0; 
     virtual sc_uint<ADDW> get_high_addr() =0; 
     virtual bool read(...) =0; 
     virtual bool write(...) =0;
};
The DRCF component implements the same interface methods and 

conditionally calls the interface methods of target modules. In fact, these 
interface methods are very common for bus slave modules in transaction-
level models.

5.1 Parameterized DRCF Template 

The performance impact of using the dynamically reconfigurable 
hardware is dependent on the underlying reconfigurable technology.
Products from different companies or different product families from the 
same company have very different characteristics, e.g. size of reconfigurable
logic and granularity of reconfigurable logic.

Different features associated with the reconfigurable technology are not 
directly modelled in the DRCF component. Instead, the DRCF component 
contains the functions that describe the behaviour of the reconfiguration
process and relates the performance impact of the reconfiguration process to
a set of parameters. Thus, by tuning the parameters, designers can easily
evaluate the trade-offs between different technologies without going into 
implementation details.

In the SystemC extension, a parameterized DRCF template is used. At 
the moment, the following parameters are available for designers:

• The memory address, where the context is allocated in the extra DRCF 
memory.

• The length of the required memory space, which represents the size of 
the context.

• Delays associated with the reconfiguration process in addition to delays
of memory transfers. 
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5.2 DRCF Component and RSoC Model 

A general model of a reconfigurable system-on-chip (RSoC) is shown in 
Figure 5-8. The left hand side depicts the architecture of the RSoC. The right 
hand side shows the internal structure of the DRCF component. 

The DRCF component is a single hierarchical SystemC module, which 
implements the same bus interfaces in the same way as other HW/SW 
modules. A configuration memory is modelled, which could be an on-chip 
or off-chip memory that holds the configuration data. Each candidate 
component (F1 to Fn) is an individual SystemC module, which implements
the top-level bus interfaces with separate system address space, and is
instantiated inside the DRCF component. Each candidate component has two 
extra ports. One is a DONE signal port routed to the Configuration
Scheduler (CS). The port is used to acknowledge the CS that this task can be 
safely swapped out. The other is connected to a shared memory that saves 
the data to be preserved during reconfiguration. The Input Splitter (IS) is an 
address decoder and it manages all incoming Interface-Method-Calls 
(IMCs). The CS monitors the operation states of the candidate components 
and controls the reconfiguration process. 
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Figure 5-8. System-level Modelling of Reconfigurable SoC.

The DRCF component works as following. When the IS captures an IMC 
to a candidate component, it will hold the IMC and pass the control to the 
CS, which decides if reconfiguration is needed. If so, the CS will call a
reconfiguration procedure that uses the parameters specified in step 1 to 
generate memory traffic and associated delays to mimic the reconfiguration
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latency. After the CS finishes the reconfiguration loading, the IS will 
dispatch the IMC to the target module. If the module cannot be activated at 
the moment, a message of request to reconfigure the target module will be
put into a FIFO queue and the IMC will return with the value of FALSE.
When a module finishes its operation, it will send a DONE signal to the CS, 
and the CS will check if there is any waiting message in the FIFO queue. If 
so and it is possible to activate the waiting module, the CS will call the
reconfiguration procedure. 
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Figure 5-9. Reconfiguration state diagram. 

The context switching with pre-emption is a common approach in 
operating systems, the implementation of which is easy due to the regularity
of the register organization. In the DRCF component, the pre-emption of a
running module is not supported, since it would require a very costly 
implementation of the hardware module in order to store the internal 
registers and states of the module.

The modelling method is for non-blocking IMCs. The method supports
the use of blocking, but the system bus will be blocked when a called 
candidate component is not loaded and unblocked when the reconfiguration 
is done. The reason is to maintain synchronization between the SW initiators
and the candidate components.
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While this is a generic description of the context switching process, 
designers can use different CS models when candidate components are
mapped to different types of reconfigurable devices, such as partial 
reconfiguration and single-context device. The auto-transformer, which is
presented in the following sections, uses a context switching mechanism for
single-context devices. 

There is a state diagram common to each of the candidate components. 
Based on the state information, the CS makes reconfiguration decisions for
all incoming IMCs and DONE signals. A state diagram of partial 
reconfiguration is presented in Figure 5-9. For single context and multi-
context reconfigurable resources, similar state diagrams can be used in the
model. The main advantage of the modelling method is that the rest of the 
system and the candidate components need not to be changed between a 
static approach and run-time reconfiguration approaches, which makes this 
method very useful in making fast design space exploration.

5.3 Automatic Transformer for SystemC Based 

Extensions 

The DRCF transformer is a tool that can automatically transform the 
SystemC code of a static system to the SystemC code of a reconfigurable 
system. It takes two inputs. One is SystemC models of the initial
architecture, and another is a script file that specifies which modules should 
be moved into the DRCF component and all the other relative information,
e.g. parameters for the DRCF template. 

Outputs of the program are the modified architecture as well as SystemC 
models of the DRCF component and the memory associated with it. A
Makefile for compilation is an optional output.

A UML diagram of the static structure of the DRCF transformer is shownf
in Figure 5-10. 

For the sake of brevity, operations and attributes of classes are ignored in 
the diagram. The transformer uses Opencxx [11] as the basic C++ parser to
analyse the SystemC code. The ClassHandle and SystemCClassHandle

manage the analysed information. A lex&bison-based parser is developed to
read the user script file and the results are stored using class DRCFReqInfo.
The class DRCFTemplateHandle is responsible for generated the SystemC
models of the DRCF component and the memory block associated with it.
Finally, DRCF_driver is the kernel that controls the process of r

transformation.
The flow of the transformation is shown in Figure 5-11. In the first phase, 

each module that is a candidate component to be implemented in 
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reconfigurable hardware is analyzed. The used bus interface and the bus
ports are analyzed so that the DRCF component can implement the same
interfaces and ports. After modules are analyzed, the transformer moves to
analyze each instance of the modules in architecture. Firstly, the declaration 
of each instance is located and then the constructors are located and copied 
to a temporary database. When all instances are analyzed, the DRCF
component is created from a DRCF template.
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Figure 5-10. Software specification of DRCF transformer in UML. 

The ports and interfaces analyzed in the first phase are inserted to the 
DRCF template and then the component to be implemented in dynamically
reconfigurable hardware is instantiated according to the declaration and 
constructor located in the second phase. The DRCF template contains a 
context scheduler to mimic the context switching process, an input splitter 
that routes data transfers to correct instances, and instrumentation processes.
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Figure 5-11. Transformation flow.

During simulation, data related to reconfiguration latency will be
automatically captured by the DRCF component and saved in a text file for
analysis. A VCD (Value Change Dump) file will also be produced by the 
DRCF component, so the configuration effect can be analysed via standard 
waveform viewers that can read VCD format file.

5.3.1 Example of the Transformation Process 

A simple example of what will be done to the SystemC modules is shown
next. The initial static system includes three hardware accelerators, hwacc1,
hwacc2, and hwacc3. There is no direct control dependence among the three 
modules. The estimation results show that the hwacc2 and hwacc3 consume
about equal amount of resources as hwacc1. The decision is to assign
hwacc1 to one context, and the other two to a second context. 

A fragment of code below is a part of the hardware accelerator, hwacc1,
which is modelled using SystemC. 

class hwacc1: public sc_module, public bus_slv_if 
{
 public: 
    sc_in_clk clk; 
    sc_port<bus_mst_if> mst_port; 
    ... 
};
In the first phase of operation, the ports and interfaces of the module are 

analyzed. In this case, the module implements one interface bus_slv_if,ff
which is the slave interface of a bus; the module has two ports clk and k

mst_port, which represent the clock input and the master interface of a bus. 
Next, the top-level module is analyzed to understand the structure of the
system. The code below shows the instantiation of the module in a 
hierarchical module named top.
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SC_MODULE(top)
{
  sc_in_clk clk; 
  hwacc1 *hwa; 
  hwacc2 *hwb; 
  hwacc3 *hwc; 
  bus *system_bus;
  SC_CTOR(top){
     system_bus = new bus("bus"); 
     system_bus->clk(clk);
 /* signal bindings for hwacc1 */ 
     hwa = new hwacc("HWA",HWA_START,HWA_END); 
     hwa->clk(clk); 
     hwa->mst_port(*system_bus);
     system_bus->slv_port(*hwa);
 /* signal bindings for hwacc2 */ 
   hwb = new hwacc("HWB",HWB_START,HWB_END); 
     hwb->clk(clk); 
     hwb->mst_port(*system_bus);
     system_bus->slv_port(*hwb);  
 /* signal bindings for hwacc3 */ 

hwc = new hwacc("HWC",HWC_START,HWC_END);
     hwc->clk(clk); 
     hwc->mst_port(*system_bus);
     system_bus->slv_port(*hwc);
  }
};
After the analysis of the top-level module, the declarations, constructors,

the port bindings and the interface bindings in terms of the module hwacc1,
hwacc2, and hwacc3 are removed. This hierarchical module is then updated 
to use the DRCF component instead of the hardware accelerators. The 
modified code is shown below. Notice that the declaration, the constructor
and the bindings are modified for a new instance of drcfff

SC_MODULE(top)
{
  sc_in_clk clk; 
  drcf *drcf_inst_1;
  bus *system_bus;
  SC_CTOR(top){
     system_bus = new bus("bus"); 
     system_bus->clk(clk);
     drcf_inst_1 = new drcf("DRCF1"); 
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    drcf_inst_1->clk(clk);
    drcf_inst_1->mst_port(*system_bus); 
    system_bus->slv_port(*drcf_inst_1); 
 } 
};
The actual DRCF component created from the DRCF template is shown 

in the code below. In the code, the declarations, constructors and the
interface bindings of the hardware accelerators are copied from the original 
top-level module. The port bindings are automatically modified. The text 
that is in italics is the code that was dynamically created from the 
information saved for the instances of the modules hwacc1, hwacc2, and 
hwacc3. What was already in the template is the arb_and_instr() method
that handles the context scheduling and instrumentation. The instrumentation 
is a SystemC process that keeps track of the configuration status.

class drcf: public sc_module, public bus_slv_if 
{
 public:
    sc_in_clk clk; 

sc_port<bus_mst_if> mst_port;
    hwacc1* hwa; 
    hwacc2* hwb; 
    hwacc3* hwc; 
    SC_HAS_PROCESS(drcf); 
    void arb_and_instr(); 

sc_uint<ADDW> get_low_addr();
    sc_uint<ADDW> get_high_addr(); 
    bool read(...); 
    bool write(...);
    SC_CTOR(drcf){ 
      SC_THREAD(arb_and_instr); 
      sensitive_pos<<clk; 
   /* signal bindings for hwacc1 */
      hwa = new hwacc("HWA",HWA_START,HWA_END);
      hwa->clk(clk);
      hwa->mst_port(*mst_port); 
  /* signal bindings for hwacc2 */ 
    hwb = new hwacc("HWB",HWB_START,HWB_END); 
      hwb->clk(clk);
      hwb->mst_port(*mst_port); 
  /* signal bindings for hwacc3 */ 
    hwc = new hwacc("HWC",HWC_START,HWC_END); 
      hwc->clk(clk);
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       hwc->mst_port(*mst_port);
ContextInfo* cont0 = new ContextInfo(...);

     cont0->insert_module(hwa); 
     ContextInfo* cont1 = new ContextInfo(...);
     cont1->insert_module(hwb); 
     cont2->insert_module(hwc); 
     contexts.push_back(cont0); 
     contexts.push_back(cont1); 

}
};

6. USING WORKLOAD MODELS FOR DESIGN 

SPACE EXPLORATION 

As reconfigurability adds a new dimension to the design space, a reliable
method of analyzing performance of the resulting system is needed. An 
architecture that fits well to the application at hand avoids many design
problems in the later detailed design stages, but it is difficult to find the
bottlenecks in the architecture early enough.

Traditionally, models of system or sub-system start with a purely 
behavioural description which contains only the functionality to be 
performed. Then, the models are gradually refined towards a certain type of 
implementation, and concrete information is inserted into models in each 
refinement. However, when designers have an initial architecture in mind at 
the beginning of design, the performance simulation of it cannot be
performed until each model is iteratively refined to a level of abstraction,
which contains enough low-level information from the architecture point of 
view. The traditional modelling method does not only delay the performance 
simulation of the architecture, but it also makes difficult the exploration of 
design space in terms of looking for alternative architectures.

Using SystemC as a system modelling language provides the opportunity
to perform architecture-space exploration in the early phase of design. This 
is achieved using SystemC transaction-level workload operation models. 
The workload model separates the computation and communication. At the
transaction level, the load of computation is represented using timed 
information either cycle accurate or not, and load of communication is
represented using combined factors, such as type of transaction, bandwidth 
of bus, latency of accessing memory, behaviour of bus arbiter and so on. The
timing information of computation could be the estimate from a supporting
tool, such as the estimation approach introduced in the preceding section, or
from designers’ experience. The factors related to the communication are 
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architecture-dependent and could be set as parameters. Thus, by tuning these
parameters in performance simulation, the best architecture in terms of 
certain performance aspect could be easily found. 

The following code is a simple example that models the computation 
latency of a hardware accelerator. The macro DELAY_CYCLES can be givenS

a different value when the task is mapped to a different kind of processing
unit.

void accelerator::do_process(){ 
   remain_im = accu_im & mask_coeff; 
   /* delay DELAY_CYCLES cycles until write */
   for(delay=0;delay<DELAY_CYCLES;delay++){
    wait();
   } 
   if(remain_re>=64 && accu_re>0){
    data_out_short_real = accu_re/128 +1; 
   } 
}
The following code presents transaction-level communication from a

master to a memory block through a system bus. The delay associated with 
the bus arbitration process is irrelevant to the model of the master block. 

void accelerator::do_process(){ 
bus_port->read(mem_in_addr,&data_in);

   unpack(data_in, data_in_real, data_in_imag);
   rot_re[i1] = data_in_real.to_int();

rot_im[i1] = data_in_imag.to_int();
}
At the Architecture Definition the best architecture has to be searched

using iterative design and modelling. System-level performance simulations
can be performed by building workload models of the application in order to
simulate them on candidate architectures. The developed SystemC 
architecture and workload modelling and simulation approach is depicted in 
Figure 5-12. 

It operates on transaction-level of abstraction. The simulation results are
estimates of computational complexity of each block, estimates of 
communication and data storage requirements, and characteristics of the
architecture and the mapped workload. 

The workload model at transaction level contains information about how
long each processing stage takes and how it communicates with other
processes. The communication can be modelled using SystemC resources 
such as ports, interfaces and channels. The initial architecture is derived 
from the application analysis results. To get the full benefit of this modelling
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scheme, utilization of each resource of the architecture will be measured in
terms of e.g. idle cycles, data waiting cycles and operation cycles.
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Figure 5-12. Principle of transaction-level performance simulation. 

Workload models are used to generate load on the architecture by
mapping the functional operations to processing elements. Communication
and synchronization of processes and processing elements has been 
implemented using part of the memory as communication registers. 

The workload and architecture models can be refined during simulations.
Some system characteristics and load effects can easily be adjusted by
modifying such parameters as clock frequencies, bus widths, latencies of 
memory operations and speed-up factors that can be used to model various 
candidate implementations of parallelism or to model speed-up of hardware
accelerator implementations etc. These refinements are continued until the 
resource utilization rates that are acceptable for the application are reached.

7. CONCLUSIONS

The extensions to the SystemC for supporting the design of SoCs 
incorporating reconfigurable parts are described in this chapter. The 
extensions are based on standard features of the SystemC 2.0.

SystemC encapsulates C/C++ descriptions of algorithms into an 
implementation neutral system model by exploiting either standard or user
defined communication mechanisms, e.g. different types of channels. 

One extension is the methods and prototype tool support for the
estimation of software execution time on an ISP and hardware execution
time and resource consumption on an FPGA, which provides information for
system partitioning and selection of candidate components for
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reconfigurable design. Traditional analysis methods and tools are required in 
a full SW/HW system partitioning. 

Another extension is the DRCF modelling method that can automatically 
detect the reconfiguration request and model the reconfiguration overhead. 
This technique allows for fast design space exploration, since explored 
modules can be easily switched between fixed and reconfigurable modules. 
A prototype transformation tool is provided to help to generate the DRCF 
SystemC model. The reconfiguration latency is derived from a few
parameters, which can be adjusted by designers in design space exploration
step.

The system-level simulation is based on the transaction-level SystemC 
model and uses abstract workload and capacity models of application and 
architecture for performance evaluation and studying of alternative
architectures and mappings.

The main benefit of the extended SystemC based approach is that it 
enables modelling and performance evaluation of a system containing 
reconfigurable parts already at the system level before devoting efforts to the 
detailed and implementation design.
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Chapter 6 

OCAPI-XL BASED APPROACH 

Miroslav upák and Luc Rijnders
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract: This chapter describes the OCAPI-XL based modelling techniques and tools
that support the design of reconfigurable systems-on-chip (SoC). To allow 
modeling of reconfigurability features at system level, we developed: 1) new 
software process type in OCAPI-XL, 2) coupling of OCAPI-XL to SystemC
for co-simulation, and 3) context switching from one resource towards another
(software, reconfigurable hardware). 

Key words: Configuration overhead; context switching; design space exploration; dynamic
reconfiguration; estimation; mapping; partitioning; reconfigurable;
reconfigurability;  SystemC;  OCAPI-XL; system-on-chip. 

1. INTRODUCTION

Heterogeneous HW/SW systems on a chip (SoC) present one of the vital
challenges for design methodologies of today. OCAPI-XL (OXL) is a C++ 
based design environment for development of concurrent, heterogeneous
HW/SW applications. It abstracts away the heterogeneity of the underlying
platform through an intermediate-language layer that provides a unified view 
on SW and HW components. The language is directly embedded in C++ via 
a creatively designed set of classes and overloaded operators [1], and has an 
abstraction level between assembler and C.

OXL’s design-flow, as depicted in Figure 6-1, starts at high (typically
C/C++) level and goes all the way down to the implementation in a sequence
of incremental steps.
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Figure 6-1. OCAPI-XL design-flow: [a] single-threaded C++ specification; [b]
parallelisation; [c] modelling of architecture constraints, and [d] refinement to OCAPI-XL
embedded language.

