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Preface 

Traditional deterministic computer-aided-design (CAD) tools no longer serve 
the needs of the integrated circuit (IC) designer. These tools rely on the use 
of corner case models which assume worst-case values for process parame­
ters such as channel length, threshold voltage, and metal linewidth. However, 
process technologies today are pushed closer to the theoretical limits of the 
process equipment than ever before (sub-wavelength lithography is a prime ex­
ample) - this leads to growing levels of uncertainty in these key parameters. 
With larger process spreads, corner case models become highly pessimistic 
forcing designers to over design products, particularly in an application-specific 
integrated circuit (ASIC) environment. This growing degree of guardbanding 
erodes profits, increases time to market, and generall will make it more diffi­
cult to maintain Moore's Law in the near future. 

The concept of statistical CAD tools, where performance (commonly gate 
delay) is modeled as a distribution rather than a deterministic quantity, has 
gained favor in the past five years as a result of the aforementioned growing 
process spreads. By propagating expected delay distributions through a circuit 
and not a pessimistic worst-case delay value, we can arrive at a much more ac­
curate estimation of actual circuit performance. The major tradeoff in taking 
this approach is computational efficiency. Therefore, we can only afford to use 
statistical CAD tools when their performance benefit is compelling. In earlier 
technologies this was not the case. However, many companies now feel that 
the levels of variability, and the stakes, are high enough that the day of sta­
tistical CAD has arrived. An inspection of current CAD conference technical 
programs reflect a large amount of interest from both academia and industry; 
the current year's Design Automation Conference (DAC) has at least a dozen 
papers on this topic, nearly 10% of the conference program. While a large 
fraction of this work has been in extending traditional deterministic static 
timing analysis (STA) to the statistical regime, power is also critical due to 
the exponential dependencies of leakage current on process parameters. 

As a result of the above trends, the pace of progress, in the past few years 
in statistical timing and power analysis has been rapid. This book attempts to 
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summarize recent research highlights in this evolving field. Due to the rapid 
pace of progress we have made every effort to include the very latest work 
in this book (e.g., at least five conference publications from the current year 
are included in the reference list). The goal is to provide a "snapshot" of the 
field circa mid-2005, allowing new researchers in the area to come up to speed 
quickly, as well as provide a handy reference for those already working in this 
field. Note that we do not discuss circuit techniques aimed at reducing the 
impact of variability or monitoring variability, although we feel these will play 
a key role in meeting timing, power, and yield constraints in future ICs. The 
focus here is on CAD approaches, algorithms, modeling techniques, etc. 

On a final note, a key to the widespread adoption of statistical timing 
and power analysis/optimization tools is designer buy-in. This will only come 
about when there is open discussion of variability data, variation modeling 
approaches (e.g., Does a Quad-Tree model accurately capture the actual be­
havior of spatially correlated process parameters?), and related topics. We 
believe that the recent progress in algorithms for statistical analysis and opti­
mization has brought us to the point where these practical issues, and not the 
underlying tool capabilities, are the limiting factor in commercial acceptance 
of the approaches described in this book. 

This book is organized into six chapters. The first chapter provides an 
overview of process variability: types, sources, and trends. The second chapter 
sets the stage for the following four chapters by introducing different statisti­
cal modeling approaches, both generic (Monte Carlo, principal components) 
and specific to the topic of integrated circuit design (Quad-Tree). The third 
chapter summarizes recent work in statistical timing analysis, a ripe field of 
research in the past 4-5 years. Both block-based and path-based techniques 
are described in this chapter. Chapter 4 turns attention to power for the 
first time - both high-level and gate-level approaches to modeling variation in 
power are presented with emphasis on leakage variability. Chapter 5 combines 
ideas from the previous two chapters in examining parametric yield. This im­
portant performance metric may replace other more traditional metrics, such 
as delay or power, in future ICs as the primary objective function during the 
design phase. Finally, Chapter 6 describes current state-of-the-art in the sta­
tistical optimization area - the work to date is primarily aimed at timing yield 
optimization and ranges from sensitivity-based to dynamic programming and 
Lagrangian relaxation techniques. 

The authors would like to thank Carl Harris of Springer Publishers for 
arranging for this book to be published and also for consistently pushing us 
to the finish line. We thank Sachin Sapatnekar for comments on the general 
content of the book and we also thank Amanda Brown and Paulette Ream 
for help in proofreading and generating figures. 

Ann Arbor Michigan, Ashish Srivastava 
May 2005 Dennis Sylvester 

David Blaauw 
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Introduction 

The impact of process and environmental variations on performance has been 
increasing with each semiconductor technology generation. Traditional corner-
model based analysis and design approaches provide guard-bands for parame­
ter variations and are, therefore, prone to introducing pessimism in the design. 
Such pessimism can lead to increased design effort and a longer time to mar­
ket, which ultimately may result in lost revenues. In some cases, a change in 
the original specifications might also be required while, unbeknownst to the 
designer performance is actually left on the table. Furthermore, traditional 
analysis is limited to verifying the functional correctness by simulating the 
design at a number of process corners. However, worst case conditions in a 
circuit may not always occur with all parameters at their worst or best pro­
cess conditions. As an example, the worst case for a pipeline stage will occur 
when the wires within the logic are at their slowest process corner and the 
wires responsible for the clock delay or skew between the two stages is at the 
best case corner. However, a single corner file cannot simultaneously model 
best-case and worst-case process parameters for different interconnects in a 
single simulation. Hence, a traditional analysis requires that two parts of the 
design are simulated separately, resulting in a less unified, more cumbersome 
and less reliable analysis approach. The strength of statistical analysis is that 
the impact of parameter variation on all portions of a design are simultane­
ously captured in a single comprehensive analysis, allowing correlations and 
impact on yield to be properly understood. 

As the magnitude of process variations have grown, there has been an 
increasing realization that traditional design methodologies (both for analysis 
and optimization) are no longer acceptable. The magnitude of variations in 
gate length, as an example, are predicted to increase from 35% in a 130 nm 
technology to almost 60% in a 70 nm technology. These variations are generally 
specified as the fraction 3<r//x (3<r is assumed to be the worst case shift in 
the parameter), where a and \i are the standard deviation and mean of the 
process parameter, respectively. Thus a 60% variation in 70 nm technology 
implies that the standard deviation of the distribution of gate length across a 



2 1 Introduction 

large number of samples is 14 nm. With variations as large as these, it becomes 
extremely important that the designers treat these variation in a statistical 
manner rather than using gaurd-bands in deterministic analysis. 

1.1 Sources of Variations 

The traditional approach to ensuring acceptable yield is to estimate mar­
gins, while assuming worst-case process and environmental conditions. With 
increasing clock frequency and the growth of variations, these margins have 
become a larger fraction of the total clock cycle, making the traditional tech­
niques hard to sustain. Part of this difficulty is that margins do not result from 
a single source of randomness. They are, in fact, used to capture a host of 
physical effects that are either truly statistical (and hence unknown at design 
time), or are hard to model while performing analysis. 

The first step to consider the impact of variations during the design pro­
cess is to understand the sources of variations and the impact they have on 
performance. We first characterize the variations based on their sources. 

1.1.1 Process Variations 

Process variations are fluctuations in the value of process parameters observed 
after fabrication. These variations result from a wide range of factors during 
the fabrication process which determine the ranges of variations. It is obvious 
that large variations in process parameters will lead to designs that devi­
ate strongly from their specifications. These variations effect the performance 
characteristics of devices as well as interconnects. The resulting distribution 
for performance across a large set of fabricated samples leads to the defini­
tion of parametric yield, which is the fraction of manufactured samples that 
meet the performance constraints. Parametric yield should be contrasted to 
manufacturing yield that defines the fraction of samples manufactured with­
out catastrophic manufacturing failures (such as wire shorts and opens) that 
render a given sample useless at any frequency. 

For a given process technology, two different designs can have significantly 
different parametric yield. This results from the fact that the same variations 
in process parameters may influence two designs in very different manners. 
For example, we will see in Chap. 2 that designs with a large number of timing 
critical signals have an increased susceptibility to process variations. In this 
context, we define the so-called timing yield as the fraction of samples of a 
design that meet the timing constraint, and similarly we define the power yield 
as the fraction of samples that meet the power constraint. 

1.1.2 Environmental Variations 

These variations capture the variations in the surrounding environment in 
which a chip sits during its operation. This includes temperature variations, 
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variation in the power supply and variations in switching activity (defined by 
the input vectors). A reduced power supply lowers the drive strengths of the 
devices and hence degrades performance. Similarly, an increased temperature 
results in performance degradation for both devices and interconnects. It is 
important to understand that these variations depend on the work-load of the 
processor and are hence time-dependent. Thus, the set of input vector com­
binations that result in a worst-case voltage supply drop can occur on any 
possible sample of the design but will, in all likelihood, occur only intermit­
tently during its operational life time. Thus, power supply and temperature 
variations are generally not treated statistically, since every shipped chip is 
required to operate without failures over its entire operational life-time. Power 
supply drops and high temperatures are, therefore, assumed during the ver­
ification of a design. However, identifying specific worst-case conditions for 
temperature and power supply variation is extremely difficult. Therefore, de­
signers often focus on minimizing temperature and supply variations as much 
as possible, such as ensuring that the voltage drop on a power grid is always 
within 5%-10% of the nominal supply voltage. 

A particularly interesting situation occurs when process variations in­
creases the current demands on the power supply grids. In older technologies, 
leakage power dissipation was a concern only in designs that spent a large 
fraction of their time in stand-by. With leakage power becoming a significant 
contributor to total power dissipation, leakage currents flowing through the 
power grid can result in significant supply voltage drops. Moreover, assum­
ing that all devices are operating at their highest leakage will be extremely 
pessimistic. In this situation, it becomes important to estimate the mean and 
variance of voltage drops and temperature hot-spots based on variation in 
process parameters [50], [51], since worst-case leakage induced power-supply 
drops and hot-spots cannot be expected to occur on each sample of a design. 

Leakage currents themselves also increase strongly with an increase in 
temperature, just as increasing leakage currents may result in a higher tem­
perature. In certain cases, this positive feedback can be strong enough to 
cause thermal runaway, where the currents and temperature in the design 
continue to increase until failure. Thus, it is important that chip level leakage 
and temperature analysis are performed in a self-consistent manner [156]. 

1.1.3 Mode l ing Variations 

These variations result from the fact that the power and delay models used 
to perform design analysis and optimization are inaccurate and do not per­
fectly capture device characteristics. These models, if conservative, will make 
it harder to meet design specifications, whereas aggressive models will result 
in yield loss. The sample-space of these variations is over design iterations, 
with different modeling errors at different design points. The tradeoff, in us­
ing smaller margins to capture modeling variations, involves the likelihood of 
tuning particular paths post-fabrication or going through the entire design 
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process again. Thus, we typically want to be conservative while accounting 
for modeling variations, since it affects all fabricated samples of a design. 

1.1.4 Other Sources of Variations 

Though most variations are included within the previous three classes of vari­
ations, there are physical effects that result in a change in process parameter 
with time. These effects include phenomena such as hot electrons, negative 
bias temperature instability (NBTI) and electromigration. Hot electron and 
NBTI effects result in device degradation with time causing the threshold 
voltage of the device to rise. Electromigration may cause increased wire resis­
tance due to a reduction in the width of a wire, which increases the resistance 
of the wire and increases propagation delay. In the worst case, it will result in 
wire opens and shorts causing functional failure. The impact of these varia­
tions depends strongly on process and environmental variations. A wire that 
has a smaller width to start-off (due to patterning) and is used to provide 
current to a hot section of the design that demands large currents is much 
more likely to fail due to electromigration. If these effects are not properly 
accounted during the design process, they may result in timing errors that 
become visible during operation or burn-in. The analysis of these variations 
is particularly difficult, since they become visible after a reasonable time of 
operation. Therefore, techniques such as burn-in, which are accelerated test 
techniques, are used. These testing techniques are used to stress the design 
to operate under worst-case conditions. However, these testing techniques are 
expensive and have a large application time. 

1.2 Components of Variation 

For the purpose of design analysis, it is beneficial to divide the variations 
into two categories: inter-die and intra-die variations. As we will see in later 
chapters, these components influence the performance of a design differently. 
Moreover, the influence of these components also depends on how well the 
design is optimized, which impacts the number of critical paths in a design. 

1.2.1 Inter-die Variations 

Inter-die variations refer to a parameter variation that has the same value 
across a single die, and hence captures variations that occur from die-to-die, 
wafer-to-wafer and lot-to-lot. Since these variations are independent, they are 
all represented using a single variational term for ease of analysis. These vari­
ations are thus represented by a single value for each die and represent a 
shift in the mean or expected value of the parameter distribution from the 
nominal value. These variations include gate-length variations due to fluctua­
tions in the time of exposure during fabrication and metal thickness variations 
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between different metal layers. Thus, considering inter-die variations for a pro­
cess parameter, we can write the value of a parameter for a device as a random 
variable (RV). 

P - Pnom + APi n t e r (1.1) 

where Pnom is the nominal value of the process parameter and Pinter is a zero 
mean RV that captures the inter-die variation. The RV Pinter has a single 
value for all components on the die. The inter-die variations are generally as­
sumed to have a simple distribution, such as Gaussian, with a given variance. 
These variations may have systematic trends across dies that can be captured 
if the specific orientation and location of a die on the wafer is known. How­
ever, the designer typically has no control where his chip will be placed on a 
wafer. Moreover, this information is not available at design time and hence 
the impact of these factors on process parameters must be captured using a 
random variable. 

Inter-die variations in a single process parameter are easily captured by 
corner models, which assume that all devices and interconnects on a given 
sample of the design have a value that is shifted away from the mean by a fixed 
value that degrades (improves) performance, for slow (fast) path analysis. 
However, when a number of process parameters are considered simultaneously 
it is important to consider the correlation between these process parameters. 
As discussed above, thickness of metal layers that are negatively correlated 
can result in timing failures when the logic is slower than nominal and clock 
is faster than nominal. The number of process corners at which a design needs 
to be simulated for functional correctness thus increase exponentially with the 
increase in process parameters. 

1.2.2 Intra-die Variations 

Intra-die variation is the component of variation that causes device parameters 
to vary across different locations within a single die. Thus, each device on a 
die requires a separate RV to represent its intra-die variation. Depending 
on the source of variations, intra-die variations may be spatially correlated 
or spatially uncorrelated. Though all variations are random, the accepted 
terminology is to use the term random variations specifically to refer to the 
uncorrelated component of intra-die variations. 

It is obvious that intra-die variations result in a huge increase in the di­
mensionality of the problem by requiring an extra RV for each device. In 
addition, these RVs are correlated due to proximity-effects. Since, it is com­
putationally very expensive to generate samples of correlated RVs of high 
dimensionality, traditional statistical analysis methodologies such as Monte 
Carlo become unsuitable in scenarios where intra-die variations are signifi­
cant, whereas deterministic approaches fail to capture the effect of intra-die 
variations completely. Spatially correlated random variations can be handled 
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by dividing the chip into regions that can be assumed to be perfectly corre­
lated and using a correlation matrix to capture the correlation among these 
RVs. If the number of these perfectly correlated regions are small, they can 
be handled easily. 

Now, considering both intra-die and inter-die variations for a process pa­
rameter, we can write the value of a process parameter as 

P = Pnom + APi n t e r + A P i n t r a ( ^ , £/*) 

— Miora ~r ^ P n t e r ~r £^Pspatial \%ii Vi) ~r ^P-andom, i \1-^J 

where APin t r a (^z, Vi) represents intra-die variation that consists of a spatially 
correlated component APspa tiai, which is a function of the location on the die 
and an independent or so-called random component APrancjom, i that has no 
correlation with other devices and is represented as a separate RV for each 
device. 

Intra-die variations can also be classified based on their origin as: wafer-
level trends, layout dependent variations and statistical variations. 

Wafer-level Variations 

Wafer-level variation originate due to effects such as lens aberrations and 
result in bowl-shaped or other known distributions over the entire reticle, which 
results in a slanted profile of the process parameter across a single die. Again, 
the direction of slant varies depending on the orientation of the die on the 
wafer and cannot be ascertained a priori. 

Layout Dependent Variations 

Layout dependent variations result in different geometric dimensions due to 
lithographic and etching techniques that are used during fabrication. These 
include fabrication steps such as chemical mechanical polishing (CMP) and 
optical proximity correction (OPC). CMP results in variations in dimensions 
due to dishing (shown in Fig. 1.1) and erosion. Dishing arises from the fact 
that all excess copper must be removed from the wafer - to accomplish this 
goal, a wafer is typically over-polished, removing some of the copper that is 
supposed to remain. As copper etches much faster than the surrounding di­
electric, the wire ends up being shorter than the oxide. Dishing is the vertical 
distance between the final oxide level and the lowest point in the copper wire. 
A substantial amount of dishing leads to increased resistance, worsened pla-
narity, and overall process non-uniformity. Constraints are set on the process­
ing equipment (including slurries and pads) to limit the amount of dishing in 
the widest wire expected in a given process. Oxide erosion is another problem 
- normally in this case CMP is applied to an array of dense lines. The oxide 
between wires in a dense array tends to be over-polished compared to nearby 
areas of wider insulators (that is, oxide between sparse features will be thicker 
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Fig. 1.1. Dishing results in smaller height of copper interconnects resulting in higher 
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Fig. 1.2. Characterization of polysilicon lines based on their orientation and dis­
tance to nearby polysilicon lines [104]. (©2005 IEEE) 

than that between dense features). Both dishing and oxide erosion are prob­
lematic in wide lines and dense arrays, respectively, and are therefore layout 
dependent. They lead to higher resistances and more surface non-uniformity. 

The patterning of features smaller than the wavelength of light used in op­
tical lithography results in distortions due to the diffraction of light referred 
to as optical proximity effects (OPE). Shorter wavelength lithography tech­
nology is too costly and unstable to be used in current technologies. Changes 
made to the mask layout to account for these distortions are known as opti­
mal proximity corrections (OPC). Another technique that is used to improve 



8 1 Introduction 

the performance of sub-wavelength lithography is phase-shift masks (PSM), 
which exploits the phenomenon of interference to enable patterning of features 
with higher resolution. OPEs are also layout dependent and result in different 
CD variations depending on their environment (presence of neighboring lines) 
and orientation (vertical or horizontal). Figure 1.2 shows the classification of 
polysilicon lines based on their orientation and distance to the neighboring 
lines from the left and right edges. The edge is characterized as being dense 
if the next line is at the minimum possible distance, denso if the next line is 
at some intermediate distance, and isolated if the next line is further apart. 
Based on test-chip measurements, the work in [104] found that proximity CD 
variation is a strong function of both the orientation and the nearby environ­
ment. Controlling these variations has become extremely critical in current 
technologies and has resulted in an explosion in the number of design rules. 
Polysilicon routing in two orthogonal directions may no longer be allowed in 
certain technologies, so that better control can be achieved in one single direc­
tion. Since these variations are layout dependent, they are generally treated 
as spatially correlated intra-die variations. 

Statistical Variations 

Statistical quantization effects, such as random dopant variations, have also 
grown with scaling of process dimensions. The number of dopant atoms in 
the channel region of a device decreases as the critical dimension is scaled 
down. As the number of dopant atoms becomes less, small variation in their 
number result in a large variation in device performance. Moreover, the actual 
location of these atoms also plays a role in determining the threshold voltage 
of a device, further increasing the variability. These variations are true random 
variations with no correlation across devices and represent one source of intra-
die random variations. Such random variations can result from a host of other 
sources as well, such as lithography, etching, CMP etc. Although their impact 
in current technologies is small, it is expected to grow as process parameters 
scale. Their impact on performance has been manageable since random intra-
die variations have the well known averaging effect, and their impact on path 
delay decreases with increasing logic depth. However, they result in an increase 
in mean circuit delay. In addition, the trend to increase clock frequency of a 
design using aggressive pipelining has resulted in smaller logic depths, which 
increases the effect of these random intra-die variations. 

These variations have a strong influence on leakage power as well, which 
has become a big cause for concern even in current technologies. As an exam­
ple, increased Vth variability and lower Vth values (which result in a much 
higher leakage) can result in functional failures in dynamic logic designs. 
To counter worst-case leakage scenarios, a stronger keeper device is required 
which has a negative impact on both power and performance. Adaptive post-
fabrication techniques such as [74], which turn on a subset of parallel keeper 
devices depending on the variations will become useful in these scenarios. 
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We have classified variations as being inter- and intra-die variations with 
intra-die variations having spatially correlated and random components. An­
other equivalent view is to divide variations as being spatially uncorrelated 
and correlated with the correlated variation further divided as being intra- or 
inter-die variations depending on their correlation distance [158]. However, we 
will work with the previous definition of variations throughout the remainder 
of this book. 

1.3 Impact on Performance 

In this section, we will discuss the impact of variation on performance pa­
rameters. However, first we need to establish the components of variations 
that dominate each of the device and interconnect parameters. Variation in 
gate-length is perhaps the most critical device variation and has significant 
components of both inter-die variation (resulting from variation in duration 
of exposure) and intra-die variation (resulting from lens aberration and other 
lithography effects) [158], [124]. The intra-die variations in gate length are 
also expected to have significant components of spatially correlated variation 
with a small amount of random variations. 

Device threshold voltage presents an interesting picture, since it is depen­
dent on a number of process parameters such as channel doping concentration 
and gate length. Variations in gate length result in a change in the Drain In­
duced Barrier Lowering (DIBL) coefficient which results in a change in the 
threshold voltage. Thus, it is beneficial to separate the variation of thresh­
old voltage between gate length independent variation, resulting from chan­
nel doping variations which are random intra-die variations, and gate length 
dependent variation (which has equal components of inter-die and spatially 
correlated intra-die variations). In current technologies, most of the variation 
in threshold voltage is due to variation in gate length and is thus spatially 
correlated. However, in future technologies random dopant variations are ex­
pected to increase raising the level of random variations significantly. In terms 
of interconnect parameters variations, most of the variations are spatially cor­
related intra-die variations and inter-die variations. 

The trends in the magnitude of process variations is shown in Fig. 1.3 
based on the National Technology Roadmap of Semiconductors [99]. The fig­
ure shows the increase in the variability of interconnect parameters such as 
wire width W, wire thickness T, wire height H and resistivity p, along with 
device parameters such as gate-oxide thickness Tox and threshold voltage VT 
and environmental factors such as power supply voltage Vdd- It shows that 
variations in gate-length are expected to increase significantly as compared to 
other process parameters, with variability increasing in all parameters. 

The impact of the variations on power and performance was highlighted in 
[20], which showed measured data over 1000 samples of a design manufactured 
in an 180 nm technology. The results showed a 20X variation in leakage current 
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for a 1.3X variation in performance. The large variations in leakage result in 
a large fraction of samples that fail to meet the power constraint. Moreover, 
these samples are the high performance samples of a design and hence result 
in a two sided constraint on the region that represents samples that meet both 
the timing and power constraint. 

Though the problem of variations seems to be growing tremendously, [124] 
recently showed that spatial correlated variations have been kept within man­
ageable limits due to better polysilicon CD control. It was argued that the 
impact of inter-die variation can be kept within limits through better analysis 
and design techniques. 



2 

Statistical Models and Techniques 

Traditionally, circuit performance has been modeled in the industry using 
worst-case models which are used to predict the performance of a design un­
der worst-case process, temperature, and voltage conditions. However, with 
scaling process dimensions, the impact of process variations has grown, mak­
ing traditional worst-case models extremely pessimistic. This results in the 
reduction of feasible regions for the design and increases design effort. Addi­
tionally, most of this effort is aimed at accounting for worst-case situations 
that will most likely not occur in actual designs. This has resulted in signif­
icant interest in statistical modeling techniques that can be used to enable 
statistical analysis and optimization. 

Although the need for statistical modeling has been acknowledged to be 
critical, industry has been reluctant in adopting modeling techniques that can 
be used to replace traditional worst-case models. This stems from the fact that 
statistical models are expensive and difficult to construct, and unless analysis 
and optimizations tools are built on top of these modeling techniques, the 
utility and validity of these models will be questionable. 

In this chapter, we will discuss key statistical techniques, such as princi­
pal component analysis, that have been extensively used in developing tech­
niques for process variation modeling and analysis to simplify the problem 
of simultaneously considering different components of variations. We will also 
look at specialized modeling techniques to account for sources of variations 
as discussed in Chap. 1. Having developed the basic infrastructure to model 
process variation, we will then discuss performance modeling techniques us­
ing response surfaces. Then we will discuss statistical gate-delay models and 
interconnect-delay models that have seen substantial research activity in the 
past few years. 

Before we discuss modeling techniques, let us spend some time understand­
ing the basics of a crucial statistical technique known as Monte Carlo. This 
will serve as a benchmark against which all modeling and analysis techniques 
will be tested for accuracy. The need for techniques such as Monte Carlo be­
comes obvious as soon as we look at the scale of the problem at hand. We 
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will show that the error in Monte Carlo techniques reduces with the number 
of samples n as 0 ( n - 1 / 2 ) . Hence, obtaining an accuracy improvement of two 
orders of magnitude requires that the number of samples be increased by four 
orders of magnitude. Thus, the number of simulations required to obtain rea­
sonable accuracy using Monte Carlo is generally extremely large and using a 
Monte Carlo based analysis or optimization engine will be prohibitive. Even 
though this seems to be computationally demanding, this dependence is much 
better than non-statistical techniques where the error reduces as 0{n~l/d), 
where d is the dimensionality of the problem. 

Therefore, Monte Carlo methods are used in almost all cases to evaluate 
the results obtained using newly developed analysis techniques. These tech­
niques, which are, in general, orders of magnitudes faster than performing 
Monte Carlo simulations, lay the framework for the development of optimiza­
tion engines that provide improvements in a reasonable amount of time. How­
ever, it is important to understand the basics of Monte Carlo simulations, so 
that they are used reasonably as golden models to test the accuracy of new 
techniques. 

2.1 Monte Carlo Techniques 

Numerical methods that make use of random numbers are known as Monte 
Carlo methods. One of the most important applications of Monte Carlo meth­
ods is in the evaluation of multi-dimensional integrals, and hence finds exten­
sive application in areas such as yield estimation [154]. 

Non-statistical numerical techniques to estimate one dimensional definite 
integrals proceed by dividing the region, over which the integration needs to 
be performed, into a number of identical parts. Let us apply the technique to 
estimate the definite integral as shown in Fig. 2.1 

/ - J f(x)dx. (2.1) 

The interval [a, b] is divided into n equal subintervals such that a = XQ < x\ < 
X2 < • • • < xn = b. The integral (2.1) can then be approximated by 

I = jf' f{x)dx « %=jr f ( ^ ± i ) h (2.2) 

where h = (b — a)/n. This method is known as the midpoint method, since it 
approximates the area under the curve f(x) in a subinterval using the value of 
the function at the midpoint of the subinterval. If the function varies linearly 
within the subinterval, then the value estimated using the midpoint method 
is exact. Hence, in the general case, midpoint method incurs an 0(h2) error 
in each subinterval of the integral. Since the total number of subintervals is 
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2 3 4 5 6 7 

Fig. 2.1. Midpoint method to approximate the integral of / (x) , or the area under 
a curve. 

inversely proportional to /i, the overall error incurred in estimating the integral 
is 0(h). Thus, we can finally write 

i = £ f{x)dx =
 l=J2 f (?<±p±±) h+o{h) 

J=J2f^i±p±iy + 0(n^). (2.3) 

The approach can be easily extended to two dimensional integrals. We now 
consider the case where the area enclosed by a curve is estimated as shown in 
Fig. 2.2. Using the ideas from the one dimensional case, the two dimensional 
surface is divided into a set of n equal sized squares with dimensions (h, h). If 
the midpoint of the square is enclosed by the curve, then the square contributes 
to the integral, otherwise not. Note that the square either contributes fully 
to the area or contributes nothing. The error in estimating the area of the 
square that actually contributes to the area of the curve is therefore 0(h2). 
Since the number of squares that intersect the curve is 0(h), the overall 
error in estimating the area is again 0(h). However, the number of function 
evaluations required to estimate the area is now proportional to l//i2, which 
results in an overall error in the integral of 0(n~1/ /2). Note that if this idea is 
extended to the evaluation of multi-dimensional integrals of dimension d, the 
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y 

Fig. 2.2. Estimating the area enclosed by the curve C enclosed by a rectangular 
bounding box A'. 

error falls off at a very slow rate of 0{n~l/d) as the number of samples in the 
d-dimensional space are increased. Thus we see that to maintain a reasonable 
accuracy, the number of function evaluations required by the midpoint method 
grows rapidly with the dimensionality of the integral. 

