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Foreword

A
nalog circuits are fascinating artifacts. They manipulate signals whose informa-
tion content is rich compared to digital signals that carry minimal amount of infor-

mation; they are delicate in that any perturbation due to parasitic elements, to delays, to
interactions with other elements and with the environment may cause a significant loss
of information. The difficulty in dealing with these artifacts is to protect them from all
possible attacks, even minor ones, from the physical world. The irony is that they are
often used to funnel information from and to the physical world to and from the abstrac-
tion of the digital world and for this function, they are irreplaceable. No wonder then
that analog designers form a club of extraordinary gentlemen where art (or magic?)
rather than science is the shared trade. They are difficult to train since experience and
intuition are the traits that characterize them. And they have difficulties in explaining
what is the process they use to reach satisfactory results. Tools used for design (sim-
ulation) are mainly replacing the test benches of an experimental lab. However, the
growing complexity of the integrated systems being designed today together with the
increasing fragility of analog components brought about by shrinking geometries and
reduced power consumption is posing severe challenges to traditional analog designers
to produce satisfactory results in a short time. At the same time, the need for experi-
enced analog designers has increased constantly since almost all designs, because of
integration, do contain analog components. This situation has created a strong interest
in developing design methodologies and supporting tools that are based on rigorous,
mathematically literate, approaches. Doing so will make it possible to leverage the
expertise of seasoned analog designers and to train new generations faster and better.

In the past, several attempts have been made in academia and industry to create these
methodologies and to extend the set of tools available. They have had questionable
acceptance in the analog design community. However, recently, a flurry of start-ups
and increased investment by EDA companies in novel tools signal a significant change
in market attention to the analog domain. I personally believe that to substantially im-
prove quality and design time, tools are simply insufficient. A design methodology
based on a hierarchy of abstraction layers, successive refinement between two adja-
cent layers, and extensive verification at every layer is necessary. To do so, we need
to build theories and models that have strong mathematical foundations. The analog
design technology community is as strong as it has ever been. Mathematically astute
researchers are advancing the state of the art of simulation technology at a pace as fast
as I have ever seen in my entire career. Reduced order modeling, relaxation-based tech-
niques, Krylov subspace accelerations have made it possible to verify relatively large
circuits with a degree of accuracy that was unthinkable only a few years ago. At the
same time, (semi-) automatic layout and parametric optimization for analog circuits
have made it in the commercial world. Yet, much research still needs to be done to

vii



viii FOREWORD

bring productivity at the appropriate level. As we move towards submicron designs,
there is an increasing fear that second-order physical effects can possibly not be com-
pensated for challenging analog components. Hence, the benefits of integration may
not be enough to warrant the increased design problems unless significant advances
are made to build analog circuits that are robust with respect to submicron undesirable
effects.

RF circuits are even more difficult to deal with. Next generation wireless devices are
likely to be multi-standard (they are often referred to as software-defined radios) and
pose two fundamental challenges: the design of the multi-frequency RF front-end and
the reconfigurability needed at base-band. At this time, there has not been a satisfactory
design that could yield a successful industrial product. It is safe to say that a good part
of the reasons why this is so resides in the lack of methodologies and tools.

This book is about modeling, analysis and verification of RF circuit behavior addressed
in a rigorous way. It is directed to a category of engineers who are between design and
EDA. It has a good tutorial dimension so that it can be used in a course. In particu-
lar, the simple description in plain words of the essence of the different methods, this
before diving into the mathematical details, makes reading this book a pleasant expe-
rience without sacrificing precision and rigor. Its strength is in its informed review
of linear periodically time varying system analysis and the analysis of oscillator dy-
namics, including phase noise in oscillators. Both topics are essential in the design of
analog and RF circuits.

Alberto Sangiovanni-Vincentelli

.
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Symbols and Abbreviations

Conventions

We use the following notations for the scalars, vectors and matrices:

x, X scalar, slanted lower- and upper-case letters
x vector, bold lower-case letters
X matrix, bold upper-case letters. Sometimes, this is also used to denote a

vector in its interpretation of a matrix with a single column.
XiXX , j matrix element located at the i-th row and the j-th column
X̃ harmonic transfer matrix, bold upper-case letters with a tilde on top
x, x averaged scalar- or vector-quantity corresponding to x, x
x∗,x∗,X∗ complex conjugate of a scalar, vector or matrix

Operators

| · | Absolute value of a real number or modulus of a complex number
‖·‖p p-norm of a vector or matrix
‖·‖ Shorthand notation for the two-norm of a vector or matrix
F{·} Fourier-transform operator
L{·} Laplace-transform operator
Im{·} Imaginary part of a complex number
Re{·} Real part of a complex number

Symbols
[a,b] interval of real numbers located between a and b.
A oscillating signal’s amplitude
C symbol for a capacitance
f frequency in [Hz]
G symbol for a conductance
I unity matrix
IN unity matrix belonging to RNRR ×N

j complex number that equals
√−1

L symbol for an inductance
O(εn) the Landau symbol also called big-O. A function f (ε) is said to be O(εn)

if ∃K > 0 : | f (ε)| < A |εn|
p state vector of an oscillator’s core system
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R symbol for a resistance
s Laplace transform variable (complex frequency variable)
t time

ε perturbation variable
Φ(t,τ) autocorrelation function of a non-stationary stochastic process n(t)∈R→

R. It is defined as Φ(τ) = E{n(t)n(t − τ)}. If n(t) is stationary, then
Φ(t,τ) = Φ(τ) does not depend on t.

θ oscillating signal’s phase
σ Standard deviation of a stochastic variable
τ normalized time
ω (angular) frequency in [rad/sec]

C set of complex numbers
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Abbreviations

CAD Computer-Aided Design
CMOS Complementary Metal Oxide Semiconductor
CT-LTI Continuous-Time Linear Time-Invariant
DAE Differential Algebraic equation
DCS Digital Cellular System
DT-LTI Discrete-Time Linear Time-Invariant
EDA Electronic Design Automation
FPGA Field Programmable Gate Array
HTF Harmonic Transfer Function
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SAW Surface Acoustic Wave
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SPICE Name of a circuit simulator originally developed at Berkeley
SPICE-like In this text, the word “SPICE-like” is used to indicate simulation al-

gorithms that either build on a Runge-Kutta method or on numerical
differentiation formulas.

VCO Voltage-Controlled Oscillator
Verilog A language to describe the operation of digital electronic systems and

circuits.
Verilog-AMS A language to describe the operation of mixed-signal electronic sys-

tems and circuits
VHDL Very high speed integrated circuit Hardware Description Language.

A language to describe the operation of digital electronic systems and
circuits.
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Chapter 1

Introduction

To those who do not know mathematics it is difficult to get across a real
feeling as to the beauty, the deepest beauty, of nature ... If you want to learn
about nature, to appreciate nature, it is necessary to understand the language
that she speaks in. —Richard Feynmann

Mathematics is too important to be left to the mathematicians.
. —David Hestenes

T he ability to analyze system or circuit behavior is one of the key requirements for
successful design. To put an idea to work, a designer needs both the knowledge

and tools for analyzing the behavior of that new system architecture or that experi-
mental circuit topology. Design decisions are grounded on the results obtained from
analysis.

Producing dedicated methods for analyzing each particular problem at hand is of course
inefficient. It’s like reinventing the wheel time and again. Therefore, successful meth-
ods should be applicable to large classes of system and circuit behavior. This implies
a classification that makes abstraction of the underlying implementation details. This
process of abstraction can be considered as a formalization of design knowledge. This
formalization is important for two reasons: in the short run, it speeds up the future
design of similar systems by enabling us to reuse exsiting methods; in the long run, it
eases a transfer of knowledge to generations to come.

This book reports on research in the field of methods for modeling and analysis of
telecommunication frontends and their building blocks. In doing so, it deals with fun-
damental theory and algorithms for behavioral model extraction.

1.1 Structured analysis, a key to successful design

1.1.1 Electronics, a competitive market

Since the birth of the first transistor at Bell-Labs (1947) over the creation of the first in-
tegrated circuit (IC) at Texas Instruments (1958), electronics has experienced a tremen-
dous growth, both technologically and economically. Fig. 1.1 shows both the evolution
of the transistor dimensions and the transistor count of the Intel processors over the
last couple of decades. This gives a clue as to the tremendous pace with which tech-
nology evolves. With the latest Intel Pentium 4 containing over 100 million transistors

1
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Figure 1.1: Evolution of transistor sizes and number of transistors per die for
the Intel processor [source: Intel].

and with the first 1 billion transistor processor expected by 2007, integrating complex
functionalities on a single die is becoming reality.

Packing more transistors onto a single chip has resulted into a dramatic cost reduction.
Fig. 1.2 shows that the average transistor cost drops exponentially with time. This price
evolution drives a huge number of commercial applications, making them affordable
for mass markets. These applications have pervaded almost all aspects of our daily
lives: computers are used to run complex administrations; electronic control systems
are omnipresent, from chemical plants to automobiles; electronic signal processing has
made global communication a reality.

As a consequence of these successes and of many years of high-paced growth, the
electronics industry has become a highly competitive business. There are a lot of com-
panies that want market share. Often, the first company to offer a particular product at a
reasonable price acquires a substantial share in overall sales. A short time-to-market is
therefore of vital importance in being successful. The electronics industry is a business
where complex systems need to be developed in a minimum of time.

1.1.2 Analog design: A potential bottleneck

In order to cope with the requirements of a demanding market, systems are made highly
programmable. This is accomplished using field programmable gate arrays (FPGAs),
micro-processors and reconfigurable logic. Introducing software components on chip
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Figure 1.2: Evolution of the cost of a single transistor [source: Intel].

allows us to make last-minute changes, promotes reuse and provides a lot of flexibility
in system debugging. This trend is supported by the growing speeds and decreasing
prices of these programmable devices. However, in each system, there are building
blocks that are hard to make highly programmable. Analog circuits are typical exam-
ples of such blocks. They are small but important parts that are present in almost any
system.

Systems or subsystems are said to be analog if it is not possible to make abstraction
of the continuous nature of the system’s input, output and internal signals. Within the
overall application, the analog part typically constitutes the interface with the physi-
cal world, e.g. the frontend of a telecommunication system. Due to their continuous
nature, analog systems are highly complex in their design. As such, they require a dis-
proportional fraction of the overall design time as compared to the complexity of the
signal processing operations they implement. Moreover, they tend to be highly sen-
sitive to all kinds of process parasitics, like substrate couplings and mismatch. Still,
these analog subsystems must be made first time right. If not, they become bottlenecks
in getting the overall system to market in time. Productivity and reliability demands
like this press for structured analog design methods.

1.1.3 Structured analog design

As is the case for any design process, analog design will always require creative inputs,
e.g. some ground-breaking idea for a new system or circuit topology. However, this
does not imply that the design process can not be structured. A structured design flow
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cations.

implements system realization in a hierarchical manner. The problem statement is
gradually refined by decomposing it into more manageable subproblems.

During each stage in the design process, this decomposition proceeds along the lines
illustrated in Fig. 1.3. The starting point is a set of system specifications that represent
the required functionality, performance and cost constraints. To meet these specifica-
tions, a designer suggests a number of candidate implementations1. An implementa-
tion involves a set of building block specifications —each intended to realize part of
the overall functionality— and a system topology, i.e. the way in which the building
blocks are interconnected. By means of techniques for modeling and analysis, the re-
sulting system performance is evaluated. If specifications are met, one can proceed
with the implementation of the building blocks. If not, the current system implementa-
tion needs to be adjusted. If it seems impossible to meet specifications, one can request
to relax them. This, however, may impact implementations at previous stages in the
design hierarchy.

1This —synthesis— step is the one that mainly requires a designer’s creative input. Of course, automated
synthesis is possible, but it will always be based on filling out the degrees of freedom of some template
solution devised by a —human— designer. The art of automated synthesis is making the template as general
as possible.
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Structured analog design requires designers to have both the knowledge and tools to
tackle the problems of analysis and synthesis that occur. For this, we need

• to formalize the knowledge available on analysis and synthesis of analog build-
ing blocks. This implies embedding that knowledge within a global theoretical
framework.

• algorithms and tools to support the process of analysis and design. This part
relates to the areas of computer-aided design (CAD) and electronic design au-
tomation (EDA).

Having theory and tools available improves understanding, speeds up future design of
similar systems and eases transfer of knowledge and experience to trainee designers.

The history of the feedback amplifier offers us an excellent example as to the gains of
a structured design process [Mind02]. First suggested by Harold Black, these ampli-
fiers often showed undesired oscillatory behavior. Understanding and predicting this
behavior has been the driver for Harry Nyquist and Hendrik Bode to develop the the-
ory of feedback. This theory embeds feedback amplifiers within a global mathematical
framework. It was a major step towards a better understanding and a more systematic
design of feedback systems. Feedback theory has resulted in shorter design times by
ensuring a priori the absence of oscillatory behavior. Nowadays, application of the
theory is supported by numerous toolboxes.

1.1.4 Structured analysis

Embedding knowledge within a global theoretical framework requires a structured and
hierarchical approach towards analysis. Rather than having to reinvent the wheel time
and again, theory and methods for modeling and analysis should apply to all systems
exhibiting similar behavior. This implies a classification of systems according to their
behavioral properties. It induces a tree-like hierarchy whereby each class is partitioned
into further subclasses. This is accomplished by refining the behavioral properties that
define (sub)class members. The different levels of hierarchy correspond to different
levels of abstraction that either ignore or account for specific details of the system’s
behavior and/or implementation. Based on the set of properties that define a particular
class of systems, methods for analysis —and hence design— are developed that apply
to all systems of a that class.

In Fig. 1.4 we consider the class of linear systems. Linear systems are defined by the
requirement that the principle of superposition holds. This is a general and abstract
requirement that is approximately satisfied by systems ranging from a single-stage am-
plifier to a complete receiver frontend. However, it can be exploited to construct some
dedicated methods useful for the analysis linear system behavior. All these methods
have in common that they only rely on superposition for their results to be valid. They
can be further refined by taking even more system-specific information into account,
e.g time-invariance, as in filters, or periodic time-variance, as in mixers. The extra
information can be exploited to speed up analysis. Moreover, by exploiting system-
specific information, results can often be presented in a way that is simpler to interpret.
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Figure 1.4: Structured analysis requires a hierarchical classification of sys-
tems according to their behavioral properties and/or implementation.

However, results obtained in this manner are only valid for a (more) limited class of
systems.

The starting point for a structured approach towards analysis requires gathering all a
priori information that one has on the application at hand2. This information is used to
locate the application’s position within our classification of systems and circuits, e.g.
the tree in Fig. 1.4. This way, suitable theory and methods for analyzing the application
are identified as they are tied to the class or classes of systems to which the application
belongs. Often, methods can be further refined by taking more application-specific
information into account. This approach promotes the analysis of a particular system
by using techniques that, initially, were developed to deal with a completely different
application. Furthermore, it supports a transfer of knowledge between different areas
of science by making people recognize the properties that problems have in common.
Last but not least, for generations to come, it provides a well-organized gateway to
acquire and expand knowledge and experience.

1.2 This work

This work focuses on theory and methods for modeling and analysis of telecommunica-
tion frontends and their building blocks. The theory builds on a classification of build-
ing blocks according to their behavioral properties. These properties are exploited to

2There is no shame in using previous experience to make life a little easier. However, it is important to
embed this experience within a structured framework.
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construct methods that render analysis as efficient as possible. Both theory and methods
apply to large classes of systems. Their use often extends beyond telecommunications.
In summary, this work contributes to a structured approach towards telecommunication
system analysis and provides a well-organized gateway to methods that may be of use
in capturing system and/or building block behavior.

1.2.1 Main contributions

This book reports work on two particular subjects:

Linear periodically time-varying (LPTV) systems: LPTV behavior arises when
system or circuit behavior is linearized in the neighborhood of a periodic (time-varying)
operating point. This is comparable to traditional linear time-invariant (LTI) small-
signal analysis where the operating point is constant. LPTV behavior is typically ob-
served in systems driven by a large periodic signal, e.g. mixers and phase-locked loops
(PLLs). It is characterized by the up- and downconversion of signal content.

A first part develops frequency-domain methods that extend traditional time-invariant
techniques to cope with LPTV behavior. The starting point is the Harmonic Transfer
Matrix (HTM) representation of an LPTV system, a concept borrowed from power
electronics and microwave theory. HTMs allow us to handle LPTV systems in a man-
ner that is similar to dealing with LTI systems using (Laplace- or frequency-domain)
transfer functions. Unfortunately, the —in principle infinite-dimensional— size of the
HTMs tends to make computations unwieldy, hampering their introduction into the
circuit design community.

This work introduces powerful techniques that render HTM-based analysis useful for
design practice. Analysis of up- and downconversion behavior, time-varying noise
analysis and stability analysis are made practical. The tehniques allow us to com-
pute both numerical results and symbolic expressions. By exploiting the properties of
typical LPTV circuits, we obtain compact approximations that cope with the HTM in-
versions induced by feedback loops. Furthermore, it is shown that HTMs make up a
very natural representation for frequency-domain modeling of LPTV behavior. Their
elements have a well-defined physical meaning that is in close agreement with intuition
on the matter. All of this establishes HTMs as a powerful and practical framework for
capturing time-varying behavior.

Theory on HTMs is applied to several examples. Most notable is the HTM-based
analysis of PLL behavior. PLLs allow an easy and exact description in terms of
HTMs. For slow PLL feedback loops, this exact —time-varying— description reduces
to the well-known time-invariant feedback model. For the first time, this time-invariant
model is given solid mathematical underpinnings with its shortcomings clearly identi-
fied. Finally, it is also shown how a HTM-based analysis unifies the derivation of both
continuous-time and discrete-time PLL models.

HTMs, together with the methods developed to perform computations with them, are
well suited as a framework to teach structured analysis of LPTV system behavior. They
extend intuitions on traditional LTI systems to the more general class of LPTV systems.
The methods presented to manipulate them can equally be applied to applications as
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different as mixers and PLLs. They are suited to obtain both symbolic and numerical
results.

Oscillator behavior: Oscillators are key building blocks in many telecommunica-
tion frontends. They are, amongst others, needed for channel selection and clock and
data recovery, etc. Their behavior is often characterized by the presence of signal com-
ponents that vary at widely different rates. This causes simulation times to soar when
using traditional algorithms, e.g. SPICE. This poses a problem, especially when run-
ning repetitive or lengthy system-level simulations.

A second part of this work presents methods to extract compact models that capture
an oscillator’s dynamics. To do so, these methods exploit the widely spaced time con-
stants that characterize the oscillator’s behavior. While these time constants often poses
a bottleneck to traditional simulation algorithms, they enable the methods here pre-
sented to explicitly separate the oscillator’s slow- and fast-varying signal components.
This results in models that are readily solved using multi-rate simulation techniques
whichallows us to greatly boost simulation speed. The modeling strategy is solidly
grounded on the theory of dynamical systems, perturbation analysis and averaging. It
yields clear insights into the mechanisms that govern oscillator dynamic behavior.

Applications of the theory involve oscillator phase noise analysis and modeling the set-
tling behavior of harmonic oscillators. As phase noise analysis is concerned, theory is
greatly simplified as compared to the current approach based on stochastic differential
equations. The harmonic oscillator models provide a means for efficient simulation.

The theoretical foundations presented in this work provide a sound basis for under-
standing oscillator dynamics. It can be used to teach analysis of oscillator stability,
settling and noise behavior. The algorithms for harmonic oscillator behavioral model-
ing are readily implemented on top of existing harmonic balance or shooting algorithms
as found in commercial simulators.

1.2.2 Math, it’s a language

Formalizing knowledge requires a language that is accurate enough to describe that
knowledge. We must be able to express conditions, perform analyses and write down
algorithms in a manner that does not suffer from the ambiguities common to everyday
languages like English or Dutch. On the other hand, there is always the need for intu-
itive understanding of descriptions written down in some abstract language. Whatever
you do, you must always understand what you are doing.

Over centuries, mathematics has developed as the mainstream language of science. It
is conceived to provide means for a consistent, accurate and quantitative description
of our observations of the world around us. Since this text aims at consistency and
preciseness in its description of the different topics being treated, it has a highly math-
ematical content. For example, the theory of LPTV systems is grounded on concepts
of integral equations and functional analysis while oscillator modeling is build on the
theory of stable manifolds and averaging. However, the reader should not be deterred
by this. It has been tried to clarify all mathematics in this text by means of intuitive
(geometrical) interpretations.
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Especially among engineers, mathematics often has a reputation for getting too ab-
stract. Concepts like manifolds and integral equations seem like nice toys for a mathe-
matician, but too abstract and complicated to be useful in (circuit) engineering design
practice3. This is reinforced by a mathematician’s love for abstraction. They carefully
avoid physical interpretation. The latter is considered as compromising the universal
abstract character of mathematics. However, although abstraction can help linking top-
ics as diverse as climate dynamics and oscillator phase noise, it goes past the essence of
mathematics: a language for describing our “everyday” observations. Every mathemat-
ical expression should therefore have meaning to those who read it. It should invoke
images and should help us in our quest for intuitive understanding.

Decoupling meaning from formalism, semantics from syntax, reduces mathematics
to a set of rules for deducing new statements from old ones. One stops wondering
whether those new statements make sense, what their connection to reality is. This
results in a collection of statements, a story, that is no longer easily understood. So,
people stop trying to understand and focus on results only. If results are all right,
this validates the mathematical procedure. This instrumentalist point of view [Pop34]
reduces mathematics to a toolbox. As a consequence, mathematics often is more likely
to conceal than to clarify the nature of things. It is no longer telling us a story and
hence looses its attractiveness towards many —young— people. People are fascinated
by stories, and telling stories is what languages are all about4.

In this text, we’ve tried to keep the story we tell in mathematics consistent with the
one we tell in English. It is attempted to clarify mathematical derivations as much as
possible through intuitive (geometrical) interpretations. These interpretations are sum-
marized in a section called “The story behind the math” that comes at the beginning of
most chapters. In this way, we aim for mathematical accuracy while avoiding that the
basic message gets lost in a jungle of equations.

1.3 Outline of this book

This book is subdivided into six chapters. Each chapter starts with a brief summary
followed by an introduction that reviews existing state of the art methods to solve sim-
ilar problems. Chapters 3 to 5 contain the technical core. When relevant, it contains
a section “The story behind the math” that attempts to provide a clear and intuitive

3Of course, this perception strongly depends upon the engineering discipline being considered. Me-
chanical engineering, for example, has a long-standing tradition which dates back to way before the advent
of computers. Lack of computers forced people to develop, for example, sophisticated mathematical ap-
proximation strategies. On the other hand, development of micro-electronics went in parallel with that of
computing devices. As a consequence, circuit design practice heavily relies on virtual prototyping using
computer-aided design tools.

4To this account, it is recommended to read the work of David Hestenes [Hest87] and Edwin Jaynes
[Jayn03]. They provide splendid examples on how mathematics can be used to tell fascinating stories about
the world we live in. David Hestenes is concerned with a clear and consistent algebra for capturing nature’s
geometry. His geometric algebra corresponds more closely to our intuitive notions on the matter than do the
often artificial constructions of traditional vector and matrix algebra. Edwin Jaynes’ account on probability
shows it to be the only consistent framework for logic inference. His narrative approach is in great contrast
to, for example, the abstract and axiomatic one of Kolmogorov [Kolm92].
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perspective on their contents. All mathematics is introduced when needed. The outline
of the subsequent chapters goes as follows:

• Chapter 2 (Basic concepts) outlines basic concepts on telecommunication sys-
tems and methods for modeling and analyzing them. This chapter provides a
conceptual framework that puts the methods developed in further chapters into
the perspective of the art on modeling and analysis of telecommunication sys-
tems.

• Chapter 3 (Linear periodically time-varying system analysis) elaborates meth-
ods to deal with LPTV systems. It provides a brief overview of existing methods
and presents a coherent framework of frequency-domain techniques based on the
HTM formalism.

• Chapter 4 (Applied LPTV system analysis(( ) demonstrates the power and ele-
gance of the framework presented in chapter 3 through applications like PLLs
and mixers. Furthermore, we develop an algorithm for automated symbolic
analysis of LPTV systems.

• Chapter 5 (Modeling oscillator dynamic behavior(( ) treats the behavior of per-
turbed oscillators and its applications to circuit analysis. It is demonstrated how
small disturbances cause slow-varying processes to occur on top of the rapid
oscillations. Examples of such slow-varying processes are an oscillator’s phase
noise behavior or the settling behavior of high-Q harmonic oscillators. A general
framework is presented to deal with this kind of behavior together with several
examples.

• Chapter 6 (Conclusions), draws conclusions and provides directions for re-
searchers who would like to further explore the tracks outlined in this text.



Chapter 2

Modeling and analysis of telecom frontends:
basic concepts

You insist that there is something a machine cannot do. If you tell me pre-
cisely what it is that a machine cannot do, then I can always make a machine
which will do just that. —John von Neumann

G
ood models and efficient methods for constructing and evaluating them are of ut-
most importance in making true top-down design of telecom frontends a reality.

This book intends to contribute to the work in this area. Firstly, however, we must
clearly define “models”, “good models”, “modeling” and “analysis”. You cannot re-
alize something, e.g. a good model, if you cannot tell what it is you want to realize.
Therefore, section 2.1 spends some time to elaborate these concepts.

Incorporating all relevant prior knowledge and experience is one of the main properties
that characterize good (telecom building block) models. It makes models reliable in a
sense that their behavior can be trusted to correspond with that of physical implementa-
tions. This is of great importance in avoiding redesigns. Furthermore, exploiting prior
knowledge helps to improve, for example, simulation efficiency. It allows us to use
“shortcuts” in capturing a system’s behavior. As this book mainly deals with telecom
frontends and their building blocks, section 2.2 reviews some typical telecom frontend
architectures and summarizes our prior knowledge of their behavior. Further chapters
will often exploit this knowledge to simplify analysis.

In communications, the relevance of the different aspects of a building block’s behav-
ior —and therefore the need to incorporate them into (good) models— is measured by
their impact on the system’s overall performance in transmitting information. Phys-
ically, information is stored by modulating the properties of the waveforms that are
transmitted, e.g. their amplitude and phase. Information is lost due to distortion of
a waveform’s shape as it travels from sender to receiver. These shape distortions are,
for example, due to linear, nonlinear and stochastic building block behavior. Predicting
them is of great importance in estimating the probability of transmission errors to occur
(bit error rate). Hence our need for accurate building block models.

2.1 Models, modeling and analysis

A major part of this text is about models, modeling and analysis. Before focusing
on particular applications, it is useful to spend some time to clarify these concepts.

11
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In what follows, “models”, “good models”, “modeling” and “analysis” are given a
precise meaning. This provides the context for the methods presented in this text. We
also stress the importance of having good models available to make top-down design
truly possible.

2.1.1 Models: what you want or what you have

Modeling and analysis is all about manipulating models. So, the first topic to be ad-
dressed sounds: what is a model? Almost any introductory textbook on physics pro-
vides a definition. A fairly thorough and consistent treatment on the matter can be
found in [Hest87]. There, the author defines:

Definition (Model–Physics): A model is a conceptual representation of a real object.

The means used for representing an object can be quite general: it may involve a verbal
description, a set of mathematical equations, a collection of measurement data or com-
binations of the aforementioned. Note that for engineering purposes, the word “object”
is often too general and abstract. It is often better to use “system” or “circuit” instead.

From an engineering point of view, the definition above does not satisfy. It highlights
the fact that physics is mainly concerned with description and analysis of systems (ob-
jects) that exist. Engineers, on the other hand, are also concerned with the creation of
new systems. Most of the time, they describe systems that they would like to have but
that are not there yet. In [Hest87], such descriptions would be called fictitious mod-
els. Since this viewpoint puts unequal emphasis on objects that already exist, this text
prefers a different, more balanced definition:

Definition (Model–Engineering): A model is a conceptual representation of a system
that you want to realize (specification model) or that you have realized (implementation
model).

This definition puts equal weight on both reasons for using models in engineering prac-
tice: the specification of a system’s behavior involves constructing a model for the sys-
tem as we would like to have it; the verification of a particular implementation involves
the construction of a model for a physically realized system as it is given to us. The
first kind of models occur as we go down in the design hierarchy while the second kind
occurs when going up.

Example (Low-noise amplifiers models): Consider the example in Fig. 2.1 where
two people construct models for a low-noise amplifier (LNA). The system designer
is responsible for the realization of a complete frontend architecture. He or she will
construct a specification model that describes the LNA behavior as (s)he wants it. The
circuit designer, on the other hand, realizes an LNA in terms of transistors, coils, ca-
pacitors and resistors. The resulting netlist represents an implementation model that
describes the LNA as it is or will be physically available. Of course, the goal is to
realize an LNA that meets the specifications. Phrased in the terminology introduced
above: it must be possible to map the implementation model realized by the circuit
designer on the specification model provided by the system designer. �
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Figure 2.1: A system designer constructs LNA models as (s)he would like
the LNA to behave. Through this model, the desired LNA behavior is speci-
fied, i.e. it represents the LNA as we would want it to be. A circuit designer
realizes an LNA in terms of transistors, coils, etc. The resulting netlist rep-
resents a model for the LNA that is physically available, i.e. it represents the
LNA as we have it.
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2.1.2 Good models

In the example in Fig. 2.1, one may wonder why the system designer makes the LNA
model so complicated. Basically, what (s)he really wants is represented by the first
block: a simple bandpass filtering operation with some gain. No system designer
wants nonlinear distortion or noise. So, why mention it in the specification model?
The reason for this is that there is no use in living in utopia. If a system designer makes
decisions based on building block models that do not correspond to reality, these deci-
sions often result in implementations that fail to meet the overall performance require-
ments. A model is said to correspond to reality if it captures all (relevant) behavior
exhibited by an actual implementation. Stated differently, it is possible to map the en-
tire behavior of a physical implementation to the (specification) model. If there is no
such correspondence, system performance might get ruined by (unwanted) behavior
that was not accounted for. This results in costly redesigns.

Clearly, there is a catch in the previous discussion. How is it possible to construct
(specification) models that account for the entire behavior of implementations that may
not yet exist? Often, we don’t even have a clue on how the implementation will look
like. The answer, of course, is that capturing the entire behavior is impossible. The only
thing we can do is bundling all our knowledge, gained from similar design experiences
in the past. This should help us to suggest models that approximate reality as closely
as possible. It is impossible to account for behavior that nobody is expecting at the
time when a model is constructed. However, it would be a waste if system design fails
because all prior knowledge was not exploited in constructing proper models. This
brings us to the concept of a good model.

Definition (Good model): A good model is a model that incorporates all relevant
information and experience that we have on the system/circuit being modeled.

It is clear that constructing good models requires retrieving information from previous
(design) experience. Therefore, knowledge and experience should not be gathered and
stored in an ad hoc manner. In order to avoid looking for a needle in a haystack of
experience, knowledge should be structured and compacted. As outlined in chapter 1,
this promotes a hierarchical classification of systems according to their characteristics
and properties.

One way to ensure the “goodness” of —especially system-level— models is to show
that, at least in theory, they can be derived from existing circuit-level implementa-
tions by means of a number of approximations. This links the model to reality while
reducing model complexity. Moreover, it is well controlled which behavior is taken
into account and which behavior is neglected. Transfer functions, for example, derive
their status as a powerful concept to model and specify circuit behavior from the fact
that they adequately describe the behavior of a circuit’s small-signal approximation.
This small-signal approximation linearizes circuit behavior in the neighborhood of a
constant (DC) operating point. However, it neglects all nonlinearities. Hence, as il-
lustrated in Fig. 2.2, transfer-function-based (specification) models link to (possible)
circuit implementations through a number of well-controlled approximations. A like-
wise approach towards constructing good models is pursued in chapters 3 and 4.
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Figure 2.2: Transfer functions derive their status as a powerful concept to
model and specify circuit behavior from the fact that they adequately describe
the behavior of a circuit’s small-signal approximation.

As a final note, it should be stressed that all good models should be as compact as
possible. Overly detailed descriptions bear tedious computations and lengthy simula-
tions with them. They do not contribute much to design efficiency. Irrelevant model
behavior, for instance, involves non-dominant nonidealities1 or high-frequency tran-
sients. Removing irrelevant details from a model is very important, e.g. for efficient
optimization-based design.

2.1.3 The importance of good models in top-down design

As discussed in chapter 1, minimizing the time necessary to design analog frontends
requires the introduction of hierarchy in the design process2. As illustrated in Fig. 2.3,
a hierarchical, top-down method initially tackles frontend design in terms of low-noise
amplifiers, filters, mixers, oscillators, A/D converters, etc. In turn, these blocks are
implemented using integrators, operational amplifiers, etc. In a next step, circuit- and
transistor-level details are filled out. Beyond the circuit level, there is layout and man-
ufacturing.

For CAD support of such a hierarchical flow, good models are of utmost importance.
They are among the cornerstones in realizing each of the steps in the design flow hi-
erarchy. The models are used as interfaces to communicate design decisions between
the different levels in the design tree. Many actions in a top-down design flow result in
specification and/or implementation models that are passed down/up the design hierar-
chy. As illustrated in Fig. 2.1, system engineers, responsible for the overall frontend
design, communicate their desires by means of specification models for the behavior of
the frontend building blocks. Creating these models involves synthesis, specification
translation and system exploration. Circuit engineers create a transistor netlist. This
netlist acts both as a specification model for layout and as an implementation model for
building block verification at the architectural level. Here, in a verification step, one
checks whether the implementation model can be mapped on the specification model
that was initially passed down.

1A nonideality is said to be non-dominant if there is no frequency band of interest in which the nonideality
contributes the major part of the unwanted signal energy.

2For a more complete introduction to hierarchical design methods, see [Donn98].
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Figure 2.3: Minimizing design time requires the introduction of hierarchy in
the design process. Frontend design is done in terms of LNAs, filters, mixers,
A/D converters, etc. These building blocks (e.g. a ∆Σ A/D converter) are in
turn implemented using integrators, operational amplifiers, etc. In a next
step, transistor-level details are filled out. To support this hierarchical design
process, good models are of utmost importance. They serve as interfaces
used to communicate design decisions between the different levels in the
design tree.
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All models used in a top-down design flow need to be “good models”: they must ac-
curately represent real-life system behavior. For example, a system-level mixer model
should capture all of the relevant behavior that characterizes a mixer’s transistor-level
implementation. Otherwise, wrong design decisions will be taken at the architectural
level, them being based on analysis using a defective or incomplete mixer model. This
often results in costly redesigns. As mentioned before, since we do not know all im-
plementation details in advance, we must rely on prior knowledge and experience to
construct realistic model templates. This especially holds for models constructed dur-
ing the early stages of a design.

Finally, in realizing efficient (partially automated) hierarchical design methods, it is
very important that models should be kept as simple as possible. Complex and overly
detailed models compromise efficiency of analysis as they result in tedious computa-
tions and lengthy simulations. This in turn hampers architecture exploration or optimization-
based synthesis and/or specification translation. Since these steps often require nu-
merous evaluations of the building block models, complex models render it slow and
sometimes even infeasible. This especially holds at the architectural level where a
great number of building block models need to be evaluated simultaneously. Low-
complexity models are therefore among the cornerstones of (semi-)automated design.
In summary, capturing complex building block behavior in a manner that is as simple
as possible is one of the great challenges in CAD.

2.1.4 Modeling languages

Describing system behavior requires a proper formalism, i.e. a language, to do so.
Choice of the language is driven by the nature of the system we want to describe.
Human behavior, for one, is best described in a spoken language like English. On
the other hand, the quantitative nature of engineering problems renders mathematics
a natural choice. Often, new language constructs (syntaxes) need to be developed to
capture newly encountered objects and their behavior. For example, electrical netlists
have driven the creation of the SPICE input syntax [Vlad94]. More recently, describ-
ing mixed-signal systems has brought about languages like VHDL-AMS [VHDL] and
VERILOG-AMS [VERI]. It is, however, not the intention of this text to give a com-
plete overview of such languages nor to discuss their strengths and shortcomings. In
what follows, mathematics will be the main language of choice.

2.1.5 Modeling and analysis: model creation, transformation and
interpretation

Models are almost never given to us in a manner that directly suits our needs. In the
very beginning, there might even be no model available at all. There are only our
observations or a vague idea that we have in mind. Therefore, we need techniques to
create and manipulate models. This is where modeling and analysis come into play.

Definition (Modeling and Analysis): Modeling and analysis concern the acts of cre-
ating, manipulating and interpreting models. Hereby, the aim of modeling is to create
a model, i.e. models are considered a result of the operation. In carrying out analysis,
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models are just a means to gain the information necessary to make design decisions.
Analysis involves interpreting models.

The main difference between both concepts comes down to whether models are con-
sidered a result of the act or a means to obtain results. Looked upon in this manner,
analysis always involves modeling steps followed by the interpretation of the resulting
models and the consequences they imply towards design.

One of the hardest parts of the modeling process is the creation of a starting point.
We need to construct an initial specification or implementation model. This requires a
formalized description of ideas or observations. There is often nothing to guide us but
our past experience and our capability to detect similarities between different systems
and problems. Here, again, a hierarchical classification of systems and their behavior
can be of great help (see chapter 1).

Once an initial model is created, we can proceed by transforming one model into an-
other. A circuit netlist, for example, can be transformed into a small-signal model.
Symbolic modeling techniques [Fern98, Gie91, Gie94, Lin91, Wamb98b] in turn trans-
form this small-signal model into a set of transfer functions. The oscillator modeling
methods presented in chapter 5 proceed by gradually transforming a set of circuit equa-
tions into a more compact description. Even techniques for numerical simulation can
be considered as model transformations. Here, the key observation is to recognize
that simulation methods produce models that capture input-output behavior by means
of (input signal,output signal) tuples. Hence, the models that result from numerical
simulation can be described as

MsimM = {(x1(t),y1(t)) ;(x2(t),y2(t)) ; . . .} (2.1)

were the xk(t) represent vectors of input signals and the yk(t) vectors of corresponding
output signals. The example at the end of this section illustrates this model transfor-
mation process for a single-stage amplifier.

At each stage in the process of modeling and analysis, we often have numerous possible
transformations to proceed with. Which one to choose? Choice of a proper model
transformation should be driven by the target we have in mind. Which part of the
system’s behavior is of greatest interest to us? Which kind of input signals are we
dealing with? For example, if we want the resulting model to be parameterized, e.g.
to be of use for trade-off analysis, the transformations should —at least partially— be
symbolic in nature. If we are interested in the response to a limited set of input signals,
numerical simulation might be the way to go. Note that in almost all cases, we want
the resulting model to be as simple as possible.

Example (Analysis of a single-stage amplifier): Fig. 2.4 illustrates modeling and
analysis for a single-stage amplifier. The starting point is a parameterized netlist. New
models are derived by transforming this netlist model. A typical transformation, for
instance, involves dumping the modified nodal equations. These equations in turn serve
as a starting point for further transformations.

The transformations that we select should be driven by the interest in mind. This inter-
est corresponds to what we want to know about the amplifier and its behavior. When
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Figure 2.4: Analyzing the behavior of a single-stage amplifier involves trans-
forming one model for the amplifier into another one. The idea is to select
those transformations that yield the most simple results and/or that empha-
size that part of the amplifier’s behavior in which we are interested.

interested in the response to a particular input signal, a transformation involving nu-
merical simulation is the way to go. When interested in the impact of the load capaci-
tance CLC on the gain-bandwidth product, symbolic transformations present themselves
as suitable candidates. Of course, when the symbolic expressions become too compli-
cated, results are useless and we need to try a different transformation. In short, the art
of system and circuit analysis comes down to selecting the proper sequence of model
transformations. �

As a final note, we address automated modeling and analysis. Creating the initial
model is often hard to automate. Coming up with a suitable circuit topology or an
adequate elementary building block (transistor) model will always require some inge-
nuity. Transforming the models, however, can be automated if the transformations are
formalized to the point that they can be written down as computer algorithms. This
requires clear specification of the structure of the models that serve as an input. Fur-
thermore, we must also state the conditions for the transformation to yield reliable
results. Algorithms for symbolic analysis [Fern98], model-order reduction [Odab97]
and numerical simulation [Kund97, Nag75] represent some well-known examples of
automated model transformations.
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Figure 2.5: Frontend architectures of (a) a heterodyne receiver and (b) a low-
IF receiver.

2.2 Good models for telecommunication frontends:
Architectures and their behavioral properties

Having considered models, modeling and analysis from a global perspective, the main
topic of this book can be phrased as: the construction of good models for telecom-
munication systems and their building blocks. As was outlined in section 2.1.2, the
construction of good models requires us to incorporate all relevant prior knowledge
and experience. This section summarizes this knowledge. It presents a brief review of
common frontend architectures, their building blocks and their behavioral properties.
It attempts to answer the question: what has experience taught us on the behavior of
telecommunication frontends and their building blocks?

2.2.1 Frontend architectures and their building blocks

Fig. 2.5 depicts two commonly used receiver frontend architectures. The heterodyne
receiver on top provides good performance in terms of channel selectivity and sensitiv-
ity, but typically requires surface-acoustic wave (SAW) bandpass filters in combination
with additional IF circuitry. The low-IF architecture on the bottom requires less parts,
but exhibits inherent problems such as self-mixing, 1/ f noise and sensitivity. Self-
mixing comes from the local oscillator (LO) signal making its way to the input of the
mixer. This generates a DC component at the mixer output, possibly saturating the
filters and gain amplifiers that follow. In [Crol97] a more rigorous overview of receiver
(and transmitter) architectures is presented.
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Observing both architectures, it is seen that their functioning relies on similar building
blocks: low-noise amplifiers (LNAs), automatic gain control (AGC), filters, mixers,
analog-to-digital converters (ADCs) and local oscillator (LO) signals. The latter are
typically derived from a reference signal using a voltage-controlled oscillator (VCO)
embedded in a phase-locked loop (PLL). Modeling an entire receiver frontend therefore
requires us to have models for each of these building blocks. This book focuses on
techniques that can be used to model the behavior of mixers, oscillators and PLLs.

Note that Fig. 2.5 only considers receiver architectures. Transmitters, however, have
similar structures. In this case, the I- and Q-channels serve as inputs that are fed to
digital-to-analog converters (DACs). The signals are then combined, upconverted to
RF and transmitted through the antenna which is driven by a power amplifier (PA).
Modeling DACs and PAs is, however, not a topic in this book3.

2.2.2 Properties of frontend building block behavior

The construction of good frontend building block models requires us to incorporate all
relevant prior knowledge. As will be illustrated in subsequent chapters, exploiting this
knowledge helps us to improve model quality. This, for instance, makes simulations
run faster. In what follows, we give a brief overview of some properties in common
to many building blocks that occur in telecommunication frontend architectures: their
almost linear nature, the presence of widely spaced time constants and the presence
of stochastic (noisy) components in their behavior. Note that subsequent chapters also
exploit other properties. However, these properties are often tied to a single building
block. It is therefore not relevant to discuss them here.

2.2.2.1 Almost linear

Most building blocks in telecommunication frontends are, by design, intended to be-
have linearly. Here, linear should be interpreted in its most general, time-varying set-
ting. As will be discussed in depth in chapter 3, up- and downconversions, induced by a
multiplication y(t) = u(t)×cos(ω0t) of an input signal u(t) with some periodic carrier
signal cos(ω0t), are linear operations: the principle of superposition still holds. This
stands contrary to popular belief that considers multiplying two non-constant signals as
a nonlinear operation. The key issue to observe is that one of the signals in the product
—the carrier signal— is known at the time when the mixer is designed: It does not de-
pend on the the information (the data bits) that is transmitted or received. In chapter 3
and 4, it will be shown how linearity can be exploited to significantly facilitate analysis
of up- and downconversion behavior.

However, in almost any real system, it also occurs that two information-carrying (data)
signals u1(t) and u2(t) intermodulate. This happens when the system’s output depends,
for instance, on the product u1(t)×u2(t) of the two data signals. The intermodulation
of two data signals is truly nonlinear: the principle of superposition no longer holds.
Fig. 2.6 illustrates the difference between the linear intermodulation of a data signal

3With regard to PAs, it is possible to handle them using the HTM-formalism in chapter 3 as well as the
separation of time constants methods in chapter 5.
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Figure 2.6: Difference between linear and nonlinear intermodulation. (a)
Linear intermodulation involves the product of a (a priori unknown) data
signal u(t) and a (known) carrier. As a result, the information contained
in u(t) is shifted along the frequency axis. (b) Nonlinear intermodulation
involves the product of two data signals u1(t) and u2(t). As a result, u1(t) is
upconverted and, on top of that, its content is spread out over the frequency
axis. Typically, this spectral spreading is not desired.

and a known carrier and the nonlinear intermodulation of two data signals.

Nonlinear intermodulation is in most cases undesired. Too large a contribution to the
overall signal content may very well ruin the system’s performance. In order to prevent
this from happening, a good design should keep the signal components due to nonlinear
intermodulation as small as possible. This means that their magnitude is well below
that of the signal components generated by linear system behavior. Good design there-
fore requires most telecom building blocks to behave almost linearly. In traditional
literature [Wamb98a], it is more common to say that the system behaves in a weakly
nonlinear manner.

2.2.2.2 Widely spaced time constants

Many wireless applications transmit their information by upconverting it to the GHz
frequency range or beyond. For example, GSM operates in the 900 MHz frequency
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Figure 2.7: Many wireless applications transmit information by upconvert-
ing it to the GHz range. This results in signals containing widely spaced time
constants. The carrier introduce a fast time constant τ f ast while the upcon-
verted information induces a slow time constant τslow.

band, DCS1800 in the 1.8 GHz band while wireless LAN (WLAN) applications op-
erate near 2.4 GHz (ISM band) or 5 GHz (military applications). Signal bandwidths,
however, are often orders of magnitude smaller. GSM bands are, for instance, 200 kHz
wide while WLAN bands occupy a few MHz. Hence, the rate at which information is
transmitted is well below the carrier frequency, or

finfoff � fcarrierff . (2.2)

The resulting signals, illustrated in fig. 2.7, can be described as rapid oscillations with
a slowly modulated amplitude and phase. This kind of behavior can also be generated
by a building block’s internal transient dynamics. For example, both high-Q harmonic
oscillators and PLLs settle at a rate that is much slower than that of their steady-state
output oscillation.

Traditional SPICE-like simulators [Nag75] experience a great deal of trouble in eval-
uating this kind of behavior. As illustrated in Fig. 2.8, the time step τsim with which
simulations proceed is inversely proportional to the highest signal frequency, or

τsim ∼ 1
fcarrierff

. (2.3)

The total time interval TsimTT over which simulations are performed is typically a multiple
of the length of a single information symbol, or

TsimTT ∼ N
finfoff

. (2.4)
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Figure 2.8: The time step τsim with which Spice-like simulations proceed
is inversely proportional to the highest signal frequency. This time step is
much smaller than the length TsimTT of the entire simulation interval. As a
consequence, the presence of widely spaced time constants forces SPICE-
like simulation algorithms to take an enormous number of simulation steps.

Hence, to cover the entire simulation interval, a SPICE-like simulator needs to take

S =
TsimTT
τsim

∼ N
fcarrierff
finfoff

(2.5)

steps. With fcarrierff / finf off often being over 1000 and with, for bit error rate simulations,
N being a million in order of magnitude, SPICE-like simulators are forced to take over
a billion steps to complete a single simulation run. As a result, the simulation of a
complete system architectures may take days or even weeks to complete.

Both chapters 3 and 5 present methods that cope with this problem by means of models
that keep slow- and fast-varying behavior explicitly separated. In this way, the situation
in Fig. 2.8 is avoided. Wide separation of carrier and settling time constants is even a
necessary condition for the oscillator modeling methods in chapter 5 to work properly.
It is an excellent example on how building block characteristics that at first seem to
hamper efficient analysis, can be exploited to speed up simulation.

2.2.2.3 Stochastic behavior

All physical systems, and, therefore, all telecom systems and their building blocks,
have in common that they produce noise. For example, both thermal and 1/ f noise
occur in a wide variety of applications. Noisy signals, also called stochastic processes,
are disturbances about which little information is available. Hence, they cannot be
compensated for and, as a consequence, they cause data transmission errors. As it is
the case for signal components due to nonlinear intermodulation, it is important to keep
their magnitude small.
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Contrary to deterministic signals, the shape of a stochastic process n(t) is never known
exactly. There is only a certain probability that a particular shape will occur. Stochas-
tic processes are therefore characterized by probability density functions that quantify
the likelihood that the process assumes a particular shape. However, it is often more
practical to characterize signal stochastics by means of its moments or, equivalently, its
cumulants [Mid87]. If we are mainly interested in a stochastic signal’s energy content,
then it is sufficient to know all moments up to second order, i.e. the signal’s expected
value µ(t) = E{n(t)} and autocorrelation Φ(t,τ) = E{n(t + τ/2)n(t − τ/2)}.

In order to cope with noise, any modeling framework for a particular class of building
blocks must at least be able to characterize stochastic input-output behavior by means
of the moments up to second order. Chapters 3, 4 and 5 outline how to perform noise
computations for, respectively, LPTV systems and oscillators.

2.3 Conclusions

Models are descriptions of systems that we want to realize or that we have realized.
In a top-down design flow they are used to communicate design decisions between
the different levels of hierarchy. For example, a frontend system engineer will pass
an LNA specification model to a circuit engineer. It describes the LNA as the system
engineer would like it to behave. For the circuit engineer, it makes up the starting point
for circuit-level synthesis, resulting in an implementation model, e.g. a Spice netlist.
This model describes the LNA as it is realized. It is used by the system engineer for
frontend-level verification.

In order for a top-down design flow to be successful, both specification and imple-
mentation models must be as accurate as possible in capturing the behavior of actual
on-chip implementations. Defective and incomplete models are one of the main rea-
sons for a redesign to be required. Of course, at any given stage of the design process,
one only disposes of the knowledge gathered up to that point in time. This includes ex-
perience obtained from similar designs in the past. Models including all relevant prior
knowledge and experience are called good models. The target of this work can there-
fore be phrased as “constructing good models for telecom frontends and their building
blocks”.

Past designs of telecommunication frontends show that their behavior and that of their
building blocks all have some important properties in common:

• Their behavior is almost linear (weakly nonlinear). Here, linearity must be inter-
preted in its most general, time-varying setting.

• They produce signals containing widely spaced time constants. This especially
holds for the RF sections of, for example, wireless applications.

• They all produce noise, i.e. they produce signals containing random elements.

Subsequent chapters in this book exploit these and other properties to construct com-
pact models that allow accurate and efficient evaluation of telecom frontends and their
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building blocks. This assists us in their design and in the identification of performance
bottlenecks.

Finally, models should only capture relevant behavior. Irrelevant details only burden
analysis and simulation without deepening a designer’s understanding of the system’s
behavior. In communications the relevance of building-block behavioral characteris-
tics —and therefore the need to incorporate them into (good) models— is measured by
their impact on the system’s ability to transmit information without great loss. Unfor-
tunately, it turns out that few building block behavior can be neglected. This especially
holds when pushing the limits of performance. Hence, one of the great challenges for
CAD is to capture complex building block behavior in a manner that is as compact as
possible.



Chapter 3

A framework for frequency-domain analysis of
linear periodically time-varying systems

You may always depend on it that algebra, which cannot be translated into
good English and sound common sense, is bad algebra. —William Clifford

T
elecom frontend building blocks like mixers and PLLs are known to involve up-
and downconversion of signal content. This means that signal content is trans-

ferred from one periodic carrier wave (frequency band) to another. Often, these trans-
fers are linear in nature: the principle of superposition still holds. Systems that exhibit
this kind of behavior are termed linear periodically time-varying (LPTV). Handling
LPTV system behavior requires us to extend traditional techniques used for linear
time-invariant (LTI) system analysis. A single scalar transfer function is unable to
capture signal transfers from one frequency band to another. This chapter elaborates
a framework for frequency-domain LPTV system analysis based on harmonic transfer
matrices. Applications of the framework are presented in the next chapter.

A HTM-based representation considers the signal content in each frequency band as
separate and independent inputs. In this way, a single-input single-output (SISO) LPTV
system can be modeled as a multi-input multi-output (MIMO) LTI system. Hereby,
the contents of the different frequency bands are treated as different inputs. Hence,
LPTV behavior can be captured using a matrix of transfer functions, called a harmonic
transfer matrix (HTM). Each HTM element models the transfer of signal content from
a particular input frequency band to a particular output frequency band. The basic
concepts underlying the HTM framework are outlined in section 3.1. The mathematical
details are discussed in section 3.3.

HTMs allow us to adapt many techniques for frequency-domain analysis of LTI sys-
tems to handle LPTV systems as well. With regard to this matter, section 3.4 discusses
the construction of HTMs for elementary LPTV systems. It also outlines how to com-
pute HTMs of composed systems. Finally, section 3.5 treats stability and noise analysis
of LPTV systems.

A major problem in performing HTM-based computations lies in a HTM’s infinite
dimensional matrix structure. Prior art (see section 3.2) has dealt with this problem
by truncating the HTM to some large but finite size. However, when this size grows
large, matrix computations become very tedious. This especially holds for HTM inver-
sions —needed for feedback computations— and eigenvalue computations —needed
for stability analysis. Symbolic computations become intractable. Sections 3.4 and 3.5

27
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Figure 3.1: The characterization the behavior of a downconversion stage with
(parasitic) feedback requires understanding and quantifying all signal trans-
fers that occur, both wanted and unwanted. The wanted signal components
are indicated in white, the unwanted ones are in gray. Only the signal trans-
fers to the output frequency band of interest (at DC) are drawn.

therefore elaborate approximation strategies that render HTM-based computations ef-
ficient. As will be illustrated in this and the next chapter, these strategies allow us to
obtain both numerical results and symbolic expressions.