The OXL design flow can be divided as follows:
1. Identification of hotspots, i.e. heavily used parts of code, where

parallelisation would be beneficial. (Figure 6-1[a]). This can be done
using C/C++ tools, such as quantify or gprofff

2. Partitioning of the single-threaded C/C++ code into parallel tasks
using OXL’s concurrency and communication primitives 
(Figure 6-1[b]) based on the analysis from the previous step. The main
goal is to get parallel C++/OXL code, functionally equivalent to the
single-threaded original. 

3. Mapping of the functional model from step 2 onto the architecture
described via a set of constraints, like number of SW-processors, 
relative HW-clock speed, or communication resource sharing
(Figure 6-1[c]). This step adheres to the Y-chart modelling
approach [2,3] (i.e. strict separation of functionality and architecture). 

4. Complete refinement of selected processes to OXL embedded 
language (Figure 6-1[d]), which can then be used in HW, as well as in
SW scenarios. 

At the stages from 2 to 4, OXL provides the designer with simulation
results as well as quantitative figures of system throughput, activity,
performance etc., that is, supplies with an important feedback directing new
refinement steps. Additionally, while it allows the designer to stay within the
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same C++ based framework during the whole design process, it also 
provides hooks for coupling other simulation engines or environments 
according to the designers' needs.

2. THREADED PROCESS OCAPI-XL’S EXTENSION

The OXL scheme of embedding a language within C++ removes the need 
for a completely new language-framework with supporting tools and 
environment, since one can reuse most of any existing C++ tools. On the 
other hand, it also creates two genuine problems: how to mix the new 
language with native C/C++ code and how to translate existing C/C++ code 
into the new language in an incremental way. These problems were 
addressed in OXL, the solution was however not general enough and failed 
for significant category of applications, as it will be shown later. This 
deficiency is addressed by the presented threaded-process extension. It 
closes the gap in the OXL design-flow, and provides a conceptually sound, 
generic link between the high-level C/C++ code and OXL Embedded 
Language (OXL-EL) also in the cases that were not handled properly by the 
existing techniques. 

The threaded-process extension will be presented as follows: first, we will 
show the existing technique for integration of C/C++ and OXL code,
pinpoint its weakness and indicate the proposed solution. Afterwards, we 
will describe the implementation of co-simulation library. 

2.1 OXL and C/C++ Code Integration

The distinguishing feature of OXL is the language providing a unified 
semantic model for HW and SW. The OXL language is embedded in C++, 
which allows easy integration of existing C++ code to OXL. Unfortunately,
it also makes the boundary between C++ and OXL code somewhat blurred 
to the designer, which can be quite dangerous, considering that we have co-
existing two semantically different languages. In this section, we will firstly
outline the basic idea of the OXL language implementation and its
interaction with C++; secondly, we will introduce the original technique for
integration of C++ and OXL code: the Foreign-Language Interface (FLI), 
and pinpoint its deficiency, and finally we will introduce the idea of a 
threaded process as a way to deal with the FLI deficiencies. 
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2.1.1 OXL Embedded Language

The notion of class, as a new type semantically equivalent to the 
predefined ones, is one of the central ideas of C++. It allows to use C++ as a
meta-language, where classes represent types of the new language and the
class’ code defines the new language semantically. Operator overloading 
adds a bit of syntactic sugar allowing to make such a language closer to C
syntax and easier to read or write. This embedded-language approach is used 
in OXL to implement the unified HW/SW language in a way sketched in
Figure 6-2. The so-called operator classes like addop represent the
constructs of the OXL-EL, and their member functions (like sim())
implement their semantic meaning. These classes do not directly execute 
their code, but rather create a runtime structure called heap, similar concept 
to a byte-code, which is later interpreted during simulation or code-
generation.

/* … Int is OXL type … */
Int a, b, c; 

/* … OXL code … */ 
label L; 
a = b+ c; 
jump_if(a, L); 

/* … simulation invocation … */ 
run(100); //-- just invokes the run()
//-- functions for operators on heap

C++ representation: heap and operators OXL code

addop
sim() a = b + c

jmpop 
sim()

if (a) 
 next = L; 

else … 

next

Xop

sim()

Xop

sim()

Xop

sim()

Heap creation

Heap interpretation

Figure 6-2. C++ representation of the OXL language.

Thus, C++ and OXL code can not be combined without any restriction.
The original method of combining C++ and OXL code was the FLI
mechanism.

2.1.2 Foreign-Language Interface Mechanism

The FLI mechanism is the original interface for integration of C++ code
into OXL-EL. Conceptually, an FLI is just another operator class of the
OXL-EL, but without its functionality fixed. Rather, it can be specified by
the designer via overriding of the virtual run() function of the fli class.
Consequently, an FLI object is seen from OXL simulation engine as a single, 
atomic instruction into which inputs are passed, and from which outputs are
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read (Figure 6-3). There is no limitation of the amount of the code within the 
run() function. One can read a file or a socket, write to a terminal,
communicate with another system process, etc. The possibilities are without 
limits [4] – almost.

The FLI mechanism has an important limitation: for OXL, the code within 
the fli::run() function must be a single, atomic instruction. This
limitation prohibits usage of other OXL instructions (e.g., message read or
semaphore post) in the code. We found it acceptable for data-dominant 
applications, where large parts of code behave like an atomic instruction so 
that they can easily be split into a few FLI classes. These FLI objects can 
then be manipulated by the designer at will, e.g., grouped into processes, 
annotated with timing info, mixed with refined code, etc.

class MyFli : public fli {
  void run() { 

b = a + 1; // MyFli meaning 
  }
};
/* … OXL code … */
Myfli mf; Int a,b;
call(mf, fliIn(a), fliOut(b));

C++ representation: fliop call OXL code with an FLI  call

fliop(mf)
sim()

//import a
mf.run();
//export b

next
b = a + 1;

Figure 6-3. OXL representation and simulation of an FLI object.

In the case of control-oriented applications, where the potential atomically
executable parts of code are much smaller, the FLI technique becomes quite 
controversial, since it typically results in either a few big FLI objects, or 
many small ones. In the first case, no OXL primitives can be used inside the 
run() method so that all OXL-EL features are unavailable to the designer.
In the second case, the code atomisation requires a lot of tedious, error-prone 
work leading to a refined code, which is hard to read and maintain. To deal 
with such cases, an alternative mechanism for the combination of unrefined 
C++ and OXL-EL was needed. 

2.1.3 Threaded Processes Extension: Idea 

OXL-EL has its own way to deal with concurrency via heap structure and 
operator classes. Of course, it is not sufficient to implement processes with
native C/C++ thread of control. In order to introduce such processes into 
OXL, we must devise a way of extending the OXL kernel with some thread-
library primitives, since only such primitives can provide the support for
handling of arbitrary C/C++ code concurrently. Additionally, the extension
must preserve OXL kernel’s complete control of the simulation to ensure its
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correctness, regardless whether the thread library is pre-emptive or not. The 
ultimate goal of such an extension it to provide a conceptual way for the 
combination of plain C/C++ code and OXL concurrency primitives without 
the need to refine every line of code into OXL-EL. It must allow one to use
the full set of OXL communication and synchronization primitives inside the 
threaded process so that the high-level modelling features of OXL can be
used. Its basic idea can be demonstrated in Figure 6-4, where the original 
C++ code is split into two OXL threaded processes, communication via 
OXL communication primitives wrapped in C functions. The splitting of 
C++ code in the case of threaded processes needs only be driven by 
parallelization requirements, and not from the code-atomicity demand of the 
FLIs.

[a]
[b]

thread A

thread B t

OXL process A

OXL process A 

OXL communication 
primitives wrapped 
inside a C-function 

Figure 6-4. Threaded processes from user’s point of view. 

2.2 Thread Process Extension: Implementation 

Requirements

There are, in principle, three essential requirements for the 
implementation of threaded-process extension: 

1. Ease of use: ideally, the FLI-like API (i.e. requiring to derive from a
class and override a virtual function) should be provided.

2. Backward compatibility: should not influence any existing OXL code. 
Ideally the extension should be implemented as a plug-in. 

3. No restriction on the C/C++ code within the threaded processes 
(unless imposed directly by the underlying thread library). 

Next sections describe, how SystemC library can be used for 
implementation of the threaded process extension compliant with the above-
mentioned requirements.
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3. SYSTEMC IMPLEMENTATION OF OCAPI-XL 

THREADED PROCESS EXTENSION

SystemC (SC), in principle, provides an implementation of a thread 
library bundled together with an event-driven simulation engine with notion 
of virtual time. Thus SC can be used for implementation of the threaded-
process extension with the additional bonus of automatically having an
OXL/SC co-simulation environment. Such an environment brings together
the advantages of OXL (architecture-modelling features, or OXL-EL), and 
SC (de-facto-standard modelling environment with a significant tool
support). There is one additional requirement for the implementation (on top
of the three presented in the previous section): the underlying code should 
only use the standardized API of SC and avoid any implementation-specific 
features (like, the scheduler call-back function present in the OSCI reference
implementation) to make the ensuring OXL/SC environment portable. 

The basic structure of the OXL/SC co-simulation environment is shown in
Figure 6-5.

SystemC simulation kernel (master) 

SC
C++

SC 
C++

SC
C++

2. OXL simulation environment

OXL 
EL 

OXL 
EL

SC SCSC

1. SC simulation environment 

OXL
EL 

OXL 
PRO
XY 

OXL simulation kernel (slave) 

SC

3. XL/SC process part

Figure 6-5. OXL/SC co-simulation environment structure. 

It consists of three domains within the SC environment: 
1. The native SC processes controlled only by the SC simulation kernel. 
2. The OXL domain running in a single SC thread and controlled by the

OXL kernel acting as a slave to the SC simulation kernel.
3. XL/SC processes (i.e. equivalents of the previously described threaded

processes) running C++/SC code with access to OXL’s
communication and synchronization primitives. These processes 
contain internally two parts: the SC part running the C++ or SC code, 
and a small OXL proxy process, which is active when the process is 
executing an OXL synchronization/communication primitive.
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3.1 OXL Environment within SC

The essential idea of the common OXL/SC environment is to let the
whole OXL part run in a single SC thread and to use SC synchronization 
mechanisms inside a modified OXL simulation kernel to synchronize with 
the rest of the (SC) world. Since the OXL kernel is single-threaded (the
concurrency behaviour is implemented via the heap and operator classes),
there are no thread compatibility problems created by this setup. 

3.1.1 XL/SC Process Implementation 

The implementation of the threaded SC/XL process is the crucial part in 
the SC/XL link. Internally, it consists of two co-operating entities: OXL
proxy process and SC thread. The underlying idea is rather straightforward:
the process is executing either C++/SC code in SC domain, or OXL 
concurrency primitive in the OXL domain. In the first case, it is controlled 
by the SC simulation kernel and is of no interest for the OXL simulation 
kernel except for its local time (to avoid possibility of anti-causal simulation 
when OXL scheduler advances its time). In the second case, it is inside the 
OXL environment, executing a communication/synchronization statement 
requested from the C++/SC code, and for that period of time the 
corresponding SC thread is simply blocked inside SC kernel. The complete 
scheme is shown in Figure 6-6.

1. resume SC 

2. wait for SC 

3. XL dyn-op 

again/done 

set requested XL dyn-op
restart XL 

suspend SC 

C++/SC

code

SC thread XL/SC proxy process 

XL synchronization 
or communication 

primitive 

[a] [b] 

Figure 6-6. XL/SC process implementation via [a] OXL proxy process and [b] SC thread.

The interaction between OXL proxy and SC-thread parts deserves a closer 
look. The proxy process uses three new operator classes introduced in this
co-simulation library:
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1. First one, capable to restart the corresponding SC thread 
(Figure 6-6[a1]).  

2. Second one, waiting for the response from SC-thread keeping the
proxy process blocked inside the OXL domain (Figure 6-6[a2]). 

3. Third one, whose contents can be dynamically changed according to 
the operation requested from the SC-thread (Figure 6-6[a3]), performs 
the currently set operation inside the OXL domain. 

With these new operators, it is possible to define the OXL proxy process 
interacting with the SC thread as shown in Figure 6-6[a]. When we look at 
the OXL proxy process/SC-thread interaction from the SC side, it goes over
following sequence of steps: 

1. The SC-thread starts in a suspended state and waits till it is not 
resumed from the OXL proxy process. 

2. After resumption, the SC-thread runs until it ends, or a function 
invoking an OXL communication/synchronization primitive is called. 
In that case, it updates the dynamic operator in the proxy process with
information about the requested XL primitive operation, restarts the
proxy process and suspends itself, until awakened again from the OXL 
proxy process. As a side note: blocking and resumption of a SC thread 
can be achieved via simple dynamic event waiting/notification scheme 
available in SC 2.0 [5].

Finally, the presented scheme also requires come changes to the OXL
scheduler, since it has to take into account XL/SC processes.

3.1.2 OXL Slave Scheduler

The OXL scheduler must be slightly modified so it could take into
account the fact that the XL/SC processes can be outside of its control at 
certain moments during the simulation. To account for that, the event-
dispatch loop of the OXL scheduler may only be allowed to advance in time 
(i.e., dispatch event with a higher time-stamp than the one of the last 
dispatched event), if either no processes are in SC domain, or their local time 
is at least equal to the time of the to-be-dispatched OXL event (otherwise, an 
anti-causal simulation may happen, after some the XL/SC processes would 
return into OXL domain with an older time-stamp than event-dispatcher). A 
pseudo-code of the modified event-dispatch loop is shown in Figure 6-7. 
Also the new scheduler must hold some additional bookkeeping data about 
the currently running XL/SC processes. 
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void XLScheduler::ev_loop() {

while(true) { 

if(event_queue_XL.empty()) { 

      if (procs_SC.empty()) break; //-- event queue empty and no procs in SC 

      else wait(wake_up); //-- else wait till an SC process returns to XL 

    else {

      if(next_time_XL == time_SC) {//-- next XL event has current time-stamp? 

event_queue_XL.dispatch(); //-- we can dispatch it, since no event 

                                   //-- with a smaller time can be unprocessed 

      } else { wait(wake_up, next_time_XL – time_SC); }

    } 

  }

}

original OXL event-dispatch loop code

Figure 6-7. Modified OXL event-dispatch loop.

3.2 Alternative Threaded Process Implementations

SC is only one of possible thread environments suitable for
implementation of the threaded process extension. Essentially any threaded 
library can be used, employing a similar implementation strategy, i.e. C++
code running inside threads and controlled from proxy processes within
OXL environment. Also, the modified OXL scheduler can be simpler in 
such a case, since it does not have to run as a slave to other simulation 
kernel. We have successfully implement the threaded process extension with
pthread andd GNU pth libraries on various operating systems. 

4. SOFTWARE PROCESSES SCHEDULING 

EXTENSION

Performance of real life software is highly dependent on the operating
system it is running on. Especially, if multi-thread or multi-process software
is considered, the influence of the operating system's scheduler is highly 
influencing the overall performance. Since in OXL the system is described 
in a parallel communicating processes model, modelling software scheduling
will benefit the accuracy of the software performance model.

In the high-level software model of computation (procHLSW)
concurrency is considered at the processor level. This means that for every
process there is a separate processor assumed (see Figure 6-8). 
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procHLSW

P1

P2

P3

Figure 6-8. High-level software behavior over time. 

Naturally, in real life this will typically not be the case. In realistic 
software implementation there will be an operating system that allows all then
processes to be assigned to the same software processing resource. So from
the performance point of view the processes are not at all running
concurrently, but they are being sequentialized by the operating system 
scheduler onto the processing unit. To model such behaviour in the OXL 
performance model, a separate process type having this behaviour has been 
introduced: procManagedSW (see Figure 6-9). 

Figure 6-9. Sequentializing computation over time.

To be able to create a process of the type procManagedSW the designer
must first create a scheduling object. This scheduler will perform the actual 
sequentialisation of all the processes that will be attached to this object. The 
way this is done is defined in one of the member methods of this scheduling f
object. Currently a simple round-robin scheduler, a scheduler with
scheduling priorities and a priority scheduling with aging effect are
provided. Additionally, user can define its own scheduling objects to model
the behaviour of the scheduler present in the target operating system. OXL 
assumes a non-pre-emptive scheduler, so it is up to the processes to hand 
over control to the operating system. This can be done by either blocking on
a communication primitive of by allowing a context switch (by calling the 
sync_() call).

It is important to realize that switching between the different SW tasks is 
not penalty-free. It always takes certain number of time (and especially for
reconfigurable architectures) to change form one to another task. In order to 

proc Managed SW

P1

P2

P3
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come to most accurate performance results, context-switching overhead has 
to be considered in a performance model. This feature has been added to the 
OXL environment. User can define for every process created, extra context 
switching time (as an argument of the scheduler object, or using extra
setcsoverhead() method), which is then applied to that process during 
the OXL simulation.

5. BUS MODELING EXTENSION

The OXL high-level model consists out of concurrent tasks 
communicating with semaphores and/or message queues. Both have non-
blocking write (semaphore unlock, message send) and a blocking read 
(semaphore lock, message receive) accesses. When doing high-level system
modelling, the focus lies more in the functional correctness rather than the 
correct behaviour in the time domain. At this level, all communication 
channels are usually considered in parallel and without delay. Depending on
the targeted architecture, some of these channels can be mapped onto a
shared communication resource. As a consequence, transfers on these 
channels cannot occur at the same time anymore.

This section explains a bus model extension based upon distinct properties 
of processes types and communication primitives, going from high-level
communication features over bus sharing and access protocols onto a 
complete C++ model for a shared communication resource.

5.1 Modelling Bus Sharing

Connecting of software processor and the hardware by means of a certain
bus structure has always an implication on the performance of the system. A 
bus can usually not be shared by different tasks at the same time. So it is 
necessary to adapt the model in such a way that bus-sharing properties come 
into play. 

Bus sharing is very similar to task scheduling. In both cases one resource
(either processor or the bus) needs to be shared. This means that accesses
(processing or data transfers) will have to occur sequentially in time. We 
could construct a first model for the bus based upon the already present task
scheduling properties. By introducing scheduled dummy processes onto the
bus channels we obtain the required behaviour.

Our initial bus model consisted out of the bus writer and bus arbiter parts
(see Figure 6-10). 
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High level channelgg

Figure 6-10. Initial Bus Model.

5.1.1 Bus Writer Tasks 

A process manager will schedule tasks to ensure that at each moment 
maximum one writer has access to the bus. In order to reuse the already 
present scheduling properties, these tasks are software-like in behaviour. By 
not annotating any operations within these tasks, they are executed in virtual
zero time. By annotating a single bus access with fixed time duration, bus
transfer delays can be taken into account. 