Let us again estimate the area enclosed by a curve as shown in Fig. 2.2, 
now using a statistical technique. Instead of partitioning the entire region 
A\ we generate n random points independently and assume that no of these 
points lie within the region enclosed by the curve. Now we can approximate 
the area enclosed by the curve as 

Ac Ac = AA,^ 
n 

(2.4) 

where AA' is the area of the region A! and Ac is the area enclosed by the curve 
C as shown in the figure. What is the advantage of this method compared 
to the midpoint method? To answer this question we need to estimate the 
error incurred in using approximation (2.4). The probability that a randomly 
generated point lies within the area enclosed by the curve is simply AC/AA>-
If we generate n such samples, then the number of points found to be within 
C can be expressed as 

n0 = X/ (2.5) 

where X{ is the result of the r measurement of x, which is 1 if the randomly 
generated ith point lies within C and 0 otherwise. The expected value of no 
can then be expressed as 
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E[n0) = E \YlXi\ = X>M (2.6) 

where E[x] is the expected value of x, which has a binomial distribution with 
n samples and a probability of success AQ/AA1- The expected value of x can 
then expressed as 

*w—0-&)+ i-£-&- <"> 
Substituting (2.6) and (2.7) into (2.4) and taking expectations we get 

E[AC] = A A , ^ = A A , ^ = AC (2.8) 

and we find that on average the measurement of no will result in an accurate 
estimate of the area enclosed by C. The class of estimators whose expected 
value of error is zero are known as unbiased estimators, therefore Monte Carlo 
provides an unbiased estimate of the area. 

Let us now consider the variance of the estimate provided by Monte Carlo. 
We know from Chebyshev's inequality [109] that for a RV x 

V(\x-r)\ >e)< (2.9) 

where n and a are the expected value and the standard deviation of x, respec­
tively. Setting 8 = a2/e2 we can rewrite (2.9) as 

(2.10) vi\x-v\>-j=)<5. 

Since the expected value of no gives the exact value of Ac, using (2.10) allows 
us to estimate the error in the value of no in terms of the number of samples 
for a fixed desired level of accuracy. First, let us calculate the variance of no: 

Var[n0] = E [(n0 - E[n0}f] 

= E 

= E 

n 

X>*-
i = l 

n 

Y,(xi 
i = l 

-E 
n 

£*< 
.i=i -

\2~ 
-E[x])\ 

J 

vi 
/ 

E J2& - E[x})2 + 2j2(xi~ E[X])(XJ - E[x]) (2.11) 
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Since different measurements of x are assumed to be independent, the second 
term on the right in (2.11) does not contribute to the expression and (2.11) 
can be simplified as 

F a r [n0] = E X>i-«2 

= nE[x2 -2xiE[x} + E2[x}} 

= n(E[x2]-E2[x]). (2.12) 

Now 

E[x2} = 0 2 * l - ^ + l 2 * ^ = ^ (2.13) 
\ AA'J AA> AA> 

therefore, the standard deviation a of no can be written as 

„2i n 2 , / i AC \ . -,2 . AC AC 

fikVi-i£ °«o = VV^¥o) = ]Jn{-±){l-^)- (2.14) 

Since the estimate of the area enclosed by C is proportional to the ratio no /n , 
using (2.10) and (2.14), the error in the estimate is 0 (n~ 1 / / 2 ) . Note that the 
estimation in error is independent of the dimensionality of the problem. This 
gives us the very interesting and important result that the error incurred by 
Monte Carlo methods does not depend on the dimensionality of the problem. 
Note that the error in Monte Carlo is fundamentally of a different nature. 
The error in the midpoint method was due to the inability of the linear ap­
proximation to fit the actual integrand, whereas in Monte Carlo methods, the 
error has a probabilistic origin. Additionally, for one dimensional integrals the 
midpoint method is more accurate since the error is 0 ( n _ 1 ) whereas Monte 
Carlo methods provide an accuracy which is 0 ( n - 1 / 2 ) . For two dimensional 
integrals both the methods provide similar accuracy, and for higher dimen­
sions Monte Carlo methods are always more accurate. The disparity between 
the accuracy of both the methods increases with the dimensionality of the 
problem, since the inaccuracy of the midpoint method increases rapidly. 

Note that to improve the accuracy of the integral by a factor of two while 
using Monte Carlo would always require an increase in the number of samples 
by a factor of four. On the other hand, analytical methods such as the midpoint 
method require an increase in the number of samples by a factor 2 D / 2 , where 
D is the dimensionality of the integral. If D > 4, then Monte Carlo methods 
fare better in this respect as well as compared to analytical midpoint methods. 

For our purposes, we will use Monte Carlo methods to estimate the mo­
ments of physical or performance parameters. The main goal will be to esti­
mate the quantity 
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E[g{X)\ = / g(x)f(x)dx (2.15) 

where X is a RV with probability density function / ( # ) , g(x) is a function of 
the RV X , and 3ft is the region of interest. If we can generate samples of the 
RV X, then the integral can be estimated as an average of the values of g(x) 
at these sample points. This approach shows better convergence properties 
and reduces the runtime of Monte Carlo based techniques. 

2.1.1 Sampl ing Probabi l i ty Distr ibutions 

Monte Carlo methods rely on sampling the space of interest using random 
samples by generating uniform statistically independent values in the region. 
As it turns out, it is very difficult to generate truly random numbers using 
computers. Specialized pieces of hardware are used in certain applications 
to generate random numbers that amplify the thermal noise of a resistor 
or a diode and then sample it using a Schmitt trigger. If these samples are 
taken at sufficient intervals of time, we obtain a series of random bits. How­
ever, in software, random numbers have to be modeled using pseudo-random 
number generators. Pseudo-random numbers, as the name suggests, are not 
truly random and are typically generated using a mathematical formula. Most 
computer languages use linear congruential generators. These generators are 
defined by three positive integers a (multiplier), b (increment), and m (modu­
lus) and given an initial seed (the first pseudo-random number ro), generates 
pseudo-random numbers in the following fashion: 

r-fc+i = ark + 6(modm). (2.16) 

If desired, the random numbers generated can be mapped to a given range 
by dividing the numbers obtained using the above generator by m. Note that 
the r/c's can only take one of the m values. Hence, in all practical implementa­
tions m is a very large number (eg. 23 2). Also, the choice of a is critical to the 
randomness of the number generated. More details regarding pseudo-random 
generators can be found in [75]. 

We will now review some of the general techniques used to sample arbitrary 
probability distributions and algorithms to generate samples of some of the 
pertinent RVs that we will deal with throughout this book. 

Inverse Transform M e t h o d 

Let us assume that the probability distribution function (pdf) of a RV X that 
we want to sample is given by f(x). The cumulative probability distribution 
(cdf) F(x), which gives the probability that X < x, is then given by 

F(x) = f f(x)dx. (2.17) 
^ — O O 
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Let us take samples of X , which will have a probability density of f(x). 
Now we will use these samples of X to obtain samples of F. Consider a small 
region x < X < x -f dx on the x-axis of the cdf. The number of sample points 
in this region will be proportional to the integral of the pdf in this range. Note 
that this is equal to the change in the value of the cdf. Hence, the number of 
sampling points within a range is equal to the length of the region sampled 
as well. Therefore, these samples of F(x) will be uniformly distributed in the 
range [0,1]. 

Using this idea we can write 

u = F(x) 

x = F-\u) (2.18) 

where u represents samples of a uniformly distributed random variable, and 
F~l is the inverse of F. Hence, if we can find the inverse of F we can use this 
technique to generate random numbers distributed according to the probabil­
ity distribution f(x). 

Transformation M e t h o d 

Now let us consider two RVs, X and V, which are related such that Y = f(X), 
where / is a monotonic function (inverse of / is well defined). Let the pdf of 
X and Y be fx(x) and fy(y), respectively. Then from the conservation of 
probability it follows that 

\Px(x)dx\ = \Vy(y)dy\ (2.19) 

which states that the probability of finding X between x and x + da: is the 

same as the probability of finding Y between y = f(x) and y -f dy = f(x + dx) 

as illustrated in Fig. 2.3. From (2.19) it follows that 

When / is non-monotonic, the left hand side in (2.19) is replaced by a sum­
mation of the ranges of x that correspond to the given range of y on the right 
hand side in (2.19). An equivalent for (2.20) can then be immediately con­
structed [109]. Therefore, to generate samples of a RV Y we need to find a RV 
X whose samples can be easily obtained such that X and Y satisfy (2.20). 

Consider the case where we want to generate samples of a Poisson distri­
bution. The pdf of the Poisson distribution is expressed as 

£ t \ J e~y if 0 < y < oo / 0 0 1 \ 
fy(y) = i n - y ~ (2-21) 

I 0 o.w. 
then choosing y = — In x we get 
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y =fx(x) 

y + dy 

y 

x x + dx x 

F i g . 2 . 3 . The probability tha t x << X << x + dx is equal to the probability tha t 
y << Y << y 4- dy for the case when Y varies monotonically with X. 

, , v j 1 if 0 < x < 1 

0 o.w. 
(2.22) 

hence the pdf of Y and X satisfy (2.20). Therefore, if we generate uniform 
samples in the range [0,1], then the negative natural log of these samples will 
have a Poisson distribution. This method requires a differentiable pdf, which 
is a restriction particularly when dealing with discrete RVs. 

Acceptance-Rejec t ion M e t h o d 

If both the above methods are inapplicable due to the restrictions imposed 
on the pdf of the RV then the acceptance-rejection method may be used. Let 
us consider the case where we want to generate samples of a RV X whose 
pdf is as shown in Fig. 2.4. The acceptance-rejection method consists of the 
following steps. First, generate uniform samples in the range [xmin, xmax\. For 
each sample xi evaluate the value of fx(x). Next, generate another random 
sample a in the range [0,maxfx(x)]. If X{ > a, then accept the sample x^ 
otherwise reject it. The accepted samples are then distributed according to 
the pdf fx. 

To generate samples of a Gaussian RV using this approach, we must trun­
cate the pdf of the RV. Since most of the values of a Gaussian RV are concen­
trated around its mean, a ±4<r range around the mean is sufficient to capture 
the behavior of the Gaussian RV. The steps outlined can then be applied to 
this truncated Gaussian RV to generate the desired random samples. 
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y=fx(x) 

max(f x (x)) 

• x 
mm max 

Fig. 2.4. The acceptance-rejection method to generate samples of a RV with a given 
distribution function. 

Generat ing Mult ivariate Gaussian RVs 

Now let us look at techniques that may be used to generate multivariate 
Gaussian RVs. We will use the transformation method to generate samples of 
a one dimensional Gaussian RV. If u\ and U2 are independent uniform RVs 
in the range [0,1], then 

yi = sin27rui y —21n^2 

2/2 = COS27TU1 V — 2 hi 1̂ 2 (2.23) 

are two independent Gaussian RVs with zero mean and unit variance. The 
Gaussian random numbers generated using the above transformation, also 
known as the Box-Muller transformation, can then be used to generate sam­
ples of a Gaussian RV with an arbitrary mean and variance. To obtain the 
desired mean and variance for the Gaussian RV, we use the fact that given 
two Gaussian RVs that are related as Y = aX -f b 

E[Y] = aE[X] 4- b 

Var[Y] = E[Y2]-E2[Y) 

(2.24) 

a2Var[X\. 

To generate an n-dimensional multivariate random variable with a covari-
ance matrix T, and mean A , the first step is to generate n independent random 
variables with zero mean and unit variance. Then, take a sample of these RVs 
(X), and generate a new sample X ' from X such that 
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X ' = A + L X (2.25) 

which gives 

E[X'] = A 

Cov[Xf] = £ [ X ' X ' T ] - E[X']E[X'T] = L L T . (2.26) 

Hence, if L L T = E w e have the samples of the desired multivariate Gaussian 
RV. The evaluation of L from 5] is a popular technique in matrix computation, 
known as Cholesky decomposition [55], for symmetric positive-definite matri­
ces. Cholesky decomposition factorizes a symmetric positive-definite matrix 
into a product of a lower and upper triangular matrix, which are the transpose 
of each other. Hence, L is a lower triangular matrix in (2.26). The covariance 
matrix of a set of RVs is known to be symmetric and positive-definite. There­
fore, Cholesky factors can be obtained for E . Writing out (2.26) in compo­
nents, we can solve for the elements of L and readily obtain 

( i_1
 2 V / 2 

La = I En — 2 ^ Lik I 

~ ( SV -J2L^Ljk 1 j = i + M + 2,... ,N. (2.27) Lji 
Ly 

Using these techniques, samples of the required RV to perform Monte Carlo 
analysis can be generated. For most purposes, variations in VLSI designs are 
assumed to be Gaussian. Consequently, while analyzing intra-die variations, 
we need to generate samples of a multi-normal RV. 

Though we have described the theoretical foundation of Monte Carlo based 
simulations, there are a number of practical issues that must be kept in mind. 
It must be ensured that the result of a Monte Carlo based simulation has 
converged and that further increase in the number of samples will not result 
in a large change in the value of the target parameter. A number of issues 
arising in Monte Carlo simulations in VLSI designs were highlighted in [126]. 
One of the most important computational issues involved in generating the 
required RVs is that, in most cases, correlated RVs are required to sample the 
space. This requires Cholesky decomposition of the correlation matrix, which 
has a computational complexity of 0 ( n 3 ) for a n n x n matrix. This becomes 
prohibitive as soon as the number of RVs being considered increases beyond a 
few thousand (this may be the case if intra-die variations are considered). Ad­
ditionally, techniques that aim to reduce the complexity of matrix operations 
based on sparsity are not applicable. This is due to the fact that some process 
parameters, such as threshold voltage, have significant correlations across the 
chip. Since threshold voltage variations have a strong component of random 
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dopant variations as well, these RVs cannot be assumed to be perfectly cor­
related as well. Spatial correlation models such as PCA and Quad-Tree based 
modeling, which we will discuss in the next section, can be used in these 
situations to reduce the computational complexity. 

2.2 Process Variation Modeling 

Process variation can be considered to operate at two different levels; at the 
chip level, which we call inter-die variation, and at the transistor level, which 
we refer to as intra-die variation. As discussed in Chap. 1, the demarcation 
between these two components is not very strict since variations that need to 
be modeled as intra-die variations may have a correlated component across 
a chip as well. However, the impact of inter-die variations and intra-die vari­
ations on circuit performance is very different. Additionally, as we saw ear­
lier, the number of RVs that we deal with increases rapidly when intra-die 
variations are considered, which increases computational costs (particularly 
when intra-die variations are spatially correlated). In this section, we will dis­
cuss techniques that have been proposed to simplify modeling and analysis 
techniques when dealing simultaneously with both correlated and indepen­
dent sources of variations. We also discuss models that have been developed 
to specifically understand the impact of certain physical phenomena, such 
as random dopant effects, which exhibit themselves as variations (process or 
time-dependent) on circuit performance. However, we first discuss Pelgrom's 
model, which has been widely used to understand the mismatch in devices 
resulting from random and correlated sources of variations. 

2.2.1 Pe lgrom's Mode l 

Pelgrom's model [111] has been the most widely used modeling technique 
to capture the mismatch in transistors arising due to variations in process 
parameters. The approach is based on analyzing the impact of variations (both 
random and correlated) in the frequency domain and abstracting key features 
of both intra-die and inter-die variation. 

Let us consider a parameter P that varies over the surface of a die in the 
x-y plane due to process variations. Variations in P for different values of co­
ordinates (x, y) result in mismatch of transistors, which have been designed 
to have the same characteristics. The overall mismatch between two regions 
(Ri) and (R2) corresponding to the points (#1,2/1) and (#2,2/2), respectively, 
which have an area AQ can be expressed as 

AP=j-(ff P(x,y)dxdy- Jj P(x,y)dxdy\ . (2.28) 
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The integral in (2.28) can be viewed as a convolution of the function describ­
ing P (P(x,y)) in the x-y plane and a function fg(x,y) which describes the 
geometry of the problem and can be expressed in this case as 

( +1/A0 if (x,y) e Rx 

fgfav) = \ - 1 / 4 , if (x,y) € R2 (2.29) 

^ 0 o.w. 

Thus, we can rewrite (2.28) as 

/

OO /"CO 

/ fg(x',y')P(x-x',y-y')dx'dy' (2.30) 
-oo J — oo 

where * is the convolution operator. If we take the Fourier transform of (2.30), 
the convolution can be written as a product of Fourier transforms of the two 
functions, which effectively separates the process and the geometry dependent 
terms of the mismatch. The equation in the frequency domain can be written 
as 

&P(wx,uy) = F(fg(x,y)) F(P(x,y)) = Tg{bJX)uy) V(ujx,ujy) (2.31) 

where the operator T represents the two-dimensional Fourier transform. Let 
us consider the specific case where the transistors have a nominal device width 
W, gate length L, are separated by a distance dx and are laid out as shown in 
Fig. 2.5. In this case, the Fourier transform of the geometry dependent part 
takes the form 

Fg{wx,u>y) = ^ J J Jg(x^y)e-^e-^ydxdy 

x/2+L/2 rW/2 1 r-dx/ Z-YIJ/4 rVV / Z 

= - — / / e-
l^'x+u,yy)dxdy (2.32) 

WL J-dx/2-L/2 J-W/2 
-, rdx/2+L/2 rW/2 

-777T / e-^+^Wdy = h -12. 
WL Jdx/2-L/2 J-W/2 x/2-L/2 J-W/2 

The integral 12 can be evaluated as 

h=WL Jdx/2-L/2 \ ~lu)y J 
/ -iuyW/2 _ALOVW/2\ / -iojxL/2 _ IOJXL/2\ . 

{- - i ) ( - r - | e—^l\ (2.33) 

Using Euler's Theorem, (2.33) simplifies to 



26 2 Statistical Models and Techniques 

L 
< — ) 

w 
A 

V 

< " 

L 
< > 

4\ W 
- * • x 

v 
- > ' 

Fig. 2.5. Estimating the mismatch between transistors that lie on the x-axis sepa­
rated by a distance dx. 

/sm(coyW/2)\ / s i n ( ^ x L / 2 ) \ 
2 V ojyW/2 ) \ LOXL/2 ) 

-iojxdx/2 (2.34) 

Similarly, I\ can be evaluated and differs only in the last term compared 
to (2.34) with the exponent being positive. Hence, we can write 

^ ' ^ = 2 { »xL/2 J { coyW/2 ) ™(^*/2)- (2.35) 

Now let us consider the process-dependent term in (2.31). As discussed 
in Chap. 1, variations can be divided into two classes where either the varia­
tion is random across transistors or correlated. Since random and correlated 
variations behave differently, Pelgrom uses different modeling techniques to 
capture their impact. 

The variations in the parameter P are assumed to be the result of many 
events of a random process. The random process is treated as independent 
across gates, and is assumed to behave as a source of white noise. Hence, ran­
dom variations can be modeled as normally distributed noise sources [111]. If 
we assume that these variations have zero mean and are small enough such 
that the resulting variations in P can be assumed to be linear, then the vari­
ations in P can also be modeled as normally distributed zero mean RV. The 
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Fourier transform of a white noise random process is a constant in the fre­
quency domain, and therefore, has equal contribution from all frequencies. 
This is intuitive, since a randomly varying signal should have equal compo­
nents from all frequencies. 

On the other hand, the correlated component of variation is a deterministic 
process. Again, assuming the impact of these variations on P can be captured 
using a linear relation, [49] expresses the correlated component of variation in 
P as 

A P c o r r = APnom 4- OL\X + a2y (2.36) 

where the nominal value of the correlated variation APnom for a particular 
die can be estimated if the origin corresponding to these variations on the 
wafer is known (and is deterministic), and a\ and a2 are parameters which 
depend on the process and the choice of the coordinate system for the die. 
Hence, if the position of the dies on the wafer are known, then this component 
of variation can be precisely predicted from the knowledge of process gradi­
ents [49]. Unfortunately, the information regarding the placement of dies on a 
wafer is generally not available. Additionally, this information is not available 
at the design stage and cannot be used to design for variability. However, lay­
out techniques such as Quad Common-Centroid Configuration [46] have been 
proposed to effectively cancel the impact of correlated variations. A reason­
able approach is to model the correlated component as a stochastic process, 
with a low-frequency component whose frequency is inversely proportional 
to the correlation distance of the variation being considered. Again, due to 
the assumption of small variations, the variation in P can be assumed to be 
normally distributed [111]. 

From the characterization of a random process, we know that the variance 
in the samples of a random process is proportional to the power content of 
the process. Thus, the overall variation in parameter P can be expressed as 

-i />00 rOO 

(T2(AP) = —I / \P(wx,wy\
2 \Tg(ux,u>y\2du)xduy. (2.37) 

Q7V J — OO J — OO 

The above integral can be evaluated using the definite integral properties of 
even and odd functions, and the following definite integral of a sine function: 

J —c 

s in2x 
dx = ir (2.38) 

to finally obtain 

a2(AP) = ^L+S2
p4 (2.39) 

where Ap and Sp are process-dependent parameters that capture the depen­
dency of P on device area and spacing, respectively. 
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Using this model, simple expressions for the variance of a number of key 
parameters, such as threshold voltage (Vth) and gate oxide thickness (Tox), 
can be expressed as 

°2(Vtk) = §f+S2
VtfD

2 (2-40) 

c\Tox) = ^ - + S2
ToxD

2 (2.41) 

where Ayth, Syth, ATOX and STOX are process dependent constants. Considering 
variations in W and L themselves, Pelgrom notes that the variations arise 
due to edge roughness and [111] uses a one dimensional variant of the analysis 
described above, concluding that the random variation in W and L can be 
expressed as 

a\L) = $L (2.42) 

a\W) = ^ . (2.43) 

Based on these expressions, variations in key performance metrics, such as 
device on-current, can be easily predicted. The coefficients used in the equa­
tions above are estimated using information from test structure measurements 
for the process. 

Pelgrom's model is extensively used in analog design to analyze the mis­
match between transistors that are required to match perfectly, as in analog 
designs. Based on (2.40), it can be inferred that large devices located close 
to each other will be well matched, and that increasing the device area is a 
possible approach to reduce the mismatch between devices [90]. 

2.2.2 Principal Component s Based Model ing 

This section will detail the variability modeling infrastructure based on Princi­
pal Component Analysis (PCA). This framework for simultaneously handling 
process random and correlated variations was first developed in [30] for sta­
tistical timing analysis and has since been used in a number of later works to 
model process variations. As discussed in Chap. 1, process parameters have 
an inter-die (which is fully correlated across a chip) and an intra-die compo­
nent of variation. The intra-die component can again be categorized as being 
correlated and random. The overall intra-die variation is then expressed as a 
sum of correlated and random components and the sum of variances of both 
these components provides the overall variation in the process parameter. 

To handle the correlated components of variations (inter-die and correlated 
intra-die) the overall chip area is divided into a grid as shown in Fig. 2.6. In the 
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Fig. 2.6. Partitioning of a circuit using a 2D grid to model the correlated component 
of variation. 

absence of inter-die process variations, the correlation coefficient varies from 
one (within the same square of the grid) and falls off to zero with increasing 
distance. Due to inter-die process variations, squares on the grid that lie at 
the opposite corners of a large design may have non-zero correlations and the 
correlation in this case falls off to a value higher than zero. This minimum 
value depends on the relative contribution of inter-die variations to the total 
correlated component of variation. 

Let us now consider the RVs required to model variations in a given pro­
cess parameter. Each square in the grid corresponds to a RV of the process 
parameter which has correlations with all other RVs corresponding to other 
squares on the grid. Squares that are much further away should demonstrate 
lower correlation compared to adjacent squares on the grid in this model. If 
we want to consider the impact of these RVs on the performance parameters 
of the design, we need to consider the correlations in these RVs at all points 
during the analysis. To simplify the problem, this set of correlated RVs is re­
placed by another set of mutually independent RVs with zero mean and unit 
variance using the principal components of the set of correlated RVs. 

Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical technique that is used 
to identify patterns in data, and expresses the data in a much simpler and 
informative fashion. PCA maps a given set of correlated RVs to a new set of 
uncorrelated RVs, which are called the principal components, such that most 
of the variability in the original RVs is captured by the first few principal 
components as shown in Fig. 2.7. 
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•H,' 

Fig. 2.7. Most of the variation in the shaded data is along one of the dotted axis 
which represents the first principal component. 

Let us assume that we have a vector of n RVs X ' = {X[)X'2)... ,X'n)
T 

which are distributed according to a given multivariate probability density 
function. Assume that this multivariate pdf has a mean vector A and a covari-
ance matrix X. Let us generate a new vector of RVs X = (Xi , X 2 , . . . , X n ) T 

such that X = X ' — A , which implies that the new set of RVs are zero mean 
and have the same covariance matrix X). The first principal component Y\ 
of the components of X is a linear combination of the components and is 
expressed as 

Y1 = anXi + auX2 + • • • + ainXn = a i X. (2.44) 

This linear combination has the property that its sample variance is the great­
est for all normalized a's. Therefore, we can rewrite the problem of identifying 
the first principal component as 

max 2^2^0L\iGiijEij = a i T E a i 

n 

s.t. ^ ] 4 = a i T a i = 1. (2.45) 

Introducing a Lagrange multiplier A [15], we include the constraint into the 
objective function, and then take partial derivatives with respect to the com­
ponents of oti to obtain 

d 
( a i T S a i - A ( a i T a i - 1)) = 0 
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2 ( £ - AI )a i = 0. (2.46) 

Since a i = 0 (which satisfies the above equation) corresponds to the mini­
mization of the objective function, we know that S — AI has a non-empty null 
space. Hence the determinant of S — AI is zero, which implies that A is an 
eigenvalue of the covariance matrix, with ot\ being the associated eigenvector. 
Let us look at the objective function again in light of this fact and note that 

a i T E a i = a i T Ac*i = A. (2.47) 

Thus we find that the objective function is maximized when A is chosen to be 
the largest eigenvalue of E . Also, we know that since IS is a positive-definite 
symmetric matrix, all its eigenvalues are positive and real. Let us now estimate 
the second principal component, which is expressed as 

Yi = 0:21*1 + a22X2 + • • • + a2nXn = a 2
T X (2.48) 

and is a solution of the optimization problem 

n n 

max ^^ zZ a 2 i«2 j^ i j = « 2 T S a 2 

i = l j=l 
n 

s.t. YlaM = a 2 T a 2 = 1 (2.49) 

n 

Y2aUa2i = OL1
TOL2 = 0 

i=l 

where the added constraint forces the new principal component Y2 to be or­
thogonal to Y\. Again, introducing the constraints into the objective function 
using Lagrange multipliers Ai and A2, and differentiating with respect to the 
components of a.2 we obtain 

( a T S a 2 — A i ( l — OL2TOL2) ~ \2OLxTOL2) = 0 
dot 2 

2 ( S - A i l ) a 2 - A 2 a i = 0. (2.50) 

If we multiply the above equation by oc\T on the right, we obtain A2 = 0, 
which implies that Ai is an eigenvalue of the matrix 5J. Considering (2.47), 
we note that for the optimal solution to (2.49), Ai corresponds to the second 
largest eigenvalue of XJ, and a 2 is the corresponding normalized eigenvector. 

Extending this approach to estimate other principal components Yjs 
(where we introduce additional constraints that Yj is orthogonal to Y{ for 
1 < i < j), we find that the coefficients of the principal components cor­
respond to the eigenvectors with decreasing magnitude. Hence we can write 
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Y = A X where A is the nxn orthogonal matrix whose rows are the eigen­
vectors of 23. 

Estimating the mean vector and covariance of the RVs Y we find 

E[Y] = AE[X] = 0 

Cov[Y) = E[YYT] = £ [ A X X T A T ] = A £ [ X X T ] A T = A23AT (2.51) 

= AA T Diag (Ai , . . . ,A n ) = Diag{Xu ..., An) = D . 

Using (2.51) we can generate a set of uncorrelated zero mean unit variance 
principal components P that are related to the original RVs (X') by the 
following relation 

X' = A + D^A^P. (2.52) 

The approach can also be used to compress data by using the first few 
principal components to express the data, since most of the variations in the 
data can be captured in the first few principal components. Hence PCA finds 
extensive use in areas such as image compression as well. For our purposes, 
we will use PCA-based techniques to simplify the correlation structure of 
variations in process parameters across a chip. 