3.1 The story behind the math

Telecommunication frontend building blocks like mixers and PLLs involve up- and
downconversion of signal content. A GSM transmitter frontend, for example, is re-
quired to shift the input signal content, located at baseband, to the 900 MHz band.
This is accomplished using one or more mixing stages. Such a mixing stage is a typ-
ical example of an LPTV system. In what follows, we present the basic ideas behind
the HTM framework that is introduced as a means to model and analyze all aspects
of LPTV system behavior. Firstly, however, we consider a simple example that helps
us to identify the kind of information a designer needs when dealing with this type of
system behavior.

3.1.1 What’s of interest: A designer’s point of view

Let us consider the (LPTV) downconversion stage illustrated on the right-hand side
of Fig. 3.1. It consists of a bandpass pre-filtering stage, a mixer responsible for the
downconversion and a lowpass filter that suppresses high-frequent residues. Further-
more, we’ve added a (parasitic) feedback from the output to the mixer’s input. Such
parasitic couplings are, for instance, due to transistor gate-source or gate-drain capac-
itances and are typically highpass in nature. This downconversion stage is fed with
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an incoming signal U( f ) that contains a wanted component near the carrier frequency
and unwanted components near DC and twice the carrier frequency. These unwanted
signal components are, for example, caused by nonlinearities in previous stages.

As depicted in the left-hand side of Fig. 3.1, the downconversion stage is designed
with the intent to transfer the input information content around the carrier frequency to
baseband. However, due to the parasitic feedback, unwanted input signal content at DC
and twice the carrier frequency also manages to make its way to the output frequency
band at DC. The latter transfers are highly unwanted and must be suppressed beneath a
certain level. So, in judging performance, a designer is interested to know both whether
the downconversion stage properly passes the wanted signal component at the carrier
frequency to baseband and whether it sufficiently suppresses unwanted signal transfers.

Any framework that aims to assist designers in their task to develop the type of systems
discussed above, should therefore be able to quantify all signal transfers that occur.
Furthermore, all methods preferably operate in the frequency domain: this most closely
corresponds to the way designers reason on mixers and PLLs.

3.1.2 Using harmonic transfer matrices to characterize LPTV be-
havior

Among all representations of LPTV behavior, harmonic transfer matrices [Maas88,
Moll00, Vana02c, Were91a] are the only ones that directly meet the requirements stated
above. They operate in the frequency domain and directly describe the signal transfers
that occur between the different frequency bands.

HTMs build on the observation that, as signal content can get transfered from one
frequency band to another, a single scalar spectrum U(s) is no longer efficient to de-
scribe the content of a signal u(t). As illustrated in Fig. 3.2, it is natural to subdivide
a signal’s overall spectrum into components contained within evenly spaced frequency
bands centered around multiples of f0ff . Here, f0ff represents the rate of the oscillator
signal that drives the LPTV system. This suggests to represent a signal u(t) by means
of a vector of spectra

U(s) =

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
U0UU (s)
U1(s)
U2UU (s)

...

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ (3.1)

instead of a single scalar spectrum. In (3.1), UmUU (s) models the signal content of u(t) in
the frequency band centered around m f0ff . Although not strictly necessary, the spectra
UmUU (s) are typically chosen as bandlimited to the frequency band [− f0ff /2, f0ff /2].

A HTM-based description of LPTV behavior relies on the property that, given the
vectorized signal model (3.1), input-output behavior can be captured by means of the
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Figure 3.2: As information can get transfered from one frequency band to
another, it is natural to subdivide a signal’s overall spectrum into components
contained within evenly spaced frequency bands. These frequency bands are
centered around multiples of f0ff .

simple matrix-vector multiplication⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
Y0YY (s)
Y1YY (s)
Y2YY (s)

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ =

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
...

...
· · · H̃0HH ,0(s) H̃0HH ,1(s) H̃0HH ,2(s) · · ·
· · · H̃1,0(s) H̃1,1(s) H̃1,2(s) · · ·
· · · H̃2HH ,0(s) H̃2HH ,1(s) H̃2HH ,2(s) · · ·

...
...

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
U0UU (s)
U1(s)
U2UU (s)

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ . (3.2)

The matrix is called a harmonic transfer matrix (HTM). The elements of a HTM can
be any scalar transfer function. If we consider a single row of (3.2), for example

Y1YY (s) =
+∞

∑
m=−∞

H̃1,m(s)UmUU (s) , (3.3)

then it is noted that the spectrum Y1YY (s) is a linear combination of all input frequency
band spectra UmUU (s). The matrix elements H̃1,m(s) represent the corresponding input-
output weight factors. Hence, H̃1,m(s) characterizes the transfer of the signal content
from the input signal frequency band around m f0ff to the output signal band at carrier
frequency. This process is illustrated in Fig. 3.3. A HTM-based description of LPTV
behavior therefore directly captures the signal transfers that take place between the
different frequency bands. It is therefore very useful to help us understand and quantify
the behavior of LPTV systems like mixers and PLLs.

A different point of view on (3.2) considers each UmUU (s) as a separate input variable to
the system and each YnYY (s) as a separate output variable. The relation (3.2) can then
be interpreted as the description of a multi-input multi-output LTI system. Hence,
use of HTMs allows us to consider a single-input single-output LPTV system as a
multivariable LTI system. Hereby, the signal content in each frequency band is to be
treated as a separate variable.

3.1.3 LPTV behavior and circuit small-signal analysis

Up to now, it was taken for granted that linear periodically time-varying systems, and
the HTMs associated with them, are relevant to circuit design practice. But, do there
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Figure 3.3: The elements of the harmonic transfer matrix directly charac-
terize the signal transfers from the different input frequency bands to the
different output frequency bands.

exist circuits exhibiting this type of behavior? If so, how are their HTMs related to the
circuit equations?

It turns out that HTMs are related to mixer and PLL circuits in much the same way as
traditional (scalar) transfer functions are related to opamps and filters. More precisely,
they arise by linearizing a set of circuit equations near a periodically time-varying
operating point.

Example (Linearized mixer behavior): Fig. 3.4 shows an elementary mixing stage.
As inputs, we apply

VoscVV (t) = cos(ω0t) (3.4)

u(t) = u0 +∆u(t) , (3.5)

respectively a (large) oscillator signal and an input signal u(t) consisting of a DC bias
u0 and a small-signal variation ∆u(t).

If we use a first-order transistor model and if we assume the transistor to operate in the
linear region, then we find for the current I(t) flowing through the transistor

I(t) = β(u(t)−VthVV )VoscVV (t)− β
2

VoscVV (t)2 (3.6)

= β(u0 +∆u(t)−VthVV )cos(ω0t)− β
2

cos(ω0t)2 . (3.7)
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Figure 3.4: Elementary mixing stage to which we apply a large oscillator
signal VoscVV (t) and an input signal u(t). The latter consists of a DC bias u0

and a small-signal variation ∆u(t).

Since ∆u(t) is small, we can linearize (3.7) around ∆u(t) = 0. In this way, we obtain

I(t) = IopII (t)+∆I∆∆ (t) (3.8)

with

IopII (t) = β(u0 −VthVV )cos(ω0t)− β
2

cos(ω0t)2 (3.9)

∆I∆∆ (t) = (βcos(ω0t))∆u(t) . (3.10)

Here, IopII (t) is the operating point current. This is the current that flows through the
transistor when all small-signal input components are set to 0. Note that it varies pe-
riodically with time. ∆I∆∆ (t) is the small-signal current that comes on top of IopII (t). It is
due to a non-zero small-signal input ∆u(t). This small-signal current is proportional to
∆u(t) with a proportionality constant that varies periodically with time. For this reason,
(3.10) is said to model the LPTV system that describes the small-signal current flowing
through the mixing transistor.

As will be proven in section 3.4.1, the HTM that corresponds to the multiplication in
(3.10) equals

H̃mixer(s) =

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
. . . 0

. . . 0 β/2
β/2 0 β/2

β/2 0
. . .

0
. . .

. . .

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥

. (3.11)

This (frequency-independent) HTM relates the small-signal transistor current variation
∆I∆∆ to the small-signal gate voltage variation ∆u. �

The example above illustrates the procedure used to extract a HTM from a set of circuit
equations. This procedure, also depicted in Fig. 3.5, consists of the following steps:
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Figure 3.5: HTMs are derived from circuit behavior by linearizing the circuit
equations in the neighborhood of a periodically time-varying operating point.
The operating point is obtained by neglecting the small-signal component of
the input signal u(t). However, in computing the operating point, the large
periodic oscillator signal that drives the mixer is not neglected. This results in
periodic operating point waveforms with spectra that contain discrete tones
at multiples of the oscillation frequency.
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1. Construct the circuit’s MNA equations. This can, for example, be accomplished
using the algorithm described in [Freu95].

2. Compute the operating point voltages and currents. In doing so, input small-
signal variations are to be neglected, i.e. they are set to 0. However, the periodic
large-signal oscillations that drive the circuit are not neglected during operat-
ing point computations. Hence, operating point voltages and currents may vary
periodically with time.

3. Linearize the circuit equations in the neighborhood of the periodic operating
point. For stable systems, input small-signal variations cause the circuit’s volt-
ages and currents to deviate slightly from their operating point values. The small-
ness of these deviations justifies linearization. This yields a system of linear
equations that relates the small-signal variations of the voltages and currents to
the input small-signal variations. This system of equations describes an LPTV
system.

4. Using the results described in section 3.4.4, the linearized circuit equations can
be converted into HTMs.

The procedure above is very similar to the traditional small-signal analysis of an opamp.
There, one computes a DC operating point by discarding all small input signals. Lin-
earizing the opamp’s behavior in the neighborhood of this operating point then yields a
small-signal model. The behavior of this small-signal model can be captured by scalar
transfer functions. As far as LPTV systems are concerned, e.g. mixers and PLLs,
the main difference with opamp small-signal modeling lies in the fact that the operat-
ing point is periodically time-varying rather than constant. Hence, we need a HTM,
i.e. a matrix of transfer functions, to describe their small-signal behavior rather than
a scalar transfer function. In this sense, HTMs generalize LTI transfer functions to
handle LPTV systems as well.

3.2 Prior art

LPTV system analysis dates back as far as the 19th century. In 1883, G. Floquet
[Floq83] published his study on linear differential equations with periodically time-
varying coefficients. Since then, his approach was further elaborated while alternative
techniques have emerged. This section briefly introduces prior art on LPTV system
analysis.

3.2.1 Floquet theory

Originally, Floquet developed his theory to study the solutions an n-th order single-
input single-output differential equation

dn

dtn y(t)+bn−1(t)
dn−1

dtn−1 y(t)+ . . .+b0(t)y(t) = u(t) . (3.12)
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Here, all coefficients bk(t) ∈R→R are T -periodic in t. In a modern setting [Lam97],
this is rephrased as studying the solutions of a system of n first-order differential equa-
tions

d
dt

x(t) = A(t)x(t)+b(t)u(t) (3.13)

y(t) = c(t)T x(t)+d(t)u(t) (3.14)

where A(t) ∈ R → Rn×n, b(t),c(t) ∈ R → Rn, and d(t) ∈ R → R are T -periodic
matrix-valued functions. The formulation (3.13)-(3.14) is called a state-space repre-
sentation of (3.12).

Floquet theory proves that it is possible to determine a T -periodic transformation of
variables

z(t) = P(t)x(t) , (3.15)

with P(t) ∈R→Rn×n, that transforms (3.13)-(3.14) into a state-space representation
with constant matrix A′, or

d
dt

z(t) = A′z(t)+b′(t)u(t) (3.16)

y(t) = c′(t)T z(t)+d(t)u(t) . (3.17)

The dynamic behavior, e.g. settling times and stability, of the LPTV system is therefore
completely determined by the eigenvalues of A′. These eigenvalues are called the
Floquet exponents of the LPTV system.

The Floquet exponents and the transformation matrix P(t) can be obtained from the
fundamental matrix Φ(t,τ) ∈R×R→Rn×n satisfying

d
dt

Φ(t,τ) = A(t)Φ(t,τ), Φ(t, t) = I . (3.18)

Here, I ∈Rn×n is the unity matrix. Given Φ(t,τ), we find

A′ = ln(Φ(T,0)) (3.19)

P(t)−1 = Φ(t,0)exp(−A′t) . (3.20)

The matrix Φ(T,0) is called the monodromy matrix. Note that Φ(t,0) can be found
by integrating (3.18) over the interval [0,T ]. A′ and P(t) can also be computed us-
ing frequency-domain techniques [Dem03]. These techniques solve the time-varying
eigenvalue problem (

d
dt

+A(t)
)

u(t) = λu(t), u(T ) = u(0) . (3.21)

Numerically, the latter method is better conditioned than the direct computation of
Φ(t,0).
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3.2.2 Lifting

A second way to deal with LPTV behavior involves converting (3.13)-(3.14) to a time-
invariant discrete-time system [Bam92]. This is called lifting. If we introduce the
processes uk(t) = u(t + kT ) for t ∈ [0,T ], then we find

xk+1 = Âxk +
∫ T

0

∫∫
Φ(t,τ)b(τ)uk(τ)dτ . (3.22)

Here, xk = x(kT ) and Â = Φ(T,0) with Φ(t,τ) satisfying (3.18). The properties of
continuous-time LPTV systems can now be analyzed using time-invariant discrete-time
techniques. For example, stability of the LPTV system (3.13)-(3.14) is equivalent to
the stability of (3.22). This requires the magnitude of all eigenvalues of Â to be smaller
than one. This in turn is equivalent with the Floquet exponents —the eigenvalues of
ln(Φ(T,0)) = ln

(
Â
)
— having negative real parts.

3.2.3 Frequency-domain approaches

Both methods discussed above are time-domain methods. They are well suited for
constructing compact models that can be used for simulation (verification). However,
they provide little direct insight into the signal transfers induced by an LPTV system.
As was outlined in section 3.1.1, these signal transfers are most naturally described in
the frequency domain as this closely corresponds with design practice.

Different authors in different fields of engineering have made the same observation.
This all lead them to introduce a similar matrix-based frequency-domain description
for LPTV systems. In [Maas88], analysis of nonlinear microwave mixers drove the idea
the harmonic conversion matrix as a means to capture a mixer’s small-signal behavior.
This harmonic conversion matrix amounts to the harmonic transfer matrix evaluated at
the imaginary axis. In order to deal with the ∞-dimensional nature of the matrix, the
author proposed to truncate it to finite dimensions. However, the treatment in [Maas88]
is somewhat incomplete. The structural properties characterizing the conversion matrix
are not noticed. Furthermore, topics like noise and stability analysis are not addressed.

Almost at the same time and independently, a similar representation was developed in
the field of control theory [Were91a, Were91b]. Here, developments were driven by
LPTV stability analysis. The representation is called the harmonic transfer function or
also the harmonic transfer matrix characterizing an LPTV system. It is derived starting
from an integral representation for LPTV operators. Theory is developed in the Laplace
domain with frequency-domain analysis being a limiting case as the Laplace variable
approaches the imaginary axis. In this way, the Nyquist stability criterion for linear
time-invariant systems can be extended to handle periodically time-varying ones as
well. In [Moll00] this representation was adopted to analyze the stability of power
supply networks. However, although the treatments in [Were91a, Moll00] overcome
many of the shortcomings in [Maas88], dealing with the ∞-dimensional nature of the
matrix is still inefficient. Also, little attention is given to the structural properties that
characterize the matrix representation.
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Finally, although not always mentioned explicitly, this matrix formulation also under-
lies many other approaches for frequency-domain analysis of LPTV system behavior
[Phil98, Royc98, Royc99, Teli96]. As most of these methods target numerical analy-
sis, they deal with the matrix inversions through truncation and Krylov subspace tech-
niques.

3.2.4 Contributions of this work

This chapter adopts the HTM framework for Laplace-domain (frequency-domain) analy-
sis of LPTV system behavior. It contributes to the theory on HTMs in the following
ways:

• As far as theory is concerned, results previously scattered over different publi-
cations and application areas [Maas88, Moll00, Royc98, Were91a] are collected
in a coherent framework. To the author’s knowledge, this treatment is the first of
its kind in elaborating the HTM framework in its full strength. Existing results
are made consistent with each other. Additionally, the way in which results are
derived and synthesized is original. The derivations emphasize clear-cut physi-
cal interpretations while avoiding too high a degree of mathematical abstraction.
Moreover, they lend themselves to extend the HTM concept towards arbitrary
classes of (non-periodic) LTV systems.

• Even more than prior treatments, emphasis is placed on making it practical to
apply the HTM framework. We develop methods for approximate computa-
tions that render HTM-based analysis of many practical systems and circuits
better feasible. It is shown how complex operations, like the inversion of ∞-
dimensional HTMs needed to solve feedback loops, can be tackled efficiently
by exploiting the properties of LPTV systems as they occur in design practice.
These methods bridge the gap between HTMs as an abstract theoretical frame-
work and HTMs as a powerful tool for both numerical and symbolic computa-
tions.

In the next chapter, the theory will be illustrated for different telecommunication-
related examples like mixers and PLLs. The intent is to demonstrate the practical use
of HTMs for analyzing telecommunication systems and their building blocks. Firstly,
however, we discuss the theoretical foundations.

3.3 Laplace-domain modeling of LPTV systems
using Harmonic Transfer Matrices

This chapter builds on HTMs to model and analyze different aspects of LPTV system
behavior. Hence, in a first step, we spend some time to elaborate this concept in depth.
The approach here presented in obtaining the HTM representation is to some extent
similar to the ones in [Moll00, Were91a]. However, although starting from the same
integral representation, it stays closer to the idea of an LPTV system as a system that
transfers signal content from one frequency band to another.
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Figure 3.6: Frequency translations are linear operations as the principle of su-
perposition holds. Taking the sum of two frequency-shifted signals is equiv-
alent with frequency shifting the sum of the original signals.

Firstly, section 3.3.1 stresses the linear nature of the frequency translations induced
by LPTV systems. This allows us to describe LPTV behavior using an integral rep-
resentation. Next, section 3.3.2 formalizes the idea of “the signal content contained
in a particular frequency band”. In section 3.3.3 both results are combined, yielding
a matrix-based representation for capturing LPTV system behavior. Section 3.3.4 dis-
cusses some of the structural properties that characterize this matrix representation.
Finally, section 3.3.5 comments on the ∞-dimensional nature of the matrix while sec-
tion 3.3.6 indicates how to extend the idea of matrix-based representations to arbitrary
(non-periodic) LTV systems.

3.3.1 LPTV systems: implications of linearity and periodicity

LPTV systems are characterized by signal content that is translated along the frequency
axis. As illustrated in Fig. 3.6, frequency translations are linear operations1. They
satisfy the principle of superposition, the basic requirement for linearity. Taking the
sum of two frequency-shifted signals is equivalent with frequency shifting the sum of

1This linearity is seldom stressed. Since frequency-translating circuits, like mixers, implement frequency
translations by means of a multiplication of an input signal with a carrier signal, e.g. a cosine, they are often
thought of as nonlinear. This is a misconception that complicates the way we reason on these type of circuits.
The key issue to observe is that one of the signals involved in the multiplication, the carrier, is known at the
time when the circuit is implemented. It can therefore be considered as part of the system and not as an
external input. Hence, with regard to the other inputs, the multiplications that give rise to upconversions are
linear time-varying operations and not nonlinear ones.
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the original signals. Stated in mathematical terms, we find

L [αu1(t)+βu2(t)] = e j2πk f0ff t (αu1(t)+βu2(t))
= αe j2πk f0ff tu1(t)+βe j2πk f0ff tu2(t) (3.23)

= αL [u1(t)]+βL [u2(t)] .

Furthermore, in LPTV systems, frequency translations are not arbitrary but occur over
distances that are a multiple of a fundamental frequency f0ff . The corresponding car-
rier waves e j2πk f0ff t in (3.23) are therefore all T -periodic with T = 1/ f0ff . This results
in a type of behavior that is termed periodically time-varying. In this section, we dis-
cuss the implications of both linearity and periodic time variance on the mathematical
representation of LPTV systems.

3.3.1.1 Linearity

With LPTV systems being linear, we can use linear time-varying (LTV) system theory
[Zad61] to obtain a template that characterizes LPTV input-output behavior. Further-
more, we are only interested in causal systems, i.e. systems that have no knowledge
about the future. The behavior of a causal linear time-varying system is captured by
the following definition:

Definition (causal linear time-varying system): A causal linear time-varying system
H[u(t)] computes the output at a time t as a linear combination of the input samples
u(t) that it has received until that time. The coefficients used for computing this linear
combination may depend upon the time instance t at which the output is computed.

The most natural way to translate this definition into mathematics goes as

y(t) = H[u(t)] =
∫ ∞

0

∫∫
h(t,τ)u(t − τ)dτ . (3.24)

Here, u(t) represents the input signal(s) and y(t) the output signal(s)2. In (3.24) the
integration indicates a summation over a continuous range of (past) input samples. The
quantity h(t,τ) is called the kernel characterizing the linear system. This kernel can be
interpreted as a (possibly time-varying) impulse response. Since causal LPTV systems
are a subclass of causal LTV systems, linearity has taught us that their behavior can be
captured using (3.24).

3.3.1.2 Periodic time variance

Not all kernels h(t,τ) represent periodically time-varying systems. To do so, the input-
output behavior described by (3.24) must satisfy:

Definition (Periodically time-varying): A T -periodic time-varying system is a system
whose response depends in a periodic manner on time. More precisely, equal input
signals applied at instances of time that are a period T apart result in equal output
signals.

2For notational convenience, we denote u(t) and y(t) as scalars; they can however also be considered as
vectors in which case h(t,τ) is a matrix.
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Figure 3.7: A T -periodic time-varying system produces similarly shaped out-
put signals when a Dirac impulse is applied at time instances that are a period
T apart (compare first and last input-output combination). However, when
the Dirac impulses are applied at time instances that are not a period T apart,
e.g. when they are half a period apart, output signals may have different
shapes (compare first and second input-output combination).

Fig 3.7 illustrates this definition for Dirac impulses applied at several instances in time.
As is observed, if an input signal u(t) is applied at time T , the system produces the
same output y(t) as if u(t) were applied at time 0. The only difference of course is
that the output is delayed in time by the period T . Note that this invariance does not
necessarily hold when the same u(t) is applied at time instances that are not an integer
multiple of T apart.

To understand the implications of the definition above on the properties of a periodi-
cally time-varying linear system with kernel h(t,τ), we consider a simple Dirac pulse
being applied at a time instance t0tt , i.e.

u(t) = δ(t − t0) . (3.25)

If the system is linear, it immediately follows from (3.24) that

y(t) = H[δ(t − t0)] = h(t, t − t0) . (3.26)
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The definition of periodic time variance in turn implies that

h(t −T, t − t0 −T ) = DT [H[δ(t − t0)]]
= H [DT [δ(t − t0)]]
= H[δ(t − t0 −T )]
= h(t, t − t0 −T ) . (3.27)

Hereby, DT [ · ] denotes the delay operator DT [u(t)] = u(t − T ). Since t0 is arbitrary,
(3.27) implies

h(t −T,τ) = h(t,τ) , (3.28)

i.e. the kernel h(t,τ) is T -periodic in t. Hence, by pursuing both the implications of
the system’s linearity and periodicity, we have obtained a first, integral, representation
characterizing LPTV system behavior.

3.3.2 Linear periodically modulated signal models

The LPTV system representation derived above does not tell us much about their signal
processing characteristics. More specifically, it does not clearly reveal how LPTV
systems transfer signal content from one frequency band to another. However, in order
to describe this kind of LPTV system behavior, we must first formalize the notion of
“the signal content that is stored in a particular frequency band”.

3.3.2.1 Storing signal content on carriers

Storing signal content in a particular frequency band relates to the more general ques-
tion on how information is stored on waveforms. As outlined in chapter 2, the informa-
tion contained in a set of signals {um(t) ∈R→ C} is stored by using them to modulate
the properties of a set of carrier waveforms. The most straightforward way to do so
is by means of a linear modulation scheme [Proa01]. Here, the overall signal u(t) is
composed as the sum of a set of weighted carriers ψmψψ (t) ∈ R → C. The information
signals um(t) are used as the weights, or

u(t) = ∑
m

um(t)ψmψψ (t) . (3.29)

The principles of this linear modulation scheme are illustrated in Fig. 3.8. It can be
used to transmit several information signals um(t) simultaneously. Hereby, each carrier
wave ψmψψ (t) can be considered as a separate transmission channel3. The signals um(t)
are called the envelopes or also the equivalent baseband components associated with
the carriers ψmψψ (t).

The harmonic functions
ψmψψ (t) = e jmω0t , (3.30)

with ω0 = 2π f0ff , constitute a set of carrier waves that frequently occur in practice.
For (3.30), the transmission channels correspond with evenly spaced frequency bands

3Of course, in order to avoid excessive interchannel interference, the um(t) must be restricted to vary on
a time scale that is much larger than the time scale over which the different carriers ψmψψ (t) are correlated.



42
3.3 LAPLACE-DOMAIN MODELING OF LPTV SYSTEMS

USING HARMONIC TRANSFER MATRICES

0u  (t)0

2u  (t)2

1u (t)1

t

t

t

++

++

t

u(t)))

=

Figure 3.8: the information contained in a set of signals {um(t)} (fat solid
lines) is stored by using them to modulate the properties of a set of carrier
waveforms {ψmψψ (t)} (fast-oscillating lines).
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centered around multiples of f0ff . Hence, given a set of envelopes um(t), the overall
waveform u(t) becomes

u(t) =
+∞

∑
m=−∞

um(t)e jmω0t . (3.31)

With UmUU (s) = L{um(t)} the Laplace transform of the envelope um(t), the Laplace
transform of the overall signal then equals

U(s) = L{u(t)} =
+∞

∑
m=−∞

UmUU (s− jω0) (3.32)

As was illustrated in Fig. 3.2, the component um(t) is upconverted to the frequency
band centered around m f0ff . The notion of the signal content contained in a particular
frequency band is therefore formalized as the envelope (equivalent baseband compo-
nent) um(t) used to modulate the carrier wave ψmψψ (t) = e jmω0t . Due to the periodic
nature of the carrier waves, waveforms obtained using (3.31) are called linear period-
ically modulated waveforms. Also important is the fact that, for any signal u(t), it is
always possible to construct a set of envelopes such that (3.31) is satisfied. Such a set
constitutes a linear periodically modulated signal model.

Example (Modeling a sinewave): Consider the signal

u(t) = sin(ω0(t)) . (3.33)

For this simple case, the most obvious linear periodically modulated signal model is
specified as {

u−1(t) = − 1
2 j

, u0(t) = 0, u1(t) = +
1
2 j

}
, (3.34)

i.e. a set of constant envelopes. This model is illustrated on the left-hand side in
Fig. 3.9.

A second linear periodically modulated signal model for u(t) is depicted on the right-
hand side in Fig. 3.9. Here, we select{

u′−1(t) = 0, u′0(t) = sin(t), u′1(t) = 0
}

. (3.35)

Admittedly, this second solution is counterintuitive. Nevertheless, it is mathematically
correct since (3.31) is satisfied. �

3.3.2.2 On the non-uniqueness of linear periodically modulated signal
models

The example above illustrates that, for a given signal u(t), the set of envelopes {um(t)}
for which (3.31) holds is not unique. There are always an infinite number of possibil-
ities for which (3.31) is satisfied. However, if we look at Fig. 3.9, we see only one set
of envelopes that intuitively seems “right”. This solution is the one on the left with
all envelopes slow-varying. When talking about modulated sinewaves, it seems natural
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Figure 3.9: A sinewave u(t) = sin(ω0t) can be represented using several dif-
ferent linear periodically modulated signal models. The most obvious model
is the one on the left encircled in bold. Here, all envelopes are slow-varying.
Technically, however, the model on the right is also correct although it is
somewhat counterintuitive.
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to demand that an envelope um(t) varies at a rate that is slower than that of the cor-
responding (sinusoidal) carrier. Modulating a 1 MHz carrier with an envelope that is
oscillating at 1 GHz does not seem a sensible thing to do.

In the frequency-domain, slow-varying um(t) correspond to bandlimited spectra UmUU (s).
More specifically, one could require that

UmUU ( jω) = 0, for |ω| > ω0

2
. (3.36)

In words, the equivalent baseband spectra UmUU ( jω) are strictly bandlimited to the fre-
quency band [−ω0/2,ω0/2]. The advantages of requiring (3.36) to hold are twofold:

1. The condition (3.36) fixes all degrees of freedom in determining a linear period-
ically modulated signal model for a given signal u(t). There is only one solution
for the envelopes {um(t)} that satisfies both (3.31) and (3.36). This is of great
help in automating computations.

2. With (3.36) being satisfied, the spectra UmUU ( jω) have a clear cut physical inter-
pretation: they represent that part of the signal content of u(t) located in the fre-
quency band centered around mω0. They do not contribute to the signal content
in other frequency bands. It is this interpretation that has inspired the alternate
name “equivalent baseband components”.

It should, however, be stressed that (3.36) is a constraint that can be imposed. From a
mathematical point of view, one is not required to do so. As presented, the HTM frame-
work also allows us to deal with envelopes um(t) that contain more rapid variations, i.e.
the spectra UmUU ( jω) may have content outside [−ω0/2,ω0/2]. But what would be the
advantages in selecting these “weird” kind of envelopes? Again, there are two reasons:

1. For a single wideband input signal, it is often artificial to break it up into different
components. For example, for the signal in Fig. 3.10, a decomposition of the
overall spectrum U(s) into the components UmUU (s) depicted on the left-hand side
is counterintuitive. A single logical entity is split up in an artificial manner.
Selecting the envelope spectra as on the right-hand side of Fig. 3.10, i.e. U0UU (s) =
U(s) with the other UmUU (s) set to 0, seems more natural. Note that, since most
of the signal energy is contained in [−ω0/2,ω0/2], one can still stick to the
interpretation of U0UU (s) as being (approximately) the signal content at baseband.

2. Sometimes, it helps to simplify computations if we choose UmUU (s) that do not
strictly satisfy (3.36). This is especially true for symbolic computations. In
such a case, the need to simplify the problem setup is more important than strict
adherence to (3.36).

For these reasons, in what follows, we develop methods that can deal with arbitrary
envelope spectra UmUU (s), i.e. the envelope spectra can have non-zero signal content
over the entire frequency axis. However, in gaining understanding and giving interpre-
tation to the theory that is developed, it is often helpful to think of the UmUU (s) as being
bandlimited.
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Figure 3.10: For a single wideband input signal, it is often artificial to break
it up into different components. In this case, it is more convenient to choose
U0UU (s) as on the right, i.e. in a way that does not strictly adhere to (3.36).

3.3.3 Harmonic transfer matrices:
capturing transfer of signal content between carrier waves

Linear periodically modulated waveforms capture the idea of different signal contents
that are stored in different frequency bands. LPTV systems are claimed to transfer
signal content from one frequency band to another. Hence, t is natural to ask how
LPTV systems act upon linear periodically modulated waveforms: what kind of output
signals result and how can we compute them?

To answer this question, we substitute (3.31) into the input-output relation (3.24). This
yields

y(t) =
∫ ∞

0

∫∫
h(t,τ)u(t − τ)dτ

=
+∞

∑
m=−∞

∫ ∞

0

∫∫
h(t,τ)e jmω0(t−τ)um(t − τ)dτ . (3.37)

Since ∀τ, h(t,τ) is T -periodic in t, with T = 2π/ω0, we can expand the kernel using a
Fourier series, or

h(t,τ) =
+∞

∑
k=−∞

hk(τ)e jkω0t . (3.38)
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Substituting (3.38) into (3.37), we obtain

y(t) =
+∞

∑
m=−∞

+∞

∑
k=−∞

e j(m+k)ω0t
∫ ∞

0

∫∫
hk(τ)e− jmω0τum(t − τ)dτ

=
+∞

∑
n=−∞

e jnω0t

(
+∞

∑
m=−∞

∫ ∞

0

∫∫
hn−m(τ)e− jmω0τum(t − τ)dτ

)
(3.39)

=
+∞

∑
n=−∞

yn(t)e jnω0t .

In obtaining the second equality, we changed summation indices using n = m+ k. The
result shows that an LPTV system acting on a linear periodically modulated signal
produces another linear periodically modulated signal with equivalent baseband com-
ponents that equal

yn(t) =
+∞

∑
m=−∞

∫ ∞

0

∫∫
hn−m(τ)e− jmω0τum(t − τ)dτ . (3.40)

Each term in the right-hand side of (3.40) represents a linear time-invariant filtering
operation. Hence, (3.40) is readily rewritten in the Laplace domain as

YnYY (s) =
+∞

∑
m=−∞

HnHH −m(s+ jmω0)UmUU (s), ∀n ∈Z (3.41)

where UmUU (s) = L{um(t)}, YnYY (s) = L{yn(t)} and HkHH (s) = L{hk(t)}.

By organizing the UmUU (s) in an ∞-dimensional column vector

U(s) =
[ · · · U−UU 2(s) U−UU 1(s) U0UU (s) U1(s) U2UU (s) · · · ]T

, (3.42)

and using a similar definition for Y(s), (3.41) can be rewritten as a matrix-vector mul-
tiplication

Y(s) = H̃(s)U(s) . (3.43)

Here, H̃(s) is a doubly ∞-dimensional matrix

H̃(s) =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
...

...
· · · H̃−HH 1,−1(s) H̃−HH 1,0(s) H̃−HH 1,1(s) · · ·
· · · H̃0HH ,−1(s) H̃0HH ,0(s) H̃0HH ,1(s) · · ·
· · · H̃1,−1(s) H̃1,0(s) H̃1,1(s) · · ·

...
...

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ (3.44)

with its elements equal to

H̃nHH ,m(s) = HnHH −m(s+ jmω0) . (3.45)

The HkHH (s) represent the Laplace transforms of the signals hk(τ) obtained from the
Fourier series expansion (3.38) of the kernel h(t,τ).



48
3.3 LAPLACE-DOMAIN MODELING OF LPTV SYSTEMS

USING HARMONIC TRANSFER MATRICES

At this point, we introduce some names and notational conventions that will be used
throughout this and the next chapter. The matrix H̃(s) is called a harmonic transfer
matrix (HTM) [Moll00, Were91a, Vana02c]. Its elements H̃nHH ,m(s) are termed harmonic
transfer functions (HTFs). The latter choice differs, for example, from [Royc98] where
the name harmonic transfer function is reserved for the HkHH (s). However, the quantities
H̃nHH ,m(s) are the ones that directly model signal transfers from the m-th input to the n-th
output frequency band. Hence, they are the ones having physical meaning and therefore
deserve the name harmonic transfer functions. Furthermore, a tilde on top of a quantity
denotes that that quantity is a structured matrix or an element of a structured matrix.
In a structured matrix, the elements cannot be chosen independently of each other. As
follows from (3.45), HTMs are structured with their elements related as H̃nHH +k,m+k(s) =
H̃nHH ,m(s + jkω0). We refer to the next section for a more detailed discussion on this
structure. The elements of matrices that have no tilde on top of them can freely be
chosen.

The physical meaning of HTMs and their elements follows directly from (3.41). As
was outlined in section 3.1.2 and as illustrated in Fig. 3.3, the harmonic transfer func-
tion H̃nHH ,m(s) directly captures the transfer of signal content from the input frequency
band centered around m f0ff to the output frequency band centered around n f0ff . Stated in
a more abstract manner: H̃nHH ,m(s) models the transfer of signal content from the m-th
carrier wave ψmψψ (t) = e jmω0t to the n-th carrier wave ψnψψ (t) = e jnω0t . In a lot of applica-
tions, this is the knowledge that is of greatest interest.

3.3.4 Structural properties of HTMs

As is observed from (3.45), the elements of a HTM H̃(s) can not be chosen indepen-
dently. These structural properties of HTMs arise due to non-uniqueness of the signal
model (3.31). This non-uniqueness manifests itself as

u(t) =
+∞

∑
m=−∞

um(t)e jmω0t

=
+∞

∑
m=−∞

(
um−1(t)e− jω0t)e jmω0t (3.46)

=
+∞

∑
m=−∞

u′m(t)e jmω0(t) .

As illustrated in Fig. 3.11, a tone located at a frequency f0ff + ∆ f in the spectrum of
um−1(t) can equally well be captured as a tone at ∆ f in the spectrum of u′m(t). This
implies that the vectors

U(s) =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢

...
U0UU (s)
U1(s)
U2UU (s)
U3UU (s)

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥
⇔

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
U−UU 1(s+ jω0)
U0UU (s+ jω0)
U1(s+ jω0)
U2UU (s+ jω0)

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥

= PU(s+ jω0) = U′(s) (3.47)
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Figure 3.11: A linear periodically modulated signal model is non-unique. A
tone located at a frequency f0ff + ∆ f in the spectrum of um−1(t) can equally
well be captured as a tone at ∆ f in the spectrum of u′m(t).

represent the same signal u(t). Here, P denotes the permutation operator shifting the
elements of a matrix downwards, i.e. x′m = xm−1. It can be represented as a matrix with
elements

PnPP ,m = δ(m−n+1) (3.48)

where δ(k) ∈ Z→ {0,1} is the Kronecker delta function. It equals 1 for k = 0 and 0
otherwise.

If both vectors in (3.47) represent the same (input) signal, the same must hold for the
(output) signal models obtained by multiplying U(s) and U′(s) with H̃(s), the HTM
corresponding to some arbitrary LPTV operator. If one applies the same input signal
to a given system, the same output signal will result, no matter the representation that
is used for either signal. As a consequence, we obtain

PH̃(s+ jω0)U(s+ jω0) = PY(s+ jω0) (3.49)

= Y′(s) (3.50)

= H̃(s)U′(s) (3.51)

= H̃(s)PU(s+ jω0) . (3.52)

Since U(s) is arbitrary, this implies that

H̃(s+ jω0) = P−1H̃(s)P . (3.53)

In terms of the HTM elements H̃nHH ,m(s), this yields

H̃nHH ,m(s+ jω0) = H̃nHH +1,m+1(s) . (3.54)

Hence, all elements on a same HTM diagonal are frequency-shifted copies of each
other. Although (3.54) can also be obtained from (3.45), the derivation above is a
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more fundamental one: it relates the structure of HTMs to the waveform’s non-unique
linear periodically modulated signal model. This point of view is much more fruitful
in extending LPTV theory to other classes of LTV systems.

As a consequence of (3.53), it is sufficient to know H̃(s) for all s = σ+ jω with σ ∈R

and ω ∈ [−ω0/2,ω0/2]. Furthermore, if H̃(s) is analytic in the right-hand complex
plane, i.e. the LPTV system is stable and contains no right-hand plane poles, it is even
sufficient to know H̃( jω) for ω∈ [−ω0/2,ω0/2]. Using Cauchy’s integral theorem and
analytic continuation [Arf85], it is possible to find H̃(s),∀s ∈ C.

Another important consequence of the structural relation (3.53) is the repetitive struc-
ture of the poles and eigenvalues of H̃(s). As will be seen in section 3.5.2, this is
important for LPTV stability analysis. If p ∈ C is a pole of H̃(s), i.e.

lim
s→p

∥∥∥∥H̃(s)
∥∥∥∥ = ∞ (3.55)

with
∥∥∥∥H̃(s)

∥∥∥∥ the HTM’s two-norm evaluated at s ∈C, then (3.53) immediately implies
that p + jω0 is also a pole of H̃(s). Furthermore, given a complex number λ and a
vector U such that for a given s

H̃(s)U = λU , (3.56)

we find, again using (3.53), that

H̃(s+ jω0)
(
P−1U

)
= P−1H̃(s)U

= λ
(
P−1U

)
. (3.57)

This means that if λ is an eigenvalue of H̃(s), it is also an eigenvalue of H̃(s + jω0).
Hence, poles repeat themselves in the direction of the imaginary axis while, in that
same direction, H̃(s) is characterized by the periodicity of its eigenvalues.

3.3.5 On the ∞-dimensional nature of HTMs

One of the main problems in dealing with HTMs is their ∞-dimensional matrix struc-
ture. As always, care must be taken in dealing with ∞ in a sense that a proper limiting
procedure is required: how is infinity being approached? As different paths to ∞ may
lead to different results, many paradoxes in mathematics can be traced down to careless
specification of a proper limiting procedure. In this text, any ∞-dimensional HTM H̃(s)
should be considered as the limit of a sequence of square K-dimensional submatrices
H̃K(s). Written formally:

H̃(s) = lim
K→∞

H̃K(s) . (3.58)

Moreover, H̃K(s) is a submatrix of H̃K+1(s). With mild conditions on the behavior of
the LPTV operator captured by H̃(s), use of any such sequence

{
H̃K(s)

}
, in the limit

for K → ∞, yields the same results. The basic reason for this is that, mostly, the signal
energy located beyond a particular finite frequency is of negligible importance. In what
follows, we deal with HTMs as if they were finite-dimensional matrices. Unless when
relevant, we do not explicitly refer to their ∞-dimensional structure as this would only
complicate expositions.
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3.3.6 Matrix-based descriptions for arbitrary LTV behavior

We conclude this section with some notes on the generalization of the HTM concept
to handle other, more general classes of LTV systems. Just as a matrix representation
is developed for capturing signal transfers between the harmonic carriers e jmω0t , it is
possible to do so for systems that transfer signal content between carrier waves ψmψψ (t)
other than the harmonic ones. As such, we create a class of LTV systems that can be
associated with the carriers ψmψψ (t), just as T -periodic LPTV systems are associated with
the harmonic carriers e jmω0t . Developing the matrix representation for such systems
and unraveling its structural properties proceeds along the same lines as outlined above
for LPTV systems. Moreover, although further discussion in this chapter is restricted
to linear T -periodic systems, it is worth indicating that most of the analysis that follows
is straightforward to generalize.

3.4 LPTV system manipulation using HTMs

Having discussed HTMs and their basic properties in depth, we now turn to their use
for the manipulation and analysis of LPTV system behavior. Use of HTMs allows
us to extend techniques for manipulating LTI systems to handle LPTV ones as well.
Section 3.4.1 introduces HTM representations for two types of elementary LPTV sys-
tems. The basic apparatus for computing the HTMs of composed systems is outlined
in sections 3.4.2 and 3.4.3. Together, these sections provide an elegant framework to
manipulate LPTV systems and to compute the overall input/output behavior, given the
system’s building block characteristics. As an application of the material, section 3.4.4
shows how the HTM representation of an LPTV system is related to its state-space
representation.

3.4.1 HTMs of elementary systems

Two fundamental subclasses of LPTV systems are LTI systems and multiplications
with a periodic signal p(t). Any other LPTV system can always be modeled as an
interconnection of blocks belonging to these basic subclasses. The procedure to deter-
mine the HTM representations for these special types of LPTV systems is straightfor-
ward. In a first step, we find the kernels h(t,τ) associated with either an LTI system or
a multiplication. The HTM representation then follows from (3.38) and (3.45).

3.4.1.1 LTI systems

For LTI systems, it holds that h(t,τ) = h(τ). This h(τ) is the LTI system’s impulse
response. Note that it does not depend on the variable t (hence the label time-invariant).
As a consequence, in the series expansion (3.38), all hk(τ) = 0 except for k = 0. Using
(3.45), we then obtain that the HTM corresponding to an LTI operator with transfer
characteristic H(s) = L{h(τ)} is determined by{

H̃nHH ,m(s) = H(s+ jmω0) m = n
H̃nHH ,m(s) = 0 m �=�� n

, (3.59)
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or

H̃(s) =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢

. . .
H(s− jω0) 0

H(s)
0 H(s+ jω0)

. . .

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥ . (3.60)

Hence, the HTM equivalent of an LTI system is a diagonal matrix with frequency-
shifted copies of the transfer characteristic H(s) on the diagonal. This diagonal struc-
ture makes sense since LTI systems cannot cause information to shift along the fre-
quency axis.

3.4.1.2 Multiplication with a periodic signal p(t)

The kernel h(t,τ) corresponding to a memoryless multiplication y(t) = p(t)u(t) of the
input signal u(t) with a periodic signal p(t), where

p(t) =
+∞

∑
k=−∞

PkPP e jkω0t , (3.61)

is found by observing that

y(t) =
∫ ∞

0

∫∫
h(t,τ)u(t − τ)dτ (3.62)

= p(t)u(t) (3.63)

=
∫ ∞

0

∫∫
p(t)δ(τ)u(t − τ)dτ (3.64)

=
+∞

∑
k=−∞

e jkω0t
∫ ∞

0

∫∫
PkPP δ(τ)u(t − τ)dτ . (3.65)

We therefore find hk(τ) = PkPP δ(τ) with δ(τ) being the Dirac delta function. Using (3.45),
the elements of the HTM corresponding to the operation (3.63) are found to equal

H̃nHH ,m = PnPP −m , (3.66)

or

H̃(s) =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
. . .

. . .
P0PP P−PP 1 P−PP 2

. . . P1PP P0PP P−PP 1
. . .

P2PP P1PP P0PP
. . .

. . .
. . .

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

. (3.67)

Hence, the HTM corresponding to a memoryless multiplication with a periodic signal
p(t) is a frequency-independent Toeplitz matrix.
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Example (Ideal mixer): According to (3.67), the HTM corresponding to the elemen-
tary mixing stage

y(t) = cos(ω0t)u(t) (3.68)

is given by

H̃mixer(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
. . . 0

. . . 0 1/2
1/2 0 1/2

1/2 0
. . .

0
. . .

. . .

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

(3.69)

which is a banded matrix.

As a test, let us apply this operator on a simple input signal: u(t) = sin(ω0t). This is a
periodic signal with its Fourier coefficients given by

U =
[
· · · 0 − 1

2 j 0 1
2 j 0 · · ·

]T
. (3.70)

In section 3.5.1, it will be shown that the Fourier coefficients of the equally periodic
(steady-state) output signal y(t) satisfy Y = H̃mixer(0) ·U. This evaluates as

Y =
[
· · · − 1

4 j 0 0 0 1
4 j · · ·

]T
. (3.71)

Hence, we find y(t) =
(
e j2ω0t − e− j2ω0t

)
/4 j = sin(ω0t)/2. This result is readily veri-

fied by straightforward evaluation of y(t) = cos(ω0t)sin(ω0t) = sin(2ω0t)/2. �

3.4.2 HTMs of LPTV systems connected in parallel or in series

In constructing and manipulating linear systems, there are three types of basic connec-
tions: parallel, series and feedback connections. Together, they make up a complete
set that can be used to realize any interconnect pattern. Within the HTM framework,
it turns out to be particularly easy to compute the HTMs corresponding to these ba-
sic types of composed systems when given the HTMs of the composing systems. In
what follows, we handle parallel en series connections. A separate section is devoted
to feedback connections as these are harder to deal with.

Computing the HTM representation for a parallel and series connection, given the
HTMs of the composing LPTV systems, is straightforward. With H̃1(s) and H̃2(s)
the HTMs of two arbitrary LPTV systems, the HTM of their parallel respectively se-
ries connection, as illustrated in Fig. 3.12, is given by

H̃+(s) = H̃1(s)+ H̃2(s) (3.72)

H̃×(s) = H̃2(s)H̃1(s) (3.73)

It is important to note that the order of multiplication in (3.73) cannot be interchanged.
Contrary to single-input single-output LTI systems, LPTV systems, in general, do not
commute.
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Figure 3.12: Parallel and series connection of two (LPTV) systems.
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Figure 3.13: Block diagram of an elementary downconversion stage con-
sisting of a (bandpass) pre-filter, an ideal mixing operation and a (lowpass)
post-filter.

Example (Downconversion stage): Consider the block diagram of the elementary
downconversion stage in Fig. 3.13, consisting of a (bandpass) pre-filter, an ideal mix-
ing operation and a (lowpass) post-filter. Using (3.60), (3.69) and (3.73), it is readily
shown that the elements of the input-output HTM H̃(s) characterizing the entire down-
conversion stage are given by

H̃nHH ,m(s) =
1
2

H1(s+mω0)H2HH (s+nω0)δ(|n−m|−1) . (3.74)

Downconversion of signal content from the carrier frequency to baseband is therefore
captured by the harmonic transfer function

H̃0HH ,1(s) = H1(s+ jω0)H2HH (s)/2 . (3.75)

This transfer function relates the output equivalent baseband component at DC to the
input equivalent baseband component at carrier frequency. �

3.4.3 Feedback systems and HTM inversions

LPTV feedback connections are more difficult to handle. For example, as the HTM of
the feedback system in Fig. 3.14 is concerned, straightforward manipulation yields the
closed-loop characteristic

H̃cl(s) =
(
I+G̃(s)

)−1
Ã(s) . (3.76)
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Figure 3.14: Feedback connection of two (LPTV) systems.

Here, G̃(s) = Ã(s)H̃ f b(s) is the open-loop gain HTM while I is the identity matrix.
Hence, computing H̃cl(s) involves a matrix inversion. Since, in principle, HTMs are
∞-dimensional matrices, LPTV feedback requires us to invert a very large matrix. This
problem is equivalent to solving very large systems of equations.

Numerically, inverting very large linear systems is a hard problem to solve. Doing
so symbolically even seems impossible. Dealing with these large matrix inversions in
an efficient manner is one of the main challenges in rendering HTM-based analysis
suited for system and circuit design practice. Since almost any practical application
contains feedback, the inversions cannot be avoided. Therefore, it is very important to
develop methods that handle the inversions efficiently. Methods for inverting HTMs
are essential in bridging the gap between HTMs as an abstract theoretical framework
and HTMs as a powerful tool for both numerical and symbolic computations.

In what follows, we discuss three different techniques to invert HTMs. The first one
truncates the ∞-dimensional HTM and uses, for example, sparse-matrix techniques to
handle the inversions. Although appropriate for numerical computations, this technique
is very time consuming and ineffective for symbolic computations. Sections 3.4.3.2 and
3.4.3.3 introduce two methods that allow us to deal with LPTV feedback by assuming
that the HTMs that are involved satisfy specific properties. The first method assumes
the open-loop gain HTM G̃(s) to have a dominant diagonal (i.e. LTI) component. The
second method is based on a rank-reduced approximation of G̃(s). As will be illustrated
in the next chapter, most open-loop gain HTMs encountered in practice can be dealt
with using one of both methods. Moreover, both approaches not only allow numerical
inversion of HTMs, they also render symbolic computations possible.

3.4.3.1 Inversion by truncation

A straightforward approach tackles the inversion in (3.76) by truncating the HTM(
I+ G̃(s)

)
to a finite N-dimensional square matrix. This amounts to neglecting all

signal content beyond a particular frequency. The value of N depends on the number
of frequency bands that are of importance in both the input and output signal. The ma-
trix inverse can then be computed using Krylov subspace algorithms [Barr94, Saad96].
This approach is similar to harmonic balance algorithms [Kund86, Kund90]. It is
adopted by most authors that use HTMs or a likewise representation in dealing with
LPTV system behavior [Maas88, Moll00, Royc98, Royc99].
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3.4.3.2 Power series approximation

In a lot of practical LPTV systems, a HTM H̃(s) that needs to be inverted (H̃(s) =
I+G̃(s) in the case of the feedback example) tends to have a dominant diagonal (LTI)
component. Hence, it is natural to decompose H̃(s) as

H̃(s) = H̃LT I(s)−∆H̃(s) (3.77)

= H̃LT I(s)
(
I− H̃LT I(s)−1∆H̃(s)

)
. (3.78)

Here, H̃LT I(s) is a diagonal HTM corresponding to the diagonal (LTI subsection) of
H̃(s) while −∆H̃(s) contains the off-diagonal elements. H̃(s) is dominated by H̃LT I(s)
if the major part of the output signal’s energy is generated by this LTI component, or∥∥∥∥H̃LT I(s)−1∆H̃(s)

∥∥∥∥� 1 . (3.79)

(See appendix A for a discussion on HTM norms.)

Assuming the presence of a dominant LTI component, i.e. with (3.79) being satisfied,
the inverse of H̃(s) can be approximated by means of the series expansion

H̃(s)−1 =
∞

∑
r=0

(
H̃LT I(s)−1∆H̃(s)

)r
H̃LT I(s)−1 (3.80)

With the inverse of the diagonal HTM H̃LT I(s) being straightforward to compute, this
expansion requires only matrix multiplications and additions. Therefore, (3.80) can
be evaluated using both numerical and symbolic techniques. For practical purposes,
the expansion is truncated after a finite number of terms R. Note that, especially for
symbolic computations, use of (3.80) is only practical if R can be kept low, i.e. if (3.80)
converges sufficiently fast. Note that the theoretical justification of the expansion (3.80)
builds on the Banach fixed-point theorem [Cor91, Huts80, Vana02c].

3.4.3.3 Rank-reduced approximation

Another strategy assumes that the HTM H̃(s) that is to be inverted can be approximated
as

H̃(s) ≈ Z̃(s)+U(s)V(s)T , (3.81)

i.e. the sum of an HTM Z̃(s) whose inverse can be determined at low computational
cost and a low-rank update U(s)V(s)T (4). Here, U(s) and V(s) are column matrices
with a finite number M of columns. Formally, U(s),V(s) ∈ C∞×M . For the feedback
loop in Fig. 3.14, the approximation (3.81) is possible if, for example, the open-loop
gain G̃(s) = Ã(s)H̃ f b(s)≈ U(s)V(s)T is nearly rank-deficient. In such a case Z̃(s) = I.
Often, the such an approximation only holds for s belonging to a bounded subset of the
complex plane.

4For this approximation to be valid, the largest singular value of the approximation error matrix should
be well below the smallest singular value of (3.81), i.e. σmax

(
H̃(s)− Z̃(s)+U(s)V(s)T

) � σmin(Z̃(s) +
U(s)V(s)T ).
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Figure 3.15: Block diagram of an elementary downconversion stage with
parasitic feedback from the output to the mixer’s input.