5.1.2 Bus Arbiter

A bus arbiter is part of the communication resource itself. It is responsible
for deciding which task is allowed to communicate via bus. How this
decision is done differs from one bus architecture to another. Also,
depending on the type of bus, transfers could be a single value, or it could
mean transfer of a whole burst or values. It may very well be that the type of 
request issued to the arbiter influences the final decision.

The bus arbiter has a lot of similarities with a task scheduler, and to 
construct our model, we will actually use such a (native) construct to build 
our bus model. Since in our methodology the user is allowed to define his
own process manager, or scheduler, the new one can be created that acts like 
the real target bus arbiter.

5.2 Modelling Bus Access Protocol

To make our model even more accurate, we could replace the fixed time
annotation of one transfer with more exact value. In an actual transfer it is
the bus access protocol that makes that a transfer requires some time. But 
this access protocol may be different depending again on the type of transfer
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requested. In a burst-transfer it will most-probably not be necessary to 
include the overhead of the bus-request/acknowledge nor the time needed to 
reverse the direction of the bus (come out of tri-state).

These particularities will most probably not have such a great impact on 
the overall performance if this fixed timing annotation is properly chosen, 
but out of consistency, we could include the protocol in our model as well. 

To include the bus access protocol, we will add an additional task to either
the writer side, the reader side or at both sides. These tasks will model the
protocol for each transfer. Since these protocols are usually specified as 
hardware access schemes, the protocol task(s) will be of the hardware type. 
The final bus model including protocol modelling is graphically represented
in Figure 6-11. 

Figure 6-11. Final bus model block diagram.

6. HIGH-LEVEL MODELLING OF CONTEXT 

SWITCHING

When designing in OCAPI-XL, application code can be assigned to the
following process types:

• A high level abstraction for (scheduled) software targets (procHLSW, 
procManagedSW).

• Two abstractions for creation of ANSI-C software (procANSIC,
procMTHRC).

• A high level abstraction for hardware targets (procHLHW). 
• An abstraction for FSMD hardware targets based on OCAPI 1.0.

(procOCAPI1).
• A high level abstraction for integrating with SystemC (procSC). 
Assigning code to a process affects its simulation, inter-process 

communication and also code generation, which is the final step when 
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heading for an implementation of the design. At the early stages of the
project, the user usually works on simulations to obtain correct OCAPI-XL 
simulation results of the system. At this stage, the code is assigned to high 
level process types (procHLSW, procHLHW, procManagedSW). Later, the 
code is refined towards implementation targets, being either SW or HW.
During the refinement step, high-level SW processes have to be rewritten to 
procANSIC or procMTHRC types. This is to allow single threaded ANSI-C
code generation for procANSIC types and multi threaded ANSI-C code 
generation for procMTHRC processes. 

Processes, which target HW implementation, must first be refined to the
procOCAPI1 process type. Subsequently, a HDL code (VHDL, Verilog) is 
generated for each procOCAPI1 process.

6.1 Reconfigurable Context Switching Process

For reconfigurable processes, we consider relocating tasks from the 
reconfigurable logic to the ISP and vice versa. Therefore, the reconfigurable
processes should be specified both as SW and HW processes, as they can 
potentially be relocated to a different resource at run-time. 

The simulation model for task relocation described in the next subsection
supports high-level simulation of HW and SW processes, with an
opportunity of performance estimation, which takes the reconfiguration time
into account.

After refinement, HW and SW code generation can be done for each 
reconfigurable process, so that the process can be started either as HW or as
SW. The code to transfer state information is not automatically generated, 
and has still to be inserted explicitly by the designer when dynamic 
reconfiguration with state information (context) memory is needed. 

In OCAPI-XL, no parsing of code is done. Source code (ANSI-C for SW
targets, HDL for HW targets) is created for the parts of the system model 
where the OCAPI-XL objects are used. Generation of SW and HW 
implementations of communication primitives is also supported. 

6.2 Simulation Model for Task Relocation

The ability to (re)schedule a task either in hardware or software is an
important asset in a reconfigurable systems-on-chip. To support this feature,
a possible (high-level) implementation and management of 
hardware/software relocatable tasks in OXL have been investigated.

The proposed solution uses a high level abstraction of the task state 
information. The entire relocation process is illustrated in Fig. 6-12. In order
to relocate a task, the OS can send a switch message to that task, at any time
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(1). Whenever that signalled task reaches a switch point, it goes into an 
interrupted state (2). In this state, all the relevant state information of that 
switch point is transferred to the OS (3). Consequently, the OS will relocate 
that task to another processor. The task will be able to re-initialise itself 
using the state information it receives from the operating system (4). The
task resumes by continuing execution in the corresponding switch point (5).
It should be noted that a task can contain multiple switch points and that the 
state information can be different for every switch point. Furthermore, it is
up to the application designer to implement the (application dependent) 
switch point(s) in such a way that the state information that needs to be 
transferred is minimal.

OS 

relocation

switch signal (1) 

(4)(5)

(2) )

(3)(3)

SW task

HW task

Figure 6-12. Illustration of task relocation.

By modelling task re-scheduling, the application designer can verify on 
beforehand what the impact is for his particular system. And whether the 
system performance improvement is not affected too much by the re-location 
overhead, for example. However, the support for task relocation is not so
straightforward as one might expect. Several problems are rising, especially
if this task comes from a shared software processing resource (or task 
scheduler object). 

In this case the relocation of the task not only affects the behaviour of the
task itself, but also affects the behaviour of the task scheduler was running 
on, and thus affects all the tasks being scheduled by that scheduling object.

The OCAPI-XL methodology allows keeping track of a bunch of statistics
during simulation. By relocating a task, these statistics suddenly get a 
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different meaning. Therefore these statistics must be corrected so they keep 
the same meaning. 

A first simulation model for task relocation was developed in OXL. The 
OXL code below illustrates the example of coding context switching for a 
task P1, switching between the different contexts (procHLHW,
procManagedSW), and simulating its behaviour.

procDRCF P1("P1");

  //-- initial context: High-Level HardWare (default period of 10) 

  P1.context(HLHW);

  //-- second context: software under Round-Robin scheduler(RR)

  P1.context(ManagedSW, &RR);

  //-- next context: High-Level HardWare with period of 2 

  P1.context(HLHW, 2); 

{

    //-- here goes "normal" OCAPI-XL task code

 //-- upon this operator the task will switch itself 
 //to the next context 

    switchpoint();

    //-- here goes some more task code 

}

  //-- and run the simulation for 2000 cycles 

run(2000);

Within this model, it is in principle also possible to model resource
sharing at the hardware level, by replacing one task with another on the same
physical reconfigurable space and adding the appropriate contexts.

Prior to starting the simulation, for each relocatable task all the context 
information, meaning the processing resources the task will run on, and there
sequence must be known. If this sequence is known, a new operator, called 
switchpoint, forces the task to be relocated from the current processing
resource towards the next processing resource. This task moving also 
implies that all the statistics of the current context are finalized, and the 
statistics of the new context are initialised.

7. CONCLUSIONS

The extensions to the SystemC for supporting the design of SoCs
incorporating reconfigurable parts are described in this chapter. 
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Extension of the OCAPI-XL methodology towards introduction of the 
thread-level library as well as SystemC implementation of OCAPI-XL
threaded process are primarily related to system specification and system-
level simulation steps. For system specification step it provides the 
opportunity to consider not only C/C++ but also SystemC code, which 
becomes the standard specification language used in the industry. Mixtures 
of the C/C++/SystemC specifications are also possible. For system-level 
simulation step, the extension broadens the application scope to control
dominated applications, which were not possible to simulate with the
existing OCAPI-XL library. Secondarily, this extension affects also the
mapping step by providing novel communication and synchronization
primitives used within the threaded processes. Although the thread-level
library and SystemC implementation of OCAPI-XL threaded process 
extension has been developed in context of methodology for reconfigurable
SoCs, it is generally applicable to all kind of designs.

Software process scheduling extension enhances the system-level 
simulation step by providing a sequentialisation of software processes. As
recent reconfigurable architectures offer one or more processors
implemented as soft cores or embedded processors inside the reconfigurable
fabric, it is necessary to extend the software process execution modelling on 
these processors in OCAPI-XL. By introducing this extension, OCAPI-XL is
able to provide the means of modelling for both sequential and parallel 
execution of the processes. 

Extension of OCAPI-XL by bus model is related to system-level
simulation and mapping steps of the design methodology. As reconfigurable
architectures often use dedicated bus communication schemes, modelling of 
the bus behaviour provides the means for early performance estimation
during system-level simulation. The set of bus modelling related primitives 
introduced to OCAPI-XL provide sufficient means for expressing the 
system-level bus behaviour.

In order to cover one of the distinguishing features of reconfigurable 
architectures, modelling of dynamic reconfiguration is implemented in 
OCAPI-XL library. This includes providing new process characterized by
the ability to represent different contexts (different process types) and 
alternate them during high-level simulation. Inserting switch points specified 
by the designer in the high-level specification does alternation of the 
processes during simulation. This way the system-level simulation models 
the dynamic reconfiguration of selected processes in early stage of the
design and provides feedback about influence of different dynamic 
reconfiguration schemes on performance of the system. 
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MPEG-4 VIDEO DECODER 

Miroslav upák and Luc Rijnders
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium 

Abstract: The OCAPI-XL based approach was applied in the MPEG-4 video decoder
design case with aim to validate the system level reconfigurability extensions
on a typical multimedia application. The MPEG-4 case represents a scenario
where tasks are relocated between software and reconfigurable hardware
depending on the level of quality of service requested by the user.  
The MPEG-4 video decoder has been implemented on Xilinx Virtex-II Pro 
multimedia demonstration platform. 

Key words: Design space exploration; static reconfiguration; estimation; mapping;
partitioning; reconfigurable;  reconfigurability;  OCAPI-XL;  system-on-chip. 

1. MPEG-4 VIDEO DECODER IN A NUTSHELL 

Next-generation of mobile multimedia devices will provide a rich array of 
digital video and multimedia applications to enhance the end-user
experience. MPEG-1 and MPEG-2, the first two video standards from the 
Moving Pictures Experts Group (MPEG), were fundamental in creating
widespread acceptance of digital video formats. Their successor, MPEG-4, 
can be considered as the first true multimedia standard, taking an object
based approach for the coding and representation of natural or synthetic
audiovisual content [1,2,3]. It offers a flexible toolset, adaptable to a large
variety of requirements, while interoperability among different terminals is
guaranteed. The bitrates start at a few hundred bits for synthetic audio up to
hundreds of Mbps for the modelling and description of complex multimedia 
scenes.

The MPEG-4 natural visual decoder (video decoder) is a block-based 
algorithm exploiting temporal and spatial redundancy in subsequent frames.
It takes as input a bitstream, a sequence of bits representing the coded video 
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sequences, compliant with the ISO/IEC 14496-2 standard [4]. The bitstream
starts with identifying the visual object as a video object (other kinds, like 
still textures exist). This video object can be coded in multiple layers
(scalability). One layer consists of Visual Object Planes (VOPs), time 
instances of a visual object (i.e. frame). A decompressed VOP is represented 
as a group of MacroBlocks (MBs). Each MB contains six blocks of 8 x 8 
pixels: 4 luminance (Y), 1 chrominance red (Cr) and 1 chrominance blue 
(Cb) blocks. Figure 7-1 defines the macroblock structure in 4:2:0 format (the 
chrominance components are downsampled in horizontal and vertical 
direction) [5]. 

0

Y Cb (U) Cr (V)

1

2 3 4 53 4 

Figure 7-1. 4:2:0 Macroblock structure.

Two compression techniques are discriminated. In the intra case, the MB 
or VOP is coded on itself using an algorithm that reduces the spatial 
redundancy. Inter coding relates a macroblock of the current VOP to MBs of 
previously reconstructed VOPs and reduces in this way the temporal 
redundancy.

Figure 7-2 presents the structure of a simple profile video decoder,
supporting rectangular I and P VOPs. An I VOP or intra coded VOP
contains only independent texture information (only intra MBs). A P-VOP
or predictive coded VOP is coded using motion compensated prediction
from the previous P or I VOP, it can contain intra or inter MBs. 
Reconstructing a P VOP implies adding a motion compensated VOP and a
texture decoded error VOP. Note that all macroblocks must be intra
refreshed periodically to avoid the accumulation of numerical errors. This 
intra refresh can be implemented asynchronously among macroblocks. 
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Figure 7-2. The data flow of the simple profile decoder.

1.1 Motion Compensation 

A video sequence typically has a high temporal correlation between 
similar locations in neighbouring images (VOPs). Inter coding (or predictive
coding) tracks the position of a macroblock from VOP to VOP to reduce the 
temporal redundancy. Figure 7-3. follows the movement of a hand and feet 
of a dancer in the successive frames. The motion estimation process tries to 
locate the corresponding macroblocks among VOPs. MPEG-4 only supports 
the translatory motion model.

Figure 7-3. Temporal correlation in a video sequence.

The top left corner pixel coordinates (x,y), specify the location of a 
macroblock. The search is restricted to a region around the original location 
of the MB in the current picture, maximally this search area consists of 9 
MBs (illustrated in Figure 7-4). With (x+u, y+v), the location of the best 
matching block in the reference, the motion vector equals to (u,v). In
backward motion estimation, the reference VOP is situated in time before
the current VOP, opposed to forward motion estimation where the reference
VOP comes later in time. 
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Figure 7-4. Motion estimation process. 

As the true VOP-to-VOP displacements are unrelated to the sampling
grid, a prediction at a finer resolution can improve the compression. 
MPEG-4 allows motion vectors with half pixel accuracy, estimated through
interpolation of the reference VOP. Such vectors are called half pel motion
vectors.

A macroblock of a P VOP is only inter coded if an acceptable match in
the reference VOP was found by the motion estimation (else, it is intra 
coded). Motion compensation uses the motion vector to locate the related
macroblock in the previously reconstructed VOP. The prediction error 
e(x,y,t), the difference between the related macroblock MB(x+u, y+v, t-1)

and the current macroblock MB(x,y,t) is coded using the texture algorithm. 
e(x,y,t) = MB(x,y,t) - MB(x+u, y+v, t-1) 

Reconstructing an inter MB implies decoding of the motion vector, 
motion compensation, decoding the error and finally adding the motion 
compensated and the error MB to obtain the reconstructed macroblock. 

1.2 Texture Decoding Process 

The texture decoding process is block-based and comprises four steps: 
Variable Length Decoding (VLD), inverse scan, inverse DC & AC
prediction, inverse quantization and an Inverse Discrete Cosine Transform 
(IDCT). Except for the IDCT, all blocks have to produce numerical identical 
results to ISO/IEC 14496-2 and ISO/IEC 14496-5. 

The VLD algorithm extracts code words from Huffman tables, resulting in 
a 8x8 array of quantized DCT coefficients. Then, the inverse scan
reorganizes the positions of those coefficients in the block. In case of an 
intra macroblock, inverse DC & AC prediction adds the prediction value of 
the surrounding blocks to the obtained value. This is followed by saturation
in the range [-2048, 2047]. Note that this saturation is unnecessary for an
inter MB. Because no DC & AC prediction is used, the inter MB DCT 
coefficients are immediately in the correct range. 
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Inverse quantization, basically a scalar multiplication by the quantizer 
step size, yields the reconstructed DCT coefficients. These coefficients are 
saturated in the range [-2bitsPerPixel+3, 2bitsPerPixel+3-1]. In the final step, the IDCT 
transforms the coefficients to the spatial domain and outputs the 
reconstructed block. These values are saturated in the range [-2bitsPerPixel,
2bitsPerPixel-1].

1.3 Error Resilience 

The use of variable length coding makes the (video) bitstreams 
particularly sensitive to channel errors. A loss of bits typically leads to an
incorrect number of bits being VLC decoded and causes loss of 
synchronization. Moreover, the location where the error is detected is not the
same as where the error occurs. Once an error occurs, all data until the next 
resynchronisation point has to be discarded. The amount of lost data can be
minimized through the use of error resilience tools: resynchronisation
markers, data partitioning, header extension and reversible variable length 
codes [4].

2. IMPLEMENTATION PLATFORM 

The following sections describe the families of Virtex-II boards, clarify 
the concept of embedded soft cores that can be build inside of the Virtex-II
FPGAs and explain the process of selection the suitable platform for  
MPEG-4 video decoder demonstrator. 

2.1 Virtex II Boards 

Xilinx offers a line of prototype boards for the Virtex-II series of Platform 
FPGAs. These boards are intended to provide testing and modeling of the
design functionality. They come with documentation, cables, connectors,
and a set of reference designs intended to gain knowledge about efficient use 
of the boards. An example of family of Virtex-II boards is the Xilinx
Multimedia Development Board (XMDB). The board is designed to be used 
as a platform for developing multimedia applications. The board supports 
PAL and NTSC television input and output, true color SVGA output, and an
audio codec with power amplifier, as well as Ethernet and RS-232
interfaces. Several push button and DIP switches are available for user
interaction with the system. The embedded SystemACE™ controller allows 
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for high-speed FPGA configuration from CompactFlash™ storage devices. 
Figure 7-5 shows the Xilinx Multimedia Development Board components. 

SVGA Video or
TV out RAM 
2 FRAMES

VIDEODAC

HC3
Interface

Compact
Flash Card

CCIR 601 /  

656

YCrCb

4:2:2

format
NTSC/PAL 
Video
Decoder

REAL TIME
Video IN
Buffer
2 FRAMES

JTAG 

PROC. BUS 

4:4:4

R`G`B` 

format

Buttons for video
source and effect

sellect

STATIC Video
IN Buffer
1 FRAME

4:4:4

R`G`B`  

format

AudioCodec&Amp

RS232

NTSC/PAL
Video Encoderr

10BASE-T/100BASE-TX 
Ethernet

V
IR

T
E

X
 I
I 
F

P
G

A

audio in

audio outu

Figure 7-5. Xilinx Multimedia Demonstration Board.

As the Virtex-II family doesn’t contain any embedded SW core on the 
chip, the usual solution for the designs where processor core is demanded is
the use of virtual processor that is created out of bits of code in 
reconfigurable fabric.