Another important fact regarding principal components of a set of random 
variables distributed according to a multi-normal distribution follows from the 
following properties of multi-normal distributions. 

Property 2.1. Let the p-dimensional random vector X be distributed according 
to the multi-normal distribution with mean vector A and covariance matrix 
23 of rank p. If A is any m x p matrix of real numbers with rank m <p, the 
new m-component random vector Y = A X is a multi-normal random vector 
with mean vector A A and covariance matrix A S A T . 

Property 2.2. Let X\ and X2 be random variables that are distributed accord­
ing to a multivariate Gaussian distribution, then X\ and X2 are statistically 
independent if and only if their covariance is zero. 

Based on Property 2.1, we note that principal components are a linear combi­
nation of the original RVs, and will be distributed according to a multi-normal 
distribution. From (2.51), we know that the principal components are uncor­
related, which, along with Property 2.2, implies that the principal components 
are independent RVs. Therefore any linear combination of the principal com­
ponents will also be a Gaussian RV. This result will be very useful when we 
discuss statistical analysis techniques based on principal component analysis. 

2.2.3 Quad-Tree B a s e d Model ing 

This approach to model process variations was first proposed in [4] and is also 
based on partitioning the overall die area into a number of regions. However, 
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instead of adopting a covariance matrix based model to consider correlated 
components of variations, it uses an additive approach to consider the spatial 
dependence of process parameters. Let us consider the variation in a given 
process parameter; the value of the process parameter for a device i can be 
expressed as 

XtotaLi + AXinter + AXintra,i (2.53) 

which is a sum of the nominal value of the process parameter (Xnom), the 
variation due to inter-die variation {Xinter)) which is the same for all gates, 
and the intra-die variation corresponding to that particular gate (Xintra>i). 
The terms corresponding to the intra-die variation for different gates can be 
correlated. Similar to the PCA-based modeling approach, we seek to identify 
a set of uncorrelated RVs that can be used to model the overall variation in 
the process parameter. 

This is achieved by recursively dividing the area of the die into four equal 
parts, which is known as Quad-Tree partitioning. As the regions of the die 
are recursively divided into parts, the number of parts increase by a factor 
of four for each additional level of partitioning as shown in Fig. 2.8. Each 
partition in this hierarchical scheme is then assigned to a RV, where the RVs 
are independent of each other. The intra-die RV associated with a gate i is 
now defined to be the sum of the RV associated with the lowest level partition 
that contains the gate i and RVs at each of the higher partitioning levels that 
intersect with the lowest level partition. This can be mathematically expressed 
as 

&Xintra4 = ] T M I | P + A X f (2.54) 
0<l<k,r intersects i 

where X^r are the RVs associated with the partitions in the multi-level Quad-
Tree and Xf" is the random component of variation of gate 2, which is inde­
pendent of the variation in any other gate. As an example, the term that is 
completely random between different gates could be used to model variations 
in threshold voltage arising due to random dopant fluctuations. 

The pdfs of the individual partitions of the Quad-Tree are generated in the 
following fashion to ensure that the sum expressed in (2.54) always represents 
the correlated component of intra-die variation. All the RVs corresponding 
to a single level of partition are assumed to have the same distribution. The 
overall variation in the correlated component is distributed across different 
levels based on the degree of expected correlation. If the process parameters 
are known to be correlated over large distances then a larger fraction of the 
variation is assigned to higher partitioning levels. Based on this modeling 
scheme we note that gates that lie close to each other will be associated to the 
same RVs in the Quad-Tree for most levels and therefore have high correlation. 
On the other hand, gates that are far apart only have a few common RVs and 
hence their overall correlation is smaller. 
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F i g . 2 .8 . Modeling spatial correlation using Quad-Tree partitioning. The numbering 
of regions in different levels is done as shown in the figure and a region (i, j) intersects 
the regions ( i + l , 4 j - 3 ) - ( i + l , 4 j ) . 

2.2.4 Special ized Model ing Techniques 

In this section we will discuss some of the modeling techniques that have been 
proposed to understand and quantify the impact of certain physical phenom­
ena that results in variability. We will discuss models for random dopant 
variations that result in Vth variations, and are expected to have a strong 
influence in future technologies. We will also discuss modeling techniques for 
NBTI, which results in a change in Vth with time, and electromigration which 
results in opens and shorts in metal lines. 

R a n d o m Dopant Variation 

Since the number of doping impurities in the channel depletion layer has 
been reducing with technology scaling, both the number of dopants and their 
placement results in variations in the observed threshold voltage of the device. 

If the event of different dopant atoms being introduced into the device 
is treated as independent Bernoulli trials, then the number of dopant atoms 
in a given volume v (N) across different devices can be shown to follow the 
Poisson distribution if the volume being considered is small compared to the 
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total volume [91]. This follows from the fact that the probability of exactly 
obtaining a given number of successes, out of a large number of trials (tending 
to infinity) results in a Poisson distribution. Thus the probability that there 
are NQ atoms within the volume v can be expressed as 

(N v)N° 
V(N = N0) = l av

Ml exp(-Navv) (2.55) 

where Nav is the mean value of the concentration of NQ. The mean and vari­
ance of this distribution is expressed as 

fi[N] = Navv 

a[N] = y/N^>. (2.56) 

Based on (2.56) we can infer, that although the absolute variance of the 
number of dopant atoms reduces as the concentration is reduced, the variation 
as a fraction of the mean, which is expressed as 

°[m = i ,2 57) 
»[N] x / A ^ l ' ; 

increases for lower doping concentrations. This implies that variations in 
dopant concentrations will result in larger variability in threshold voltage 
for low Vth devices. However, the variation in leakage power depends on the 
absolute variation in Vth and random dopant fluctuations will result in a 
smaller variability in leakage current. It is important to note that this consid­
ers variations arising due to random dopant variations. Variations in current 
technologies are dominated by gate length variations, and low Vth devices 
are considered to be more susceptible to variations due to worse Vth roll-off 
characteristics. 

The volume in the above equations that we are interested in is the channel 
volume, 

v = WLWd (2.58) 

where W and L are the device width and length, respectively, and Wd is the 
depletion width, which is expressed as 

wd = / ! £ ! ^ M (2.59) 
V QNav 

where eo is the permittivity of vacuum, esi is the relative permittivity of 
Silicon (Si), q is the charge on an electron and <&F is the Fermi potential, 
which is expressed as 

<PF=— \n(^) (2.60) 
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X=0 
* Y 

Fig. 2.9. Cross-section of a MOS device, showing a layer of dopants at a distance 
XQ from the Si — Si02 interface. 

where n$ is the intrinsic carrier concentration of Si (1.1 x 1010 cm~3@300K). 
Though this simple approach gives us insight into the impact of variation in 
the number of dopants, it does not consider the impact of the placement of 
these dopant atoms. 

Now let us discuss one of the simple models proposed in [138] that considers 
the impact of the variation in placement of these dopant atoms along the depth 
of the device on threshold voltage. Assuming that the device is in inversion, the 
voltage drop from the surface of Si — Si02 interface to the edge of the depletion 
region (2.59) is constant. Let us now assume that we have an additional surface 
charge density AQ that is introduced at a distance #0 from the surface, as 
shown in Fig. 2.9. This results in a change in the electric field, which increases 
in the region from 0 < x < XQ. Since the voltage drop to the edge of the 
depletion region remains the same, the electric field in the region XQ < x < Wd 
reduces. This change in electric filed is illustrated in Fig. 2.10 for the simplified 
case, where the initial doping profile is uniform. This change in electric field 
will result in a change in threshold voltage, which can be simply expressed as 
(if the second order term due to region C shown in Fig. 2.10 is ignored) 

1 
XQ 

Wd 
(2.61) 

which depends on #0, the distance from the surface at which the extra charge 
sheet is present. Assuming that the doping process is a sequence of Bernoulli 
trials (the distribution is binomial), we can express the standard deviation of 
AQ as 



2.2 Process Variation Modeling 37 

Fig. 2.10. Change in vertical electric field due to the additional sheet of charge in 
Fig. 2.9. Poisson's equation dictates that the area of Regions A and B be equal. 

a[AQ] = qa[N] = 
q^/NSUB(x)LWAx 

LW 
(2.62) 

where NSUB(%) is the doping concentration profile. The overall variance in 
threshold voltage can then be obtained by integrating the variances introduced 
by each of the infinitesimal charge sheets. 

x=Wd 

°2[Vth] = / (v[dVth}) 
Jx=0 

rx=Wd 2 ( x 
(2.63) 

Now let us define an effective doping concentration NEFF, which is a 
weighted average of NSUB(X) as 

••r 
Jx=0 

x=Wd NSUB(X) 
A W = 3 , - - ^ 1 

x \ dx (2.64) 

which yields a simple expression for the standard deviation of threshold volt­
age: 
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TT/ 1 q NEFFWd 
a[Vth] = ^J^LW~' (2'65) 

Prom (2.64) we can infer that the strongest contribution to NEFF is from 
the variations in doping concentrations that are closest to the surface, and the 
placement of the dopant atoms will have a strong impact on the variation in 
threshold voltage. Based on 3-D atomistic simulations, [13] showed that differ­
ent models, including the one discussed here, provide good trends of threshold 
voltage variations with variations in key device characteristics. However, they 
fail to provide accurate quantitative estimates for the variation. Both [138] 
and [13] note that threshold voltage variation can also result from variations 
in doping profiles along the width of the transistor, which are not captured 
by the random dopant model (2.65). These variations can result in parts of 
the transistor associated with a section of the transistor width having a small 
number of dopants - this section therefore turns on earlier than the rest of 
the transistor. The probability of such events increases with the device width 
and results in a reduction in threshold voltage. 

Negat ive Bias Temperature Instabil ity ( N B T I ) 

We saw in Chap. 1 that NBTI, which results from the generation of trap-
sites at the Si/Si02 interface at elevated temperatures, yields a degradation 
(increase) in threshold voltage of PMOS devices with time. Experimental ev­
idence has shown that trap-sites generated when Vgs = —Vdd are partially 
annealed away when the PMOS device is in the off-state. Hence, to reduce 
the pessimism introduced through a constant negative-bias analysis, it is im­
portant that both modes of PMOS operation are considered. 

For the inversion mode of PMOS operation, the rate of generation of inter­
face traps (NJT) is initially a function of the rate at which the Si — H bonds 
can be broken (&/), and the rate at which hydrogen is annealed (kr) at the 
interface [139]. During the latter stages, the rate is limited by the diffusion of 
hydrogen. The reaction-diffusion (RD) model used to capture this phenomena 
at the interface is expressed as 

^ p = kf (No - NJT) - krNHNIT (x = 0) (2.66) 

diVJT dNH 5 dNH 

-^r==DH-diT + 2-W ( 0 < * < * ) (2-67) 

d2NH dNH D H ^ f = -df (6<x<Tox) (2.68) 

DH-^- = kpNH (x>Tox) (2.69) 

where x is the distance from the Si/Si02 interface (into the oxide), NH and 
DH are the concentration and diffusion coefficient of hydrogen, respectively, 
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iVo is the number of Si — H bonds that are unbroken at t = 0, Tox is the oxide 
thickness, S is the interface thickness and kp is the recombination velocity 
at the oxide-polysilicon interface. The most typical phase that is observed 
is when the rate of hydrogen diffusion controls trap generation. Under the 
additional assumption of slow trap generation, the number of interface traps 
as a function of time can be expressed as 

NIT~f-^{DHt?'\ (2.70) 

In the annealing phase, kf = 0 and the number of interface traps can be 
expressed in terms of the number of interface traps at the beginning of the 
annealing phase {Njx(t=t0))

 a n d the time t spent in the annealing phase, as 
[139] 

A^A^^ll-^/^J. (2.71) 

Both the models ((2.70) and (2.71)) have been shown to be consistent with 
experimental data, and can be used to estimate the degradation in threshold 
voltage directly from the following relation 

AVth = ^ . (2.72) 

Considering the temperature sensitivity of NIT, note that the term kfNo/kr 

in (2.70) is approximately temperature independent and the only dependence 
is through the diffusion coefficient of hydrogen Z}#, which follows an Arrhe-
nius relationship. Also NBTI is known to be electric-field dependent, and the 
dependence arises through the dependence of kf on electric field in the oxide, 
which is expressed as 

kf=Ba0Eoxew(J^) (2-73) 

where B, the bond dissociation coefficient, and <JO, the hole capture cross-
section, are known to have weak electric field dependence. Effects such as 
NBTI are now seen to be reliability problems as well as performance issues. 
Since, traditional design margins are hard to suatain it is becoming increas­
ingly important that additional pessimism is not introduced through consid­
erations such as NBTI degradtion under DC conditions. 

Electromigrat ion Model ing 

As discussed in Chap. 1, electromigration occurs when high energy electrons 
moving through the metal lines collide with the metal atoms. The transfer 
in momentum from the electrons to the metal atoms causes the metal atoms 
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Fig. 2.11. Grain boundaries in poly crystalline materials. 

to diffuse and creates an open in the wire, or alternatively, can cause shorts 
between adjacent wires due to metal atom pileup. 

Electromigration occurs when there is a flux divergence of metal atoms, 
which generally occurs at points known as triple points. These triple points 
occur when three grain boundaries (bounding surface between crystals as 
shown in Fig. 2.11) meet within a wire. Failure time has generally been treated 
as a RV since the time to failure is dependent on the position of these grain 
boundaries. Additionally, the probability of failure of long wires is greater 
than the probability of a shorter wire, because there is a higher probability 
that a triple point lies on the longer wire than the shorter wire. 

Traditional failure time distribution for electromigration based faults has 
been found to give a good fit to a lognormal, which provides the probability 
that the failure time of a wire Vfire is less than t as 

V(tfre <t) = $ fhlzJ^.\ (2.74) 

where $ is the cdf of a standard Gaussian distribution function and can be 
expressed in terms of the error function as 

*(()=/l(^exp(^))d'=Ki+erf(^))- (275) 

Different values of /i and a in (2.74) can be used to capture the character­
istics of a given wire, such as its length, width and current density. Note that 
since the RV is modeled as a lognormal, the probability for negative values of 
failure times is zero, which is physically consistent. However, a contradiction 
does arise when we consider a group of n wires. In this situation, the failure 
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F i g . 2 .12 . The cumulative probability distribution of the failure t ime for a group 
of wires approaches a step function as the number of wires (n) increases. 

time {tg^oup) is the time at which any of the wires in the group fails and can 
be expressed as 

V(t9/oup < t) = 1 - f[ (l - # (lnt~^) ) • (2.76) 

As we increase the number of wires in the group, the above expression tends 
to a unit step function, as shown in Fig. 2.12, and the probability density 
function becomes a delta function at t = 0. This implies, that as soon as the 
design is switched on, at least one of the wires will fail, which is inconsistent 
with observations. 

Based on empirical evidence, namely that the mean time to failure of long 
wires approaches a non-zero value as the length of the wire increases, [153] 
proposes to use a shifted lognormal (SLN) to model electromigration failures. 
Based on the SLN model the failure time equation (2.74) can be rewritten as 

P(ff'"<t) = g( l n ( ' -J*)~M) (2.77) 

where S is the amount of shift, and is process dependent. It has also be shown 
[153] that the SLN model is a simpler and more accurate approximation than 
the complicated physical eletromigration model when the activation energy for 
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grain boundaries is assumed to have a truncated normal distribution, which 
directly results in a non-zero failure time for very long wires. 

2.3 Performance Modeling 

In this section, we will discuss modeling techniques that can be used to de­
velop models for performance parameters (such as delay and power) in terms 
of process parameters. These models will allow us to analyze the impact of 
variations on the performance of a design and to perform optimization. 

2.3.1 R e s p o n s e Surface Methodology 

Response surface methodology (RSM) refers to a set of approaches that are 
used to approximate the relationship between a parameter of interest y and 
a set of underlying variables X = (x\, X2,... , # n ) T in a functional form. This 
unknown functional form is known as the response surface model. Though 
there is a vast amount of literature on RSM, with [92] serving as a good 
reference, we are mostly concerned with developing models for performance 
parameters that depend linearly on the underlying variables. This stems from 
the fact that variations in process parameters are generally small, therefore 
resulting performance variations can be assumed to be linearly related. In 
future generations, increasing levels of process variation may necessitate the 
use of higher order models. Therefore, we will also briefly look at the RSM 
techniques to handle quadratic response surfaces, which will be used in some 
sections later in this book. 

Let us consider a parameter y that is approximated as y and is assumed 
to vary linearly with the underlying variables X. For the sake of discus­
sion, assume that the zeroth component of this vector is 1, which gives 
X = ( l , x i , X 2 , . . . , # n ) T - Now we can write 

y = aTX (2.78) 

where a — ( a o , a i , . . . , a n ) is a n + 1-dimensional vector, whose components 
are known as regression coefficients, and the process of estimating these coef­
ficients is known as regression analysis. Now assume that we make m obser­
vations of y for a set of m different combinations of values of X. Let 

yi = / ( X ) « aixu + • • • + anxni = a T X ; 1 < i < m (2.79) 

where / is the unknown functional form that we seek to approximate using 
the linear expression (2.79). To establish a good approximation, a standard 
measure of the error in approximation is the sum of squared errors. Therefore, 
based on the information we have (i.e., the m observations) we seek a vector 
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a that minimizes the sum of the squared errors for these m observations. The 
error term (e), which we want to minimize, can be expressed as 

= Y2 \yi-J2aj (2.80) 
3 = 1 

Taking the partial derivatives of (2.80), with respect to the a 's and equating 
them to zero, we obtain the following set of equations 

de 
dak 

= ] T 2 h/i - J2 aJxiJ )xik = 0 0<k<n (2.81) 
i=i \ j=i j 

which gives 

^ ViXik ~ ^2<XjXijXik J = 0 0 < k < 
%=1 \ 3 = 1 J 

These equations can be expressed in matrix form as 

(2.82) 

m 

m 

^ ViX2i 

i=l 

m 

m YlXli 

i=l 
m m 

Y,xu J2x2n 
i=l i=l 
m m 

y2x<2i yzx2ixi 

Ylx* ' 
i=l 
m 

y2xux2i' 
i=l 
m 

i Z^X2i 

' ' / y %ni 

i=l 
m 

•• y^xux 
i=l 

m 

-• y^x2jx 
i=l 

/ J %ni / j %ni%li / v %ni%2i ' ' ' / J * 

i=l 

which can also be succinctly expressed as 

A T Z = A T A a 

a 0 

Oil 

Oil 

(2.83) 

(2.84) 

where Z is the column vector of the observed values of y for m observations, 
and A is a m x (n -f 1) matrix whose first column is all l 's while the rest 
of the columns correspond to the values of the variables (x's) used to make 
the observations of y. The above equation can also be obtained using ideas 
from vector projections. In a simplified scenario, we basically need to solve the 
equation Z = A a for a . However, based on our data this equation might not 
have a solution. In this case, the best alternative is to find oc that reduces the 
mean squared error. This happens when the error vector Z —Aa is orthogonal 
to the space spanned by the columns of A. This implies 
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Fig. 2.13. The dependence of the log of leakage on gate length can be accurately ap­
proximated using a linear approximation whereas leakage itself is difficult to model, 
showing significant error even if a quadratic model is used. 

A T ( Z - A a ) = 0, (2.85) 

which is identical to (2.84). 
By solving the matrix equation in (2.84), we can estimate the components 

of a . Thus, using the above techniques we can approximate the impact of 
variations on performance parameters up to the first order. It is important 
to note that knowledge of the dependence of performance parameters on pro­
cess parameters is extremely useful and provides information regarding what 
response surface models can be used as reasonable approximations. In par­
ticular, consider the case of subthreshold leakage power, which is known to 
have an exponential dependence on gate length variations. Subthreshold leak­
age is a strong function of gate length due to the dependency of Vth on L 
through DIBL, as discussed in Chap. 1. Variations in threshold voltage can 
be assumed to be linearly proportional to variations in gate length, for current 
level of variations. Therefore, while performing analysis of subthreshold leak­
age we can use linearized models to approximate y = ln/S U5, where I sub is the 
subthreshold leakage current. This is shown in Fig. 2.13 where both a linear 
and quadratic model to fit leakage are shown to result in huge inaccuracies, 
while a linear model is sufficient to model the dependence of the log of leakage 
on gate length. 
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If better accuracy is desired, then higher-order models can be used to 
approximate the response surface of the parameter y. Let us the consider the 
case of a second-order model, where we express the response surface as 

y = a T X + X T B X (2.86) 

where B is a n x n matrix. The technique used to estimate a in (2.79) can 
be easily extended to estimate the elements of a and B in (2.86). This is 
achieved by treating the second-order terms in (2.86) as another component 
of A in (2.84). To simplify, let us assume that the original X consists of only 
two components x\ and #2, which gives 

y ao -f a\X\ 4- 02^2 + a$x\ + a^x\ -f a$x\X2 (2.87) 

where the a's are the parameters of the response surface we wish to generate. 
Treating the second-order terms as additional components of X, we rewrite 

y = ao + a\X\ + a2^2 -f (13X3 -f C14X4 + CL5X5 (2.88) 

where x% = x\, £4 = x\ and #5 = x\X2> The a's can then be approximated 
using m observations (2.83), which gives P = M N where 

P = 

i= l 
m 

m 

y^yjX2i 
i=l 
m 

m 

/ j Vix2i 
i=l 

m 

y2viXliX2i 
i=l 

N 

a0 

d2 

CI4 

a5 

(2.89) 
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m m m m m -i 

Y2xu Yx2i Yx2^ Y^ YlxiiX2i\ 
i = l i = l i = l i = l i=l 
m m m m m 

Y xii YxuX2i Yx^ Y x^x\i Y x2^x2i 

i = l iz=l i=l i — l i—l 
m m m m m 

Y,xuX2i ]C x^ Y x2^X2i Yx^ Y xiiX2i 
i=l i—l i=l i—l i=l 
m m m m m 

£_^X^i Z-jX\iX(Zi 2_^xli Z_jxlix2i Z_jx\ix2i 
i=l i-1 i = l i = l i = l 
m m m m m 

2_^XliX2i /i^X2i 2LjXUX2i Z^X2i / ,XUX2i 
i=l z=l i = l i—l i=l 
m m m m m 

2^xlix2i 2^XliX^i 2sXliX2i l_jX^iX2i 7 jx\ix2i 
i=l i=l i=l i=l i=l J 

It is clear that the complexity of this approach increases exponentially with 
the order of the model used. However, delay and power in most cases can be 
accurately modeled using low-order models. Alternatively, techniques such as 
those used to model the dependence of Isut) on gate length as discussed above 
may be used. General techniques such as PC A can also be used to reduce the 
number of variables used to represent variations in process parameters. In this 
case, only the dominant eigenvectors of the correlation matrix are retained, 
simplifying the process of generating a response surface. 

Additionally, using models of order higher than one results in non-normal 
distributions for the parameters of interest, and using non-normal probabil­
ity distribution is computationally unattractive. In the next section, we will 
discuss the computational problems associated with second-order models of 
performance parameters. 

2.3.2 N o n - N o r m a l Performance Model ing 

As process technologies scale, the variations in some of the process parameters 
have continued to increase. The techniques we have discussed in the previous 
sections have modeled the impact of process variations on performance using 
a linearized model. However, in future technologies where variations can be 
as large 35%, the error introduced through the linear models may be unac­
ceptable. Higher order models will have to be used to capture the impact of 
these variations on performance parameters. The first casualty of such a re­
quirement is the Gaussian distrbution of performance metrics. Now, instead 
of dealing with linear combinations of Gaussian RVs, which can be mapped to 
another Gaussian RV, we will need to deal with complicated density functions. 

Since the aim of modeling techniques is to enable efficient analysis and 
optimization, the probability distributions used to model performance param­
eters should, at the least, allow efficient evaluation of probabilities at different 
points. An approach to efficiently evaluate these probabilities, using a second 

M : 

Y.xii 

m 

i = i 
m 

i = l 
m 

E T 2 

x2i 
i=l 

"YxUX2i 
2 = 1 
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order dependence of performance on process parameters called Asymptotic 
Probability Extract ion approach, A P E X , was proposed in [79]. It uses ideas 
from interconnect simulation, such as moment matching, to approximate the 
complete distribution of the performance metric being considered. 

Given a performance metric p = / ( X ) that depends on n process parame­
ters represented by the vector X, and considering a second-order dependence 
of / on X, we can express / as 

/ ( X ) = / ( X n o m ) + a T A X + A X T B A X (2.90) 

where X n o m is the nominal value of the process parameters and A X represents 
the variation in process parameters, which can be approximated by Gaussian 
RVs with a correlation matrix S . Using PC A (2.52) we write 

A X = D 1 / 2 A T Y (2.91) 

where Y is a set of uncorrelated Gaussian RVs with zero mean and unit 
variance, and the matrices A and D are as discussed in Sec. 2.2.2. Using 
(2.91), we rewrite (2.90) as 

/ ( Y ) = f(Xnom) + a T D 1 / 2 A T Y + Y T D 1 / 2 A B A T D 1 / 2 Y 

= co + c i T Y + Y T C Y (2.92) 

where the matrix C will be symmetric. 

M o m e n t Matching Technique 

Now we will discuss moment matching techniques that have been extensively 
used in interconnect simulation [27]. In these techniques, the impulse response 
of a RC tree is modeled as a pdf and the step response is modeled as the 
corresponding cdf. The pdf is then estimated by matching the moments of 
the pdf to the moments of the circuit expressed as a Linear Time-Invariant 
(LTI) system. 

To estimate the pdf of the performance parameter p for a given circuit, 
the Time-moments of p are expressed as 

(_-\\k roo 

ml=K-^- J Jkfp{x)dx (2.93) 

where fp(x) is the distribution function of p and mv
k is the k-th order moment 

of p. Note that the time-moments defined in (2.93) differ from the standard 
definition of probabilistic moments only by a scaling factor of (—l)k/k\. Also, 
if we consider the Fourier transform of fp(x), we obtain the characteristic 
function of p which can be expressed as 
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(2.94) 

From (2.94), we have a power-series expansion for T(<JS) around the point 
u> = 0. Also, we know that the characteristic function for typical distributions 
has a maximum magnitude at w = 0 and it tends to 0 as u goes to infinity as 
shown in Fig. 2.14. Hence, the pdf of functions can be accurately estimated 
by estimating the first few moments [113]. 

Let us assume that we have an M-th order LTI system whose impulse 
response corresponds to fp. We can express the transfer function of such a 
system in the Laplace domain as 

M 

i=l 
s-bi 

which in the time domain gives 

h(t) = I EZi <H*bit for t > 0 
0 for t < 0' 

The time-moments of H can be expressed as 

(2.95) 

(2.96) 
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K' J - ° ° i=l bi 

We assume for now that we can estimate the moments of p. We can then 
match the estimated moments to the moments of H and solve for b^s and a[s 
using (2.97), and approximate fv by h in (2.96). 

If we consider only the first 2M moments of H and /p , we get the following 
system of non-linear equations 

— + — + ••• + — =ra0 
o\ o2 bM, 

^ + w + ... + ^ - j = W l (2.98) 

"(,6p + 6F + "' + ^f J=m2M-1-
The above set of equations can be solved using an iterative Newton-Raphs on 
technique. However, iterative techniques can have convergence issues and tend 
to use heuristic techniques such as step-size control to achieve good perfor­
mance. Reference [79] uses the technique proposed in [113] as part of the 
Advanced Waveform Evaluation, AWE, technique to solve the above set of 
equation, which is based on matching the first 2M moments to develop an 
mth-order approximation of the impulse response. 

Thus the above technique can be used to approximate the pdf and cdf of 
the parameter p, which can be expressed as 

cdfip) « /* h(r) dr = ( 5 £ i f t (*M " 1) ft* * > 0 ( 2 . 9 9 ) 

Jo { 0 for t < 0' 

Now we will discuss an efficient technique proposed in [79] to estimate the 
moments of p. 