If (3.81) is satisfied, HTM inversions are efficiently computed by means of the Sherman-
Morisson-Woodbury formula [Gol96]5. This yields

H̃(s)−1 ≈ Z̃(s)−1 − Z̃(s)−1U(s)
(
I+V(s)T Z̃(s)−1U(s)

)−1
V(s)T Z̃(s)−1 . (3.82)

Since it was assumed that to Z̃(s) is invertible at low computational cost, only the com-

putation of
(
I+V(s)T Z̃(s)−1U(s)

)−1
might pose difficulties. However, as U(s),V(s)∈

C∞×M , this involves inverting an M × M matrix. If M is sufficiently small, i.e. if
U(s)V(s)T is of low rank, this is much less of a problem than inverting some large-
dimensional matrix obtained by truncating the original ∞-dimensional HTM.

Example (Downconversion with feedback): Consider the system in Fig. 3.15. This
is the same downconversion stage as in Fig. 3.13 but now we’ve added a time-invariant
(parasitic) feedback connection from the output to the mixer’s input. Hence, the overall
input-output relation is given by

H̃(s) =
(
I− G̃(s)

)−1
H̃2(s)H̃mixer(s)H̃1(s) . (3.83)

Here, the open-loop gain HTM equals

G̃(s) = H̃2(s)H̃mixer(s)H̃ f b(s) . (3.84)

The HTMs H̃1(s), H̃2(s), H̃mixer(s) and H̃ f b(s) respectively correspond to the filters
H1(s) and H2HH (s), the multiplication with cos(2π f0ff t) and the feedback path Hf bH (s).

If the feedback loop is weak, i.e. if ∥∥∥∥G̃(s)
∥∥∥∥� 1 , (3.85)

then, using a first-order power series approximation, we obtain

H̃(s) ≈ (
I+ G̃(s)

)
H̃2(s)H̃mixer(s)H̃1(s) . (3.86)

Hence, the HTM elements H̃0HH ,1(s), H̃0HH ,0(s) and H̃0HH ,2(s) —respectively characterizing
the (wanted) transfers from carrier frequency to baseband and the (unwanted) transfers

5See also appendix B.
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from baseband to baseband and twice the carrier frequency to baseband— we find
(most important terms only)

H̃0HH ,1(s) ≈ 1
2

H2HH (s)H1(s+ jω0) (3.87)

and

H̃0HH ,0(s) ≈ 1
4

H2HH (s)H2HH (s− jω0)Hf bH (s− jω0)H1(s)

+
1
4

H2HH (s)H2HH (s+ jω0)Hf bH (s+ jω0)H1(s) (3.88)

H̃0HH ,2(s) ≈ 1
4

H2HH (s)H2HH (s+ jω0)Hf bH (s+ jω0)H1(s+2 jω0) (3.89)

It is observed that the presence of the feedback Hf bH (s) causes (parasitic) transfers from
baseband and twice the carrier frequency to baseband. Often, these transfers are unde-
sired and need to suppressed.

A second way to solve (3.83) builds on the observation that, with regard to the feedback
loop, the lowpass filter H2HH (s) throws out most of the high-frequent information. If
H2HH (s) rolls off sufficiently fast, we can use a rank-one approximation for G̃(s) (valid in
the frequency interval [−ω0/2,ω0/2]), i.e.

I+ G̃(s) ≈ I+

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
0
1
0
...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥G̃0,· (s) . (3.90)

Here,

G̃0,· (s) =
[ · · · 0 H2HH (s)Hf bH (s− jω0) 0 H2HH (s)Hf bH (s+ jω0) 0 · · · ]

(3.91)

is the 0-th row of G̃(s). Using (3.82), it is then straightforward to obtain the same result
as in (3.87)-(3.89). This illustrates that, often, both power series approximation and a
rank-reduced approximations can be used to obtain (approximate) expressions for the
input-output HTM elements of feedback systems6. Accuracy of these approximations
will be verified for some practical cases in the next chapter. �

3.4.4 Relating HTMs to state-space representations

A final topic related to LPTV system manipulation using HTMs concerns the link be-
tween an LPTV system’s HTM representation and its state-space equations. The latter
are, for example, obtained by linearizing a set of circuit equations in the neighborhood

6This, however, does not hold true for all cases. For analyzing PLLs with sampling phase-frequency
detectors (see the next chapter), only the rank-reduced approximation turns out to be successful.
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of a time-varying operating point. This typically results in a set of linear differential-
algebraic equations (DAEs) that are structured as

E(t)
dx
dt

= A(t)x+b(t)u (3.92)

y = c(t)x+d(t)u . (3.93)

Here, E(t),A(t) ∈RNRR ×N , b(t) ∈RNRR ×1, c(t) ∈RNRR ×1 and d(t) ∈R are T -periodic ma-
trices (with T = 2π/ω0). Using the expressions for constructing elementary HTMs and
the rules for addition and concatenation, it is straightforward to obtain

H̃(s) = H̃c
(
H̃E ·H̃di f f (s)− H̃A

)−1 H̃b + H̃d (3.94)

as the HTM relating y(t) to u(t). Here, H̃E represents a block Toeplitz matrix structured
like the one in (3.67)7. The elements of H̃E equal the matrix-valued Fourier coefficients
of E(t) = ∑k Eke jkω0t . H̃A, H̃b, H̃c and H̃d are likewise obtained from A(t), b(t), c(t)
and d(t). Furthermore,

H̃di f f (s) =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
(s− jω0)IN 0

sIN

0 (s+ jω0)IN
. . .

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ (3.95)

is the (block) HTM representation for the differentiation operator d/dt[ · ]. Here IN ∈
RNRR ×N is the identity matrix. The numerical extraction of HTMs or related quantities
can now be accomplished by means of the solution of (3.94) whereby all matrices are
properly truncated [Phil98, Royc98]. Typically, one needs Krylov subspace solvers
[Barr94, Saad96] to handle the large-scale matrix inversions that arise.

Example (Downconversion stage): Let us consider the downconversion circuit in
Fig. 3.16. This circuit implements a mixing stage followed by a lowpass filtering oper-
ation. By linearizing the circuit equations in the neighborhood of the periodic operating
point, we obtain the linear periodically time-varying system of DAEs

C
dxdd
dt

= − x
R
−βcos(ω0t)u(t) (3.96)

y(t) = x(t) . (3.97)

Here, we assumed the opamp to be ideal and we used the results of the example in
section 3.1.3 (see equation (3.10)) to model the transistor’s time-varying small-signal
behavior. If we map each of the terms in (3.96)-(3.97) on their HTM equivalent, then

7Since E(t) is a matrix, multiplication with E(t) represents a multi-input multi-output (MIMO) LPTV
system. The HTM corresponding with such a MIMO system has the same structure as a HTM corresponding
to a single-input single-output (SISO) system. The only difference is that the HTM elements are now matrix
valued instead of scalar valued.
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Figure 3.16: Downconversion circuit that implements a mixing stage fol-
lowed by a lowpass filtering operation.

we obtain that H̃E = C ·I, with I the unity matrix, H̃A = −(1/R) ·I, H̃c = I, H̃d = 0
and

H̃b =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
. . . 0

. . . 0 −β
2

−β
2 0 −β

2

−β
2 0

. . .

0
. . .

. . .

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

. (3.98)

Substituting this into (3.94) yields the input-output relation

Y(s) =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
. . . 0

. . . 0 −βR
2(1+(s− jω0)RC)

−βR
2(1+sRC) 0 −βR

2(1+sRC)

−βR
2(1+(s+ jω0)RC) 0

. . .

0
. . .

. . .

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

U(s) . (3.99)

The matrix in the equation above is the HTM associated with the state-space description
(3.96)-(3.97). If we take a look at the HTM element that models the transfer of signal
content from the carrier frequency to baseband, i.e H̃0HH ,1(s) = −βR/2(1+ sRC), then,
as expected, we clearly observe a lowpass filtering action. �

3.5 LPTV system analysis using HTMs

Having discussed HTMs, their basic properties and the ways in which we can manip-
ulate them, we now turn to their use in analyzing various aspects of LPTV system
behavior. In what follows, it is shown how HTMs can be used to perform multi-tone
(section 3.5.1), stability (section 3.5.2) and noise (section 3.5.3) analysis of LPTV sys-
tems.
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3.5.1 Multi-tone analysis

Let us be given an LPTV system characterized by the HTM H̃(s). To this system, we
apply an input signal u(t) with equivalent baseband components (envelopes) that equal

um(t) = UrUU ,rr me j∆ωt , (3.100)

where UmUU ∈C. This corresponds to injecting extra (small-signal) tones into the system.
These tones are located at ∆ω + mω0. The Laplace transforms of the envelopes in
(3.100) equal

UmUU (s) =
UrUU ,rr m

s− j∆ω
. (3.101)

They all contain a pole on the imaginary axis with UrUU ,rr m as the associated residue.

With an LPTV system’s input-output behavior captured by (3.43), the output signal’s
equivalent baseband components are obtained from

Y(s) = H̃(s)U(s) =
1

s− j∆ω
H̃(s)Ur (3.102)

where Ur =
[ · · · UrUU ,rr −1 UrUU ,rr 0 UrUU ,rr 1 · · · ]T

. Just as it is the case for the input signal
components, the Laplace transforms of the output signal components also contain a
pole on the imaginary axis at s = j∆ω. The associated vector of residues equals

Yr = lim
s→ j∆ω

(s− j∆ω)H̃(s)U(s) = H̃( j∆ω)Ur (3.103)

with Yr =
[ · · · YrYY ,rr −1 YrYY ,rr 0 YrYY ,rr 1 · · · ]T

. In steady state, the output signal’s equiva-
lent baseband components hence become

yn(t) = YrYY ,rr ne j∆ωt (3.104)

Equation (3.103) relates the tones in the output spectrum to the tones in the input spec-
trum and allows efficient evaluation of the LPTV system’s steady-state response to
multi-tone input signals.

3.5.2 Stability analysis

The similarity between the input-output relation (3.76), characterizing the closed-loop
behavior of a time-varying feedback system, and its counterpart in traditional LTI feed-
back analysis raises the question whether powerful techniques for frequency-domain
stability analysis, like Nyquist and Bode [Bode45], can be extended to the time-varying
case. The answer turns out to be affirmative. Results that follow are similar to the ones
in [Were91a, Were91b]. They are slightly simplified by exploiting the repetitive struc-
ture of both HTM poles and eigenvalues.
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Figure 3.17: Elementary feedback loop.
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Figure 3.18: Nyquist stability is based on the study of Nyquist loci. A
Nyquist locus is the graph traced by G(s) along (a) a contour that encircles
the entire right-hand plane . (b) If G(s) contains no poles in the encircled
area, the solid line indicates that the closed loop H(s) has no unstable poles
as it does not encircle −1+ j0. On the other hand, the dashed line, that does
encircle −1 + j0 a single time, denotes the presence of an unstable pole in
the closed-loop behavior.

3.5.2.1 Recapitulating stability analysis of SISO LTI systems

We begin our treatment with a brief review of traditional frequency-domain stability
theory for single-input single-output (SISO) LTI systems [Fran94, Mac89]. Here, the
starting point is the work of Nyquist8. Given the feedback loop in Fig. 3.17, with

H(s) =
Y (s)
U(s)

=
G(s)

1+G(s)
, (3.105)

Nyquist studied the stability of the closed-loop system H(s) in terms of the character-
istics of the open-loop gain G(s).

Nyquist stability analysis is based on the study of a Nyquist locus. As illustrated in
Fig. 3.18, a Nyquist locus is the graph traced by G(s) as s traces a Nyquist contour,
i.e. a contour that encircles the entire right-hand plane. If lims→∞ G(s) exists, then this

8As a historical note aside: Nyquist’s stability criterion essentially is an application of the argument
principle which in turn builds on Cauchy’s work on complex functions [Arf85]. Hence, the mathematical
apparatus needed for the stability analysis of linear systems was already available by 1830.
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graph is entirely determined by the values G( jω) for −∞ < ω < ∞. Closing the loop
using a contour at infinity is only relevant for theoretical purposes.

The link between the properties of the closed-loop transfer function H(s) and the prop-
erties of the open-loop gain G(s) is established by Nyquist’s theorem [Bode45, Fran94,
Mac89]:

Theorem (Nyquist): A closed-loop system H(s) = G(s)/(1+G(s)) contains no un-
stable poles if the Nyquist locus of the open-loop gain G(s) encircles −1+ j0 as many
times anti-clockwise as G(s) has poles located in the right-hand plane.

For example, if G(s) contains no poles in the right-hand plane, the Nyquist locus indi-
cated by the solid line in Fig. 3.18(b) proves that the closed-loop transfer function H(s)
is stable as it does not encircle −1 + j0. The dashed line, encircling −1 + j0 a single
time, indicates the presence of a single unstable closed-loop pole.

Note that by tracing curves other than the one in Fig. 3.18(a), similar results are ob-
tained that provide more detailed information on the position of the closed-loop poles.
For example, plotting the graph of G(s) for s varying along a σ-shifted frequency axis,
i.e. s ∈ {σ+ jω|−∞ < ω < ∞}, helps us to determine whether the closed-loop system
contains poles with a real part that is greater than σ. This is useful as, often, designers
are not interested in shear stability. They would also like the closed-loop system to
settle sufficiently fast, i.e. all poles must have a real part that is smaller than a certain
negative real σ. This implies that the closed loop should not contain any poles located
in the plane to the right of the σ-shifted frequency axis. For a more detailed discussion,
see [Mac89].

3.5.2.2 Recapitulating stability analysis of MIMO LTI systems

Since HTMs can be considered as the limit of a sequence of finite-dimensional, multi-
input multi-output (MIMO) LTI systems, the question rises whether Nyquist can be
generalized to handle this kind of systems. A generalization like this is discussed in
[Deso80, Mac89].

For MIMO LTI systems, the open-loop gain in Fig. 3.17 is no longer scalar- but matrix-
valued, i.e.

G(s) =

⎡
⎢
⎡
⎣⎢⎢ G1,1(s) · · · G1,N(s)

...
. . .

...
GNG ,1(s) · · · GNG ,N(s)

⎤
⎥
⎤
⎦⎥⎥ . (3.106)

For the moment, G(s) ∈ CN×N is considered an arbitrary matrix-valued transfer func-
tion (no structural constraints). As for LTI transfer functions, if

lim
s→p

‖G(s)‖ = ∞ , (3.107)

then p ∈ C is said to be a pole of G(s).
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For the feedback system in Fig. 3.17, the closed-loop transfer matrix H(s) is found to
equal

H(s) = (I+G(s))−1 G(s) (3.108)

with I ∈ CN×N the N-dimensional unity matrix. In analyzing the stability or settling
behavior of the closed-loop system, i.e. the absence of poles of H(s) in a particular
region of the complex plane, we compute the eigenvalues λk(s) of the open-loop gain
G(s), i.e.

∃Uk(s) ∈ CN : G(s)Uk(s) = λk(s)Uk(s) (3.109)

for k = 1, . . . ,N. The graphs of the λk(s) as s traces a Nyquist contour are called the
characteristic loci of G(s). The properties of the characteristic loci of G(s) are linked
to the properties of the closed-loop system H(s) by the following theorem [Deso80,
Mac89]:

Theorem (Generalized Nyquist): A closed-loop MIMO system H(s) = (I+G(s))−1×
G(s) contains no unstable poles if the characteristic loci of the open-loop gain G(s),
taken together, encircle −1+ j0 as many times anti-clockwise as G(s) has poles located
in the right-hand plane.

Example (MIMO stability): Consider the system with open-loop gain

G(s) =
[

0 1
10 s−1

s+1 0

]
. (3.110)

The eigenvalues of this system are

λ1,2(s) = ±
√

10
s−1
s+1

. (3.111)

Fig. 3.19 plots the characteristic loci for both λ1(s) and λ2(s). Since G(s) has no un-
stable poles and since the joint characteristic loci encircle −1 + j0 a single time, it is
concluded that the closed-loop system H(s) determined by (3.108) will be unstable.
Note also the importance of drawing both characteristic loci. If only one of them is
drawn, the overall locus is not closed and the generalized Nyquist criterion has there-
fore no meaning. �

3.5.2.3 Stability analysis of LPTV systems

The correspondence between the HTM representation of an LPTV system and the
transfer matrix of a MIMO LTI system suggests to apply the results above to establish
a frequency-domain Nyquist criterion that can handle LPTV system stability. How-
ever, the ∞-dimensional structure of the HTMs causes trouble. It implies both an infi-
nite number of poles and eigenvalues. Straightforward application of the generalized
Nyquist criterion for MIMO LTI systems would therefore result in a great waste of
efforts.

Fortunately, the structure inherent to HTMs makes simplification possible. As men-
tioned in section 3.3.4, both the poles and eigenvalues of a HTM G̃(s) exhibit a repet-
itive structure. If p is a pole of G̃(s), so is p + jω0. Furthermore, the set {λk(s)} of
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Figure 3.19: The two characteristic loci for the MIMO system defined by
equation (3.110).

eigenvalues of G̃(s) is periodic in a sense that

λk(s) ∈ eig
{

G̃(s)
}⇒ λk(s) ∈ eig

{
G̃(s+ jω0)

}
. (3.112)

Both observations taken together imply that it is sufficient to trace s over the frequency
interval [−ω0/2,ω0/2] in drawing the characteristic loci of G̃(s) and in determining its
poles. Due to the repetitive nature of the poles and eigenvalues of G̃(s) in the direction
of the imaginary axis, no new information will be revealed as we trace s beyond this
interval. This brings us to the Nyquist criterion for LPTV systems [Were91a, Moll00]9:

Theorem (Nyquist LPTV): A closed-loop LPTV system that is represented by the

HTM H̃(s) =
(
I+ G̃(s)

)−1
G̃(s) contains no unstable poles if the characteristic loci of

the open-loop gain G̃(s), taken together and drawn for s = jω for −ω0/2 < ω < ω0/2,
encircle −1 + j0 as many times anti-clockwise as G̃(s) has poles located in the right-
hand plane with an imaginary part that lies in the interval [−ω0/2,ω0/2].

Although satisfying from a theoretical point of view, questions rise as to the practical
applicability of this Nyquist criterion for LPTV systems. For a particular value s = jω,
G̃(s) is still an ∞-dimensional matrix. Hence, it has an infinite number of eigenvalues.
Fortunately, for many practical systems, most of the eigenvalues have a magnitude that
is well below 1. Since their locus cannot help to encircle −1 + j0, they are irrelevant
as far as stability is concerned.

9As presented here, the criterion slightly deviates from the one presented in [Were91a, Moll00]. Contrary
to the procedure suggested there, the periodic structure of the set of eigenvalues {λk(s)} renders it unneces-
sary to close the curve by tracing s to +∞ and back again along the curves {σ± jω0/2 |0 < σ < ∞}. There
is no error in doing so, but, due to periodicity of the eigenvalues, the net number of encirclements induced
by tracing these trajectories will always be zero.
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3.5.2.4 Computing the dominant HTM eigenvalues

As was the case for HTM inversions, computing the eigenvalues of an ∞-dimensional
HTM is a hard problem to solve. However, keeping in mind that we are only interested
in eigenvalues that are sufficiently large, the problem can be simplified by exploiting
the characteristics of open-loop gain HTMs as they occur in practice. In what follows,
we discuss three methods for HTM eigenvalue computations. The methods parallel the
ones introduced in sections 3.4.3.1-3.4.3.3 to compute the inverse of a HTM.

Truncation-based eigenvalue computations

Again, the most straightforward strategy is to truncate the open-loop gain HTM G̃(s),
i.e. reduce it to a finite-dimensional matrix. Eigenvalues can then be computed using
standard textbook algorithms [Gol96] . If the truncated matrix is very large, it is better
to use subspace methods [Saad92, Sore00] to find the largest eigenvalues.

Loops with a dominant LTI component

A second approach towards estimating eigenvalue locations makes use of Gershgorin’s
theorem [Gol96, Mac89]:

Theorem (Gershgorin’s theorem): Let Z = [zk,l ] be a complex matrix of dimensions
M×M. Then the eigenvalues of Z lie in the union of the M (Gershgorin) circles, each
with center zk,k and radius

Rk =
m

∑
l = 1
l �=�� k

∣∣∣∣zk,l
∣∣∣∣ . (3.113)

As G̃(s) can be considered as the limit of a sequence of finite-dimensional matrices,
we obtain that for each s ∈ C and for each eigenvalue λ(s) of G̃(s):

∃k :
∣∣∣∣λ(s)− G̃k,k(s)

∣∣∣∣≤ Rk(s) = ∑
l �=�� k

∣∣∣∣G̃l,k(s)
∣∣∣∣ . (3.114)

All eigenvalues λ(s) of G̃(s) are hence contained within the Gershgorin circles with
center points G̃k,k(s) and radii Rk(s) = ∑l �=�� k

∣∣∣∣G̃l,k(s)
∣∣∣∣. This theorem is especially useful

when G̃(s) is a near-diagonal matrix, i.e. if the time-varying feedback loop contains a
dominant LTI component. In that case, it roughly holds that

λk(s) ≈ G̃k,k(s) (3.115)

whereby the radius Rk(s) of the corresponding Gershgorin circle provides a worst-case
upperbound for the approximation error. Gershgorin circles can therefore be used to
estimate how badly system stability is (potentially) deteriorated by the presence of
time-varying components in the feedback path.
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Rank-reduced approximations

Suppose that there exists a pair of finite-rank matrices U(s),V(s) ∈ C∞×M such that

G̃(s) ≈ U(s)V(s)T (3.116)

constitutes a valid approximation, i.e.
∥∥∥∥G̃(s)−U(s)V(s)T

∥∥∥∥ � 1. In that case, the
eigenvalues of the ∞-dimensional HTM G̃(s) that can have a magnitude larger than 1
are roughly equal to the eigenvalues of the finite-dimensional matrix

Greduced(s) = V(s)T U(s) . (3.117)

Here, Greduced(s) ∈ CM×M . Basically, this approach amounts to a subspace projection
method whereby U(s) spans the M-dimensional subspace containing the eigenvectors
associated with the largest eigenvalues of G̃(s).

Example (Downconversion with feedback): Consider again the downconversion
stage with (parasitic) feedback in Fig. 3.15. The closed-loop input-output behavior
is characterized by (3.83) with the open-loop gain HTM G̃(s) given by (3.84). Based
on the Gershgorin theorem, we find the magnitude of the eigenvalues λk(s) of G̃(s) to
be bounded by

|λk(s)| ≤ 1
2

max
k∈Z

∣∣∣∣H2HH (s+ jkω0)
(
Hf bH (s+ j(k−1)ω0)+Hf bH (s+ j(k +1)ω0)

)∣∣∣∣ .

(3.118)
The hatched region in Fig. 3.20(a) marks the region bounded by (3.118) for the filters
H2HH (s) and Hf bH (s) in Fig. 3.15 respectively a second-order lowpass filter and a first-order
highpass filter. As is observed, this region does not include −1+ j0. As a consequence,
it is guaranteed that the time-varying feedback path does not cause instabilities to occur.

More precise results are obtained using rank-reduced approximations. According to
the rank-one approximation (3.90)-(3.91), Greduced(s) = 0. Therefore, as long as the
rank-one approximation is valid, the feedback loop only has marginal impact on the
system’s dynamic behavior.

However, when the rank-one approximation starts to break down, e.g. due to a growing
bandwidth of H2HH (s), we need to increase the number of rows of G̃(s) that we take into
account. Using, for example, the rank-three approximation

G̃(s) ≈

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
...

...
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
...

...
...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

G̃[−1,1],· (s) (3.119)
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Figure 3.20: Estimating the position of the eigenvalues of G̃(s) using (a) the
Gershgorin theorem and (b) the eigenvalues obtained from a rank-reduced
approximation.

with G̃[−1,1],· (s) containing the rows −1, 0 and 1 of G̃(s), we find stability to be deter-
mined by the eigenvalues of

Greduced =

⎡
⎢
⎡
⎣⎢⎢ 0

H2HH (s− jω0)Hf bH (s)
2 0

H2HH (s)Hf bH (s− jω0)
2 0

H2HH (s)Hf bH (s+ jω0)
2

0
H2HH (s− jω0)Hf bH (s)

2 0

⎤
⎥
⎤
⎦⎥⎥ . (3.120)

These eigenvalues are given by

{
0,±1

2

√
H

√√
f bH (s)H2HH (s)

(
H2HH (s− jω0)Hf bH (s− jω0)+H2HH (s+ jω0)Hf bH (s+ jω0)

)}
.

(3.121)
Fig. 3.20(b) plots the non-zero eigenvalues in (3.121) for s = jω with ω ranging from
−ω0/2 to ω0/2. The eigenvalues turn out to be over an order of magnitude smaller than
the worst-case upperbound (3.118) predicted by the Gershgorin theorem. Observing
(3.121), it is seen that the eigenvalues can only be large in magnitude when the product
H2HH (s)Hf bH (s) remains large for frequencies up to ω0. Only then, the stability of the
time-varying feedback loop becomes an issue. �
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3.5.3 Noise analysis

The remainder of this discussion on LPTV system analysis using HTMs is devoted
to noise analysis. Just as LPTV system behavior transfers deterministic signal compo-
nents from one frequency band to another, so does it transfer random (stochastic) signal
components. A complex-valued stochastic process n(t) is characterized by a probabil-
ity density function (PDF) PnPP (s(t)). This PDF specifies the probability for n(t) to be
near a particular sample s(t). For a rigorous introduction to stochastic processes, see
[Mid87].

Given a particular system and a random input signal’s PDF, the task of finding the PDF
that characterizes the output signal is often a very difficult one. However, in many
instances, one is not interested in the entire stochastic characterization of n(t). Often,
first- and second-order stochastic behavior, i.e. the mean and autocorrelation function

mn(t) = E{n(t)} (3.122)

Rnn(t,τ) = E{n(t)n(t − τ)∗} (3.123)

contain all the information that is needed on n(t). Here, E{·} denotes the expected
value operator while n(t)∗ is the adjoint of n(t). In case of Gaussian stochastic processes,
the quantities (3.122)-(3.123) even fix the entire PDF [Jayn03, Mid87].

This section develops the formalism necessary to deal with noise injected in LPTV
systems. In doing so, it is mainly concerned with a second-order noise characterization
(mean and autocorrelation function). It will be seen that traditional stationary noise
models —and their power spectral densities (PSDs)— are no longer sufficient to char-
acterize the kind of noise produced by LPTV systems. An extended class of noise
processes is needed: cyclostationary noise processes.

The treatment that follows is to some extent similar to the one in [Royc98]. However, it
differs by allowing a non-unique characterization for cyclostationary noise processes.
These extra degrees of freedom can, for example, be used to simplify the problem
setup. Furthermore, we always assume all noise sources to be zero-mean, or

mn(t) = 0 .

Since a non zero-mean noise source can be modeled as the sum of a deterministic signal
and a zero-mean noise source, there is no loss in generality.

3.5.3.1 Cyclostationarity: does it matter for design practice?

Before introducing a whole set of new concepts for dealing with noise in LPTV sys-
tems, we pause for a moment and ask the question: is it really needed? What is the
problem with traditional noise analysis based on stationary noise models and their
power spectral density (PSD) representations? The answer lies in the fact that a sta-
tionary noise model assumes the noise content in different, non-overlapping frequency
bands to be uncorrelated.

Since LPTV systems cause up- or downconversions, they destroy stationarity by intro-
ducing cross-correlations between the noise content in different, non-overlapping fre-
quency bands. Consider, for example, the leaky upconversion mixer shown in Fig. 3.21.
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Figure 3.21: Any LPTV system involving up- or downconversion to different
frequency bands destroys the stationarity of a noise source. As shown in the
upper part of the figure, a “leaky” upconversion mixer transfers input noise
to both baseband and the carrier frequency, causing the output noise in these
frequency bands to be correlated. If noise components are correlated, simply
adding their PSDs, e.g. to model the result of a leaky downconversion, is
incorrect as it may lead to underestimating noise strength.

This mixer transfers input noise to both baseband and the carrier frequency. Clearly,
the noise components in these bands is correlated as they originate from a common
source. Hence, the resulting noise signal is no longer stationary.

Downconverting this signal using a second leaky mixer results in baseband output noise
that combines input noise components coming from both baseband and the carrier fre-
quency. As indicated in Fig. 3.21, these components are correlated. Therefore, it is no
longer allowed to characterize the output noise PSD by adding the PSDs of its consti-
tuting components. Such a procedure may lead to over-optimistic noise analysis in a
sense that the output noise strength is underestimated (by neglecting what can be seen
as stochastic positive interference). As always, it is not a healthy design practice to
underestimate potential trouble. It is therefore important to keep track of the cross-
correlations that exist between the noise components in the different (non-overlapping)
frequency bands.

In summary, the basic problem with stationary noise models lies in the fact that they
are unable to capture cross-correlations between the noise components in different
frequency bands. As illustrated by the example above, many common LPTV sys-
tems bring such cross-correlations about. Moreover, knowing the cross-correlations
is important since neglecting them may lead to the underestimation of the output noise
strength. Hence, we need a noise model that is able to capture cross-correlations be-
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tween noise components in different frequency bands. This is precisely what a cy-
clostationary noise model has to offer. However, before elaborating cyclostationary
processes in depth, we first give a brief review on traditional stationary noise theory as
it contains many of its results will be needed further on.

3.5.3.2 A brief review on stationary noise theory

Stationary noise processes [Mid87] are the type of stochastic processes most common
to designers. Mathematically, a zero-mean stochastic process n(t) is (wide-sense) sta-
tionary if its autocorrelation function does not depend on the time t, or

E{n(t)n(t − τ)∗} = Rnn(τ) . (3.124)

The way in which the behavior of the noise process at time t interrelates with that at
a past or future time instance t − τ, only depends on the time difference τ. As was
already explained, this comes down to the absence of cross-correlations between noise
components in different (non-overlapping) frequency bands. Many noise sources that
occur in practice are stationary, e.g. the ones associated with a transistor10. A special
case of stationary noise is white noise. For a zero-mean white noise process nw(t), it
holds that

E {nw(t)nw(t − τ)∗} = Nδ(τ) (3.125)

where δ(τ) is the Dirac delta function. This implies that there is no correlation what-
soever between samples of a white noise process taken at different instances in time.
Non-white noise processes are also said to be colored.

Stationarity turns out to be a most convenient property in dealing with a noise process
n(t). Frequency-domain manipulation becomes possible by introducing the noise process
power spectral density (PSD) function Snn( jω). This PSD function is the time-averaged
energy content in a narrow frequency band around ω, or

Snn( jω) = lim
T→∞

1
T

E

{∣∣∣∣∣∣∣∣∣∣∫ +T/2

−

∫∫
T/2

n(t)e− jωtdt

∣∣∣∣∣∣∣∣∣∣2
}

=
∫ +∞

−

∫∫
∞

Rnn(τ)e− jωτdτ . (3.126)

From the definition it is immediately clear that Snn( jω) is real and positive ∀ω ∈ R.
The lower equality follows from the Wiener-Khinchin theorem [Mid87]. Note that for
a white noise source Snn( jω) = N, ∀ω.

Use of the PSD function Snn( jω) makes it very easy to compute changes in noise
characteristics as noise passes through time-invariant systems, e.g. filters. Given a
stationary input noise process n(t) and the impulse response h(τ) of an LTI system,
then the PSD function of the filtered noise process

y(t) = H[n(t)] =
∫ ∞

0

∫∫
h(τ)n(t − τ)dτ (3.127)

10This is only approximately true for 1/ f noise. In [Kesh82], it is argued that 1/ f noise is time-varying
in nature but behaves in a time-invariant manner when observed over a sufficiently small window in time.
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equals
SyySS ( jω) = H( jω)Snn( jω)H( jω)∗ . (3.128)

Here, H(s) = L{h(t)}. By using (3.128), it is possible to show that any colored noise
source n(t) can be obtained by passing white noise through an appropriate causal LTI
filter.

Equation (3.128) is a special case of an important result that will be used later on. Let
us be given two noise sources n1(t), n2(t) with a stationary cross-correlation function

Rn1n2(τ) = E {n1(t)n2(t − τ)∗} . (3.129)

Furthermore, let us be given two time-invariant filters with impulse responses h1(τ)
and h2(τ). The cross-correlation function of the filtered processes

y1(t) =
∫ ∞

0

∫∫
h1(τ)n1(t − τ)dτ (3.130)

y2(t) =
∫ ∞

0

∫∫
h2(τ)n2(t − τ)dτ , (3.131)

the satisfies

F {Ry1y2(τ)} = SyS 1y2( jω) = H1( jω)SySS 1y1( jω)H2HH ( jω)∗ . (3.132)

Here Sn1n2( jω) = F {Rn1n2(τ)} while H1(s) and H2HH (s) respectively equal the Laplace
transforms of the impulse responses h1(t) and h2(t).

3.5.3.3 Cyclostationary noise

As observed from the above, stationarity makes it easy to perform noise computations.
Unfortunately, as was discussed above, LPTV system behavior destroys stationarity.
From a mathematical point of view, the autocorrelation function no longer solely de-
pends upon the time difference τ. This is readily seen by considering the elementary
mixing operation

y(t) = cos(ω0t)n(t) . (3.133)

With n(t) stationary and characterized by (3.124), the autocorrelation function of the
output process y(t) equals

Ryy(t,τ) = E{y(t)y(t − τ)∗} =
1
2

(cos(2t − τ)+ cos(τ))Rnn(τ) . (3.134)

This is a function of both τ and t. In characterizing noisy input-output behavior of
LPTV systems, we therefore need to extend stochastic processes beyond stationary
ones.

The direction in which to extend the class of relevant noise processes is suggested by
a result that was already obtained for stationary colored noise: any stationary colored
noise process can be obtained by passing a white noise signal through an appropriate
LTI filter. Such a filter is also called an LTI operator. Hence, the class of stationary
colored noise processes is generated by the algebra of LTI operators. Here, the word
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“algebra” simply denotes the fact that connecting two LTI operators in series or in
parallel again yields an LTI operator.

The result above suggests us to define a class of noise processes that is generated by
LPTV operators:

Definition (Cyclostationary noise): A noise process n(t) is called cyclostationary if
there exists an LPTV operator H[ · ] with kernel h(t,τ) such that

n(t) = H[nw(t)] =
∫ ∞

0

∫∫
h(t,τ)nw(τ)dτ (3.135)

where nw(t) is a white noise process. In words, cyclostationary noise is obtained by
passing white noise through an LPTV system.

Since the set of all LPTV systems makes up an operator algebra, LPTV system behav-
ior will, by definition, preserve cyclostationarity. Cyclostationary noise processes are
therefore associated with LPTV systems just as stationary noise processes are associ-
ated with LTI systems.

It should be noted that, traditionally, cyclostationarity is defined by means of the pe-
riodicity of the autocorrelation function Rnn(t,τ) with respect to t [Royc98, Strom77].
However, the definition above gives a better insight into the nature of cyclostation-
ary noise: it relates the structure of a noise process to that of a “generating” operator.
Furthermore, this definition is readily generalized: for each algebra of LTV operators,
there exists a corresponding class of noise processes.

3.5.3.4 Characterizing cyclostationary noise

Consistent with the ideas underlying the HTM framework, we choose to represent a
cyclostationary noise signal n(t) as a vector

n(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
n−1(t)
n0(t)
n1(t)

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ (3.136)

of stochastic equivalent baseband components. The overall noise process n(t) then
equals

n(t) =
[ · · · e− jω0t 1 e jω0t · · · ]×n(t) =

+∞

∑
k=−∞

e jkω0tnk(t) . (3.137)

This equality holds in a mean square sense. The processes nk(t) can be interpreted as
the noisy signal content in the k-th frequency band11. Up to second order, the vector

11As discussed in section 3.3.2, this concerns an interpretation and not a requirement. If, for example,
n0(t) is chosen to be a white noise process, then it contributes to signal content in all frequency bands.
Selecting the nk(t) to be largely constrained to baseband, however, eases interpreting results.
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n(t) of noise processes is completely characterized by the correlation matrix

E {n(t)n(t − τ)∗} = [E {nk(t)nl(t − τ)∗}] (3.138)

=
[
Rnknl (τ)

]
(3.139)

= Rnn(τ) . (3.140)

Note that the cross-correlation function Rnknl (τ) between any two baseband compo-
nents nk(t) and nl(t) is assumed to be stationary. The matrix Rnn(τ) is termed a har-
monic correlation matrix.

Question of course is whether, for an arbitrary cyclostationary noise signal n(t), it is
always possible to find a vector n(t) that satisfies both (3.137) and (3.140). A first part
of the answer lies in the fact that for a white noise process nw(t), finding such a vector
nw(t) is trivial. One could, for instance, simply select

nw,0(t) = nw(t) (3.141)

nw,k(t) = 0, ∀k �=�� 0 . (3.142)

A choice that is better in line with the interpretation of the nk(t) as equivalent baseband
components is given by

nw,k(t) =
∫ +∞

−

∫∫
∞

sin(ω0τ)
τ

e− jkω0(t−τ)nw(t − τ)dτ . (3.143)

In this case, all nw,k(t) are bandlimited within [−ω0/2,ω0/2] and uncorrelated. The
second part of the noise representation problem is solved in section 3.5.3.7. There,
it will be shown that LPTV input-output signal processing preserves the existence of
a vector representation that satisfies both (3.137) and (3.140). If such a vector exists
for the noise process at the input, it is straightforward to derive one that represents
the noise process at the output. If we combine both facts above with the definition
of cyclostationary noise processes, then it is readily proven that it is always possible
to represent a cyclostationary noise process by means of a vector n(t) —of stochastic
equivalent baseband components— that satisfies both (3.137) and (3.140).

For the stochastic characterization of the vector n(t), we rarely use harmonic correla-
tion matrix Rnn(τ) itself. Instead, it is more convenient to perform computations based
on

Snn( jω) = F {Rnn(τ)} . (3.144)

The matrix Snn( jω) is termed a harmonic power spectral density (HPSD) matrix. A
HPSD matrix contains all the information needed for the second-order, stochastic char-
acterization of a given cyclostationary noise process n(t).

3.5.3.5 On the non-uniqueness of a HPSD matrix

As presented in this treatment, a HPSD matrix is not unique. Different sets of baseband
components {nk(t)} can be chosen to represent the same overall process n(t). It is only
required that (3.137) and (3.140) are satisfied. As was discussed in section 3.3.2, this
non-uniqueness is inherent to the degrees of freedom available in the linear periodically
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modulated signal model (3.137). We do not fix these degrees of freedom in advance. In
some cases, especially for symbolic computations (pencil and paper analysis), a proper
choice may help to simplify the problem setup.

However, within a CAD framework, non-uniqueness hampers automating procedures.
In this case, uniqueness can be enforced by requiring all stochastic baseband compo-
nents nk(t) to be strictly bandlimited to [−ω0/2,ω0/2] (note that this is imposed im-
plicitly in [Royc98]). As an advantage, it then becomes sufficient to compute Snn( jω)
for ω ∈ [−ω0/2,ω0/2]; outside this interval, Snn( jω) is zero (or, as in [Royc98], it
repeats itself in the sense of (3.53)). Furthermore, bandlimiting the nk(t) gives a clear-
cut interpretation to the elements of Snn( jω): the diagonal element Snknk( jω) captures
the autocorrelation of the noise content in the k-th frequency band; the off-diagonal
element Snknl ( jω) (for k �=�� l) captures the cross-correlation between the signal content
in two different (non-overlapping) frequency bands.

3.5.3.6 Properties of a HPSD matrix

Although the choice of the stochastic baseband components nk(t) is to some extent
arbitrary, different HPSD matrices Snn( jω) that characterize the same cyclostationary
noise process n(t) do have a number of properties in common.

Semi-positive definiteness

A first property of a HPSD matrix Snn( jω) is its semi-positive definiteness for any
ω ∈R. This follows directly from the properties of PSDs of stationary noise sources.
Given a complex-valued vector x =

[ · · · x−1 x0 x1 · · · ]T
, it is easily verified

that the process
nx(t) = x∗n(t) (3.145)

is stationary with its PSD satisfying

SxxS ( jω) = x∗Snn( jω)x ≥ 0, ∀ω . (3.146)

The latter inequality follows from the properties of stationary noise processes. Since x
is arbitrary, (3.146) implies that the HPSD matrix Snn( jω) is a semi-positive definite
matrix for any ω ∈R.

Structural constraints

As was already mentioned, it is possible to characterize the same overall cyclostation-
ary noise process n(t) by means of different HPSD matrices Snn( jω). This corresponds
to different choices for the baseband components nk(t). However, all HPSD matrices
associated with a same noise process n(t) will have a number of quantities in common.

These quantities are revealed by expressing the autocorrelation function Rnn(t,τ) of the
overall cyclostationary process n(t) in terms of the elements of a possible HPSD matrix
Snn( jω). Using (3.137) and some algebra, we obtain

Rnn(t,τ) = E{n(t)n(t − τ)∗}
=

∞

∑
k=−∞

Rnn,k(τ)e jkω0t (3.147)
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with coefficients Rnn,k(τ) that equal

Rnn,k(τ) =
+∞

∑
l=−∞

Rnk+lnl (τ)e
jlω0τ . (3.148)

Here, the Rnk+lnl (τ) are the elements of the harmonic correlation matrix Rnn(τ) defined
in (3.139). The PSDs associated with the Rnn,k(τ) are then given by

Snn,k( jω) = F {
Rnn,k(τ)

}
=

+∞

∑
l=−∞

Snk+l nl ( jω− jlω0) . (3.149)

Observing (3.147), it is seen that Rnn(t,τ) is periodic in t since it can be expanded in
a Fourier series. Furthermore, (3.149) shows us how to interpret the PSD Snn,k( jω)
associated with the k-th Fourier coefficient Rnn,k(τ): the amount of energy in Snn,k( jω)
in the band around lω0 is a measure for the strength of the cross-correlation between
the noise components in the frequency bands around respectively lω0 and (k + l)ω0.

Since the quantities Snn,k( jω) are unique, the relation (3.149) represents a number of
structural constraints that must be satisfied by all different HPSD characterizations of
a same cyclostationary noise process n(t). Whatever characterization is used, the sum
on the right-hand side of (3.149) does not vary from one characterization to another.

As a final note, we mention that (3.149) allows us to construct a uniquely determined
HPSD matrix. If the baseband components nk(t) are constrained to to [−ω0/2,ω0/2],
then the same holds for all corresponding HPSD matrix elements Snknl ( jω). Using
(3.149), we then find that

Snknl ( jω) = Snn,k−l( jω+ jlω0) , (3.150)

for ω ∈ [−ω0/2,ω0/2] while equal to zero elsewhere. Hence, imposing bandwidth
restrictions on the nk(t) hence results in a uniquely determined HPSD matrix.

3.5.3.7 Noise computations using HTMs and HPSD matrices

Next, we address the characterization for the output y(t) of an LPTV system to which a
cyclostationary input signal n(t) is applied. Hereby, we keep in mind that LPTV oper-
ators preserve cyclostationarity. Hence, we look for a HPSD matrix that characterizes

y(t) =
∫ ∞

0

∫∫
h(t,τ)n(t − τ) . (3.151)

Here, h(t,τ) is an LPTV system kernel.

With H̃(s) the HTM associated with h(t,τ), it follows from (3.137) and the HTM-based
input-output relation (3.43) that

y(t) =
+∞

∑
l=−∞

yl(t)e jlω0t . (3.152)

Here,

yl(t) =
+∞

∑
k=−∞

∫ ∞

0

∫∫
h̃l,k(τ)nk(t − τ)dτ (3.153)
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with h̃l,k(τ) = L−1{H̃lHH ,k(s)}. Using (3.132) it is then readily obtained that the matrix

Syy( jω) = H̃( jω)Snn( jω)H̃( jω)∗ (3.154)

represents a valid HPSD matrix that characterizes the correlations between the base-
band components yl(t). Note that all correlations between the different components
yl(t) remain stationary. The relation (3.154) is a straightforward extension of (3.128).
Here, the former captures the impact of an LPTV system on a cyclostationary noise
process while the latter models the impact of an LTI system on a stationary noise
processes.

Example (Mixing noise): Consider the elementary downconversion stage in Fig. 3.13.
The elements of the HTM corresponding to this stage are determined by (3.74). As an
input signal, we apply

u(t) = cos(ω0t)n(t) (3.155)

where n(t) is a stationary noise process with its PSD Snn( jω) largely constrained to
[−ω0/2,ω0,2]. A possible HPSD matrix for the cyclostationary input process u(t) is
given by

Suu( jω) =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
...

...
· · · 1

4 Snn( jω) 0 1
4 Snn( jω) · · ·

· · · 0 0 0 · · ·
· · · 1

4 Snn( jω) 0 1
4 Snn( jω) · · ·

...
...

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ . (3.156)

Note the presence of the off-diagonal elements. This denotes that the noise components
in different frequency bands are correlated. For the baseband component y0(t) of the
noise at the output of the downconversion stage, we find, by means of (3.154) and
(3.74), that

SySS 0y0( jω) =
1

16
|H1( jω− jω0)+H1( jω+ jω0)|2 |H2HH ( jω)|2 Snn( jω)

≈ 1
4

Re{H1( jω0)}2 |H2HH ( jω)|2 Snn( jω) . (3.157)

The latter approximation holds for ω � ω0. When neglecting the cross-correlations
between the noise components in the different input frequency bands, i.e. when zeroing
the off-diagonal elements in (3.156), we obtain

[Syy( jω)]0,0 =
1

16

(
|H1( jω− jω0)|2 + |H1( jω− jω0)|2

)
|H2HH ( jω)|2 Snn( jω)

≈ 1
8
|H1( jω0)|2 |H2HH ( jω)|2 Snn( jω) . (3.158)

For a typical design, (3.158) predicts a noise strength that is a factor two below the
correct solution in (3.157). Hence, a stationary noise approximation may be over opti-
mistic in predicting output noise levels. �
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This concludes our treatment on LPTV system analysis using HTMs. The theoreti-
cal results above demonstrate that use of HTMs allows us to extend traditional LTI
frequency-domain techniques to the realm of LPTV system analysis. As will be illus-
trated by the practical applications in the next chapter, this is of great use in system and
circuit design practice.

3.6 Conclusions and directions for further research

By considering the signal content stored on different carrier waves, i.e. in different
frequency bands, as independent input signals, a SISO LPTV system can be described
as a limiting case of a MIMO LTI system. As a result, the behavior of an LPTV sys-
tem can be captured by a matrix of transfer functions, called a HTM. Techniques for
multi-variable LTI system analysis and design can therefore be applied to analyze the
behavior of LPTV systems. These techniques are made efficient by exploiting both the
structure inherent to HTMs and the properties of HTMs as they occur in practical ap-
plications. This results in a consistent framework for handling LPTV system analysis.

Furthermore, the theory has been presented in a manner that is straightforward gen-
eralize towards other classes of LTV systems. These classes are then associated with
sets of carrier waves other than the harmonic functions

{
ψmψψ (t) = e jmω0t

}
used in this

chapter. Suggested directions for further research involve, for instance, linear quasi-
periodic time-varying system analysis and the use of principal component analysis for
the autodetection of relevant sets of carrier waves. The former is useful to analyze the
behavior of heterodyne transceiver stages, while the latter can, for example, be applied
to capture the noise behavior of nonlinear systems.



Chapter 4

Applications of LPTV system analysis using
harmonic transfer matrices

Whoever in the pursuit of science, seeks after immediate practical utility may
rest assured that he seeks in vain. —Hermann von Helmholtz

H
armonic transfer matrices (HTM) constitute a natural framework for frequency-
domain analysis of linear periodically time-varying (LPTV) system behavior.

They directly describe how an LPTV system transfers signal content from one fre-
quency band to another. Furthermore, HTMs not only satisfy from a theoretical point of
view, they also have numerous practical applications. This chapter illustrates the prac-
tical use of HTMs for analyzing phase-locked loop (PLL) and mixer behavior. Hereby,
special focus is given to symbolic results and techniques to obtain them. These sym-
bolic results are most useful for guiding design decisions. It demonstrates the power
of HTM-based analysis as a practical means to capture a circuit’s time-varying small-
signal behavior.

After a brief reminder on HTM basics in section 4.1, section 4.2 addresses frequency-
domain modeling and analysis of PLL small-signal behavior, including the time-varying
aspects. Using the HTM formalism, the well-known continuous-time, linear time-
invariant (LTI) approximation is extended to take the impact of a PLL’s time-varying
behavior into account. The main source of this time-varying behavior lies in the nature
of the sampling/mixing phase-frequency detector (PFD). Especially for PLLs with a
fast feedback loop, this time-varying behavior has severe impact on, for example, loop
stability. Hence, it cannot be neglected. Contrary to traditional LTI analysis, HTM-
based analysis is able to predict and quantify these effects.

As holds for all pencil and paper analysis, HTM-based computations, especially sym-
bolic ones, can be tedious and error prone. Section 4.3 therefore introduces an al-
gorithm for automated HTM-based symbolic analysis of LPTV system behavior. It
demonstrates that traditional techniques for automated symbolic analysis of LTI sys-
tems [Fern98, Gie91, Lin91] can be extended to handle LPTV behavior as well. The
algorithm is applied to a number of different downconversion stages.

4.1 HTMs in a nutshell

The previous chapter elaborated the HTM framework in full mathematical detail. This
may have left the impression that it requires an enormous amount of knowledge to

79
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apply HTMs in practice. This is not the case! Anyone mastering frequency-domain
LTI system analysis can, with limited effort, get sufficient grasp on HTMs to put them
to use in practice. This section summarizes the basic knowledge that is needed to get
started. Of course, the better one masters the complete theory on HTMs, the easier it
becomes to handle more complex systems. Note that this section can be skipped by
readers who feel sufficiently familiar with basic HTM theory.

A HTM-based representation of LPTV system behavior relies on the observation that
LPTV systems transfer signal content from one frequency band to another. In a first
step, this requires the formalization of the concept of “signal content stored in a particu-
lar frequency band”. This is accomplished by means of a linear periodically modulated
signal model

u(t) =
+∞

∑
m=−∞

um(t)e jmω0t . (4.1)

Here, the um(t) are termed envelopes or equivalent baseband components. They model
the signal content of u(t) in the frequency band around mω0. When dealing with LPTV
system behavior, it turns out to be more efficient to represent a signal u(t) using the
vector of spectra

U(s) =
[ · · · U−UU 2(s) U−UU 1(s) U0UU (s) U1(s) U2UU (s) · · · ]T

(4.2)

rather than the single scalar spectrum U(s) = L{u(t)}. Here, UmUU (s) = L{um(t)} is the
Laplace transform of the equivalent baseband component um(t)1.

Let us be given an input signal u(t) and an LPTV system

y(t) = H[u(t)] =
∫ ∞

0

∫∫
h(t,τ)u(t − τ)dτ . (4.3)

Using the signal representation (4.2) for both u(t) and y(t), it can then be shown that
the operation of this LPTV system is described by frequency-domain matrix-vector
multiplication, or

Y(s) = H̃(s)U(s) . (4.4)

The matrix H̃(s) is called the harmonic transfer matrix (HTM) [Moll00, Vana02c,
Were91a] corresponding to the LPTV system H[ · ]. When truncated and evaluated
at s = jω, it corresponds to the harmonic conversion matrix introduced in [Maas88].

The meaning of the HTM H̃(s) and its elements H̃nHH ,m( jω) becomes clear when we
consider a single row (with index n) in (4.4), i.e.

YnYY (s) =
+∞

∑
m=−∞

H̃nHH ,m(s)UmUU (s) . (4.5)

The output signal content in the frequency band around nω0 is seen to be a linear
combination of contributions coming from all possible input frequency bands. The

1It often makes good sense to require the equivalent baseband spectra UmUU (s) to be bandlimited to
[−ω0/2,ω0/2]. However, as was discussed in section 3.3.2 in the previous chapter, this is not strictly neces-
sary.
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Figure 4.1: The HTM elements H̃1,0(s), H̃1,1(s) and H̃1,2(s) characterize the
transfer of signal content from different input frequency bands to the output
frequency band around the carrier frequency.

HTM element H̃nHH ,m(s) hereby characterizes the transfer of the signal content from the
input signal frequency band around mω0 to the output signal frequency band around
nω0. In short, the HTM H̃(s) characterizes how information moves from one frequency
band to another. This process is illustrated in Fig. 4.1.

Besides offering a compact frequency-domain characterization of LPTV system behav-
ior, HTMs allow efficient manipulation of LPTV systems and straightforward compu-
tation of the overall input-output behavior, given a system’s building-block HTMs. For
example, the HTMs corresponding to the parallel connection y = H1[u]+H2HH [u] and the
series connection y = H2HH [H1[u]] are respectively given by

H̃+(s) = H̃1(s)+ H̃2(s) (4.6)

H̃×(s) = H̃2(s)H̃1(s) . (4.7)

Note the resemblance with results from LTI system analysis. Furthermore, HTMs cor-
responding to basic building-block behavior are straightforward to construct. An LTI
system with (scalar) transfer function H(s) corresponds to a diagonal HTM whose el-
ements are given by {

H̃nHH ,m(s) = H(s+ jmω0) m = n
H̃nHH ,m(s) = 0 m �=�� n

. (4.8)

The elements of a HTM corresponding to a memoryless multiplication y(t) = p(t)u(t),
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with p(t) = ∑+∞
k=−∞ PkPP e jkω0(t), are specified by

H̃nHH ,m(s) = PnPP −m . (4.9)

Using (4.6)-(4.9), HTMs corresponding to more complex systems can be derived from
the system’s topology and the HTMs of its underlying building blocks.