2.2 MicroBlaze soft processor 

The MicroBlaze [6] is a virtual microprocessor that is built by combining
blocks of code called cores. It uses Harvard-style RISC architecture with
separate 32-bit instruction and data buses running at full speed to execute 
programs and access data out of on-chip or external memory 
(see Figure 7-6). The core contains 800 lookup tables and 32 general
purpose registers with three-operand instruction format. Its standard
peripheral set is designed to work with IBM's CoreConnect on-chip bus to
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simplify core integration. The MicroBlaze pipeline is a parallel pipeline,
divided into three stages: Fetch, Decode, and Execute. 

In general, each stage takes one clock cycle to complete. Consequently, it 
takes three clock cycles (ignoring delays or stalls) for the instruction to 
complete. Each stage is active on each clock cycle so three instructions can
be executed simultaneously, one at each of the three pipeline stages. 

MicroBlaze runs theoretically at 150 MHz and delivers 123 D-MIPS. 

Figure 7-6. A view on a MicroBlaze processor.

2.3 Platform Selection 

On any SoC project, the overall goal of the platform selection process 
should be to find the platform that reduces risk as much as possible. The 
considered risk involves both technical and non-technical aspects that have
to be taken into account. From the proposed methodology point of view, it 
should be possible to implement its design features (described at  
Chapter 4) at every level of the design. At system-level design phase, it has
to be determined which design components are possible to implement or
reuse on the platform and determine how they interact. At detailed design
phase, when the design is refined, it must be guaranteed that all the 
refinements are supported by the platform. At the same time proper platform
verification strategy has to be known to prove that solutions are not based 
upon incorrect assumptions. The implementation phase then involves 
building the system at the specified platform. Here the important factors in
fulfilling the design goals are: possible IP reuse of the components, 
experience of the design team with board environment, vendor support, etc.
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Taking all this aspects into account, Xilinx Virtex-II Multimedia
Demonstration Board with embedded MicroBlaze soft processor core has 
been selected as the most appropriate demonstration platform for MPEG-4 
video decoder. XMDB board provides sufficient support for implementation
of the MPEG-4 demonstrator case.

3. MPEG-4 VIDEO DECODER DESIGN FLOW 

Figure 7-7 illustrates the proposed methodology (see Chapter 4) and 
positions associated tools used to design MPEG-4 video decoder. The first 
design step involved use of ATOMIUM [7] methodology for initial data 
transfer and storage exploration. Then a number of optimizations were 
applied on the reference MPEG-4 simple profile video decoder, starting
from the basic description of video decoder. The main output of the 
optimization was a platform independent, memory optimized video decoder
described in C. At the same time initial architecture of the decoder has been 
proposed, based on the feedback of the optimization results.

In the next step, OCAPI-XL methodology (see Chapter 6) has been 
exploited to cover System-Level Design and Detailed Design phases of the 
methodology described at Chapter 4. A system level model, in which both 
functionality and architecture can be described separately, allowed 
performance modelling at a high level of abstraction. A refinement strategy 
and executable specifications at all levels enabled a structured path towards 
implementation. At the end of the design flow, OCAPI-XL generated VHDL 
code for the reconfigurable HW parts of the design.

The implementation phase of the decoder design has been fully covered 
by the commercial tools dedicated for optimal implementation of the SW
and HW parts on the selected platform. Synplify-Pro FPGA and CPLD
synthesis tool has been used for implementing the FPGA part of the design.
SW implementation, co-verification and board integration has been 
supported by the Xilinx’s ISE and EDK toolsets.

4. SOFTWARE VERSION OF THE MPEG-4 VIDEO 

DECODER

This section covers the initial analysis of the MPEG-4 video decoder, 
decoder optimizations and describes pure SW version of the decoder. 
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4.1 Definition of the Functionality Testbench and 

Decoder Pruning 

The Verification Model (VM) software used as input specification was the 
FDIS (Final Draft International Standard) natural visual part [3]. Having 
working code at the start of the design process can overrule the tedious task
to implement a system from scratch. Unfortunately, the software 
specification was very large and contained many different coding styles of 
often varying quality.
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Figure 7-7. MPEG-4 Video Decoder Design and Tool Flow. 
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Moreover, the VM contained all the possible MPEG-4 decoding
functionality (i.e. of all possible profiles) resulting in oversized C code
distributed over many files. The video decoder on itself has a code size of 93 
files (.h and.c source code files) containing 52928 lines (without counting
the comment lines).

A necessary first step in the design was extracting the part of the reference
code corresponding to the desired MPEG-4 functionality of the given profile
and level. ATOMIUM pruning [7] was used to automate this error-prone and 
tedious task. It removed the unused functions and their calls based on the
instrumentation data of a testbench representative for the desired 
functionality. This implied careful selection of the set of input stimuli, which
has to exercise all the required functionality. 

Applying automatic pruning with this functionality testbench reduced the 
code to 40% of its original size. From this point, further manual code
reorganization and rewriting became feasible. Through the complete analysis
and optimizations, the Foreman CIF 3 test case was used as an example for
the detailed study of the effects and bottlenecks. The Foreman CIF 3 test 
case uses no rate control and hence the decoder has to activate the
decompression functionality for every frame of the sequence (a skipped 
frame just requires displaying but no decompression). 

4.2 Initial Decoder Analysis 

An analysis of the data transfer and storage characteristics and the 
computational load initially allowed an early detection of the possible
implementation bottlenecks and subsequently provided a reference to 
measure the effects of the optimizations. The memory analysis was based on
the feedback of ATOMIUM. Counting the number of cycles with Quantify
assessed the computational load.

Table 7-1 lists the most memory intensive functions together with the
relative execution time spent in each function for the Foreman CIF 3 test
case. The timing results were obtained with Quantify on a HP9000/K460, 
180 MHz RISC platform. As expected, memory bottlenecks popping up at 
this platform independent level also turn out to consume much time on the
RISC platform. The time spend in WriteOutputImage is due to network
overhead and disk accessing. It’s time contribution (although) very large,
was neglected during the optimizations (in the real design, no writing to disk 
occurs). The last column of the table is produced with WriteOutputImage
disabled. The following list explains the behavior of the functions in 
Table 7-1: 
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• VopMotionCompensate: Picks the MB positioned by the motion 
vectors from the previous reconstructed VOP. In case of halfpell
motion vectors, interpolation is required.

• BlockIDCT: Inverse Discrete Cosine Transform of an 8 x 8 block.
• VopTextureUpdate: Add the motion compensated and texture VOP. 
• BlockDequantization: Inverse quantization of the DCT coefficients. 
• CloneVop: Copies data of current to previous reconstructed VOP by 

duplicating it. 
• VopPadding: Add a border to previous reconstructed VOP to allow 

motion vectors to point out of the VOP. 
• WriteOutputImage: Write the previous reconstructed VOP (without

border) to the output files. 
Only the IDCT is a computationally intensive function, all the others

mainly involve data transfer and storage. The motion compensation and 
block IDCT together cause more than 40 % of the total number of memory 
accesses, making them the main implementation bottlenecks. Hence, the 
focus was on these functions during the memory optimizations (i.e. reduce
the number of accesses).

Table 7-1. Motion compensation and the IDCT are the memory bottlenecks of the decoder 
(Foreman CIF 3 test case)

Function name  #accesses/
frame
(106 acces-
ses/frame)

Relative # 
accesses
(%)

Relative
time (%), to 
disk

Relative
time (%),
not to disk

VopMotionCompensate  3.9  25.4  16.9  38.34 
BlockIDCT  2.8  18.0  9.4  21.25 
VopTextureUpdate  1.7  10.7  3.1  6.8
BlockDequantization  0.5  3.0  2.0  4.5 
CloneVop  1.2  7.5  1.5  3.46
VopPadding  1.1  7.0  1.4  3.08
WriteOutputImage  1.0  6.2  54.9  - 
Subtotal  11.6  74.7  89.1  77.43
Total  15.5  100.0  100.0  100.0

Both for HW and for SW, the size of the accessed memory plays an 
important role. Accesses to smaller memories have a better locality and 
hence typically result in a higher cache hit chance for SW and in lower
power consumption for HW. Figure 7-8 groups the accesses to 4 memory 
sizes: frame memory with as minimal size the height width of the VOP, 
large buffer containing more than 64 elements, buffer with 9 to 63 elements
and registers with maximally 8 elements. In this initial analysis stage, the 
word length of the elements is not considered. 50 % of the total number of 
accesses is to frame memory, 13 % to a large buffer, 23 % to a buffer and 13 
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% to registers. As accesses to large memories are most inefficient, the 
optimizations focused on reducing the accesses to those memories. 

Figure 7-8. Most accesses of the reference decoder are to (large) frame memories. 

From the initial analysis of the (pruned) FDIS code, a high-level data flow 
model has been derived. For every VOP, the algorithm loops over the MBs.
First, the motion information is reconstructed. In case of an inter MB, the 
motion vector is decoded and the motion compensated MB is stored at the 
current position in the compensated VOP. In case of an intra MB, the 
compensated MB is stored as all zeros. Secondly, the texture information is
decoded. Inverse VLC and inverse scan yield the DCT coefficients. In case
of an intra MB, also inverse DC & AC (if enabled) prediction has to be
performed. Inverse quantization and IDCT produce the texture MB that is 
stored at the current position in the texture VOP. When all MBs of the VOP
are processed, the reconstructed VOP is composed by adding the
compensated and texture VOP. This complete VOP is copied as it is needed 
at the next time instance for the motion compensation as reference. Finally, a 
border is added to this reference VOP to allow the motion vector to point out 
of the image. The resulting VOP is called the padded VOP. This illustrates 
that the data exchanged between the main parts of the decoder is of frame 
size. Hence the data flow of the reference decoder is VOP based. 
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4.3 Decoder Optimizations 

Decoder optimizations were performed in two phases. During the first

phase, the data flow was transformed from frame-based to

macroblock-based. In the second phase, a block-based data flow was

introduced. These optimizations aimed at the reduction of the number of 

accesses and the improvement of the locality of data.

The effect of the platform independent optimisations has been assessed by

ATOMIUM and has been validated towards software and hardware

implementation. The global number of accesses was reduced with a factor

5.4 to 18.6, depending on the complexity of the sequence. The peak memory 

usage dropped from some megabytes to a few kilobytes. The performance

measure showed a consistent speed up. The highest speedup was measured

on a PC platform, where the speed up factor varies between 5.9 and 23.5.

The proposed architecture contains a single processor and a three level 

memory organization. The obtained results are generic and allow a rapid 

evaluation of alternative memory hierarchies.

4.4 Evaluation

After analysis and optimizations of the code, the SW only version of SW 

MPEG-4 video decoder has been implemented on Xilinx Virtex-II 

Multimedia Demonstration Board running fully on MicroBlaze soft 

processor. Board measurements have shown that decoder runs at 0.5 frames 

per second for a typical CIF video sequence. Even if the SW related 

acceleration techniques would be used, which would bring a yield of 

magnitude speed up, no real-time behavior would be achieved. HW

acceleration was the only solution to solve the problem. This moves the

critical functionality to the FPGA fabric. The HW/SW partitioning of video 

decoder, as described in the following section, allows for parallel processing

in SW and HW, assuming that the time previously consumed by critical

blocks is minimal when moved to HW. This way also a communication

overhead is reduced.

5. HARDWARE ACCELERATED VERSION OF 

MPEG-4 VIDEO DECODER 

Straightforward implementation of pure SW version of MPEG-4 video

decoder resulted in insufficient performance of the system. The next step in 
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the design was proposing the acceleration steps to improve the processing 

speed towards real-time behavior. 

5.1 HW/SW Partitioning 

Primary candidates for implementing in hardware became the 

computation/data transfer most dominant blocks VopMotionCompensate,

BlockIDCT, VopTextureUpdate and BlockDequantization (see Table 7-1). 

Secondarily, moving those blocks to hardware also influenced partitioning of 

a number of sub-blocks that were involved in transferring the data between 

the memories and HW/SW. Especially the accessing the data in memories

have had an impact on HW/SW partitioning of sub-blocks. These have been 

put to HW if efficient cycle count saving could have been obtained. The 

final HW/SW partitioning of the MPEG-4 video decoder is shown in 

Figure 7-9. 
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Figure 7-9. HW/SW partitioning for hardware accelerated version of the decoder. 
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5.2 HW/SW Co-Design in OCAPI-XL 

After HW/SW partitioning, the OCAPI-XL model of the accelerated

MPEG-4 video decoder has been build (see Figure 7-10). It consists of four

main OCAPI-XL blocks: motion compensation (MC), inverse DCT and 

dequantization (iDCT-Q-1), a process responsible for writing the block to 

YUV buffer (Block2BufferYUV) and a process which stores the buffered 

data to current VOP (BufferYUV2CurrentVOP). These blocks further

contain smaller OCAPI-XL processes, executing specific function within the

block. After introducing proper communication mechanisms between the

OCAPI-XL processes, the communication between the MicroBlaze and the 

HW accelerator have been defined. A memory-mapped interface serves the

purpose of communicating between the MicroBlaze and the different HW 

blocks, both for data and control signals. For memory accesses to YUV

buffer and VOP blocks a C++ parametrisable buffer library has been used.

To visualize the decoding process, a dual video memory system was 

proposed for display rendering.
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5.3 Performance Estimation 

The next step in the MPEG-4 video decoder design was estimation of the 

gain that can be obtained by HW acceleration. OCAPI-XL estimation 

techniques have been involved to solve this task. Prior to performance 

estimation, the C code for VopMotionCompensate, BlockIDCT,

VopTextureUpdate and BlockDequantization blocks have been rewritten to 

OCAPI-XL processes and refined. We used OCAPI-XL operation set

simulation approach for performance estimation, which is analogy to the 

Instruction Set Simulator approach. The performance models of processors 

were characterized in a table of operations with associated execution cycle

count. The execution cycle counts were obtained from board measurements

by execution of small programs. 

Operation set approach covers performance estimation of the OCAPI-XL 

processes. However, as SW part of the decoder was running as a separate 

thread, it was still necessary to annotate the SW tasks with proper timing

information. We have exploited the simulation time results of the pure SW

version of the decoder running on the XMDB platform (see Table 7-2) to

obtain the approximate times for those processes. 

Table 7-2. Time spend in the main functional blocks during the decoding of Foreman CIF 450 

kbps, 12 seconds of video for pure SW version on XMDB 

Functional Block Function time (s) Relative time (%)

Motion Compensation 164.0 28.8

Buffer To Vop 75.8 13.3

VOP Texture Update 105.7 18.6

Q-1/IDCT 105.9 18.6

VLC Decoding 43.7 7.7

Init Block 20.2 3.5

DC AC Reconstruction 14.7 2.6

Read Bitstream 3.0 0.5

Other 36.4 6.4 

Total 569.5 100.0

Exploiting OCAPI-XL unified system description, operation set simulator

and the extension that enabled context switching between the HW and SW 

enabled the performance estimation of reconfigurable behavior of the

MPEG-4 decoder. The design was modelled in two versions:

• Configured as pure SW version of MPEG-4 decoder, and 

• Configured as HW accelerated version. 

With a SW processed annotation the performance estimation started with 

simulation of the pure SW version of the decoder. The frame times have 

been obtained and the average frame time have been calculated. For pure

SW version, the OCAPI-XL processes have been defined of managed SW 
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type, and round-robin scheduler has been exploited. This corresponded with 

serial execution of processes on a single MicroBlaze processor.

For HW accelerated version of the decoder, the OCAPI-XL processes

have been redefined to high-level hardware (HLHW(( )W type and the code has

been recompiled. HLHW is characterised by detailed modelling between the 

function and cycle time. This cycle time information has been specified 

during refinement step in the OCAPI-XL design. Comparing the average 

frame time with pure SW version, the speed-up of factor 4.2 was estimated.

These two reconfigurable scenarios are switched during the OCAPI-XL 

simulation at specific switch point inside the OCAPI-XL tasks. It should be

noted that switching between the different contexts is fully supported during 

high-level simulations. However, it is responsibility of the designer to solve

the HW/SW task relocation at the implementation level. 

5.4 Further optimizations 

Estimation of the performance of the HW accelerated decoder indicated 

improvement of factor 4.2 (frame rate 2.1 fps) compared to the pure software

version. Further steps therefore concentrated on improvement the memory 

access times to obtain real-time performance. 

Basic experiments quantified the data transfer const on the multimedia 

board to allow for assessing the impact of an improved platform. A small C

program counted the number of cycles required for a data transfer to the 

different kinds of available memory on the multimedia board: local memory,

block RAM and ZBT RAM (off chip). Table 7-3 lists the different read/write 

times when the function add/or stack resides in local memory or off chip 

(ZBT RAM). Table 7-4 measures the amount of cycles spent during the data 

copy from one kind of memory (row) to another (column).

Table 7-3. Memory access cycles

Local Stack Non Local Stack 

Local Function Non Local

Function

Local Function Non Local

Function

Read Write Read Write Read Write Read Write

Local

Memory

6 6 15 15 11 14 28 28

Block RAM 8 7 22 19 13 15 30 32 

ZBT RAM 10 7 24 19 15 15 32 32 

Stack 4 4 10 10 9 9 20 20 

The results in the tables above indicated that cycle savings could be 

gained by putting the selected object files of the decoder in local memory to

make their functions local. Making use of local memories for object code, in 
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connection with pixel packing, the speed up of factor of 2.3 was obtained. 

Another optimisations included separating MicroBlaze instruction and data

busses, Direct Memory Access and exploiting the compiler optimizations. 

By accumulative applying these performance optimization steps, the frame 

rate of 25 fps has been obtained. The real-time performance of 30 fps could 

be easily obtained if the XMDB board maximum clock frequency would not 

be limited to 81 MHz.