Moment Evaluation 

In the discussion above, we assumed that the moments of p were already 
provided to us. When we attempt to compute moments, we need to compute 
the expected values of powers of a quadratic function (2.92), which can be 
expressed as a higher order polynomial by 

/fc(Y) = (co + C I
T Y + v T c Y ) f c = Ylaiyiuyt • • • y0nni (2-10°) 
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where yi is the i-th component of Y, and a[s and $-s are constants. The 
y[s are uncorrelated since they are generated using PCA; therefore, we can 
express the k-th order moment as 

E{fk{Y)\ = J2 «i E\rf") ^ 1 • • • E[yt\- (2.101) 
i 

The expected values on the right hand side of (2.101) can be obtained by 
noting that, since the y[s are Gaussian RVs with zero mean and unit variance, 
their moments can be expressed as 

« = { , . , . ; - „ : : : <«<»> 
The odd moments in (2.102) are zero, since the Gaussian pdf is an even 
function. However, the computational complexity of this approach, called the 
direct moment evaluation approach, of determining the moments of p explodes 
for large values of k since the number of terms in (2.102) grows exponentially 
with increasing values of k. 

We will now discuss a polynomial complexity algorithm to evaluate the 
moments of p. Consider (2.92) and note that C is a symmetric matrix. Due 
to the Spectral Theorem, [55] any symmetric matrix can be diagonalized and 
we can write 

C = SLST (2.103) 

where S is an orthogonal matrix whose rows are the normalized orthogonal 
eigenvectors of C, and L is a diagonal matrix with the eigenvalues of C on 
the diagonal. Now (2.91) can be written as 

/ (Y) = c0 + C l
T (SS T )Y + (YTS)L(STY) (2.104) 

/ ( Z ) = c 0 + qTZ + ZTLZ 
n 

= co + ^2(qiZi + LiZ^) (2.105) 
i=l 

where q = CiTS and Z = STY is a vector of RVs that are linear combinations 
of y[s and are therefore normally distributed. Since L is a diagonal matrix we 
do not have any cross-product terms in (2.105). In addition, if we consider 
the correlation matrix of Z = (z\, 22, • • •, Zn)T w e get 

£[ZZT] = £[(STY)(STY)T] = £[STYYTS] 

= STE[YYT]S = STIS = I. (2.106) 
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Therefore, if the y[s are uncorrelated then the z[s are uncorrelated as 
well. Using this transformation we can simplify our problem and compute the 
moments of p recursively. First, let us define 

fi(u,v) = E Co + Yl(qiZi + LiZi) 
i=l 

Using the above definition we can write the recursive relation 

(2.107) 

H{u,v) 

E 

= E 

I Co + ^{qiZi + Lizf) J 

-/ v-i y-

LV t=i / 

] C ( • ) ( C° + lL,(qiZi + LiZi) ) (qvZv + LvZvY 
j=Q \3 / \ i = l 

v-1 

C0 + Yl^i + L*Zi 
i=\ 

l*(j,v-l)E 
3=0 

E [(qvzv + Lvz
2

vy~i] 

J2(Qvzv)
k(Lvz

2
vy-j-k\ 

v—o 

lk=0 

.108) - E [(") M>«- 1 )2 iqvK-J-kE [tf-2*-"])) . (2-
j=0 \ \ ^ / k==0 ) 

Using the above recursive relation, we can estimate moments by first gen­
erating the lower order moments. Any lower order moment is generated by 
first generating moments corresponding to smaller v values. If we want to esti­
mate the first M moments, we need to use the above recursive relation 0{Mri) 
times, where n is the dimension of the vector Z. In each of the recursive steps, 
we need to evaluate 0{M) terms. Thus, the overall complexity of the recur­
sive binomial moment evaluation step in (2.108) is 0(M2n). If we consider the 
cubic complexity of the diagonalization in (2.103), the overall complexity for 
estimating moments is 0 ( M 2 n - f n 3 ) . Thus, binomial moment evaluation has 
polynomial complexity and is shown to provide a 106X speedup over direct 
moment evaluation for the ISC AS'89 S27 circuit. 

P D F shifting 

Up to this point we have assumed that the pdf we are trying to estimate has 
the form of (2.96), and hence is positive only for non-negative values of t. This 



52 2 Statistical Models and Techniques 
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Fig. 2.15. The pdf of p in two different cases where a significant fraction of the pdf 
lies to the left of the origin or if it has a large positive mean value [79]. 

results from our assumption that the pdf can be approximated by the impulse 
response of a LTI system; the system would become non-causal if the impulse 
response has non-zero values for t < 0. 

Therefore, we will need to shift the pdf's of parameters that have a signif­
icant probability of being negative. On the other hand, if we shift the pdf's 
to the right by a large amount (which could happen since many of the com­
monly used pdfs are non-zero over (—00,00)), we will have a large delay for 
the corresponding LTI system used to estimate the pdf. This degrades the 
accuracy of moment matching methods where we rely on matching the first 
few moments of the LTI system and the pdf of p. Additionally, we might also 
want to left shift a pdf that lies far away from the origin on the positive t-axis 
as shown in Fig. 2.15. Thus, we need to estimate the amount of shift s needed, 
such that the probability that fp<s (shaded region in Fig. 2.16) is smaller 
than a threshold e, which can be mathematically expressed as 

V {p - s < 0) < e. (2.109) 

This probability can be estimated using C (2.9). A Generalized Chebyshev 
Inequality is also developed and used to obtain tighter bounds. Using the 
generalized inequality [79] 

V(\p-fi\>v)< 
El(p-»)k 

r]k (2.110) 

where /i = E[p] and k is a positive even integer, we can upper bound the 
probability in (2.109) as 
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Mean 

Fig. 2.16. Denning s such that the probability that p lies in the shaded region is 
below a given threshold [79]. 

V(P - s < 0) = V(n - fP > [i - s) 

<V(\p-n\>fi-s)< 
E[(p-n)k 

(2.111) 

Using (2.109) and (2.111) we choose the shift amount s = fj, — 8 such that 

e> 
5k 

which gives a total shift of 

s = \i — mm 
/c=2,4,--

^to(Q^bi(-M)fc-
i/k\ 

J 

(2.112) 

(2.113) 

and minimizes the required shift of the mean from zero such that the condition 
in (2.109) is satisfied. Note that when the pdf of p is far from the origin on the 
right, we obtain a left-shift (s > 0) that is smaller than the mean. Similarly, 
when the pdf is on the other extreme we obtain a right-shift (s < 0) with a 
magnitude larger than the mean value of the pdf. After an approximation to 
the altered pdf has been obtained, the original pdf can be simply recovered by 
shifting the t-axis in the opposite sense. Experimental results [79] show that 
the minimum in (2.113) is achieved for higher order moments, which points to 
the usefulness of the generalized inequality. Also, using moments higher than 
10 results in values that are very close, and do not have a significant impact 
on reducing the shift. 
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If we consider the accuracy of the moment matching method we can infer 
that the approximated pdf will have better accuracy for higher confidence 
points. This follows from the observation that 

/>00 

F(<»)\w=o = / f(t)dt (2.114) 

where F is the Fourier transform of / , which implies that an approximation 
of the Fourier transform around w = 0 will provide a good approximation 
for integrals with a longer span on the t-axis. Hence [79] proposes that , when 
lower confidence points need to be estimated, better accuracy can be achieved 
by approximating — / instead of / using the pdf shifting property to move the 
pdf of — / into the desired region. The moments estimated for providing an 
approximation for higher confidence points can be reused, since E[(— p)k] = 
(~l)kE[pk}. 

Table 2.1 provides comparisons of the above approach while estimating the 
delay of ISC AS '89 benchmark circuits. The second column in the table (Lin­
ear) implies that the pdf has been approximated assuming a linear dependence 
of p on the process parameters (which incurs an error of 4.48% compared to 
1.10% for a second-order response surface). The third column refers to Monte 
Carlo simulations using 10,000 runs. All the errors are with respect to the re­
sults obtained using Monte Carlo simulations with 1,000,000 runs. The table 
shows that APEX provides nearly a lOOx and lOx improvement in estimation 
error compared to the linear model and Monte Carlo, respectively, while still 
providing a 200x speedup in run-time over Monte Carlo. 

2.3.3 Delay Mode l ing 

Until now, we have discussed general techniques that can be used to han­
dle variations in any process and performance parameter. In this section, we 
specifically look at developing delay models for gates that can be used for 
statistical analysis. 

Table 2.1. Estimation errors compared to Monte Carlo simulation with 1,000,000 
runs [79]. 

Confidence point 

1% 

10% 

25% 

50% 

75% 

90% 

Linear 

1.43% 

4.63% 

5.76% 

6.24% 

5.77% 

4.53% 

Monte Carlo(104 runs) 

0.34% 

0.64% 

0.47% 

0.32% 

0.25% 

0.66% 

APEX 

0.04% 

0.01% 

0.03% 

0.02% 

0.02% 

0.03% 

99% 0.18% 0.78% 0.09% 
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Delay models for gates are generally based on table lookup or analytical 
equations. In a deterministic scenario, lookup table based gate delay models 
are generally used where transition time at the input and the output load­
ing are used as indices to find the delay. The delay values for intermediate 
transition times and output loads are obtained using linear interpolation. The 
technique developed in [102] to develop statistical delay models uses both 
linear response surfaces and table-lookup based models to capture statistical 
variations in delay. 

The approach proposed in [102] notes that it is difficult to develop response 
surfaces for modeling delay with varying transition times and output loads 
over a large range. A standard lookup table based approach is used to capture 
this variation in delay. However, each entry in the lookup table is modeled as 
a response surface of the form 

d = d0 + cxTX (2.115) 

where X = (#o, x i , . . . , x n ) T is the vector of process parameters of interest and 
(do, oc)T — (do, ao, a i , . . . , « n ) T is the vector obtained using response surface 
analysis, where the required data can be generated using SPICE simulations. 
This captures the dependence of delay on the variation in process parameters. 
If a straightforward approach is used, we will need np+ 1 parameters for each 
response surface in a p-transistor discharging/charging path while considering 
variations in n process parameters. The increase in the number of coefficients 
of the response surface results in an increase in characterization time needed to 
develop RSM models. Additionally, the time required for delay calculation also 
increases. The increase in number of variables results from intra-die variations 
that cause the individual transistors to vary independently. First, we will 
discuss the approach to model the delay of an inverter. 

Let us write each process parameter as 

Xi = [Xi + A(Xi)intra + A(Xi)inter (2.116) 

where [i{ is the nominal value of the i-th process parameter x^ A(xi)intra is 
the intra-die component of variation and A(xi)inter is the inter-die component 
of variation which is the same for all transistors on a die. Pelgrom's model 
for intra-die variations shows that this component of variation is independent 
of the location of the transistors and their separation, and therefore the RV 
associated with the random component of variation for each of the transistors 
can be treated as statistically independent. In addition, both components of 
variations can be modeled as Gaussian RVs. 

Now let us consider the simplified case of the delay of a single inverter, 
where the delay of the gate is determined by a single NMOS or PMOS tran­
sistor depending on the direction of the transition. In this case, based on 
(2.115)-(2.116) we can write the delay of the inverter as 
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intra inter ) 

= d0 + OCT (/LI + X i n t r a + X i n t e r ) (2.117) 

where Xi n t e r and X i n t r a are the vector of the inter- and intra-die variations 
of the transistors. Note that even though the random variables A(xi)intra for 
different transistors are independent for a particular i, the RV associated with 
a particular transistor for different z's may be correlated. Similarly the RVs 
that make up the vector X i n t r a may be correlated. Principal components prove 
useful here again, and the correlated set of random variables are transformed 
to a set of uncorrelated RVs using (2.52): 

v . _ r> V2 A Try 
-*»-inter — M-Js i l g •*• g 
X i n t r a - D ^ A f 7 ^ . (2.118) 

Note that the mean vector of the RVs in the above equations are zero and are 
already accounted for by the /i^5, and we can rewrite (2.117) as 

d = (do + J2 a ^ ) + a T r ) g 1 / 2 A g T p g + «TDi1/2AiTPi 

= dnom + a T D g
1 / 2 A g

T P g + ^ D ^ ^ A ^ P i (2.119) 

where dnom is the nominal delay of the inverter when there are no variations 
in process parameters, and each component of P g and P i are independent 
Gaussian RVs with unit variance and zero mean. It is important to note that 
the random vector of P g is common to all transistors in the design, and 
therefore the dependence of do on this random vector needs to be maintained. 
This allows a statistical timing analyzer to consider the correlation in delays 
of different gates. On the other hand the RVs in the random vector P i are 
independent across transistors and can be lumped together (being a sum of 
independent Gaussian RVs) into another Gaussian RV, which results in the 
following equation for the delay of the inverter 

d = dnom + r g
T P g + ripi (2.120) 

where 

dnom = d0 + a T /x 

Tl 

Pj~ . /V(0 , l ) . 

J Z K D l V 2 A l T ) J (2.121) 
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The above expression captures the impact of both intra-die and inter-
die variations on delay. The coefficients in the delay expression can be easily 
obtained using (2.121) from the simple RSM model (2.115) and the charac­
teristics of process variations such as standard deviation and the correlation 
coefficients. 

C o m p l e x G a t e s 

Now let us the consider the case where we have several transistors involved 
simultaneously in charging or discharging the output capacitance. In this case, 
we require a term for the variation for each transistor in the path. The RSM 
for this gate is generated while assuming that all transistors are perfectly 
correlated, which again gives us an expression of the form (2.115). 

Now let us rewrite (2.117) for a complex gate, while considering all com­
ponents of variation as 

m 

d = d0 + Yl (#< T (Mk + X i n t e r ,k + X i n t r a , k ) ) (2.122) 

where we have m transistors on the charging/discharging path, and the vec­
tor /3k's are coefficients that express the dependence of delay on the process 
parameters related to different transistors. Since Xin t e r ,k is the same for all 
transistors, we can express (2.122) as 

/ m \ / m \ ra 

d = I d0 + £ AeTMk ) + [J2^T) X i n t e r + 1 3 Ac T X i n t ra ,k . (2.123) 
V fc=l / \k=l J k=l 

Here we have assumed that the original RSM (2.115) for complex gates is 
generated while assuming that all transistors are perfectly correlated, which 
implies 

m 

ocT = Y.^T ( 2-1 2 4) 
fc=l 

using which, we can rewrite (2.123) as 

n m 

d = dnom + T g
T P g + Y^ ^2 T3kPjk< (2.125) 

3 = 1 fc=l 

In this equation, P g is the vector of principal components of Xinter 
(2.118), 

r g are as expressed in (2.121), pf
jks are the principal components 

of the Xintra,k's that represent the intra-die variation in the j t h principal 
component of intra-die variation for transistor fc, and r'^s are the coefficients 
for each of the principal components of intra-die variation for each transistor. 
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On the other hand, the coefficients for p'-ks cannot be obtained from the 
simple RSM that we have, since we do not have any information in our RSM 
regarding the dependence of delay on the parameters associated with a partic­
ular transistor. To simplify the problem, [102] assumes that given that varia­
tions are small, the variation in delay resulting from variations in a particular 
process parameter for different transistors can be assumed to be linearly re­
lated. This results in the assumption that 

Tjk = TJO - sk (2.126) 

where s*. determines the relative sensitivity of delay to variation in different 
transistors. Since the p'-ks are independent N(0,1) variables, we can rewrite 
(2.125) using (2.126) as 

n m 

d = dnom + Tg
TPg + 22 ]C TJOskPjk 

= dnom + V " P K + J £ *jb £ TjoPj (2.127) 
\ fc=i i=i 

where PjS are iV(0,1) RVs. If all transistors are assumed to be perfectly cor­
related we find 

npi= (X>J E ^ i (2-128) 

where 77 and pi are as defined in (2.121). Using the above equation we can 
rewrite (2.127) as 

vSLi 2 
> 8

r P 8 + \ e = 1 ° f c ^ . (2.129) 

The above equation clearly shows the reduction in the impact of intra-die 
variation on gate delay compared to the impact of inter-die variations. This is 
due to the well known averaging effect that reduces the variance of a sum of 
uncorrelated RVs compared to correlated RVs. The model above requires the 
computation of the sensitivity constants sks beyond the computation of the 
RSM itself. The approaches used to estimate the sensitivity values present a 
direct trade-off in terms of accuracy and runtime. For example, estimation of 
the sensitivity values at typical values of transition time and load capacitance 
compared to the case where the sensitivity is evaluated for each transition 
time and load capacitance incurs an error of 0.76% in estimated delay for a 
4-input NAND gate. Assuming that all sensitivity values are equal results in 
an error of 5.4%. However, if intra-die variability is neglected (all transistors 
are assumed to perfectly correlated), results in an overestimation in delay of 
89%. Similar results for a multi-stage inverter chain are shown in Fig. 2.17. 
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Fig. 2.17. Significant error in delay modeling occurs if intra-die variations are 
assumed to be perfectly correlated. Delay modeling when sensitivity calculation is 
performed (a) for all conditions (b) only for nominal conditions of load and input 
transition times. Results shown are for an inverter chain [102]. (©2005 IEEE) 

2.3.4 Interconnect Delay Models 

Due to technology scaling, the contribution of interconnect delay to the over­
all delay of a design has become significant. More interestingly, worst-case 
variations in interconnects often cannot be captured using worst-case corner 
models for interconnects [83] due to their context dependent nature. Signifi­
cant work has therefore been done to capture the impact of interconnect delay 
considering statistical back-end variations. In this section, we discuss an an­
alytical model to estimate the mean and variance of delay and an interval 
arithmetic based approach to estimate bounds on interconnect performance. 
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Statistical Delay Metrics 

Delay metrics have been used in interconnect analysis to predict 50% delay 
and slew rates in a computationally efficient manner. Closed-form metrics are 
especially attractive since they reduce the computational overhead further, 
and are extensively used in incremental timing analysis and optimization en­
gines. Most of the metrics, such as Elmore [45], D2M [10], S2M [8], Lognormal 
[11] (which are closed form), and h-gamma [80] and Weibull [82] (which are ta­
ble lookup), are based on circuit moments. Circuit moments can be efficiently 
calculated using techniques such as path-tracing as employed in Rapid Inter­
connect Circuit Evaluator (RICE) [119]. Additionally, most of the closed-form 
metrics are based on the first few moments of the circuits. Delay estimation 
using a large number of moments are generally not closed-form and require 
nonlinear iterations, which can easily dominate the runtime required for delay 
estimation [112]. 

We now consider an RC interconnect, whose circuit moments are a func­
tion of the resistances and capacitances of its branches. These resistive and 
capacitive elements are a function of the interconnect geometry which is influ­
enced by process variations. Based on the observation that process variations 
result in variations in interconnect delay which are normally distributed, [9] 
proposed to capture the effect of process variations on the resistive and ca­
pacitive elements using a linear model 

R = Rnom + O: P 

C = Cnom+y^^P (2.130) 

where P is a p-dimensional vector of the variations in the process parame­
ters of interest, and the vectors a and /3 are weighting coefficients. In par­
ticular, considering variations in the width and thickness of the interconnect, 
which impacts both the resistive and capacitive components, and variations in 
inter-layer dielectric (ILD) thickness, which causes variations in the capacitive 
elements, we can write 

R = Rnom + OLiAW -h a 2 A T 

C = Cnom + Pl^W + /92AT -f ftAi/ (2.131) 

where Rnom, and Cnom are the nominal values of the resistance R and capac­
itance C respectively. AW and AT represent the variation in interconnect 
width and thickness respectively, and AH represents the variation in ILD 
thickness. The coefficients a's and P's can be estimated using SPICE simu­
lation or by using empirical expressions such as those developed in [89] that 
relate the resistance (R), capacitance to ground (Cgnd) and couphng capaci­
tance {Ceo) to the geometrical parameters of an interconnect. For the simple 
case where the wire of interest has a wire on either side (as shown in Fig. 2.18) 
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Fig. 2.18. Cross-section of a generic interconnect structure. 
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where W is the interconnect width, T is the interconnect thickness, H is 
the ILD thickness and S is the spacing between interconnects. Taking par­
tial derivatives of the above equations with respect to the process parameter 
directly provides the values for the a's and P's to be used in (2.131). 

The next step is to estimate the impact of variation in R and C on the 
circuit moments. The path tracing technique, which is used for moment cal­
culation of RC trees, relates the p-th order moment of a node i to the circuit 
elements and the lower order moments at node i as 

m l / , -Rik Ck rUp- (2.133) 
all nodes k 

where Ck is the capacitance at node k and Rik is the resistance of the in­
tersection of paths from the source node to nodes i and k. Note that since 
we are concerned with tree-like structures when dealing with interconnects, 
these resistive paths are unique. Let us consider the specific circuit shown in 
Fig. 2.19. The first order moment at node 3 can be expressed as 

ml -Ri{Ci + C2 + C3) — R^Cs. (2.134) 
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R3 (3) 

C2 

Fig. 2.19. Example RC circuit for variational analysis. 

Introducing the equations for the resistive and capacitive terms in terms of 
variations in process parameters (2.130), we can rewrite (2.134) as 

mT + V i ^ P + P ^ V 2 P (2.135) n{nom) 

where P is the p-dimensional vector of the variation in process parameter, V i 
is the p-dimensional vector of coefficients and V2 is a pxp matrix that captures 
the second order terms of the variations in the moment mf. The entries of V i 
and V2 can be expressed in terms of the parameters of the expressions of the 
form (2.130) for the resistive and capacitive elements in (2,134). Note that 
the number of higher-order terms increase with the order of the moment and 
increases the complexity in estimating the moments. Based on experimental 
measurements to be discussed later, [9] makes the assumption that neglect­
ing the higher-order terms in (2.135) does not have a significant impact on 
the delay estimated using the delay metrics. This assumption simplifies the 
problem and allows the i-th moment of the j-th node to be written in the 
form 

^i = ^iinom) + Ai P . (2.136) 

Having estimated the moments of the circuit in terms of the circuit and 
process variation parameters, the next step is to estimate the impact on delay. 
If the scaled Elmore delay model is used, which uses only the first moment, 
we can estimate the delay at the node j by 

dEln {\n2)m{ = {\n2){m{ (nom) + A i ^ P ) . (2.137) 

Note that (2.137) represents the delay as a linear combination of the variations 
in process parameters. If the original parameters are modeled as independent 
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Fig. 2.20. Comparison of delay distribution obtained from Monte Carlo simulations 
and the statistical D2M metric [91. 

Gaussian RVs, then the delay of the interconnect also becomes Gaussian. Even 
if the original process parameters are modeled as coming from a correlated 
multi-normal distribution, they can be easily mapped to a set of independent 
RVs using principal component analysis. 

Now let us consider delay metrics, such as D2M that use higher order 
moments to provide better accuracy than the scaled Elmore delay model. The 
D2M delay metric is expressed as 

dD2M = (In 2) K) 
J \ 2 

= (ln2) 
(mi(nom) + A i ^ P ) 

\M 2(nom) + A2^P 
(2.138) 

Since the above expression is nonlinear in terms of the moments, it results 
in a non-normal distribution for delay. The above expression can be again 
linearized using Taylor's expansion while retaining the first order terms, and 
a Gaussian delay distribution is obtained. 

The experimental results shown in [9] show that the linearity assumptions 
used in simplifying the variational delay metrics results in insignificant error. 
As shown in Fig. 2.20 the delay distribution of a simple line with nominal 
metal thickness of 600 nm and ILD thickness of 450 nm for a 30% 3a vari­
ation in all dimensions obtained using Monte Carlo simulations. The figure 
clearly shows that the distribution remains Gaussian and corroborates the 
assumptions made in developing the variational delay metrics. 
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Fig. 2.21. Error in the statistical D2M model as a function of the magnitude of 
variation in physical dimensions [9]. 

The impact of increasing variability on the linearity assumption is con­
sidered in Fig. 2.21. The figure shows that increasing variability causes the 
error incurred by the analytical D2M delay metric to increase as expected. 
However, the errors are shown to be smaller than 10% even for significant 
process variations of as much as 30%. 

Comparing the mean and standard deviations in delay obtained using D2M 
discussed above and those obtained using Monte Carlo simulations for a set 
of randomly generated test cases, the error in mean and standard deviation is 
found to be 1.2% and 3.8% respectively. The metal line widths were varied be­
tween 400 nm and 800 nm, and the ILD thickness was varied between 250 and 
to 550 nm to generate 2900 random test cases. These results show the valid­
ity of the assumptions made in developing the linear model. The approach is 
fairly simple and can also be easily extended to consider the distribution of 
slews using the S2M metric [8], and ramp inputs using the PERI metric [71]. 

Est imat ing B o u n d s on Interconnect Timing 

The technique of estimating bounds on interconnect delay in the presence of 
variations was first proposed by [59]. The bounds, which were expressed as 
intervals or ranges, were estimated using the Rubenstein-Penfield model [122] 
which provided bounds on the Elmore delay. 

The central idea of the approach in [59] is to use known bounds of the 
resistive and capacitive elements to estimate a bound on the delay of the in­
terconnect. To achieve this, arithmetic operators (-I-, —, x, / ) were replaced by 
interval arithmetic operators (©,0 , (8 ' ,0) that act on ranges of real numbers 
instead of real numbers, and are expressed as 
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[^11, ^12] ® [2:21, X2^ = [xu + X21, a;i2 + X22] 

[^11, ^12] e [2:21, 2:22] = [a îi - 0:22, 3̂ 12 - X21] 

[a:̂ ii, 2:12] (g) [x2i, X22] = [min(a: 110:21, xnX22, 2:120:21, 0:12X22), (2.139) 

max(xiio:2i, 0:110:22, 2:120:21, 0:120:22)] 

[2:11, 0:12] 0 [0:21, 0:221 = [2:11, 0:12] 0 [1/0:21, 1/0:22] if 0 ^ [0:21, 0:22]. 

If the intervals are degenerate, i.e., the lower and upper bound of the in­
terval are the same, then all interval arithmetic operators behave identically 
to their arithmetic counterpart. Hence, in the case where no variability is 
assumed, both forms of arithmetic provide the same result. Additionally it 
can be shown that the result obtained using the arithmetic expression and 
any of the real numbers from the ranges provided to the interval arithmetic 
expression is subsumed in the final range provided by the interval arithmetic 
expression [59]. Though the bounds provided by interval arithmetic are there­
fore correct, they are extremely loose. One of the main reasons for this stems 
from the fact that interval arithmetic does not have a multiplicative inverse 
and therefore instead of having 

X/X = [xii, 0:12] 0 [0:11, 0:12] = [1, 1] (2.140) 

where X represents some variable that is known to have a given range, we 
obtain 

[xn, 0:12] 0 [0:11, 0:12] = [0:11/0:12, 0:12/0:11] (2.141) 

for positive intervals. One of the improvements suggested in [59] was to min­
imize the use of the 0 operator by performing Taylor series expansion of the 
dividing terms. The problem can also be considered to arise from the lack of 
information regarding the correlation between operands of the interval arith­
metic operators, and results in overestimation of the ranges whenever ranges 
of correlated variables are operated upon using interval arithmetic. As an 
example, consider the case where we subtract two perfectly correlated and 
identical ranges. If this interval arithmetic were cognizant of their correlation 
we will obtain a degenerate range as a result, which is [0, 0]. In reality we 
arrive at [a — 6, b — a] where [a, b] is the range of the initial variable. 

This problem was considered in [86], which used an improvement of inter­
val arithmetic known as affine arithmetic [134]. The basic idea of modeling 
correlations in intervals has some similarity to the idea of principal compo­
nents analysis used to analyze correlated RVs. Any given range of real numbers 
is expressed as an affine sum expressed as 

n 

X = [0:11. X12] = ao-\-Y^aiei (2.142) 
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where e[s are independent ranges from -1 to + 1 , and the a[s are real numbers. 
We will call this form of expressing the range as the canonical form. Let us 
now redefine the interval arithmetic operators as affine arithmetic operators 
for addition and subtraction for two affine arithmetic variables which are 
expressed as 

i=l 
n 

^2 = / ^ o 4 - ^ A e i (2.143) 

and define the 0 and 0 as 

n 

^ 1 + ^ 2 = (ao -f /^o) + X ! [o^i + A) ^i 
1=1 

n 

Ai-A2 = (ao - /?o) + 5 Z (^^ - P^) ^^ (2.144) 
i = l 

which are again in canonical form. The advantage of defining the result of 
operators in canonical form is that the operators can then be recursively 
applied, and any expression that can be written in terms of these operators 
can be easily evaluated. 