In summary, HTMs allow us to handle LPTV system behavior in a way that largely
resembles LTI system analysis. Hereby, the traditional scalar transfer function is re-
placed by a matrix of transfer functions: the harmonic transfer matrix. Understanding
this basic notion is sufficient to make a beginning with practical HTM-based analysis
of LPTV system behavior as occurring in PLLs and mixers.

4.2 Phase-Locked Loop analysis

Phase-locked loops (PLLs) are used in both analog and digital systems for generating
signals that track the phase of a given input signal. They can be used to reduce oscillator
phase noise by locking it to a high-quality reference, to synthesize frequencies which
are multiples of the input frequency or, in digital applications, to buffer and deskew
clock signals. A rigorous introduction to PLLs and their applications can be found in
[Gard79]. In a lot of applications, PLLs are among those blocks whose performance is
crucial in meeting system-level specifications. Hence, adequate and correct analysis of
their behavior is of great importance.

Traditionally, PLLs are handled as LTI feedback loops [Gard79]. However, the behav-
ior of many PLL building blocks exhibits time-varying components. In an LTI model,
these components are simply neglected. However, as the PLL feedback loop grows
faster, time-varying behavior becomes important as it causes, for example, stability
degradation and noise folding. Analyzing these phenomena therefore requires theory
and methods to capture a PLL’s time-varying behavior.

This chapter analyzes PLL time-varying behavior using HTM-based methods. By
means HTMs, we are able to predict and quantify the aspects of a PLL’s behavior
that are due to the time-varying nature of its building blocks. The analysis establishes
rigorous mathematical underpinnings for PLL small-signal analysis. In doing so, it
demarcates the region of validity of traditional PLL models build on LTI theory.

The discussion on time-varying PLL behavior is organized as follows. Section 4.2.1
introduces a PLL’s basic architecture together with a short discussion on its building
blocks. Next, section 4.2.2 reviews prior art on modeling and analysis of PLLs. In
section 4.2.3, we provide a brief discussion on the construction of signal models ap-
propriate for analyzing PLL behavior. Section 4.2.4 continues with models for the
behavior of the PLL building blocks. These models are expressed in terms of HTMs.
In section 4.2.5, the building block models are connected in order to obtain the input-
output HTM of the overall PLL. Sections 4.2.6 and 4.2.7 show practical results by
applying the method to PLLs implemented respectively using a sampling and a mixing
PFD. Finally, in section 4.2.8 we come to the conclusions.
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Figure 4.2: Typical PLL architecture consisting of a phase-frequency detec-
tor (PFD), a loop filter and a voltage-controlled oscillator (VCO) – frequency
divider combination. In the architecture above, the PFD is implemented dig-
itally, driving a charge pump.

4.2.1 PLL architectures and PLL building blocks

Fig. 4.2 illustrates a typical PLL architecture. It consists of a phase-frequency detec-
tor (PFD), a loop filter HLFH (s) and a voltage-controlled oscillator (VCO) – frequency
divider combination. The PFD measures the phase difference between the input sig-
nal that drives the PLL and the frequency-divided VCO signal. Its output is passed
through the loop filter. This filtered error signal is then used to steer the VCO’s oscil-
lation frequency. Due to the correcting actions of the PLL feedback loop, the phase
(and therefore also the frequency) of the frequency-divided VCO signal tracks that of
the input2. This can be used for frequency synthesis, VCO phase noise suppression or
frequency/phase modulation.

If the input signal is periodic and if the PLL is stable, then there exists a periodic large-
signal operating point. As outlined in section 3.1.3 of the previous chapter, linearizing
the PLL’s behavior in the neighborhood of this operating point results in an LPTV
small-signal model. So, in analyzing PLL small-signal behavior, we are essentially
dealing with a time-varying system. Especially for PLLs with a fast feedback loop, this
time-varying behavior has a severe impact on, for instance, loop stability and cannot
be neglected.

The building block that contributes the most to a PLL’s time-varying nature is the PFD.
because of their superior acquisition of phase-lock, one nowadays most commonly uses
digital PFDs that steer a charge-pump [Lee98]. These PFDs measure the phase error
as the distance between the zero-crossings of the reference signal and the (frequency-
divided) VCO signal. Hence, they only compute the phase error once per period of
the reference signal, i.e. they sample the phase error. For this reason, we call them

2For this to hold, the frequency of the input signal must be within a sufficiently small range (the capture
range) of that of the divided free-running VCO signal.
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Figure 4.3: Continous-time linear time-invariant PLL model. This model
neglects all time-varying behavior. Its validity is limited to slow feedback
loops.

sampling PFDs. A second PFD implementation builds on the multiplication of the
frequency-divided VCO signal and the reference signal by means of a mixer . The
phase error is then computed as the DC component of the mixing product. This type
of PFD is called a mixing (or multiplying) PFD and is currently still often used in
microwave applications.

4.2.2 Prior art

In an attempt to capture a PLL’s behavior, different models have been proposed in the
past. The one best known from textbook analyses is the continuous-time linear time-
invariant (CT-LTI) model [Cran98, Gard79, Lee98]. For PLLs with a sampling PFD,
a discrete-time linear time-invariant (DT-LTI) model has been developed [Gard80,
Hein88]. Other existing techniques for analyzing PLL behavior are simulation-based
[Perr02].

4.2.2.1 Continuous-time, linear time-invariant model

Classical textbook treatments typically capture a PLL’s small-signal behavior using CT-
LTI feedback theory [Gard79, Lee98]. Analysis builds on the loop model illustrated in
Fig. 4.3. In the frequency domain, input-output behavior is governed by the relation

HPLLH (s) =
θ(s)

θin(s)
= N

G(s)
1+G(s)

. (4.10)

Here,

G(s) =
1
N

HLFHH (s)
KVCOKK

s
(4.11)

is the PLL’s open-loop gain. The quantities θin and θ respectively represent the phase of
the input and the VCO signal. HLFH (s) is the loop filter’s transfer function. Furthermore,
the VCO behavior is modeled by means of an integrator. This stems from

θ(t) =
∫ t

0

∫∫
ωVCO(τ)dτ =

∫ t

0

∫∫
KVCOKK vcontrol(τ)dτ (4.12)
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Figure 4.4: PLL implemented using a sampling PFD. Here, the PFD samples
the instantaneous phase error once (or twice) per period of the input signal.
Sampling is modeled as a multiplication of the phase error with a train of
Dirac impulses.

where ωVCO(τ) is the instantaneous oscillation frequency of the VCO. This frequency
is assumed to be proportional to the control voltage that steers the VCO.

As long as the models in Fig. 4.3 are valid, PLL design amounts to the design of a
CT-LTI feedback loop. This problem is handled using techniques for traditional time-
invariant feedback theory [Fran94]. However, as will soon be demonstrated, this CT-
LTI PLL model only works fine as long as the unity-gain frequency of the open-loop
gain G(s) is well below the frequency of the input signal. If this condition does not
hold, the CT-LTI model runs into trouble as the time-varying aspects of the building
block behavior become important. Especially for PLLs with a fast feedback loop and
a sampling PFD, the impact of the time-varying behavior on the system performance
can become quite dramatic.

A second problem involving the CT-LTI PLL model lies in a lack of clear theoretical
foundations. Contrary to true LTI systems, like filters, the CT-LTI PLL model can-
not be derived formally as a small-signal approximation in the neighborhood of a DC
operating point. As noted above, the operating point of a PLL is a periodically time-
varying one. This rises questions as to how to determine when we can safely assume
the CT-LTI model to be correct.

4.2.2.2 Discrete-time, linear time-invariant model

It is already known for some time that PLLs implemented using sampling-PFDs, e.g.
based on digital logic and a charge pump, exhibit discrete-time behavior [Gard80,
Hein88]. The instantaneous phase error is sampled once (or twice) per period of the ref-
erence signal. Sampling is triggered by the zero-crossings of the input signal. Fig. 4.4
illustrates the functional model that serves as a starting point for analysis. Sampling is
modeled as a multiplication of the phase error with a train of Dirac impulses.
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A number of authors [Gard80, Hein88] have suggested to treat these PLL implementa-
tions as discrete-time systems. To do so, they restrict the points in time for which they
computate the PLL signal values to the sampling instances. These DT-LTI methods es-
sentially amount to a lifting technique [Bam92]. They reveal constraints on the design
of a PLL’s open-loop characteristic that cannot be derived using a CT-LTI approxima-
tion.

However, discrete-time (z-domain) models [Gard80, Hein88] do not fully recognize
the mixed continuous-time/discrete-time nature of a PLL. Moreover, these methods
are not very well suited as a framework for symbolic computations, at least not for
arbitrary loop characteristics. This limits their help in gaining understanding and in
making decisions on design parameters. Finally, this discrete-time approach does not
allow a unified treatment of PLL behavior that, amongst others, easily encompasses all
possible PFD implementations.

4.2.2.3 Numerical simulation of PLLs

When the previous (CT-LTI and DT-LTI) approximations fail, it is of course always
possible to analyze a PLL’s behavior by means of numerical simulation. This can
either be done using a general-purpose simulation algorithm (SPICE or a VHDL-AMS
simulator) or using dedicated methods [Perr02]. Note that use of dedicated algorithms
can help us to reduce simulation times from hours to minutes.

The advantage of numerical simulations lies in the inherent accuracy of the results. By
construction, simulations capture time-varying behavior and even nonlinear effects3.
The disadvantage is that numerical simulations require (sensible) numerical values for
all design parameters. Somehow, a designer must come up with these values in ad-
vance. Hence, numerical simulation algorithms are mainly useful in a verification stage
or when finetuning a design. However, for the initial stages of a design process, one
(also) desires methods that allow us to express input-output relations in a symbolic
manner.

4.2.2.4 Contributions of this work

This work presents a method for constructing s-domain small-signal PLL models that
capture the time-varying aspects of a PLL’s behavior. The method is applicable to arbi-
trary types of PLL architectures, implemented using either a sampling- or mixing-type
PFD. The models are stated in terms of the HTM formalism. Hence, it is a frequency-
domain approach, extending ideas and intuitions on LTI systems to include a PLL’s
time-varying behavior. This method can be used to obtain both numerical results and
symbolic expressions. Furthermore, it is shown that the traditional CT-LTI model is ob-
tained from the more complete time-varying one through rank reduction of the open-
loop gain HTM. This establishes solid mathematical underpinnings for the CT-LTI
model with its shortcomings clearly identified. Finally, it is outlined how a HTM-
based analysis unifies the derivation of both continuous-time and discrete-time PLL
models. The theory is illustrated by means of several examples.

3This of course when the building block models are sufficiently accurate.
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Figure 4.5: (a) The phase θ0 associated with a zero-crossing of s(t) is the
time to some zero-crossing of some the reference signal sre f (t). Likewise,
the phase θ1 is defined via the events whereby s(t) and sre f (t) cross the level
1/2. (b) When s(t) and sre f (t) are not entirely similar, it only makes sense to
define phases that are, for example, associated with zero-crossings.

4.2.3 Signal phases and phase-modulated signal models

The fundamental task of a PLL is to align the phase of the (frequency-divided) VCO
to that of the input signal. In order to elaborate mathematical models for these type
of systems, we therefore first need a sound grasp on the concept of the phase of an
oscillating signal. This then brings us to phase-modulated signal models and their use
in describing PLL small-signal behavior.

4.2.3.1 Signal phase

By nature, a phase, or phase difference, is not associated with a continuous signal as
a whole, but with discrete events generated by those signals. Such an event could, for
example, be a zero-crossing. Defining the phase of an event then goes as follows:

Definition (phase): The phase θ of an event generated by a signal s(t) is the time to
the occurrence of a reference event generated by a reference signal sre f (t). This time
can be both positive and negative valued.

Fig. 4.5(a) illustrates the definition above for s(t) and sre f (t) both being sine waves.
The events generated by s(t) and sre f (t) correspond to the signals crossing a certain
level. For example, θ0 is the difference in time between a zero-crossing of s(t) and
a zero-crossing of sre f (t). Likewise, θ1 is the phase associated with s(t) and sre f (t)
crossing the signal level 1/2. Fig. 4.5(b) illustrates that, when sre f (t) and s(t) are not
entirely similar, e.g. when s(t) is a sine wave and sre f (t) is a square wave, it only
makes sense to define phases associated with, for example, zero-crossings. Observing
the figure, it is seen to be senseless to define a phase associated with the crossing of the
signal level 1/2. As a final note, we mention it to be possible to associate a particular
phase value θ with an absolute instance t of time. For example, in Fig. 4.5(a), the phase
value θ0 can be associated with t0, the time at which sre f (t) crosses zero and generates
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the reference event. This unambiguously defines the concept of a phase θ(t) that varies
with time.

4.2.3.2 Phase-modulated signal models

The type of signals s(t) that appear in dealing with PLL small-signal behavior can
best be described as oscillations whose phase varies with respect to some large-signal
steady-state operating point. Hence, in modeling the small-signal behavior, we first
need to specify the operating point (or reference) signals sre f (t) with respect to which
small-signal phases are defined. Once sre f (t) is fixed, we assume that s(t) can be
written as

s(t) ≈ sre f (t +θ(t)) . (4.13)

The right-hand side of (4.13) constitutes a phase-modulated signal model. Here, the
process θ(t) is introduced to capture all kinds of small-signal phase variations. Ob-
serving (4.13), it is readily appreciated that, instead of directly computing s(t), we can
equally well compute θ(t) and use the signal model (4.13) to retrieve s(t) afterwards.
This is one of the key ideas underlying the construction of PLL small-signal models.

Phase-modulated signals occur at three positions in the PLL architecture depicted in
Fig. 4.2. There is the input signal XinXX (t), the oscillation XvcoXX (t) at the output of the
VCO and the oscillation X1/N(t) at the output of the frequency divider. Typically, the
input signal is deliberatly generated to fit the phase-modulated signal model (4.13). In
order for the other two signals to fit (4.13), we need to assume that the PLL as a whole
settles much, i.e. an order of magnitude, slower than the free-running (frequency-
divided) VCO. This condition is mostly satisfied. If not, the poles induced by the
settling behavior of the (frequency-divided) VCO tend to jeopardize the PLL’s stability.

To describe the phase-modulated signals mentioned above, we first need to determine
the reference signals with respect to which their phases will be defined. For the input
signal, we set

XinXX (t) = Sin (t +θin(t)) . (4.14)

Here, Sin(t) is the periodic reference with respect to which the input phase θin(t) is
defined. Typically, it is a sinusoid or a square wave.

Selecting the references Svco(t) and S1/N(t) that are used to measure the phase changes
of the VCO’s output and of the output of the frequency divider is a little bit more
complicated. One possible choice are the PLL’s steady-state waveforms that occur
when the (unmodulated) signal Sin(t) is applied to the input. The advantage of such
a choice lies in some nice structural properties characterizing the PLL’s input-output
HTM. The disadvantage lies in the fact that it complicates modeling the VCO behavior.
A more common choice for Svco(t) (S1/N(t)) involves the steady-state output of the
VCO (frequency divider) with the VCO input being driven by a control voltage with
constant value. This value is hereby chosen to equal the DC component of the PLL’s
effective steady-state control voltage. This ensures that the frequency-divided VCO
reference signal S1/N(t) oscillates at the same frequency as Sin(t). Fig. 4.6 shows a
setup that can be used to determine the reference waveforms Svco(t) and S1/N(t).
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Figure 4.6: Setup for determining the reference waveforms Svco(t) and
S1/N(t). These waveforms are chosen to equal the steady-state output of
the VCO (frequency divider) with the VCO input being driven by a control
voltage with constant value. This value is hereby chosen to equal the DC
component of the PLL’s effective periodic steady-state control voltage. This
ensures that S1/N(t) oscillates at the same frequency as Sin(t).

With respect to the above reference waveforms, the actual VCO and frequency-divided
VCO signals are described as

XvcoXX (t) = Svco (t +θop(t)+θ(t)) (4.15)

X1/N(t) = S1/N
(
t +θop,1/N(t)+θ1/N(t)

)
. (4.16)

Here, θ(t) and θ1/N(t) are small-signal phase variations that arise in response to small-
signal phase variations θin(t) at the input. Furthermore, θop(t) and θop,1/N(t) are pe-
riodic operating point phase variations due to periodic variations in the VCO’s control
voltage when the PLL is operating in steady state (i.e. θin(t) = 0). Although these
operating-point phase changes are typically small, they can be of importance in small-
signal computations. This especially holds for PLLs based on mixing-type PFDs.

By now, the reader is probably wondering what’s so important about these signal mod-
els to spend this much time on their construction. The reason for this lies in the fact
that for some types of PLLs, especially those using a mixing PFD, correct signal mod-
els are of utmost importance in obtaining valid results. Being sloppy in constructing
the signal models may give rise to non-physical behavior and results that disagree with
numerical simulations and measurements.

Example (Determining signal models): Fig. 4.7 shows a PLL with a mixing PFD and
sinusoidal input and output signals. For this setup, the open-loop gain of the associated
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Figure 4.7: PLL architecture with mixing-type PFD and sinusoidal input
and output oscillations. Note that the oscillation frequency is normalized to
2π f0ff = ω0 = 1.

CT-LTI model equals

G(s) =
KVCOKK

s
HLFH (s) (4.17)

with HLFH (s) the loop-filter characteristic. The closed-loop PLL transfer then equals

H(s) =
G(s)

1+G(s)
. (4.18)

As far as the reference waveforms are concerned, it is clear that for a constant (and
zero) VCO control voltage

Svco(t) = cos(t) . (4.19)

The VCO’s steady-state signal will, however, slightly deviate from this perfect cosine.
This is because of small operating-point phase variations. These phase variations are
due to the fact that the mixer’s (large-signal) steady-state output approximately equals

YPFDYY (t) ≈ sin(t)cos(t) =
1
2

sin(2t) . (4.20)

Hence, the VCO’s control voltage, and therefore the VCO’s steady-state output phase,
contains higher-order harmonics. It can be shown that, up to first order,

θop(t) ≈ Re

{
H(2 j)

j
e j2t

}
. (4.21)

According to (4.15), the modulated VCO signal can then be described as

XvcoXX (t) ≈ cos

(
t +Re

{
H(2 j)

j
e j2t

}
+θ(t)

)
. (4.22)

Again, for certain types of PLL architectures, the operating-point phase variation θop(t)
cannot be neglected during further computations. �

Having dicussed PLL signal modeling in depth, we are ready to construct HTM-based
models that capture the time-varying behavior of each of the PLL building blocks.
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4.2.4 HTM-based PLL building block models

In computing a PLL’s overall input-output HTM, we first need to determine the HTMs
corresponding to the PLL building blocks shown in Fig. 4.2. The next couple of sec-
tions respectively describe PFD, loop filter, VCO and frequency divider small-signal
models together with the HTMs that accompany them. Note that in all the examples
that follow, the PLL equations are assumed to be normalized such that the input oscil-
lation frequency 2π f0ff = ω0 = 14.

4.2.4.1 Phase-frequency detector (PFD)

In a first step, we discuss modeling the PFD small-signal behavior. As a reminder, the
PFD measures the phase error between the input and the frequency-divided VCO sig-
nal. It turns out that, often, this PFD is the main responsible for a PLL’s time-varying
behavior. Two common PFD implementations are based on mixing and sampling
[Lee98]. Mixing-PFDs operate by multiplying the input signal with the frequency-
divided VCO signal. Sampling-PFDs produce a sequence of pulses the width of which
equals the instantaneous phase error. In what follows, we derive HTMs for both types
of PFDs.

Mixing PFDs: A mixing PFD, as illustrated in Fig 4.8, multiplies the output of
the frequency divider X1/N(t) = S1/N(t + θop,1/N(t) + θ1/N(t)) with the input signal
XinXX (t) = Sin(+θin(t)). In what follows, we assume the mixing operation to be ideal.
Using, for example, the algorithm later on outlined in section 4.3, it would also be pos-
sible to derive models for more complex structures. This, however, only complicates
the analysis without contributing to the discussion below.

With both θin(t) and θ1/N(t) being small-signal excursions, we find the mixer output
to equal

YPFDYY (t) = Sin(t +θin(t)) ·S1/N(t +θop(t)+θ1/N(t)) (4.23)

≈ Sin(t) ·S1/N(t +θop(t))+(
dSin

dθin
(t)S1/N(t +θop(t))

)
θin(t)+ (4.24)(

Sin(t)
dS1/N

dθ1/N
(t +θop(t))

)
θ1/N(t) .

In the lower equality, the upper term represents the steady-state part of the mixer’s
output while the lower terms are due to the small-signal phase variations θin(t) and
θ1/N(t). Note that this latter part takes the form

yPFD(t) = hin
PFD(t)θin(t)−hPFD(t)θ1/N(t) (4.25)

with yPFD(t) denoting the small-signal excursion of the mixer’s output. Hence, the
mixer small-signal behavior can be modeled as a linear combination of θ1/N(t) and

4Such a normalization involves a change of the time variable tnormt = ω0t. Note that proper normalization
is important as it often helps us to simplify the resulting analysis while also improving the interpretability of
the results.
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Figure 4.8: A multiplying mixer as a phase frequency detector.

θin(t) with coefficients that vary periodically over time. The minus sign in (4.25) is
introduced to emphasize the role of the mixer as a phase comparator.

Using the HTM formalism, we can express (4.25) in the Laplace domain as

YPFD(s) = H̃in
PFD(s)Θin(s)− H̃PFD(s)Θ1/N(s) . (4.26)

Here, Θin(s) and Θ1/N(s) are vectors of equivalent baseband components as defined
by (4.1) and (4.2). The HTMs H̃in

PFD(s) and H̃PFD(s) are obtained by respectively
inserting the Fourier coefficients of hin

PFD(t) and hPFD(t) in (4.9).

Example (Sinusoidal oscillations): Again, consider the system depicted in Fig. 4.7.
Note that in this case, X1/N(t) = XvcoXX (t) as there is no frequency divider. After a little
algebra, we then obtain

yPFD(t) =
1
2

[cos(θop(t))+ cos(2t +θop(t))]θin(t) (4.27)

−1
2

[cos(θop(t))− cos(2t +θop(t))]θ1/N(t)

≈ 1
2

[(1+ cos(2t))− sin(2t)θop(t)]θin(t) (4.28)

−1
2

[(1− cos(2t))+ sin(2t)θop(t)]θ1/N(t)

with θop(t) given by (4.21). The lower (first-order) approximation holds for |θop(t)| �
1. This typically holds true as long as the feedback loop does not become exceedingly
fast.

Straightforward conversion of (4.28) into HTM language yields

H̃in
PFD(s) ≈ 1

2

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
. . .

. . .
. . .

. . . 1 0 1/2 0

. . . 0 1 0 1/2
. . .

. . . 1/2 0 1 0
. . .

0 1/2 0 1
. . .

. . .
. . .

. . .
. . .

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
−∆H̃op(s) (4.29)
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and

H̃PFD(s) ≈ 1
2

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
. . .

. . .
. . .

. . . 1 0 −1/2 0

. . . 0 1 0 −1/2
. . .

. . . −1/2 0 1 0
. . .

0 −1/2 0 1
. . .

. . .
. . .

. . .
. . .

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥

+∆H̃op(s) (4.30)

as the HTMs that characterize the behavior of the mixing PFD. Here,

∆H̃op(s) =
1
4

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
. . .

. . .
. . .

Re{H(2 j)} 0 0
. . . 0 Re{H(2 j)} 0

. . .

0 0 Re{H(2 j)} . . .
. . .

. . .
. . .

. . .

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

(4.31)

with H(s) specified by (4.18). Note that the name ∆H̃op(s) was chosen to emphasize
the fact that it represents an increment that is typically smaller than the leading terms
in (4.29) and (4.30). Note, however, that it still may be of importance in analyzing the
details of the time-varying components of a PLL’s behavior. �

A similar analysis as the one above is possible when the input signal and/or the VCO
signal are square waves. This is equivalent with the mixer in Fig. 4.8 being imple-
mented as an EXOR gate.

Sampling PFD: In sampling PFDs, the phase error θin(t)−θ1/N(t) between the in-
put and the frequency-divided VCO signal is measured (sampled) once per period of
the input signal. Typical sampling circuits, like the charge-pump-based topology in
Fig. 4.9 [Lee98], code this error as the width of a sequence of digital pulses. These
pulses are triggered by the zero-crossings of the input and the frequency-divided VCO
signal. Hence, they occur at equidistant instances in time. If the width of such a pulse
is small compared to the PLL’s settling time constant5, it will have the same effect as
a Dirac impulse with a weight that equals the area underneath the original pulse. This
equivalence is depicted in Fig. 4.10. Note that the pulses in the upper plot were nor-
malized to have magnitude 1. The effective charge-pump current IcpII can, for example,
be taken into account in the loop filter model.

5Note that this condition is always satisfied in the small-signal limit. PLL small-signal analysis, in prin-
ciple, is concerned with phase deviations θ whose magnitude in the limit goes to zero. Hence, by choosing
|θ| small enough, the pulses produced by the PFD will always be sufficiently narrow for the equivalence in
Fig. 4.10 to hold.
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Figure 4.9: Sampling phase-frequency detector. The input and (frequency-
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to the time constant of the loop filter-VCO combination, they will have the
same effect as Dirac impulses with a weight that equals the area underneath
the original pulses.
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Assuming the equivalence in Fig. 4.10 to hold, the input-output relation of a sampling
PFD can be modeled as a multiplication of the phase error θin − θ1/N with a Dirac
impulse train, or

y(t) =

(
+∞

∑
m=−∞

δ(t −mT )

)(
θin(t)−θ1/N(t)

)
(4.32)

=
ω0

2π

(
+∞

∑
m=−∞

e jω0mt

)(
θin(t)−θ1/N(t)

)
(4.33)

with T = 2π/ω0 the sampling period. This multiplication can be stated in terms of
HTMs as

Y(s) = H̃PFD(s)
(
Θin(s)−Θ1/N(s)

)
(4.34)

with

H̃PFD (s) =
ω0

2π

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢

...
...

...
· · · 1 1 1 · · ·
· · · 1 1 1 · · ·
· · · 1 1 1 · · ·

...
...

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥ (4.35)

=
ω0

2π
l · lT . (4.36)

Here, l =
[ · · · 1 1 1 · · · ]T

. Note that (4.34) is a special case of (4.26) with
H̃in

PFD(s) = H̃PFD(s).

Equation (4.36) reveals an important property corresponding to the HTM H̃PFD (s) of a
sampling-PFD: it is a rank-one matrix. This should come as no suprise, since sampling
maps all input signal content to the frequency band [−ω0/2,ω0/2], a phenomenon
known as aliasing. This baseband spectrum is then periodically repeated over the re-
mainder of the frequency axis. So, knowledge of the output’s signal content in one
frequency band implies knowledge of its content in all other frequency bands. This
explains the rank-one property of the HTM corresponding to the sampling operator.

4.2.4.2 Loop filter

The PFD output is fed to the loop filter. The transfer function of this loop filter is
an important design variable in obtaining good PLL stability and settling behavior.
Typically, the loop filter is implemented as a time-invariant analog filter with transfer
function HLFH (s).

Using (4.8), the HTM corrsponding to the time-invariant loop filter HLFH (s) is found to
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Figure 4.11: VCO-frequency divider model. The left-hand block represents
a (noisy) VCO model. The right-hand block models the behavior of the
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equal

H̃LF(s) =

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
HLFHH (s− jω0) 0

HLFH (s)
0 HLFH (s+ jω0)

. . .

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ . (4.37)

Although filter nonlinearities can cause time-varying small-signal behavior, and there-
fore off-diagonal components in the loop filter HTM, we assume such effects to be
negligible. This is justified by the fact that many loop filters are implemented as higly
linear passive or opamp-RC based networks [Lee98]. Note, however, that this assump-
tion of time invariance is not mandatory.

4.2.4.3 VCO–frequency divider

Finally, we discuss the VCO–frequency divider combination. The frequency of the
VCO is steered by the control signal coming from the loop filter. This frequency is
then divided by a factor N. Fig. 4.11 illustrates the functional model used in this text
to capture the behavior of the VCO and frequency divider. In what follows, we discuss
the underpinnings of this model in more detail.

VCO: By means of a procedure similar to the one for modeling the PLL behavior
as a whole, it is possible to obtain a HTM that captures all aspects of the VCO’s dy-
namic behavior. Each of the VCO building blocks is linearized in the neighborhood of
the steady-state operating point6. Using the rules (4.6)-(4.7) for computing HTMs of
composed systems, we then obtain a HTM for the VCO as a whole. However, when
the settling behavior of the VCO is fast as compared to that of the PLL, we can make

6Note that this linearized model is valid since a PLL in lock prevents the VCO phase from drifting. As
discussed in [Dem98, Dem00a], phase drifting renders a linearized VCO model invalid.
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use of results from oscillator phase noise theory [Dem98, Dem00a, Haji98]7 to obtain
a more compact VCO model. This model accounts for the long-term phase behavior
while neglecting all VCO transients. Again, it is only valid when the VCO setlling
behavior is sufficiently fast compared to that of the PLL as a whole. This condition,
however, is satisfied for most practical PLL designs8.

Let U(t) be the input, produced by the loop filter, that steers the VCO. Furthermore,
we assume that U(t) can be decomposed in a large-signal DC component U0UU , a com-
ponent uop(t) that captures the small periodic operating-point variations around U0UU and
a small-signal contribution u(t) induced, for example, by the small-signal input phase
variation θin(t). In summary, we assume

U(t) = U0UU +uop(t)+u(t) . (4.38)

Since both uop(t) and u(t) are small, we can use the results presented in [Dem98,
Dem00a] to show that the VCO’s small-signal phase variation θ(t) is governed by9

dθ
dt

= Γ(t +θop(t)+θ(t))u(t)

+[Γ(t +θop(t)+θ(t))−Γ(t +θop(t))]uop(t) (4.39)

Here, Γ(t) is the VCO’s impulse sensitivity function (ISF) associated with the input
source u(t). The ISF is periodic with a period equal to that of the VCO (before fre-
quency division). Hence, if the frequency-divider divides by N, this means that the pe-
riod of Γ(t) equals T/N where T is the period of the PLL input signal XinXX (t). For most
VCOs, the ISF associated with the control signal u(t) is nearly constant, i.e. Γ(t)≈ Γ0.
In that case, (4.39) reduces to the traditional LTI model (4.12) with Γ0 = KVCOKK .

In a stable PLL, the control signal u(t) is such as to keep the VCO phase deviations
θ(t) small, i.e. |Nθ/T | � 1. It is therefore justified to linearize (4.39) near θ(t) = 0.
This results in the closed-form expression

θ(t) ≈
∫ t

−

∫∫
∞

Γ(τ+θop(τ))u(τ)dτ (4.40)

≈
∫ t

−

∫∫
∞

Γ(τ)u(τ)dτ . (4.41)

7These results are also obtained as a special case of the results presented in section 5.7 of chapter 5.
8Having a VCO that settles as slow as the PLL as a whole bears stability problems with it. The VCO

setlling behavior then introduces extra poles near the PLL’s unity-gain frequency, degrading the phase mar-
gin.

9This relation follows from the fact that, for all small-signal excursions u(t),

d(θop +θ)/dt = Γ(t +θop(t)+θ(t))(uop(t)+u(t))

or
dθ/dt = Γ(t +θop(t)+θ(t))(uop(t)+u(t))−dθop/dt .

By considering the PLL’s steady-state behavior, i.e. θ(t) = u(t) = 0, we obtain that

dθop/dt = Γ(t +θop(t))uop(t) .

Substituting this into the previous equation then yields the desired result.
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Note that the latter approximation only holds valid when dΓ(t)/dt ·θop(t) is sufficiently
small, something which is typically true. Hence, observing (4.41), we find that θ(t) is
related to u(t) via an LPTV operator consisting of a multiplication with Γ(t) followed
by an integration. This model is depicted by the left-hand block in Fig. 4.11. The HTM
corresponding to this operator equals

H̃VCO(s) =

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
. . .

. . .
. . .

. . .
. . . Γ0

s− jω0
0︸︷︷︸

N−1bands

Γ−1
s− jω0

0

. . . Γ1
s 0 Γ0

s 0 Γ1
s

0 Γ1
s+ jω0

0︸︷︷︸
N−1bands

Γ0
s+ jω0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

(4.42)

and is readily computed using (4.7), (4.9) and (4.41). Here, the Γk are the Fourier
coefficients of Γ(t), or

Γ(t) =
+∞

∑
k=−∞

Γke jkωvcot =
+∞

∑
k=−∞

Γke j(kN)ω0t . (4.43)

Since the VCO, and hence the ISF Γ(t), oscillates at ωvco = Nω0 and since all HTMs
are constructed with respect to the carrier waves ψmψψ (t) = e jmω0t , H̃VCO(s) contains a
great number of super- and sub-diagonal bands filled with zeros. This readily follows
from the fact that, when expanding Γ(t) with respect to ψmψψ (t) = e jmω0t , only the coef-
ficients associated with the carriers ψkNψψ (t) = e j(kN)ω0t can assume non-zero values. As
was already mentioned, often Γ(t) ≈ Γ0 in which case H̃VCO(s) reduces to a diagonal
matrix. This means that the high-frequency components of the small-signal control
voltage u(t) do (almost) not influence the oscillator’s instantaneous frequency.

Note that, as illustrated in Fig. 4.11, the VCO’s phase-noise behavior can be captured
by introducing a noise source just before the integrator10. We can then use the cyclo-
stationary noise theory (see section 3.5.3 in the previous chapter) to analyze the impact
of the VCO’s phase noise on the PLL’s spectral purity.

Frequency divider: Frequency dividers are often implemented by means of digital
logic, e.g. flipflops and NAND gates. If the VCO oscillation frequency hits the RF
range, then we need, as part of the frequency divider, a prescaler that can handle these
high frequencies [Demu02]. Due to their digital nature, frequency divider operations
are typically triggered by the zero-crossings of the incoming VCO signal. A detailed
time-varying model would therefore involve an interconnection of sampling and filter-
ing operations. A similar argument can be made for prescaler architectures, e.g. the
phase-switching architecture in [Cran98].

10Introducing the noise before the integrator is needed to account for the cumulative nature of oscillator
phase noise.
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However, as was the case for modeling the VCO behavior, such a detailed frequency di-
vider model would be overly complex, introducing a multitude of irrelevant behavioral
details11. In practice, the frequency-divider model depicted in the right-hand block of
Fig. 4.11 captures most relevant behavior. Here, the frequency-divider divides the in-
coming VCO frequency by N. This result is delayed by a time Tf dTT before it is passed
to the PFD. Typically, if present at all, the delay time Tf dTT is proportional to the period
of the VCO signal. Hence, for a given input frequency, it can be considered constant.
The resulting frequency divider model can be described as a time-invariant filter

HFDH (s) =
θ1/N(s)

θ(s)
=

e−sTf dTT

N
. (4.44)

The corresponding HTM H̃FD(s) is a diagonal matrix similar to the one in (4.37).

4.2.5 PLL closed-loop input-output HTM

Having constructed the building block models, we can now tie them together in order
to obtain the HTM that describes the PLL’s overall behavior. In what follows, we focus
on the HTM that characterizes the tranfer from the input phase θin(t) to the output
VCO phase θ(t). Computing HTMs associated with other input sources, e.g. with the
VCO noise source in Fig. 4.11, is accomplished in a similar manner.

Using the relations (4.6)-(4.7), the input-output HTM for the PLL feedback topology
in Fig. 4.2 is found to equal

H̃(s) =
[(

I+ G̃(s)
)−1

H̃VCO(s) ·H̃LF(s) ·H̃in
PFD(s)

]
. (4.45)

Here, we used the expression (4.26) to describe the PFD behavior. Furthermore,

G̃(s) = H̃VCO(s) ·H̃LF(s) ·H̃PFD(s) ·H̃FD(s) (4.46)

is the PLL’s open-loop gain HTM. The input-output relation (4.45) is valid for all types
of PLLs, at least as far as their small-signal behavior is concerned. Note that this
equation is the HTM generalization of the CT-LTI model (4.10).

Evaluating and/or approximating (4.45) is achieved by means of the techniques out-
lined in the previous chapter. For example, for PLLs with a mixing PFD, the power
series method in section 3.4.3.2 tends to yield good results. The use of rank-reduced
approximations (see section 3.4.3.3) for the open-loop gain HTM G̃(s), however, al-
lows us to obtain results that are valid for any PFD implementation. Even more, for
PLLs based on sampling PFDs, this method yields an exact closed-form expression for
the PLL’s closed-loop input-output HTM. In what follows, we first consider approxi-
mate expressions for (4.45) based on the rank reduction of G̃(s). These approximations
hold for all types of PLL implementations. They establish the link with traditional CT-
LTI models that are commonly used for PLL analysis and design. For PLLs with a
sampling PFD, section 4.2.5.3 presents an exact input-output relation. It establishes
the link with the discrete-time PLL models presented in [Gard80, Hein88].

11It is only interesting to construct a detailed model for circuit-level verification. In this case, one can use
general-purpose numerical algorithms, build on the results in section 3.4.4 of the previous chapter, to extract
the exact HTM corresponding with a particular frequency divider circuit-level implementation.
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4.2.5.1 A general rank-reduced approximation:

By combining the different building block models, it is readily shown that the elements
of G̃(s) are structured as

G̃n,m(s) =
K̃nKK ,m(s)

s+ jnω0
. (4.47)

This shows that, at least for |s| < ω0/2, G̃(s) will be dominated by the rows closest
to n = 0. This in turn suggests to try and approximate G̃(s) by its projection on the
rows with indices |n| ≤ R with R the rank-reduction parameter. Mathematically, this is
written as

G̃(s) ≈ P
(
PT G̃(s)

)
(4.48)

≈ P ·V(s)T . (4.49)

Here, V(s).P ∈ C∞×(2R+1) with

P =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
...

...
0 0 0
1 0
...

. . .
...

0 · · · 1
0 0 0
...

...
...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

︸ ︷︷︷ ︸︸
2R+1 columns

. (4.50)

In words, (4.48) and (4.50) express that, for an input signal with low-frequency equiv-
alent baseband components, the output of the PLLs time-varying open-loop gain is
dominated by the signal content contained in the lowest frequency bands. Note from
the general theory outlined in section 3.4.3.3 that the approximation (4.48) only holds
valid for those values of s ∈ C for which

∥∥∥∥(I−PPT
)

G̃(s)
∥∥∥∥ � 112. Using a similar

argument, we equally find

H̃VCO(s) ·H̃LF(s) ·H̃in
PFD(s) ≈ P

(
PT ·H̃VCO(s) ·H̃LF(s) ·H̃in

PFD(s)
)

≈ P ·Vin(s)T . (4.51)

With (4.49), the factor
(
I+ G̃(s)

)−1
in the input-output relation (4.45) can be elabo-

rated using the Sherman-Morisson-Woodbury formula (see also section 3.4.3.3 of the
previous chapter). This yields(

I+ G̃(s)
)−1 ≈ (

I+P ·V(s)T )−1

≈ I−P(I+GP(s))−1 V(s)T . (4.52)

12Due to the presence of poles at DC in a typical design of the loop filter HLFH (s), this approximation may
fail for values of s very close to 0. In such a case, rank-reduced approximations are still possible, but it is
somewhat more involved to construct them. However, since this only makes a difference for signal transfers
from or to frequency bands beyond ωvco = Nω0, it is unimportant for most practical purposes.
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Here,
GP(s) = V(s)T P = PT ·G̃(s) ·P (4.53)

represents the (2N+1)×(2N+1) submatrix of G̃(s) centered around its origin (n,m)=
(0,0). Using (4.51) and (4.52), the input-output relation (4.45) turns into

H̃(s) ≈ P(I+GP(s))−1 Vin(s)T . (4.54)

Note from the structure of P in (4.50) that this rank-reduced approximation neglects all
transfers of signal content to frequency bands beyond Rω0.

Example (Rank-one approximation): The most elementary rank-reduced approxi-
mation to G̃(s) is a matrix of rank one, i.e. we set R = 0. In this case, the projector PPT

only takes the 0-th row of G̃(s) into account. We illustrate the results that are obtained
by means of such an approximation for a PLL with a VCO that has a constant ISF, i.e.
Γ(t) = Γ0 = KVCOKK . For the PFD, we select the mixing-PFD model specified by the
HTMs (4.29)-(4.31). After a little algebra, we then find

GP(s) =
KVOKK

s
HLFH (s)

e−sTf dTT

N
∈ C1×1 (4.55)

and

Vin(s)T =
KVOKK

s
HLFH (s)

[ · · · 0 1
2 0 1 0 1

2 0 · · · ]
. (4.56)

Substituting (4.55) and (4.56) into (4.54) finally yields

H̃(s) ≈

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
0
1
0
...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

KVOKK
s HLFH (s)

1+ KVOKK
s HLFH (s) e

−sTf dT

N

[ · · · 0 1
2 0 1 0 1

2 0 · · · ]
.

(4.57)
Observing the input-output relation above, we note that the HTM element that models
the phase transfers from baseband to baseband, i.e.

H̃0HH ,0(s) =
KVOKK

s HLFH (s)

1+ KVOKK
s HLFH (s) e

−sTf dT

N

, (4.58)

corresponds with the closed-loop transfer function as it is obtained by means of tradi-
tional CT-LTI analysis. However, (4.57) also predicts a transfer of high-frequency in-
put phase variations (varying at about twice the carrier frequency) to the low-frequency
phase content at the output. These transfers are due to the fact that input phase vari-
ations at twice the carrier frequency contribute at DC component at the output of the
mixing PFD. They are captured by the HTM element

H̃0HH ,2(s) =
1
2

KVOKK
s HLFH (s)

1+ KVOKK
s HLFH (s) e

−sTf dT

N

(4.59)

=
1
2

H̃0HH ,0(s) (4.60)
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and are unaccounted for by traditional CT-LTI analysis. However, as (4.60) shows that
H̃0HH ,2(s) is of the same order of magnitude as H̃0HH ,0(s), one must be careful in neglecting
them. �

4.2.5.2 The continuous-time LTI PLL model and its limitations

The example above highlights the link between the traditional CT-LTI PLL model and
the time-varying PLL models developed in this chapter:

CT-LTI PLL approximation: The closed-loop PLL transfer function model obtained
by means od traditional CT-LTI analysis corresponds to the HTM element H̃0HH ,0(s) of a
rank-one approximation to (4.45).

The conditions for the contnuous-time LTI model to yield valid results are therefore
twofold:

1. The approximations (4.49) and (4.51) must hold for P a (rank-one) vector, i.e.
for R = 0. Since the accuracy of the approximations drop as |s| → ω0/2, the LTI
model is only valid at sufficiently low frequencies.

2. Since the LTI model only captures transfers from baseband to baseband, the
inputs, e.g. θin(t), should not contain any high-frequency components. Hence,
topics like noise folding, i.e. high-frequency noise components ending up at
baseband, are left unaccounted by CT-LTI analysis.

As a consequence of the first condition, stability as predicted by the LTI model is only
valid as long as the unity-gain frequency ωUG of the open-loop gain, i.e. the relevant
frequency for stability computations, is well below ω0/2. It will be demonstrated in
section 4.2.6 that for fast feedback loops, i.e. ωUG/ω0 > 0.05, time-varying effects do
need to be taken into account for stability predictions to be accurate.

4.2.5.3 PLL input-output HTM for sampling-PFDs

While (4.54) is an approximation that holds for all types of PFDs, exact expressions
can be derived for PLLs built on sampling PFDs. This is done by means of sim-
ilar techniques as in the previous section and by making use of the fact that, for
sampling PFDs, H̃PFD (s) = (ω0/2π) l · lT is by nature rank one. As a reminder, l =[ · · · 1 1 1 · · · ]T

. If we define

V(s) =
ω0

2π
H̃VCO(s) ·H̃LF(s) · l (4.61)

and
W(s)T = lT H̃FD(s) , (4.62)

then we can write
G̃(s) = Ṽ(s) ·W(s)T . (4.63)
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Using the Sherman-Morisson-Woodbury formula, we then find(
I+ G̃(s)

)−1 =
(
I+V(s) ·WT )−1

(4.64)

= I− V(s) ·W(s)T

1+λ(s)
(4.65)

with
λ(s) = W(s)T V(s) = lT

[
H̃FD(s) ·H̃VCO(s) ·H̃LF(s)

]
l . (4.66)

In words, λ(s) equals the sum of all elements of H̃FD(s) ·H̃VCO(s) ·H̃LF(s). Substitut-
ing (4.65) in (4.45) and using the fact that H̃VCO(s) ·H̃LF(s) ·H̃in

PFD(s) = V(s) · lT , the
input-output relation now becomes

H̃(s) =
(

1
1+λ(s)

V(s) · lT
)

. (4.67)

This relation is exact as long as (4.36) accurately models the sampling-PFD’s behavior.

4.2.5.4 The discrete-time LTI PLL model and its limitations

Observing (4.67), it is seen that the stability of a PLL with sampling PFD is gov-
erned by a single scalar quantity λ(s). Using its definition (4.66) and the structural
properties of HTMs as discussed in section 3.3.4, it is readily shown that λ(s) is
periodic in the direction of the imaginary axis, or λ(s + jω0) = λ(s). This implies
that λ(s) corresponds to a discrete-time LTI system with z-domain transfer function
λDλ (z) = λ(ω0 ln(z)/2π). Hence, the stability of a PLL with sampling PFD is deter-
mined by that of a discrete-time system. This is in correspondence with discrete-time
(LTI) PLL models in [Gard80, Hein88].

However, the discrete-time models in [Gard80, Hein88] do not fully recognize the
mixed-signal aspects of PLLs with sampling PFDs. Mapping the PLL on a discrete-
time LTI system, disregards the continuous-time nature of the PLL’s output signal.
This is, for example, important for spectral computations and noise analysis. These
issues are readily handled using the HTM framework where sampling is recognized as
a continuous-time rank-one periodically time-varying operator. Moreover, HTM-based
PLL analysis is easier and more straighforward than is the conversion to a discrete-time
system. This is particularly the case for the derivation of symbolic expressions.

4.2.6 Example 1: PLL with sampling PFD

We illustrate and verify our analysis of time-varying PLL behavior for a system im-
plementing a sampling PFD, lacking a frequency divider, i.e. N = 1, and containing a
VCO with constant ISF, i.e. Γ(t) = Γ0. HTM-based computations are compared with
results extracted from time-marching simulations in Matlab/SimulinkTM. The Mat-
lab/Simulink simulation model is shown in Fig. 4.12. It implements the sampling PFD
using flip-flops and therefore encodes the phase error through the width of the pulses it
produces. This corresponds to the behavior of an actual PFD circuit realization. This
allows us to test the accuracy of our approximations.
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Figure 4.13: Typical characteristic for A( jω) containing three poles (two at
DC) and one zero. Note that the frequency-axis is normalized with respect
to the unity-gain frequency ωUG of A(s).

4.2.6.1 Input-output HTM

With Γ(t) = Γ0, the HTM (4.43) —capturing the VCO behavior— is diagonal and
represents an LTI system with transfer characteristic HVCOHH (s) = Γ0/s. The open-loop
gain of the CT-LTI approximation then becomes

A(s) =
ω0

2π
Γ0

s
HLFH (s) . (4.68)

The factor ω0/2π in front arises from the sampling-PFD model (4.35). Fig. 4.13 shows
a typical gain characteristic. It contains three poles (the first two at DC) and one zero.
This characteristic will be used for all further numerical computations.

Using (4.61) and (4.62), we find the PLL’s open loop gain HTM to equal

G̃(s) = V(s) ·W(s)T =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢

...
A(s− jω0)

A(s)
A(s+ jω0)

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥
[ · · · 1 1 1 · · · ]

. (4.69)
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Substituting this into (4.66) and (4.67), the input-output HTM H̃(s) is found to equal

H̃(s) =
1

1+λ(s)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
A(s− jω0)

A(s)
A(s+ jω0)

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
[ · · · 1 1 1 · · · ]

. (4.70)

Here,

λ(s) =
+∞

∑
m=−∞

A(s+ jmω0) (4.71)

is the PLL’s effective open-loop gain. The HTM element H̃0HH ,0(s), modeling the closed-
loop transfers from baseband to baseband, is given by

H̃0HH ,0(s) =
A(s)

1+λ(s)
≈ A(s)

1+A(s)
. (4.72)

The latter approximation, corresponding to traditional LTI analysis, is valid as long as
|A(s)| � ∣∣∣∣∑m�=�� 0 A(s+ jmω0)

∣∣∣∣. If this no longer holds, e.g. for feedback loops with a
large unity-gain frequency ωUG, time-varying effects become important and the other
terms of λ(s) must be taken into account. Note that (4.70) also allows us to study signal
transfers to frequency bands other than baseband.

Fig. 4.14 illustrates the impact of an increasing ωUG/ω0 on H̃0HH ,0(s). The solid lines are
obtained by evaluating (4.72) while the marks follow from spectral analysis of time-
marching simulation results in Matlab/Simulink. They are within 2%. This shows the
accuracy ofthe methods here developed. Note, however, that evaluating (4.72) is only
a matter of seconds while it takes several minutes for the time-marching simulations to
complete.

4.2.6.2 Stability behavior

Observing H̃0HH ,0(s) in Fig. 4.14, it is seen that the effective bandwidth shifts to the
right as ωUG/ω0 increases. Also, peaking at the passband’s edge becomes worse.
Fig. 4.15explains this behavior in terms of the effective open-loop gain λ(s). The
increase of the closed-loop bandwidth corresponds to an increase of ωUG,e f f , the (ef-
fective) unity-gain frequency of λ(s). More important is the phase margin of λ(s)
which is rapidly degrading for increasing values of ωUG/ω0. For ωUG/ω0 = 0.1, this
phase margin is already 9% worse than predicted by CT-LTI analysis. This makes clear
that CT-LTI analysis does not give reliable results when ωUG/ω0 grows large.

Expressions for this degarding phase margin are obtained by assuming that, for ω
near ωUG, λ( jω) is dominated by A( jω), i.e.

∣∣∣∣∑m�=�� 0 A( jω+ jmω0)
∣∣∣∣� |A( jω)|. With

A( jω)= |A( jω)|eφAφφ ( jω), the phase of λ( jω)= |λ( jω)|eφλ( jω) then approximately equals

φλ( jω) ≈ φAφφ ( jω)+ Im

{
∑m�=�� 0 A( jω+ jmω0)

A( jω)

}
. (4.73)
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Figure 4.14: HTM element H̃0HH ,0(s) capturing baseband-to-baseband sig-
nal transfers for a PLL with sampling-PFD. The element is plotted for
ωUG/ω0 = 0.01, 0.1 and 0.15. The solid lines are obtained by evaluating
(4.70). The marks are extracted from Matlab/Simulink simulations.
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the effective open-loop phase margin (lower plot) versus ωUG/ω0 as obtained
by means of the methods developed in this work. In the lower plot, the dashed
horizontal line indicates the phase margin as predicted by CT-LTI analysis.
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Figure 4.16: Impact of the position of ωUG on the stability of PLLs with
sampling-type PFDs. (a) For low ωUG , aliasing terms have only a low impact
on the phase margin which is then largely determined by the phase margin
of A( jω). (b) As ωUG increases, the impact of the aliasing grows, degrading
the phase margin. Note that in the figures above, for sake of simplicity, we
approximated ∑m�=�� 0 A( jω+ jmω0) ≈ A( jω− jω0) for ω near ωUG.

The second term In the expression above explains the problems that arise when the
unity-gain frequency of A( jω) approaches ω0/2. As illustrated in Fig. 4.16, for an
increasing ωUG, the second term in (4.73) starts to yield a significant contribution on
top of the phase shift generated by A( jω). This pushes the total phase shift of the
open-loop gain λ( jω) towards −π, resulting in a less stable feedback loop.

4.2.6.3 Noise folding in PLLs

Stability, however, is not the only thing that is going bad as ωUG increases. For fast
feedback loops, phase noise behavior is also worse than predicted by CT-LTI analysis.
This is due to noise folding: high-frequency noise components are downconverted,
contributing to the low-frequency phase noise content. Noise folding is illustrated in
Fig. 4.17 and is caused by the time-varying behavior of the PLL building blocks. Noise
folding is responsible for high-frequency spurs appearing in the PLL’s close-in phase
noise spectrum.

Noise folding is readily analyzed by means of the HTM-based noise analysis tech-
niques outlined in section 3.5.3 of the previous chapter. Consider, for instance, the
VCO noise process n(t) (capturing its phase-noise behavior) injected at the position
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Figure 4.17: Noise folding: high-frequency noise components, e.g. spurs, are
downconverted, contributing to the PLL’s low-frequency phase noise content.

indicated in Fig. 4.11. The HTM H̃noise(s) that characterizes the transfer of noise to the
output phase θ(t) can be shown to equal

H̃noise(s) =

⎛
⎜
⎛⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜I− 1

1+λ(s)

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

...
A(s− jω0)

A(s)
A(s+ jω0)

...

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
[ · · · 1 1 1 · · · ]

⎞
⎟
⎞⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

×

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

. . .
1

s− jω0
1
s

1
s+ jω0

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

. (4.74)

The PLL’s output phase noise (at least the part due to the action of the VCO noise) is
now characterized by

SΘΘ( jω) = H̃noise( jω)Snn( jω)H̃noise( jω)∗ . (4.75)

Here, Snn( jω) and SΘΘ( jω) represent harmonic power spectral density (HPSD) matri-
ces respectively that correspond to the noise at the VCO’s input and the (phase) noise
at the VCO’s output.