Table 7-4. Data copy cycles 

 Local Stack 

Local Function Non Local Function

 Local

Memory

Block

RAM

ZBT

RAM

Local

Memory

Block

RAM

ZBT

RAM

Local 

Memory

8 9 9 20 24 24

Block

RAM

10 11 11 27 28 28

ZBT

RAM

12 13 13 29 30 30

Non Local Stack 

Local Function Non Local Function

 Local

Memory 

Block

RAM

ZBT

RAM

Local

Memory

Block

RAM

ZBT

RAM

Local 

Memory

16 17 17 33 37 37

Block

RAM

18 19 19 40 41 41

ZBT

RAM

20 21 21 42 43 43

5.5 Implementation Details 

The video decoder demonstrator was realized on the Xilinx MicroBlaze

Development Board, which incorporates Virtex-II xc2v2000 FPGA and 

embedded MicroBlaze soft processor core. The board is designed to be used 

as a platform for developing multimedia applications. The board supports 

five independent banks of 512K x 36bit 130MHz ZBT RAM with byte write 

capability. This memory is used as video frame buffers store. The embedded 

SystemACE environment consisting of a CompactFlash storage device and a

controller is used for storing the encoded data. The ethernet connection is

used to trigger the decoding process form the browser running on

neighbouring PC. The decoded sequence is displayed on the monitor

connected to the SVGA output of the board.
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The MPEG-4 video decoder reads control and configuration settings from

file, initializes and starts MPEG-4 decoding. The decoding itself is triggered 

with a URL request in a browser on a PC connected to the same LAN 

network as the multimedia board. This request starts up the MPEG-4 Video 

Decoder on the MicroBlaze which will open and read the control file located 

in SystemAce flash RAM on the board and then reads the stream of encoded 

data also stored in flash RAM. Decoder generates YUV frame data that are 

send to the rendering block and then displayed on the monitor connected to

the board.

Resource utilization for the whole MPEG-4 decoding system for

xc2v2000 FPGA on the board was 7703 slices i.e. 71% of the resources. The 

HW accelerator blocks itself consumed 5000 slices, which represents 46% of 

resources. Allocation data for build-up multipliers, block RAMs and LUTs 

are shown in Table 7-5.

The clock rate for the decoder was set to a maximum board available 81

MHz.

Table 7-5. Xilinx Virtex-II xc2v2000 FPGA resource utilization 

MULT 18X18s 19 33%

RAMB 16s 43 76%

LUTs 11237 52% 

6. RESULTS ANALYSIS 

6.1 Analysis of Design Methodology Results 

6.1.1 Benefits

The key benefit shown on MPEG-4 video decoder is demonstration of 

ability of high-level simulation-based performance estimation and evaluation 

of context switching between the different computation resources. Based on 

the performance estimation results, it is possible to construct trade-off curve

for considered HW/SW partitions. This gives the designer opportunity to

evaluate at early stage of the design process, which components is beneficial

to implement in reconfigurable HW and which ones will be running in SW. 

6.1.2 Disadvantages

OCAPI-XL performance estimation is based on the operation set 

simulation approach. This means that for every operation a true cycle

execution has to be provided to get the estimation results as close as possible 
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to a real board execution time. These measurements have to be obtained as a 

result of board measurements, meaning that the board either have to be 

available or the estimates of the cycle count are considered. However, ad-

hoc estimates introduce a considerable risk that the expected performance 

results will miss the actual board performance. Therefore, the as exact as

possible board measurements are critical to match the high-level simulation

with real-life execution on the board.

6.1.3 Summary

Recent platform FPGAs integrate high-performance CPUs within

reconfigurable fabric. This combination provides flexible and high-

performance system design environment suitable for deployment of a wide 

variety of applications. Ability of performance estimation and introduction

of context switch modelling at the high-level of design brings the advantage 

of early evaluation of possible reconfigurable HW/SW partitioning

decisions. Demonstrating on MPEG-4 video decoder application, the 

proposed OCAPI-XL based approach has proven the ability to represent a 

methodology, which successfully copes with reconfigurable SoC design. 

6.2 Analysis of Implementation Results 

6.2.1 Benefits

Design of MPEG-4 Video Decoder demonstrated, that OCAPI-XL based 

methodology is highly suitable approach for designing the RSoCs at the

system level. It has been shown, that ability of generation of HDL 

description from refined OCAPI-XL models has an important role with 

respect to design time. Although the designer is required to put an effort to 

refine the high-level OCAPI-XL process types to low-level processes, the 

benefit of fast HDL code generation during the possible design iterations 

provides overall gain by reducing the HDL re-design and re-simulation time. 

Moreover, the OCAPI-XL HDL code generator provides the HDL

description of communication primitives, interconnection of HDL blocks,

HDL testbench generation and easy integration of IP blocks. With respect to 

the reconfigurability, the automatic HDL code generation is beneficial in

flexible generation of different reconfiguration scenarios. 

OCAPI-XL dynamically reconfigurable process type (procDRCF)

implements context switching between the high-level HW/SW process

types. This enables fast exploration of variety of different reconfigurable 

schemes at high-level design step. The type of the process can be alternated 

during simulation at arbitrary time, taking into account reconfiguration time
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overhead. In this sense, the modelling of context switching opens the

possibility of modelling of dynamic reconfiguration at high-level of the 

design.

Having the opportunity of modelling of run-time context switching,

designer must have the possibility of performance estimation of different 

reconfigurations. This allows fast evaluation of high-level decisions and 

focusing on those parts of the design flow where the gain in performance

and efficiency is greatest. Exploiting the OCAPI-XL’s Operation Set

Simulator approach has shown to be beneficial for annotation of SW

processes, implemented on MicroBlaze soft core embedded on FPGA

device.

6.2.2 Disadvantages

The experiences from MPEG-4 design indicate that detailed knowledge of 

the implementation platform is crucial for efficient implementation of the 

design. Such knowledge can only be obtained from the board experiments,

making use small dedicated examples. The examples have to be build to gain

the information about the different aspects of the board. Building the 

testbench examples, obtaining and evaluating results requires allocation of 

extra design time. For the purpose of MPEG-4 Video Decoder implemented 

on Xilinx’s Multimedia Development Board, the following aspects have

been investigated: 

• MicroBlaze soft core performance measurements; to investigate the 

abilities the SW processor.

• Memory explorations; to find out the data transfer times between the

different types of memories (local memory, block RAM, off-chip ZBT 

RAM).

• Vendor support maturity; to investigate the support for newly

introduced devices and implementation boards.

As mentioned in the section above, OCAPI-XL based methodology

provides full support for high-level modelling of dynamic reconfiguration by 

introducing context switching. At the implementation level, the situation is 

much more complicated. Context switching between the HW and SW

requires the transitions from one function to another as smooth as possible. 

This responsibility falls to the real-time operating system (OS), which

manages all these complex transitions. Among the other tasks, the OS is 

responsible for managing the switching between reconfigurable HW and SW 

on the FPGA, i.e. it must suspend certain tasks that are running so that other

tasks can take a turn. To do so, it must remember the state of each task

before it stopped execution so that each task can restart from the same state.

The implementation of such mechanisms on the recent implementation
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boards is possible but not straightforward. The true exploitation of dynamic 

reconfiguration is expected in future platforms. 

OCAPI-XL has been extended by a new bus model extension based upon

properties of process types and communication primitives. By annotating a 

bus model with timing information, the bus timing behaviour can be 

modelled. Although the model could be exploited for high-level bus

performance estimation of the MPEG-4 Video Decoder, the decision has

been made not to use this approach. Instead, annotation of each type of 

transfer on the bus by specific timing information obtained from small

experiments has been utilized. The main reason for using this approach was 

insufficient amount of information found in the documentation about the

Xilinx’s Virtex-II bus architecture, which uses a combination of busses 

(PLB, OPB) and bridges (PLB2OPB) to communicate between the

reconfigurable HW and embedded processor. 

6.2.3 Summary

From the descriptions above, the following conclusions can be drawn:

• The system-level OCAPI-XL approach, extended with

reconfigurability features, is valid approach for designing RSoCs. 

• Dynamic reconfiguration represents implementation obstacle in recent 

reconfigurable architectures.

• From a designer point of view, deep knowledge of the reconfigurable

architectures and platform(s) is still required for efficient mapping of 

the algorithm.

• There is a lack of implementation information (especially for newly

introduced platforms), which can be fed-back to the high-level design

phase for accurate high-level modelling. 

7. CONCLUSIONS

The design methodology and flow described in Chapter 4, instantiated for

OCAPI-XL, have been used for the realization of MPEG-4 Video Decoder

demonstrator targeting high-level performance estimation of the 

reconfigurable systems. The OCAPI-XL performance estimation techniques, 

enhanced by new reconfigurable features, demonstrate the ability to obtain

high-level statistics, which enable construction of graph with possible shape 

of curve for best possible partitioning of the application. By modelling the 

dynamic reconfiguration of selected processes in early stage of the design,

feedback about influence of different dynamic reconfiguration schemes on 
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performance of the system is provided. Based on that, the optimal run-time

operation of the video decoder application can be selected. 

The accuracy of estimations has been measured by comparing the 

difference between the estimated performance and board performance. The

difference is very acceptable 8% for the most relevant test sequence. The

MPEG-4 Video Decoder system has been implemented on Virtex-II FPGA 

with embedded MicroBlaze soft processor core on Xilinx Multimedia

Development Board. 
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Abstract:  In this chapter the prototyping of a reconfigurable System-on-Chip realizing

the HIPERLAN/2 WLAN system is discussed. In this case reconfigurable 

hardware will be exploited to introduce post-fabrication functional upgrades. 

For the prototyping a commercial platform using components-off-the-shelf has 

been used. The design flow and system level design methods described in the

previous chapters were used for the system development. An evaluation of the 

design flow and methods in the context of this specific design is also

presented. 

Key words: Reconfigurable System-on-Chip, prototyping, HIPERLAN/2, functionality

upgrading.    

1. INTRODUCTION

In this chapter, the prototyping of a HIPERLAN/2 reconfigurable 

System-on-Chip on a platform incorporating components-off-the-shelf 

(COTS) is described. The targeted system has been developed to form the 

basis for the development of a family of fixed wireless access systems based 

on HIPERLAN/2 that can be upgraded to support outdoor communications

as well. The integration of additional functionality that may be used in a 

future product improvement (even after product shipment) could rely on the

use of software upgrades (this is a commonly used practice in software

products). However, due to the expected complexity the system parts that 

will support the extra functionality (mainly related to complex physical layer

DSP tasks) hardware acceleration will be required. The design flow 
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presented in Chapter 4 has been adopted for the design of the targeted 

system in order to provide (a) efficient architecture exploration early enough

in the design cycle and, (b) a seamless path from specification to

implementation.  

2. HIPERLAN/2 SYSTEM DESCRIPTION 

The HIPERLAN/2 system [1, 2, 3] includes two types of devices: the 

mobile terminals (MT) and the access points (AP). A typical HIPERLAN/2 

architecture is depicted in Figure 8-1. The architectures of the Access Point 

and the Mobile Terminal are presented in Figure 8-2.

ethernet backbone

AP

MMMTMTTMMTTMTMTMTMTMTMT

Figure 8-1. Typical HIPERLAN/2 architecture

Figure 8-2. Architectures of AP – MT 
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The HIPERLAN/2 basic protocol stack and its functions are shown in 

Figure 8-3. The convergence layer (CL) offers a service to the higher layers.

The DLC layer consists of the Error Control function (EC), the Medium 

Access Control function (MAC) and the Radio Link Control function (RLC).

It is divided in the data transport functions, located mainly on the right hand 

side (user plane), and the control functions on the left hand side (control 

plane). The user data transport function on the right hand side is fed with 

user data packets from the higher layers via the User Service Access Point 

(U-SAP). This part contains the Error Control (EC), which performs an

ARQ (Automatic Repeat Request) protocol. The DLC protocol operates

connection oriented, which is shown by multiple connection end points in

the U-SAP. One EC instance is created for each DLC connection. In the case 

where the higher layer is connection oriented, DLC connections can be

created and released dynamically. In the case where the higher layer is 

connectionless, at least one DLC connection must be set up which handles 

all user data, since HIPERLAN/2 is purely connection-oriented. The left part 

contains the Radio Link Control Sublayer (RLC), which delivers a transport 

service to the DLC Connection Control (DCC), the Radio Resource Control 

(RRC) and the Association Control Function (ACF). Only the RLC is 

standardized which defines implicitly the behavior of the DCC, ACF and 

RRC. One RLC instance needs to be created per MT. The CL on top is also

separated in a data transport and a control part. The data transport part 

provides the adaptation of the user data format to the message format of the 

DLC layer (DLC SDU). In case of higher layer networks other than ATM, it

contains a segmentation and reassembly function. The control part can make

use of the control functions in the DLC e.g. when negotiating CL parameters 

at association time.

Figure 8-3. HIPERLAN/2 protocol stack and functions
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The DLC functions include the following operations:

• (Des)association

• DLC User (de)connection

• encryption, decryption

• (de)framing 

• Contention management mechanism 

• Broadcast Control Channel (BCCH) and  Frame Control Channel

(FCCH) analysis and synthesis

• DLC-CL buffering

• Automatic Repeat Request (ARQ) mechanism for asynchronous

transactions

• Power Saving 

• Dynamic Frequency Selection 

• Transmission Power Control

The medium access control (MAC) is a centrally scheduled TDMA/TDD

scheme. Centrally scheduled means that the AP/CC controls all

transmissions over the air. This is worth for uplink, as well as for downlink

and direct mode phase. The basic structure of the air interface generated by

the MAC is shown in Figure 8-4. It consists of a sequence of MAC frames of 

equal length with 2 ms duration. Each MAC frame consists of several

phases: Broadcast (BC) phase, Downlink (DL) phase, Uplink (UL) phase,

Direct Link Phase (DiL), Random access phase (RA).

MAC Frame MAC FrameMAC FrameMAC Frame

RA PhaseUL PhaseDiL PhaseDL PhaseBC Phase

flexible flexible flexible flexible

Figure 8-4. Basic MAC frame format 

The DL, DiL and UL phases consist of two types of PDUs. The long

PDUs have a size of 54 bytes and contain control or user data (see 

Figure 8-5). The DLC SDU, which is passed from or to the DLC layer via 

the U-SAP has a length of 49.5 bytes. The remaining 4.5 bytes are used by
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the DLC for a PDU type field, a sequence number (SN) and a cyclic 

redundancy check (CRC). The purpose of the CRC is to detect transmission 

errors and is used, together with the SN, by the EC. 

The short PDUs with a size of 9 bytes contain only control data and are 

always generated by the DLC. They may contain resource requests in the 

uplink, ARQ messages like acknowledgements and discard messages or 

RLC information. The same size of 9 bytes is also used in the RCH. The 

RCH can only carry RLC messages and resource requests. The access 

method to the RCH is a slotted aloha scheme. This is the only contention-

based medium access phase in HIPERLAN/2. The collision resolution is

based on a binary backoff procedure, which is controlled by the MTs. The

AP/CC can decide dynamically how many RCH slots it provides per MAC 

frame.

PDU

Type
SN Payload CRC

DLC PDU

(54 octets)

Figure 8-5. Format of the long PDUs

In the physical layer orthogonal frequency division multiplexing

(OFDM) has been selected as modulation scheme for HIPERLAN/2 due to

its good performance on highly dispersive channels. The channel raster is

equal to 20 MHz to provide a reasonable number of channels. In order to

avoid unwanted frequency products in implementations the sampling

frequency is also chosen equal to 20 MHz at the output of a typically used 

64-point IFFT. The obtained subcarrier spacing is 312.5 kHz. In order to 

facilitate implementation of filters and to achieve sufficient adjacent channel

suppression, 52 subcarriers are used per channel, 48 subcarriers carry actual

data and 4 subcarriers are pilots which facilitate phase tracking for coherent 

demodulation. The duration of the cyclic prefix is equal to 800 ns, which is

sufficient to enable good performance on channels with (rms) delay spread 

up to 250 ns (at least). 

To correct for subcarriers in deep fades, forward-error correction across 

the subcarriers is used with variable coding rates, giving coded data rates 

from 6 up to 54 Mbps. A key feature of the physical layer is to provide

several physical layer modes with different coding and modulation schemes, 

which are selected by link adaptation. BPSK, QPSK and 16QAM are the

supported subcarrier modulation schemes. Furthermore, 64QAM can be used 

in an optional mode. Forward error control is performed by a convolutional 
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code of rate 1/2 and constraint length seven. The further code rates 9/16 and 

3/4 are obtained by puncturing. The modes are chosen such that the number

of encoder output bits fits to an integer number of OFDM symbols. To

additionally accommodate tail bits appropriate dedicated puncturing before

the actual code puncturing is applied. 

In Table 8-1 the seven physical layer modes are specified, of which the 

first six are mandatory and the last one based on 64QAM is optional. 

Table 8-1. Modes and modulation schemes of HIPERLAN/2

Mode Modulation Code rate Bit rate (Mbps)

1 BPSK 1/2 6 

2 BPSK 3/4 9 
3 QPSK 1/2 12 

4 QPSK 3/4 18 

5 16QAM 9/16 27 
6 16QAM 3/4 36

7 64QAM 3/4 54

CONSTELLATION

ENCODER

PILOT

INSERTION
IFFT

CYCLIC

PREFIX

PREAMBLES

DATA

SCRAMBLER
FEC INTERLEAVER

PDU Train

from DLC

To the IF/RF

units

Figure 8-6. HIPERLAN/2 transmitter chain

The transmitter chain of the HIPERLAN/2 physical layer is illustrated in 

Figure 8-6. In the transmitter path, binary input data are encoded by a 

standard rate convolutional encoder. The rate may be increased by

puncturing the coded output bits. After interleaving, the binary values are

modulated by using PSK or QAM. The input bits are divided into groups of 

1, 2, 4 or 6 bits and converted into complex numbers representing BPSK, 

QPSK, 16QAM or 64QAM values. To facilitate coherent reception, four

pilot values are added to each 48 data values, so a total of 52 values is 

reached per OFDM symbol, which are modulated onto 52 subcarriers by

applying the IFFT. To make the system robust to multipath propagation, a 

cyclic prefix is added. After this step, the digital output signals can be 

converted to analog signals, which are then up-converted to the 5 GHz band, 

amplified and transmitted through an antenna.

1/2
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The structure and the specifications of the physical layer receiver are not 

available from the HIPERLAN/2 standard. A generic HIPERLAN/2 receiver

is illustrated in Figure 8-7. 
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In Table 8-2 the physical layer timing parameters of HIPERLAN/2

system are presented. 