Let us consider the eflFect of redefining the operators on the subtraction of 
perfectly correlated identical ranges as described above. Now the ranges are 
expressed as 

n 

X = Y = aQ^Y^aiei (2.145) 

and using (2,144) we obtain X — y = 0 as desired. Let us now extend this 
idea for the operator 0 applied to the variables defined in (2.143) 

Ai®A2= [ao + Y^aieA f/?o + X ] f t e i j 

n / '̂  \ / ^ \ 

= ao^o + X ] ( a o f t +/?oQ^i)ei 4- X^a^e^ X ^ A ^ i 1(2.146) 
i=\ \i=l J \ i= l / 

and we find a problem that the final result is not in canonical form. As noted 
above the results need to be in canonical form to be able to make any progress 
using this idea. As shown in [134] we can tradeoff" the tightness of the bounds 
to achieve this goal. We rewrite the expression in (2.146) by approximating 
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the problematic last term in terms of an additional independent range, which 
effectively adds a component to the e^s which is independent of the other 
e'^s. The coefficient of this additional term is simply approximated as the 
largest possible range that the last term can contribute, and is mathematically 
expressed as 

f2^i'^] ( E A « H = (EI'^^I) (E I^ ' I ) "̂+1- (2.147) 

Note that we have lost all correlation information of the last term in (2.146) 
when we use this approximation, which as shown above results in overestima-
tion of the range of bounds. Details regarding the approximation of operations 
such as division, square-root and exponentials in canonical form can be found 
in [134]. To map any particular real number algorithm to a interval algorithm, 
we need to define one additional operation of comparison of real numbers for 
intervals. Comparison of intervals is not well defined when the intervals inter­
sect and [86] notes that redefining this comparison to be the comparison of 
midpoints of the respective ranges results in an added advantage that using 
degenerate ranges provides the nominal case results. Using these basic oper­
ations any algorithm that uses only these basic operators can be mapped to 
a interval based algorithm. In particular, for interconnect analysis the mo­
ment generation techniques (2.133) and delay metrics (2.137)-(2.138) can be 
directly mapped to interval based expressions. 

2.3.5 Reduced-Order Model ing Techniques 

In deep-submicron (DSM) technologies a larger number of moments are re­
quired to provide a reasonable approximation to the actual response. Asymp­
totic waveform evaluation (AWE) [113] iteratively estimates the first 2M mo­
ments of the circuit in the Laplace domain, where M is much less than the 
actual order of the circuit. These moments are then used to generate an M-
pole approximation of the transfer function, which can be directly mapped to 
the time domain response. A number of reduced-order modeling approaches 
have been proposed in the context of process variations. In [84] the congruence 
transformation-based PACT and PRIMA techniques were combined with ma­
trix perturbation analysis, [60] used a balanced truncation realization based 
interconnect analysis, while [86] extended AWE and PRIMA to consider vari­
ations using interval arithmetic techniques. However, all these methods are 
unable to preserve passivity, and therefore time-domain simulations in com­
bination with nonlinear devices can lead to numerical instability. A fast tran­
sistor level simulator (TETA) was proposed in [41] and was carefully coupled 
with variational interconnect models [84] in [2] to resolve passivity issues. 

We will discuss the basic ideas used in reduced-order modeling techniques 
such as AWE, PRIMA and PACT and then discuss the proposed techniques 
to extend them to the case with process variations. 
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A W E 

AWE is a Pade approximation based on using the first 2M moments of the 
circuit to develop an approximation for the transfer function of the network. 
These moments can be efficiently estimated using path-tracing (2.134) or using 
modified nodal analysis and provide a computationally efficient approach to 
approximate the characteristics of the network. Since any linear RLC circuit 
with a single input and output can be described using Modified Nodal Analysis 
(MNA) as 

(G + 5 C ) X = b (2.148) 

y = c ^ X (2.149) 

where G is the conductance matrix, C is the susceptance matrix, b is the 
excitation vector, X is the state-vector and c is the vector relating the state 
variables to the output variable y. The moments of the circuit are related to 
the state variables X as 

X(5) = xo + x i 5 + X252 + • • • (2.150) 

TUi = c^Xi (2.151) 

where rrii is the z-th order moment of the circuit, and defines the transfer 
function as 

H{s) = mo + mis + m2S^ + • • • (2.152) 

Introducing (2.150) into (2.148) and comparing terms we note that the mo­
ments of the circuit can be recursively approximated as 

Gxo = b 

Gxi = - C x i _ i (2.153) 

and (2.151). Note that these equations are not solved by explicitly inverting 
the matrix, but by LU factorization which can be very efficient if the involved 
matrices are sparse, which is generally the case when dealing with RC inter­
connects (however, this may not hold for RLC circuits). Having estimated 
the moments, the next step is to develop an q-th order approximation for the 
circuit that has the form 

His) = ^o + ^^^ + ' - ' + V ^ - " - ^ (2.154) 

where H is an approximation of H. AWE computes the coefficients of this 
approximation by matching the estimated moments (using (2.153)) to the mo­
ments of the q-th order approximation. Equating the expressions in (2.152) 
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and (2,154) and matching the coefficients of s results in a set of linear equa­
tions for the coefficients of the denominator and the numerator of the transfer 
function, which can be expressed as 

bo = mo 

bi = mi-\-moai (2.155) 

62 = m2 + miai -h moa2 

bq-i = mq-i H- mq-2ai H h moaq-i 

for the first q powers of s. The remaining equations that result from matching 
coefficients of 5^ to s'^^~^ yield 

^ g + ^ g - i ^ i + • • • + TTioaq = 0 

mq^i -f mqai -\ -I- mittq = 0 (2.156) 

m2q-l + m2q-2Cil H h rUq-iaq = 0. 

Equations (2.156) only involve the coefficients of the denominator of the 
approximate transfer function, which can now be solved as a set of simul­
taneous linear equations. The poles can then be found by finding the roots 
of the polynomial expression, that makes up the denominator of the trans­
fer function. The coefficients of the numerator are found using an additional 
matrix-vector multiplication and the residues of the poles are found using a 
solution of a matrix equation. 

Though AWE is computationally efficient, it is found to suffer from prob­
lems such as ill conditioning of higher moments and instability. Ill conditioning 
of AWE follows from (2.153) which shows that the moments of a circuit are 
approximated using a sequence of the form 

R , A R , . . . , A ^ - ^ R , . . . (2.157) 

where R = G~"^b and A = — G~^C. Since the above sequence converges 
rapidly to an eigenvector of A, a higher order AWE approximation does not 
add more information or accuracy to the reduced order model. Thus ill con­
ditioning of higher moments occurs when moments beyond some high order 
are used to estimate the poles. These moments might not contain additional 
useful information and may affect AWE such that it starts producing poles in 
the right-half 5-plane. This results in an unstable approximation for inherently 
stable systems. Although asymptotic stability can be guaranteed by dropping 
unstable poles and readjusting the residues to improve accuracy, the reduced 
order models provided by AWE cannot be guaranteed to be passive. Passivity 
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ensures that when the system is connected to nonlinear devices, the simulation 
results in stable output responses. Projectional methods, such as Pole Analy­
sis Via Congruence Transformation (PACT) [72] and Passive Reduced-order 
Interconnect Macromodeling Algorithm (PRIMA) [101], were later proposed 
that are numerically stable and guaranteed to produce passive reduced order 
models. We will now briefly describe PRIMA and PACT, which wiU also be 
extended to perform interconnect analysis while considering variations. 

P R I M A 

Consider the following set of MNA equations describing an A^-port linear 
circuit in terms of n x n matrices G and C, representing the conductance and 
susceptance matrix respectively, as 

dx 
G x + C — = Bui„(t) uout(t) = L ^ x (2.158) 

at 

where x represents the variables of MNA, Uin and Uout represent the vector 
of input excitations and outputs, respectively, which are related to the MNA 
variables using the matrices B and L. A set of sufficient conditions for passivity 
is that the matrices G and C are positive-definite and that B = L. If we 
are only interested in the voltage-current characteristics of the interconnect 
block, then using a Z-parameter formulation we have B=:L. Also, the matrices 
of this system are generated using electromagnetic analysis and are typically 
positive-definite, implying that our system is passive. Defining R = G~-^B 
and A = —G~"^C, we can rewrite (2.158) as 

dx 
x = A — - f R u i n ( t ) (2.159) 

which results in the following representation for the transfer function 

where adj and det refer to the adjoint and determinant of the matrix. Note 
that the denominator in the above equation is similar to the characteristic 
equation of matrix A, and has roots that are the reciprocal of the eigenvalues 
of A. Therefore the poles of the system can be approximated by finding the 
poles of matrix A. 

PRIMA is based on projecting the nxn matrices, used to define MNA, to a 
smaller subspace (V) of dimension q resulting in a set of matrices of dimension 
q X q. This is achieved either through orthogonal projection^ where the error 
vector is required to be orthogonal to subspace V, or oblique projection, where 
an additional q dimensional subspace (U) is defined (distinct from V) and the 
error vector is required to be orthogonal to the subspace U. PRIMA uses 
orthogonal projection, which results in a congruence transformation and is 
known to preserve positive-definiteness. This transformation results in 
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dx 
Vq^GVqXq + V q ^ C V q ^ = V ^ B u n Xt) U o u t W - B ^ V q X q (2.161) 

where Vq is a n x g orthogonal matrix with the column vectors being the 
basis of subspace V on which the set of equations are projected. The subspace 
V is generally defined to be the block Krylov subspace, which is the span of 
the low order block moments 

colsp Vq = Kr ( A , R , L - | J ) - span(R, A R , . . . , A^-^/^J-^R) (2.162) 

where we have assumed that q is chosen such that [q/N\ is an integer. This 
matrix can be generated using the block Arnoldi algorithm which uses QR 
factorization to generate basis vectors for the subspace V. The poles can 
then be estimated by estimating the eigenvalues as in (2.160). Note that the 
congruence transformation is applied to (2.158) and not to (2.159). Therefore 
if the matrices in (2.159) define a passive system, then (2.161) also satisfies 
conditions of passivity. 

P A C T 

PACT is based on two congruence transformations that are used to reduce the 
size of the admittance matrix of RC networks by dropping unwanted poles, 
while guaranteeing stability and passivity. We will discuss a slightly diff'erent 
form of PACT presented in [84]. PACT uses the admittance formulation for 
the state equations and partitions the conductance and susceptance matrices 
as 

G = 

and rewrites (2.158) as 

G p G c ^ 

G c G I 

C p C c 

C c C I 

T-| 
(2.163) 

G p G c ^ ^ 

G c G I 
+ 5 1) X p 

XI 
= 

b p 

0 
(2.164) 

"Cp C c ' 

C c C I 

where x p and xi represent the m port node voltages and the n internal node 
voltages, respectively. The matrices G p and C p are referred to as port ma­
trices, G I and C i are referred to as internal matrices and G i and Ci are 
referred to as connection matrices. The right hand side of the above equation 
defines the currents injected into the system and is zero for the entries corre­
sponding to internal nodes. The port and internal matrices can be shown to 
be symmetric, and if the system is known to have a unique DC solution then 
the connection conductance matrix can be shown to be positive semi-definite. 
Since Y(5)xp = b p , using (2.158) we can write 
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Y{s) - G p + sCp - ( G c + 5 C c r ( G i -f- 5 C I ) - H G C + ^ C c ) . (2.165) 

The first congruence transformation is used to match the DC gain of the 
system, so that the DC behavior of the system does not change when unwanted 
poles are dropped from the system. This transformation is based on the matrix 
X, which can be written as 

X : 
I 0 

- G i - i G c I 
(2.166) 

which results in a new conductance matrix G ' 
tance matrix C ' = X-^CX, of the form 

I 01 

V I . 

= X-^GX and a new suscep-

G' = 
G i G c ^ V 0 

0 G i 

G'p 0 

(2.167) 

0 Gi 

C p + V ^ C c + C c ^ V + V ^ C i V ( C c + C i V ) ^ 

C c + C i V Ci 

C p C ^ 

which results in the following expression for Y(s) 

Y{s) = Gi> 4- sCp - s^C'^^iGi + sGi)-^G'^. 

The second congruent transformation in PACT is developed based on the 
following result from matrix theory. 

T h e o r e m 2 .3 . [84]. Let A and B be two symmetric matrices and let B be 
positive-definite, then there exists a matrix U such that U-^BU = I and 
IJ-^AU = A, where A is a real diagonal matrix. 

(2.168) 

Based on the above theorem we can define U such that 

U ^ G i U = I U ^ C i U = A 

and rewrite (2.168) as 

Y(5) = G ; , + sCp - 52C'c^U^(I + s A ) - ^ U C ' c . 

Note that matrix U has a column space that spans the generalized eigenspace 
of (Gi , C i ) . Now PACT constructs a reduced order model 

(2.169) 

(2.170) 

Y{s) = G ^ + sG'p - s^C'^^lj/{I + 5Ar)~^UC'c (2.171) 
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by considering only a few of the eigenvectors in U that correspond to dominant 
generalized eigenvalues. This desired matrices Ur and Ar can be efficiently 
generated using Cholesky decomposition and Lanczos method [55]. 

Details regarding AWE and other passive reduced order modeling tech­
niques can be found in [27]. We will discuss two techniques that have been 
proposed to extend these reduced-order modeling techniques to consider vari­
ations. 

Interval Analys is 

In this section we will use interval arithmetic based techniques developed 
for interconnect delay analysis in the previous section to extend AWE and 
PRIMA. Additionally the e^s as defined in (2.142) are now unit variance 
zero mean normal RVs, in keeping with canonical models used in statistical 
timing analysis. As we will see in the next chapter, this formulation to capture 
sources of variations is exactly the same as principal component analysis, 
which simplifies the steps involved in considering correlation among diff'erent 
RVs. We can use the resistive and capacitive elements expressions of (2.131). 
Note that though we have written these variables we will interpret them as 
intervals and use interval arithmetic based operations. Initial ranges for the 
e's can be chosen such that they capture most of the region of the Gaussian 
distribution. 

To use interval arithmetic for AWE or PRIMA, we only need to define 
equivalent operations in interval arithmetic for the operations used in AWE 
or PRIMA. Let us first consider AWE and outline the basic steps. To develop 
an interval arithmetic based AWE, the LU decomposition steps are replaced by 
an interval LU solve and the roots of the polynomial can be estimated using 
Laguerre^s Method [114]. This approach does not involve steps that require 
taking derivatives and can be implemented using simple interval operations, 
absolute value and square-root operations. 

The key steps required to develop an interval arithmetic based PRIMA 
algorithm are basic matrix operations, orthogonalization, LU decomposition 
(used in block Arnoldi) and eigen-decomposition. Eigen-decomposition is per­
formed in [86] using a QR decomposition followed by an inverse iteration, 
which can be performed using interval operations already defined. All of the 
remaining operations can also be performed using the interval operations pre­
viously defined. 

The final poles and residues are then statistically sampled to generate the 
distribution of delay, by computing the 50% delay for each sample. Note that 
the final sampling is done in a much lower order space, and better accuracy 
can be obtained with fewer samples. An implementation of this approach [86] 
showed an error in mean and standard deviation of 4 .1% and 5.6% for four 
designs compared to Monte Carlo based AWE simulation. Similar results for 
PRIMA showed errors of 4.9% and 5.9% for mean and standard deviation, 
respectively. Figure 2.22 demonstrates the pdf obtained using intervals and 
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Fig. 2.22. Comparison of delay distribution obtained from Monte Carlo simulations 
and interval arithmetic based (a) AWE, (b) PRIMA [86]. 

that obtained using Monte Carlo simulation. The results are for 5% global 
variation, 30% local variation and 16 initial uncertainity symbols, and show-
good accuracy. 



2.3 Performance Modeling 75 

P e r t u r b a t i o n Ana lys i s 

The key while considering variations in interconnects is to estimate the re­
sulting fluctuations in the positions of the poles of the system, which impact 
critical circuit characteristics. To understand the impact of these [84] uses key 
ideas from matrix perturbation theory to assess the impact of these variations. 

Let us consider PACT, which involves two congruence transformations, 
and define the same operations in a situation where we consider variations 
in process parameters. First, we assume that variations in process parame­
ters are sufficiently small enough to allow us to express the susceptance and 
conductance matrix as 

G = Go + AGiit ;! -h AG2tt^2 

C = Co + ACiWi -h AC2i(;2 (2.172) 

where we have considered two sources of variations Wi and W2' Again, as in 
PACT, we partition these matrices such that 

G p = Gpo + AGpii(; i -I- AGp2t6'2 

Gi = Gio + AGii^x^i -}- AGi2'^2 

G c = G e o + A G c i t ^ i -f- A G c 2 ^ 2 (2.173) 

C p = Cpo + ACpii i ; ! -f- ACp2tt^2 

Ci = Cio + ACii^/;i -1- ACi2i^2 

G c = Geo + AGci^^i + AGc2'i^2 

The crucial step is determining V = G i ~ ^ G c , when G i and G c are 
influenced by variations. In [84], V is obtained using Taylor's expansions while 
retaining terms up to second order 

V ?̂  Vo + AViit( ; i -f A'V2iwl + AVi2tt^2 + AV22'i^2 (2.174) 

where the parameters in the above equation are obtained by evaluating V for 
a set of sample points. Note that V can also be obtained at these points V 
from the DC solution of the circuit. Setting the susceptance matrix in (2.164) 
to zero, the port and internal voltages are related as: 

G c x p -f G i x i - 0 

XI = - G r ^ G c X p - V x p . (2.175) 

Thus, the columns of V can be obtained by setting one of the port voltages 
to unity and grounding all the other nodes. Using (2.174) we can express the 
matrices corresponding to (2.167) as 
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G ^ - G p + G c ^ V 

= (Gpo + AGpii t ; ! + AGp2'w;2) + (Geo + AGci-w;! + AGc2^t;2)^ 

•(Vo + AViiwi + AV2iit;f + AVi2t^2 + AV22^t;i) (2.176) 

retaining only terms up to second order we obtain 

G p ^ Gpo + AGpi i t t ; i + AGp2i t^ i + AGpi2tt;2 + AGp22t^2 (2.177) 

where 

Gpo = Gpo + G e o Vo 

A G p i i = A G p i H- A G e i ^ V o + G e o ^ A V n 

A G p 2 1 - A G e o ^ A V 2 i + A G e i ^ A V n 

A G p l 2 - AGp2 + A G e 2 ^ V o + G e o ^ A V i 2 

A G p 2 2 = AGeo'^AV22 + A G c 2 ^ A V i 2 . 

(2.178) 

Similar expressions can be derived for the partitions of C p with many more 
terms than the expressions above. Now let us consider the second congruence 
transformation. However, before we begin the analysis we need a few results 
from matrix perturbation theory [55] 

Theorem 2.4. [84]. Let A be a symmetric matrix with eigenvalues Ai > A2 > 
• • • > Xn, and let P be a symmetric perturbation matrix with eigenvalues 
Pi ^ P2 ^ ''' ^ Pn- Then Xi, the i—th largest eigenvalue 0 / A + P 

Ai e [Xi + p n , Ai + p i ] . 

Theorem 2.5. [84]. Let A and B be two symmetric matrices. Additionally, 
let B be positive-definite, and define matrices X i and X2 such that 

X i 

X2. 

X i 

X2 

A [ X i X2] 

B [Xi X2] = 

"Ai 

. 0 

[Bi 
[ 0 

0 " 
A 2 . 

0 1 

B2J 
where A i , Bi^ A2 and B2 are diagonal matrices. Let P i and P2 be symmet­
ric matrices that represent the perturbations in A and B , respectively. If the 
distance between eigenvalue clusters o / ( A i , B i ) and (A2, B2) is large, and 
the matrix perturbations are small, then there exist matrices S i and S2 such 
that the column space o / [Xi -I-X2S1, X2 + X1S2] spans the eigenspace of the 
perturbed matrices (A + P i , B + P2)-
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Theorem 2.4 tells us that for small variations the resulting eigenvalues are 
always close to the nominal eigenvalues, and Theorem 2.5 then applied to 
the second congruence transformation in PACT, tells us the behavior of the 
matrix Ur in (2.170) under process variation. However, direct application of 
Theorem 2.5 is not computationally feasible since matrices S i and S2 are not 
known beforehand and require us to solve a set of generalized Sylvester equa­
tions. Since these matrices can be expected to depend on the perturbations 
themselves, [84] uses a Taylor's expansion for Ar and Ur (2.171) as 

Ar ^ Ao + AAiitL?! -f- AA2llt^i + AApi2t^2 + AAp22'"^2 

Ur ?̂  Uo + AUii t t ; ! + A'U2iwl + AUpi2'u;2 + AUp22'i^i. (2.179) 

The parameters in the above equation can again be obtained by estimating 
the dominant eigenvectors for a set of sample points. Finally, this allows us to 
express the variational reduced order model using (2.171), where the matrices 
are replaced with their variational counterpart as discussed in this section. 

PRIMA involves calculation of a matrix X that can be used to perform 
a congruence transformation. As in PACT when variations are considered, a 
variational reduced order model in PRIMA can be constructed using a first-
order Taylor series expansion of X as 

X = Xo + A X i ^ i -h AX2W2 (2.180) 

where the parameters can be evaluated using a set of sample points. 
Note that while considering variations we have performed a congruence 

transformation in which higher order terms associated with the varying pa­
rameters wi and W2 are dropped. Thus the overall transformation does not 
remain a true congruence transformation and we lose passivity. However, [2] 
proposed that a transistor level timing simulator like TETA can be used 
in these situations. TETA obviates the need for passivity, since it uses a 
successive-chord method instead of Newton-Raphson's method to solve the 
system of nonlinear equations. This allows nonlinear devices to be mapped to 
a Norton equivalent model with constant impedance. Therefore, if the macro-
modeling approach is stable then the stability of the overall simulation can 
be guaranteed. 



Statistical Timing Analysis 

The focus of this chapter is on techniques to perform efficient timing analysis 
of circuit blocks while considering process variations. The result of such an 
analysis is invariably a probability distribution of delay. In the previous chap­
ter, we looked at Monte Carlo techniques that can be used to estimate the 
distribution of circuit delay as well, and early approaches to perform statisti­
cal timing analysis were based on Monte Carlo techniques [61], [67]. However, 
even if only inter-die variations are considered, there already exist variations 
in three standard dimensions: process variations in devices, temperature and 
power supply variations. In addition, each metal layer contributes four other 
RVs corresponding to the metal line width, spacing, height and inter-layer 
dielectric (ILD) thickness variations. Thus, even in this highly simplified case 
where all intra-die variations are neglected, there are a significant number 
of RVs, making enumerative circuit simulations prohibitive, even as a golden 
model. 

As process technologies have scaled, intra-die variations have grown to play 
a significant role in determining delay and power distributions. The RV that 
captures intra-die variations can be independent or spatially correlated (with 
correlation < 1) across gates, making Monte Carlo based techniques even 
more expensive. On the other hand, corner based models are rendered useless 
as well. Even if all corner cases are considered (which is a large number), 
we cannot guarantee that the worst-case is covered by these corner cases. 
Thus, it is imperative that the timing characteristics of a design are analyzed 
statistically. 

The crucial difference between statistical and deterministic scenarios lies 
in the notion of critical paths. In a statistical sense, there is no single path in 
the circuit that can be identified as being the critical path of the circuit, or 
the path with the maximum delay. Any path in the circuit from the inputs to 
outputs can therefore become critical, depending on how variations manifest 
themselves on a particular sample of the chip. Generally, critical paths are 
redefined in a statistical setting as a set of paths that have a high probability 
(higher than a given threshold) of becoming the slowest path in the circuit. 
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Another frequently used definition is that a path is critical if the probability 
that the path delay exceeds a given deterministic critical delay for the circuit 
is higher than a certain threshold. Note that these two definitions are not 
equivalent, however both can be used to analyze and optimize circuits. The 
first definition is useful when the objective is to reduce the delay of a circuit, 
and the second definition becomes useful when we are analyzing/optimizing 
the circuit under delay constraints, 

In this chapter, we will look at techniques to estimate the probability 
distribution of delay for circuit blocks. Most of the statistical timing analy­
sis techniques fall into one of two categories - block-based timing analysis or 
path-based timing analysis. Block-based timing analysis is based on a topo­
logical traversal of the timing graph, whereas path-based techniques rely on 
extracting a set of paths from the circuit and performing timing analysis on 
all paths within this smaller circuit. We will also look at approaches that have 
been proposed to estimate timing yield using integration techniques in the 
parameter-space, and a Bayesian Networks based approach. 

3.1 Introduction 

We first discuss a simplified statistical model for the distribution of the maxi­
mum operating clock frequency (FMAX) of a chip [21], which corresponds to 
the distribution of maximum delay. This modeling technique provides insight 
on the influence of different components of variations on the distribution of 
FMAX. 

Consider a single critical path within the circuit. If the delay of a single 
gate is modeled as a Gaussian RV, then the delay of a path can be modeled 
as a sum of Gaussian RVs. If these Gaussian RVs are part of a multinormal 
distribution, then the critical path delay can be expressed as a Gaussian RV 
as well. 

Let us consider the delay of a single critical path within the circuit and 
also assume that the distribution of path delay under inter-die and intra-die 
random variations is a Gaussian RV with standard deviation cTinter and crintraj 
respectively. However, the mean delay of a single path does not change under 
variations (assuming variations in delay can be captured using a linear func­
tion of process variations), and is assumed to be Tnom- It is important to note 
that the variance in path delay due to intra-die random variations depends on 
the number of gates in a path and reduces with increasing logic depth. This 
results from the fact that intra-die random variations are independent across 
gates, and therefore, if 

Mpath = Mgatei + Mgate2 + * * ' + /^gaten V^-l) 

then the variance due to intra-die variation can be expressed as 
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<^intra,path — y ^ int ra .gate i + ^intra,gate2 "̂  ^ ^intra,gaten (^•^) 

whereas, the variance due to inter-die variations (which are identical across 
gates) can be expressed as 

Winter,path ^^ Crintgj.,gatei "r" printer,gate2 ~r ' * ' "r <^inter,gaten • V*^" )̂ 

This implies that the contribution of intra-die variations reduces with increas­
ing depth. Assuming that all gate delays have the same variance, we can write 

<^intra,path <^intra fQ A \ 

C'inter,path 
\ / n ( J i 

nter 

Considering only intra-die random variations, the probability that the critical 
path meets timing can be expressed as 

/ intra,pV^ — '^maxj ^^ / Jintr&V'J^t 

Jo 
(3.5) 

where /intra represents the pdf of a Gaussian RV with mean Tnom and variance 
<̂ î ntra- ^^^ ^^ represent the cdf of /intra as jFlntra- Then, the probability in (3.5) 
can also be expressed as Fintra(^max)- To estimate the timing yield of a circuit, 
we need to consider all critical paths in the circuit. Let us assume that the set 
of critical paths has Np paths with identical mean and variance of delay. If all 
paths are perfectly correlated, then only a single path can be considered to 
capture the delay of the circuit as a whole. However, if paths are uncorrelated, 
we need to express the probability that the circuit meets timing as 

' intra, circv^ S t^niaxj — / intra,pi v^ S ^-maxj • • • / intra,pNp v^ — ^maxj \^'^) 

= ( P i n t r a , p ( t < ^max))^^^ • ( 3 . 7 ) 

The pdf of circuit delay can then be computed by differentiating the cdf of 
delay in the above equation with respect to t, which gives 

P / , \ Q-^intra,circ /o o\ 
/ i n t r a , c i rcl^j — i / , \ W ' ^ j 

- A ^ p / i n t r a ( ^ ) ( F i n t r a ( 0 ) ^ ^ ^ - ' . ( 3 . 9 ) 

The pdfs obtained using the above expression are plotted in Fig. 3.1 for a 
varying number of critical paths. It can be observed that, as the number of 
critical paths increases, the pdfs shift to higher delay values. This implies that 
the probability that the design meets a timing constraint reduces. In addition, 
the pdfs becomes tighter as the number of critical paths increases and circuit 
delay becomes less sensitive to intra-die variations. Also, the circuit delay pdf 
sensitivity on the number of paths Np reduces as the number of paths increase. 
It is important to note that though the pdfs seem to be Gaussian in Fig. 3.1, 
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delay (arbitrary units) 

F i g . 3 . 1 . Probabili ty distribution function of circuit delay with varying number of 
uncorrelated critical paths considering intra-die variations. The mean delay increases 
while variance decreases with increasing number of critical paths . 

the actual distribution is not Gaussian, which is obvious from (3.8). The tail 
towards the right of the pdfs is larger, than that to the left, for cases with 
many critical paths. 