If n(t) is stationary and characterized by the power spectral density (PSD) function
Snn( jω), then, by evaluating (4.75), it can be shown that the PLL’s baseband phase



110 4.2 PHASE-LOCKED LOOP ANALYSIS

10
−2

10
−1

10
0

−5

0

5

10

15

20

ω/ωω ω
UG

  (a)

S
θ 0θ 0(jω

)/
S

LT
I(jω

) 
(d

B
)

0.01
0.1
0.15

10
−2

10
−1

10
0

−15

−10

−5

0

5

10

ω/ωω ω
UG

  (b)

ω
02 S

fo
ld
(jω

)/
N

no
is

e (
dB

)

0.01
0.1
0.15

Figure 4.18: Baseband noise PSD for PLLs using sampling PFDs. (a) Ratio
Sθ0θ0( jω)/SLT IS ( jω) between the noise PSD predicted by respectively time-
varying and time-invariant analysis. (b) Normalized contributions due to
high-frequency noise components folding into baseband.

noise content13 is characterized by

Sθ0θ0( jω) =
∣∣∣∣∣∣∣∣∣∣1− A( jω)

1+λ( jω)

∣∣∣∣∣∣∣∣∣∣2 Snn( jω)
ω2

+ ∑
m�=�� 0

∣∣∣∣∣∣∣∣∣∣ A( jω)
1+λ( jω)

∣∣∣∣∣∣∣∣∣∣2 Snn( jω+ jmω0)
|ω+mω0|2

. (4.76)

Here, the first term captures that part of the phase noise as it is (approximately) obtained
by means of traditional CT-LTI analysis. The lower terms, however, are unaccounted
for by CT-LTI analysis. They model the noise folding caused by the sampling nature
of the PFD. High-frequency input noise components, e.g. spurs, are downconverted to
baseband. Note that all extra terms are positive. Hence, the resulting baseband noise
is, therefore, always worse than the one predicted by LTI techniques.

Fig. 4.18 illustrates the impact of noise folding for a white input noise process n(t),
i.e. Snn( jω) = NnoiseNN . Fig. 4.18(a) plots Sθ0θ0( jω)/SLT IS ( jω), the ratio of the PLL’s
(baseband) phase noise PSD predicted by respectively time-varying and time-invariant

13The baseband phase noise component is characterized by the element Sθ0θ0 ( jω) of the HPSD matrix
SΘΘ( jω), i.e. the element with indices (0,0). See section 3.5.3 in chapter 3 for notational conventions
concerning the elements of HPSD matrices.
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analysis. Here,

SLT IS ( jω) =
∣∣∣∣∣∣∣∣∣∣ 1
1+A( jω)

∣∣∣∣∣∣∣∣∣∣2 Snn( jω)
ω2 . (4.77)

This ratio is drawn for several values of ωUG/ω0. Fig. 4.18(b) shows the output phase
noise contributions coming from high-frequency noise components folding into base-
band. This corresponds to the lower terms in (4.76). Observing Fig. 4.18(a), it is seen
that, for ωUG/ω0 growing large, the PSD predicted by time-varying analysis starts to
deviate from the one predicted by time-invariant analysis. This especially holds true
for frequencies near zero. Fig. 4.18(b) clarifies the reason for this. While (4.77) pre-
dicts the noise PSD to be 0 near ω = 0, time-varying analysis predicts a non-zero noise
level due to high-frequency components folding into baseband. These components are
(silently) neglected when using traditional time-invariant techniques.

4.2.7 Example 2: PLL with mixing PFD

The time-varying behavior of a mixing PFD turns out to have less of an impact on a
PLL’s small-signal performance than that of a sampling PFD. For the setup in Fig. 4.7
and with the mixing PFD HTMs specified by (4.29)-(4.31), the most important HTM
elements characterizing the transfers from θin(t) to the baseband component of θ(t) are
found to equal

H̃0HH ,0(s) ≈ HLT IHH (s)+
HLT IHH (s)

4
(HLT IH (s+2 jω0)−HLT IH (2 jω0))

+
HLT IH (s)

4
(HLT IHH (s−2 jω0)−HLT IH (−2 jω0)) (4.78)

+
HLT IH (s)2

4
(HLT IH (s+2 jω0)−HLT IH (2 jω0))

+
HLT IH (s)2

4
(HLT IH (s−2 jω0)−HLT IH (−2 jω0))

H̃0HH ,2(s) ≈ 1
2

HLT IHH (s)+
1
2

HLT IH (s)HLT IHH (s+2 jω0) . (4.79)

These expressions were obtained using the power series method discussed in sec-
tion 3.4.3.2 of the previous chapter.

In fig. 4.19, we plot HTM-element H̃0HH ,0(s) that characterizes transfers from baseband
to baseband. We do so for several values of the unity-gain frequency ωUG of the LTI
open-loop gain A(s) (see Fig. 4.13). Here, the solid lines are obtained from (4.78)
while the marks follow from the spectral analysis of time-marching simulation results
in Matlab/Simulink. The figure illustrates that, even for high-speed loops, the HTM-
element H̃0HH ,0(s)≈ HLT IHH (s), i.e. it deviates little from results predicted by time-invariant
analysis. Note, however, that there is also a significant transfer of signal content from
twice the carrier frequency to baseband. The latter transfer is modeled by H̃0HH ,2(s) and
is not predicted by LTI analysis.

Similarly as was accomplished for sampling-PFD-based PLLs, we could go on and
analyze the stability and noise behavior for PLLs built using mixing PFDs. This, how-
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Figure 4.19: Baseband to baseband signal transfer for a PLL implemented
with a mixing PFD. The HTM element H̃0HH ,0(s) is plotted for ωUG/ω0 =
0.1, 0.2, 0.3, 0.4 and 0.5. The solid lines are obtained by evaluating (4.78).
The marks are extracted from Matlab/Simulink simulations.

ever, does not contribute new elements to our HTM-based analysis of a PLL’s behavior.
We therefore do not discuss this any further.

4.2.8 Conclusions

The small-signal behavior of all current PLL implementations is inherently time-varying.
As a PLL’s steady-state operating point varies periodically with time, the linearization
of its behavior in the neighborhood of this periodic operating point will result in an
LPTV system. HTMs provide a natural framework for a frequency-domain description
of this time-varying PLL small-signal behavior.

It turns out that time-varying effects, especially for PLLs with a fast feedback loop and
a sampling PFD, can have a significant impact on PLL system performance. Exam-
ples discussed in this section concern stability degradation and noise folding. Tradi-
tional techniques for PLL analysis, mostly grounded on continuous-time linear time-
invariant feedback theory, fail to predict these phenomena. In most cases, they are
over-optimistic with regard to the predicted PLL behavior. This may result in erro-
neous design decisions.

HTM-based analysis of small-signal PLL behavior does not suffer from this drawback.
It is exact: there are no hidden approximations or assumptions. The only approxima-
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tions are the ones explicitly introduced during the analysis. This, however, does not
mean that approximations aren’t useful. They often help simplifying results, focusing
attention to what is really important. For example, traditional (and often useful) PLL
models are found to be particular (rank-one) approximations to the exact time-varying
models. This provides these traditional models with solid mathematical underpinnings
while their shortcomings are clearly identified.

In summary, small-signal PLL analysis is an excellent example to illustrate the use of
HTMs in analyzing real-life system behavior. It emphasizes the practical relevance
of the HTM framework in supporting more accurate and reliable system analysis (and
hence design).

4.3 Automated symbolic LPTV system analysis

As holds for all pencil and paper analysis, HTM-based computations, especially sym-
bolic ones, can be tedious and error prone. This section therefore introduces an al-
gorithm, called SymbolicHTM, for semi-automated HTM-based symbolic analysis of
LPTV system behavior. In general, symbolic analysis involves the generation of ex-
pressions that describe the behavior of a system (circuit) starting from a topological
description stated in terms of the system’s (circuit’s) design variables [Gie91]. Ex-
amples of topological descriptions are circuit netlists and block diagrams. Of course,
generating expressions is not a goal by itself. As symbolic analysis often aims to in-
crease our understanding on the system’s or circuit’s behavior, expressions should be
kept as simple as possible.

The SymbolicHTM algorithm presented in this section takes a block diagram as in-
put and produces symbolic expressions for the elements of the system’s overall input-
output HTM. It demonstrates that traditional techniques for automated symbolic analy-
sis of LTI systems [Fern98, Gie91, Lin91] can be extended to handle LPTV systems
as well. Moreover, for symbolic LPTV system analysis, the SymbolicHTM algorithm
is more efficient than techniques based on weakly nonlinear time-invariant symbolic
circuit analysis [Wamb98a]. This is because of the fact that SymbolicHTM exploits
the (time-varying) linear nature of a multiplication with a periodic carrier wave. We
demonstrate the algorithm by generating expressions for the input-output HTM ele-
ments of two different downconversion stages.

In what follows, we first review prior art on symbolic circuit and system analysis.
Next, we discuss the construction of the block diagrams that are needed as input (sec-
tion 4.3.3). This is followed by a description of the data structures (section 4.3.4) and
the computational flow (section 4.3.5) of the Symbolic HTM algorithm. We conclude
this section with experimental results obtained from the application of SymbolicHTM
to two different downconversion stages (section 4.3.7 and 4.3.8).

4.3.1 Prior art

Symbolic analysis has a long standing history [Fern98, Gie91, Lin91]. Traditionally,
it focuses on the behavior of LTI networks with extensions towards symbolic weakly-
nonlinear circuit analysis [Wamb98a]. Expressions are derived using analytical tech-
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niques (either matrix-based or graph-based). More recently, a fitting-based approach
for constructing symbolic expressions was suggested as an alternative to the analytical
methods [Dae03].

4.3.1.1 LTI network analysis

The first research boom in the field of symbolic circuit analysis focused its efforts on
LTI networks [Fern98, Gie91, Lin91]. These LTI networks were obtained by replacing
nonlinear network elements, e.g. transistors, by a small-signal model. The network
behavior is then characterized by symbolic expressions for input-output transfer func-
tions, input/output impedances, etc.

Early on, it became clear that the number of terms in these symbolic expressions grows
exponentially with the network’s complexity. In order to deal with this “explosion
of terms”, people introduced techniques for simplifying the expressions, both after
[Gie91], during [Wamb98b] and before [Dae02] generation. A second track of research
involved hierarchical circuit analysis, resulting in sequences of expressions [Star80].

Although techniques for LTI symbolic network analysis work fine on relatively small
circuits, they lack the ability to capture intermodulations between different signal com-
ponents. As such, their range of application excludes mixing behavior, harmonic dis-
tortion, etc.

4.3.1.2 Weakly nonlinear circuit analysis

In an effort to overcome the limitations of LTI network analysis, attention was focused
on the behavior of weakly nonlinear circuits [Verha01, Wamb98a]. This has resulted
in methods based on Volterra series and perturbation techniques, methods that operate
by an iterative application of linear techniques.

However, weakly nonlinear network analysis is not able to distinguish between lin-
ear time-varying and truely nonlinear behavior. For example, although one would be
tempted to consider a multiplication y(t) = e jkω0t × u(t) a nonlinear operation, it was
argued in section 3.3.1 of the previous chapter that the principle of superposition still
holds, making it a linear operation. Hence, the symbolic computation of the HTM-
elements using techniques for nonlinear symbolic LTI network analysis hence does not
fully exploit the linear nature of LPTV systems. This makes them suboptimal for this
kind of applications.

4.3.1.3 Fitting-based approaches

All of the methods discussed so far are analytical. This implies that they try to solve
the system or circuit equations through determinant expansion techniques, series ex-
pansions, spanning tree enumerations, etc. There is no predefined template for the
expressions that result, i.e. the form of the expressions is developed at run time.

An alternative technique that was recently proposed builds on the existence of a pre-
defined and parametrized template expression [Dae03]. Using numerical simulation
and data regression, one tries to determine suitable values for the template parameters.
This method suits very well for performance and strongly nonlinear system modeling.
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Basically, they can model anything that can be simulated. The disadvantage, of course,
lies in the need to find a suitable expression template a priori.

4.3.1.4 Contributions of this work

This section presents an algorithm to construct symbolic expressions for the HTM el-
ements of LPTV systems. The method is called SymbolicHTM. The input is a system
model in the form of a block diagram. The output consists of symbolic expressions for
the system’s HTM-elements in terms of the parameters characterizing the behavior of
its building blocks. The algorithm is based on analytical methods. There is no need for
a predefined expression template.

The input block diagram can, for example, be extracted from a circuit netlist using
techniques similar to the ones for behavioral modeling of LTI networks [Leyn01]. For
circuits consisting of a large number of nodes, more compact expressions are obtained
by modeling the often large LTI subcircuits using multiport representations. With Sym-
bolicHTM expressing the results in terms of symbols representing the multiport para-
meters, lengthy and uninterpretable expressions are avoided. The symbolic computa-
tion of these multiport parameter characteristics is then accomplished afterwards, using
well-established techniques for (LTI) symbolic circuit analysis [Fern98, Gie91, Lin91].
Hence, In the hierarchy of symbolic analysis, SymbolicHTM makes up a layer on top
of the existing tools for symbolic circuit analysis.

4.3.2 Symbolic LPTV system analysis: outlining the flow

Fig. 4.20 outlines the top-level flow used for the symbolic characterization of LPTV
system behavior. At the heart lies the symbolic analysis engine that computes symbolic
expressions for the input-output HTM elements given a description of the system’s
topology and building blocks. In this work, the input is required to be in the form of
a block diagram (or, equivalently, a signal flow graph). As shown in Fig. 4.20, this
may require an extra preprocessing step to convert, for example, a circuit netlist into
a block diagram description. Finally, when numerical values for the building block
parameters are available, they can be used to try and simplify the resulting expressions
by discarding terms that have negligible contribution.

In what follows, we discuss each of the steps of the SymbolicHTM algorithm in greater
detail. Section 4.3.3 briefly discusses constructing the input block diagram. Next, sec-
tions 4.3.4 and 4.3.5 deal with the operations of the engine for generating the expres-
sions. Finally, use of the algorithm is illustrated in sections 4.3.7 and 4.3.8 for two
types of downconversion stages.

4.3.3 Input model construction

SymbolicHTM takes a block diagram of the system to be analyzed as input. The com-
posing blocks can be LTI systems, represented by a symbol H(s) for their transfer
characteristic, multiplications with a periodic signal p(t), represented by the symbols
PkPP for its Fourier coefficients, or even other LPTV systems, represented by the sym-
bols for the elements of the 0-th column of the corresponding HTM (see section 4.3.4).
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Figure 4.20: Top-level flow for generating symbolic expressions for the
HTM elements characterizing LPTV system behavior. This work focuses
on the symbolic analysis engine that generates the expressions starting from
a block-diagram system description.
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Figure 4.21: Subcircuits consisting of a large number of nodes, like opamps,
are replaced by symbolic stamps, representing the subcircuit behavior using
(time-varying) multiport parameters

SymbolicHTM then expresses the HTM elements of the overall input/output character-
istics in terms of these symbols.

The extraction of the block diagram from a circuit netlist can be automated using exist-
ing techniques for behavioral modeling [Leyn01]. However, in order to keep the result-
ing symbolic expressions interpretable, for complex circuits it is necessary to work in
an hierarchical way. As illustrated in Fig. 4.21, this means that subcircuits consisting of
a large number of nodes, like opamps, are replaced by symbolic stamps, representing
the subcircuit, for example, using (time-varying) multiport parameters. Generation of
this symbolic stamp can be done separately and is a one-time effort. This procedure
is similar to the way how algorithms for traditional symbolic LTI network analysis
replace transistors by a stamp containing small-signal parameters like transconduc-
tances, resistors and capacitors. With the SymbolicHTM algorithm expressing the
system’s input/output HTM-elements in terms of the stamp parameters, lengthy and
uninterpretable expressions are avoided. This supports hierarchical analysis, where,
for example, the detailed dependence of the subcircuit’s multiport parameters on com-
ponent parameters is extracted afterwards using techniques for classical symbolic LTI
network analysis [Fern98, Gie91, Lin91].

Furthermore, before starting to generate symbolic expressions, it is possible to simplify
the input block diagram by applying similar techniques as used in LTI network analysis
[Dae02, Leyn01]. For example, a branch H̃(s) = H̃1(s)+ H̃2(s)+ H̃3(s) . . . containing
a number of parallel paths can be simplified by eliminating those paths H̃m(s) having
negligible contribution. Technically, this implies that we remove all paths for which∥∥∥∥H̃m(s)

∥∥∥∥ � ∥∥∥∥H̃(s)
∥∥∥∥. We refer to appendix A for more details on HTM norms. This

simplification requires of course numerical data, or other prior knowledge on the sys-
tem, to be available.

4.3.4 Data structures

In storing the HTM, it is not needed to store every matrix element separately. From the
structural relation (3.53) derived in section 3.3.4, it is seen that it is sufficient to only
store the nonzero elements H̃· ,0(s) of the HTM’s 0-th column. When these elements
are known over the entire frequency range ω∈ [−∞,∞], one is able to compute all other
elements of the HTM. SymbolicHTM, therefore, stores HTMs by means of expressions
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for the elements of their 0-th column.

As a note aside, we mention that this particular choice in storing HTMs best suits the
power series expansion method that SymbolicHTM is using to perform HTM inver-
sions. Algorithms performing the inversions, for example using rank-reduced approxi-
mations, may require alternate ways for storing HTMs and their elements.

4.3.5 Computational flow of the SymbolicHTM algorithm

Fig. 4.22 shows the global outline of the computational flow of the Symbolic HTM
algorithm. It starts from a system block diagram model and consists of three steps. In a
first (preprocessing) step, the input model’s feedback loops are cut by introducing a set
of loop variables. During the second step, which comprises the actual symbolic com-
putations, these loop variables are eliminated using symbolic Gaussian elimination in
order to obtain expressions for the input-output HTM elements. In a final (postprocess-
ing) step, these expressions can be simplified to obtain more compact and better read-
able expressions. The latter is only possible if numerical data are available to control
the truncation error [Gie91, Gie94]. In what follows, we explain each of these steps in
more detail.

4.3.5.1 Breaking the loops

In a first step, all loops in the block diagram are cut. This results in the introduction of
a set of loop variables. Given a graph-like representation, loops can be detected using
graph traversal algorithms [Thul92]. They are cut at the point where they first leave the
feedforward path. This process results in a set of equations⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪

⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎩⎪⎪

X1(s) = ∑G̃1,k(s)Xk(s)+ G̃1,inU(s)
X2(s) = ∑G̃2,k(s)Xk(s)+ G̃2,inU(s)

...
Y(s) = ∑G̃y,k(s)Xk(s)+ G̃y,inU(s)

(4.80)

with the Xk(s) representing the loop variables and the G̃l,· (s), l = 1,2, . . ., being the
HTMs characterizing the open-loop behavior. These open-loop HTMs are computed
as series and/or parallel connections of the building-block HTMs, using the principles
outlined in section 4.1. As a heuristic for obtaining better readable expressions, for
each loop equation l, a symbolic name can be assigned to the HTM corresponding to
the intersection of the graphs of the open-loop HTMs G̃l,· (s). This means that one
introduces auxiliary symbols to represent the HTM corresponding to the part in com-
mon to the HTMs G̃l,· (s). Expressing the open-loop HTMs G̃l,· (s) in terms of these
auxiliary symbols yields hierarchically structured and better readable expressions.

All of this is illustrated in Fig. 4.23 for the case of a simple feedback system. The top
graph represents the graph of the overall system. Each branch represents a (possibly
time-varying) building block. There is one feedback loop, hence leading to the intro-
duction of a loop variable X1 and its corresponding loop equation. The bottom part of
Fig. 4.23 shows the graphs corresponding to the open-loop HTMs G̃1,· (s). Here, the
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Figure 4.22: Outline of the computational flow of the Symbolic HTM algo-
rithm. First, all loops are cut and the loop equations constructed. Next, the
loop variables are eliminated using symbolic Gaussian elimination. When
numerical data are available, it can be used to simplify the resulting expres-
sions by eliminating irrelevant terms.
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Figure 4.23: Graphs representing a simple feedback system (top) and its
open-loop HTMs (bottom). Each branch represents a (possibly time-varying)
building block. The dashed lines mark the parts in common to both open-loop
HTMs.

dashed part is in common to both graphs and its corresponding HTM can be represented
using auxiliary symbols in order to make further expressions better readable.

4.3.5.2 Eliminating the loop variables

Next, the loop variables Xk(s) from (4.80) are eliminated using symbolic Gaussian
elimination. For X1(s), this implies that we solve

(
I−G̃11(s)

)
X1(s) = ∑

k>1

G̃1,k(s)Xk(s)+ G̃1,inU(s) (4.81)

and substitute the result back into the equations for X2(s),X3(s), . . . in (4.80). The
result is a reduced system with one equation and one variable removed. We proceed in
a likewise manner to eliminate the other loop variables until we end up with the desired
input/output relation.

The inversion of
(
I−G̃11(s)

)
, implied in equation (4.81), is performed using the power

series expansion (3.80) discussed in section 3.4.3.2. This expansion is truncated after
the first R terms. Here, R is provided by the user, unless numerical data are available.
In the latter case, its value can be determined based upon error control, as is done in
symbolic approximation techniques used for analyzing LTI networks [Fern98, Gie91,
Gie94, Wamb98b].

During computations, a number of simple measures can be taken to avoid wasting time
on unimportant contributions. Firstly, we can limit the number of tones, i.e. the number
of HTM elements, taken into account during computations. For each LPTV subsystem
and interconnection of subsystems, we assume that the HTM elements G̃0,k(s) ≈ 0 for
|k| > K with K a parameter that controls the SymbolicHTM algorithm. This assump-
tion allows us to skip a detailed computation of these HTM elements. Secondly, in
performing the necessary HTM inversions by means of (3.80), we introduce a dummy
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variable µ in the expansion, writing

H̃(s)−1 ≈
R−1

∑
r=0

µr (H̃LT I(s)−1∆H̃(s)
)r

H̃LT I(s)−1 . (4.82)

Here, for example, H̃(s)= I+G̃11(s)= H̃LT I(s)+∆H̃(s)=
(
I+ G̃11,LTI(s)

)
+∆G̃11(s).

The dummy variable µ is carried along during all subsequent inversion and substitution
processes. As a heuristic for obtaining only the relevant terms, it is assumed that all
contributions which are O

(
µR

)
are unimportant and can hence be neglected. Choosing

suitable values for both K and R can be done automatically, based on error control,
when numerical data are available. If not so, they need to be chosen manually. This
may require some educated guessing. The validity of the results that are obtained for
the chosen values of K and R then, of course, needs to be verified further on in the
design process, when numerical data becomes available.

4.3.5.3 Symbolic simplification

In a final step, the expressions for the input/output HTM elements can be simplified by
eliminating all terms with negligible energy, as is done in traditional linear symbolic
analysis [Fern98, Gie91, Gie94, Wamb98b]. Given the HTM element

H̃mHH ,n(s) = H̃mHH ,n;1(s)+ H̃mHH ,n;2(s)+ H̃mHH ,n;3(s)+ . . . (4.83)

the most straightforward approach is to eliminate all terms H̃mHH ,n,k(s) for which∥∥∥∥H̃mHH ,n;k(s)
∥∥∥∥� ∥∥∥∥H̃mHH ,n(s)

∥∥∥∥ (4.84)

Practically, this elimination is done by ranking the terms in equation (4.83) in order
of decreasing magnitude

∥∥∥∥H̃mHH ,n;k(s)
∥∥∥∥. Terms are then eliminated, starting with the

smallest ones, until the error being introduced exceeds some specified threshold. For
the norm

∥∥∥∥H̃mHH ,n;k(s)
∥∥∥∥, one can for example use

∥∥∥∥H̃mHH ,n;k(s)
∥∥∥∥ =

√
∑

l

wl
∥∥∥∥H̃mHH ,n;k( j2π flff )

∥∥∥∥2
(4.85)

Here, the set of frequencies { flff } is chosen to cover the frequency range of interest.
The weight coefficients wl allow us to (de-)emphasize frequency bands with respect to
each other. Note that this simplification procedure is only possible if numerical data
are available to estimate and control the simplification error.

4.3.5.4 Computational complexity

The complexity of the Symbolic HTM algorithm is roughly proportional to the total
number of all terms generated during the second (elimination) step. This number is (in

worst case) of the order O
(

N (2K +1)R+N−1 T R+N−1
)

, where N is the number of time-

varying feedback loops, K is a measure for the number of tones taken into account (as
defined above), T is the average number of terms necessary for modeling the open-loop
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HTM elements and R−1 is the order in µ up to which the contributions are computed.
Note that N and T are mainly functions of the size of the block diagram being analyzed
(as determined by the number of nodes of the corresponding signal flow graph). It is
through these parameters that the block diagram size (or equivalently, the circuit size)
influences the computational complexity.

4.3.6 SymbolicHTM: advantages and limitations

The great advantage of the Symbolic HTM algorithm lies in the automated symbolic
characterization of LPTV system behavior. HTM-based analysis is made accessible by
partial elimination of tedious and error-prone pencil and paper computations.

While being a strength, automation also implies a disadvantage. Automated analysis
often relies on heuristics and is not necessarily as smart as a human may be. Results
can, therefore, become more complicated than needed. SymbolicHTM, for example,
relies on the assumption that all terms that are O

(
µR

)
are not important while all other

terms are. If this assumption fails, it may either result in low-accuracy expressions or in
expressions that are too complicated to handle. A further condition for SymbolicHTM
to be applicable lies in the accuracy of (4.82) in computing the inverse of a HTM. Al-
though it often works fine, this power-series approximation does not apply to all types
of systems. For example, SymbolicHTM does not yield good results when applied to
PLLs implemented using sampling-type PFDs14.

Finally, care must be taken in order to avoid an explosion of the number of terms in
the expressions that are generated. Computational complexity considerations in the
previous section show that this number of terms grows exponentially with both the
circuit size N and the order of the power-series expansion R. Large values of N and
R hence lead to complex expressions that are hard to interpret. Term explosion is a
problem inherent to all algorithms for symbolic circuit analysis that are based on ana-
lytical methods. Avoiding term explosion is accomplished by keeping the input model
complexity as low as possible, for example, by the introduction of extra hierarchy. Fur-
thermore, it is required that (4.82) converges sufficiently fast, i.e. R can be chosen
sufficiently small in order to prevent term explosion.

4.3.7 Application 1: linear downconversion mixer

By nature, mixers are intended to operate as LPTV systems: they are designed to
transfer information from one frequency band (carrier) to another. However, in almost
any mixer, both wanted and unwanted signal transfers occur. Proper characterization
of the mixer’s behavior requires quantifying all of these transfers.

In a first application, we use the SymbolicHTM algorithm to characterize the behav-
ior of the linear downconversion mixer shown in Fig. 4.24. This is accomplished by
generating symbolic expressions for the HTM elements H̃0HH ,1(s), H̃0HH ,0(s) and H̃0HH ,2(s).
These expressions are verified by comparison with numerical simulations for typical

14This, however, could be overcome by allowing SymbolicHTM to also use rank-reduced techniques to
perform HTM inversions. In that case, however, we need a heuristic that decides on which method to use to
invert a particular HTM. This again requires expertise of the field.
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Figure 4.24: Linear downconversion mixer topology. The amplifier is real-
ized as a two-stage Miller-OTA.

n3n1 n2

V

fb

C

C

VinVV

out1

oscVV

G

C

g

C gout2
in

m1

out2

fb

gout1

Cc

(V   ,V   V  )V  V    V   V   DSI V  V  

Cgs

(V  ))n2V  V  gm2

Figure 4.25: Single-sided equivalent circuit of the linear downconversion
mixer. The transistors have been replaced by (nonlinear) voltage-controlled
current sources.

values of the design parameters. The mixer topology, introduced in [Crol95], was
modeled using a two-stage Miller-OTA. In what follows, the mixer building block
models are discussed, some remarks concerning the construction of the loop equations
(4.80) are made and the resulting symbolic expressions are verified through numer-
ical simulations. As a notational convention, we use uppercase for the large-signal
currents/voltages and lowercase for the (time-varying) small-signal components. The
Laplace transforms of the latter are also denoted in uppercase but are recognized by
their argument s or jω.

4.3.7.1 Modeling the mixer components

In order to construct a block diagram representation for the mixer topology shown in
Fig. 4.24, we transform it to the single-sided equivalent circuit shown in Fig. 4.25.
Table 4.1



124 4.3 AUTOMATED SYMBOLIC LPTV SYSTEM ANALYSIS

Symbol Value Symbol Value
CcCC 2 pF G f b 0.1 mS
Cf bC 1.6 pF gm1 2.8 mS
CgsC 70 fF gm2,0 3.8 mS
CinCC 16 pF gm1

gout1
30

CoutCC 1 60 fF
g
gg

m2,0
gout2

20
CoutCC 2 10 pF β 0.5 mS/V
VoscVV 0.15 V VinVV ,DC −VTVV 0.2 V

Table 4.1: Numerical values for some important mixer design parameters.

lists the values for some of the most important parameters as they were set for numeri-
cal evaluation of the mixer’s behavior. In the equivalent model, transistors are replaced
by (nonlinear) voltage-controlled current sources. The single-sided input transistor
current model is based upon the level-1 equations for a MOST in triode region, or

IDSII = β(VoscVV −VnVV 1)(VinVV −VTVV )− γβ
2

(
V 2

nVV 1 −V 2
oscVV

)
. (4.86)

Here, VTVV is the threshold voltage and γ a parameter introduced to capture the mismatch
between the two input transistors in the original balanced configuration in Fig. 4.24.
VoscVV (t) is the oscillator signal, VinVV (t) is the input signal as applied to the gates of the in-
put transistors and VnVV 1(t) is the voltage at the OTA input terminal n1. Furthermore, due
to nonlinear behavior, the effective small-signal transconductance gm2 of the second
OTA stage depends on the voltage VnVV 2(t) on the node n2, as is indicated in Fig. 4.25.
As a consequence, the periodic large-signal swing of this voltage causes a periodic
modulation of the small-signal transconductance gm2. The voltage swing VnVV 1 at the
input of the first OTA stage is small enough to allow us to neglect this effect for the
transconductance of this first stage.

The mixer block diagram was then extracted from the nodal equations of the topology
in Fig. 4.25 and is shown in Fig. 4.26. The time-varying subblocks are indicated with
a tilde on top of the block name. The two main sources of time-varying behavior are
due to the modulation of the small-signal parameters of the input transistors and of the
transconductance of the second OTA stage. As the input transistors are concerned, use
of equation (4.86) yields the small-signal current model

iDS = β(VoscVV (t)−VnVV 1(t))vin −β(VinVV (t)−VTVV )vn1 − γβVnVV 1(t)vn1 . (4.87)

Here, the capital letters represent the (time-varying) operating points while the small
letters represent the small-signal components. The first term in (4.87) captures the de-
sired mixing behavior, corresponding to the block H̃osc(s) in Fig. 4.26. The last term in
(4.87) adds a time-varying component to the OTA input admittance. This corresponds
to the feedback path H̃n1(s). More precisely, H̃osc(s) corresponds to the series con-
nection of a multiplication with β(VoscVV (t)−VnVV 1(t)) and an LTI filtering operation with
transfer function 1

Yf bY (s) . Furthermore, H̃n1(s) is the series connection of −γβVnVV 1(t) and
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Figure 4.26: Block diagram of the linear downconversion mixer. Time-
varying blocks are marked with a tilde on top of their name. Blocks without
a tilde are time-invariant.

1
Yf bY (s) . In the above, VoscVV (t) = VoscVV cos(ω0t) is modeled as a pure cosine. Note that,

in the expressions that follow, the symbol VoscVV is always used to refer to the oscilla-
tion amplitude. When referring to the complete oscillation waveform, we’ll explicitly
denote the time dependency using VoscVV (t).

The second source of time-varying behavior is, as was already explained before, due to
the modulation of the small-signal transconductance of the second OTA stage, or

gm2(t) = ∑
k

gm2,ke jkω0t . (4.88)

This modulated small-signal transconductance is symbolically represented by the Fourier
coefficients gm2,k. In the block diagram of Fig. 4.26, it is contained within the time-
varying gain block Ã2(s), which represents the series connection of a multiplication
with gm2(t) and filtering by 1

YoYY (s) , the output impedance.

The remaining blocks in Fig. 4.26 are time-invariant and are determined by

Yf bY (s) = G f b + sCf bC (4.89)

YgsYY (s) = sCgsC (4.90)

YoYY (s) = gout2 + s(CoutCC 2 +CcCC )+Yf bY (s) (4.91)

YnYY 1(s) = gin + s(CinCC +CgsC )+Yf bY (s) (4.92)

gin = β(VinVV ,DC −VTVV ) (4.93)

YnYY 2(s) = gout1 + s(CoutCC 1 +CcCC ) (4.94)

HiHH (s) =
Yf bY (s)
YnYY 1(s)

(4.95)

HcHH (s) =
sCcCC

YnYY 2(s)
(4.96)

A1(s) =
gm1

YnYY 2(s)
(4.97)

Numerical values for the most important parameters occurring in these formulas were
already listed in Table 4.1.
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4.3.7.2 Computing the HTM elements of the overall mixer

In a first step of the symbolic HTM algorithm, the loop equations (4.80) are con-
structed. During this process, two loop variables and one auxiliary HTM G̃(s) are
introduced. This auxiliary HTM corresponds to the part encircled by the dashed line
in Fig. 4.26, and is generated as the intersection of the graphs corresponding to the
open-loop HTMs of the second loop equation. It represents a system with

⎧⎨⎧⎧
⎩
⎨⎨ G̃0,0(s) =

HiHH (s)(A1(s)(gm2,0+sCcCC )+Yf bY (s))
YoYY (s)

G̃k,0(s) = HiHH (s)A1(s)gm2,k
YoYY (s+ jkω0) for k �=�� 0

(4.98)

Next, symbolic expressions are generated for the mixer’s input-output HTM elements
H̃0HH ,0(s), H̃0HH ,1(s) and H̃0HH ,2(s). These elements, respectively, capture the downconversion
behavior of the signal contents around 0, f0ff and 2 f0ff to baseband. Computations were
done up to first order in the dummy variable µ (see equation (4.82)), while taking 7
tones into account. They took about 3 seconds of CPU time to complete on a Sun Ul-
tra30. In the absence of prior numerical data, these values were selected manually. In
what follows, the resulting symbolic expressions are verified numerically for a mixer
design with a bandwidth of 1 MHz and a local oscillator frequency f0ff = 20MHz. Nu-
merical extraction of the HTM elements was done in MatlabTM using an algorithm
similar to the one in [Royc99]. Comparison of the symbolic expressions generated by
SymbolicHTM with numerically extracted HTM elements is done by integrating the
difference between both over the interval [0, f0ff ], with a weight function that empha-
sizes the characteristic in the 1 MHz passband by a factor of 10 dB.

The desired downconversion behavior from f0ff to baseband, determined by the HTM
element H̃0HH ,1(s), is dominated by the contribution of 0-th order in µ. It is given by

H̃0HH ,1(s) =
1
2

βVoscVV G̃0,0(s)(
1− G̃0,0(s)− HcHH (s)(gm2,0+sCcCC )

YoYY (s)

)
Yf bY (s)

(4.99)

with VoscVV being the amplitude of the local oscillator signal and G̃0,0(s) given by (4.98).
At low frequencies, this expression can be approximated as

H̃0HH ,1(s) ≈ 1
2

βVoscVV
Yf bY (s)

=
βVoscVV
2G f b

1
1+ s

G f b/Cf bC

(4.100)

It exhibits a lowpass behavior, as was to be expected. Comparison with numerical
computations shows the full expression (4.99) to be accurate up to 0.01%.

For the HTM elements H̃0HH ,0(s) and H̃0HH ,2(s), things are more complicated. The expres-
sion for H̃0HH ,0(s) contains 11 terms while the one for H̃0HH ,2(s) contains 8 terms. In both
cases, no term is really dominating. As an example, we list the first couple of terms of
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the HTM element H̃0HH ,2(s):

H̃0HH ,2(s) =
1
2

βVoscVV G̃−1,0(s+ jω0)
L(s)Yf bY (s+ jω0)

+
βVoscVV G̃0,0(s+ jω0)G̃−1,0(s+ jω0)

L(s)L(s+ jω0)Yf bY (s+ jω0)
(4.101)

−1
2

γβ2VoscVV VnVV 1,−1G̃0,0(s)HiHH (s+ jω0)
L(s)Yf bY (s)Yf bY (s+ jω0)

+ . . . .

Here, L(s) = 1 − G̃0,0(s)− HcHH (s)(gm2,0+sCcCC )
YoYY (s) , the G̃k,0(s) are as defined in (4.98) and

the VnVV 1,k are the Fourier coefficients corresponding to the time-varying operating point
VnVV 1(t) in equation (4.87). The full expressions for both H̃0HH ,0(s) and H̃0HH ,2(s) can be
found in appendix C.

For purpose of analysis, the terms in the expressions for H̃0HH ,0(s) and H̃0HH ,2(s) can be
grouped by combining those having a similar low-frequency behavior. In most cases,
this concerns the frequency range of interest. Grouping is accomplished by using the
fact that, typically, for |s|�ω0 and k �=�� 0, the factors of the form H(s+ jkω0) occurring
in the terms above can be approximated as H(s + jkω0) ≈ H( jkω0), i.e. a constant.
This leads us, for example, to group the first two terms in expression (4.101), since both
are proportional to 1

L(s)YoYY (s) as their low-frequency behavior is concerned. Combining

terms in this way, H̃0HH ,0(s) contains 3 components and H̃0HH ,2(s) 2. This provides a much
better starting point for analyzing and interpreting the expressions. For example, for
|s| � ω0, H̃0HH ,0(s) looks like

H̃0HH ,0(s) ≈ C1
G0(s)YgsYY (s)
L(s)Yf bY (s)

+C2CC
βVoscVV

L(s)YoYY (s)

+C3CC
βVoscVV G0(s)
L(s)Yf bY (s)

(4.102)

≈ C1
YgsYY (s)
Yf bY (s)

+C2CC
βVoscVV
gm2,0

1
A1(s)HiHH (s)

+C3CC
βVoscVV
Yf bY (s)

(4.103)

with the coefficients C1 (VoscVV ,ω0, . . .), C2CC (VoscVV ,ω0, . . .) and C3CC (VoscVV ,ω0, . . .) frequency-
independent functions of the building block parameters. Likewise, it holds for H̃0HH ,2(s)
that

H̃0HH .2(s) ≈ D1
βVoscVV

L(s)YoYY (s)
+D2

βVoscVV G0(s)
L(s)Yf bY (s)

(4.104)

≈ D1
βVoscVV
gm2,0

1
A1(s)HiHH (s)

+D2
βVoscVV
Yf bY (s)

(4.105)

with, again, D1 (VoscVV ,ω0, . . .) and D2 (VoscVV ,ω0, . . .) frequency-independent functions of
the building block parameters.
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HTM element Relative error
H̃0HH ,1(s) -81.0 dB
H̃0HH ,0(s) -53.8 dB
H̃0HH ,2(s) -33.5 dB

Table 4.2: Relative accuracy of the symbolically computed downconversion
mixer characteristics as compared to direct numerical computation.

The accuracy of these symbolic models —as compared to HTM elements numerically
extracted by means of an algorithm similar to the one in [Royc99]— is listed in ta-
ble 4.2. The results show that the expressions, generated up to first order in the dummy
variable µ, allow us to model H̃0HH ,0(s) and H̃0HH ,2(s) up to accuracies of respectively 0.2%
and 2%, with the expression for H̃0HH ,1(s) being even more accurate. This is quite suffi-
cient for most purposes. Fig. 4.27 plots H̃0HH ,0(s) and H̃0HH ,2(s) and their components for
the design parameters chosen as in table 4.1. The solid bold line represents the ex-
act overall transfer characteristic, while the marked lines correspond to the individual,
symbolically generated components (after grouping).

Computing contributions up to higher order in µ rapidly leads to an explosion in the
number of symbolic terms. Simplification techniques [Fern98, Gie91, Gie94, Wamb98b]
become unavoidable to control this explosion. This, however, requires numerical data
concerning the building block parameters. Often, such data is not available at the stage
in the design process where symbolic system characterization is desirable. The results
in table 4.2, however, indicate that the contribution of these higher-order terms to the
overall characteristic is negligible, making it in most cases unnecessary to compute
them. Up to first order, the number of terms is small enough for the symbolic models
to be useful and interpretable.

4.3.8 Application 2: Receiver stage with feedback across the mix-
ing element

Fig. 4.28 shows part of a receiver system consisting of a (bandpass) filter H1(s), a mixer
and a (lowpass) filter H2HH (s). The output of the mixer stage is fed back to its input via an
often unwanted (i.e. parasitic) feedback filter Hf bH (s). In the example of the linear mixer
in Fig. 4.24, this parasitic feedback path runs through the gate-source capacitances of
the input transistors. It causes downconversion to baseband of the signal content in the
frequency bands centered around f = 0, f = 2 f0ff , etc. As a result, 2nd-order distortion
components generated in previous stages of the receiver end up in the desired output
frequency band.

For the system shown in Fig. 4.28, we used SymbolicHTM to compute the expressions
for the input-output HTM elements for several levels of accuracy. Here, the level of
accuracy is determined by the order of the dummy variable µ up to which results are
computed, and the number of tones taken into account. The HTM elements were evalu-
ated for f0ff = 10MHz, H1(s) a 4th-order maximally flat bandpass filter centered around
f0ff with a 3 dB bandwidth of 1.5 MHz, H2HH (s) a 6th-order Chebyshev lowpass filter with
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(a) HTM element H̃0HH ,0(s)
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(b) HTM element H̃0HH ,2(s)

Figure 4.27: Exact transfer characteristic of H̃0HH ,0(s) and H̃0HH ,2(s) (solid bold
lines) and their symbolically generated components (marked lines). (a) The
squared, crossed and circled line respectively correspond to the first, second
and third term in equation (4.102). (b) The circled and squared line respec-
tively correspond to the first and second term in equation (4.104).
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++
H   (s)fb    

Sin SoutH  (s)2  1H  (s)1

f0V    cos(2      )π f tπ 0f f V    V    

Figure 4.28: Receiver system consisting of a bandpass filter H1(s), a lowpass
filter H2HH (s) and a downconversion mixer in between. The mixer output is fed
back to its input via the (parasitic) feedback path Hf bH (s).

a passband ripple of 0.5 dB and its corner frequency at 10 kHz, and Hf bH (s) a highpass
filter with its corner frequency at 100 kHz and a high-frequency attenuation of -15dB.
This highpass feedback path corresponds with the fact that it typically arises due to
capacitive current injections.

The desired downconversion behavior from f = f0ff to baseband is described by the
HTM element H̃0HH ,1(s) and is computed to be

H̃0HH ,1(s) = VoscVV
2 H2HH (s)H1(s+ jω0)

+V 3
oscVV
8 H2HH (s)H1(s+ jω0)Hf bH (s)Hf bH (s− jω0)

+V 3
oscVV
8 H2HH (s)H1(s+ jω0)Hf bH (s)Hf bH (s+ jω0)

(4.106)

This result is accurate up to 2nd order in µ while taking 7 tones into account. In
expression (4.106), the first term describes the intended signal transfer, while the other
terms can be considered as linear distortion components due to the parasitic feedback
filter Hf bH (s). The downconversion behavior from f = 0 and f = 2 f0ff to baseband is
respectively modeled by the HTM elements

H̃0HH ,0(s) = V 2
oscVV
4 H2HH (s)H1(s)Hf bH (s− jω0)

+V 2
oscVV
4 H2HH (s)H1(s)Hf bH (s+ jω0)

(4.107)

and

H̃0HH ,2(s) =
V 2

oscVV
4

H2HH (s)Hf bH (s+ jω0)H1(s+2 jω0) (4.108)

From (4.107), it is observed that, with H1(s) being a bandpass filter centered around
ω0, H̃0HH ,0(s)∼ H1(s) vanishes almost completely at low frequencies. On the other hand,
equation (4.108) shows that, for a given feedback path Hf bH (s), the order of magnitude
of H̃0HH ,2(s) will be largely determined by H1(2 jω0). In order to get H̃0HH ,2(s) as low as
possible, it is advantageous to design the upper (high-frequency) stopband characteris-
tic of H1(s) as steep as possible. For a given filter order, this suggests an asymmetric
filter design with the majority of the filter zeros located in the upper stopband. This
will result in an increase of H̃0HH ,0(s) as compared to a symmetric design, but as long as
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HTM element Relative error
H̃0HH ,1(s) -78.0 dB
H̃0HH ,0(s) -41.1 dB
H̃0HH ,2(s) -35.9 dB

Table 4.3: Relative accuracy of the symbolically computed receiver HTM
elements (4.106)-(4.108) with respect to results obtained by direct numerical
extraction.

the bandwidth of the lowpass filter H2HH (s) is much smaller than ω0, this won’t matter
much.

Fig. 4.29 plots the HTM elements with H1(s) respectively being a symmetric and an
asymmetric bandpass filter. H1(s) being symmetric means that it has two zeros at ω = 0
and two zeros at ω = ∞. H1(s) being asymmetric means that it has one zero at ω = 0
and three zeros at ω = ∞. The solid lines plot the values as obtained by evaluating the
expressions (4.106)-(4.108), while the marks indicate values as extracted out of Mat-
lab/Simulink simulations. The crosses, circles and squares respectively represent the
transfer functions H̃0HH ,1( jω), H̃0HH ,0( jω) and H̃0HH ,2( jω). Comparing Fig. 4.29(a) and (b)
shows that use of an asymmetric filter design indeed improves rejection of the signal
content near 2ω0, lowering H̃0HH ,2(s) with 6 dB. As predicted, this comes at the expense
of an increase of H̃0HH ,0(s). Note that this improved H̃0HH ,2(s) requires no extra hardware
(the filter order remains unchanged) but only proper placement of the filter zeros. It
illustrates the design insights gained by having the expressions (4.106)-(4.108) avail-
able.

The accuracy of the symbolic models (4.106)-(4.108) was compared to values extracted
from numerical simulations. These simulations involved applying a single input tone at
respectively f0ff + fsff , fsff and 2 f0ff + fsff Hz, for fsff ranging from 200Hz to 1MHz. Analysis
of the steady-state output signal then yields the output signal component at baseband (at
frequency fsff ). The result is listed in table 4.3. As can be seen, all symbolic expressions
are at least within 2% accurate, with H̃0HH ,1(s) even being 0.01% accurate.

Fig. 4.30 illustrates how the model accuracy varies with the order of µ and the number
of tones taken into account in computing the input-output HTM. It was plotted for
the HTM element H̃0HH ,1(s). For other HTM elements, similar results were obtained.
Fig. 4.30 shows that, for constant µ, there is a maximum number of tones beyond
which no improvement in accuracy can be obtained by increasing the number of tones
taken into account. This is due to the fact that, when limiting the number of terms in
the approximation (4.82), effects due to the presence of higher-order tones do not enter
the expressions for the HTM elements of interest. A likewise reasoning holds when
keeping the number of tones constant and varying µ. As a rule of thumb, it is of no use
to select the order of µ larger than half the number of tones taken into account during
computations.

Fig. 4.31 shows the total number of terms generated by SymbolicHTM, summed over
all computed HTM elements, versus the order of µ and the number of tones taken
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(a) Symmetric bandpass filter H1(s)
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(b) Asymmetric bandpass filter H1(s)

Figure 4.29: Input-output HTM elements of the overall receiver for (a) a
symmetric and (b) an asymmetric bandpass filter H1(s). The crosses, circles
and squares respectively represent the HTM elements H̃0HH ,1( jω), H̃0HH ,0( jω)
and H̃0HH ,2( jω).
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Figure 4.30: Accuracy of the symbolic expression for H̃0HH ,1(s) versus the or-
der of µ and the number of tones (2K + 1) taken into account in generating
the expression. Note that the direction of the Z-axis has been reversed.
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Figure 4.31: The total number of terms generated versus the order of µ and
the number of tones (2K + 1) taken into account in generating the HTM ex-
pressions. The CPU time spent per term equals on average 4e-3 seconds.
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into account. On average, the CPU time spent to generate a single term equals 4e-3
seconds. It is the number of terms which determines the computational cost of the
SymbolicHTM algorithm. As can be seen, the number of generated terms quickly rises
with the order of µ, especially when a large number of tones is taken into account. In
this second example, it took 0.15 sec to compute results up to 2nd order in µ while
taking 7 tones into account. This time increases up to a couple of seconds for both
µ and K becoming large. Fig. 4.30, however, shows that these extra terms often do
not contribute to the accuracy of the HTM elements of interest. This means that much
time is spent on computing terms that are insignificant and hence of no interest. Also,
a larger number of terms makes the symbolic results harder to interpret. However,
combining results in Fig. 4.30 and 4.31, it is observed that a satisfactory degree of
accuracy can be obtained for relatively simple expressions.

4.4 Conclusions and directions for further research

Both PLL analysis and the SymbolicHTM algorithm demonstrate that the use of the
HTM formalism goes beyond shear theory. They show that it is possible to obtain
detailed results —both numerical and symbolic— that characterize the behavior of real-
life systems. Hereby, it is possible to automate part of the analysis. This contributes
to the power and flexibility of HTMs as a frequency-domain framework for capturing
LPTV system behavior. As such, it is made a valuable extension to the well-known
techniques for LTI system analysis.

HTMs were proven to be an elegant framework for an exact mathematical treatment
of (linearized) PLL behavior. HTMs support a detailed description of the time-varying
characteristics inherent to all practical PLL implementations. Existing (LTI) techniques
for PLL modeling were shown to be specific approximations of the exact time-varying
description. For the first time, these traditional models were given solid mathematical
groundings with their shortcomings clearly identified.

The systems to which HTM-based analysis applies, are by no means exhausted. For ex-
ample, an oscillator’s impulse sensitivity function (see section 4.2.4.3) can be obtained
using HTM-based techniques. The HTMs involved turn out to have a rank-degenerate
structure at DC. This can be exploited to streamline computations. A first analysis of
oscillator behavior using HTM-based techniques shows promising results for both the
efficient computation of steady-state and phase noise behavior.

Furthermore, having established methods that capture time-varying linearized PLL be-
havior, we can proceed by taking time-varying weak nonlinearities into account. In a
PLL, for instance, the PFD and the oscillator make up sources of time-varying weakly
nonlinear behavior. Analyzing time-varying weakly nonlinear behavior builds on per-
turbation techniques and linear time-varying system analysis. It thereby proceeds along
the same lines of reasoning as used for time-invariant weakly nonlinear system analysis
[Wamb98a]. Developing (symbolic) methods for time-varying weakly nonlinear sys-
tem analysis would contribute yet another step towards a true top-down analysis (and
hence design) of electronic systems and circuits.



Chapter 5

Modeling oscillator dynamic behavior

If man were restricted to collecting facts the sciences would be only a sterile
nomenclature and he would never have known the great laws of nature. It is
in comparing phenomena with each other, in seeking to grasp their relation-
ships, that he is led to discover these laws...
. —Pierre-Simon Laplace

O
scillators are key building blocks in almost all of today’s communication systems.
Because of their importance, we need a clear understanding of the fundamentals

of their behavior. This understanding must be accompanied by methods for accurate
analysis and for the generation of compact behavioral models. The dynamic behavior
of many oscillators is characterized by a mixture of fast- and slow-varying time con-
stants. On the one hand, we observe the system’s fast-varying oscillations. On the other
hand, the properties of these oscillations, e.g. amplitude and phase, vary slowly over
time. This kind of behavior results in long simulation times when handled by means
of traditional algorithms (e.g. SPICE). In this chapter, we focus on methods that allow
us to separate an oscillator’s fast- and slow-varying dynamics. These methods are used
for the improvement of simulation efficiency, for behavioral model extraction and for
the symbolic characterization of an oscillator’s dynamic behavior. As such, they are a
step towards improved oscillator design methods.

The methods presented in this chapter are based on perturbation analysis and averaging
techniques. Oscillator perturbation analysis relies on partitioning the overall oscillator
circuit into a core system and a set of perturbation components. The core system is
solved by a multitude of different steady-state solutions. Each solution is called a
state of the system. The perturbation components disturb the core, driving it from one
state to another. This state-changing behavior captures the essence of the oscillator’s
dynamic behavior.

Detailed observation shows that the changes in the state of an oscillator are dominated
by a slow-varying component. Typically, this component is the one of main interest.
Using averaging techniques, it is possible to identify the part of the state-changing
equations that generates this slow-varying behavior. These averaged equations can be
solved very efficiently. They can be used as a starting point for oscillator phase-noise
analysis and for the generation of compact behavioral models.

In what follows, section 5.1 introduces the basic concepts underlying the oscillator
analysis elaborated in this chapter. Hereby, we use the earth’s motion around the sun
as an example. The mathematics underlying these concepts is addressed in sections 5.3

135
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to 5.6. The theory is applied to oscillator phase noise analysis in section 5.7 and to the
behavioral modeling of harmonic oscillators in section 5.8.

5.1 The story behind the math

Constructing of compact oscillator models requires a clear understanding of the mech-
anisms that govern oscillator dynamics. Oscillators exhibit a mixture of fast- and slow-
varying behavior. Rapid variations are caused by, for instance, energy that oscillates
between a set of energy storing elements, e.g capacitors and inductors. Energy ex-
changes with the surroundings cause slow-varying modulations. Understanding the
interplay between fast- and slow-varying dynamics is key to understanding an oscilla-
tor’s behavior.

In order to clarify the fundamental mechanisms that govern an oscillator’s behavior, we
consider one of the first oscillations ever studied: the motion of the earth around the
sun. As is the case for an electronic oscillator, the earth’s motion contains a periodic
fast-oscillating component: its elliptic motion around the sun. Here, “fast” implies a
time scale of the order of a year. Due to small perturbations in the solar system’s gravi-
tational field, the shape and period of the earth’s elliptic orbit slowly change over time.
Here, slow indicates a time span of ten-thousands of years. These slow-varying changes
are governed by mechanisms similar to the ones that govern the transient dynamics of
an electronic oscillator’s amplitude and phase. As such, the same mechanisms that
govern an oscillator’s phase noise behavior caused the ice ages.