Table 8-2. HIPERLAN/2 physical layer timing parameters

PARAMETERS VALUE

Sampling frequency (f) 20 MHz (T = 50 ns)

Useful symbol part duration (IFFT symbol) 64 x T = 3.2 µs

Cyclic prefix duration 16 x T = 0.8 µs

OFDM Symbol interval 80 x T = 4 µs

Subcarrier spacing 0.3125 MHz  (1/3.2 µs)

Spacing between the two outmost subcarriers 16.25 MHz  (52 x 0.3125 MHz)rr

Broadcast burst preamble duration 16 µs

Downlink burst preamble duration 8 µs

Uplink burst short preamble duration 12 µs

3. IMPLEMENTATION PLATFORM DESCRIPTION 

The ARM Integrator/AP AHB ASIC Development Platform has been

selected for the prototyping of the HIPERLAN/2 system. The platform is 

designed for hardware and software development of devices and systems

based on ARM cores and the AMBA bus specification. 
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ARM Integrator supports up to four processors (core modules) to be

stacked on the connectors HDRA and HDRB and up to four logic modules 

to be stacked on the connectors EXPA and EXPB, (a total number of five 

modules i.e. 2 core modules and 2-3 logic modules are supported). The

ARM Integrator provides: 

• clocks and three counter/timers

• bus arbitration

• interrupt handling for the processors

• 32MB of 32-bit wide flash memory

• 512KB of 32-bit wide SSRAM 

• 256KB boot ROM (8 bits wide)

• PCI bus interface, supporting expansion on-board (3 PCI slots) or in a

CompactPCI card rack 

• External Bus Interface (EBI), supporting memory expansion.

The Integrator/AP also provides operating system support with flash 

memory, boot ROM, and input and output resources. Reads from the flash

memory, boot ROM, SSRAM, and external bus interface are controlled by

the Static Memory Interface (SMI).

3.1 Motherboard architecture 

The motherboard hosts the connectors for the core and logic modules that 

are connected in parallel to the system bus. The block diagram of the

motherboard is shown in Figure 8-8. The system controller FPGA provides 

control functions for the platform (including bus arbitration – up to six 

masters are supported) and interfaces the core and logic modules (through

the system bus) with the rest of the resources on the motherboard (the Flash, 

SSRAM, ROM, PCI bridge various peripherals – counters, clocks, GPIO,

UARTs, keyboard and mouse, LEDs and the interrupt controller).  

The system bus is routed between FPGAs on core and logic modules and 

the AP. This enables the Integrator to support both of the AHB and ASB bus

standards. At reset, the FPGAs are programmed with a configuration image 

stored in a flash memory device. On the AP, the flash contains one image

that configures the AP for operation with either an AHB or ASB system bus. 

On core and logic modules, the flash can contain multiple images so that the 

module can be configured to support either AHB or ASB.  
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Figure 8-8. ARM Integrator motherboard block diagram

3.2 Core modules 

The core module board includes:

• ARM microprocessor chip (ARM7TDMI has been selected)

• 256KB Synchronous SRAM (and relevant controller) 

• SDRAM DIMM socket (256MB)

• AMBA system bus interface to platform board 

• Clock generators

• Reset controller

• JTAG interface to Multi-ICE™

• Core module FPGA providing system control functions for the core 

module, enabling it to operate as a standalone development system

or attached to a motherboard. The FPGA implements:

1. SDRAM controller 

2. System Bus Bridge

3. Reset controller

4. Interrupt controller
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5. Status, configuration, and interrupt registers

• Multi-ICE, logic analyzer, and optional Trace connectors 

The architecture of the core module is shown in Figure 8-9.  

The volatile memory (SSRAM and SDRAM) is located on the Core 

Module close to the CPU, so that it can be optimized for speed. This means

that the memory bandwidth is significantly improved over previous

development boards. Considerable effort has gone into ensuring optimal

memory and AMBA bus performance. Actual figures are dependent on the

speed of the microprocessor chip used but typically they are in the region of 

50MHz for the SDRAM and 25MHz for the AMBA system bus. 

Figure 8-9.  Core module architecture 

3.3 Logic modules 

The logic module comprises the following: 

• Altera or Xilinx FPGA

• Configuration PLD and flash memory for storing FPGA

configurations

• 1MB ZBT SSRAM

• Clock generators and reset sources

• Switches

• LEDs

• Prototyping grid 

• JTAG, Trace, and logic analyzer connectors
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• System bus connectors to a motherboard or other modules

Up to 4 logic modules can be stacked on top of each other, and an 

Interface Module or an Analyzer Module may be fitted on top of the stack.

Core and logic modules handle the interrupt signals differently. Core 

modules must receive interrupts, but logic modules, that implement 

peripherals, generate interrupts. The architecture of the logic module is 

shown in Figure 8-10.

Figure 8-10.  Logic module architecture

When used with an Integrator motherboard, the logic modules require a

system bus interface. The system bus interface connects the logic module 

with other Integrator modules. This must be implemented according to the

AHB or ASB specifications. The logic module provides the general-purpose

interface module connector EXPIM to enable you to add an interface module

to the system. The connector provides access to two banks of input/output 

pins on the FPGA plus a number of control signals. 

The logic module provides 1MB of ZBT SSRAM and 4MB of flash

memory. A 256Kx32-bit ZBT-SSRAM (Micron part number

MT55LC256K32F) is provided with address, data, and control signals 

routed to the FPGA. The address and data lines to the SSRAM are 
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completely separate from the AMBA buses. This is used for FPGA 

configuration, and must not be used for any other purpose. Configuration is

managed by the configuration PLD. 

4. SYSTEM LEVEL DESIGN 

The system level design part of the methodology described in Chapter 4

(and presented in Figure 8-11) has been adopted for the development of the 

HIPERLAN/2 system. For the system level exploration, the OCAPI-XL 

environment has been employed (additional details can be found in Chapter

6).

System-Level

Design

Requirements/

Specification

Capture

Architecture

Definition

System

Partitioning

Mapping

System-Level

Simulation

System-Level

Design

Figure 8-11.  System level design part of the proposed methodology

As part of the design process system requirements have been

documented, while the targeted functionality has been specified through the

development of an executable model. Specifically, an ANSI C model has

been developed for the MAC and physical layers’ functionality of the

HIPERLAN/2 system. The basic structure of the ANSI C model of the 

targeted functionality is shown in Figure 8-12. 
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Figure 8-12.  Structure of the ANSI C model of the targeted functionality

The physical layer model is divided into two parts: complex numbers

based algorithms (mapping, OFDM, PHY bursts) and binary algorithms 

(scrambling, FEC, interleaving). A block diagram of the physical layer

ANSI C model is shown in Figure 8-13. Physical layer submodules are 

designed as pipelined procedures with unit data processing. 

A number of configuration parameters are supported for the physical

layer modules:

• width and position of point in fixed point numbers (separate for

frequency domain, time domain, FFT calculations, FFT twiddle 

factors, channel correction and CFO cancellation multipliers) 

• number of soft bits in Viterbi algorithm soft value representation

• time synchronization threshold, duration and time-outs

• the highest confidence level threshold of the de-mapper

• sizes of internal buffers (FFT buffers, receiver command buffer,

receiver data buffer)
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Figure 8-13. Physical layer ANSI C model - major functions and data structures 
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Physical layer submodules are implemented as procedures, which get as 

standard parameters: request type, command, command parameters and data. 

Shared data are represented as global variables. Each submodule has a global

variable which value defines a procedure where output will be directed. By

default this variable is assigned a value of the procedure corresponding to

the next module in physical layer hierarchy. Each physical layer module

calls the next one when data portion requested by next module interface is 

ready. Control information (commands) is forwarded synchronously with 

data except of shared FFT modules and Viterbi algorithm internals. 

Significant part of the high level design of MAC layer is common for

Access Point and Mobile Terminal devices. MAC layer high-level design is 

focused on external interfaces of the sub-layer and its decomposition in

cases of Access Point and Mobile Terminal. The block diagrams of the 

ANSI C models for the Access Point and the Mobile Terminal MAC layers

are shown in Figure 8-14 and in Figure 8-15 respectively. In contrast to 

physical layer MAC modules intercommunication is activated when a

logically finished data structure is completely ready. Information is

transferred in the form of memory pointers, or copied to some buffer.  

Integration testing (simulation) of the ANSI C model has been 

performed. An environment with one Access Point (AP) and two Mobile 

Terminals (MTs) has also been emulated. During the emulation, different 

kinds of traffic have been passed between AP and MTs through an emulated 

channel in term of fixed point complex numbers. 

Analysis of the HIPERLAN/2 computational complexity and 

performance constraints lead to the allocation of two core modules and two 

logic modules for the realization of the HIPERLAN/2 system on the ARM

Integrator platform. Each core module includes an ARM7TDMI processor 

and each logic module includes a Xilinx Virtex E 2000 FPGA (0.18µm, 6 

metal layers, with 500K usable gates and 832 Kb of additional RAM 

(BlockRAM) and built-in clock management circuitry (8 DLLs)). Logic and 

core modules communicate using the bus of the platform (AMBA). 
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Figure 8-14.  Access Point MAC layer ANSI C model - major functions and data structures 
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Figure 8-15. Mobile Terminal MAC layer ANSI C model - major functions and data

structures
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The architecture of the ARM Integrator instance that has been selected

for the realization of the HIPERLAN/2 system is shown in Figure 8-16. The 

first core module (ARM7TDMI processor) acts as protocol processor

realizing the major part of the HIPERLAN/2 DLC functionality. The second 

core module (ARM7TDMI processor) realizes the lower part of the 

HIPERLAN/2 MAC functionality and also controls the operation of the 

baseband block. The first logic module (Xilinx FPGA) realizes the 

frequency and data domain parts of the receiver. The second logic module

(Xilinx FPGA) realizes the transmitter, the time domain blocks of the

receiver, the interface to MAC and a slave interface to an AMBA bus. 
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Protocol processor
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control processor
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Controller

AHB bus
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Ethernet controller

PCI controller
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Figure 8-16.  Architecture of selected ARM Integrator platform instance 

It must be taken into consideration that the ARM Integrator platform is

used to emulate a  targeted reconfigurable System-on-Chip. Both custom and 

reconfigurable hardware components of the targeted reconfigurable System-

on-Chip are emulated by the logic modules’ FPGAs of the ARM Integrator.  

System level partitioning and task assignment exploration has been

performed using OCAPI-XL C++ library. Using the ANSI-C model as input, 

OCAPI-XL models of the HIPERLAN/2 MAC and physical layers have 

been developed. The block diagram of the physical layer OCAPI-XL model

is shown in Figure 8-17. The block diagrams of the Access Point and Mobile

Terminal MAC layer OCAPI-XL model are shown in Figure 8-18 and 

Figure 8-19 respectively.
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For the high level exploration high-level OCAPI-XL processes 

(procHLHW, procHLSW and procManagedSW) have been used to model 

the timing behavior of the HIPERLAN/2 tasks under different

implementation scenarios. Using the performance estimation (in terms of 

execution cycles) capabilities of OCAPI-XL different mappings of 

HIPERLAN/2 tasks on hardware and software have been evaluated and the

most promising solution has been identified.

Under the post-shipment functionality upgrading scenario, the 

HIPERLAN/2 system must be able to support (after upgrade) outdoor fixed 

wireless access operation. In that context, the tasks that are more complex,

and consequently are difficult  to be upgraded, are identified and assigned to

reconfigurable hardware. Tasks of this kind are the receiver’s channel

estimation and correction block, and the receiver’s decoding block (Turbo

and/or Reed Solomon decoders are required in outdoor environments while 

Viterbi decoder is included in the HIPERLAN/2 standard).

5. IMPLEMENTATION 

The implementation phase of HIPERLAN/2 system corresponds to the 

detailed design and implementation design stages of the design flow

described in Chapter 4 (they are also shown in Figure 8-20). 

The high level OCAPI-XL model developed during high level design has 

been refined at a first step. The refinement included the change of processes’ 

types from high level to low level (procOCAPI1 and procANSIC). This 

allowed a cycle accurate simulation of the complete system functionality and 

confirmation that timing constraints are met.

For the tasks assigned to instruction set processors, C code has been 

developed and mapped on the ARM7TDMI processors of the core modules. 

The tools used for the software development process include:

• Code generation tool. The ARM, THUMB C and Embedded C++

compilers. 

• Integrated Development Environment Code Warrior IDE.

• ARM Extended Debugger Debugging environment for processor 

cores. It provides interface to the ARMulator and can be used to

debug code on an ARM Evaluation Board.

• Instruction Set Simulator (ARMulator) Simulates a target system in 

software, allowing software development when a hardware target is 

not available.
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Figure 8-20. Detailed and implementation design parts of the proposed methodology

Execution times for basic tasks of HIPERLAN/2 DLC/MAC are 

presented in Table 8-3. The results have been obtained with an operation 

frequency of 50 MHz (cycle 20 ns). The code and the data for the tasks are

stored in SDRAM memory.

The detailed architecture of the functionality realized by the logic 

modules of the platform is shown in Figure 8-21. A typical FPGA flow has 

been adopted for realization of the tasks assigned on the platform’s logic

modules (mainly base band part of HIPERLAN/2). The tools used include:

• Modelsim for simulation

• Leonardo Spectrum for synthesis

• Xilinx ISE tools for back end design
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Table 8-3. Execution times for basic tasks of HIPERLAN/2 DLC/MAC layer 

(where AP: Access Point, MT: Mobile Terminal, CL: Convergence Layer, Tx: Transmitter, 

Rx: Receiver)

MT-BCH/FCH Decoder

Modem Ctrl MAC Layer

tasks

Execution

time
DLC tasks

Execution

time

Initialization Phase (Reset
& Config @ slot 
commands)

1.20 µs AP-Scheduler 0.2 ms

Synchronisation Phase
(BCH_SRCH, Rx_FCH
with rpt = 1, Rx_ACH)

2.65 µs AP/MT-TxCL 0.6 ms

BCH decoding and BCH 
CRC checking

5.25 µs AP/MT-TxBuilder
(full frame)

0.7 ms

Decoding of a single IE
(UL)

3.23 µs AP/MT-TxBuilder
Copy using DMA
(580 bytes – word 
transfer)

15 µs

Decoding of 3 IEs (2 ULs, 

1 DL) including  
CRC checking &
Puncturing

15 µs AP/MT-Rx Decoder 0.4 ms

AP/MT-RxCL 0.7 ms

The total utilization of the bottom logic module (FPGA) is 85%. The 

total utilization of the top logic module is 89%. The utilization per resource 

type for the bottom and the top logic modules is presented in Table 8-4. 

In order to fully realize the 5GHz wireless LAN access point and mobile 

terminal components the base band modem’s functionality is followed by an 

IF (20 MHz to 880MHz) and an RF (880MHz to 5GHz) stage. The analog-

to-digital and digital-to-analog conversion (National Semiconductors 

LMX5301 and LMX5306), for communicating with the IF analog front ends 

of the receiver and the transmitter respectively, is implemented on a separate

board which seats on a dedicated connector for external communications on

the “top” of the stack of logic modules. Also the communication with the 

PCI or Ethernet interface is done through that port.  
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Figure 8-21. Detailed architecture of the logic modules 

Table 8-4. Utilization per resource type for the two logic modules’ FPGAs 

Used Utilization 

Resource BOTTOM TOP BOTTOM TOP

Logic Module Logic Module Logic Module Logic Module 

I/Os 93 312 18.16 60.93

Function

Generators
14923 16527 38.86 43.04

CLB Slices 12164 11252 63.35 58.60 

D FFs or Latches 6368 8544 15.60 20.94 

Figure 8-22 shows a photograph illustrating the ARM Integrator platform

along with the IF, RF boards and the antenna, which are needed for the 

implementation of the access point and mobile terminal 5GHz wireless LAN 

components. By using two times the illustrated system (one operating as 

access point and a second operating as mobile terminal), a 5GHz wireless 

system is demonstrated. The location of each component is also indicated in 

Figure 8-22.  

The performance results presented above from the realization of the 

HIPERLAN/2 system on the ARM Integrator platform are expected to

improve in a reconfigurable SoC implementation. This is due to the 

overheads introduced by the ARM Integrator platform architecture (FIFOs 
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of the bus interface, SDRAM controller etc.), and also due to the lack of a 

local bus for the communication between the base band modem and the

lower MAC processor (which also controls the modem). The ARM 

processor running the lower MAC communicates with the base band modem

and the protocol ARM through the AMBA bus, sharing the bus bandwidth 

with those units. This a major bottleneck with respect to real time 

performance of the targeted system. A System-on-Chip implementation is 

expected to overcome this restricted bus bandwidth because of the use of

local busses as well.

Figure 8-22. ARM Integrator platform along with the IF, RF boards and the antenna

6. DATA FROM MEASUREMENTS AND 

OBSERVATIONS OF DESIGN METHODOLOGY 

AND TARGET SYSTEM 

Data related to design methodology metrics gathered from the 

HIPERLAN/2 design case are  presented in Tables 8-5 to 8-8. 

Table 8-5.  Data for application characteristics 

Design flow phase/activity metrics Data

Specification

Size of application specification 20000 lines of ANSI-C code

Performance requirements Throughput 54 Mbit/s

Reconfiguration objective Flexibility towards post-fabrication upgrading
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Table 8-6. Data for system-level design 

Design flow phase/activity metrics Data

Analysis

Analysis technique used to produce data (from

application) for design space exploration, and 

main results

Profiling (physical layer)/standard 

specification analysis (MAC/DLC) 

Number of operations (physical layer) / 

execution time constraint per task

(MAC/DLC)

Architecture template

Main computing, storage and communication 

elements; reconfigurable element in more detail

ARM Integrator platform with AMBA 

AHB Bus, 2 ARM7TDMI processors

and 2 Xilinx Virtex E FPGAs

Partitioning and mapping

Partitions and mappings explored 

Decision objectives

Number of partitions: 2

Contents:

1. DLC/Higher MAC on SW, time 

critical MAC on HW, Baseband 

on HW

2. DLC/Higher MAC on SW, time 

critical MAC on SW, Baseband 

on HW

Criteria used: Number of execution

cycles

System-level simulation 

Simulation models used, and results of 

simulation

Types of models and test benches:

Functional

Data collected: bit rate

Impact of reconfiguration

Benefits of methodology extensions to handle

reconfiguration

Unified representation of tasks that will

be mapped on HW, SW, reconfigurable 

Hw and capability for evaluation of

different assignment/partitioning options. 