If we consider only inter-die variations, the delay pdfs of all paths are 
perfectly correlated since all paths are affected similarly. In this C8ISG5 £L single 
Gaussian RV can be used to capture the delay of a circuit. In the presence of 
both intra-die and inter-die variations, the circuit delay Tdrc can be expressed 
as 

-^nom ~r Aii intra i ^-^ inter (3.10) 

where Tnom is the nominal delay of the circuit and ATintra is the change in 
delay considering intra-die distribution and ATinter is a Gaussian RV with zero 
mean and CF'-^^^Q^ variance. The distribution for total circuit delay can then be 
computed by convolving these three distributions: 

/pathi^J — Jnom * /intraV'^J * /interi'^j (3.11) 

where * represents the convolution operator and /nom is an impulse at t = 

Based on the analysis above and Fig. 3.1, we expect that for circuits with a 
large number of critical paths, intra-die variations will have a strong influence 
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on the mean delay, while their impact on variance will be significantly reduced. 
Most of the variance in circuit delay will be contributed by inter-die variations. 

The frequency of a circuit is inversely proportional to the delay of the 
circuit, therefore the RV FMAX can be expressed as FMAX = 1/Tpath- The 
distribution function of a RV F = g{X) {fy{y)) can be expressed as [109] 

where fx{x) is the pdf of X , and x i , . . . , x^ are the real roots of the equation 
y = g(x) and g' represents the derivative of g. Using (3.12) we can write the 
distribution of FMAX as 

/ F M A X ( / ) = -72/path ( "7 ) • (3.13) 

Now let us consider circuit-specific techniques that can be used to perform 
statistical analysis of circuit delay. 

3.2 Block-Based Timing Analysis 

Block-based timing analysis techniques perform a topological traversal of the 
timing graph. The traversal of the timing graph is therefore exactly the same 
as in traditional static timing analysis (STA). The overall statistical timing 
analysis can then be expected to be computationally efficient if the computa­
tions required to perform timing analysis for each node in the timing graph 
are small. However, instead of deterministic delay values we propagate delay 
distributions, complicating the analysis. In addition, the delay distributions 
might be correlated due to spatial correlations in process parameters and re-
convergent fanouts. Spatial correlations result from the fact that gates close 
together in the layout have similar variations in process parameters. On the 
other hand, correlations due to reconvergent fanouts can cause delay of far­
away paths to be correlated, if they originate from a common node. Consider 
a gate that fans out to a set of paths and then some of these paths reconverge 
and fanin to a multiple input gate. These paths then have a component of 
delay that is identical and causes the delay at the input of the reconvergent 
node to become correlated. 

To handle probability distributions, [81] introduced the idea of using dis-
cretized distribution functions. The approach was used to handle intra-die 
variations while assuming all distributions to be independent and is discussed 
in Sec. 3.2.1. Using the same general framework, [6] proposed an approach 
to consider correlations due to reconvergent fanouts and develops tight upper 
and lower bounds for the actual delay distribution, while [43] uses a heuris­
tic enumerative approach to handle these correlations. These approaches are 
discussed in Sec. 3.2.2. However, all these approaches neglect correlations in 
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.-£. 

Fig. 3.2. Sampling a probability distribution of delay to generate a discrete proba­
bility distribution. The discrete probability distribution should be re-normalized so 
that it represents a valid pdf. 

process parameters due to inter-die variations and the correlated component 
of intra-die variations. Canonical delay models pdfs were therefore proposed 
in [3], [30] and [146] to handle all components of process variation and build on 
the ideas of Quad-Tree and PCA-based analysis discussed in Chap. 2. These 
techniques are discussed in Sec. 3.2.3. Finally, in Sec. 3.2.4 we discuss an ap­
proach to handle multiple switching events while performing statistical static 
timing analysis (SSTA) [5]. 

3.2.1 Discretized Delay PDFs 

The approach by [81] was one of the first techniques to perform SSTA using 
discretized pdfs to handle probability distributions. This technique performs 
SSTA in a computationally deterministic fashion, as opposed to Monte Carlo 
techniques which are inherently random. The gate delays are now defined as 
discrete delay distributions that are generated as shown in Fig. 3.2 given a 
sampling step (may be user specified). Note that the discrete pdfs should be 
renormalized so that the sum of the probabilities for the discrete events is 
equal to one. The sampling step provides a tradeoff in terms of runtime and 
accuracy. Using a small sampling step will result in good accuracy, since the 
discrete delay pdf will have a shape very close to the original continuous delay 
pdf. However, the larger number of samples in the discrete delay pdf increases 
the computational requirements of SSTA. Using a very large sampling step 
decreases accuracy, and in the case where the sampling window is larger than 
the width of the gate delay pdfs SSTA degenerates into a traditional STA 
approach. Thus, we have defined the delay of each node within the timing 
network using a discretized delay pdf. We will always assume that the delay 
pdf is non-zero only over a finite range of delay values. 

The next step in SSTA is to propagate the distribution of circuit delay from 
the primary inputs to the primary outputs. Hence, as in STA we need to define 
operations that sum the delay distribution at the input of the gate with the 
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Fig. 3.3. Computing the delay pdf at the output of a gate for a degenerate input 
delay pdf. The numbers on the x-axis represent the delay value associated with the 
particular discrete probability distribution sample. 

gate delay distribution or perform the max of delay distributions in the case of 
multiple input gates. In the case of a degenerate or deterministic input delay 
distribution, the sum operation is fairly simple and involves the computation 
of the output delay pdf by simply shifting the gate delay distribution as shown 
in Fig. 3.3, However, in the case when the input delay pdf is non-degenerate, 
we can generate a set of these shifted output delay distributions. Each of these 
shifted pdfs occur with a probability corresponding to the probability of the 
discrete event in the input delay pdf that resulted in this output delay pdf. 
This set of shifted pdfs can then be combined using Bayes^ Theorem which 
states that 

p ( 5 ) = ^ p ( B | A = i) .7^(A = 2) (3.14) 

where V{B\A = i) refers to the probability of Event B, given that A = i. 
Thus, we need to generate the shifted pdfs with scaling^ where the scaling 
factor is the probability of the discrete input event. These events can then be 
grouped according to the above equation by summing the probability at each 
of the discrete points, as shown in Fig. 3.4, where the probability at the top of 
each discrete event corresponds to a non-normalized probability. The actual 
probability of an event in the figure can be obtained by dividing the number 
by the sum of the numbers corresponding to all the discrete events in each 
discrete pdf. 

The same idea can be used to analyze this case more formally using the 
definition of a timing graph. 
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Definit ion 3 .1 . 4̂ timing graph is a directed acyclic graph having exactly one 
source and one sink: G = {N, E, n^, Uf], where N = {m, n 2 , . . • ,n/c} is a 
set of nodes, E = {ei, 62, • • •, e^} is a set of edges, rig ^ N is the source node 
and Uf e N is the sink node and each edge e E E is an ordered pair of nodes 
e = {ui, rij). 

The edges in the timing graph correspond to connections from gate inputs 
to outputs and the nodes correspond to nets in a circuit. A probabilistic timing 
graph is defined as a timing graph where each edge is associated with a dis­
tribution corresponding to the delay of that edge. The source and sink nodes 
are imaginary nodes and are connected to the nodes representing the primary 
inputs and outputs of a circuit, respectively. Each of the edges connecting the 
source node has a delay corresponding to the arrival time at the input node, 
to which this edge is connected at the other end. 

Consider a timing graph with a set of series arcs. These arcs can be reduced 
to a single arc, which has a delay pdf equal to the sum of the individual path 
delay distributions of the two arcs. Consider Fig. 3.5(a) which shows two tim­
ing arcs with node delay pdfs p{t) and q{t) (we will refer to the corresponding 
cdfs with their capital letters). These two arcs can be replaced by a single arc 
with a delay distribution r{t) that satisfies 

R{t)= I r{t)dt= [ p{ti)q{t2)dtidt2 

/

CO pt — ti 

/ P{ti)q{t2)dtidt2 (3.15) 

/

oo 
p{h)Q{t-ti)dti. 

-00 

Diff'erentiating both sides in the above equation we get the standard result 
that 

/

CX) 

p{ti)q{t-ti)dti, (3.16) 

-00 

which implies that the pdf of a sum of two RVs is expressed as a convolution 
of the two pdfs. 

In the case of multiple fanin gates, we can generate an output delay pdf 
for each input node using the scaling and grouping / convolution technique 
described above. The next step is to calculate the max of these individual 
pdfs to estimate the final delay at the output of the last multi-input gate. In 
the case of Fig. 3.5(b), we can replace the two arcs with a single arc having an 
edge delay pdf r ( t ) . Assuming independence of p{t) and q{t), the probability 
that r{t) < to is the probability that both q{t) and p{t) are less than to- This 
is mathematically expressed as 
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R{t) = P{t)Q{t) (3.17) 

differentiating with respect to t we obtain the pdf r{t) as 

r{t)^P{t)q{t)-^p{t)Q{t). (3.18) 

The SSTA approach proposed in [6] propagates discretized pdfs through 
the circuit as explained above. However, [43] propagates piecewise linear 
(PWL) cdfs through the circuit, while gate delays are maintained as delay 
pdfs. The sum and max operations are performed using (3.15) and (3.17), 
respectively. Each multiplication in the convolution and max computation 
results in a quadratic function, generating a total of 0{n'^) quadratic func­
tions, where n is the number of linear elements in the piecewise linear pdf. 
These quadratic functions are then re-sampled at preset probability values to 
generate a PWL cdf that is propagated through the circuit. 

Both these approaches require 0(|£^| -h |V|) sum or max operations where 
E and V are the sets of arcs and nodes in the timing graph. Each sum and 
max operation requires 0{n'^) computations, where n is the number of dis­
cretization of the delay pdf. Thus the overall complexity is 0{n'^{\E\ + \V\)). 
Note that as delay pdfs are propagated through the circuit they become wider 
and the number of discretizations increase for a given sampling step. The long 
tails of the discretized pdfs are typically characterized by very small proba­
bilities and significant improvement in runtime can be achieved by pruning 
them. The tradeoff' involved in pruning and the loss in accuracy is investigated 
in [81]. It is shown that the runtime improves by more than lOX when the 
minimum probability threshold for pruning is increased from le-10 to le-5. 
The inaccuracy for the case where the minimum probability of pruning is le-5 
is 0.11% and 3.24% for mean and variance, respectively (compared to Monte 
Carlo). 

Having discussed the basics of SSTA, let us now attempt to consider cor­
relations in the propagated delay pdfs at different points in the timing graph 
arising due to gates with multiple fanouts. These correlations need to be han­
dled properly at points of reconvergence to maintain good accuracy in SSTA. 

3.2.2 Reconvergent Fanouts 

The approach discussed above assumes that the distribution of delay at each 
input of a node is independent. Even if spatial correlations are ignored, recon­
vergent fanouts cause delay pdfs to be correlated which must be considered 
to maintain accuracy of statistical timing analysis. Figure 3.6 illustrates a 
simple circuit with a reconvergent fanout node. If we backtrace paths from 
the inputs of Gate 4 to the primary inputs (Pis), we notice that Gate 1 lies 
in both these paths and causes the input delays of Gate 4 to be correlated. 
Therefore (3.17)-(3.18) can no longer be used. Also, note that if the arrival 
time at the node of Gate 3 connected directly to the PI is much greater than 
the arrival time at the other node, then the output of Gate 3 is determined by 
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Fig. 3.6. Multiple fanouts originating from Gate 1 reconverge at Gate 4 and result 
in correlation between the inputs of Gate 4. 
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Fig. 3.7. Mean and variance of the max of two identical Gaussian RVs with zero 
mean and unit variance for varying correlation coefficients. 

the PI and the inputs of Gate 4 become independent (assuming arrival times 
at Pis are independent). This masking of correlation at reconvergence further 
complicates the analysis. 

The correlations in input delay pdf have a strong impact on the mean and 
variance of delay at the output of a gate. Figure 3.7 shows the mean and 
variance of the max of two identical Gaussian RVs with zero mean and unit 
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variance, as their correlation is varied. If the RVs are perfectly correlated then 
the max of the two RVs is essentially equal to one of the RVs and the max 
has zero mean and unit variance. As the correlation reduces, the distribution 
of the max tightens towards the right of the original distribution of the RVs, 
and the mean of the max progressively increases while variance decreases. 

An exact approach to handle reconvergent fanouts was proposed in [6], 
which is based on generating multiple copies of the timing graph for each 
dependence node (to be defined later) and for each discretization of the delay 
pdf, and has a worst-case runtime complexity that increases exponentially 
with circuit size. Hence, we will also consider two computationally feasible 
approaches that consider reconvergent fanouts. The approach presented in [6] 
develops exact lower and upper bounds on the pdf of delay while [43] proposes 
a heuristic approach to handle reconvergent fanout nodes. 

Exact Approach 

To consider the impact of correlation at the inputs of a reconvergent fanout 
node [6] defines the notion of a dependence set, which is based on the inter­
section of fanin subgraphs. A fanin subgraph is defined as: 

Definition 3.2. A fanin subgraph Gs,n of a timing graph Gp at node n is a 
timing graph consisting of all edges and nodes of Gp that lie on a path from 
the source node rtg of Gp to node n, and where node n is set as the sink node 

Uf 0fGs,n-

Definit ion 3.3. Consider a pair of fanin nodes Up^i andnp^2 of node n, with 
fanin subgraphs Gsi and Gs^2- The intersection graph Gi consists of edges 
and nodes shared by Gs\ and Gs,2, excluding the source node rig. The set 
of dependence nodes for the fanin node pair Up^ i and rip^ 2 ^̂  the set of nodes 
{ni , 712, . . . , n^, ,.,}, such that rid ^̂ 5̂ on the intersection graph Gi, and such 
that rid has one or more fanout edges that lie on either Ggi or Gs,2, but not 
both. The set of dependence nodes for node n is the union of the dependence 
sets over all possible pairs of its fanin nodes. 

Definit ion 3.4. A node in a timing graph Gp with a non-empty dependence 
set is defined to be a reconvergent node. The union of the dependence set of 
all reconvergent nodes in a timing graph is the dependence set of the timing 
graph. 

Consider Fig. 3.8(a) and note that the timing graph has reconvergence at 
Nodes d and / . Nodes a, e, and h are not reconvergent nodes since the only 
node in the intersection of their fanin subgraphs is the source node, which does 
not contribute to delay. Consider Node / and note that the set of dependence 
nodes / is {6, d}, since these nodes lie in the fanin subgraphs of both the 
fanins and have an edge that does not lie in both the fanin subgraph (Node 
a does not lie in the dependence set since all its fanout edges lie in both the 
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Fig. 3.8. DAG for a circuit with nodes {a,b,d} forming the set of dependence nodes 
(a) Shaded intersection graph for the fanin subgraphs of Node n / (b) subgraph from 
Us to a can be replaced by a single edge ei. (©2005 IEEE) 

fanin subgraphs). Similarly, the dependence set of d can be found to be {a}. 
Thus, the dependence set for this timing graph is {a, b, d}, which represent 
the nodes that have multiple fanouts and lie on the edge of the intersection 
of fanin subgraphs and result in correlation at some later reconvergent node 
in the timing graph. 

To perform timing analysis on this timing graph, the set of nodes in the de­
pendence set is first topologically sorted. The subgraph from the source node 
to the first node in the sorted dependence set can be replaced by a single edge 
using the series and parallel reduction techniques described above. This step 
can be performed since none of the nodes in this subgraph have fanouts that 
result in correlated inputs at reconvergence. At each node in the dependence 
set, a set of timing graphs is generated corresponding to each discrete sample 
of the pdf at this node. This single discrete probability event is then prop­
agated through the timing graph, with more timing graphs being generated 
at each dependence node encountered downstream in the DAG. Each of the 
timing graphs generated is associated with a probability of occurrence that 
corresponds to the product of the probabilities of the discrete events from 
which the timing graph originated. The final arrival time pdf at a node can 
then be obtained by performing a weighted sum of the pdfs at that node from 
all the timing graphs generated. The weighting factor is the probability as-
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sociated with the particular timing graph. Note that this procedure follows 
from Bayes' Theorem, which states that 

k 

Px{t) = Y^ViPx.i{t) (3.19) 

where Px,i{t) is the timing pdf at node x for a timing graph generated with 
probability pi. Since each timing graph is generated from a series of discrete 
events, the product of these discrete events corresponds to pi in the above 
equation. It has also been shown in [6] that the set of dependence nodes at 
which the timing graphs are generated, through enumeration of the discrete 
probabilistic events, is both sufficient and necessary for the computation of 
the exact pdf of delay. 

Statist ical B o u n d s 

Let us now discuss a computationally efficient approach to compute lower and 
upper bounds on the cdf of delay. We first define the stochastic upper bound 
of a cdf. 

Definit ion 3.5. Consider a cdf P(t). A cdf Q(t) is said to he a stochastic 
upper hound of P(t) if 

Q{t) < P{t), \/t. (3.20) 

The upper bound of a cdf is illustrated in Fig. 3.9. It can be observed 
that for a given probability (which corresponds to a timing yield) the upper 
bound always predicts a larger delay, and is therefore a conservative bound. 
Similarly, we can define a lower bounding cdf that gives a smaller delay for a 
given probability or a higher probability for a fixed delay. The upper bound 
on the latest arrival time is important for critical path analysis since we are 
interested in the worst possible delay for the circuit and an overestimate is 
preferable. Similarly, lower bounds for earliest arrival times are preferable for 
fast path analysis to identify potential hold time violations. We will discuss 
the approach to generate upper and lower bounds for late arrival times, and 
the approach can be easily extended to the case of early arrival times. 

The authors in [6] prove that if all correlations arising due to reconvergent 
fanouts are neglected, then the resulting delay cdf is an upper bound on the 
exact delay cdf. This simplifies the analysis as well, since all timing pdfs can 
be propagated through the circuit while assuming independence, as discussed 
above. Now, let us prove the theorem upon which this result is based. 

Theorem 3.6. Let x^ y and z he independent RVs and assume that their pdfs 
are non-zero for a finite range of delay values. Let xi and X2 he independent 
RVs that are distrihuted identically to x, then the cdf o/max(a;i + ^, ^2 4- z) 
is an upper hound for the cdf of max(a; + ?/, x -\- z), 
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Delay 

Fig. 3.9. The upper bound of a delay cdf provides a conservative estimate of circuit 
delay for a given timing yield. 

Proof. The cdf of P can be expressed as 

P{t) = / p{x)q{y)r{z)dxdydz 

= / / q{y)r{z) / p{x)dxdydz. (3.21) 
Jo Jo J 

x<min{t—y, t—z 

Similarly, the cdf of Q can be expressed as 

Q{t) = / pi{xi)p2{x2)q{y)r{z)dxidx2dydz 

xi-\-y<t, X2+z<t 

= 1 1 (l{y)r{z) J p{xi)dxi J p{x)dxdydz. (3.22) 

xi<t-y x<{t—z)/a 

Let us consider the case when t — y<t — z^ioY which (3.21) can be simplified 
as 
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Fig. 3.10. Lower bound computation for two dependent arrival times. (©2005 
IEEE) 

Pit) 
/»oo /»oo / /• 

\ x<t—y 

p{x)dx dydz. (3.23) 

Comparing (3.23) and (3.22), we note that the integrand for Q has an addi­
tional term compared to the integral for P . The additional term represents 
the probability of a RV being less than a given value and is always less than 
1, therefore the integrand for Q is always less than the integrand for P , which 
implies that Q{t) < P(t). 

The other case when t — y < {t — z)/a can also be similarly analyzed to 
obtain the same condition. This implies that Q{t) defines an upper bound for 
P{t). A detailed version of the proof can be found in [6]. 

This proves the result that neglecting correlations results in an upper 
bound of the exact delay pdf. Now let us develop a lower bound on the delay 
pdf. The lower bound on the cdf for z = max(a;, y) can be obtained from the 
relation that 

P{Z{t) <t) = P(max(x(t) ,y( t)) <t) < P{x{t) < t) 

P{Z{t) <t) = P(max(x(t),2/(t)) <t) < P{y{t) < t), (3.24) 

which implies that Z'{t) = min(X(t) , y{t))^ as illustrated in Fig. 3.10, is a 
lower bound for the cdf of z. The computation of the lower bound can now 
be performed by selecting the minimum of the values of the cdf of x and y 
for all discrete time points. The number of computational steps required for 
the computation of both the lower and upper bounds increases linearly with 
circuit size and is computationally feasible. If the lower and upper bounds are 
close, then these bounds provide a good approximation to the actual delay 
pdf. However, if these bounds are very different, then the technique of selective 
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Table 3.1. Comparison of Monte Carlo and upper and lower bounds of mean delay 
for the ISC AS'85 benchmark circuits. The difference in the bounds is observed to 
be small [6]. 

Circuit Monte-Carlo Lower Bound Upper Bound Difference (%) 

cl7 

c432 

c499 

c880 

C1355 

C1908 

c2670 

c3540 

C5315 

c6288 

c7552 

1.399 

7.740 

5.168 

9.253 

10.232 

14.540 

12.829 

16.995 

17.381 

46.911 

15.851 

1.369 

7.448 

4.730 

9.057 

9.444 

14.250 

12.469 

16.651 

17.251 

45.242 

15.558 

1.428 

8.060 

5.282 

9.448 

10.444 

14.782 

13.112 

17.351 

17.649 

48.591 

16.081 

4.2 

7.6 

10.5 

4.1 

9.6 

3.6 

4.9 

4.0 

2.3 

6.9 

3.3 

enumeration proposed in [6] can be used. Selective enumeration is based on 
the exact approach discussed above, and selects a small subset of dependence 
nodes at which the timing graphs are enumerated. 

Table 3.1 compares the mean delay obtained using the upper and lower 
bounds and those obtained using Monte Carlo simulations for the ISC AS'85 
benchmark circuits [23]. The table shows that the Monte Carlo results always 
lie between the lower and upper bounds, verifying the concept of computing 
lower and upper bounds. Moreover, the difference between the lower and upper 
bounds is typically small and the bounds can be used as a close approximation 
to the exact delay cdf. 

D e p e n d e n c y Lis t s 

The approach proposed in [43] is based on maintaining dependency lists for 
all nodes in the timing graph. The dependency list for a node n corresponds 
to the nodes in the DAG on which the arrival time at the inputs of node n 
depends. In the worst-case, this list can grow to be as large as the size of 
the circuit itself. Hence, [43] proposes a heuristic approach to limit the size 
of these lists, and performs timing analysis while considering reconvergence 
arising only from nodes within the dependency lists. 

Consider Fig. 3.11 and note that the delay at the inputs of the gate can 
be written as 

Di = Ar-\- Di 
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Fig. 3.11. Reconvergence can be handled by estimating the maximum of the sum 
of path delay and adding the delay up to the node that acts as the dependence node. 

Dj = Ar-\-D2 (3.25) 

where Ar is the cdf of the arrival time at node r and Di and D2 correspond 
to the delay pdf of paths 1 and 2, respectively. Note that the sum operation 
in the above equation actually represents a convolution. Now, the delay at the 
output of the gate can be expressed as 

Ao = msix{Ar -\-Di+ Dio, ^ r + ^ 2 + Djo). (3.26) 

The presence of Ar causes the two delays, whose max needs to be computed 
in the above expression, to be correlated. Therefore a simple multiplication of 
their corresponding cdfs will not provide the correct result. However, we can 
rewrite (3.26) as 

Ao = Ar-h max{Di + A o , D2 + Djo)- (3.27) 

Now, the max operation can be performed as previously discussed and the 
resultant delay pdf can be convolved with the arrival time cdf at node r to 
estimate the delay cdf at node o. To perform the above computation we need 
to establish the multiple-fanout node in the circuit that causes the input delay 
pdfs to be correlated, and moreover we need to calculate the delay pdf of the 
paths from node r to the inputs of the gate. These path delay pdfs can be 
computed by traversing the path from one end to the other. Another approach 
that is computationally efficient is to note that 

Di= Ai- Ar 

D2 = Aj - Ar. (3.28) 

The statistical subtraction in the above equation is performed using moment 
matching in [43]. The computation of Ai is performed as a convolution of Ar 
and Di (which are independent), therefore we can write 



3.2 Block-Based Timing Analysis 97 

fl[Ai] = fl[Ar] + /i[Di] 

a^[Ai]=:a^[Ar] + a^[Di]. (3.29) 

Using (3.29) we can write 

/i[Dl] = fJ,[Ai] - /J.[Ar] 

a^[Di] = a^[Ai] - a^[Ar]. (3.30) 

Note the negative sign in the above expression for the variance of D i . If these 
expressions are developed directly from (3.28), then we need to consider the 
correlation between Aj and Ar. The approach in [43] uses the first two mo­
ments of path delays to fit a Gaussian pdf to the distribution of path delay. 
However, the approach is general and can be extended to perform higher 
order moment matching using Pade approximation techniques (discussed in 
Chap. 2) to determine the distribution of path delay. Although path delay 
computation can be performed efficiently as discussed above, identifying the 
multiple-fanout nodes for all inputs in a multiple-input gate is not straightfor­
ward. This is the case because an input of a gate typically depends on more 
than one previous node that may have correlations to other inputs due to the 
sharing of sub-paths. 

In [43], the authors propose to tackle this problem by maintaining depen­
dency lists for each node in the timing graph. The dependency list is ideally a 
list of all nodes on which the arrival time at that node depends. However, to 
limit the size of these lists the size of the list at a node is maintained below a 
user-specified limit. To ensure that nodes that are important to capture the 
correlation (due to reconvergence) are not removed while truncating the list, 
the lists are stored in a levelized fashion with nodes having the highest level 
appearing first. Thus, when lists are truncated nodes with the lowest levels, or 
that are far away from the current node, are removed. While performing a lev­
elized traversal of the timing graph, at each node we look at the dependency 
list of all the inputs of the node, which are then inserted into the dependency 
list of the current node using insertion sort. In addition, while generating the 
dependency list of a multiple-input gate, the dependency list associated with 
nodes that have a much smaller arrival time compared to other inputs are not 
included. 

The pseudo-code for arrival time computation at a node o based on the 
arrival time at its inputs is shown below as depMax, To propagate the arrival 
time in a multi input gate to the output, the first step is to identify the set 
of nodes that occur in two or more dependency lists of the inputs. If there is 
no common node then there are no dependency nodes for the current node, 
and the analysis proceeds as discussed previously. However, if there are re-
convergent nodes then the analysis is performed by computing the max of 
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the path delays {AQV) from the multiple fanout node (v) to the node under 
consideration (o). This max path delay pdf is then convolved with the arrival 
time delay pdf at node v to compute the arrival time pdf at output node v. 
This procedure is then repeated over all such nodes v to compute the arrival 
time delay pdf at node o. 

depMax(o) 
Ao = —oo 
L = NULL 
for each input i of o 

for each vertex v in DLi 
if {v occurs in DL of other inputs) 

insert (f, L, level(t>)) 
make a list of inputs in whose DL's v occurs 

if (L is NULL) 
inputs are independent: Proceed as described previously 

else 
for each f in L 

A-ov ^^ OO 

for each input i such that v G DLi 
•^ov '^^ n iax(^ / lo i ; , J\.i Ay -J- -L^io) 

A-ov ^^^ Ay - r AQy 

AQ = max(-(4o, Aoy) 
return AQ 

3.2.3 Canonical De lay P D F s 

The previous section showed that discretized pdfs can be used to handle intra-
die variations and correlations due to reconvergent fanouts. However, the ap­
proach becomes cumbersome when it is used to handle correlated intra-die 
and inter-die variations. A number of SSTA approaches based on canonical 
delay models have been proposed that allow efficient handling of the corre­
lated component of variation. The approaches in [30] [146] [77] [3] are based on 
the assumption that the delay at all nodes in the circuit can be expressed 
in a canonical form. In addition, [30] [146] [77] make the assumption that the 
canonical delay model has a Gaussian form. 

The Gaussian approximation for delay is based on the assumption that 
variations in process parameters are typically small and their impact on 
gate/circuit delay is linear. The Gaussian approximation introduces inaccu­
racies due to two reasons: 1) In addition to the statistical surriy we also need 
to perform the statistical max of node delay pdfs and the max of two Gaus­
sian RVs is not an exact Gaussian RV. 2) Process variations are expected 
to grow in future technologies, making the assumption of linearity between 
gate delay variations and process variations less accurate. However, in practice 
this assumption does not lead to large errors in current technologies and we 
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Fig. 3.12. The pdf of the max of two identical Gaussian RVs for varying correlation 
coefficients. The error introduced through the Gaussian delay assumption increases 
as the correlation in gate delay reduces from +1 to -1. 

make this assumption for most of our analysis while discussing SSTA using 
canonical delay models. 