5.1.1 Earth: a big oscillator

One of the first oscillations ever to be studied in depth is the earth’s motion around the
sun. The modern point of view on this subject started with the work of Copernicus
(1543), Kepler (1609), Galilei (1616) and Newton (1687). Lagrange (1784), Laplace
(1799) and Poincaré (1892) made important contributions to the topic, for example, on´
the use of perturbation series techniques.

Fig. 5.1 shows the problem setup for computing the earth’s trajectory around the sun.
Gravity attracts the earth towards the sun with a force that is inversely proportional
to the square of the distance of separation r. However, the presence of other planets,
the non-spherical shape of both the sun and the earth and some other effects introduce
an additional but small force component εf(r, t). The total force exerted on the earth
therefore equals

F(r, t,ε) =
K
r2 r̂+ εf(r, t) . (5.1)

Here, r̂ is the unit vector pointing from the earth to the sun while r = rr̂. Furthermore,
ε denotes a small number indicating that the second term in (5.1) is, typically, much
smaller than the first component. The term εf(r, t) is, therefore, called a perturbation
term. Given the driving force (5.1), the earth’s motion can now be solved from

m
d2r
dt2 = F(r, t,ε) (5.2)
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Figure 5.1: Gravity attracts the earth towards the sun with a force that is
inversely proportional to the square of the distance of separation r. This 1/r2

term causes the earth to describe an ellipse around the sun. The presence of
other planets and some other effects introduce an additional but small force
component εf. On the long haul, this tiny force causes the shape of the earth’s
orbit to change.

where m is the earth’s mass1.

5.1.2 Unperturbed system behavior: neglecting small forces

The smallness of the term εf in (5.1) suggests that it only has a small impact on the
earth’s behavior. In studying the earth’s motion, we are therefore tempted, at least for
the time being, to forget about this perturbation term. Hence, we use

Fnewton = F(r, t,0) =
K
r2 r̂ . (5.3)

as the force in the equation of motion (5.2). As shown in Fig. 5.1, this force causes the
earth to describe an elliptic orbit around the sun. This behavior can be interpreted as a
periodic oscillation with a period that equals a single year.

The orbit drawn in Fig. 5.1 is by no means unique. This non-uniqueness should be
understood as the existence of a multitude of steady-state solutions, each satisfying
(5.2) for ε = 0. If the earth is set off with different initial conditions, different orbits
result, either located in a different plane or with a different shape. Fig 5.2 shows a
number of different orbits, each solving (5.2) for ε = 0. Characterizing the earth’s
(possible) behavior therefore requires us to find all possible solutions to (5.2) for ε = 0.

Mathematically, for ε = 0, the equation (5.2) is called unperturbed equation of motion.
This equation models the behavior of the system’s core. In the current example, the
core is associated with the earth, the sun and the 1/r2 attracting force between them.
The steady-state solutions that solve the unperturbed equations of motion are called
the states of the core system. Characterizing the core system behavior involves finding

1This is a somewhat simplified representation of the problem. A more accurate problem statement can be
found in [Hest87].
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sun
earth

B
A

Figure 5.2: The unperturbed equation of motion is solved by a multitude of
steady-state solutions. Depending upon the initial conditions, the earth could
either settle on, for instance, orbit A, B or C. The perturbing force εf drives
the earth from one possible orbit to another.

all possible states. In other words, we are looking for all orbits that the earth could
possibly settle on. In asymptotically stable systems, like electronic filters, there is only
one state. The system’s output quickly settles on a unique steady-state solution. The
earth, however, could settle on a multitude of different orbits. Every ellipse with the
sun at one of its focal points represents a valid steady-state solution2 and, therefore, a
state of the core system. In this example, such a state is characterized by the properties
of the corresponding orbit, e.g. the plane of revolution and the eccentricity. Note that
none of these orbits is absolutely stable, i.e. if earth is driven away from an orbit, e.g.
because of a meteorite impact, there is no force restoring earth to this original orbit.

5.1.3 Perturbed system behavior: changes in the earth’s orbit

What is so important about finding all possible orbits (states)? Isn’t it sufficient to just
identify the one that the earth is currently tracking? No, it isn’t! The fact that the earth
is, for example, currently tracking orbit A (see Fig. 5.2) does not imply that it will do
so forever. Impact of a meteorite or any other external influence may drive the earth
from orbit A to orbit B. Since orbit B is a valid solution to the unperturbed equation
of motion, the earth would be perfectly happy on this second orbit and would make no
attempt to return to the original orbit A. External influences can hence drive the core
system from one state to another. When the external influences persist, this process
continues, driving the earth, for instance to a third orbit (state) C.

The state-changing behavior discussed above represents the basic idea underlying os-
cillator perturbation analysis. Due to a small but non-zero ε in (5.2), the equation of
motion, and therefore the earth’s behavior, slightly deviates from that of the unper-
turbed core system. This can be dealt with by considering the perturbing force term εf

2The same holds for all parabolas and hyperbolas.
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Figure 5.3: The joint forces exerted by the other planets in the solar system
cause, amongst others, a precession of the earth’s orbit around the sun. The
position of the perihelion advances about 0.32o per century.

as an external influence that drives the core system from one state (orbit) to another.
In Fig. 5.2, εf causes the earth, for instance, to change from state (orbit) A to state
(orbit) B. Since εf is small, the equations that govern this state-changing behavior can
be extracted using perturbation series expansion techniques [Kev81]. These equations
describe how the characteristics of the earth’s elliptic orbit, like plane of revolution and
eccentricity, change over time.

The smallness of the perturbing force εf has another important consequence: the rate
at which the earth is changing states (orbits) is much slower than the speed with which
the earth is traversing the orbits associated with these states. It takes centuries before
a significant change in state (orbit) is observed. Hence, changes in the system’s state
occur on a time scale that is much slower than that of the earth’s periodic revolution
around the sun. It is therefore said that the revolution around the sun occurs on a fast-
varying time scale while the earth’s dynamic (state-changing) behavior occurs on a
slow-varying time scale. Of course, from a human point of view, an oscillation with a
period of a year isn’t particularly fast. However, the words fast and slow must be inter-
preted in the context of the system that is investigated. In the context of the evolution
of our solar system, changes taking place in a year’s time are to be considered very fast.

In order to give a feeling as to the consequences of the perturbing force εf, we consider
the impact of the joint forces exerted by the other planets in the solar system. As
shown in Fig. 5.3, these forces induce a precession of the earth’s orbit around the sun
[Hest87]. The position of the earth’s perihelion3 advances about 0.32o per century.
One also observes periodic changes in the eccentricity of the earth’s orbit, making it
first more and then again less elliptical. These changes in the shape and position of the
earth’s orbit are called the Milankovitch cycles [Hays76]. These cycles have a period
of about 100,000 years. They are of prime importance for glaciation and the occurrence

3The perihelion is that point of the earth’s orbit that is closest to the sun.
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Figure 5.4: The position of the perihelion of the earth’s orbit as a function of
time (solid line). This position is expressed as an angle ∆φ with respect to
some reference position. On average, we observe a steady increase (dotted
line) with time. In addition, there is a small fast-varying fluctuation.
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Figure 5.5: In obtaining the long-term (dashed) characteristic in Fig. 5.4,
there are two ways to proceed: (a) first solve the original set of state-changing
equations and remove what’s unimportant afterwards by filtering; (b) first
filter (average) the state-changing equations and then solve these averaged
equations for the desired characteristic.

of the ice ages. Hence, small forces can have significant long-term consequences.

5.1.4 Averaging: focusing on what’s important

Before linking the material above to electronic oscillators, there is one aspect about
the earth’s state-changing behavior that still needs to be addressed. Zooming in on the
(extrapolated) position of the earth’s perihelion with respect to time (expressed as an
angle ∆φ with respect to some reference position), we typically observe the behavior
in Fig. 5.4. Here, the solid line represents the exact position, showing a slow but
steady increase with small fast-varying fluctuation on top. In many cases, the latter
fluctuation is of no interest and we would like to focus on the long-term progress. It is,
therefore, the dashed line in Fig. 5.4 that is of interest. One way to obtain this dashed
curve is illustrated in Fig. 5.5(a). Here, we first compute the perihelion’s exact motion
after which a lowpass filtering operation removes all fast-varying components. This,
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Figure 5.6: (a) A small force acting during a very long time in the same
direction may, over time, cause significant changes to occur. (b) A small
force that continuously changes direction counteracts itself and can never
cause more than small fluctuations.

however, is very time-consuming as the computation of the perihelion’s exact motion
requires us to use a small simulation time step: we need a couple of samples per year
in order to capture the perihelion’s fast-varying fluctuations. Using this time step, we
need to cover a simulation time interval over a million years, i.e. the duration of a
couple of Milankovitch cycles. Running such a simulation is like having to bridge a
thousand kilometers by foot (with steps of about one meter).

Fortunately, there is a more efficient way to solve this problem. As illustrated in
Fig. 5.6(a), small forces can only cause substantial changes when they act in the same
direction for a long time. Fig. 5.6(b) shows that force components that quickly vary
in direction over time can never generate large changes as they counteract themselves.
This suggests to first filter the equations governing the system’s state-changing behav-
ior. Hereby, we only retain the force components that act in the same direction over a
sufficiently long time. Next the filtered equations can be solved for the long-term be-
havior. This procedure is illustrated in Fig. 5.5(b). The filtering process is also called
averaging [Bogo61]4. The resulting equations, indicated with a bar on top of them, are
called the averaged equations. Since solutions of the averaged equations are, by con-
struction, void of fast-varying components, they can be solved using a large integration
time step and, therefore, in a much shorted CPU time. Hence, averaging allows us
to focus attention to the important long-term system behavior while neglecting small
fast-varying fluctuations.

4Averaging, in turn, is related to the theory of continuous transformation (or Lie) groups [Cohn65,
Firk00].
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5.1.5 How does electronic oscillator dynamics fit in?

Fig. 5.7(a) summarizes the procedure outlined above. Firstly, we partition the system
into a core and a set of perturbation terms. Next, the core is characterized by identifying
all its states, i.e. all possible steady-state solutions of the corresponding unperturbed
system equations. The perturbation terms slowly drive the core system from one state
to another. Finally, averaging helps us to identify the relevant part of the equations that
govern the system’s state-changing behavior.

Fig. 5.7(b) redraws Fig. 5.7(a) and shows how electronic oscillator analysis can be
made to fit within the same picture. The steps are illustrated for a harmonic oscillator.
In a harmonic oscillator, the principle of oscillation relies on the exchange of energy
between an inductive and a capacitive element. Here, the core system corresponds to a
lossless resonant tank. Feedback transistors and tank losses are considered perturbation
terms. The unperturbed (lossless) resonant tank is solved by a double-infinite set of
steady-state oscillations. Each oscillation corresponds to a state of the core system and
is identified by a value for its amplitude and starting phase. The perturbation terms, i.e.
the currents coming from the feedback transistors and the tank losses, slowly drive the
resonant tank from one state to another. Hence, they cause the tank’s amplitude and
phase to change with time. Averaging helps us to extract the equations that govern the
slow-varying components of these changes. These components are the only ones that
can grow large.

5.1.6 Modeling oscillator behavior

The discussion above may have left the reader wondering what all of this has to do
with the (behavioral) modeling of an oscillator’s dynamic behavior. As stated before,
system modeling starts with a thorough understanding of the system’s behavior. Next,
this understanding must be formalized by means of a mathematical model. As far as
an oscillator’s dynamic behavior is concerned, the equations that model the averaged
state-changing behavior of the oscillator’s core system turn out to provide an excellent
starting point for the creation of compact behavioral models. These averaged equations
capture the most essential part of an oscillator’s dynamics. For the behavior of the
earth, this involves the long-term changes in the position and shape of the earth’s orbit
around the sun. For a harmonic oscillator, this involves changes in amplitude and phase.
Efficient behavioral modeling of oscillator dynamics can, therefore, be accomplished
by means of suitable approximation of the averaged state-changing dynamics. This
allows us to analyze, for instance, an oscillator’s settling behavior and its phase noise
behavior.

This concludes our overview of the basic concepts underlying the oscillator analysis
presented in this chapter. In what follows, we discuss each of the steps in greater
depth. Firstly, however, we review previous art on the matter.
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Figure 5.7: The behavior of both the earth and an electronic oscillator is gov-
erned by the same mechanisms. Both can be partitioned in a core system and
a set of perturbation terms (encircled by the dashed line). Next, the core sys-
tem’s behavior is characterized by identifying all of its states (steady-state
solutions). The perturbation terms slowly drive the system from one state
to another. This causes slow-varying transient dynamics. Finally, averaging
helps us to identify the relevant part of the equations that govern the oscilla-
tor’s state-changing behavior.



144 5.2 PRIOR ART

5.2 Prior art

In what follows, we briefly review general autonomous system theory, oscillator phase
noise theory and methods for numerical simulation.

5.2.1 General theory

Over the centuries, the analysis of nonlinear oscillators and their behavior has been
subject to many publications. Historically among the first are the treatments on ce-
lestial mechanics [Hest87, Suz96]. With the advent of the industrial revolution and
its machines, the theory of mechanical vibrations [Kryl47, Rand03, Sto50] became a
popular area of research. Also, the abstract study of autonomous differential equa-
tions resulted in many useful techniques. Here, the work of Krylov, Bogoliubov and
Mitropolsky [Bogo61] offers one of the most concise discussions on the matter. They
introduce both singular perturbation theory and averaging. Other treatments in this area
[Kev81, Murd88, Verhu96] build on similar ideas.

With regard to averaging, the methods developed by Krylov, Bogoliuv and Mitropol-
sky can be shown a special case of the transformation groups introduced by Sophus
Lie [Cohn65, Firk00]. His theory of near-identity transformations provides a solid the-
oretical basis for higher-order averaging methods. Here, we also mention the theory of
manifolds, tangent spaces and integration on manifolds [Abra88]. These concepts are
important in the theory of differential algebraic equations and model-order reduction.

The analysis of the nonlinear van der Pol oscillator by Balthazar van der Pol [Vand20]
is probably one of the first studies on the behavior of nonlinear electronic oscillators.
Many authors have followed his lead [Bogo61, Buo02, Chua92, Guck80, Murd88,
Rob83, Stav00, Sto50]5. Hereby, describing function analysis [Gelb68, Kha96, Lee98]
and singular perturbation theory [Kha96] are among the most frequently used tech-
niques for analyzing an oscillator’s behavior. However, these methods are often tailored
to the needs of a particular application, i.e a particular set of differential equations.
Hence, they lack generality. Handling a set of equations extracted from an oscillator
circuit netlist remains an open problem.

5.2.2 Phase noise analysis

Among the work on nonlinear oscillator behavior, we highlight the oscillator phase
noise theories developed in recent years [Cran98, Dem00a, Dem00b, Dem02, Demu02,
Haji98, Kae90, Lees66]. These theories study the impact of noisy disturbances on an
oscillator’s phase behavior. Fig. 5.8(a) illustrates the well-known impact noise has on
the oscillator’s power spectral density (PSD). Phase noise causes the energy contained
in the oscillating signal to spread over the frequency band. This spectral spreading is,
typically, characterized by a flat close-in phase-noise PSD followed by an 1/ f 3 region
(due to upconverted 1/ f input noise) and an 1/ f 2 region (due to white input noise).

The most rigorous treatments on phase noise analysis are given in [Dem00a, Dem00b,
Dem02, Kae90]. Here, the authors develop the viewpoint of phase noise as being

5Note that this list just intends to give some leads. It is by no means exhaustive.
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Figure 5.8: Appearance and operation of oscillator phase noise. (a) Phase
noise causes the energy contained in an oscillating signal to spread all over
the frequency band. (b) Phase noise is caused by random perturbations
(noise) that make the oscillator (phase-)shift along its own orbit.

caused by random perturbations (noise) that make the oscillator (phase-)shift along its
own orbit in the phase space. To compute the “force” that drives these phase shifts,
they project the perturbations onto the tangent line to the orbit. This results in a phase
noise equation that is structured as

dθ
dt

= vT (t +θ)n(t) . (5.4)

Here, θ is the oscillator’s phase, n(t) is the vector containing the perturbing noise
sources while vT (t) is the oscillator’s perturbation projection vector (PPV) [Dem00a].
At this point, we do not go into further detail on (5.4). A more rigorous explanation is
given in section 5.7 where (5.4) is shown a special case of the theory presented in this
chapter. We only mention that when there is only a single noise source involved, i.e.
n(t) = b ·n(t), (5.4) reduces to

dθ
dt

= Γ(t +θ)n(t) . (5.5)

Here, Γ(t) = vT (t) ·b is called the impulse sensitivity function (ISF, a name introduced
in [Haji98]6) corresponding to n(t).

The phase noise theories and methods in [Dem00a, Dem00b, Kae90] are very generic
in a sense that they make little assumptions about the structure of the equations that

6In [Haji98], the author simply conjectures the approximate phase noise equation

dθ
dt

= Γ(t)n(t) .

This approximate phase noise equation neglects the right-hand-side’s dependence on the phase θ that is
present in the exact equation (5.5). The validity of this simplification is discussed in [Vana02d].
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model the oscillator. As such, they can be applied directly to circuit-level netlists. How-
ever, by nature, these phase noise theories are only concerned with an oscillator’s phase
behavior, discarding amplitude variations and common-mode behavior. Furthermore,
in [Dem00a, Dem02], the equation (5.4) is solved by constructing a (complicated)
Fokker-Planck equation [Risk89]. In this chapter, we develop a more general math-
ematical framework for the analysis of an oscillator’s behavior. It embeds the phase
noise analysis in [Dem00a, Dem00b, Dem02] as a particular application. Moreover,
the proof of these existing results is significantly simplified by means of the averaging
methods here presented.

5.2.3 Numerical simulation

Finally, there is the possibility to study oscillator behavior by means of numerical simu-
lation. Hereby, one can either use general-purpose algorithms, like SPICE [Nag75], or
dedicated methods [Bra96, Nar99, Ngo96, Riz96]. SPICE, however, is troubled by the
presence of the widely spaced time constants that characterize the behavior of many
oscillators. Capturing the slow-varying transients requires a long overall simulation
time interval. In contrast, the presence of fast oscillations forces the simulator to take
a small simulation time step. Hence, covering the long simulation time interval comes
at the expense of a huge number of time steps. It often takes minutes or even hours for
a single simulation run to complete.

Recent developments brought about simulation methods that try to separate the compu-
tation of fast- and slow-varying behavior [Bra96, Nar99, Ngo96, Riz96]. These meth-
ods build on the multi-variate formulation of the circuit simulation problem as intro-
duced in [Royc01]. However, although very efficient for the verification of transistor-
level implementations, these algorithms do not provide a lead to construct compact
oscillator models that can be used for system-level exploration and verification.

5.2.4 Contributions of this work

This chapter presents methods that allow us to efficiently handle the slow-varying be-
havior of oscillation amplitudes, phases, phase differences and common-mode lev-
els. It presents a significant generalization of the work (on phase noise analysis) in
[Dem00a, Dem00b, Dem02, Kae90]. To the author’s knowledge, the theory presented
in this chapter is, to a large extent, original. It is grounded onto two major components:

• Perturbation theory [Kev81, Kha96] provides an elegant framework to model
the interactions between an oscillator’s core system and a set of perturbation
terms. The perturbation analysis here presented extends the projection technique
in [Dem00a, Dem00b, Dem02, Kae90] to capture, besides the phase variations,
the dynamics of the oscillator’s amplitude and common-mode level. It is also
able to handle the behavior of systems of coupled oscillators. The analysis results
in a set of equations that govern the oscillator’s state-changing behavior (see
section 5.1.3). It requires proper partitioning of the oscillator circuit equations
into a core system and perturbation terms. This work does not address general
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methods to do the partitioning. Instead, it operates on a case by case basis. Note,
however, that such a “case” often spans a wide variety of circuits.

• Averaging allows us to extract the equations that govern the slow-varying com-
ponents of the oscillator’s state-changes. This work is restricted to the use of
first-order averaging transformations. In most cases, this yields results that are
sufficiently accurate. The averaging techniques presented in this text adapt the
results in [Bogo61, Verhu96] to handle the presence of noise. This allows them
to deal with matters like oscillator phase noise.

The advantages of this method over other techniques to analyze oscillator dynamic
behavior, e.g. plain transient SPICE simulations, are:

• We are able to exploit the presence of the widely separated time constants (steady-
state versus settling behavior) that typically characterize an oscillator’s behavior.
While this often poses a bottleneck to traditional (SPICE-like) circuit simulation
algorithms, it enables the methods presented in this work to explicitly separate
the oscillator’s fast- and slow-varying signal components. This allows us to use
a much larger simulation time step than possible when solving the original set of
circuit equations. This in turn results in shorter simulation times.

• On a related issue, the averaged equations can be used to construct compact be-
havioral models. These models can be solved efficiently using a large simulation
time step. They are readily implemented in almost any environment for system-
level simulation (Matlab/Simulink, VHDL-AMS, etc.) and are especially useful
for running lengthy or repetitive system-level simulations.

• The method provides a powerful framework to handle often complex nonlinear
behavior. Besides for numerical analysis, it can also be used to obtain symbolic
expressions that describe the oscillator’s dynamics. These expressions are of
great help during those stages of a design when not all parameters have been
given a suitable value yet. This chapter presents examples on how to derive
symbolic expressions that characterize an oscillator’s injection locking behavior
and the settling behavior of an harmonic (LC-based) oscillator.

• From a theoretical point of view, the averaging methods here presented yield a
simplification of the proof of existing results on oscillator phase noise analysis.
This part of the work culminated in a semi-analytic method for the computation
of an oscillator’s entire phase noise spectrum [Vana03c].

In short, this method shows quite some good and novel results with regard to the (sym-
bolic and numerical) analysis of an oscillator’s dynamic behavior.
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Figure 5.9: Harmonic oscillator circuit topology. Here, the resistors with val-
ues R/2 model the inductor losses, IMII (vgate,vdrain) denotes the drain-source
current of a MOS transistor and the capacitors CgC capture some small (tran-
sistor) capacitances.

5.3 Oscillator circuit equations

The behavior of an oscillator circuit is described by the system of differential-algebraic
equations (DAEs) corresponding to the circuit’s modified nodal equations:

d
dt

q(v)+ j(v)+b(t) = 0 . (5.6)

Here, v ∈RNRR is a vector storing the circuit’s state variables, for example, the circuit’s
nodal voltages. Furthermore, q(v)∈RNRR is a vector of capacitor charges and/or inductor
fluxes while j(v)∈RNRR is a vector of branch currents. The vector b(t)∈RNRR models the
action of some weak (small) input sources, e.g. noise.

Example (Voltage-controlled harmonic oscillator): The voltage-controlled harmonic
oscillator in Fig. 5.9 is described by the system of DAEs

L
2

di1
dt

− v1 + vn +
R
2

i1 = 0 (5.7)

L
2

di2
dt

− v2 + vn +
R
2

i2 = 0 (5.8)

2C
dv1

dt
+ i1 + IMII (v2,v1)+CgC

dv1

dt
= 0 (5.9)

2C
dv2

dt
+ i2 + IMII (v1,v2)+CgC

dv2

dt
= 0 (5.10)

i1 + i2 + IbII = 0 . (5.11)

Here, the resistors with values R/2 model the inductor losses, IMII (vgate,vdrain) denotes
the drain-source current of the MOS transistors and the capacitors CgC capture some
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small (transistor) capacitances. By introducing the differential voltages and currents

id = (i1 − i2)/2 (5.12)

icm = (i1 + i2)/2 (5.13)

vd = (v1 − v2)/2 (5.14)

vcm = (v1 + v2)/2 , (5.15)

the equations (5.7)-(5.11) can be written as

2C
dvd

dt
+ id + IMII ,d (vcm + vd ,vcm − vd)+CgC

dvd

dt
= 0 (5.16)

L
2

did
dt

− vd +
R
2

id = 0 (5.17)

2C
dvcm

dt
+ icm + IMII ,cm (vcm + vd ,vcm − vd)+CgC

dvcm

dt
= 0 (5.18)

L
2

dicm

dt
− vcm + vn +

R
2

icm = 0 (5.19)

2icm + IbII = 0 . (5.20)

In the equations above,

IMII ,d (v1,v2) = (IMII (v2,v1)− IMII (v1,v2))/2 (5.21)

and
IMII ,cm (v1,v2) = (IMII (v2,v1)+ IMII (v1,v2))/2 (5.22)

respectively denote the differential and common-mode transistor currents. Further-
more, in order not to overload the example, we neglected the nonlinear characteristic
of the resonant tank’s capacitors (varactors). Also, in this example, we assumed the
components of the vector b(t) to be zero. �

5.3.1 Normalizing the oscillator circuit equations

Although not strictly necessary, it is good practice to normalize the equations (5.6)
such that all quantities involved are, approximately, one in order of magnitude. To do
so, we normalize all voltages and currents with respect to some nominal value. These
normalization constants can be user-provided. They can also be obtained by means of
short SPICE-like trial simulations. Moreover, we also normalize the time variable

τ = ω0t . (5.23)

Here, ω0 is chosen to make derivatives with respect to τ one in order of magnitude.
Normalizing the oscillator circuit equations later on facilitates partitioning them into a
core system and a set of perturbation terms.

Example (Voltage-controlled harmonic oscillator): For the system of DAEs (5.16)-
(5.20) that model the oscillator circuit in Fig. 5.9, all voltages are normalized with
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respect to VoscVV , an estimate for the amplitude of the resulting differential-mode oscilla-
tion. The differential current id(t) is then normalized with respect to

IoscII = (2ω0C)VoscVV = VoscVV /(ω0L/2) . (5.24)

The (small) common-mode current icm(t) is best normalized with respect to IoscII /Q.
Hereby,

ω0 =
1√
LC

√√ (5.25)

is the natural frequency of the oscillator’s resonant tank, while

Q =
1/R
Cω0

=
Lω0

R
(5.26)

equals its quality factor. With

xd =
vd

VoscVV
, xcm =

vcm

VoscVV
, xn =

vn

VoscVV
, yd =

id
IoscII

, ycm =
icm

IoscII /Q
, (5.27)

being the normalized state variables, we find

dxdd d

dτ
+ yd +

[
IMII ,d

IoscII
+

CgC

2C
dxdd d

dτ

]
= 0 (5.28)

dyd d

dτ
− xd +

[
yd

Q

]
= 0 (5.29)

dxdd cm

dτ
+

[
ycm

Q
+

IMII ,cm

IoscII
+

CgC

2C
dxdd cm

dτ

]
= 0 (5.30)

−xcm + xn +
[

1
Q

dyd cm

dτ
+

ycm

Q2

]
= 0 (5.31)

ycm +
Q
2

IbII
IoscII

= 0 . (5.32)

Here, the normalized time variable τ is as defined in (5.23). The reason for some terms
to be enclosed in square brackets is explained in the next section. �

5.3.2 Partitioning the normalized circuit equations

Having normalized the oscillator’s circuit equations, we partition them into a core sys-
tem and a set of perturbations. The core system corresponds to the terms of the (nor-
malized) circuit equations that are large in magnitude while the perturbation terms cor-
respond to the small ones. As such, the core system captures that part of the oscillator
that is the main responsible for the oscillations to occur. The perturbation terms cause
the core system to change behavior over time over time.

Formally, the normalized and partitioned set of oscillator circuit equations can be writ-
ten as

d
dτ

c(x)+g(x)+ εf(x,τ) = 0 . (5.33)
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Figure 5.10: Two possible ways to partition an harmonic oscillator topology
with the parts encircled by the dashed lines corresponding to the perturbation
terms. (a) If one is mainly interested in the oscillator’s phase noise behavior,
only the noise source is treated as a perturbation term. (b) If one targets the
oscillator’s settling behavior, all currents due to the feedback transistors and
tank losses are treated as perturbation terms.

Here, x ∈ RNRR represents the circuit’s normalized state variables. The first and second
term in (5.33) represent a system of autonomous DAEs that capture the oscillator’s
unperturbed core behavior. The term εf(x,τ) represents the perturbation components.
Here, ε is called a perturbation variable. It labels the corresponding term as small with
respect to the other ones. Note that the perturbation term may depend explicitly on the
(normalized) time variable τ. This is, for example, caused by the presence of a vector
of non-zero input sources b(t) = b(τ/ω0) in (5.6). Since, in this text, these inputs are
assumed to be weak , they can be treated as part of the perturbation term εf(x,τ). As
such, they introduce an explicit dependence on time.

Example (Harmonic oscillator): Fig. 5.10 shows two ways to partition an harmonic
oscillator with the parts encircled by the dashed lines corresponding to the perturba-
tion terms. The choice between both depends on the kind of behavior in which one
is interested. In Fig. 5.10(a), one is interested in the oscillator’s phase noise behavior,
i.e. the oscillator phase shifts induced by noise sources. In that case, the core system
corresponds to the noise-free oscillator. Only the noise sources are treated as perturba-
tions. In Fig. 5.10(b), we target the harmonic oscillator’s settling behavior. Here, the
resonant tank —excluding tank losses— corresponds to the oscillator’s core system.
The feedback transistor currents and the tank losses are treated as perturbation terms.
In order for them to be small compared to the current circulating in the resonant tank,
the tank’s Q-factor must be sufficiently large (about 10 in order of magnitude). �

Example (Voltage-controlled harmonic oscillator): For the voltage-controlled har-
monic oscillator topology in Fig. 5.9, it is indicated in (5.28)-(5.32) how to perform



152 5.4 CHARACTERIZING THE OSCILLATOR’S UNPERTURBED CORE

the partitioning operation. Here, the terms in the square brackets mark the perturbation
terms. In order for them to be small, it must hold that both 1/Q � 1 and CgC /2C � 1.
All others terms are assigned to the oscillator’s core system. Note that this partitioning
operation is functional and not physical. For example, in (5.28)-(5.32), the inductive
part of the coil is classified as being part of the core system while the inductor losses
are labeled as perturbation terms. Physically, however, it is impossible to separate a
coil’s inductive and resistive behavior. �

The partitioning operation discussed above is by no means trivial. It is hard to construct
a general-purpose algorithm that accomplishes an appropriate partitioning for arbitrary
oscillator topologies. In this work, no attempts are made to do so and all partitionings
in the examples are done manually. However, in sections 5.7 and 5.8, we outline parti-
tioning strategies that allow us to handle oscillator phase noise analysis and harmonic
oscillator behavior. These partitioning strategies basically correspond with the ones in
Fig. 5.10.

5.4 Characterizing the oscillator’s unperturbed core

Next, we characterize the oscillator’s unperturbed core system. This core system is
described by the equations

d
dτ

c(x)+g(x) = 0 . (5.34)

These equations result when the perturbation term εf(x,τ) in (5.33) is neglected. Char-
acterizing the core system requires us to find all states, i.e. all steady-state solutions
xs (τ,p) that solve (5.34). In this work, a steady-state solution is defined as being pe-
riodic. Furthermore, we assume all periodic steady-state solutions to have the same
period T 7. Mathematically, this is expressed as

d
dτ

c(xs (τ,p))+g(xs (τ,p)) = 0 (5.35)

xs (τ+T,p) = xs (τ,p) . (5.36)

Here, p ∈ RP is a constant parameter vector that identifies a particular steady-state
solution, i.e. it identifies a particular state of the unperturbed core system. For this
reason, p is called the system’s state vector.

The set of all points in RNRR that lie on one of the steady-state solutions xs(τ,p), i.e.

M =
{

x|∃p ∈RP ∧ τ ∈R : x = xs(τ,p)
}

, (5.37)

is assumed a P-dimensional stable manifold that quickly attracts all other solutions of

7In a more general sense, the term steady-state solution can be defined as a solution to (5.34) that is
void of fast-varying transient behavior. For typical oscillators, these solutions tend to be periodic or quasi-
periodic. Furthermore, the methods here presented can be extended to handle steady-state solutions with
varying periods of oscillation (see for example [Vana02e]). However, the assumption of a constant period is
often satisfied and helps to simplify analysis.
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Figure 5.11: Characterizing a harmonic oscillator’s core system: (a) The
harmonic oscillator is partitioned into a core system and a set of perturbation
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Hence, it can be represented as a single point in a 2-dimensional space.

(5.34)8. Roughly, a manifold is a smooth surface [Abra88]. Solutions x(τ) of (5.34)
are attracted to the manifold if, for τ → ∞, x(τ) approaches M infinitesimally closely.

Example (Harmonic oscillator): Fig. 5.11(b) and (c) illustrate the characterization of
the core system associated with the harmonic oscillator in Fig. 5.11(a). The behavior
of this oscillator is captured by the system of (unnormalized) DAEs

C
dvd

dt
+ id +

[
vd

Rloss
+

IMII
( vcm−vd

2 , vcm+vd
2

)− IMII
( vcm+vd

2 , vcm−vd
2

)
2

]
= 0 (5.38)

L
did
dt

− vd = 0 (5.39)

IMII

(
vcm − vd

2
,

vcm + vd

2

)
+ IMII

(
vcm + vd

2
,

vcm − vd

2

)
−2IbII = 0 (5.40)

where vd = v1 − v2 and vcm = v1 + v2. In (5.38)-(5.40), the terms in the square brack-
ets denote the perturbation terms. This corresponds with the partitioning indicated in
Fig. 5.11(a). As shown in Fig. 5.11(b), the oscillator’s core system corresponds to a
lossless resonant tank. This core system is described by the equations obtained by
neglecting the perturbation terms in (5.38)-(5.40). These (unperturbed) equations are
solved for vd(t) = Acos(ω0t + θ) and id(t) = Asin(ω0t + θ), i.e. sine waves with an

8See appendix D on how to quantify the notion of “a manifold that quickly attracts all other solutions”.
Note that if M does not attract the other solutions in its neighborhood, this typically indicates that a bad job
has been done in partitioning the original set of circuit equations.
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of the harmonic oscillator’s core system make up a 2-dimensional manifold
(surface). All other solutions that solve the unperturbed core system’s equa-
tions are quickly attracted towards this manifold.

arbitrary amplitude and phase. The algebraic equation (5.40) makes the third state
variable, the common-mode voltage vcm(t), “track” the differential voltage vd(t). In
in Fig. 5.11(c), these solutions are pictured as points in a 2-dimensional state-vector
space. Fig. 5.12 plots the 2-dimensional manifold (surface) M —defined by (5.37)—
consisting of all points that lie on a steady-state solution. This manifold is stable as it
quickly attracts all other solutions. �

Example (Voltage-controlled harmonic oscillator): The (normalized) unperturbed
core system associated with the voltage-controlled oscillator topology in Fig. 5.9 is
described by the system of equations

dxdd d

dτ
+ yd = 0 (5.41)

dyd d

dτ
− xd = 0 (5.42)

dxdd cm

dτ
= 0 (5.43)

−xcm + xn = 0 (5.44)

ycm +
Q
2

IbII
IoscII

= 0 . (5.45)

These equations are obtained by neglecting the perturbation terms in (5.28)-(5.32), i.e.
the terms in the square brackets. The periodic steady-state solutions (states) of the core
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system are given by

xd(τ) = Acos(τ+θ) (5.46)

yd(τ) = Asin(τ+θ) (5.47)

xcm(τ) = z (5.48)

ycm(τ) = −Q
2

IbII
IoscII

(5.49)

xn(τ) = z . (5.50)

All steady-state solutions taken together yield a 3-dimensional manifold. Hereby

p =
[

A θ z
]T ∈R3 (5.51)

is the corresponding state vector. Note that, compared to the previous example, the
dimension of the state vector p has increased by one by means of the addition of the
common-mode variable z. This increase is due to the presence of the control voltage
vcontrol in Fig. 5.9. This control voltage induces the common-mode charging and dis-
charging of the resonant tank capacitors. This, in turn, introduces an extra slow-varying
(common-mode) process in the oscillator’s transient behavior. Typical analyses, e.g.
[Ham01], do not account for this slow-varying common-mode behavior. They treat
a third-order voltage-controlled harmonic oscillator as a second-order non-controlled
harmonic oscillator, e.g. the one in the previous example. Here, the order of an oscil-
lator refers to the dimension of its core system’s state vector. �

5.5 Oscillator perturbation analysis

The perturbation term εf(x,τ) drives the unperturbed core from one state to another.
In order to unravel the details of this state-changing behavior, we study the structure of
the waveforms xε(τ) that solve the perturbed equations

d
dτ

c(xε)+g(xε)+ εf(xε,τ) = 0 . (5.52)

Here, we use the notation xε(τ) to indicate the fact that solutions of (5.52) in principle
also depend on the perturbation variable ε. As a note aside, we mention that the theory
that follows embeds the methods in [Dem00a, Dem00b, Kae90] as a special case.

5.5.1 Components of an oscillator’s perturbed behavior

While all waveforms that solve the unperturbed equations (5.34) converge to the P-
dimensional manifold M, the action of εf(x,τ) causes the xε(τ) to deviate from the
manifold. However, the attracting nature of M ensures that, for small perturbations,
these deviations remain small. Hence, after some initial transients, any solution xε(τ)
will be located near M. They can therefore be written as

xε(τ) = xs (τ,p(τ,ε))+ ε∆x(τ,ε) . (5.53)
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Figure 5.13: Perturbed harmonic oscillator behavior: (a) the solutions xε(τ)
of the perturbed harmonic oscillator in Fig. 5.11(a) are attracted to the neigh-
borhood of the stable, 2-dimensional manifold M. These solutions contain
two components: a motion xs (τ,p(τ)) over the attracting manifold M and a
small deviation ε∆x(τ) from the manifold. (b) The motion over the manifold
M can be represented as the resonant tank slipping from one state to another.

As indicated, a solution xε(τ) contains two components: a motion xs (τ,p(τ,ε)) over
the manifold M and a deviation ε∆x(τ,ε) from the manifold. The first component,
xs (τ,p(τ,ε)), corresponds to the state-changing behavior discussed in section 5.1.3:
the perturbation term drives the core system from one state (steady-state solution) to
another. Hence, the state vector p does no longer remain constant but changes with
time. This time-varying behavior of the state vector p entirely characterizes the motion
over M. The second component in (5.53), ε∆x(τ,ε), describes a deviation from the
manifold. Here, the manifold’s stability guarantees that there exists a process p(τ,ε)
such that (5.53) is satisfied for a bounded (small) deviation ε∆x(τ,ε). Note that the
processes p(τ,ε) and ∆x(τ,ε) in principle depend on both τ and ε. In what follows,
for notational convenience, the dependence on ε will no longer be mentioned explicitly
unless when relevant.

Example (Harmonic oscillator): Fig. 5.13 illustrates the components of the perturbed
behavior of the harmonic oscillator from Fig. 5.11(a). Solutions xε(τ) are attracted to
the neighborhood of the stable, 2-dimensional manifold M obtained from the character-
ization of the oscillator’s unperturbed core. These solutions contain two components:
a motion xs (τ,p(τ)) over the attracting manifold M and a small deviation ε∆x(τ) from
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the manifold. Moreover, the motion over the manifold M can be represented as the
oscillator’s resonant tank (core system) slipping from one state to another. Hence, this
implies that the state vector p(τ) =

[
A(τ) θ(τ)

]
(slowly) varies with time. �

Substituting the signal model (5.53) into (5.52) yields

∂c
∂x

(xs (τ,p(τ))) · ∂xs

∂p
(τ,p(τ))

dp
dτ

+ ε
d
dτ

(
∂c
∂x

(xs (τ,p(τ))) ·∆x(τ)
)

(5.54)

+ε
∂g
∂x

(xs (τ,p(τ)))∆x(τ)+ εf(xs (τ,p(τ)) ,τ)+O
(
ε2) = 0 .

Here we used the fact that, for an arbitrary but fixed state vector p, xs (τ,p) solves
(5.52) for ε = 0. By projecting (5.54) on appropriate subspaces of RNRR , it is possible to
compute the motion over M, i.e. the behavior of the state vector p(τ), without needing
the details of ε∆x(τ). This is quite convenient. In most cases, the motion over M
is of greatest interest as it captures the slow-varying components of the oscillator’s
dynamics, e.g. long-term amplitude and phase variations. Hence, proper projection
helps us to avoid wasting time on the computation of the often irrelevant deviation
ε∆x(τ).

The next section discusses how to extract the equations governing the process p(τ)
from (5.54). The equations that govern ε∆x(τ) are of less importance. Their derivation
is, therefore, deferred to appendix D. Note that all analysis is performed up to first
order in the perturbation variable ε. Furthermore, in what follows, we use

C(τ,p) =
∂c
∂x

(xs (τ,p)) ∈RNRR ×N (5.55)

G(τ,p) =
∂g
∂x

(xs (τ,p)) ∈RNRR ×N (5.56)

fpf (τ,p) = f(xs (τ,p) ,τ) ∈RNRR (5.57)

as shorthand notations that help to simplify the algebra.

5.5.2 Motion xs (τ,p(τ)) over the manifold M

The equations that characterize the process p(τ) and, therefore, the oscillator’s motion
over the P-dimensional manifold M, are obtained by projecting (5.54) onto the man-
ifold M. More specifically, at each point, we project them onto the tangent space of
M. Hence, we focus on the behavior induced by those parts of the perturbation terms
that are oriented along the surface M. Fig. 5.14 makes the analogy with a ball that is
constrained to move on a curved rod (a 1-dimensional stable manifold). Since the ball
cannot leave the rod, only the force components that are oriented along the rod can set
the ball in motion (along the rod).

At each point of M, i.e. for each couple (τ,p) ∈R×RP, the tangent space is spanned
by the columns of

U1(τ,p) =
∂xs

∂p
(τ,p) ∈ R

N×P . (5.58)
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f projected

M

f

Figure 5.14: When a ball (a system) is constrained to move along a curved
rod (a 1-dimensional surface), only the force components that are oriented
along the rod can set the ball in motion. It hence makes sense to project the
perturbation force on the tangent to the rod. As will be discussed later, this
projection is not necessarily orthogonal.

Since, for a constant state vector p, xs(τ,p) solves (5.52) for ε = 0, it is readily shown
that all P columns of U1(τ,p) solve the linear N-dimensional homogeneous system of
DAEs

∂
∂τ

(C(τ,p)y(τ))+G(τ,p)y(τ) = 0 . (5.59)

Furthermore, if the system of DAEs (5.59) is index-1 [Dem00b, Marz95], then there
exist matrices U2(τ,p) ∈ RNRR ×Q and U3(τ,p) ∈ RNRR ×R, with P + Q + R = N, such that
the columns of

U(τ,p) =
[

U1(τ,p) U2(τ,p) U3(τ,p)
] ∈RNRR ×N (5.60)

span the entire space RNRR . Here, the columns of U2(τ,p) correspond to the stable modes
of (5.59). They solve (5.59) and satisfy

lim
τ→∞

‖U2(τ,p)‖ = 0, ∀p ∈RP , (5.61)

a property that expresses the stability of the manifold M. The columns of U3(τ,p)
satisfy

C(τ,p)U3(τ,p) = 0 . (5.62)

Hence, they span the null space of C(τ,p).

In order to project (5.54) onto the tangent space of M, we need to determine a projector
VT

1 (τ,p) ∈RP×N that satisfies

VT
1 (τ,p) ·C(τ,p) ·U1(τ,p) = IP, ∀(τ,p) ∈R×RP . (5.63)

Here, IP ∈RP×P is the P-dimensional unity matrix. This projector is a generalization
the perturbation projection vector introduced in [Dem98] (see also section 5.7). The
condition (5.63) is automatically satisfied for a projector VT

1 (τ,p) that meets(
∂
∂τ

VT
1 (τ,p)

)
·C(τ,p)−VT

1 (τ,p) ·G(τ,p) = 0 (5.64)

VT
1 (0,p) ·C(0,p) ·U1(0,p) = IP . (5.65)
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Indeed, combining (5.64) with the fact that U1(τ,p) solves (5.59) implies that the par-
tial derivative with respect to τ of the left-hand side of (5.63) equals zero. The linear
homogeneous system of DAEs (5.64) is called the system adjoint to (5.59). It is impor-
tant to note that (5.64) and (5.65) do not uniquely determine VT

1 (τ,p). There are still
Q degrees of freedom left with Q the number of columns in U2(τ,p). As is discussed
below, the extra conditions needed to fix VT

1 (τ,p) stem from the requirement that the
deviation ε∆x(τ) must remain bounded.

By multiplying (5.54) with VT
1 (τ,p) we obtain9

dp
dτ

= −εVT
1 (τ,p)

(
d
dτ

(C(τ,p)∆x(τ))+G(τ,p)∆x(τ)+ fpf (τ,p)
)

+O(ε2)

= −ε
(

d
dτ

(
VT

1 (τ,p)C(τ,p)∆x(τ)
)
+VT

1 (τ,p)fpf (τ,p)
)

+O(ε2) . (5.66)

Here, we used (5.55)-(5.57) and (5.64)-(5.65). The ordinary differential equation (5.66)
governs the behavior of the state vector p(τ). Its right-hand side, however, depends on
both p(τ) and ∆x(τ). The dependency on ∆x(τ) can be removed by properly fixing
the projector’s remaining degrees of freedom. The extra conditions build on the re-
quirement that ∆x(τ) must remain bounded. It can be shown that this requires ∆x(τ)
to belong to the space spanned by the columns of

[
U2 (τ,p(τ)) U3 (τ,p(τ))

]
(see

appendix D), i.e.

∆x(τ) =
[

U2 (τ,p(τ)) U3 (τ,p(τ))
][ α2(τ)

α3(τ)

]
(5.67)

= U2(τ,p(τ))α2(τ)+U3(τ,p(τ))α3(τ) . (5.68)

Using (5.68), ∆x(τ) is now removed from (5.66) by forcing the projector VT
1 (τ,p) to

satisfy
VT

1 (τ,p)C(τ,p)U2(τ,p) = 0, ∀(τ,p) ∈R×RP . (5.69)

With (5.62), it also automatically holds that VT
1 (τ,p)C(τ,p)U3(τ,p) = 0. Furthermore,

since VT
1 (τ,p) solves (5.64), it is sufficient that VT

1 (0,p)C(0,p)U2(0,p) = 0 in order
for (5.69) to hold. Using (5.57) and (5.66)-(5.69), we finally obtain

dp
dτ

= −εVT
1 (τ,p)f(xs(τ,p),τ)+O(ε2) (5.70)

as the P-dimensional system of equations that governs the behavior of the oscillator’s
state vector p and, therefore, the motion over the manifold M. Hence, changes in the
state vector are driven the projected perturbation term εf(xs(τ,p),τ). Hereby, the con-
dition (5.63) states that this projection is onto the hyperplane tangent to the manifold M.
Moreover, (5.69) expresses that it runs, in a certain sense, in parallel to the hyperplane
spanned by the stable modes of (5.59) augmented with the null space of C(τ,p)10.

9In deriving (5.66), we interchanged the partial derivative ∂VT
1 /∂τ with the full derivative dVT

1 /dτ =
∂VT

1 /∂τ+
(
∂VT

1 /∂p
)

dp/dτ. This only introduces an error that is O(ε2) and, therefore, makes no difference
for results up to first order in ε.

10Note that this projection is not necessarily done in a direction that is orthogonal to the hyperplane tangent
to M. This actually only holds for some special cases.
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Figure 5.15: The motion over the manifold M is computed by projecting
the perturbation terms onto the tangent space to M. This tangent space is
spanned by the columns of U1. The projection runs, in a certain sense, paral-
lel to the space spanned by the columns of U2 and U3. This projection is not
necessarily orthogonal to the tangent space.

5.5.3 In summary

At this point, we recapitulate the main results so far. Up to first order in ε, the equation
that governs the behavior of the oscillator’s state vector p —and as such its motion over
M— isMM

dp
dτ

= −εVT
1 (τ,p)f(xs(τ,p),τ) . (5.71)

Hence, changes in the state vector are driven by the projected perturbation term. As
illustrated in Fig. 5.15, the perturbation term εf(xs(τ,p),τ) is projected onto the tangent
space of the manifold M. In most cases, the projection is a non-orthogonal one. The
projector VT

1 (τ,p) is calculated by solving the homogeneous linear system of DAEs(
∂
∂τ

VT
1 (τ,p)

)
·C(τ,p)−VT

1 (τ,p) ·G(τ,p) = 0 . (5.72)

Furthermore, its initial value VT
1 (0,p) satisfies

VT
1 (0,p)

[
C(0,p)U1(0,p) C(0,p)U2(0,p) G(0,p)U3(0,p)

]
=

[
IP 0 0

]
(5.73)

with IP ∈ RP×P the P-dimensional unity matrix. Here, U1(τ,p) and U3(τ,p) are re-
spectively defined by (5.58) and (5.62). The columns of U2(τ,p) contain the stable
modes of (5.59), i.e. the solutions that satisfy (5.61). The condition VT

1 (0,p)G(0,p)×
U3(0,p) = 0 is imposed in order for VT

1 (0,p) to be a valid initial condition for solving
the system of DAEs (5.72).

Example (Voltage-controlled harmonic oscillator): For the voltage controlled har-
monic oscillator in Fig. 5.9, we find, by means of (5.46)-(5.50) and with

p =
[

A θ z
]T

, (5.74)
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that

U1(τ,p) =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

cos(τ+θ) −Asin(τ+θ) 0
sin(τ+θ) Acos(τ+θ) 0

0 0 1
0 0 0
0 0 1

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ . (5.75)

Furthermore, with

C(τ,p) =

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢

1
1 0

1
0 0

0

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥ , G(τ,p) =

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢

0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 −1 0 1
0 0 0 1 0

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥ , (5.76)

we obtain

U3(τ,p) =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

0 0
0 0
0 0
1 0
0 1

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ (5.77)

while U2(τ,p) is empty. Using (5.72) and (5.73), the projector VT
1 (τ,p) can be shown

to equal

VT
1 (τ,p) =

⎡
⎣
⎡

cos(τ+θ) sin(τ+θ) 0 0 0

− sin(τ+θ)
A

cos(τ+θ)
A 0 0 0

0 0 1 0 0

⎤
⎦
⎤

. (5.78)

Hence, the equations that govern the changes of the state vector p are

dAdd
dτ

= −cos(τ+θ)
IMII ,d(τ+θ,A,z)

IoscII
+

CgC

2C
A
2

sin(2τ+2θ)− Asin(τ+θ)2

Q
(5.79)

dθ
dτ

=
sin(τ+θ)

A

IMII ,d(τ+θ,A,z)
IoscII

− CgC

2C
sin(τ+θ)2 − sin(2τ+2θ)

2Q
(5.80)

dz
dτ

= − IMII ,cm(τ+θ,A,z)
IoscII

+
IbII

2IoscII
. (5.81)

These equations capture the dynamic behavior of the oscillation amplitude A, the phase
θ and the common-mode level z. In (5.79)-(5.81), the differential transistor current
IMII ,d(τ+θ,A,z) is computed by substituting the voltages v1(τ) = VoscVV (z+Acos(τ+θ))
and v1(τ) = VoscVV (z−Acos(τ+θ)) (see the equations (5.12)-(5.15), (5.27) and (5.46)-
(5.50)) into (5.21). Using a likewise procedure, we can obtain the common mode
transistor current IMII ,cm(τ+θ,A,z). Note that the phase θ always appears in conjunction
with the time variable τ.

The equations (5.79)-(5.81) capture that part of the oscillator’s dynamic behavior that
is, for most practical purposes, of greatest interest. They describe the transient dynam-
ics of the oscillator’s amplitude, phase and common-mode behavior. Compared to the
original system of five equations, i.e. (5.28)-(5.32), the number of equations needed
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Figure 5.16: Startup behavior of a harmonic oscillator. Here, amplitude
changes, i.e. changes in the value of the state vector p, are slow as com-
pared to the oscillations.

to describe the oscillator’s dynamic behavior has now been reduced to three. Hence,
in a certain sense, the procedure above amounts to nonlinear model order reduction.
Furthermore, as will be discussed below, the equations (5.79)-(5.81), when properly
processed, can be solved using a time step that is much larger that the one needed to
solve the original system of equations. �

5.6 Averaging

The ordinary differential equations (ODEs) (5.71) that govern the behavior of the state
vector p belongs to the class of ODEs structured as

dp
dτ

= εh(p,τ) (5.82)

where, in this case,
h(p,τ) = −VT

1 (τ,p) f(xs (τ,p) ,τ) . (5.83)

Since the perturbation term εf is small, so is the right-hand side of (5.82). Hence, the
time derivative of the process p(τ) is small in magnitude. This in turn implies that it
takes a long time for the state vector p(τ) to substantially change value. Apart from
some small fluctuations, p(τ) is therefore inherently a slow-varying process. It only
changes significantly over a (normalized) time interval that is at least 1/ε in order of
magnitude.

Example (Harmonic Oscillator): Fig. 5.16 shows the startup behavior of a harmonic
oscillator. For the partitioning indicated in the figure, the state vector p =

[
A θ

]T

is 2-dimensional, containing amplitude and phase (since there is no control voltage,
there is no common-mode component in p). It is observed that amplitude changes, i.e.
changes in the value of the state vector p, occur on a time scale that is slow compared to
that of the oscillations. Hence, with respect to normalized time we find that |dAdd /dτ| �
1. This is in correspondence with (5.82). �
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Equation (5.82) can be solved efficiently using averaging [Bogo61, Verhu96]11. Aver-
aging exploits the fact that solutions of (5.82) only vary substantially on a time scale
proportional to 1/ε. Hence, these solutions are dominated by a slow-varying com-
ponent. Averaging techniques allow us to extract those parts of (5.82) that produce
this dominant slow-varying component. This can be interpreted as “averaging the fast-
varying components out of the equations”. The averaged system of ODEs that results
serves as an excellent starting point for noise and stability analysis, for efficient simu-
lation and for extraction of compact behavioral models.