Table 8-7. Data for detailed design 

Design flow phase/activity metrics Data

Specification refinement

Contents of main refinements 

Rules, criteria and data used 

Complete functionality (HIPERLAN/2 

MAC and baseband)

OCAPI-XL

Reconfigurable part

Transformation to synthesizable 

description

OCAPI-XL VHDL code generation

(through OCAPI-XL refinement)/manual

VHDL code development

continued
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Design flow phase/activity metrics Data

Integration

Integration of transformed synthesizable 

modules, and with related software 

250 VHDL files

262 C++ classes (9 top level) for the 

access point

258 C++ classes (8 top level) for the 

mobile terminal

Co-simulation, synthesis, emulation 

Technique and its characteristics used for 

validation of detailed design

OCAPI-XL simulation

Impact of reconfiguration 

Benefits of proposed methodology extensions Detailed refinement path down to

implementable code (HDL/ANSI C) 

Table 8-8. Data for implementation design

Design flow phase/activity metrics Data

Reconfigurable part

Implementation design steps Synthesis (Leonardo Spectrum) 

Post synthesis (Xilinx ISE) 

Two configuration files of 1.2 Mbytes 

each

Verification

Technique and its characteristics used for 

verification of implementation design

On-board verification 

Functional testing on Platform

Platform, test bench and monitoring / 
measurement configuration

Functional performance tests (transmitted 

signal quality)

Data related to HIPERLAN/2 implementation metrics are  presented in 

Table 8-9.

Table 8-9. WLAN baseband data for target system 

Metrics (target system) Data

Execution time

Time required to execute a function or a set of 

functions

2 ms / frame

Throughput

Rate at which samples, data, frames etc. can be 

processed

54 Mbit/s (worst case)

Latency

Time from availability of input data until 

respective output is delivered 

N/A

Frequency

P
er

fo
rm

a
n

ce

Frequencies used/achieved in the demonstrator d

platform

ARM7TDMI clock: 50 MHz 

FPGA clocks: 40 MHz, 80 MHz 

continued
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Metrics (target system) Data

Size of logic and software 

A
re

a

Amount of logic used by reconfigurable

resource, and code size of related software

Top logic module FPGA: 312 I/Os, 

16527 Function generators, 11252 

CLBs, 8544 D flip flops.

Top logic module FPGA: 93 I/Os, 

14923 Function generators, 12164 

CLBs, 6368 D flip flops.

ARM7TDMI protocol processor: 

1.4 Mbytes

ARM7TDMI low level MAC and 

modem control: 50 Kbytes

Time

Time required for downloading configuration 

onto reconfigurable resource 

1.8 seconds

Configuration data

Amount of data required for configuration 1.2 Mbytes for each of the two

FPGAs

Frequency/bandwidthC
o

n
fi

g
u

ra
ti

o
n

Frequency/bandwidth at which configuration 

data items can be downloaded

680 Kbytes/second 

7. ANALYSIS OF DESIGN METHODOLOGY AND 

IMPLEMENTATION RESULTS 

From a methodology perspective the HIPERLAN/2 system development 

demonstrated the benefits of adopting a seamless path from specification to 

implementation related stages during system development. System

partitioning and task assignment alternatives (hardware, software, 

reconfigurable hardware) can be evaluated early in the design flow based on 

high-level performance estimates (produced through simulation). In this way 

designers may focus on the most promising alternatives in the following

more detailed design stages. Furthermore the selection of architecture

alternatives in a systematic way ensures that time consuming iterations from

lower level design stages to architecture specifications. Both these facts 

reduce design time significantly.

An important drawback of the employed system level exploration

methodology is that certain features of the selected implementation platform 

are hard to be modeled at a high level (this is especially true for board level

designs). In the case of HIPERLAN/2 development the AMBA bus around 

which the whole system is integrated is very difficult to be included in a high

level model (OCAPI-XL) with accurate performance estimates. This creates 
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a level of uncertainty on the high level decisions made based on the high

level performance estimates.

From a system point of view the HIPERLAN/2 development has proven

that the exploitation of reconfigurable hardware even under a static

reconfiguration scenario may lead to important benefits. The major benefit is 

the capability for cost efficient post-shipment functionality upgrading. In the 

conventional case upgrading could only happen for the tasks that are mapped

to software processors in the original version. In such a case significant

processing power in the form of software processors must be allocated in the 

implementation platform. If complex tasks that require significant 

parallelism (better suited for custom or reconfigurable hardware

implementation) in order to meet timing constraints need to be upgraded in 

the future these should be realized as software from the original version

already. This fact may lead to a cost inefficient realization in terms of the 

number and processing power (cost) of the software processors of the 

implementation platform. The presence of reconfigurable hardware enabling 

a spatial “ASIC like” computation style allows for more efficient upgrading

of computationally complex tasks and thus to more cost efficient 

implementation platform design. The “business” advantages of the 

functionality upgrading scenario remain as in the software case: short time to

market andt extended product life cycles through upgrading derivatives.

With the described post shipment functionality upgrading scenario in

mind a disadvantage is related to the design time of the tasks that will be 

mapped on reconfigurable hardware (to allow efficient upgrading) as 

compared to a software implementation (which would also allow upgrading 

on a software processor). This is justified by the fact that the user’s

programming model of most commercially existing reconfigurable devices 

(FPGAs) is based on HDLs (VHDL or Verilog). HDL coding of a given task 

takes longer than C/C++ coding of the same task. Furthermore verification 

and debugging but also mapping (synthesis, place and route) of HDL models 

take longer than the corresponding software tasks (instruction level 

simulation, compilation). This fact may increase the system development

time depending on the amount of targeted product’s upgradability.
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Abstract: The SystemC based approach and extensions are applied in the WCDMA

design case in order to validate it at the system level, and to get experiences on

the detailed and implementation design of reconfigurability on the selected 

Virtex II Pro demonstrator platform. The WCDMA detector case represents a

reconfiguration scenario of applying partial dynamic reconfiguration in a

mobile terminal.
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system-on-chip.

1. INTRODUCTION

The purpose of the WCDMA detector case study is to experiment and

validate the SystemC based approach for reconfigurability design. The 

starting point of the case study is a new adaptive channel equalizer for the

WCDMA downlink [1], and the C models, test vectors and documentation of 

related algorithms. 

The main emphasis of the experimentation is at the system-level design: 

• Analysis and functional decomposition. 

• High-level software and hardware estimation. 

• SystemC modelling of algorithms and architecture. 

• System partitioning, mapping and performance simulation. 

In order to validate interfacing to the detailed and implementation design

phases, the case study continues with:

209
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• Refinement.

• Detailed design of parts selected for run-time reconfiguration.

• Implementation of selected parts on the Virtex II Pro based platform

with run-time reconfigurability. 

• Measurement and analysis of properties, e.g. performance, area and 

configuration overhead. 

The next sections describe the system, implementation platform, high-

level design and implementation of the WCDMA detector case study. 

2. SYSTEM DESCRIPTION 

The whole WCDMA receiver base-band system is depicted in Figure 9-1, 

and it contains an RF and pulse shaping module, a searcher module, a 

detector, a de-interleaver and a channel decoder. The RF and pulse-shaping 

module is converting and filtering the RF signal to the base band. The

searcher module performs the channel impulse response measurement and 

an initial synchronization. After acquiring the code phase, the searcher 

delivers the frame and slot synchronization signals to the detector (grey area 

in Figure 9.1). The detector functionality is explained in detail later. After

detection, the de-interleaver carries out the de-interleaving, de-multiplexing 

and rate de-matching tasks [2]. Finally the channel decoder functionality is

performed.

The case study focuses on the detector portion of the receiver. The case

study covers only a limited feature set of the full receiver. The detector case 

uses 384kbit/s user data rate without handover.

Channel

estimator

Adaptive
FIR

Multipath
combining

Correlator
bank

Frame
& Slot

sync

De-

Interleaver

Detector

Channel

decoder

RF and
Pulse shaping

Searcher

Figure 9-1. WCDMA receiver base-band system. 

2.1 Detector Architecture 

The detector (grey area in Figure 9-1) contains an adaptive filter, a 

channel estimator, a multi-path combiner and a correlator bank. The adaptive 

filter is performing the signal whitening and part of the matched filtering 
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implemented traditionally with the RAKE receiver. The channel estimator 

module calculates the phase references. In the combiner part, the different 

multi-path chip samples are phase rotated according to the reference samples 

and combined. Finally the received signal is de-spread in the correlator bank. 

When compared to traditional RAKE based receiver concepts, this 

WCDMA detector achieves 1  4 dB better performance in vehicular and 

pedestrian channels. The detector provides thus performance benefits in 

more challenging channel conditions. As the traditional RAKE concepts 

contain several correlators for tracking the multi-path components, this 

detector contains a single channel equalizer for performing multi-path 

correction. This results in improved scalability, since increasing multipaths 

or data rates would mean increasing amount of early/on-time/late correlators 

in the traditional RAKE based concepts.

2.1.1 Adaptive Filter

Regardless of the data rates or channel configurations required by the 

specification, the adaptive filter block is unchanged as it simply processes 

chip samples before the de-spreading takes place. Extendibility aspects are 

also not a problem as no changes are required to support other demands. 

The adaptive filter is implemented by using basic FIR filtering structures 

with a delay line and taps for extracting complex sample values to be 

multiplied with the tap coefficients. The implementation is fully parallel, so 

the number of multiplier units for coefficient multiplication in both I and Q

branches and the units needed for calculating new coefficients equal the 

number of taps in the filter.

2.1.2 Channel Estimator

The function of the estimator is to de-spread the CPICH (Common Pilot 

Channel) chips on different multi-paths with correctly timed spreading and

channelization codes. Then the received and de-spread CPICH symbols are 

multiplied with the complex conjugates of the CPICH pilot pattern. The 

output is channel estimates for different multi-paths, which are used in the

combiner to rotate received chips in different multi-paths before combining,

in order to match their phases and amplitudes. 

The channel estimator receives timing information from the searcher 

block. This includes the delay information about multi-paths at a specified 

delay spread. The channel can therefore be thought as a FIR filter with a 

number of taps and with most taps zero-valued. The task of the channel 

estimator is to find the tap values for those taps that the searcher determines

to be non-zero.
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Input chips

0 20 30 512 532 542 chip clock

h(0) ready h(20) ready

h(30) ready

2 CPICH symbols = 512 chips

Tap delays from searcher

...

...

Figure 9-2. Channel estimation example.

In an example of Figure 9-2, the searcher has found three non-zero taps

for a certain base station (delays 0, 20 and 30). The multi-path combining of 

the received chips c is then done in the combiner by multiplying received 

chip samples with the complex conjugates of the channel estimates h, after 

all multi-path estimates are ready. 

In the DPCH-channels (Dedicated Physical Channel), the pilot symbols can

be found from the end of the slot, while the TPC (Transmit Power Control)

symbols are located in the beginning half of the slot as depicted in Figure

9.3.

One radio frame, T
f
 = 10 ms

TPC

bits

Slot #0 Slot #1 Slot #i Slot #14

T
slot

 = 2560 chips, 10*2
k

 bits (k=0 ..7)

Data2

bits

TFCI

bits

Pilot

bits

Data1

N
data1

bits

DPDCH DPCCH DPCCHDPDCH

N
TPC

N
TFCI

N
data2

N
pilotp

Figure 9-3. Downlink DPCH L1 frame structure. 

The CPICH channel estimate over one slot is formed by integrating over

the number of symbols and then it is scaled. It is used for actual phase 

correction of the received chips. The CPICH estimates are used as channel

references for every data channel. 
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2.1.3 Combiner

As the base station transmits the pilot symbols through the channel, the 

terminal receives the directly propagated symbols and the delayed multi-

paths. As the pilot symbols are known beforehand, the channel tap 

coefficients for each multi-path can be calculated. 

The different multi-path chip samples are first phase compensated

according to the channel tap estimates. This is done by multiplying the chip

sample with the complex conjugate of the corresponding multi-path channel

tap coefficient. Finally all the phase compensated chip samples are added 

together to form an equalized chip sample.

2.1.4 Correlator

The function of the correlator bank is to create de-spread symbols from 

the output of the multipath combiner. Combined chips are de-spread by 

spreading code, which is formed from scrambling and channelization codes. 

After de-spreading, chips are integrated over the symbol period in an 

integrator and the result is scaled.

3. IMPLEMENTATION PLATFORM DESCRIPTION 

The implementation platform is Memec Design’s Virtex-II Pro FF1152 

P20 Development Kit. The board architecture is shown in Figure 9-4. 

The onboard FPGA, Xilinx Virtex2P XC2VP20, contains two embedded 

PowerPC 405 processors, 18560 LUTs, and 88 BlockRAMs. 

The system board includes two independent memory blocks of 8 M x 32 

SDRAM, five clock sources, two RS-232 ports, a high-speed 16-bit LVDS 

interface supporting SPI-4.2, two iSFP Gigabit Ethernet optical interfaces, a

10/100 Ethernet PHY, an IDE connector, and additional user support 

circuitry to develop a complete system.

The System ACE interface on the Virtex-II Pro system board provides 

the flexibility to store multiple FPGA configuration options in removable 

Compact Flash cards. 
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Figure 9-4. Virtex II Pro FF1152 development board architecture (Memec Design). 

4. HIGH LEVEL DESIGN 

The proposed high-level design methodology and reconfigurability 

extensions to SystemC based approach are applied in the WCDMA detector 

case study. The system-level design part of the design flow is depicted in 

Figure 9-5.
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Figure 9-5. System-level design part of the proposed methodology. 

Given the C codes of the algorithms of the WCDMA detector as the

starting point, the following system-level design steps were performed:

• Analysis/functional decomposition of specification. 

• High-level estimation. 

• SystemC modelling of algorithms and architecture. 

• System partitioning, mapping and performance simulation.

4.1 System Specification 

System specification is given as a combination of documents and C codes 

of the functions of the system. Based on these a complete C-based 

description of the system functionality is created. The structure of the 

WCDMA detector C codes is depicted in Figure 9-6. 
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D t Ch lD t Ch lD t Ch lData ChannelData ChannelData ChannelData ChannelData ChannelData ChannelData ChannelData ChannelData Channel

pppInput BufferInput BufferInput BufferInput BufferInput BufferInput BufferInput BufferInput BufferInput BufferI t B ffI t B ffI B ff
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Data BufferData BufferData BufferData BufferData BufferData BufferData BufferData BufferData BufferD t B ffD t B ffD B ff
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BufferBufferBufferBufferBufferBufferBufferBufferBufferB ffB ffB ff

Figure 9-6. Structure of WCDMA detector C codes. 
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4.2 Architecture Template 

The architecture options to be considered are limited by the 

implementation platform. The proposed architecture template is described as 

following. The embedded PowerPC processor core is used to perform the 

software functions. The communication of the system is not complicated,

and one system bus is used for the module interconnection. The Processor

Local Bus (PLB) IP core provided by Xilinx is selected. The WCDMA 

detector function blocks and other related peripherals are implemented as

either dynamic reconfigurable units or static units and connected to the PLB 

bus. The two SDRAMs available on the development board are not suitable 

for fast data access, thus all the software code and intermediate data are

stored in the on-chip block RAMs. 

4.3 Estimation and Partitioning 

The estimation approach and prototype tool described in Chap. 5 are used 

to estimate resources required by the function blocks on a Virtex II Pro-type 

FPGA. The results are presented in Table 9-1, where LUT stands for look-up 

tables and register refers to word-width storages. The multiplier refers to the

hardwired 18x18 bits multipliers embedded in the Virtex II Pro FPGA. 

Table 9-1. Estimates of FPGA-type resources required by function blocks. 

Functions LUT Multiplier Register

Adaptive filter 1078 8 91

Channel estimator 1387 0 84

Combiner 463 4 32

Correlator 287 0 17

Total 3215 12 224 

The final dynamic context partition is as following. The channel

estimator is assigned to one context (1387 LUTs), and the other three 

processing blocks are assigned to a second context (1078 + 463 + 287 =

1828 LUTs). The first reason to make such a partition is to reduce the total 

amount of area in the implementation. However, putting the correlator and 

the channel estimator into a single context would result in a more balanced 

partition. This option is dropped due to the consideration of the data 

transfers. The amounts of data transferred from the adaptive filter to the 

combiner and from the combiner to the correlator are much higher than that 

of other paths, so putting the adaptive filter, the combiner and the correlator 

into one context will also reduce the interface complexity.



9. WCDMA Detector 217

4.4 Mapping and System-Level Simulation 

A fixed system is created first, which has two purposes in the design. The 

first one is to use its simulation results as reference data, so the data 

collected from the reconfigurable system can be evaluated. The second 

purpose is to use it as the input to the DRCF transformer to generate the

DRCF component.  

In the fixed system, all of the four detector functions are mapped onto

separate hardware accelerators and the scheduling task is mapped onto a

software task that runs on the PowerPC processor core. In the scheduling,

pipelined processing is used to increase the performance. A small system bus 

is modelled to connect these processing units. The channel data for 

simulation is recorded in text files, and the processor drives a slave I/O

module to read the data. The SystemC models are described at the 

transaction level, in which the workload is derived based on the estimation 

results but with manual adjustment. Part of the waveforms generated from 

the simulation results is presented in Figure 9-7. The results show that 1.12 

ms is required for decoding all 2560 chips of a slot when system is running

at 100 MHz.

Figure 9-7. Simulation waveform of the fixed system for the detector.



218 Chapter 98

The dynamically reconfigurable system is generated in a way that 

follows the context-partitioning decision, which is to assign the four

processing blocks into two contexts. The DRCF transformer is used to 

replace these four static accelerator modules with a DRCF component. The

code below shows the script file for the DRCF transformer.

// for DRCF transformer 
TOP_LEVEL : top top.h
/* bus interface info */
BUS_INTERFACE: bus_mst_if bus_if.h 
/* slave interface info */ 
SLAVE_INTERFACE: bus_slv_if bus_if.h
/* modules info */
MODULES: adp_filter adp_filter.h, comb comb.h, 
     corr corr.h
MODULES: chest chest.h 
// DRCF_configure.h
#define DRCF_PRI 5
#define DRCF_SIZE 100
#define CONTEXT_1_LOW_ADDR 0 
#define CONTEXT_1_LENGTH 76754
#define CONTEXT_1_SIZE 1387
#define CONTEXT_2_LOW_ADDR 76755 
#define CONTEXT_2_LENGTH 101158 
#define CONTEXT_2_SIZE 1828
#define CONFIG_BITWIDTH 16 
#define DRCF_MEM_LOW_ADDR 0
#define DRCF_MEM_HIGH_ADDR 180000
#define DRCF_MEM_READ_LATENCY 1 
#define DRCF_MEM_WRITE_LATENCY 1 
#define RECONFIG_CLK_DIV 3 
In the code, the TOP_LEVEL, BUS_INTERFACE, and 

SLAVE_INTERFACE are compulsory macros so the transformer can find the E

required information from the source code of the initial architecture. Each 

macro of MODULES will initialize a new context. The names of theS

SystemC modules that are assigned to the new context are given next to the

MODULES. In this case, the adp_filter, comb and corr are given next to ther

first MODULES, and the chest to the second t MODULES.