The error introduced due to the Gaussian approximation depends very 
strongly on various characteristics of the pdfs whose max is being computed. 
If one of the pdfs is defined only for values that are much lower than the 
values for which the other pdf is defined, then its values are dominated by the 
larger pdf and the maximum has a Gaussian shape, leading to small errors. 
In the case where the pdfs are defined for comparable values, then the error 
depends on their variance and correlation. Figure 3.12 plots the maximum 
of two Gaussian RVs with identical mean and variance as their correlation 
coefficient is varied. As can be clearly observed, with decreasing correlation 
coefficient the distribution progressively tightens and loses its Gaussian na­
ture. In the extreme case where the two pdfs are negatively correlated the 
pdf has a shape that resembles a tight Gaussian distribution with its left half 
removed. 

Before we discuss canonical delay models, we examine some of the work 
done in SSTA using continuous delay pdfs which will help us in performing 
SSTA using canonical delay expressions. One of the first works to perform 
SSTA using the Gaussian delay assumption for each node [17], was based on 
expressions for the mean and variance of a max of two Gaussian RVs. These 
parameters, along with the assumption of normality for node delay pdfs, were 
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used to propagate gate delay pdfs through the circuit. Note that the sum of two 
Gaussian RVs is Gaussian and can be easily handled within such an analysis. 
This approach was extended in [141] to consider arbitrary correlations in gate 
delay pdfs, arising due to reconvergent fanouts and correlation between the 
delay of different gates within timing graphs. However, when correlations are 
considered, the complexity of the algorithm increases from 0{\V\ -f- |£^|) to 
0( |y | |J5 ' | ) , where IV"! and \E\ are the number of nodes and edges in the graph. 

The approach maps a combinational logic block to a DAG, which has a 
vertex for each pin in the circuit and an edge for each net in the circuit or 
timing arc of a gate. The edge delays represent the delay of the timing arcs and 
the node delay pdf represent the distribution of the delay from the primary 
inputs to that node. Each edge is associated with a rising and falling delay, 
which are normally distributed based on the distribution of gate length. In 
addition, the delay of any two edges that correspond to the same gate are 
also assumed to have a known correlation coefficient. Since, the rising and 
falling delay of a gate are associated with different types of transistors (NMOS 
and PMOS), they are assumed to be independent. This assumption does not 
hold true for interconnect delay where the rising and falling delays will be 
correlated depending on the variation in physical dimensions of the wire and 
its environment. However, we will assume that the rising and falling delays 
are independent for all edges in the graph. The delays are then propagated 
through the graph to estimate the delay distribution from the primary inputs 
to any node within the graph. Depending on the type of timing arc (inverting 
or non-inverting), the rising delay at the input defines a rising or falling delay 
at the output of the node. 

Consider Fig. 3.5(a) and assume that the edge delays p{t) and q{t) are 
Gaussian RVs. As in Sec. 3.2.2 the two series edges p and q in the graph can 
be replaced by a single edge r such that, 

E[r] = E\p] + E[q] (3.31) 

Var[r] = Var[p] + Var[q]. (3.32) 

Note that in the above equations we used the assumption that the delays of 
two edges across gates are not correlated. Using this technique we reduce the 
initial graph to a graph such that all series edges are replaced by a single 
edge. However, when performing such a reduction we need to maintain the 
correlation between the delay of some edge x and r, based on the correlation 
between x and p (pxp) and between x and y (pxy)- The correlation coefficient 
of the delay distributions u and v for a pair of edges is defined as 

^ M - E[u]E[v] 
Puv = [6.66) 

GuCTy 

where a^ represents the variance of distribution i. Now, let us consider the 
correlation of the reduced edge r with an arbitrary edge x, 
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^^^^mi±3)l^m^k±A, (3.34) 
GxCTr 

Using (3.31) we can simplify (3.34) as 

_ {E[xp\ - E[x]E[p]) + {E[xq] - E[x]E[q]) 

GxCTr 

Gxsj(yl-\-(j\ 

__ Pxp^p + Pxq^q /o or \ 

A/^ P + '̂ ,̂  

which expresses the correlation of edge delay x in terms of its correlation with 
the edges removed {p and q) and their variances. Thus, using this approach 
we can reduce a series of edges to a single edge while maintaining correlation 
with other edges in the graph. 

In the case of parallel edges the situation becomes much more complex 
since we need to estimate the maximum of delay distributions, which is known 
to have a non-Gaussian distribution. In addition, we need to handle the cor­
relation in node delays to account for reconvergent fanouts. The standard 
assumption is that the max of two Gaussians has a Gaussian shape. Then, 
based on the estimated mean and variance of the max of Gaussian RVs, the 
complete distribution of the output node is defined. However, note that as 
in the case of series edges we cannot simplify the graph by merging parallel 
edges since the correlation of the delay distribution for the fanin nodes is un­
known. Consider two edges (p, r) and (g,r) and assume that the delay from 
the primary inputs to node p and q are known and have a correlation of ppq. 
The edge delays to node r from p and q can be combined with the node delay 
(exactly as the case for series devices) to obtain two delay distribution x and 
y with a correlation p. Now, li z = max(a;, y), then the mean and variance of 
z can be expressed using expressions developed by Clark [35]: 

E[z\ = fi^'PiP) + iiyH-(3) + a^{0) (3.36) 

Var[z] = (/x2 + al) ${P) + (/.^ + a^) # ( - /3 ) 

+ ( M x + M y ) M / ? ) - ^ ' N (3-37) 

where 

a _ Ma: ~ My 
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^{^) = ; ^ ^''p ( " ^ ) (^-38) 

If z is assumed to be Gaussian then the above equations completely define the 
distribution of delay at the output node. In addition, the correlation between 
the delay at an arbitrary node t and z (ptz) can also be estimated given the 
correlation between node delays at t and x {ptx) and between t and y (pty) as 

If a node has more than two inputs, then the approach can be used recursively 

z = max(mi , max(m2, • • •)) (3.40) 

to calculate the final delay distribution at the output. 
Let us now outline the timing algorithm using the ideas discussed. To 

perform SSTA, [141] first simplifies the graph using the series edge reduction 
technique. Next, let us define a fronts which is the set of nodes in the circuit for 
which the distribution of delay from the primary inputs is known. In addition, 
the correlation in delay between any pair of nodes on the front is also known. 
This set is initialized to be the set of primary inputs of a combinational logic 
block at the start of the algorithm. In each step of the algorithm a node is 
selected such that all the nodes which are its immediate predecessors lie in the 
front. Now, timing analysis is performed for this node using the max operation 
described above. The correlation of the output node with any node that lies in 
the front and has a fanout node that goes to any other node not in the front 
is also calculated. The node is then added to the front, and the procedure is 
continued as long as the set of nodes in the front is not the same as the set of 
primary outputs. 

Consider Fig. 3.13, which represents a graph that has been obtained by 
reducing all series edges to a single edge. At the start of the algorithm nodes 
1, 2 and 3 define the front. At this point, only node 4 satisfies the condition 
that all its immediate predecessors lie in the front set. The delay at node 4 is 
then computed by adding the node delay of 2 to the edge delay (2,4), and the 
correlation of the delay at node 4 with nodes 1 and 3 is calculated. Note that 
we do not need to calculate the correlation of node 4 with node 2 since node 2 
does not fanout to any other node in the graph that does not lie in the front. 
This implies that at any later stage of the algorithm node 2 is not going to 
act as a fanin edge and we will not need its correlation with any other node. 
The next step is to add node 4 to the front and calculate the delay pdf of 
nodes 5 and 6 using the max operation as defined above. Similarly the delay 
at node 7 is calculated, which defines the delay distribution of the circuit. 
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Fig. 3.13. A front-based technique to consider correlations in path delays due to 
reconvergent fanouts. 

At the end of the algorithm we have a set of delay distributions with their 
respective correlations that can be used to calculate the timing yield (the 
probability that a sample of the design meets the timing constraint) for a 
given cycle time T as 

V{Delay < D) 
/

D pD pL 

-CXD « / — O O ^ — C 

/ (a ; i ,X2, . . . ,Xn)dxidx2 ••• dxn (3.41) 

where / represents the joint multinormal distribution of delay at the output 
nodes. The above expression also defines a sample of the cdf of delay and can 
be numerically computed at a set of points to define the complete cdf, which 
can then be differentiated to find the pdf of the maximum delay of the circuit. 

Hence, we see that considering correlation within a gate alone results in 
an increase in complexity. However, as discussed in Chap. 1 the gate length 
of transistors within a gate are generally very strongly correlated and the 
correlation drops off rapidly as the distance between gates increase. Therefore, 
a better approach to capture the influence of correlated variations is to assume 
that transistors within a gate are perfectly correlated and use a distance-
based map to define the correlation structure across gates. This kind of delay 
modeling is extremely cumbersome using the approach we have at hand. Now, 
let us discuss canonical delay model based timing analysis techniques that 
allow for efficient delay computation when considering spatially correlated 
process variations. 

Tightness Probabi l i ty 

The concept of tightness 'probability was proposed in [146] and models delay 
as a function of n global variations and a random component as 
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d = dnom + Y^ aiAXi + an^iAR (3.42) 

where dnom is the nominal delay, AXi represents the fluctuation in the ith 
global parameter {p = I across gates) Xi, R represents the random variation 
(p = 0 across gates) and the coefficients a's represent the sensitivity of delay 
to the corresponding parameter. The above equation represents a canonical 
model of delay and provides Gaussian distributions for edge delays if the global 
parameter variations Xi and random variation R, are Gaussian. Without loss 
of generality we can assume these RVs to have zero mean and unit variance. 

These Gaussian delay pdfs in canonical form are then propagated through 
the circuit to estimate the node delay pdf at each of the nodes of the graph 
while maintaining the node delay in the same form as (3.42). Let us consider 
an edge {u,v) with an edge delay pdf of 

n 

de = dnom, e + ^C^i, e^Xi + Qfn+l, e A i ? (3.43) 
i=l 

and let the node delay pdf at node u be 

n 

AR (3.44) 
i=l 

then the delay pdf at node v can be simply obtained by summing the two 
pdfs, which consists of arithmetically adding the coefficients that correspond 
to the same process parameters. Thus, the delay pdf at v is 

n 
Cly = Cinom, u 

where we have assumed that the random component of delay is independent 
across gates. Consider two edges el and e2 with canonical pdfs and assume 
that the delay from the primary inputs to their source node are p and g, 
respectively, and are known in canonical form. The edge delays to the output 
node from p and q can be combined with the node delay (exactly as in the 
case for series nodes) to obtain two delay distributions x and y. Let x and y 
have the form 

dx = <^nom,x + y ^ a z , a : A X i + an+l,x^R 
i=l 
n 

y ^~ ^nom, y 
AR. (3.46) i = i 
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The correlation of x and y and their variance can be expressed as 

î «r[x] = Er=7<. ^My] = Er n+1 ^2 
=1 « i , y 

En + 1 (3.47) 

Based on these expressions we can use Clark's expression to estimate the 
mean of 2; = max(a:,y), which defines the first term of the canonical delay 
expression. To estimate the remaining components [146] uses the concept of 
tightness probability, which is defined as the probability that a sample of a RV 
X has a value greater than a sample of RV y, and is mathematically expressed 
as 

rx>y — ^ 
X — dn 

y/Var\x\ 
^ 

I I ^ ^nom, y 

\ ^/yar[y] Pxy ^yVar[x] 

\ 
A / ^ .2 

xy 

= $ 
<^nom, X ^nom, y 

da: 

(3.48) 

where (f, ^ and a are as defined in (3.38). Using the concept of tightness prob­
ability and the fact that in traditional timing analysis the delay at the output 
is completely defined by either of the inputs, [146] proposes to use a weighted 
sum of the coefficients of the input delays to define the coefficients of output 
delay. The weighting parameter is chosen to be the tightness probability, and 
thus we can write 

(^i,z = 'Px>yOti,x + (1 - Vx>y)(^i,y I < i < 71. (3.49) 

The coefficient of the random component of the max is computed such 
that the variance of 2; = max(x,y) estimated using Clark's expressions and 
that estimated using the canonical expression are identical. This defines the 
canonical expression completely. 

The delay pdfs can now be propagated using the above approach to handle 
series and parallel nodes. This approach neglects the correlations arising due 
to reconvergent fanouts and thus results in a conservative estimate as shown in 
the previous section. However, the canonical model can be extended to handle 
these correlations at the cost of additional computational complexity. This is 
achieved by maintaining the list of source nodes for the random component 
of delay while delay pdfs are propagated through the circuit [155]. In general 
the number of terms in these expressions will be equal to the number of nodes 
in the timing graph with a random delay component and result in substantial 
overhead. 
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Principal C o m p o n e n t s 

In Chap. 1 process parameters were expressed as a sum of a nominal value and 
an intra-die and inter-die variation coefficient. In addition, intra-die variation 
has correlated and random components, with the contribution of each being 
defined by the maturity of the process and the particular process parameter. 
In Chap. 2 we discussed principal component analysis and found that the cor­
related variations can be handled by dividing the chip area using an n x n grid 
and associating a RV to each square in the grid to represent the variations in 
that grid. The correlation among these RVs is captured by defining an n'^xn'^ 
correlation matrix. Using principal component analysis we transform this set 
of correlated RVs to a set of uncorrelated RVs. This step also involves the 
eigen-decomposition of the correlation matrix and is computationally expen­
sive. However, this step needs to be performed only once for each correlation 
structure and does not add to the computational complexity of SSTA itself. 

If the delay of an edge i is initially defined to be linearly dependent on 
the process parameters as in (3.42), then after performing PC A we can write 
delay as a function of the principal components Y, which are Gaussian RVs 
with zero mean and unit variance, as 

di = ai^o + ai^iAyi -\ hainAyn. (3.50) 

This expression now has the same form as (3.42) but captures variations due 
to spatially correlated variations as well. The additional cost is paid in terms 
of principal component analysis which has a complexity of 0{pn^)^ where p is 
the number of process parameters and n? is the number of squares in the grid. 
Once the edge delays are defined as in (3.50), the sum and max operations can 
be defined in a fairly straightforward manner. The approach proposed in [30] 
uses Clark's expressions to estimate the mean, variance and the correlation 
with the principal components {y) and equates it to the respective quantity 
for the max expression. 

Let us consider the case where d^ = ina.x{di^dj) and outline the steps 
required for this computation. We assume that the delay pdfs are defined in 
the form (3.50). The mean is expressed by the first term and the variance and 
correlation of di and dj can be calculated as 

Varld,] = E ^ i J a t Var[dj] = Eltl 4j 

Pdidj = Y^k^l ^kjCikJ' (3.51) 

In addition, the correlation of di with the principal component y^ is sim­
ply ai^k' The first term in the expression for dz is defined to be the mean, 
calculated using Clark's expressions. The remaining coefficients are the cor­
relations coefficients of dz with the principal components and are defined to 
be the correlation coefficient obtained using Clark's expression. This results 
in an expression that maintains the mean and the first-order correlation with 



3.2 Block-Based Timing Analysis 107 

the principal components. However, this approach may result in a mismatch 
in variance. To handle this error [30] proposes to scale the coefficients of the 
principal components in the expression for dz by a factor calculated as the 
ratio of the variance of dz obtained after the above steps and that predicted 
by Clark's expression. This results in a small mismatch in the correlation co­
efficient with the principal components. Note, that we have neglected random 
variations in the principal component based approach - if random variations 
are considered, then timing analysis can be performed while maintaining the 
mean, variance and correlation coefficient [130]. We will discuss this approach 
in more detail in Chap. 5 where a PCA-based analytical approach is used to 
determine the parametric yield of a design under delay and power constraints. 

The overall complexity of the approach can be estimated by observing 
that we need to map the delay expression to the canonical delay model for 
0 ( | V | + | ^ | ) delay elements, which are the timing arcs and interconnects. Since 
each mapping requires 0{n) computation, the overall complexity of generating 
the delay models is 0 ( n ( | y | -f | ^ | ) ) . The complexity of both the sum and max 
computations is 0 ( n ) , and they are performed 0 ( | V | + |£^|) and OdE*!) times, 
respectively. Thus the overall complexity of the approach is 0 ( n ( | F | -f \E\)). 
There is an additional cost in terms of PCA itself, as mentioned before this 
is a one time investment for all future analysis and is not considered to be a 
part of the overall SSTA complexity. In the case where we consider p process 
parameters, the overall complexity becomes 0 ( n p ( | F | + I^^D). 

Quad-Tree Mode l ing 

The Quad-Tree modeling scheme, which was introduced in Chap. 2, mod­
eled the intra- and inter-die components of variation by generating a tree-like 
structure that successively divides each region of the chip into four smaller 
pieces. Each piece was assigned to a RV from a set of independent RVs and 
correlation at the gate level was captured by the squares that were common 
to the delay expression for a pair of gates. The canonical delay model used in 
the Quad-Tree based SSTA technique [3] is similar to the ones in (3.42) and 
(3.50) used in the previous two analysis methodologies. However, the anal­
ysis technique is different from the canonical delay model based techniques 
discussed above. It bears more similarity to the discrete pdf propagation tech­
nique discussed in Sec. 3.2.2 and does not make the Gaussian assumption for 
delay pdfs. 

In Chap. 2 the variation in the process parameter for a particular gate i 
was expressed based on Fig. 2.8 as 

^XMra,i= Y. AX;, , + A X f (3.52) 
0</<fc,r intersects i 

using which we can write the canonical form for delay as 
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di = dnom, i + ^ a^, fcAPfc + ADrandom, i. (3.53) 
k 

To propagate the node delays through the graph we need to define the sum 
and max operation such that the final expression is also in canonical form. 
The sum expression can be defined as dz = di -{- dj: 

dz = dnom, i +^nom, j - t - / ,(Q^i, k+O^j, fc)APfc + Ail^random, i + AL^random,.) (3.54) 
k 

where the sum involving the nominal delay and the coefficient of the spatially 
correlated component is the standard arithmetic operation. However, the sum 
involving the random component is a sum of two RVs and a simple convolu­
tion is performed to calculate the distribution of this sum. Since the random 
component of an edge is independent of the random component of the input 
node delay, the above computation is exact. 

Since there is no straightforward way to compute the max of two RVs 
expressed in canonical form as expressed above, [3] proposes to generate a 
bound for the max operation using the following theorem. 

T h e o r e m 3.7. For any given numbers a i , a 2 , . . . , a^ and x i , X 2 , . . . , Xn 

/ n n \ n 

max I y J a ^ , 2^^^ I — y j r n a x ( a i , Xi). 
\i=l i=zl I 2 = 1 

Using Theorem 3.7 max d^ = max(o?i, dj)^ can be conservatively approximated 

as 

dz = max(dnom,i,c^nom,j) + ^ ( a b s m a x ) ( a i , k, Q̂ j, k)APk 
k 

+ max(AZ)random,i + Ai^random, j) (3.55) 

where absmax selects the value with the largest arithmetic absolute value 
while retaining the sign. The max of the nominal value is also an arithmetic 
max operation, however the max of the random components is a max of RVs. 
These RVs are correlated due to reconvergent fanouts and computing their 
max while neglecting the correlation results in an upper bound (as shown in 
Sec. 3.2.2). 

To reduce the pessimism introduced due to the above conservative bounds, 
[3] notes that the above bound is exact if one of the delays (say di) completely 
dominates delay dj. Complete domination is said to occur if all of the following 
conditions hold: 

iJ-j <^nom, i ^ ^nom,j 

(2) ai^k > OLj,k 
(3) The minimum value of ADrandom, i with non-zero probability is greater 

than the maximum value of A-Drandomj with non-zero probability 
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However, if these conditions are not met then the max operation as de­
fined above defines a conservative upper bound. In this case multiple arrival 
time delay pdfs are propagated through the circuit. At each node a subset of 
the pdfs are propagated through the node, while the other pdfs are merged 
using the max operation as defined in (3.55). The subset pdfs to be merged 
are selected to minimize the conservatism introduced, which is achieved by 
selecting the pdfs with the smallest mean delays. This strategy propagates 
the pdfs with large mean delay through the circuit, which can be expected to 
have a strong influence on the overall pdf of delay and thus eff'ectively reduces 
the error due to the conservative upper bound. 

At the primary outputs (POs), the delay of each PO can be defined as a 
pdf by convolving each of the terms in the canonical expression and then cal­
culating their maximum numerically. However, these delay pdfs are correlated 
and we require the following theorem from [3] to show that the max arrival 
time through the circuit can be bounded by ignoring the correlation in the 
delay pdfs at the POs. 

Theorem 3.8, Let x, x i , X2, y and z be positive, independent RVs with pdfs 
p{x)^ p{xi), p(^2), Q{y)^ ^(^) noting that xi and X2 have the same pdf as RV 
X. For any positive constant value a, the cdf of RV Yndix{x + y, ax-^z) is upper 
bounded by the cdf of RV max(a;i + y, ax2 + z). 

Proof The cdf of P can be expressed as 

P{t) = / p{x)q{y)r{z)dx dy dz 

x-{-y<t, ax+z<t 
poo POO r 

— / Q{yY{^) / p[x)dxdydz. (3.56) 

£C<min(t—y, {t—z)/a) 

Similarly, the cdf of P' can be expressed as 

P'{t) = I P\{xi)p2{x2)q{y)r{z)dxidx2dydz 

xi-j-y<t, ax2-\-z<t 

=" ^iyy(^) / P{xi)dxi / p(x)dxdydz. (3.57) 

xi<t—y x<(t—z)/a 

Let US consider the case when t — y < {t — z)/a^ for which (3.56) can be 
simplified to 

Pit) = pj°°q{y)r{z)i j p{x)dx\dydz (3.58) 

\ x<t-y I 
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Fig. 3.14. Neglecting multiple input switching cases results in a 16% error in mean 
delay estimation and a 10% error in the delay at higher percentile points. Timing 
simulations considering MIS also show a smaller variance in delay [5]. (©2005 IEEE) 

Comparing (3.58) and (3.57), we note that the integrand for P ' has an addi­
tional term compared to the integral for P. The additional term represents 
the probability of a RV being less than some value and is always less than 1, 
therefore the integrand for P ' is always less than the integrand for P , which 
implies that P'{t) < P(t). 

The other case when t — y < {t — z)/a can also be similarly analyzed to 
obtain the same condition. Therefore P' defines an upper bound for P . 

3.2.4 Mult ip le Input Switching 

A number of issues complicate traditional timing analysis such as false paths, 
multiple input switching and input slope effects. In this section we discuss 
an approach to handle multiple input switching (MIS) in statistical timing 
analysis that was proposed in [5]. Multiple input switching refers to the sce­
nario when multiple inputs of a gate switch in close temporal proximity of 
each other, resulting in an increase in propagation delay of the gate. The 
probability of such an event becomes higher in SSTA since we deal with delay 
pdfs instead of a deterministic arrival time, and thus the chances that two 
switching events overlap is much higher. 

For all analysis discussed previously, we assumed that only one input is 
switching, known as the single input switching (SIS) assumption. In the case 
of SIS, we handle multi-input gates by propagating the input delay pdfs to 
the output by convolving it with the delay pdf of the appropriate timing 
arc, and then computing the maximum of all such delay pdfs over all inputs. 
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Fig. 3.15. Change in the mean and variance of gate delay as a function of the 
difference between the switching times of the two inputs of the gate [5]. (©2005 
IEEE) 

Figure 3.14 shows the inaccuracy introduced by this assumption. The figure 
is generated by performing normal SSTA. However, for each multi-input gate 
the actual output delay pdf (considering proximity switching) is computed 
through Monte Carlo simulations. 

The modeling approach proposed in [5] is based on a deterministic MIS 
model proposed in [29]. This deterministic model proposed to use a delay 
push-out (D.PO.) factor for different combinations of input arrival times at a 
multi-input gate, which increases the delay by a constant factor when nodes 
with MIS are encountered. Figure 3.15 shows the change in mean gate delay 
and standard deviation as a function of the difference between the delay of 
the switching times of the two inputs, obtained by performing Monte Carlo 
simulations for variations in gate length for transistors in the logic gate. As 
can be observed, the mean gate delay attains a maximum when both inputs 
switch simultaneously and reduces as the separation between the switching 
times increases, finally saturating to the mean delay of the SIS case. However, 
the standard deviation shows a minimum when both inputs are perfectly 
aligned. This results from the fact that the devices corresponding to these 
inputs within the logic gate are not perfectly correlated and thus the overall 
variance in delay reduces from the case of SIS. As the difference between the 
switching times of the two inputs increases, the standard deviation saturates 
to the standard deviation for the SIS case. 

To model these effects analytically [5] notes that the increase in mean gate 
delay is a weak function of the standard deviations of the process variations 
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themselves. Neglecting this dependence, the increase in mean delay can be 
approximated using a deterministic MIS model. The standard deviation is 
modeled as a piecewise linear function that is exactly equal to the SIS case 
for large separation in switching times and approximates the MIS region using 
a simple linear interpolation of the variance for the two SIS cases, as illustrated 
in Fig. 3.15. Mathematically, the standard deviation considering MIS cr^ is 
expressed as 

(7,1 if ADA < -X 

as2 if A D ^ > 0 (3.59) 
amm{asi,crs2) + (1 - Q̂ ) max(crsi, (7,2) o.w. 

where ADA is the separation in the switching time of the two inputs, X 
is the difference between the arrival times beyond which the effect of MIS 
become negligible and a = \ADA\/X. We can now use this model to perform 
MIS-aware SSTA. 

Consider a two input gate with a discretized delay pdf for each of the input 
pins. For each combination of the discrete events in the two input pdf we get 
a different value for ADA^ and therefore a different gate delay pdf. Assuming 
that the gate delay pdf is Gaussian we can generate the gate delay pdf based 
on the model for mean and variance developed above. Using this gate delay an 
output delay pdf is generated by scaling the gate delay pdf by the maximum 
of the input delay events. Thus, for 0{n'^) combinations of discrete events on 
the input we generate 0{n^) output delay pdfs. Each of these output pdfs is 
then scaled by the product of the probability of the two discrete events on the 
input to which this output delay pdf corresponds. These scaled pdfs are then 
grouped by summing the probabilities of all events occurring at a given time 
point. Since we need to combine 0{n'^) delay pdfs, each with n discretizations, 
we get an overall complexity of 0{n^). Since the number of discretizations are 
typically small, ranging from 5-10, this increase in complexity is reasonable. 

To extend the above analysis for more than two input gates, note that 
a straightforward extension would result in computational complexity that 
increases exponentially with the number of inputs. The approach proposed in 
[5] iteratively considers a pair of input pins to generate the final output delay 
pdf. Let us consider the steps involved in performing MIS-aware SSTA for a 
three input gate with input pins A, B and C. 

1) The first step is to order the nodes based on the mean delay at the 
input pins. We refer to the ordered set of input pins as 1, 2 and 3, with 
input 1 having the smallest mean delay. 

2) Considering the two earliest switching inputs (1 and 2) we can generate 
the output delay pdf using the technique described above. 

3) Next, compute the output delay pdf assuming a SIS occurring on input 
pin 2 and compare it to the output delay pdf calculated assuming MIS on 
inputs 1 and 2. Compute the increase in mean delay as /X12 and the decrease 
in variance as ai2> 
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Fig. 3.16. The approach proposed in [5] to handle MIS shows good accuracy com­
pared to results obtained using Monte Carlo SPICE simulations. (©2005 IEEE) 

4) Now, reduce the variance of the input delay pdf of node 2 by (J12. Then, 
for all pairs of discrete events on input pins 2 and 3 (with delay ^2 and ^3) 
compute the gate delay pdf. Instead of shifting the delay pdf by max(d2, ds) 
as in the case of two input gates, it is shifted by max(<i2 + /̂ 125 <̂ 3)-

5) The next two steps of scaling the output delay pdfs by the product of 
the probabilities of the discrete events on the inputs and the grouping step 
remain the same as in the case of two input gates. 

Using this heuristic approach, gates with more than two inputs can be 
handled efficiently and the number of computations required grows linearly 
with the number of inputs. 