Technically, averaging involves the construction of a time-varying transformation of
variables p → p. Hereby, the values of the original vector p and the newly introduced
vector p are related to each other by means of

p = p+ εh̃(p,τ)+O
(
ε2) . (5.84)

Note that the difference p−p is a quantity that is O(ε), i.e. small, in order of magnitude.
Therefore, the transformation (5.84) is called a near-identity transformation. In this
transformation, the term h̃(p,τ) is chosen so that

1. the behavior of the transformed state vector p(τ) only contains slow-varying
components.

2. the process εh̃(p(τ),τ) captures the fast-varying fluctuations of p(τ) while re-
maining bounded over the time interval of interest. The latter is, in our case,
infinite.

By construction, the process p(τ) captures the slow-varying long-term characteristics
of the state vector p(τ). Therefore, it is called the averaged process corresponding
to p(τ). In many cases, this average is the quantity of main interest. The equations
that govern this behavior are obtained by substituting the transformation (5.84) into the
starting equation (5.82).

Example (Harmonic oscillator): Fig. 5.17(a) shows a typical harmonic oscillator am-
plitude startup characteristic. Here, A(τ) is solved from a set of equations structured as
(5.82). These equations are obtained by means of the perturbation analysis outlined in
the previous section. Fig. 5.17(b) illustrates the decomposition of A(τ) into a dominant
slow-varying component A(τ) and a small fast-varying fluctuation εh(A(τ),τ). Note
that, for sake of a clear illustration, the magnitude of the latter component has been
exaggerated. In most practical cases, we are mainly interested in the behavior of the
averaged amplitude A(τ). The equations governing this averaged behavior are obtained
by substituting, amongst others, the transformation of variables

A = A+ εh̃(A,τ) (5.85)

into the starting-point equations obtained from the perturbation analysis. �
11The theory of averaging can also be seen as a particular application of the theory of continuous transfor-

mation (Lie) groups [Cohn65, Firk00]
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= εh(Α(τ),τ)~

Figure 5.17: Typical harmonic oscillator startup characteristic. (a) The oscil-
lation amplitude A(τ) solved from the starting-point equation (5.82). (b) The
amplitude startup behavior can be decomposed into a dominant slow-varying
component A(τ) with a small fast-varying fluctuation εh(A(τ),τ) on top of it.

By substituting (5.84) into (5.82), we obtain

dp
dτ

= ε
(

h(p,τ)− ∂h̃(p,τ)
∂τ

)
+O(ε2) . (5.86)

For p to meet the conditions mentioned above, an averaging transformations imposes
h̃(p, t) to satisfy

∂h̃(p,τ)
∂τ

= h(p,τ)−M [h] (p,τ) . (5.87)

Here, the operator M [ · ] is called an averaging operator. M[ · ] acts as a lowpass filter
that removes the fast-varying explicit dependence on τ of h(p,τ). Hence, in computing
M [h] (p,τ), the value of p is kept constant. With (5.87), (5.86) becomes

dp
dτ

= εMεε [h] (p,τ) = εh(p,τ) . (5.88)

This relation is accurate up to first order in ε. By careful selection of the lowpass av-
eraging operator M[ · ], the transformed equation (5.88) has a right-hand side that only
contains slow-varying components. As a result, the same holds for the any process p(τ)
that solves this equation. Equation (5.88) is called the averaged equation correspond-
ing to (5.82). Because of the slow-varying nature of its right-hand side, it can be solved
very efficiently using a large integration time step. Furthermore, it makes up a valuable
starting point for further analysis or for the construction of compact behavioral models.

Selecting the averaging operator M [ · ] is a degree of freedom that can be used to opti-
mize the properties of the averaged ODEs (5.88). This allows us to exploit particular
properties of the right-hand side εh(p,τ) of the starting-point equation (5.82). Conve-
nient averaging operators are

MtraditionalMM [h] (p,τ) =
1

TMTT

∫ s+TMTT /2

s

∫∫
−TMTT /2

h(p,s)ds (5.89)

MidealM [h] (p,τ) =
1

TMTT

∫ +∞

−

∫∫
∞

sin(π(τ− s)/TMTT )
π(τ− s)/TMTT

h(p,s)ds . (5.90)
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Figure 5.18: Frequency-domain characteristic corresponding to (a) the av-
eraging operator (5.89) and (b) the averaging operator (5.90). Here, fMff =
1/TMTT .

Here, in both cases, TMTT is the time constant of the (lowpass) averaging operator (fil-
ter). The operator (5.89) corresponds to a time average over the time span TMTT . This
time average coincides with our intuitive notions on averaging. The operator (5.89) is
the one that typically appears in traditional literature on averaging [Bogo61, Verhu96].
Fig. 5.18(a) shows its frequency-domain characteristic. The second operator (5.90)
represents the ideal lowpass filtering operation over the range f = [−1/2TMTT ,1/2TMTT ].
Its frequency characteristic is shown in Fig. 5.18(b). This operator is ideal in a sense
that it realizes a perfect separation of slow- and fast-varying signal components. Nu-
merically, however, (5.90) is sometimes more difficult or expensive to evaluate than
(5.89).

We conclude this discussion with some notes on the term εh̃(p,τ) in the transformation
(5.84). This term captures the fast fluctuations in p(τ) and is solved from (5.87). With
M[ · ] chosen so that the right-hand side of (5.87) has no DC component with respect to
the variable τ, εh̃(p,τ) is guaranteed to remain bounded ∀τ. However, since (5.87) is
a partial differential equation, we need a boundary condition to fix εh̃(p,τ) uniquely.
Bearing in mind the interpretation of εh̃(p,τ) as the small fast-varying fluctuations of
p(τ), it is most sensible to impose the term εh̃(p,τ) to be void of a DC component with
respect to the variable τ, or

lim
T→∞

1
T

∫ +T/2

−

∫∫
T/2

h̃(p,s)ds = 0 . (5.91)

Equations (5.87) and (5.91) uniquely fix the term εh̃(p,τ) and, therefore, the averaging
transformation (5.84). Fig. 5.19 summarizes the steps needed to compute the compo-
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Figure 5.19: Steps needed to compute the components of the averaging trans-
formation and the associated averaged equations.

nents of the averaging transformation and the associated averaged equations.

Example (Voltage-controlled harmonic oscillator): This example derives the aver-
aged equations that describe the behavior of the amplitude, phase and common-mode
level of the voltage-controlled oscillator in Fig. 5.9. Its intent is to illustrate the proce-
dure to do so and to provide some numerical results that demonstrate the accuracy of
the behavior predicted by these averaged equations. Note that further numerical results
are presented in section 5.8.

In previous examples, the behavior of the oscillator’s state vector p =
[

A θ z
]T

was shown to be governed by (5.79)-(5.81). The right-hand sides of these equations
are 2π-periodic in τ. Hence, applying the ideal lowpass averaging operator (5.90) cor-
responds to selecting the DC component of their Fourier series expansion with respect
to τ. This is equivalent to the use of the averaging operator (5.89) for TMTT = 2π. The
averaged equations associated with (5.79)-(5.81) are then found to equal

dAdd
dτ

= − 1
2π

∫ π

−

∫∫
π

cos(s)
IMII ,d(s,A,z)

IoscII
ds− A

2Q
(5.92)

dθ
dτ

= −CgC

4C
(5.93)

dz
dτ

= − 1
2π

∫ π

−

∫∫
π

IMII ,cm(s,A,z)
IoscII

ds+
IbII

2IoscII
. (5.94)

Note that none of the averaged right-hand sides depends on the phase θ. This is due
to the periodic dependence on τ of all right-hand side terms in (5.92)-(5.94) combined
with the fact that θ always appears in conjunction with τ as τ+θ.

Fig. 5.20 demonstrates the accuracy of the results obtained from (5.92)-(5.94) by com-
paring the predicted amplitude and common-mode startup behavior with results ob-
tained by a direct (SPICE-like12) solution of the original circuit equations (5.28)-(5.32).
The computations are performed for an oscillator with Q ≈ 8. The results in Fig. 5.20
clearly show that (5.92)-(5.94) accurately predicts the behavior of the oscillator’s av-
eraged amplitude and common-mode behavior. Moreover, the lower plot in Fig. 5.20

12In this text, a “SPICE-like” solver corresponds either to a Runge-Kutta method or an algorithm based
on numerical differentiation formulas.
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Figure 5.20: Oscillator startup behavior as respectively obtained from the av-
eraged equations (5.92)-(5.94) (thick slow-varying envelopes/line) and from
the original equations (5.28)-(5.32) (thin oscillating lines). The upper figure
plots the differential output xd(τ) while the lower one plots the common-
mode output xcm(τ).
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emphasizes the fact that solutions to (5.92)-(5.94) average out the high-frequency com-
ponents in the oscillator’s dynamic behavior. With regard to computational complexity,
(5.92)-(5.94) can be solved using a much larger timestep than the starting point equa-
tions (5.28)-(5.32) since they directly model the behavior of the dominant slow-varying
(averaged) components of the oscillator’s dynamics. As a consequence, for this ex-
ample, solving (5.92)-(5.94) runs 10 times faster than solving the original equations
(5.28)-(5.32).

The averaged equations (5.92)-(5.94) can be used for the computation of oscillator’s
operating point. The oscillator’s (averaged) operating-point amplitude Aop and common-
mode level zop are obtained by equaling dAdd /dτ and dz/dτ to zero in (5.92) and (5.94).
Hence, we solve Aop and zop from

1
2π

∫ π

−

∫∫
π

cos(s)
IMII ,d(s,Aop,zop)

IoscII
ds+

Aop

2Q
= 0 (5.95)

1
2π

∫ π

−

∫∫
π

IMII ,cm(s,Aop,zop)
IoscII

ds− IbII
2IoscII

= 0 . (5.96)

For the numerical values used to obtain the results in Fig. 5.20, solving (5.95)-(5.96)
yields

Aop = 1.30 (5.97)

zop = 1.25 (5.98)

By linearizing (5.92)-(5.94) in the neighborhood of these operating-point values, we
obtain an affine system of differential equations that allows us to study the oscillator’s
local dynamic behavior, e.g. the stability of the operating point. As demonstrated in
section 5.8, these linearized averaged equations can also serve as compact behavioral
models useful for architectural-level exploration and verification.

In some cases, the small variations that come on top of the averaged behavior are also
of interest. They are, for instance, responsible for the high-order harmonics in the
oscillator’s output spectrum. Up to first order, these variations are determined by the
second term in the averaging transformation (5.84). This term is solved from (5.87)
and (5.91). This yields, for instance,

z(t)− zop = − ∑
n �=�� 0

sin(nτ+nθ)
πn

∫ π

−

∫∫
π

cos(ns)
IMII ,cm(s,Aop,zop)

IoscII
ds (5.99)

as an expression for the oscillator’s steady-state common-mode behavior. Fig. 5.21
compares the steady-state common-mode behavior predicted using (5.99) with that
computed by solving (5.28)-(5.32). The figure illustrates a clear correspondence be-
tween both results. Deviations are due to perturbation effects of second and higher
order that are not accounted for by the first-order analysis presented in this text. In
magnitude, the RMS value of this error equals about 1/Q of the RMS value of the
high-frequency steady-state common-mode variations z(τ)− zop. Hence, in this exam-
ple, due to the low Q-factor, use of first-order analysis introduces an error with an en-
ergy that lies about a factor 10 below that contained in the high-frequency variations.
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Figure 5.21: Common-mode steady-state variations respectively obtained us-
ing first-order averaging (solid line) and by solving (5.28)-(5.32) (dashed
line). The dashdot line denotes the averaged operating-point common-mode
level zop.

By taking a closer look at the harmonic content of the common-mode steady-state
variations, it is observed that the error energy is mainly located at high frequencies.
Table 5.1 lists the energy contained in the first couple of even harmonics (the odd ones
are negligible). Values are given based on results respectively predicted by first-order
averaging and SPICE-like evaluation of (5.28)-(5.32). These results clearly indicate
good agreement for the low-order harmonics. Significant deviations only occur from
the 6th harmonic on.

A final example that demonstrates the accuracy of the equations (5.92)-(5.94) follows
from (5.93). This equation models the impact that perturbations have on the oscillator’s
phase and frequency. For example, the averaged unnormalized effective oscillation
frequency equals

ωe f f ective ≈ ω0

(
1+

dθ
dτ

)
= ω0

(
1− CgC

4C

)
(5.100)

where ω0 = 1/
√

LC
√√

. Up to first order, the small (transistor) capacitances CgC (see
Fig. 5.9) decrease the oscillation frequency by ω0CgC /4C. This corresponds with

ωe f f ective =
1√

L
√√

(C +CgC /2)
=

1√
LC

√√ 1√
1+CgC /2C

≈ ω0

(
1− CgC

4C

)
. (5.101)

Here, instead of being treated as perturbations, the CgC are taken into account as part of
the resonant tank capacitance. �
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Harmonic Averaged Spice-like
0 1.96 dB 1.98 dB
2 -21.56 dB -21.58 dB
4 -34.04 dB -35.26 dB
6 -45.92 dB -43.44 dB
8 -62.76 dB -54.47 dB

Table 5.1: Harmonic content of the steady-state common-mode waveform
respectively obtained from first-order averaging results and SPICE-like sim-
ulation results. Due to higher-order perturbation components, results start to
deviate significantly from the 6th harmonic on.

In summary, averaging is a powerful method for the analysis and modeling of an os-
cillator’s dynamic behavior. It allows us to obtain numerical results as well as sym-
bolic expressions. In the sections to come, we demonstrate its practical use for both the
analysis of oscillator phase behavior and for behavioral model extraction. Furthermore,
it is shown that averaging not only simplifies the analysis of an oscillator’s determin-
istic dynamics, e.g. settling and stability, but also that of its stochastic behavior, e.g.
phase noise.

5.7 Oscillator phase (noise) analysis

The methods outlined above can be used to model an oscillator’s phase (noise) behav-
ior [Dem00a, Dem00b, Dem02, Kae90, Haji98, Vana02d]. For this particular applica-
tion, the perturbation analysis presented in section 5.5 reduces to the one in [Dem00a,
Dem00b]. Hence, this work embeds existing theories on oscillator phase behavior
within a more global framework.

Phase (noise) behavior concerns the prediction of oscillator phase shifts induced by
the injection of small (noise) currents and/or voltages into the circuit. With regard to
this particular application, Fig. 5.22(a) illustrates how to partition the oscillator circuit.
The core system corresponds to the input-free oscillator while the perturbation terms
are associated with the injected currents and/or voltages, e.g. noise. For a single exter-
nal input u(τ) ∈ R, the (normalized) circuit equations corresponding to this setup are
written as

d
dτ

c(x)+g(x)+ εb(x)u(τ) = 0 . (5.102)

Here, x ∈ RNRR contains the circuit’s state variables. The injected signal u(τ) can be
either a deterministic signal or a noise process. The strength (standard deviation) of
this signal (random process) is assumed to be well below that of the current and volt-
age levels in the input-free system (i.e. for u(τ) = 0). If not, u(τ) can no longer be
considered a perturbation. As usual, a perturbation variable ε is introduced to mark the
perturbation terms, labeling them as being small.
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Figure 5.22: (a) With regard to the impact of a small external input signal
εu(τ) on the oscillator’s phase behavior, we partition the system into the
input-free oscillator (the core system) and the set of perturbing input signals.
(b) The solutions of the input-free oscillator are attracted to a 1-dimensional
orbit. The perturbing input signal causes the oscillator to (phase) shift along
its own orbit.

5.7.1 Capturing oscillator phase behavior

If the input-free oscillator (the core system) is mono-stable, then all its steady-state
solutions are phase-shifted copies of each other, i.e.

xs (τ,p) = xosc (τ+θ) . (5.103)

Here, xosc(τ) is a T -periodic solution of (5.102) for ε = 0. All other processes that
solve this unperturbed equation are attracted to the 1-dimensional orbit

M = {xosc(τ)|τ ∈R} (5.104)

traced by the steady-state solution xosc(τ). In (5.103), p = [θ] is the core system’s
1-dimensional state vector. Hereby, θ represents the oscillator’s phase which is, for
instance, a measure for the positions in time of the oscillation signal’s zero crossings.

As discussed in section 5.5, the perturbation term εb(x)u(τ) forces the oscillator to
move over the manifold M. In this case, this is translated as: the oscillator starts to shift
along its own orbit. This behavior is captured by means of slow-varying changes in the
oscillator’s phase θ(τ). As illustrated in Fig. 5.22(b), the equation that governs the
oscillator’s phase behavior is obtained by projecting the perturbation term εb(x)u(τ)
onto the tangent line to the orbit M. This yields

dθ
dτ

= −εvT
1 (τ+θ)b(xosc(τ+θ))u(τ) . (5.105)



172 5.7 OSCILLATOR PHASE (NOISE) ANALYSIS

Here, vT
1 (τ+θ)∈R1×N corresponds to the projector VT

1 (τ,p) discussed in the sections
5.5.2 and 5.5.3. In the literature on phase noise analysis [Dem00a, Dem00b], v1(τ) is
called the oscillator’s perturbation projection vector (PPV). Furthermore, the function

Γ(τ) = −vT
1 (τ)b(xosc(τ)) (5.106)

has been termed the impulse sensitivity function (ISF) [Haji98] associated with the
input source u(τ). This ISF is periodic with respect to τ. Using the ISF, (5.105) is
written as

dθ
dτ

= εΓ(τ+θ)u(τ) . (5.107)

The averaged phase behavior, i.e. the dominant slow-varying component that often
grows unbounded, is then determined by

dθ
dτ

= εMεε idealM
[
Γ(τ+θ)u(τ)

]
. (5.108)

Here, we applied the ideal averaging operator (5.90) which, in this case, is often the
most convenient one to proceed with. In many cases, the equations (5.107) and (5.108)
capture the oscillator behavior that is of main interest.

5.7.2 Practical application: oscillator injection locking

We illustrate the practical application of (5.107) and (5.108) by means of the study of an
oscillator’s injection locking behavior. To make the example more concrete, results are
elaborated for the harmonic oscillator in Fig. 5.22(a). It is, however, straightforward
to generalize them to other oscillator circuits. Moreover, all results that follow are
described by means of symbolic expressions. This illustrates a powerful feature of the
framework here presented: the ability to derive (approximate) symbolic expressions to
describe the often complex nonlinear phenomena.

In what follows, we study what happens when the harmonic oscillator in Fig. 5.22(a)
is injected with a weak sinusoidal current

u(t) = IuII sin((ω0 +∆ω)t) = IuII sin((1+∆ω/ω0)τ) . (5.109)

Here, ω0 is the oscillator’s free-running frequency while, as usual, τ = ω0t is the nor-
malized time variable. IuII is the amplitude of the injected current. Furthermore, the
frequency ω0 +∆ω of the injected signal u(t) is assumed to deviate only slightly from
ω0, i.e. |∆ω/ω0| � 1. The SPICE simulation result in Fig. 5.23 illustrates the kind of
behavior that occurs: the oscillator’s output signal phase-locks onto the injected signal.
In literature, this phenomenon is known as injection locking [Adl46, Jez74]: an oscil-
lator locks, both in phase and frequency, onto an externally injected signal. Injection
locking underlies a number of phase and frequency modulators. It is also the working
principle for systems of coupled oscillators. In what follows, we check whether (5.107)
correctly predicts injection locking to occur.
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Figure 5.23: SPICE simulation result of a harmonic oscillator injected with
a sinewave. The oscillator’s output signal (solid line) phase-locks onto the
injected signal (dashed line). Both the oscillator and the injected signal are
normalized to have their amplitudes (nearly) equal to 1.

If the resonant tank of the harmonic oscillator in Fig. 5.22(a) has a sufficiently high
Q-factor, then it is derived in appendix E that

vd(τ) ≈ Acos(τ+θ(τ)) (5.110)

Γ(τ) ≈ sin(τ)
IoscII

(5.111)

Here, vd = v1 − v2 is the differential voltage over the resonant tank’s capacitor while
A is a is the oscillator’s fixed operating point amplitude. Furthermore, IoscII = CAω0 =
A/Lω0 is the amplitude of the current circulating in the resonant tank. Substituting
(5.109) and (5.111) into (5.107) yields

dθ
dτ

=
IuII

IoscII
sin(τ+θ)sin((1+∆ω/ω0)τ) . (5.112)

In order for the right-hand side of this equation to be small, i.e. in order for the results
from the perturbation analysis to be valid, it must hold that IuII /IoscII � 1/Q where Q
is the quality factor of the resonant tank. Hence, the injected current must be much
smaller than the tank current. If this is satisfied, then the equation (5.112) governs
the behavior of the harmonic oscillator’s phase changes induced by the injection of a
sinusoidal current.

In order to solve the phase equation (5.112), we apply the averaging framework dis-
cussed in section 5.6. Use of the ideal lowpass averaging operator (5.90) and the as-
sumption that |∆ω/ω0| � 1, yields

dθ
dτ

=
1
2

IuII
IoscII

cos

(
∆ω
ω0

τ−θ
)

(5.113)
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as the equation governing the averaged phase behavior θ(τ). This equation in further
simplified by introducing

ψ(τ) =
∆ω
ω0

τ−θ(τ) . (5.114)

If we substitute this into (5.114), then we obtain

dψ
dτ

=
∆ω
ω0

− IuII
2IoscII

cos(ψ) . (5.115)

This equation models fairly accurately what happens when a harmonic oscillator is
injected with a small sinusoidal current.

What about injection locking? Well, if∣∣∣∣∣∣∣∣∣∣∆ω
ω0

∣∣∣∣∣∣∣∣∣∣ <
IuII

2IoscII
, (5.116)

then the right-hand side of (5.115) contains a stable fixed point

ψop = −arccos

(
∆ω
ω0

2IoscII
IuII

)
. (5.117)

By means of (5.114), we then find

θop(τ) =
∆ω
ω0

τ− arccos

(
∆ω
ω0

IuII
2IoscII

)
. (5.118)

As a result, the oscillator’s effective oscillation frequency equals

ωe f f ective = ω0

(
1+

dθop

dτ

)
= ω0 +∆ω . (5.119)

Hence, the effective (averaged) oscillation frequency locks onto that of the injected
sinewave. Here, (5.116) provides an expression for the locking range, i.e. the range of
input-frequencies for which frequency locking is accomplished. Also, when in lock, the
phase difference between the oscillation signal and the injected signal remains constant
at π/2− arccos(2IoscII ∆ω/IuII ω0). Again, note the simplicity whereby these symbolic
expressions are derived by means of the methods here presented.

Fig. 5.24 plots the averaged phase difference between the oscillation signal and the in-
jected signal as solved from (5.113) for ∆ω = 0. The initial phase difference gradually
disappears as the oscillator locks onto the injected sinewave.

5.7.3 Averaging in the presence of random perturbations

The previous example illustrates how averaging facilitates solving the phase equation
(5.107) (or equivalently (5.105)) for deterministic input signals. Such a simplification
is also possible when the injected signals are random in nature. In what follows, we
discuss oscillator phase noise theory. Phase noise involves an oscillator’s random phase
shifts due to injection of noise in the circuit. As illustrated in Fig. 5.25, this results, for
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instance, in an ever increasing uncertainty on the positions of the zero crossings.

Let us be given a stationary zero-mean Gaussian noise process u(τ). This noise process
is entirely characterized by its autocorrelation function

Φuu(r) = E{u(τ)u(τ− r)} . (5.120)

By introducing
n(τ,θ) = Γ(τ+θ)u(τ) , (5.121)

we can write the oscillator’s phase (noise) equation (5.107) as

dθ
dτ

= εn(τ,θ) . (5.122)

Because of the random nature of n(τ,θ), (5.122) is called a stochastic differential equa-
tion (SDE). For constant θ, the autocorrelation function of n(τ,θ), i.e.

Φnn(τ,r) = E{n(τ,θ)n(τ− r,rr θ)} = Γ(τ+θ)Γ(τ+θ− r)Φuu(r) , (5.123)

is periodic in τ. Hence, n(τ,θ) is cyclostationary with respect to τ (see section 3.5.3 in
chapter 3). This cyclostationarity together with the dependence of n(τ,θ) on θ compli-
cates solving (5.122).

Averaging reduces (5.122) to an SDE with a Gaussian stationary right-hand side that
is independent of θ. Indeed, the application of the ideal lowpass averaging operator
(5.90) to n(τ,θ) results in an averaged Gaussian noise process n(τ). Results from
cyclostationary noise theory (again, see section 3.5.3 in chapter 3) allow us to prove
that the autocorrelation function of n(τ) is equal to

Φnn(r) =
1

2π

∫ π

−

∫∫
π

E{n(s)n(s− r)}ds (5.124)

=
Φuu(r)

2π

∫ π

−

∫∫
π

Γ(s+θ)Γ(s+θ− r)ds (5.125)

=
Φuu(r)

2π

∫ π

−

∫∫
π

Γ(s)Γ(s− r)ds . (5.126)

The latter transition is a consequence of the periodicity of the ISF Γ(τ)13. Equation
(5.126) shows that n(τ) is stationary and without explicit dependencies on θ. Hence,
the averaged equation corresponding with (5.122) equals

dθ
dτ

= εMεε idealM [n](τ) = εn(τ) , (5.127)

an SDE with a stationary right-hand side that is independent of the averaged phase θ.

13The equivalence of (5.125) and (5.126) is of major importance in resolving the difference between two
widely publicized theories [Dem00a, Haji98] on oscillator phase noise behavior. In [Vana02d], it is shown
that both theories yield similar results for stationary input signals u(τ). This is no longer true for non-
stationary inputs —as is the case in the oscillator injection locking problem— with [Dem00a] being the one
that yields correct results.
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At this point, it is important to mention that the results above are not universally valid.
Firstly, the input noise process u(τ) must be stationary. Furthermore, we require either
that Φuu(r) → 0 on the time scale 1/ε or that most energy in the spectrum of Φuu(r) is
contained at baseband. When these conditions are not satisfied, the stochastics of the
right-hand side of (5.127) do start to depend on θ. Solving (5.127) then requires the
construction of a Fokker-Planck equation [Dem02, Risk89].

Solving (5.127) is straightforward. Since n(τ) is Gaussian, the same holds for the
averaged phase θ(τ) = ε

∫ τ
0

∫∫
n(s)ds and the averaged phase differences θ(τ+r)−θ(τ) =

ε
∫ τ+r

τ
∫∫

n(s)ds. Hence, the variance

σ2
θθ(r) = E

{(
θ(τ+ r)−θ(τ)

)2
}

, (5.128)

entirely characterizes the averaged phase behavior. With

d
dr

σ2
θθ(r) = E

{
2
(
θ(τ+ r)−θ(τ)

) dθ
dt

(τ+ r)
}

(5.129)

= ε2E

{
2

(∫ τ+r

τ

∫∫
n(s)ds

)
n(τ+ r)

}
(5.130)

= ε22
∫ τ+r

τ

∫∫
Φnn (τ+ r− s)ds (5.131)

= ε22
∫ τ

0

∫∫
Φnn(s)ds , (5.132)

we find σ2
θθ(r) by solving

d2

dr2 σ2
θθ(r) = ε22Φnn(r) with σ2

θθ(0) = 0,
d
dr

σ2
θθ(0) = 0 . (5.133)

This is in agreement with existing results [Dem98, Dem02]. Equation (5.133) is the
starting point for computing, for instance, an oscillator’s phase noise spectrum.

Example (White input noise): For a Gaussian stationary white input noise source
u(τ), it holds that

Φuu(r) = NuNN δ(r) . (5.134)

Using (5.126) and (5.132), it is readily shown that the variance of the averaged phase
behavior θ(τ) satisfies

dσ2
θθ

dr
=

NuNN
2π

∫ π

−

∫∫
π

Γ(s)2ds . (5.135)

In the equations above, NuNN is the power spectral density level of the white noise process
u(τ). Equation (5.135) is solved by

σ2
θθ(τ) =

(
NuNN
2π

∫ π

−

∫∫
π

Γ(s)2ds

)
τ . (5.136)

Hence, the variance of the averaged stochastic phase shift increases linearly with time.
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Figure 5.26: Variance σ2
θθ(τ) of an harmonic oscillator’s phase θ(τ) caused

by the injection of a white noise current. The variance was computed by
means of Monte-Carlo simulations. The dashed line marks the variance of
the averaged phase shift as solved from (5.135).

In order to verify (5.136), the variance

σ2
θθ(τ) = E

{
θ(τ)2} . (5.137)

of the (non-averaged) phase shift θ(τ) was computed numerically by means of Monte-
Carlo simulations: (5.122) was solved for 500 randomly generated noise samples. The
ISF Γ(τ) was set equal to that of the harmonic oscillator in Fig. 5.22. The numerically
computed variance is shown in Fig. 5.26. It is in close agreement with the variance of
the averaged phase shift predicted by (5.136). �

5.7.4 Practical application:
computing oscillator phase noise spectra

The theory above relates the stochastics of an injected stationary noise process u(τ) to
that of an oscillator’s random phase behavior. In a next step, we need to figure out the
impact this random phase behavior has on the PSD of the oscillator’s output signal, i.e.
on its phase-noise spectrum. The ultimate goal is to determine the relation between the
PSD of the input noise process u(τ) and the phase-noise spectrum. In [Vana03c], we
present a semi-analytic method to do so. For input noise processes that vary sufficiently
fast over time, we derived an analytic expression. For cases that do not satisfy these
conditions, we developed a numerical algorithm that computes corrections to this ex-
pression. These corrections mainly concern the shape of the very-close-in phase-noise
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spectrum. Either way, the computation of the oscillator’s entire phase-noise spectrum is
accomplished in only a few minutes. This is a huge improvement over methods that rely
on lengthy simulations and a numerical discrete Fourier transformation. Moreover, our
work in [Vana03c] allows the accurate computation of the very-close-in phase-noise
spectrum, i.e. for frequency offsets down to a few Hz and below. In what follows, we
summarize the main results. For details, we refer to [Vana03c].

The phase noise spectrum SxS ,k(∆ f ) near the k-th harmonic of an oscillator’s output
signal is related to the stochastic phase behavior described by (5.126) and (5.133) by
means of the equation14

SxS ,k(∆ f ) = F
{

e−
k2σ2

θθ
(2π f0ff t)
2

}
. (5.138)

Here, ∆ f is the frequency offset to the k-th harmonic frequency k f0ff . Furthermore,
the Fourier transform in (5.138) is computed with respect to the unnormalized time
variable t. If the averaged noise process n(τ) varies sufficiently fast over time, then it
is shown that [Vana03c]

SxS ,k(∆ f ) ≈ ε2
k2 f 2

0ff
∆ f 2 Snn(∆ f )

1+ ε4π2k4 f 2
0ff

∆ f 2 f 2
0ff Snn(0)2

. (5.139)

Here, Snn(∆ f ) =F {Φnn(2π f0ff t)} is the PSD of the averaged noise process n(τ). Again,
the Fourier transform is with respect to unnormalized time variable t. For sufficiently
large ∆ f , (5.139) can be further approximated as

SxS ,k(∆ f ) ≈ ε2k2 f 2
0ff

∆ f 2 Snn(∆ f ) . (5.140)

This expression is consistent with the well-known 1/∆ f 3−1/∆ f 2 characteristic. More-
over, (5.139) unifies the two distinct high- and low-frequency asymptotes presented in
[Dem98] in a single expression.

For slow-varying (1/ f ) input noise sources, the validity of (5.139) —and therefore also
that of the low-frequency asymptote in [Dem98]— breaks down for small frequency
offsets ∆ f . For such cases, we propose (again, see [Vana03c]) a method that refines
(5.139) by means of a routine based on exponential data fitting. In performing the
numerical computations, the PSD of the averaged noise process n(τ) is assumed to
equal a combination of white and 1/ f noise, i.e.

Snn( f ) = N

[
1+

f1ff / f

| f |
(

1− 2
π

arctan

(∣∣∣∣∣∣∣∣∣∣ γ
2π f

∣∣∣∣∣∣∣∣∣∣
))]

. (5.141)

Here, f1ff / f is the input noise 1/ f corner frequency, i.e. the frequency (in Hz) beyond
which the PSD of the 1/ f input noise drops below the white noise level. Furthermore

14This expression is somewhat different from the one presented in [Vana03c]. These differences arise from
the fact that, contrary to [Vana03c], this dissertation performed computations with respect to the normalized
time variable τ = 2π f0ff t. We therefore need some de-normalizations to obtain the phase-noise spectrum.
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Figure 5.27: Phase noise spectrum SxS ,1(∆ f ) around carrier frequency. The
spectrum is shown for different values of γ. For small values ofγγ γ, the veryγγ
close-in phase noise spectrum flattens with a steep edge that makes the tran-
sition from the DC-level to the familiar 1/∆ f 3 −1/∆ f 2 characteristic.

the parameter γ represents the frequency whereby, for f → 0, the 1/ f characteristic
of the second term in (5.141) goes over into a flat one with Snn(0) = N

[
1+4 f1ff / f /γ

]
γ .

This 1/ f noise model was borrowed from [Dem98, Kae90].

The algorithm mentioned above was used to compute SxS ,1(∆ f ), the phase-noise spec-
trum around the carrier frequency. The computation of a single spectrum finished in
less than a minute. In this example, f0ff = 1GHz. The input noise PSD was modeled as
in (5.141) with f1ff / f set to 50kHz. The noise strength was chosen in order for the phase
noise spectrum at 1MHz to equal −130 dBc/Hz. These values correspond to typical
(recent) designs, e.g. [Demu02]. Fig. 5.27 plots SxS ,1(∆ f ) for values of γ ranging from
0.5 Hz to 5 kHz. For small values of γ, i.e. for the second term in (5.141) becomingγγ
more 1/ f -like, the very-close-in phase noise spectrum flattens with a steep edge mak-
ing the transition from the DC level to the familiar 1/∆ f 3 − 1/∆ f 2 characteristic. In
this example, this edge is located between 300 Hz and 1 kHz.

5.8 Harmonic oscillator behavioral modeling

We end this discussion on oscillators with a method for the construction of compact
behavioral models for harmonic oscillators and sets of coupled harmonic oscillators
[Vana03b]. The models are useful to speed up lengthy or repetitive system-level ver-
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Figure 5.28: It is assumed that the oscillator circuit can be mapped onto a
template consisting of K weakly interconnected lossless resonant tanks. The
figure shows a template for K = 2.

ification and trade-off analysis. The model extraction procedure builds on the theory
outlined in previous sections. The resulting models capture an oscillator’s dynamic
behavior by means of the averaged state-changing equations. The computational cost
needed to evaluate them is well below that of solving the original circuit equations.
The models also separate slow- and fast-varying behavior. As a result, they can be
integrated using a large time step. Experimental results are presented for both a single
harmonic oscillator and a harmonic quadrature oscillator.

5.8.1 Model extraction theory

The method assumes that the oscillator circuit can be mapped onto the template in
Fig. 5.28. The template consists of K lossless resonant tanks and a number of controlled
current sources. The current sources are assumed to be weak: the amount of energy
they inject per oscillation period into the resonant tanks is small. Note that the template
in Fig. 5.28 does not cover all possible oscillator topologies. For example, the oscillator
circuit in Fig. 5.9 cannot be mapped onto it. However, it is straightforward to adapt the
method to handle more general templates. In what follows, we briefly step through
the theory of the sections 5.3 to 5.6 as it applies to a system of coupled harmonic
oscillators.

5.8.1.1 Normalizing and partitioning the circuit equations

The equations that model a system of K coupled resonant tanks are given by

Lk
dik
dt

− vk = 0 (5.142)
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CkCC
dvk

dt
+ ik + IkII

(
v1,

dv1

dt
,v2,

dv2

dt
, . . . , t

)
= 0 (5.143)

for k = 1, . . . ,K. Here CkCC and Lk respectively represent the effective capacitance and

inductance of the k-th resonant tank. The currents IkII
(

v1,
dv1
dt ,v2,

dv2
dt , . . . , t

)
model the

contributions of the transistor feedback together with the inductor and capacitor losses.

In a first step, we normalize the system of equations (5.142). To do so, we change
variables:

xk =
vk

VkVV
(5.144)

yk =
ik

ω0,kCkCC VkVV
(5.145)

ω0 =
1
K

K

∑
k=1

ω0,k (5.146)

τ = ω0t (5.147)

fkff

(
x1,

dxdd 1

dτ
, . . . ,τ

)
=

IkII (V1VV x1,V1VV ω0
dxdd 1
dτ , . . . ,τ/ω0)

IkII ,max
(5.148)

ε =
IkII ,max

ω0,kCkCC VkVV
. (5.149)

Here, ω0,k = 1/
√

L
√√

kCkCC is the resonant frequency of the k-th tank, VkVV is an estimate
for the magnitude of the voltage swing over the capacitor CkCC and IkII ,max is a measure
for the maximum feedback current delivered by the controlled current sources. The
variable ε equals the ratio between the maximum feedback current IkII ,max and the current
ItankII ,k = ω0,kCkCC VkVV = VkVV /(ω0,kLk) circulating in the resonant tank. The VkVV should be
chosen such that ε is the same for all tanks. Furthermore, it is assumed that all resonant
frequencies ω0,k cluster around the mean frequency ω0, i.e.

ω0,k = ω0(1+ εδk) (5.150)

were εδk is the (small) relative deviation of ω0,k from ω0.

With (5.144)-(5.149), the system (5.142)-(5.143) becomes

dyd k

dτ
− xk − εδk

dyd k

dτ
= 0 (5.151)

dxdd k

dτ
+ yk + ε fkff

(
x1,

dxdd 1

dτ
,x2,

dxdd 2

dτ
, . . . ,τ

)
− εδk

dxdd k

dτ
= 0 . (5.152)

The right-hand sides of (5.151)-(5.152) clearly fall into two components. The first two
terms correspond to the behavior of the lossless resonant tanks. The terms preceded
by an ε model the transistors currents, the tank losses and the resonant frequency mis-
matches. Since all latter terms are small, at least for well-matched resonant tanks with
a sufficiently high Q-factor, they can be treated as perturbations. Hence, the (coupled)
harmonic oscillator’s core system is chosen to coincide with the K lossless resonant
tanks.
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5.8.1.2 Characterizing the oscillator’s unperturbed core.

The oscillator’s core system corresponds to K independent lossless resonant tanks. It is
described by (5.151)-(5.152) for ε set to zero. The steady-state solutions to this system
are given by

ys,k (τ) = Ak sin(τ+θk) (5.153)

xs,k (τ) = Ak cos(τ+θk) . (5.154)

Each tank resonates with an arbitrary but fixed amplitude Ak and phase θk. These
resonant tank amplitudes and phases are combined in the core system’s state vector

p =
[

A1 θ1 A2 θ2 · · · AK θK
]T ∈R2K . (5.155)

Each particular value of the state vector identifies a possible state (steady-state solution)
of the oscillator’s core.

5.8.1.3 Oscillator perturbation analysis

For small but nonzero perturbations, i.e. for 0 < |ε| � 1, the state vector p slowly
changes with time. Up to first order in ε, the behavior of p is governed by

dp
dτ

= −εVT
1 (τ,p)g(τ,p) = εhp(p, t) . (5.156)

Here,

g(τ,p) =

⎡
⎢
⎡
⎢⎢⎢⎣⎢

−δk
∂ys,k
∂τ

f1ff
(

xs,1,
∂xs,1

∂τ ,xs,2,
∂xs,2

∂τ , . . . ,τ
)
−δk

∂xs,1
∂τ

...

⎤
⎥
⎤
⎥⎥⎥⎦⎥ (5.157)

=

⎡
⎢
⎡
⎣⎢⎢ −δ1A1 cos(τ+θ1)

f1ff (A1 cos(τ+θ1) ,−A1 sin(τ+θ1) , . . . ,τ)+δ1A1 sinA1 (τ+θ1)
...

⎤
⎥
⎤
⎦⎥⎥

is the vector in R2K containing the perturbation terms. The projector VT
1 (τ,p) ∈

R2K×2K can be shown to equal

VT
1 (τ,p) =

⎡
⎢
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

sin(t +θ1) cos(t +θ1)
cos(t+θ1)

A1
− sin(t+θ1)

A1
0

sin(t +θ2) cos(t +θ2)
0 cos(t+θ2)

A2
− sin(t+θ2)

A2
. . .

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ , (5.158)

a block-diagonal square matrix.

Since in most practical applications phase differences are of greater interest than ab-
solute phase values, we again change variables. Equation (5.156) is reformulated in
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terms of one common-mode phase θ = θ1 and the phase differences ∆φk = θk − θ1

between the k-th resonant tank and the first one. In stable oscillators, these phase dif-
ferences converge to a constant operating-point value. This property is exploited later
on in our model extraction procedure. Introducing the vector

q =
[

A1 · · · AK ∆φ2 · · · ∆φK θ
]T

(5.159)

= Tqp , (5.160)

where

Tq =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

1 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0

...
. . .

...
0 0 0 0 · · · 1 0
0 −1 0 1 · · · 0 0

...
. . .

...
0 −1 0 0 · · · 0 1

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
∈R2K×2K , (5.161)

the ODE (5.156) can be recast into

dq
dτ

= εTqhp
(
T−1

q q,τ
)

= εhq(q,τ) . (5.162)

Equation (5.162) captures the dynamic behavior of the oscillation amplitudes, the phase
differences and the common-mode phase. It is accurate up to first order in ε.

5.8.1.4 Averaging

The presence of ε in the right-hand side of (5.162) implies a small time derivative of
the process q(τ). This ensures that substantial changes in q(τ) only occur over a long
period of time. Hence, the process q(τ) contains a dominant low-frequency component.
As outlined in section 5.6, the equation that governs the behavior of this component can
be extracted by means of an averaging transformation

q = q+ εh̃q(q,τ)+O
(
ε2) . (5.163)

If we use the ideal lowpass averaging operator (5.90), then the averaged equation cor-
responding to (5.162) becomes

dq
dτ

= εMεε idealM [hq(q,τ)] = εhq(q,τ) . (5.164)

As will be demonstrated experimentally in section 5.8.3, this averaged equation cap-
tures the essence of the dynamic behavior of a (system of coupled) harmonic oscil-
lator(s). Furthermore, it can be solved very efficiently using traditional (SPICE-like)
simulation algorithms. Hence, it serves as a compact behavioral harmonic oscillator
model. Of course, in order to be useful in practice, the right-hand side of (5.164) must
be stored in a way that can be evaluated efficiently while being easy to implement in
environments for system-level simulation.
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5.8.1.5 Storing the averaged equations

A first approach stores hq (q,τ) as a table of precomputed values. During simulation,
model evaluations are performed using table lookup and interpolation in between. As
illustrated in section 5.8.3.1, this approach works fine for modeling a single harmonic
oscillator’s behavior. However, since the storage space increases exponentially with
the dimension of the vector q, it becomes cumbersome for sets of coupled oscillators.

For stable oscillators, a more elegant approach exists. Stability ensures that all am-
plitudes and phase differences converge to a neighborhood of a stable operating point.
It is therefore possible to construct behavioral models by approximating the averaged
equations near such an operating point. In order to put this idea to practice, we partition
the state vector in two major components:

q =
[

A1 · · · AK ∆φ2 · · · ∆φK θ
]T

(5.165)

=
[

qT
1 θ

]T
. (5.166)

A first component q1 contains the amplitudes and phase differences. A second com-
ponent contains the common-mode phase θ. Writing the system of ODEs (5.162),
governing the behavior of the state vector q =

[
qT

1 θ
]T

, in terms of q1 and θ yields

d
dτ

[
q1

θ

]
= ε

(
hq,T (q1,τ+θ)+∆hq

([
q
θ

]
,τ
))

. (5.167)

Here, we deliberately partitioned the right-hand side in two terms. The first one, hq,T ,
is typically largest in magnitude and captures the action of tank losses, non-stochastic
transistor currents and resonant frequency mismatches. This component is periodic in
the normalized time variable τ with a period T = 2π. The second component, ∆hq, is
typically much smaller than hq,T and captures, for instance, (transistor) noise or other
signal sources. The averaged ODEs corresponding to (5.167) are

d
dτ

[
q1
θ

]
= ε

(
hq,T (q1)+∆hq

([
q1
θ

]
,τ
))

. (5.168)

Since hq,T (q1,τ+θ) is periodic in τ, the average of the first term does not explicitly
depend on the common-mode phase θ.

For stable oscillators, the averaged oscillation amplitudes and phase differences, i.e.
the elements of q1, converge to the neighborhood of a constant operating point value
q1,op. This operating point is solved from

hq1,T
(
q1,op

)
= 0 . (5.169)

Here hq1,T contains the first (2K−1) rows of hq,T . Near the operating point, we capture
the oscillator’s dynamic behavior by means of approximations of the averaged equation
(5.168). The simplest approximation is based on linearization. Section 5.8.3.2 illus-
trates the accuracy of these linearized models for an harmonic quadrature oscillator.
More sophisticated approximators use multivariate polynomial regression, radial basis
functions or support vector machines.
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Figure 5.29: Harmonic quadrature oscillator measurement setup. Here, the
voltage sources v1 and v2 are introduced for the purpose of extracting the

resonant tank characteristics and the currents IkII
(

v1,
dv1
dt ,v2,

dv2
dt , . . . , t

)
ex-

changed between the resonant tanks and the remainder of the circuit. The
voltage sources should therefore not be considered as part of the oscillator
circuit.

5.8.2 Numerical computations

Finally, we discuss the numerics that are needed to put the above theory to practice.
Firstly, this requires us to map the oscillator’s circuit topology on the template of
Fig. 5.28. Furthermore, we need a way to evaluate the functions hq (q,τ). Hereby, we
focus on the dominant component hq,T (q1). In what follows, all computational proce-
dures are outlined for the harmonic quadrature oscillator shown in Fig. 5.29. Adapting
the procedures to other types of (coupled) harmonic oscillators is straightforward. As
presented, the procedures are easily implemented on top of existing simulation algo-
rithms.

A resonant tank’s effective capacitance and inductance values CkCC and Lk are determined
by fitting the admittance GRLCG ( jω) of an RLC tank onto the one simulated using the
setup shown in Fig. 5.29. Here, we use voltage sources v1 and v2 to apply the in-phase
and quadrature voltages

v1(t) = ∆vcos(ωt) (5.170)

v2(t) = 0 (5.171)

with ∆v a sufficiently small voltage. By measuring the resulting steady-state currents I1

and I2II through the voltage sources, we retrieve the information necessary to compute,
for instance, G1( jω). This simulated admittance is fitted onto that of an RLC tank for
frequencies ω in the neighborhood of the resonant frequency

ω0,1 = argmin
ω

|G1( jω)| . (5.172)
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The setup in Fig. 5.29 guarantees that all fringe (transistor) capacitances are taken into
account as part of the effective tank capacitances C1. Accurate modeling also requires
us to account for output loading due to subsequent blocks, e.g. buffers. This can
be accomplished by adding extra capacitors at the output nodes that model the input
impedance of these subsequent blocks.

Computing hq,T (q1) for a given set of values for q1 requires the currents IkII . To obtain,

for instance, I1

(
v1,

dv1
dt ,v2,

dv2
dt , . . . , t

)
, we apply

v1(t) = V1VV A1 cos
(
ω0t +θ

)
(5.173)

v2(t) = V2VV A2 cos
(
ω0t +θ+∆φ2

)
(5.174)

in the measurement setup of Fig. 5.29. Here, V1VV and V2VV are normalization constants

introduced in (5.144). I1

(
v1,

dv1
dt ,v2,

dv2
dt , . . . , t

)
then equals the periodic steady-state

current that flows through the voltage source v1. These steady-state currents can be
determined using a shooting or an harmonic balance method. Having computed the IkII ,
we use (5.144)-(5.162) to obtain the term hq,T (q1,τ+θ) in (5.162). Averaging this term
yields hq,T (q1). Here, averaging comes down to the selection of the DC component of
the Fourier series expansion of hq,T (q1,τ+θ) with respect to τ.

5.8.3 Experimental results

The model extraction procedure was implemented in Matlab for both a single har-
monic oscillator and an harmonic quadrature oscillator. In what follows, we compare
the behavioral model’s steady-state and transient behavior with results extracted from
SPICE-like simulations. All computations were performed in Matlab running on a
Pentium IV at 1.7 GHz.

5.8.3.1 Single harmonic oscillator

In a first example, we construct a behavioral model for the harmonic oscillator shown
in Fig. 5.30. The behavioral model is constructed by precomputing the right-hand
side of the averaged ODEs (5.168) for 31 different values of the oscillation amplitude.
Model evaluations are based on table lookup and interpolation in between these 31
precomputed values. The oscillator is designed to have its oscillation frequency near
1 GHz. Its feedback transistors are sized such that

γ =
Gm, f eedback

1/Rloss
=

gm1/2
1/Rloss

≈ 2.5 . (5.175)

The transistor’s (VGSVV −VthVV ) is set to 0.5 V. As shown in Fig. 5.30, the resonant tank
model includes several parasitics for both the inductor and capacitor. The MOS tran-
sistors are modeled using the EKV equations [Enz95] for a 0.5µm CMOS technology.
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Figure 5.30: Harmonic oscillator with a single resonant tank. The tank in-
cludes several components that model parasitic behavior of the inductor and
capacitor.

In a first step, we extract the characteristics of the resonant tank. Without transistor
capacitances, the tank is characterized by:

f0ff = 1GHz (5.176)

Q =
2π f0ff C
1/Rloss

= 8.04 . (5.177)

Taking the transistor capacitances into account changes the resonance frequency to
f0ff = 0.986GHz. Note that these capacitances are automatically accounted for if we
use the computational procedure outlined in section 5.8.2.

Next, we construct the (normalized) equations that govern the behavior of the averaged
state vector

q =
[

A θ
]T

. (5.178)

This yields the system of ODEs

dAdd
dτ

= hAh (A) (5.179)

dθ
dτ

= hθ(A) . (5.180)

Note that averaging removes the right-hand-side’s dependency on the phase θ. Fig. 5.31
plots both hAh (A) and hθ(A) as a function of the averaged amplitude. The upper figure
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Figure 5.31: Right-hand sides of the ODEs (5.179) and (5.180) that gov-
ern the behavior of the resonant tank’s averaged amplitude and phase. The
vertical line indicates the position of the stable operating point.

shows hAh (A) to contain two operating points: an unstable one at Aop = 0 and a stable
one at Aop = 1.69. Only the latter is of interest. It is indicated by the vertical line
in Fig. 5.31. For this operating point, we notice from equation (5.180) that θ(τ) =
hθ(Aop)τ. Hence, the interactions between the resonant tank and the feedback elements
cause a slight shift in oscillation frequency.

To verify the accuracy of the averaging method, we compare the oscillator’s steady-
state differential output voltage as computed using the (normalized) signal model

xs(τ) = A(τ)cos(τ+θ(τ)) (5.181)

and the averaging transformation

A(τ) = Aop + εh̃Ah
(
A

((
op,hθ(Aop)τ,τ

)
(5.182)

θ(τ) = hθ(Aop)τ+ εh̃θ
(
A

((
op,hθ(Aop)τ,τ

)
(5.183)

with the solutions of the original circuit equations. The latter are obtained by means of
a SPICE-like algorithm. The transformation (5.182)-(5.183) is evaluated at the stable
operating point Aop = 1.69. Table 5.2 lists the magnitudes of the fundamental tone
and the first few odd harmonics (the even harmonics are negligible). The magnitude of
the fundamental component is 1% (0.1 dB) accurate. The other components are 0.5-
1.5 dB accurate. This shows that the steady-state behavior of the averaged equations
corresponds with that of the circuit equations.
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Harmonic Averaged SPICE-like
1 4.58 dB 4.68 dB
3 -33.2 dB -32.1 dB
5 -46.8 dB -46.4 dB
7 -60.6 dB -59.0 dB

Table 5.2: Spectral components of the steady-state differential output volt-
age. These components are respectively obtained by means of averaging and
via analysis of SPICE-like simulation results.

In a final step, we construct a behavioral model for the oscillator’s transient behavior.
This model implements the averaged equations (5.179) and (5.180). The right-hand
sides hAh (A) and hθ(A) are stored as a table of 31 precomputed values. We evaluate them
by means of table lookup and linear interpolation. Computing the 31 values requires
3 minutes of CPU time. Fig. 5.32 compares the oscillator startup behavior predicted
by the behavioral model, which directly computes the oscillation amplitude, with the
solution of the original circuit equations. The latter was obtained using a SPICE-like
algorithm.As can be seen, there is excellent agreement (to within 1%) between the
SPICE-like simulation results and the amplitude envelope predicted by the behavioral
model.

As far as computational complexity is concerned, we observe that simulations based
on the behavioral model only take 0.4 seconds to complete. Solving of the exact circuit
equations takes 37.2 seconds. These numbers hold for simulations ranging over 20 pe-
riods of oscillation. The results demonstrate a significant simulation speedup whereby
the behavioral model is solved up to a 100 times faster. The reasons for this speedup are
twofold. Firstly, the behavioral model can be solved using a much larger time step. It
“skips” fast-varying oscillations and directly computes amplitude and phase behavior.