The group of #define are the definitions of the macros for the DRCF

component. The definition CONTEXT_N_LENGTH represents the size of H

the bit stream of the context N. In this case, we assume that the size isNN

proportional to the resource utilization, which is the number of LUTs 
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required. The total available LUTs and size of full bit stream are taken from 

the Virtex2P XC2VP20 datasheet. The final model is depicted in Figure 9-8.
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Figure 9-8. SystemC modelling of the WCDMA detector module.

Figure 9-9. Simulation waveform generated by the DRCF component.

The performance simulation is performed after the creation of the 

reconfiguration system. The system requires 2 reconfiguration requests per 

slot. When the configuration clock is running at 33 MHz, the reconfiguration 

latency is 2.73 ms for 16 bits configuration bit-width. The solution is capable 

of decoding 3 slots in a frame. The configuration status generated by the 

DRCF component in the simulation is shown in Figure 9-9. The simulation 

results for the reconfigurable system are shown in Figure 9-10.



220 Chapter 90

Figure 9-10. Simulation waveform of the reconfigurable system for the detector. 

5. IMPLEMENTATION 

The detailed and implementation design parts of the proposed design 

flow as, depicted in Figure 9-11, are applied in the detector case study.

Based on the architecture and partitioning decisions done in the system-

level design, the following design steps are performed:

• Refinement and detailed design of parts selected for reconfiguration. 

• Implementation of selected parts on the Virtex II Pro platform. 

• Measurement and analysis of properties, e.g. performance (cycle

counts), area (logic blocks) and configuration overhead (time). 

The design flows and tools provided by Xilinx are used. The EDK

provides tools for the Virtex II Pro platform integration and software 

development on PowerPC processor. The ISE provides tools for the FPGA

design. Bit streams of the dynamic contexts are generated using the modular

design flow [3], and the reconfiguration bit streams are downloaded to the

Virtex II Pro FPGA by using the SystemACE module.
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Figure 9-11. Detailed and implementation design parts of the proposed methodology.

5.1 Specification Refinement 

In this step, the major constraints come from the limitations of the 

Virtex-II Pro platform and low-level implementation tools. The inputs are 

the C functions of the system and the SystemC model of the system, and the

refinement focuses on the interface refinement and the DRCF component 

refinement.

5.1.1 Interface Refinement

The task is divided into traditional SW/HW interface refinement and 

common interface refinement of RHWs, which refers to the two dynamic 

contexts presented in the previous section. The common interfaces of RHW 

modules refer to the common signals that connect the RHWs to the rest of 

the system.
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Direct register-based access, shared memory access and interrupted 

access are the main communication methods between SW and HW. Because

the primary SW/HW communication in this case study is the triggering of

HW modules from the scheduling task running in the processor, the direct 

SW-to-HW register-based access method is selected. Each HW module has a

few command registers and status registers, which can be directly accessed

by the SW scheduling task through the system bus. The PLB is selected as 

the main system bus, since there is a direct support from the EDK tool. A 

second level bus is not used in this case study. Xilinx level-0 I/O SW drivers

are used to drive HW modules connected to the PLB, and bus adapters based 

on the PLB IPIF SSP1 package are used to connect HW modules to the PLB. 

In the Virtex II Pro platform, the connection between a partial

reconfiguration area and other areas of the FPGA is implemented via a 

special unit called bus macro, which can promise fixed routing of 4 signals 

each. However, the bus macros have to be put in specific locations and the 

number of available bus macros is limited. The purpose of the common 

interface refinement of the RHW contexts is to define the minimum number 

of signals that cross the reconfigurable area and static area in order to reduce 

the number of bus macros to be used. In this case study, the common 

interfaces are reduced to two 16-bit dual-port memory interfaces and one

PLB IPIF interface with 82 signals in total, which corresponds to 21 bus 

macros. Figure 9-12 shows the definition of this common interface. 

NAME           DIRECTION

Bus2IP_Reset

Bus2IP_Addr[0:3]

Bus2IP_CS

Bus2IP_Data[0:12]

Bus2IP_RdCE

Bus2IP_WrCE

IP2Bus_Data

NAME          DIRECTION

Bram_In_En

Bram_In_Wen

Bram_In_Addr[0:9]

Bram2IP_In_Data[0:15]

Interface to PLB Bus

(IPIC)

DataIn

Mem

DataOut

Mem

NAME            DIRECTION

Bram_Out_En

Bram_Out_Wen

Bram_Out_Addr[0:9]

IP2Bram_Out_Data[0:15]

OUT

OUT

OUT

OUT

OUT

OUT

OUT

IN

Context1

IN

IN

IN

IN

IN

IN

OUT

Figure 9-12. The common interface for RHW contexts. 



9. WCDMA Detector 223

5.1.2 Configuration Refinement 

In this step, the task is to decide when and how to trigger the 

reconfiguration. The behaviour of the DRCF component at the system level 

is to automatically generate reconfiguration overhead when needed. In the 

low-level implementation, the triggering of the reconfiguration is embedded 

in the SW code. The place where to trigger the reconfiguration is extracted 

by analysing the SystemC simulation results, which record the simulation

time and conditions when new reconfigurations are triggered. In this case,

the function calls both to the adaptive filter and to the channel estimator will 

trigger reconfiguration.

The ICAP and the SystemACE Compact Flash (CF) solution are the two 

options to allow the embedded processors to manage the reconfiguration of 

the system at run time. The ICAP is an in-chip solution, which is able to 

reconfigure an individual CLB or a frame. The SystemACE module, which

is available in the development board, provides a space-efficient, pre-

engineered, high-density configuration solution. The SystemACE CF 

solution supports the use of CF cards up to 256 Mb, which makes it easier to

store and manage the reconfiguration bit stream. In the case study, the

SystemACE CF solution is selected. 

5.2 Design of Modules 

5.2.1 Implementation Architecture 

Figure 9-13 shows the implementation architecture of the detector 

module on the Memec Virtex-II Pro platform. The design of the system is 

divided into 3 separate tasks: the design of static module, the design of 

dynamic module and the design of SW. 

The static module contains all the storage units and computation units 

that are not supposed to be reconfigured when the system is running. In the 

case study, the static module contains the PPC hard core, the data BRAMs, 

the instruction BRAMs, SystemACE controllers, PLB, reset module, 

memory controller module and other peripheral modules to connect to the 

outside world. The EDK design suite provides most of the IP modules 

required in the static module implementation. The others are manually 

coded.
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Figure 9-13. Implementation architecture on Virtex II Pro with RHW approach.

5.2.2 SW Design 

The software design phase mainly includes the extraction of the 

scheduling task from the original SystemC code. The EDK SW 

implementation tool is C-oriented implementation platform, so majority of 

the function does not need to change. The main task involved is to replace 

the read() and write() interface method calls in the SystemC code with

XIo_In16() and XIo_Out16() IO functions, which are available as level-0 I/O

SW drivers. 

The run-time reconfiguration is triggered and managed by SW code. The 

SystemACE module is physically attached to the development board and

controlled by the SystemACE controller IP, which is available from Xilinx. 

The SW routine to trigger the reconfiguration process is also implemented 

using the level-0 I/O SW drivers, and the routine is inserted into system SW 

code with the guide of the configuration refinement results.

5.2.3 RHW Module Design

The process of RHW module design is the manual translation from 

C/C++ application code to RTL models. First, each of the four detector 

functions is implemented as a single block. Then, a common context 

wrapper, which contains the common interface signals as shown in Figure 9-

12 above, is used to wrap the channel estimator as one module and the other 

three as another module. In the second module, multiplexers are used to 

solve the conflicts of the output signals of the three blocks. In the
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implementation phase, which will be presented in later sections, each 

module is implemented as a partial bit stream. 

The design of the combiner and the correlator are the same as they are in

a fixed system. The adaptive filter and the channel estimator are the 

processes with memory. Their outputs depend on both the input values and

the internal states of the process. In order to maintain the internal states of 

the two modules, separate memory blocks are used to hold the internal states 

between reconfiguration and proper changes are made in the VHDL RTL

code to perform the save and load of the internal state information. 

5.3 Integration and Co-Verification 

The EDK design suite is used to create the simulation files for the

complete system. However, the tool set does not provide the support to 

integrate the two dynamic contexts and the static part of the system into a

single simulation environment. Two systems for simulation are created, and 

each one is simulated individually. The first one is the integration of the

static part and the context-1 module, and the second integration is for the 

static part and the context-2 module. The output of the system containing the 

context-1 module (channel estimator) is manually fed to the system 

containing the context-2 module. The reconfiguration delay is estimated 

according to the systemACE datasheet. ModelSim is used as the simulation 

platform. VHDL RTL code of the context modules and other peripherals are 

directly fed into the ModelSim tool. The SW code is compiled and converted 

to Block RAM data. The PPC core is simulated using SmartModel, which 

can be directly linked to the ModelSim using the SWIFT interface to

perform SW/HW co-simulation.

5.4 SW and RHW Implementation Design 

The implementation processes of the WCDMA detector system are 

described in the following sections.

5.4.1 Software Implementation Design

Xilinx provides the GNU toolkit for the software implementation 

process. Both the GCC compiler and GDB debugger are available in the 

EDK design suite. Inputs are the C code and EDK-generated header files.

The output is a compiled binary file in ELF format, which can be directly

downloaded to the FPGA. The same binary file is also used in the SW/HW

co-simulation step. 



226 Chapter 96

The size of the SW code is shown in Table 9-2. When level-0 SW driver 

libraries are included, the total size is 181K bytes.

Table 9-2. SW implementation results. 

Text Data Un-initialized data Total 

Size (byte) 43588 4152 8248 55988

5.4.2 RHW Implementation Design 

The Synplify Pro is used to synthesize the VHDL RTL models of the 

WCDMA detector functions. The results are shown in Table 9-3. 

The module-based partial reconfiguration design flow [3] is used to

implement the two contexts in the Virtex II Pro. There are three parts to be 

implemented, one static part and two run-time reconfigurable contexts that 

are overlapped with each other in the same area. In the implementation, 920

LUTs and 4 Block RAMs are required for the context containing the channel

estimator, and 1254 LUTs, 6 Block RAMs and 12 Block Multipliers are 

required for the other context. The static part requires 1199 LUTs and 25 

Block RAMs. There are 21 bus macros used to connect the static part and 

one dynamic context. The decoding time of one slot of data is 9.66 ms

including the reconfiguration latency.

Table 9-3. HW synthesis results.

LUT 18x18 Multiplier Register bits

Adaptive filter 553 8 1457

Channel estimator 920 0 2078

Combiner 364 4 346

Correlator 239 0 92

The case study uses 36 external IO pins, and 33 of them are located in the 

right side of the FPGA. Because an IO pad is also part of reconfigurable 

resources, in order to maintain the connections to the IO pads are fixed

during reconfiguration, the static part is assigned to the right side of the 

FPGA (SLICE_X44Y111:SLICE_X91Y0) and the contexts are assigned to 

the left side of the FPGA (SLICE_X0Y111:SLICE_X43Y0). The 21 bus 

macros are inserted in between the static part and the dynamic part. The one 

IO pad that is located in the left side of the FPGA is routed to the right side

via a bus macro. The size of the partial bit streams generated for the context-

1 and the context-2 are 278k bytes and 280k bytes respectively.

A routed design after module assembly is shown in Figure 9-14. The 

assembled design is the integration of the context1, in the left side, and the
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static part, in the right side. The bus macros for signal connection are shown 

in the middle block.

Figure 9-14. Routed Design of the assembly of the context 1 and the static part.

The data collected for the whole system is given in Table 9-4. The

achievable clock frequency is 101 MHz. 

Table 9-4. Xilinx Virtex II Pro XC2VP20 resource utilization.

LUT Block 

RAM

18x18

Multiplier

Register

(bit)

PPC hard 

core

Static part 1199 41 0 1422 1 

Dynamic part 1534 7 12 1855 0

Total 2733 48 12 3277 1 

5.5 Downloading and Execution 

The iMPACT tool is used to transform the configuration files into

SystemACE file format, segment the space of the CF card and perform the 

necessary file management. The CF card writer is used to store the 

transformed files in a 128 MB CF card.

In the execution, a complete system (integration of the static part and the 

context1) is initially downloaded to the FPGA using the iMPACT, and the 
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partial bit streams are loaded when necessary by the SystemACE module. In

this case study, the RS-232 and LCD peripherals are added to the PLB

system bus for displaying messages and results. 

6. COMPARISON WITH FIXED HW AND PURE SW 

SOLUTIONS 

In addition to the implementation of the dynamic reconfiguration

approach, a fixed hardware implementation and a pure software

implementation are made as reference designs. 

In the fixed-hardware implementation, the processing blocks are mapped 

to static accelerators and the scheduling task is mapped to SW that runs on

the PPC core. The resource requirements are 4632 LUTs (24% of available 

resources), 55 Block RAMs (62%) and 12 Block Multipliers (13%). The

system is running at 100 MHz. The processing time for decoding one slot of 

data is 1.06 ms. Compared to the fixed reference system, the dynamic 

approach achieves almost 50% resource reduction in terms of the number of 

LUTs, but at the cost of 8 times longer processing time. 

For the full software implementation, the design is done as a standalone 

approach and no operating system is involved. The processing time for one

slot of data is 294.6 ms, which is over 30 times of the processing time in run-

time reconfiguration case. This does not fulfil the real-time requirements. 

7. RESULTS ANALYSIS 

Results related to design methodology and implementation are separately 

discussed in the following sections. 

7.1 Analysis of Design Methodology Results 

7.1.1 Advantages

The main advantage of the SystemC-based approach is that it can be 

easily embedded into a SoC design flow to allow fast design space 

exploration for different reconfiguration alternatives without going into

implementation. The decision of the context partitioning is guided by the 

SystemC-based design methodology. The reconfiguration effects are 

modelled through parameters, whose values are annotated from the data of 

the target platform. 
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Timing/resource estimation, DRCF modelling and performance 

simulation are the main techniques to support fast design space exploration

at the system level. Different alternatives can be compared in order to make 

justified decisions of allocating functions to dynamic contexts. The

automatic SystemC code generation for the reconfigurable module can 

significantly reduce the coding effort. The transaction-level modelling 

enables fast performance evaluation of reconfiguration effects at the system

level. Considering the design at detailed level and implementation level is

time consuming, usually taking from weeks to months, the SystemC-based 

approach can result in remarkable improvements in the design process both 

from time and quality point of view.

7.1.2 Disadvantages

From the methodology point of view, the lack of study of power

performance is clearly a disadvantage, since power is an important issue in 

design of wireless equipment. The power variation during the run-time 

reconfiguration process needs to be addressed. 

The link from the system level to the detailed-design level involves 

manual transformation from C to HDL, which tends to be time-consuming 

and error-prone. High-level synthesis tools could be candidate approach. 

Although falling out of the scope of the current research, improvements to 

the vendor-specific design flows and tools for the detailed and 

implementation design could be welcome, too. 

7.1.3 Summary

It is very important to have an approach that allows designers in the early

phase of design to rapidly explore the differences of using different 

reconfiguration alternatives. The SystemC-based instantiation of the design 

flow introduced in Chapter 4, has been proven its applicability in practice 

through the successful design of the WCDMA detector case study. The use 

of run-time reconfigurable hardware will create a flexible system and result 

in shorter time-to-market when comparing with equivalent ASIC-type SoC 

implementation.

7.2 Analysis of Implementation Results 

7.2.1 Advantages

The potential benefit of using run-time reconfiguration approach is

obviously the significant reduction of reconfigurable resources. Compared to 
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a completely fixed implementation, the reduction of LUTs can be up to 50%.

Compared to a fully software implementation, the run-time reconfiguration 

approach is over 30 times faster. 

7.2.2 Disadvantages

The commercial off-the-shelf FPGA platform caused limitations on the 

implementation of run-time reconfiguration. Although the selected approach

used partial reconfiguration, the required configuration time affected the 

performance a lot in the data-flow type WCDMA detector design case. The 

design case was possible to be implemented by using the vendor-specific 

design flows and tools for the detailed and implementation design, but some

manual work-around were needed.

The run-time reconfiguration implementation of the WCDMA detector

resulted in severe reconfiguration latency, which however is due to the

limitation of the FPGA technology. The ratio of computing to configuration 

time was about 1/8 in this design case. The reconfiguration latency has been 

revealed in the SystemC simulation using the DRCF modelling technique. 

The overall performance is expected to be significantly improved when

advanced approaches are available, such as multi-context devices. 

7.2.3 Summary

The dynamic partial reconfiguration of the WCDMA detector was

designed and implemented on a commercial Virtex-II Pro FPGA-platform in 

order to validate the system-level extensions of the SystemC based 

approach. The validation results showed the system-level approach to be 

valid. The implementation results showed long reconfiguration latency in the

detector design case, although also demonstrating possibilities for resource 

sharing when compared to the fixed hardware implementation and for

performance improvement over pure software implementation. 

8. CONCLUSIONS

The goal of the design case is to use SystemC-based approach to study 

the feasibility of dynamic reconfiguration of a new detector algorithm. The 

design starts from C code. The SystemC-based approach and tools are used 

for early design space exploration. Commercial tools and manual VHDL

coding are involved in the detailed-design level and in the implementation 

level. The dynamic partial reconfiguration design presents 40% area saving

but 8 times longer processing time when compared with a fixed hardware 
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implementation. When compared with a pure software solution, it presents

over 30 timers better performance.

The commercial off-the-shelf FPGA platform caused limitations on the 

implementation of run-time reconfiguration. Although the selected approach

used partial reconfiguration, the required configuration time affected the 

performance a lot in the data-flow type WCDMA detector design case. The 

implementation of the WCDMA detector demonstrator validated that the

SystemC-based approach and associated support tools are able to support the 

design of reconfigurable SoCs at the system level. Timing/resource 

estimation, DRCF modelling and performance simulation are the main 

techniques to support fast design space exploration at the system level. 

Different alternatives can be compared in order to make justified decisions 

of allocating functions to dynamic contexts. Consequently, iterations from 

detailed and implementation design back to system-level can be avoided.

k to system-level can be avoided.
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