The speedup mentioned above doesn’t seem like a big deal. For a designer, there is
little difference in having to wait 1 or 30 seconds. But the simulations above ran over
a very limited simulation time span, covering only 20 periods of oscillation. Fig. 5.33
plots the simulation (CPU) time as a function of the simulation time span relative to the
oscillation period. This is done for both SPICE-like transient simulations and for sim-
ulations performed with the model extracted by means of the methods here developed.
As is observed from the figure, if the simulation time span grows large, then SPICE-like
simulations tend to take minutes and even hours while the behavioral model still evalu-
ates within seconds or minutes. Hence, use of the behavioral model becomes more and
more advantageous when the total simulation time span grows large. Lengthy (or large
numbers of short) simulations frequently occur in design practice: just think about sys-
tem optimization methods that require us to run simulations in a loop, system-level
verifications that run over many periods of the high-frequency carrier (oscillation) sig-
nal and the simulation of the startup behavior of oscillators with a really large settling
time (e.g. when using a crystal resonant tank). As indicated by the dashed lines in
Fig. 5.33: if, for the setup in this example, you want to avoid having to wait longer
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Figure 5.32: Harmonic oscillator startup behavior. The fast-oscillating line
is the solution of the original circuit equations. The envelope solves the av-
eraged system (5.179)-(5.180). The results agree to within 1%.
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Figure 5.33: CPU time versus the normalized length of the simulation time
span. For lengthy or repetitive simulations that run over a large number of
oscillation periods, use of the behavioral model reduces simulation times
from hours to minutes.
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Figure 5.34: Harmonic quadrature oscillator topology. Tank losses are mod-
eled by means of the parallel resistor Rloss.

than 10 minutes for the simulation results to be ready, then you should switch to the
use of the behavioral model as soon as the simulation runs over a time span that exceeds
300 periods of the oscillation signal.

5.8.3.2 Harmonic quadrature oscillator

In a second example, we construct a behavioral model for the harmonic quadrature
oscillator in Fig. 5.34. The model corresponds to the linearized averaged ODEs (5.168).
In this example, the transistor models are based on the MOST level-1 equations. The
resonant tanks have a Q-factor of about 10. Tank losses are modeled by putting a
resistor Rloss in parallel with each resonant tank. The other parameters that specify the
design of this quadrature oscillator are:

γ =
Gm, f eedback

1/Rloss
=

gm1/2
1/Rloss

= 2 (5.184)

m =
gm2

gm1
= 0.3 . (5.185)

Here, γ is the ratio between the small-signal transconductance of the active energy
restoring feedback elements (as seen by the resonant tanks) and the loss conductance
Gloss = 1/Rloss. The parameter m is the ratio of the transconductances of the transistors
M1 and M2. It is a measure for the strength that couples the two resonant tanks.

The behavioral model corresponds to a linear approximation of the averaged ODEs that
govern the state vector

q =
[

AI AQ ∆φ θ
]T

. (5.186)

This state vector contains the amplitudes AI and AQ of the in-phase and quadrature
oscillations, the phase difference ∆φ between these oscillations and the common-mode
phase θ. The averaged ODEs are linearized near the operating point values q1,op =[

AI,op AQ,op ∆φop
]T =

[
2.51 2.51 π/2

]T
. The resulting behavioral model
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Figure 5.35: Amplitudes of the in-phase and quadrature oscillations obtained
from the behavioral model (solid line) and extracted from the SPICE-like
simulation of the original set of circuit equations (x-marks). The result are
obtained for ε = 0.2, γ = 0.5 and m = 0.3.

is a system of linear time-invariant (LTI) differential equations. It is readily imple-
mented in any environment for system-level simulation.

Fig. 5.35 compares the settling behavior predicted by the behavioral model

d
dτ

∆q1 = Amodel∆q1 (5.187)

=

⎡
⎣
⎡ −0.350 −0.035 −0.185

−0.035 −0.350 0.185
0.067 −0.067 −0.070

⎤
⎦
⎤⎡
⎣
⎡

∆A∆∆ I

∆A∆∆ Q

∆∆φ

⎤
⎦
⎤

(5.188)

with the envelopes extracted from the solutions of the original circuit equations. The
latter are obtained by means of a SPICE-like algorithm. In (5.187)-(5.188), ∆q1 =
q1−q1,op with similar definitions for ∆A∆∆ I , ∆A∆∆ Q and ∆∆φ. The settling behavior is eval-
uated for initial values of the amplitudes AI and AQ deviate 30% from their operating-
point values. The initial phase difference ∆φ deviates 10% from its steady-state value.
It is observed that the results predicted by the model are in good agreement with circuit-
level behavior (to within 5%). Furthermore, simulations run about 30 times faster
when using the behavioral model. Hence, use of the behavioral model significantly
boosts simulation speed, even when compared to circuit simulations that use low-
complexity transistor models (MOST level 1) instead of sophisticated models (BSIM4,
MOS Model 11).

Finally, as an interesting application of the behavioral model (5.187)-(5.188) we men-
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Figure 5.36: Loci of the oscillator eigenvalues (of the matrix Amodel) plotted
in the complex plane for γ = 0.5 and m = 0 . . .4. The locus of the third eigen-
value, indicated by the crosses, lies entirely on the real axis. The hatched area
marks the region of instability. If one of the eigenvalues enters this region,
then the operating point around which linearization took place is unstable.

tion its use as an aid to optimize the design of an oscillator’s dynamic behavior. With
regard to this issue, it is particularly interesting to plot the loci of the eigenvalues of
the matrix Amodel in (5.187)-(5.188) [Vana01c]. As illustrated in Fig. 5.36, this is ac-
complished by computing Amodel and its eigenvalues over a range of values for one of
the design parameters Q, γ or m. The eigenvalues of Amodel entirely characterize the
oscillator’s dynamics near the corresponding operating point. Their real values corre-
spond to the oscillator’s settling time while their complex parts, for instance, indicate
the presence of ringing Furthermore, if one of the eigenvalues enters the right half of
the complex plane (the hatced area in Fig. 5.36), then this indicates that the operating
point around which linearization took place is unstable. Hence, loci like the ones in
Fig. 5.36 are of great value in making design decisions, e.g. in determining a suitable
value for the coupling parameter m. This value could, for example, be chosen in order
to minimize the oscillator’s settling time.

In summary, the behavioral modeling method here presented helps to derive oscillator
models that contribute to boosting overall simulation efficiency. Moreover, these mod-
els can also be integrated in procedures or algorithms for making decisions on (optimal)
design parameters as they help to focus on that part of the oscillator’s dynamic behavior
that is often of greatest interest.
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5.9 Conclusions and directions for further research

This chapter has presented both the theory and algorithms to describe and model an
oscillator’s dynamic behavior. By proper partitioning of the circuit equations, it is
possible to separately compute the periodic steady-state behavior and the transient dy-
namics. The theory builds on perturbation techniques and averaging. It provides a
framework for the analysis of an oscillator’s entire phase noise, injection locking and
settling behavior. All these phenomena can be explained as consequences of the same
underlying mechanism: perturbations drive the oscillator’s core system from one state
to another.

Two key applications of the theory above are oscillator phase-noise analysis and the
extraction of compact behavioral models for (sets of coupled) harmonic oscillators.
The work on phase noise culminated in a semi-analytic method to compute an oscil-
lator’s phase-noise spectrum in a few minutes time. Moreover, for the first time, a
method was presented that enables us to accurately compute the very-close-in phase-
noise spectrum. The harmonic oscillator behavioral models can be solved using a large
simulation time step. As such, they are better suited for lengthy or repetitive (system-
level) simulations than is the oscillator’s original set of circuit equations. The accuracy
and efficiency of the behavioral models was verified for both a single harmonic oscil-
lator and an harmonic quadrature oscillator.

The work above is but the beginning of what promises to become a powerful theory
and modeling technique for a wide variety of systems. Properly extended, it is applica-
ble to virtually every system whose behavior is characterized by the presence of widely
spaced time constants. Moreover, it is not required for these systems to be autonomous.
In [Vana02e], the theory was extended to handle, for instance, PLL large-signal behav-
ior.

Finally, it would be interesting to explore the link with the HTM framework discussed
in the previous chapters. Projection of the perturbation terms requires us to solve sys-
tems of linear DAEs. In many cases, these systems turn out to be periodically time-
varying. Hence, they can be solved using HTM-based techniques. A practical ap-
plication is, for instance, the computation of the ISFs that are required for oscillator
phase-noise computations.



Chapter 6

Conclusions

That’s all folks! —Woody Woodpecker

T his book has presented theory, methods and algorithms to support efficient and
systematic modeling and analysis of telecommunication frontends and their build-

ing blocks. Focus was given to linear periodically time-varying (LPTV) systems and
autonomous systems (oscillators). The resulting methods apply to a wide variety of
systems and problems: the characterization of signal transfers in mixers, a PLL’s time-
varying stability behavior, noise folding in PLLs, oscillator injection-locking behav-
ior, oscillator phase noise behavior, etc. Moreover, the development of all theory and
methods was accompanied by the development of a sound intuitive understanding of
the system behavior being studied: the story behind the math was considered as im-
portant as the math itself. As such, this work contributes to a better understanding of
the behavior of telecom frontend building blocks and to the mathematical techniques
necessary for systematic analysis of such systems.

6.1 Main achievements

The work presented in this book contributes to the state-of-the art in the analysis and
modeling of telecommunication frontends and their building blocks. The two main
subjects that it has dealt with are:

• Linear periodically time-varying (LPTV) systems: LPTV system behavior
comes into play when system or circuit behavior is linearized in the neigh-
borhood of a periodic (time-varying) operating point. This work has devel-
oped methods that allow us to manipulate LPTV systems in the frequency do-
main [Vana02a, Vana02c]. The methods build on the Harmonic Transfer Matrix
(HTM) representation of an LPTV system [Maas88, Moll00, Vana02c, Were91a].
HTMs allow us to handle LPTV systems in a manner that is similar to dealing
with LTI systems by means of (Laplace- or frequency-domain) transfer func-
tions. This work has elaborated the theory of HTMs in full detail, including
the frequency-domain characterization of signal transfers, LPTV stability analy-
sis and LPTV noise analysis. The HTM framework has been applied to capture
mixer and PLL behavior [Vana02a, Vana02c, Vana03a]. With regard to PLLs, our
exact time-varying analysis gives solid mathematical underpinnings to a number
of traditional (time-invariant) models while identifying their shortcomings.

197
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• Oscillator dynamics: Oscillator behavior is often characterized by the pres-
ence of widely spaced time constants. While this often poses a bottleneck to
traditional simulation algorithms, it enables the methods presented in this work
to explicitly separate the oscillator’s slow- and fast-varying signal components.
This results in compact models that can be solved very efficiently using a large
simulation time step . The modeling strategy is solidly grounded on the the-
ory of dynamical systems, perturbation analysis and averaging [Bogo61, Kev81,
Vana03b]. Applications of the theory involve oscillator phase noise analysis
[Vana02d, Vana03c], injection locking behavior [Vana02d] and the construction
of behavioral harmonic oscillator models [Vana01c, Vana02b, Vana03b]. More-
over, the theory here developed yields clear insights into the basic mechanisms
that govern oscillator dynamic behavior (e.g. start-up behavior, etc.).

6.1.1 HTM-based LPTV system analysis

The HTM-based analysis of LPTV system behavior considers the signal content stored
on different carrier waves, i.e. in different frequency bands, as independent input sig-
nals. In this way, a SISO LPTV system can be described as a limiting case of a MIMO
LTI system. As a result, the behavior of an LPTV system can be captured by a matrix
of transfer functions. Each transfer function models the transfer of signal content from
a particular input frequency band to a particular output frequency band. The prop-
erties and the behavior of LPTV systems can then be analyzed using techniques for
multi-variable LTI systems. This results in a powerful framework for handling LPTV
system behavior, including the analysis of signal transfers, stability analysis and noise
analysis.

A major bottleneck in making HTM-based techniques practical is the ∞-dimensional
nature of a HTM. In principle, there are an infinite number of frequency bands that must
be taken into account. When not handled carefully, this rapidly leads to computations
that involve huge matrices [Moll00, Royc98, Royc99]. Although these matrices can
be dealt with by means of sparse-matrix techniques, it is, in many cases, by far a sub-
optimal solution. This work has presented a number of methods that overcome these
difficulties. These methods avoid tedious computations on huge matrices by exploiting
both the structure inherent to HTMs and the properties of HTMs as they occur in design
practice. In this way, they render HTM-based analysis of LPTV systems practical, both
for obtaining numerical results and symbolic expressions.

The usefulness of the HTM framework was demonstrated by means of two applica-
tions: the analysis of PLL behavior and the SymbolicHTM algorithm. HTMs support
an exact description of the time-varying aspects of a PLL’s small-signal behavior. This
time-varying behavior is inherent to all practical PLL implementations. Existing LTI
techniques for PLL modeling were shown to coincide with specific approximations to
the exact time-varying description. For the first time, these traditional LTI models were
given solid mathematical groundings with their shortcomings clearly identified. As a
second application, the SymbolicHTM algorithm has demonstrated that it is possible
to (partially) automate the symbolic analysis of LPTV system behavior. It produces ex-
pressions for an LPTV system’s input-output HTM elements when given the system’s
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building block models. For a limited number of internal time-varying feedback loops,
these symbolic expressions are quite accurate while only containing a limited number
of terms. The algorithm complements existing algorithms for symbolic LTI network
analysis [Fern98, Gie91, Lin91] and, for the first time, extends symbolic analysis to-
wards (periodically) time-varying systems. SymbolicHTM is intended to support the
introduction of HTM-based analysis in every day’s circuit design practice.

6.1.2 Modeling oscillator dynamic behavior

By proper partitioning of the circuit equations, it has been shown possible to separate
the computation of an oscillator’s fast-varying periodic steady-state behavior and its
slow-varying transient dynamics. The key to understanding oscillator dynamics lies in
the observation that slow-varying transients are caused by small (perturbation) terms
that push the oscillator’s core system from one state to another. Here, a state of the
oscillator’s core corresponds to one of its fast-varying steady-state solutions. In this
work, this understanding was translated into mathematics by means of perturbation
techniques and averaging. This has resulted in a general theory that applies to a wide
variety of problems involving oscillator dynamic behavior.

The practical applications addressed in this work concern the analysis of an oscilla-
tor’s injection locking and phase noise behavior. Furthermore, we also presented an
algorithm for the behavioral modeling of (sets of coupled) harmonic oscillators. All
applications demonstrate the ease and efficiency with which the framework here de-
veloped allows us to handle complex nonlinear phenomena. With regard to oscillator
phase noise, the theory here presented embeds existing work [Dem98, Dem00a] in a
more global framework. Moreover, this work has resulted in a semi-analytic method
to compute an oscillator’s phase noise spectrum, including the details close to the os-
cillation frequency [Vana03c]. With regard to the behavioral modeling of harmonic
oscillators, we obtained model equations that can be solved with a simulation time step
that is much larger than would be possible for the (SPICE-like) solution of the original
set of circuit equations. They were proven accurate and fast for both a single harmonic
oscillator and a harmonic quadrature oscillator.

6.2 Leads for further work

It is the nature of research that the quest for knowledge tends to generate more questions
than answers. This work should therefore be considered as a starting point for new
research (by new researchers) rather than an as end point with nowhere to go from
here. With regard to both linear system analysis and oscillator dynamics, there are still
many challenges to be addressed. In what follows, some of them are listed.

In the area of linear system analysis, the topics to be explored concern both fundamen-
tal theory as practical applications:

• As presented in this text, the HTM-based frequency-domain analysis of LPTV
systems can be generalized to other classes of LTV systems. These systems then
transfer information between carrier waves other than the harmonic functions
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{
ψmψψ (t) = e jmω0t

}
used in this work. Suggested directions for further research

involve, for example, linear quasi-periodic time-varying systems and the use of
principal component analysis for autodetecting relevant sets of carrier waves.
The former is useful for heterodyne transceiver small-signal analysis while the
latter can, for example, be applied to capture noise behavior in nonlinear systems.

• The systems to which HTM-based analysis applies, are by no means exhausted.
As an example, we mention the computation of an oscillator’s impulse sensitivity
function by means of HTM-based techniques. The oscillator HTMs involved can
be shown to have a rank-degenerate structure. This structure could be exploited
to streamline computations.

• Having established methods that capture linear time-varying behavior, we can
proceed by taking time-varying weak nonlinearities into account. Analyzing
time-varying weakly-nonlinear behavior builds on perturbation techniques and
linear time-varying system analysis. It thereby proceeds along the same lines of
reasoning as time-invariant weakly-nonlinear system analysis [Wamb98a]. De-
veloping methods for time-varying weakly-nonlinear system analysis would con-
tribute yet another step towards a true top-down analysis (and hence design) of
electronic systems and circuits.

With regard to the analysis of oscillator dynamic behavior, the work above is but the
beginning of what promises to become a powerful technique to analyze and model a
wide variety of systems:

• Properly adapted, it is applicable to virtually every system whose behavior is
characterized by the presence of widely spaced time constants. Here, it is not re-
quired for these systems to be autonomous. In [Vana02e], the theory was adapted
to handle, for instance, PLL large-signal behavior.

• A step that is of major importance to the methods here presented concerns the
partitioning of the system equations, i.e. finding the core system. A general-
purpose algorithm to do so would greatly contribute to the flexibility of the
method and the scope of its applications.

Finally, it would be interesting to explore the link between both oscillator analysis and
the HTM framework. As was discussed in chapter 5, projection of the perturbation
terms requires us to solve systems of linear DAEs. In many cases, these systems turn
out to be periodic. Hence, in principle, they can be handled using HTM-based tech-
niques.



Appendix A

HTM norms and the comparison of HTMs

T his appendix deals with HTM norms and the comparison of HTMs. Norms and
criteria for comparing HTMs are especially useful for constructing approxima-

tions to HTMs. They allow us to quantify the notion of HTMs being “almost equal”.
Since HTMs represent LPTV operators (systems), the theory on HTM norms is closely
related to the theory on operator norms.

A.1 Operator norms and the comparison of operators

Comparing two (LPTV) operators

H1,H2HH ∈ Si → So , (A.1)

where Si is the Banach space [Huts80] containing the input signals and So the one
containing the output signals, requires us to define a notion of a distance d(H1,H2HH )
between them1. The most natural way to do so, is by comparing the outputs they
produce for some relevant set Si of test inputs. For continuous linear operators, this
leads to [Huts80]

d(H1,H2HH ) = ‖H1 −H2HH ‖ , (A.2)

with

‖H‖ = max
u∈Si

‖H[u]‖o

‖u‖i
. (A.3)

Here, ‖·‖i is the norm defined over the space of input signals Si and ‖·‖o is the norm
defined over the space of output signals So. In what follows, we drop the subscripts i

and o. Which norm to use should be clear from the context.

The distance ‖H1 −H2HH ‖ can now be used to quantify the “degree of equality” of the
two operators H1 and H2HH : stating that H2HH is close to H1, or H2HH ≈ H1, implies that one
expects ‖H1 −H2HH ‖ to be small. But what is “small”? The most sensible answer seems
to be that, for each input u

‖H2HH [u]−H1[u]‖� ‖H1[u]‖ , ∀u ∈ Si , (A.4)

1Note that Si and So need not necessarily to be the same, e.g. in passing from the continuous-time to
the discrete-time domain. In another example, Si is the space of all signals with low-frequency content only,
while the signals in So can have both low- and high-frequency content, i.e. Si ⊂ So.
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A.3 EXPRESSING LPTV OPERATOR NORMS IN TERMS OF THE

CORRESPONDING HTM ELEMENTS

or

max
u∈Si

‖H2HH [u]−H1[u]‖
‖H1[u]‖ ≤ ε , (A.5)

with ε � 1 some suitably chosen threshold level. However, there is still one matter
open for debate. What if, for a certain v �=�� 0, H1[v] = 0? In that case, (A.4) becomes
impossible to satisfy. To overcome this, we need to introduce the notion of a zero
signal-level, i.e. there is a threshold level ε0 ‖v‖ for which

‖H[v]‖ ≈ 0 ⇔‖H[v]‖ ≤ ε0 ‖v‖ . (A.6)

The threshold level is specified relative with respect to ‖v‖ in order to have ‖H[v]‖ ≈
0 ⇒ ‖H[α ·v]‖ = |α|‖H[v]‖ ≈ 0. Taking this zero signal-level into account, (A.4)
should be modified as

‖H2HH [u]−H1[u]‖� ‖H1[u]‖∨‖H2HH [u]−H1[u]‖ ≤ ε0 ‖u‖ , ∀u ∈ Si . (A.7)

This, approximately, is equivalent with

max
u∈Si

‖H2HH [u]−H1[u]‖
‖H1[u]‖+(ε0/ε)‖u‖ ≤ ε . (A.8)

A sufficient condition for (A.8) to hold )and one that is often much easier to compute)
is given by

maxu∈Si ‖H2HH [u]−H1[u]‖/‖u‖
minu∈Si ‖H1[u]‖/‖u‖+(ε0/ε)

≤ ε . (A.9)

This completes our discussion on operator norms and the comparison of operators.

A.2 Selecting the set of test inputs

Before continuing with the application of the theory outlined above to HTMs, we
briefly discuss the selection of the space Si of test input signals. As seen from (A.3),
operators are compared by examining their response on signals chosen from Si. In
selecting this space, one should therefore be careful to select only those signals that
are of greatest interest or that excite the modes of H1 and H2HH that are of main impor-
tance. For example, if one is interested in comparing the response of H1 and H2HH to
narrow-banded signals centered around the frequency fcff , then it is often be sufficient
to select Si = {cos(2π fcff t),sin(2π fcff t)}. In this case, it is clearly useless to select test
signals that have a large part of their frequency content outside the frequency band
around fcff . Norms based on such a restricted test signal set Si often simplify devising
approximations for H1 or H2HH . Note, however, that these approximations are only valid
when operating on input signals belonging to the restricted set Si, e.g. they only hold
for one particular frequency band.

A.3 Expressing LPTV operator norms in terms of the corre-
sponding HTM elements

Computing the operator norm (A.3) and the related quantities needed for comparing
operators comes down to computing the signal norms ‖u‖ and ‖H[u]‖. In what follows,
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we present expressions for these norms in terms of the equivalent baseband components
of u(t) and the elements of the HTM corresponding to H[ · ].
Let us be given a continuous-time signals u(t) for which we define

‖u‖2 =
∫ +∞

−

∫∫
∞

u(t)∗u(t)dt , (A.10)

i.e. the square of the signal norm equals the energy in u(t). Given the signal’s equiva-
lent baseband components um(t), where

u(t) = ∑
m

um(t)e jmω0t , (A.11)

we find that

U( jω) = F
{

+∞

∑
m=−∞

um(t)e jmω0(t)

}
= ∑

m
UmUU ( j(ω−mω0)) . (A.12)

Using Parseval’s equality [Arf85], we then obtain

‖u‖2 =
1

2π

+∞

∑
m=−∞

+∞

∑
n=−∞

∫ +∞

−

∫∫
∞

UmUU ( j(ω−mω0))
∗UnUU ( j(ω−nω0))dω . (A.13)

Note that when the UmUU ( jω) are bandlimited within [−ω0/2,ω0/2], (A.13) reduces to

‖u‖2 =
1

2π

+∞

∑
m=−∞

∫ +ω0/2

−

∫∫
ω0/2

UmUU ( jω)∗UmUU ( jω)dω (A.14)

=
1

2π

∫ +ω0/2

−

∫∫
ω0/2

U( jω)∗U( jω)dω (A.15)

with U( jω) =
[ · · · U−UU 1( jω) U0UU ( jω) U1( jω) · · · ]T

the vector containing the

(bandlimited) equivalent baseband components. For ‖H[u]‖2 we find a similar expres-
sions by replacing U( jω) with H̃( jω)U( jω) in the expression above. For bandlimited
equivalent baseband components UmUU ( jω), this yields

‖H[u]‖2 =
1

2π

∫ +ω0/2

−

∫∫
ω0/2

U( jω)∗H̃( jω)∗H̃( jω)U( jω)dω . (A.16)

Using (A.16) and (A.3), we can now compute the norm of the operator H for any
given set of input signals Si. For instance, for Si = L2([0,∞[), i.e. the set of all square
integrable functions, it is readily shown that

‖H‖ = max
ω∈[−ω0/2,ω0/2]

∥∥∥∥H̃( jω)
∥∥∥∥

2 .

For other sets of input signals, the corresponding operator norm can be computed in a
similar manner.
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A.4 Conclusions

This appendix has discussed the theory on HTM norms and their computation. HTM
norms are a basic tool in comparing whether HTMs represent LPTV systems that show
similar behavior. This is especially useful when trying to simplify a given HTM.



Appendix B

The Sherman-Morisson-Woodbury formula

T he Shermann-Morisson-Woodbury formula [Gol96] is used to invert matrices struc-
tered as A+UVT , with A ∈ R

N×N and U,V ∈ R
N×M . It goes as(

A+UVT )−1 = A−1 −A−1U
(
I+VT A−1U

)−1
VT A−1 . (B.1)

The Shermann-Morisson-Woodbury formula is especially useful when A−1 can be
computed at low cost (e.g. when A is diagonal, orthonormal or upper/lower trian-
gular) and both U and V are of low rank, i.e. M � N. As a special case for M = 1, we
find (

A+uvT )−1 = A−1 − A−1uvT A−1

1+vT A−1u
. (B.2)

This is also known as the Sherman-Morisson formula.
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Appendix C

HTM elements of the linear downconversion
mixer

T his appendix lists the full expressions for the HTM elements H̃0HH ,1(s), H̃0HH ,0(s) and
H̃0HH ,2(s) of the linear downconversion mixer topology discussed in section 4.3.7 of

chapter 4. The expressions are presented for the SymbolicHTM algorithm performing
computations up to first order in (the dummy variable) µ. In these expressions

L(s) = 1− G̃0,0(s)− HcHH (s)(gm2,0 + sCcCC )
YoYY (s)

(C.1)

with ⎧⎨⎧⎧
⎩
⎨⎨ G̃0,0(s) =

HiHH (s)(A1(s)(gm2,0+sCcCC )+Yf bY (s))
YoYY (s)

G̃k,0(s) = HiHH (s)A1(s)gm2,k
YoYY (s+ jkω0) for k �=�� 0 .

(C.2)

Furthermore, gm,k are the Fourier coefficients of the time-varying transconductance of
the second OTA stage, as specified in (4.88), and the VnVV 1,k are the Fourier coefficients
corresponding to the time-varying operating point VnVV 1(t) in equation (4.87).

The wanted signal transfer is described by

H̃0HH ,1(s) =
1
2

βVoscVV G̃0,0(s)
L(s)Yf bY (s)

+
γG̃γγ −1,0(s+ jω0)YgsYY (s+ jω0)

L(s)Yf bY (s+ jω0)

+
1
2

βVoscVV G̃−2,0(s+2 jω0)
L(s)Yf bY (s+2 jω0)

−γ2γγ βVnVV ,−1G̃0,0(s)HiHH (s+ jω0)YgsYY (s+ jω0)
L(s)Yf bY (s)Yf bY (s+ jω0)

+
γG̃γγ 0,0(s+ jω0)G̃−1,0(s+ jω0)YgsYY (s+ jω0)

L(s)L(s+ jω0)Yf bY (s+ jω0)
(C.3)

+
γgγγ m,−1G̃0,0(s+ jω0)HcHH (s+ jω0)YgsYY (s+ jω0)

L(s)YoYY (s)L(s+ jω0)Yf bY (s+ jω0)

−γ2γγ βVnVV ,−1G̃0,0(s)G̃0,0(s+ jω0)HiHH (s+ jω0)YgsYY (s+ jω0)
L(s)Yf bY (s)L(s+ jω0)Yf bY (s+ jω0)
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+
1
2

βVoscVV G̃0,0(s+2 jω0)G̃−2,0(s+2 jω0)
L(s)L(s+2 jω0)Yf bY (s+2 jω0)

+
1
2

βVoscVV gm,−2G̃0,0(s+2 jω0)HcHH (s+2 jω0)
L(s)YoYY (s)L(s+2 jω0)Yf bY (s+2 jω0)

This expression is entirely dominated by the first term. The parasitic transfer from
baseband to baseband is described by

H̃0HH ,0(s) =
γG̃γγ 0,0(s)YgsYY (s)

L(s)Yf bY (s)

+
1
2

βVoscVV G̃0,0(s− jω0)G̃1,0(s− jω0)
L(s)L(s− jω0)Yf bY (s− jω0)

+
1
2

βVoscVV G̃0,0(s+ jω0)G̃−1,0(s+ jω0)
L(s)L(s+ jω0)Yf bY (s+ jω0)

+
1
2

βVoscVV gm,1G̃0,0(s− jω0)HcHH (s− jω0)
L(s)YoYY (s)L(s− jω0)Yf bY (s− jω0)

+
1
2

βVoscVV gm,−1G̃0,0(s+ jω0)HcHH (s+ jω0)
L(s)YoYY (s)L(s+ jω0)Yf bY (s+ jω0)

−1
2

β2γVγ oscVV VnVV ,1G̃0,0(s)G̃0,0(s− jω0)HiHH (s− jω0)
L(s)Yf bY (s)L(s− jω0)Yf bY (s− jω0)

(C.4)

−1
2

β2γVγ oscVV VnVV ,−1G̃0,0(s)G̃0,0(s+ jω0)HiHH (s+ jω0)
L(s)Yf bY (s)L(s+ jω0)Yf bY (s+ jω0)

+
1
2

βVoscVV G̃1,0(s− jω0)
L(s)Yf bY (s− jω0)

+
1
2

βVoscVV G̃−1,0(s+ jω0)
L(s)Yf bY (s+ jω0)

−1
2

β2γVγ oscVV VnVV ,1G̃0,0(s)HiHH (s− jω0)
L(s)Yf bY (s)Yf bY (s− jω0)

−1
2

β2γVγ oscVV VnVV ,−1G̃0,0(s)HiHH (s+ jω0)
L(s)Yf bY (s)Yf bY (s+ jω0)

while the parasitic transfer from 2 f0ff to baseband is described by

H̃0HH ,2(s) =
1
2

βVoscVV G̃−1,0(s+ jω0)
L(s)Yf bY (s+ jω0)

+
γG̃γγ −2,0(s+2 jω0)YgsYY (s+2 jω0)

L(s)Yf bY (s+2 jω0)

−1
2

β2γVγ oscVV VnVV ,−1HiHH (s+ jω0)
L(s)Yf bY (s)Yf bY (s+ jω0)

+
1
2

βVoscVV G̃0,0(s+ jω0)G̃−1,0(s+ jω0)
L(s)L(s+ jω0)Yf bY (s+ jω0)
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+
1
2

βVoscVV gm,−1G̃0,0(s+ jω0)HcHH (s+ jω0)
L(s)YoYY (s)L(s+ jω0)Yf bY (s+ jω0)

(C.5)

−1
2

β2γVγ oscVV VnVV ,−1G̃0,0(s)G̃0,0(s+ jω0)HiHH (s+ jω0)
L(s)Yf bY (s)L(s+ jω0)Yf bY (s+ jω0)

+
γG̃γγ 0,0(s+2 jω0)G̃−2,0(s+2 jω0)YgsYY (s+2 jω0)

L(s)L(s+2 jω0)Yf bY (s+2 jω0)

+
γgγγ m,−2G̃0,0(s+2 jω0)YgsYY (s+2 jω0)HcHH (s+2 jω0)

L(s)L(s+2 jω0)Yf bY (s+2 jω0)
.

It depends on the frequency interval to decide on which of the terms in the expressions
(C.4) and (C.5) are dominant.



Appendix D

Oscillator dynamics: analysis of the deviation
from the attracting manifold

I
n section 5.5 of chapter 5, we discussed the behavior of a weakly perturbed oscil-
lator, i.e. the behavior of a core system interacting with weak disturbances. Math-

ematically, we were interested in the structure of the waveforms xε(τ) that solve the
system of DAEs

d
dτ

c(xε)+g(xε)+ εf(xε,τ) . (D.1)

Here, as usual, the variable ε is called a perturbation variable and marks the distur-
bances. Solutions to (D.1) were shown to be structured as

xε(τ) = xs (τ,p(τ,ε))+ ε∆x(τ,ε) . (D.2)

The first component of this solution models the motion over the attracting manifold M.
This manifold consists of all steady-state solutions that solve the core system, i.e. the
steady-state solutions to (D.1) for ε = 0. The motion over this manifold was discussed
in depth in section 5.5 of chapter 5. This appendix deals with the second component
in (D.2) which models the oscillator’s deviation from the manifold M. In doing so,
special interest is given as to prove that ε∆x(τ) remains bounded. This study also
yields a time constant that characterizes how long it takes for the manifold M to attract
solutions in its neighborhood. Note that in what follows, we discuss the behavior of
the normalized deviation ∆x(τ). The real deviation is obtained by multiplying this
normalized deviation with the perturbation variable ε.

D.1 Components of the deviation ∆x(τ)

By substituting the solution (D.2) into (D.1), it is obtained that

C(τ,p)U1 (τ,p)
dp
dτ

+ ε
d
dτ

(C(τ,p)∆x(τ)) (D.3)

+εG(τ,p)∆x(τ)+ εfpf (τ,p)+O
(
ε2) = 0 .

Here, C(τ,p) ∈RNRR ×N ,being G(τ,p), fpf (τ,p) ∈RNRR and U1 (τ,p) ∈RNRR ×P are defined
by (5.55)-(5.58) in section 5.5 of chapter 5. Furthermore, the process p(τ) is solved
from 5.66.
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As stated in that same section, in order for ∆x(τ) to remain bounded, it must belong to
the space spanned by the columns of the [U2 (τ,p) U3 (τ,p)] ∈RNRR ×(Q+R), or

∆x(τ) =
[

U2 (τ,p(τ)) U3 (τ,p(τ))
][ α2(τ)

α3(τ)

]
(D.4)

= U2(τ,p(τ))α2(τ)+U3(τ,p(τ))α3(τ) (D.5)

= ∆x2(τ)+∆x3(τ) . (D.6)

In the above, U2 (τ,p) ∈RNRR ×Q spans the stable modes of the N-dimensional homoge-
neous system of DAEs

∂
∂τ

(C(τ,p)y(τ))+G(τ,p)y(τ) = 0 . (D.7)

Moreover, U3 (τ,p) ∈ RNRR ×R is defined by C(τ,p)U3 (τ,p) = 0, i.e. the directions
stored in the columns of U3 (τ,p) capture the deviation from the manifold defined by
the constraints that are implicit to the DAEs (5.34) that model the core system. Note
that U3 (τ,p) can always be chosen to be normalized, i.e. ‖U3 (τ,p)‖ = 1. Having
obtained these results, we continue with a discussion on both the behavior of ∆x2(τ)
and ∆x3(τ).

D.2 Behavior of ∆x2(τ)

The first component of the (normalized) deviation is oriented along space spanned by
the stable modes of the attracting manifold M. Since the manifold is stable along these
directions, it is expected that the corresponding “attracting force” keeps the component
∆x2(τ) bounded. In what follows, we first derive a zeroth-order approximation for
∆x2(τ). Next, we address the issue of its boundedness.

An expression for ∆x2(τ)

By left multiplication of both sides of (D.3) with the projector VT
2 (τ,p) satisfying(

∂
∂τ

VT
2 (τ,p)

)
·C(τ,p)−VT

2 (τ,p) ·G(τ,p) = 0 (D.8)

VT
2 (0,p) ·C(0,p) ·U2(0,p) = I (D.9)

VT
2 (0,p) ·C(0,p) ·U1(0,p) = 0 , (D.10)

with I the unity matrix, we obtain

d
dτ

(
VT

2 (τ,p) ·C(τ,p) ·∆x(τ)
)

= −VT
2 (τ,p) fpf (τ,p)+O(ε) . (D.11)

Since U3(τ,p) satisfies C(τ,p)U3(τ,p) = 0 and with (D.5) and (D.8)-(D.10) it is then
readily shown that (D.12) is equivalent to

dα2

dτ
= −VT

2 (τ,p(τ))C(τ,p(τ)) fpf (τ,p(τ))+O(ε) . (D.12)
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Hence, up to zeroth order in ε, we find

∆x2(τ) = U2(τ,p(τ))α2(τ) (D.13)

= U2(τ,p(τ))VT
2 (τ0,p(τ0))C(τ0,p(τ0))∆x2(τ0)

−
∫ τ

τ

∫∫
0

U2(τ,p(τ))VT
2 (s,p(s))C(s,p(s)) fpf (s,p(s))ds (D.14)

as an expression for the first component of the oscillator’s deviation from the manifold.

Boundedness of ∆x2(τ)

In order to prove that ∆x2(τ) remains bounded, it is sufficient to show that the homo-
geneous part in (D.14) (the first term) is uniformly exponentially stable [Cor91], i.e.
∀τ,τ0 and for an arbitrary ∆x2(τ0) with ‖∆x2(τ0)‖ = 1, it holds∥∥∥∥∆x2,homogeneous(τ)

∥∥∥∥ < Ke−β(τ−τ0) (D.15)

with K,β > 0. Since the initial condition ∆x2(τ0) is arbitrary, (D.15) is equivalent with∥∥∥∥U2(τ,p(τ))VT
2 (τ0,p(τ0))C(τ0,p(τ0))

∥∥∥∥ < Ke−β(τ−τ0), ∀τ,τ0 . (D.16)

Using (D.16), it is readily shown that

‖∆x2(τ)‖ ≤ Ke−β(τ−τ0) ‖∆x2(τ0)‖
+

K ·L
β

(
1− e−β(τ−τ0)

)
, (D.17)

with
L = max

τ,p
‖fpf (τ,p)‖ , (D.18)

is an upper bound for ‖∆x2(τ)‖. For τ � τ0, this yields

‖∆x2(τ)‖ ≤ K ·L
β

. (D.19)

Hence, the deviation grows larger when the strength of the perturbing force fpf grows
large —especially the strength of the components oriented along the space spanned by
U2— and when the time constant 1/β increases. This time constant is a measure for
how quick the manifold attracts solutions in its neighborhood. It remains of course
to be answered whether it is possible to determine suitable values for the constants
K,β. In what follows, we outline an argument for (D.7) being a system of DAEs that
is periodic in τ.

If p is considered constant and assuming the system of linear DAEs (D.7) to be T -
periodic in τ and stable, Floquet theory [Lam97] shows that we can write

U2(τ,p) = Up,2(τ,p)eΛ(p)t (D.20)

VT
2 (τ,p) = e−Λ(p)tVT

p,2(τ,p) . (D.21)
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Here, both Up,2(τ,p) and VT
p,2(τ,p) are periodic in τ with their norm bounded ∀τ.

Furthermore

Λ(p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

µ1(p)
µ2(p) 0

0
. . .

µQ(p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ ∈RQ×Q (D.22)

is a diagonal matrix containing the nonzero Floquet exponents corresponding to (D.7).
Since the system is assumed to be stable, we can order the exponents µk such that

Re{µQ} ≤ Re{µQ−1} ≤ · · · ≤ Re{µ1} < 0 . (D.23)

Using (D.20)-(D.23), it is readily shown that∥∥∥∥U2(τ,p)VT
2 (τ0,p)C(τ0,p)

∥∥∥∥≤ K(p)e−β(p)(τ−τ0) (D.24)

with

β(p) = |Re{µ1(p)}| (D.25)

K(p) =
(

max
τ∈[0,T ]

‖Up,2(τ,p)‖
)(

max
τ∈[0,T ]

‖Vp,2(τ,p)C(τ,p)‖
)

. (D.26)

Substituting these results in (D.19), we then obtain

‖∆x2(τ)‖ ≤ L
K(p)
β(p)

. (D.27)

as an upper bound on the deviation.

The reasoning above, however, does not take into account that the state vector p also
varies with time. Fortunately, (D.27) holds as long as the time constant 1/β(p), which
characterizes the time it takes to attract solutions to the manifold M, is much smaller
than the time scale T/ε over which the process p(τ) is changing. The inequality (D.27)
can, therefore, be seen as a kind of quasi-static approximation, expressing a slowly
changing upper bound on the magnitude of ∆x2(τ).

D.3 The behavior of ∆x3(τ)

The second component of ∆x(τ) = ∆x2(τ) + ∆x3(τ) models the deviation from the
manifold defined by the constraints implicit to the system of the DAEs (5.34) that
model the core system. It is found by left multiplication of (D.3) with VT

3 (τ,p) where

VT
3 (τ,p)C(τ,p) = 0 (D.28)

and
VT

3 (τ,p)G(τ,p)U3(τ,p) = I . (D.29)

Hence, the rows of VT
3 (τ,p) span the left null space of C(τ,p). After a little algebra, it

is then obtained that

∆x3(τ) = −U3(τ,p)
(
VT

3 (τ,p)G(τ,p)∆x2(τ)+VT
3 (τ,p)fpf (τ,p)

)
. (D.30)
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If we assume that C(τ,p) and G(τ,p) are continuous in their arguments, and, therefore,
also VT

3 (τ,p), and since we assumed the system to be T -periodic (and therefore also
VT

3 (τ,p) and G(τ,p)), all matrices and vectors in the right-hand side of (D.30) are
bounded. Hence, so is ∆x3(τ).

D.4 Conclusions

In this appendix, we presented expressions for the two components of the (normalized)
deviation ∆x(τ) = ∆x2(τ) + ∆x3(τ). The first component is directed along the space
spanned by the stable modes of the attracting manifold. The second component models
the deviation from the manifold defined by the constraints implicit to the system of the
DAEs that model the core system. Both components were shown to remain bounded.



Appendix E

Analysis of a harmonic oscillator

This appendix deals with the analysis of the harmonic oscillator topology shown in
Fig. E.1. Special interest is given to oscillator’s operating-point phase behavior. This
results in the expression for the impulse sensitivity function (ISF) corresponding to the
source u(τ). This ISF was, amongst others, used in the analysis of the injection locking
problem treated in section 5.7.2 of chapter 5.

E.1 Determining the oscillator’s averaged dynamics

The normalized circuit equations corresponding to the topology shown in Fig. E.1 are
easily shown to equal1

dxdd d

dτ
+ yd +

[
xd

Q
+

IMII ,d (xd ,xcm)
IoscII

+
u(τ)
IoscII

]
= 0 (E.1)

dyd d

dτ
− xd = 0 (E.2)

IMII ,cm (xd ,xcm)− IbII = 0 (E.3)

with

xd =
v1 − v2

2VoscVV
(E.4)

yd =
iL

IoscII
(E.5)

xcm =
v1 + v2

2VoscVV
(E.6)

τ = ω0t (E.7)

ω0 = 1/
√

LC
√√

(E.8)

Q =
ω0C

1/Rloss
=

Rloss

ω0L
(E.9)

IoscII = ω0CVoscVV = VoscVV /ω0L . (E.10)

1Note that, in this appendix, we neglect all transistor capacitances. This introduces only small errors as
far as the dynamics induced by u(τ) is concerned. However, when interested in the upconversion of the 1/ f
noise coming from the bias-current sources IbII , it is of great importance to take the transistor capacitances into
account. These capacitances induce (a slight) skewing of the common-mode voltage which can be shown the
main responsible for the upconversion of 1/ f noise coming from the bias currents. With some extra effort,
the reasoning outlined in this appendix can be extended to include the effects of the transistor capacitances
as well.
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lossR

v1 v2

u(τ)

L

C

Figure E.1: Harmonic oscillator topology injected with a (small) current
u(τ).

In the above, iL is the current flowing through the inductor while VoscVV is an estimate for
the oscillation amplitude. Furthermore, IMII ,d is the differential transistor current while
IMII ,cm equals the common-mode transistor current. As usual, the terms of (E.1)-(E.3) in
square brackets denote perturbation terms while the others correspond to the oscillators
core system.

The set of all steady-state solutions to the equations corresponding to the oscillator’s
core system behavior, i.e. (E.1)-(E.3) with the terms between the square brackets re-
moved, is given by

xs(τ,p) =

⎡
⎣
⎡⎡

xd,s(τ,p)
yd,s(τ,p)
xcm,s(τ,p)

⎤
⎦
⎤⎤

=

⎡
⎣
⎡⎡

Acos(τ+θ)
Asin(τ+θ)

f (Acos(τ+θ))

⎤
⎦
⎤⎤

(E.11)

with p =
[

A θ
]T

being the oscillator’s state vector. In (E.11), the function xcm =
f (xd) is determined by solving (E.3) for xcm.

Next, using (E.11) we find

U1(τ,p) =
∂xs

∂p
=

⎡
⎣
⎡⎡

cos(τ+θ) −Asin(τ+θ)
sin(τ+θ) Acos(τ+θ)

d f
dxdd d

cos(τ+θ) d f
dxdd d

Asin(τ+θ)

⎤
⎦
⎤⎤

. (E.12)

Using the theory outlined in section 5.5.2 of chapter 5, we find that the corresponding
projector V1(τ,p) equals the solution to(

∂
∂τ

VT
1 (τ,p)

)
C(τ,p)−VT

1 (τ,p)G(τ,p) = 0 (E.13)

VT
1 (τ,p)C(τ,p)U(τ,p) = I (E.14)
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where I ∈R2×2 is the unit matrix and

C(τ,p) =

⎡
⎣
⎡⎡

1 0 0
0 1 0
0 0 0

⎤
⎦
⎤⎤

(E.15)

G(τ,p) =

⎡
⎣
⎡⎡

0 1 0
−1 0 0

∂IcmII
∂xd

(τ,p) 0 ∂IcmII
∂xcm

(τ,p)

⎤
⎦
⎤⎤

. (E.16)

This solution is found to be

VT
1 (τ,p) =

[
cos(τ+θ) sin(τ+θ) 0

− sin(τ+θ)
A

cos(τ+θ)
A 0

]
. (E.17)

Hence, using (5.70) from section 5.5.2 in chapter 5, the oscillator’s amplitude and phase
behavior is seen to be governed by

dAdd
dτ

= −Acos(τ+θ)2

Q
− cos(τ+θ)g(A,τ+θ)− cos(τ+θ)

u(τ)
IoscII

(E.18)

dθ
dτ

=
Asin(τ+θ)cos(τ+θ)

A
+

sin(τ+θ)
A

g(A,τ+θ)+
sin(τ+θ)

A · IoscII
u(τ).(E.19).

In the above,

g(A,τ) =
IMII ,d (Acos(τ), f (Acos(τ)))

IoscII
. (E.20)

Since we neglected all transistor capacitances, both IMII ,d( · , ·) and f ( ·) are memoryless
operators. Hence, g(A,τ) can be expanded as

g(A,τ) =
∞

∑
k=0

gk(A)cos(kτ) (E.21)

with

gk(A) =
1

π(1+δ(k))

∫ π

−

∫∫
π

g(A,s)cos(ks)ds . (E.22)

Here, δ(k) represents the Kronecker delta function.

Given (E.18)-(E.19), we extract the equations that govern the (dominant) slow-varying
changes of A and θ. This is accomplished by applying the ideal lowpass averaging
operator MidealMM [ · ] (see (5.90) in section 5.6 of chapter 5) to both right-hand sides in
(E.18) and (E.19). This yields

dAdd
dτ

= − A
2Q

− g1(A)
2

−MidealM

[
cos(τ+θ)

u(τ)
IoscII

]
(E.23)

dθ
dτ

= MidealM

[
sin(τ+θ)

A · IoscII
u(τ)

]
(E.24)

as the equations governing the oscillator’s averaged (slow-varying) dynamics.
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E.2 Phase behavior near operating point

In many practical problems, the magnitude of the the injected current u(τ) lies well
below that of the currents flowing through the transistors, e.g. when u(τ) models some
injected noise current. In that case, the right-hand side of (E.23) is dominated by the
first two terms. If the oscillator is stable, these terms determine a (stable) operating-
point amplitude Aop, equal to the (non-zero) solution of

Aop

2Q
+

g1(Aop)
2

= 0 . (E.25)

Because of the stability of this operating point, disturbances, like the current u(τ), only
cause small amplitude deviations to occur. Hence, for most practical purposes we can
take A(τ) ≈ Aop. The phase behavior near this operating point is then (approximately)
governed by

dθ
dτ

= MidealM

[
sin(τ+θ)

IoscII ,op
u(τ)

]
(E.26)

where IoscII ,op = Aop · IoscII = (VoscVV Aop)ω0C is the amplitude of the operating-point current
circulating in the resonant tank. If we now compare (E.26) to (5.108) in section 5.7 of
chapter 5, we find that the ISF corresponding to the source u(τ) (approximately) equals

Γ(τ) ≈ sin(τ)
IoscII ,op

. (E.27)

This concludes our analysis of the harmonic oscillator in Fig. E.1.

E.3 Conclusions

This appendix has presented expressions for the averaged amplitude and phase behav-
ior of the harmonic oscillator in Fig. E.1. This, amongst others, resulted in an approx-
imate expression for the oscillator’s ISF with respect to a disturbing signal u(τ) that is
directly injected into the resonant tank



Bibliography

[Abra88] R. Abraham, J. Marsden and T. Ratiu, Manifolds, Tensors, Analysis and
Applications, 2nd. edition, Springer-Verlag, 1988

[Adl46] R. Adler, “A study of locking phenomena in oscillators”, Proc. IRE,
vol. 34, pp. 351-357, June 1946

[Arf85] G. Arfken, Mathematical Methods for Physicists, 3rd edition, Academic
Press Inc., 1985

[Bam92] B.A. Bamieh and J.B. Pearson, “A General Framework for Linear Peri-
odic Systems with Applications to H∞ Sampled-Data Control”, In Trans-
actions on Automatic Control, vol. 37, no. 4, pp. 418-435, April 1992

[Barr94] R. Barret, M. Berry et al., Templates for the Solution of Linear Systems:
Building blocks for Iterative Methods, SIAM, 1994.

[Blah87] R.E. Blahut, Principles and practice of information theory, Addison-
Wesley Reading, 1987

[Bode45] H.W. Bode, Network Analysis and Feedback Amplifier Design, Van Nos-
trand, 1945

[Bogo61] N.N. Bogoliubov and Y.A. Mitropolsky, Asymptotic methods in the theory
of non-linear oscillations, Hindustan Pulishing Corp., Delhi, 1961

[Bra96] H. Brachtendorf, G. Welsch, R. Laur and A. Bunse-Gerstner, “Numeri-
cal steady state analysis of electronic circuits driven by multi-tone sig-
nals”, Electrical Engineering series, vol. 79, pp. 103-112, Springer-
Verlag, 1996.Delhi, 1961

[Buo02] A. Buonomo and A. Lo Schiavo, “Analyzing the Dynamic Behavior of
RF Oscillators”, In IEEE Transactions on Circuits and Systems-I: Funda-
mental Theory and Applications, vol. 49, no. 11, November 2002

[Chua92] L.O. Chua, ”The genesis of Chua’s circuit,” In Archiv fur Elektronik und
Ubertragungstechnik, vol. 46, no. 4, pp. 250-257, 1992

[Cohn65] P.M. Cohn, Lie groups, Cambridge University Press, 1965

[Cor91] C. Corduneanu, Integral equations and applications, Cambridge Univer-
sity Press, 1991

221



222 BIBLIOGRAPHY

[Cran98] J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer De-
sign, Kluwer Academic Publishers, 1998

[Crol95] J. Crols and M. Steyaert, “A 1.5 GHz Highly Linear CMOS Downcon-
version Mixer”, In IEEE Journal of Solid State Circuits, vol. 30, no. 7,
pp. 736-742, July 1995

[Crol97] J. Crols, CMOS Wireless Tranceiver Design, Kluwer Academic Publish-
ers, 1997

[Dae99] W. Daems, W. Verhaegen, P. Wambacq, G. Gielen and W. Sansen, “Evalu-
ation of error-control strategies for the linear symbolic analysis of analog
integrated circuits”, In IEEE Transactions Circuits and Systems-I: Funda-
mental Theory and Applications, vol. 46, no. 5, pp. 594-606, May, 1999.

[Dae02] W. Daems, G. Gielen and W. Sansen, “Circuit Simplification for Sym-
bolic Analysis of Analog Integrated Circuits”, In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 4,
pp. 395-407, April, 2002

[Dae03] W. Daems, G. Gielen and W. Sansen, “Simulation-based Generation of
Posynomial Performance Models for the Sizing of Analog Integrated Cir-
cuits”, In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, no. 5, May 2003

[Dem98] A. Demir, “Phase Noise in Oscillators: DAEs and Colored Noise
Sources”, In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pp. 170-177, 1998

[Dem00a] A. Demir, A. Mehrotra and J. Roychowdhury, “Phase Noise in Oscilla-
tors: A Unifying Theory and Numerical Methods for Characterization”,
In IEEE Transactions on Circuits and Systems-I: Fundamental Theory
and Applications, vol. 47, no. 5, pp. 655-674, May 2000

[Dem00b] A. Demir, “Floquet theory and non-linear perturbation analysis for oscil-
lators with differential-algebraic equations”, In International Journal of
Circuit Theory and Applications, vol. 28, pp. 163-185, March-April 2000

[Dem02] A. Demir, “Phase Noise and Timing Jitter in Oscillators with Col-
ored Noise Sources”, In IEEE Transactions on Circuits and Systems
and Systems-I: Fundamental Theory and Applications, vol. 49, no. 12,
pp. 1782-1791, December 2002

[Dem03] A. Demir and J. Roychowdhury, “A Reliable and Efficient Procedure for
Oscillator PPV Computation, With Phase Noise and Macromodeling Ap-
plications”, In IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 22, no. 2, pp. 188-197 Febraury 2003



223

[Demu02] B. Demuer, Monolithic CMOS fractional-N frequency Synthesizers, Ph.D.
thesis, Katholieke Universiteit Leuven, Department of Electrical Engi-
neering, November 2002

[Deso80] C. Desoer and Y. Wang, “On the Generalized Nyquist Stability Criterion”,
In IEEE Transactions on Automatic Control, vol. AC-25, no. 2, pp. 187-
196, April 1980

[Donn98] S. Donnay, Analog High-Level Design Automation in Mixed-Signal Asics,
Ph.D. dissertation, Katholieke Universiteit Leuven, December 1998

[Enz95] C. Enz, F. Krummenacher and E. Vittoz, “An analytical MOS transistor
model valid in all regions of Operation and dedicated to low-voltage and
low-current applications”, In Journal of Analog Integrated Circuits and
Signal Processsing, Kluwer Academic Publishers, vol. 26, pp. 83-114,
July 1995
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