Figure 3.16 shows the delay pdf of a circuit obtained using the SIS as­
sumption and considering MIS through Monte Carlo and compares these with 
results from the MIS-aware SSTA approach discussed in this section. Over a 
set of benchmarks [5] found that the SIS assumption results in an average 
error of 13.2% and -10.2% in the mean delay and standard deviation, respec­
tively, with the maximum error being 26% and -20%. MIS-aware SSTA was 
found to provide good accuracy with an average error of 0.01% and 2.07% in 
mean delay and standard deviation, respectively. The maximum error in this 
case was found to be 0.2% and 7.0% for the mean and standard deviation, 
respectively. 
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3.3 Path-Based Timing Analysis 

Path-based statistical timing analysis techniques are based on performing tim­
ing analysis on a selected set of paths in a given circuit. These paths are 
expected to have a significant probability of becoming critical and therefore 
have the strongest influence on the circuit delay pdf. The goal of path-based 
SSTA is to estimate the distribution of the maximum delay of the selected set 
of paths. If the delay of each gate is assumed to be Gaussian, then the delay 
of a single path is Gaussian since it is a sum of Gaussian RVs. The crucial 
step is to estimate the maximum of these Gaussian RVs in order to compute 
the circuit delay pdf. The simplified timing analysis approach discussed in 
Sec. 3.1 is an example of path-based statistical timing analysis. 

Let us consider a circuit where we select a set of A'' paths to perform 
path-based SSTA. Using these paths we can define the cdf of circuit delay as 

F{t) = P (max Di , ...,DN<t) = V:^{f]{Di < t}) (3.60) 

where T, is the correlation matrix for the vector of path delays. The above 
equation can be rewritten by normalizing the path delays to standard Gaus­
sian RVs Zi as 

i ' w = p . ( n ( ^ . < ^ ) ) . (3-61) 

Note that even if gate delays are not assumed to be Gaussian, path de­
lays can be assumed to be Gaussian since a sum of independent RVs rapidly 
converges (for most practical correlation structures involved in circuit delay 
computation) to a Gaussian RV due to the Central Limit Theorem [109]. 

A path-based statistical delay computation was proposed in [54]. The ap­
proach was based on the delay computation of each path and was able to 
account for signal transition times and output loading. However, the analysis 
is performed on one path at a time and the number of critical or near-critical 
paths in an optimized circuit can be large. In general, path-based techniques 
suff'er from the fact that it is unclear how to select the initial set of paths, since 
a path with a significantly smaller delay may become critical for a particular 
combination of process parameters. In addition, performing timing analysis 
on one path a time is computationally very expensive. 

In this section we will discuss the approach proposed in [103] to compute 
bounds for the delay cdf, which is based on the theory of stochastic majoriza-
tion. The first step is to extract a subgraph G' from the complete timing graph 
G that contains the k longest paths of the circuit in terms of their determinis­
tic delay, and then perform a topological traversal of the subgraph to estimate 
the bounds. The approach has a complexity of 0 ( | V | + |£^|), where V and E 
are the sets of nodes and edges in a DAG, respectively. The improvement in 
computational complexity of this path-based approach compared to other ap­
proaches rests on the use of a topological traversal to establish bounds on the 
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cdf of delay of all paths in the network. The path extraction step is performed 
using the approach proposed in [152], which can be used to list the k most 
critical paths in the circuit. 

T h e o r e m 3.9. Let X be an n-dimensional centered multinormal Gaussian 
distribution. Let E i and 1S2 be two nxn correlation matrices such that 

(Ei)i,- > (Ea)*,-, Vz,i e { 1 , . . . , n} (3.62) 

then 

^ 2 . (f]{Xi < ai}] > P s . (r\{Xi < aiU (3.63) 

is true for all vectors a = ( a i , . . . , a^)'^. 

Using the above theorem we can bound the probability in (3.61) as (as­
suming a correlation matrix for path delays to be S ) 

where Emin is the correlation matrix generated by setting all the off-diagonal 
terms to inmij{U)ij, and E ^ a x is the correlation matrix generated by setting 
all the off-diagonal terms to m.3Xij{U)ij. The computation of the bounds is 
simpler because all off-diagonal terms are equal, which implies that all RVs 
have the same correlation coefficient. However, since the probability computa­
tion requires an integral over a non-equi-coordinate (length of each axis in the 
region is different) region, the above step is still computationally expensive. 

The authors in [103] use the ideas of strong and weak stochastic majoriza-
tion to compute the above developed probability bounds. 

Definit ion 3.10. Let X and Y be two n-dimensional RVs. X is said to 
strongly stochastically majorize Y orX.yY, if 

V[X eA]> {<)V[Y e A] (3.65) 

for every Borel-measurable Schur-convex (Schur-concave) set A. 

Definit ion 3 .11 . Let X and Y be two n-dimensional RVs. X is said to 
weakly stochastically majorize Y or X. yy Y, if 

V[X eA]> {<)V[Y e A] (3.66) 

for every Borel-measurable increasing Schur-convex (decreasing Schur-concave) 
set A. 
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Using the above definition and properties of multinormal distributions it 
can be shown that if t = ( t i , ^ 2 , . . . , tn) and t = (t, t , . . . , t) , where 

1 '^ 
i=-y2ti (3.67) 

then t y i [103]. In addition, if t = (f, ;f,..., f), where 

i=mmti (3.68) 

then t )->- t. This implies, 

r (f]{Zi < iU < V (f]{Zi <t}\<P m{Zi < tjj . (3.69) 

Note that the above bounds are defined using the probability of a multi-
normal RV (with same off'-diagonal terms in the correlation matrix) over an 
equi-coordinate region that can be efficiently computed. To compute the above 
bounds, the only required information is the maximum and minimum value 
of the correlation between any two paths. 

Now let us discuss a technique that can be used to compute the maximum 
and minimum of the correlation between two paths in a DAG. Assume that 
the delay of a node i can be expressed as 

di = Ĉ nom,i + CiiPi + biP (3.70) 

where c?nom,i is the nominal delay of the gate, P is the global value of a process 
parameter P , and Pi represents the random variation in the process parameter 
for gate i, and â  and bi are fitting parameters. The variance of node delay 
can then be expressed as 

Var[di] = a\ Var\Pi\ -f b\ VaT\P\ (3.71) 

where variance of Pi represents intra-die random variations and variance of 
P represents inter-die variations. In addition. Pi and P are assumed to be 
independent Gaussian RVs with equal variance. Without loss of generality, 
we can assume that Pi and P are standard Gaussian RVs with zero mean and 
unit variance. The correlation between node delays can now be expressed as 

,,rr{du d,\ = , ^"^^^^'^^-^ = , ^'^^ (3.72) 
^Var[di]Varldj] ^ ( a f + 62)(«2 + ^2) 

The term 
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^' (3.73) 

is defined to be the chip-to-node correlation of node i. Note that the correlation 
between the delay of two nodes can be estimated by taking the product of 
their node-to-chip correlations. 

The delay of any path p can be expressed as sum of node delays, and their 
correlation (or path correlation) can be expressed as 

corr (3.74) 

E m 7 sr^n i 

(Er=i«?+(Er=i hf) (j:u«? + {^.u Ô 
As in the case of node delay we can define a chip-to-path correlation as 

rpath 

Vi:™i«?+(Er=iM' 
(3.75) 

As we perform a traversal of path p assume that the path that includes the 
first k nodes has a chip-to-path correlation of jk and let the next node have 
a delay of (inom,k+i + a/c+iPfc+i + /̂c+i-P- Then, after some algebraic steps we 
can write the chip-to-path correlation of the path that includes the next node 
as 

A+i — 
l - h a 

/ | + « + /̂  
(3.76) 

where 

^ = 2 ^ - f ^^+^ 
h(k) h^{k) 

P = 
^k-\-l 

h^{k) 
k 

h{k) = Y,bi. 

(3.77) 

Thus while traversing a DAG we only need to propagate the chip-to-path 
correlation and h{k) through the nodes. Since computation of the bounds 
requires us to estimate the maximum and minimum path correlations, we 
must compute the minimum and maximum chip-to-path correlation at each 
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PO of the DAG. The product of the two largest and two smallest chip-to-
path correlation coefficient gives the largest and smallest path correlation, 
respectively. 

3.4 Parameter-Space Techniques 

In the previous section we discussed techniques to estimate timing yield using 
the pdf of maximum arrival time at the output of a design. These methods 
are also known as performance-space methods, since we map the impact of 
variations in process parameters to variations in performance. The timing 
yield calculation given the distribution of the maximum arrival time a^ the 
output is fairly simple, however generating the distribution itself is a compli­
cated task. Another class of timing analysis techniques known as parameter-
space methods is the focus of this section. These methods find a region in 
the parameter-space that represents the feasible region in terms of a timing 
constraint on the design. The pdf of the process parameter is then integrated 
over the feasible region, which is much more complicated than the hyper cubic 
feasible region in performance-space. However, this approach to estimate the 
probability that the design satisfies the timing constraint deals with a dis­
tribution that is fairly simple and in most cases assumed to be multinormal. 
Monte Carlo based integration techniques can be used to estimate the timing 
yield by computing the surface integral of the feasible region [48]. However, 
these approaches have high computational requirements that quickly become 
unreasonable when intra-die variations are considered along with spatial cor­
relations and reconvergence. 

3,4.1 Paral le lepiped M e t h o d 

Two different parameter-space approaches that provide reasonable tradeoffs 
between runtime complexity and accuracy were proposed in [65]. The methods 
are path-based timing approaches based on linear models for gate delay and 
slew as a function of variations in process parameters and are amenable to 
any arbitrary distribution of the underlying process parameters. The subset of 
paths to be statistically analyzed are selected based on results from a nominal 
static timing analysis engine. Statistical timing analysis is then performed on 
each of the n paths to estimate the slack, which is expressed as 

p 

Si = 5nom,i + ^aijAPj (3.78) 

where 5nom, i is the slack of path i under nominal conditions, APj represents 
the variation in the j ^ ^ of the p process parameters and aij is the sensitivity of 
the slack of path i to variations in process parameter j . If a positive slack do is 
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Fig. 3.17. The parallelepiped technique to approximate the integral in parameter-
space. The squares in the center and the extreme right are completely feasible or 
infeasible are not subdivided further. (©2005 IEEE) 

desired for each of the paths, then the feasible region in the performance-space 
of path slacks can be expressed as 

^perf = {s\si > do, i - 1 ,2 , . . . , n} (3.79) 

where s is a vector of path slacks. Note that the above region defines a n-
dimensional hypercube in 5-space. An equivalent set (in the sense that a sam­
ple in the corresponding space has the same probability of lying within these 
sets) yparam in the parameter-space can be defined as 

>^param = {AP |5nom, i -^^aijAPj > do, 2 = 1, 2, . . . , n } 

3 = 1 

(3.80) 

where A P is a p-dimensional vector of variation in the parameter-space. Note 
that each of the above n equations defines a hyperplane in the parameter-space 
and the feasible region is a convex polyhedron analogous to the feasible region 
in linear programming problems. Generating each of the corner points of this 
polyhedron is a computationally complicated task and thus determining the 
feasible region yparam is not straightforward. One of the techniques proposed 
in [65] is based on determining the feasible region by recursively dividing the 
complete parameter-space into smaller parallelepipeds [36]. 

A parallelepiped in three dimensions is a prism whose sides are all paral­
lelograms, and it is a convex object. The timing analysis procedure is based 
on the fact that if a set of points satisfy a set of linear constraints, then 
so will any point generated using a convex combination of the initial set of 
points. The complete set of points that can be generated using convex com­
binations of points is also known as the convex hull of the set of points. Since 
a parallelepiped is a convex object, if we find that each of its vertices are 
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feasible in terms of the constraints expressed in (3.80), then the entire par­
allelepiped is feasible. If a parallelepiped has some vertices that are feasible 
and some that are infeasible, then the parallelepiped is divided into smaller 
parallelepipeds (by dividing it in half along each axis). This procedure is re­
cursively continued until a parallelepiped is generated such that all its vertices 
are either feasible or infeasible. At the end of this procedure a weighted sum 
of the parallelepipeds based on their location is calculated to estimate the 
timing yield. This procedure is illustrated in Fig. 3.17, where the squares (a 
parallelepiped in 2-dimensions) in the center (right boundary) of the figure 
are not sub-divided since all their vertices are feasible (infeasible). However, 
any square that intersects the boundary of the convex region is shown to be 
further divided until a square is generated with all its vertices either inside or 
outside the convex region. 

In practice, the initial bounding box as shown in Fig. 3.17 can be generated 
using a hypercube of size which has dimensions of ±4a. Since the probability 
that a given process parameter lies outside this bound is very small, even if the 
space is feasible in terms of performance the weighting coefficient of a region 
outside the bounding box would be sufficiently small to make its contribution 
insignificant. In addition, a limit is imposed on the number of recursion levels 
used in dividing a parallelepiped and a lower bound on the yield is obtained 
by counting squares at the lowest recursion level only if all its vertices are 
feasible. If only some of the vertices are feasible at this point in recursion then 
the entire region is assumed to be infeasible. 

This approach has a complexity that grows exponentially with maximum 
recursion depth R and the dimension of the parameter-space p. This follows 
from the fact that through the course of the algorithm we generate a 2^-ary 
tree. Thus we need to perform 0(2^^) statistical timing analysis checks. If the 
statistical timing analysis check has a complexity that grows as the product 
of the number of paths and process parameters, then the overall complexity 
of this approach is npO{2^^). 

3.4.2 Ellipsoid M e t h o d 

Another approach to determine a lower bound to the region shown in Fig. 3.17 
determines the volume of the largest ellipsoid that can be inscribed in the 
feasible region expressed in (3.80). Then we can integrate the probability 
distribution of the process parameters over this space, which can be easily 
characterized, instead of the complete feasible region defined by the convex 
polyhedron. This is illustrated figuratively in Fig. 3.18. Let us rewrite the 
original constraint set (3.80) as 

l̂ param = { A P | A ^ A P > bo , i = 1, 2, . . . , n } (3.81) 

where bo = yec{di — 5nom, I5 • • •) (vec is an operator that converts a set of n 
numbers to a n-dimensional column vector), and A is a P x n matrix with 
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Fig. 3.18. The ellipsoid technique uses an ellipse to approximate the feasible region 
and provides a simple representation of the region over which the integration is 
performed. (©2005 IEEE) 

Aij = aji. The set of points enclosed by an ellipsoid can be expressed as a 
matrix operation on the set of points within the unit sphere as 

£; = { B y + d | | | y | | < l } (3.82) 

where B is a symmetric positive-definite matrix. The volume of this matrix is 
represented by the determinant of matrix B (det(B)). Therefore, our goal is 
to find the matrix B with the largest determinant such that all points in the 
set E (3.82) satisfy (3.81). This constraint can be represented as 

A ^ ( B y + d ) < b o , | | 2 / | | <1 . 

Writing out the above set of equations component-wise we obtain 

A f B y - f A f d < 6 o , , i = l , . . . , n , ||y|| < 1 

which can be simplified using the Cauchy-Schwarz inequality as 

(3.83) 

(3.84) 

| | B A f | | + A f d < 6 o ^ , l , . . . , n . (3.85) 

Now, we can write the problem of embedding the ellipse with the largest 
volume within the region defined by the constraint (3.85) as 

Max : log det B 
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s.t | | B A f | | + A f d < 6 o , , 2 = l , . . . , n (3.86) 

B ) -0 

B = B ^ 

where B y 0 implies that B is required to be positive-definite and the ob­
jective function still maximizes determinant d e t B since log is a monotonic 
operator. The above problem is a convex optimization problem and can be 
solved using standard non-linear convex optimization techniques. However, 
efficient primal-dual interior point methods are available [144] [157] that solve 
the problem in comparatively few iterations. These techniques are based on 
the ideas of interior-point methods used to solve linear and semi-definite pro­
gramming problems. In fact, semi-definite problems are a special class of the 
above optimization problem in (3.86) [144]. 

3.4.3 Case-File Based Mode l s for Statistical T iming 

The previous two approaches seek a computationally efficient approach to de­
fine the feasible region based on parallelepipeds and ellipsoids. Now, we discuss 
the ideas presented in [96], which seek to define bounds on the yield of a sim­
plified set of paths and develops methods upon which yield based case-files can 
be defined, guaranteeing a given yield if the design meets timing constraints 
using the developed case-file. The approach seeks to avoid the problems as­
sociated with handling spatially correlated variations. In the previous section 
we looked at techniques that used PCA to simplify the correlation structure. 
However, generating the correlation structure from process data is time con­
suming and complicated and in many cases the information is not available 
during the design phase. Moreover, the correlation structure can be process-
dependent, which has a direct bearing on the complexity of timing analysis. As 
discussed, PCA has a computational complexity that increases very strongly 
with increasing grid-size, however it was argued that since PCA is a one-time 
investment it does not increase the complexity of SSTA. If the correlation 
changes significantly due to changes in layout then the above argument falls 
through and we need to perform PCA after changes have been made to the 
layout. The approach in [96] shows that it is sufficient to know the variance 
of process parameters and the number of principal components to perform 
parametric-space timing analysis. The number of principal components can 
be estimated by identifying the number of basic independent physical process­
ing steps that lead to systematic process variations. Alternatively, this number 
can be estimated by measuring the yield of a test-chip fabricated using the 
same process and using the proposed model to back-calculate the number of 
principal components, which can then be used for other designs. 

Let us consider a process parameter X and define the parametric yield as 

Y{x) = V{X{i) < a;, z = 1 ,2 , . . . , n) (3.87) 
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where n is the number of basic structures in the design for which X is defined. 
Let us decompose X{i) as 

X{i) — Xnom + Winter + ^ i n t r a ( 0 (3.88) 

where Xnom is the nominal value of the parameter X , Xinter is the inter-die 
variation which is the same for all i's and Xintra(^) is the intra-die variation 
which is different for each structure i in the design. In addition, the intra-die 
variation has a systematic component that depends on the spatial co-ordinates 
[xi^ Hi) of 2 and a random component. This can be expressed as 

Xin t ra (0 = Xsys{Xi, Vi) + X r a n d ( 0 . (3.89) 

The overall variance in parameter X for the i^^ instance can then be expressed 
as 

^^(^) = ^fnter + Cr2y3(xi, Vi) -|- G'^.^^^). (3.90) 

The systematic component can be expressed using PCA as 

p 

Xsys{xi, Vi) = ^aijZj (3.91) 
3 = 1 

where Zj are Gaussian RVs with zero mean and unit variance. Note that 
the only parameters we are interested in are p, which is the number of PCA 
components, and Ylj o^lj which is the variance of the spatially correlated com­
ponent of variation in parameter X{i). Using the above modeling approach 
we rewrite (3.87) as 

Y{x) = V{Xnom+Xintev-\-Xsys{Xi, y i ) + X r a n d ( i ) < a:, i = 1, 2, . . . , n ) . (3.92) 

Let us normalize the RV representing inter-die variations and define ZQ = 
^inter/winter5 and cousidcr an event A that ZQ is u standard deviations away 
from its mean value. Now using Bayes' Theorem^ which states that 

oo 

ViB)= Yl V{B\A = u)PiA = u), (3.93) 
tC = — O O 

we can write 

/

oo 
V{ Xsys{Xi, Vi) + Xrand(^) 

-oo 

<x- Xnom - cTintisiU, i = 1, 2 , . . . , n)(t){u) du (3.94) 

where 0 is the distribution of ZQ^ which is the standard Gaussian pdf. The 
probability term in the above expression depends on the intra-die component 
of variation alone. Now, let us define 
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^ m a x = m^x{Xsys{Xi, Vi) + Xrand(O) (3-95) 
I 

and let the cdf of X^ax be Vmax, then we can rewrite (3.94) as 

/

oo 
Vmax(a: - Xnom " (^intva^u)(t){u) du 

-oo 

= E [Fmax(^ — ^nom " CTintra^o)] • (3.96) 

Now consider the case when p = 1 and note that this corresponds to the 
case when systematic intra-die variations are perfectly correlated across the 
die. This can be expected to be true for gate-length variations in very small 
designs. In this case we can rewrite (3.96) as 

/

oo •̂  
rand {%) <a- asys{xi, yi)v)(j){v) dv (3.97) 

-oo .•_! • i=l 

where v is a Gaussian RV with zero mean and unit variance. The probability 
in the above expression can be written as the cdf of a standard Gaussian RV 
^ as 

v^M = r n^ (^:i^-(^) (̂,)dv. (3.98) 
Since ^ is a monotonic function we can lower bound Vniax(<̂ ) as 

K_(a)> f n#("-^""^^"7.f^'^'^)).^(.)dv 
J-oofJ{ \ ^rand(^) / 

+ / ^ n ^ f '" '""^^"7>:^"^^ ''^^) ^(^) dv. (3.99) 
^0 fj[ \ ^rand(^) / 

Similarly, taking the maximum and minimum value of the random variation, 
we can rewrite (3.99) when a > 0 as 

V^Ua) > f ^" h---^-M^^m))\ ^(,)dv (3.100) 
J_^ \ maxi(arand(^)) / 

(j){v) dv 
^ .a/m.M<rsys(xuy.)) ^ / ^ - ^ m a x , ( a 3 y s ( ^ i , yi))\ 

Jo V maXi(crrand(0) / 

^ r ^ U-vmaMa,ys{x,,y,))\ ^^^^ ^^ 
Ja/msLX.i(a,^Jxi,yi)) \ m m i ( a r a n d ( 0 ) / a/ m3iXi{crsys{xi,yi)) 

and when a < 0 as 
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M) > I 
a I mini((Jsys(a3i, %){)) 

maXj((Trand(i)) 

/min.i(asys(a;i,?/i)) niini(arand(^)) -'a 

JQ \ mini(crrand(^)) / 

The bound developed above holds with equality if Winter = cTgys = errand = cr, 
in which case the expression for Knaxl^) simplifies to 

K,ax(a) = s [ ^ " ( ^ - ^ i ) ] . (3.102) 

Using (3.102) we can lower bound the yield as 

Y{x) = E ^n ( ^__^nom _ ^^ _ ^̂  (3.103) 

Now let us consider the case where p > 1. In this case we can write (3.96) as 

V^max(a) = ^ X I ^^^^^ "̂  ̂ rand(0 < «, i = 1, 2, . . . , n j 

/•CO /"OO / '^ \ 

= / • • • / ['[[Pi{a)\cl>izi)---<t>{zp)dzi---dzp{3.m) 

where 

Pi{a) = V I Xrand (0 < « -^^ij^j 

Using Cauchy^s inequality 

2^0,ijZj < 
3 = 1 > 

we can develop a bound on Pi{a) as 

E4. \ i ^ -
^ i = i 

(3.105) 

(3.106) 

Pi (a) = 7̂  X aij2;j < a - Xrand(^) 
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>V ^ 2 ; | < a - X r a n d ( ^ ) 

i = l J 

= V Xi.and(0 < « - CTsysiXi, Vi) 

^ 
^ ~" (^sysXp^ii yijyA^j^l ^j 

errand ( 0 

(3.107) 

Through the use of Cauchy's inequality, [96] develops a bound for the 
yield that is independent of the a[jS themselves, and is only dependent on the 
overall variance. Now, using the above expression Vmax can be bounded as 

K.ax(a) > E n̂  

> E ^^ 

^a - GsysiXi, yi)yjYJj=l ^\ 

errand ( 0 

errand (^) 
(3.108) 

From the theory of probability distributions we know that the squared sum of 
p independent Gaussian RVs has a chi-square distribution with p degrees of 
freedom, which is symbolically represented as Xp- Thus, we can rewrite (3.108) 
as 

»^maxi [a) > f 
JO \ ^randV^j / 

(3.109) 

As in the case of p = 1, we can develop bounds for the cases when a is 
either positive or negative using the maximum and minimum values of the 
variance of the random component. 

Let us now integrate the ideas developed above with a path-based timing 
analysis technique. Consider a set of N critical paths and assume that these 
paths are node-and-edge disjoint. This assumption effectively makes the delay 
distribution of each path independent in terms of correlations arising due to 
reconvergence, and the only correlation results from correlated variations in 
process parameters. For this simplified network, we can express the timing 
yield as 

y ( t o ) = P ( ^ , < t o , i = l , . . . , iV). (3.110) 

Now, we can develop bounds for the yield expression in (3.110) using the 
expressions developed above. However, as in the case of electromigration, as 
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the number of paths tends to infinity the yield of a design goes to zero. To 
resolve this contradiction, [96] proposes to use a truncated normal distribution 
for process parameters and derives bounds on the yield of designs which is 
found to be independent of the number of paths n. Let us represent this bound 
as Yo{x). In the context of (3.110), if the desired yield is y we can write 

to = Yo-\y). (3.111) 

If we assume that each of the paths is an M-gate path and that gate delay 
can be expressed as 

k 

Di = J2aiPi (3.112) 

which represents the gate delay as a function of k process parameters (Pk) and 
a^s capture the sensitivity of gate delay to each of the process parameters, 
then each gate delay should satisfy the constraint that 

k 

*^<E^iPi- (3.113) 

This implies that we can construct a worst-case delay model that can be used 
to perform traditional timing analysis on the design while guaranteeing that 
the desired timing yield is achieved. If we assume that the worst-case file is 
developed with equal margins for all process parameters, then we have the 
condition that 

fL = ^ = ... = f!L=A. (3.114) 
ap^ ap^ ap^ 

Combining (3.113) and (3.114) we get 

A = 7 7 ^ (3-115) 

which gives the point at which worst-case files should be developed to 
guarantee a desired yield y for the circuit. It is important to note that such a 
case-file can only be developed for cases where all critical paths have similar 
logical depths, and is not applicable to all DAG topologies. 

3.5 Bayesian Networks 

The Bayesian Network based approach was proposed in [19] and computes 
the exact pdf under the assumption that node delays are independent. Since 
the delay at the inputs of a gate are correlated due to reconvergent fanouts, it 
is not possible to compute the distribution of delay at the output node of the 
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© 

Triangulated DAG 

Fig. 3.19. A Bayesian Network for timing analysis is generated by moralizing and 
then triangulating the DAG [19]. (©2005 IEEE) 

DAG based only on the individual distribution of delay at the inputs of the 
node. Developing an expression for the joint pdf in terms of the gate delay 
pdfs of all nodes in the circuit is also computationally infeasible. Although 
the approach based on Bayesian networks has exponential complexity, the 
complexity grows exponentially with the size of the largest clique in the circuit 
and not the circuit size itself. A clique is a subset of nodes in the circuit, such 
that each pair of nodes are connected by an edge. The size of the largest clique 
in the circuit grows much more slowly than circuit size and results in better 
performance using this approach. Now let us define a Bayesian network. 

Definit ion 3.12. A Bayesian network is a set of variables and a set of 
directed edges between the variables that form a DAG. Each variable A 
has a finite number of mutually exclusive states that it can take and if 
Bi,... ,Bn are its predecessor nodes, then a conditional probability distribu­
tion V{A\Bi^... ,Bn) is associated with each node. 

The approach is based on breaking down the computation of the complete 
joint distribution of delay of each node in a circuit to smaller factors. Let us 
consider a DAG as shown in Fig. 3.19. The probability distribution of the 
delay of node 8 {Xs) can be represented as 

V{Xs)= Yl nXi,X2,...,X^). 
Xi,...,X'r 

(3.116) 
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However, computing the complete joint distribution function of Xs is com­
putationally very expensive. If the DAG has n nodes with each node taking 
m discrete values, then the overall number of computation steps required 
in (3.116) is 0{m'^). However, the above expression can be simplified using 
Bayes' Theorem to 

V{Xs)= J2 n ^ 8 | X i , X 2 , . . . , X 7 ) P ( X i , X 2 , . . . , X 7 ) . (3.117) 

Since X7 and XQ are the only predecessor nodes of Xg, we have 

P{Xs\XuX2, •.•,Xr)= P{Xs\Xe, Xj). (3.118) 

Using the above relation we can simplify (3.116), and then using expressions 
of the form (3.118) for each node we can finally write (3.116) as 

P{Xs)= J2 nX8\Xe,Xy)J2J2^i^r\X5,X4)^T{X2) 
XQ^XJ X5 X4 X2 

J2nX5\X2,Xi)V{Xi)J2n^e\X3.X2)V{X3). (3.119) 
^1 Xs 

Using the above equation the joint probability distribution can be broken 
down so that we do not need to compute the joint distribution of more than 
three variables at a time. The process of breaking down the joint distribution 
into factors is performed by first changing the DAG into a graph by removing 
the directionality with each edge. The graph is then moralized by connecting 
the predecessors of each node by an edge, since the delay pdf of a node can be 
completely determined by the joint distribution of the delay of the inputs. The 
next step involves triangulation of the graph to remove all chordless cycles of 
length greater than three. Thus, Bayesian networks ensure a partitioning of 
the initial DAG such that, by partitioning the circuit into cliques, the delay 
pdf of a node in the graph can be found by computing the joint distribution 
of nodes within a clique. 

The cliques are then arranged within a clique tree, using techniques de­
scribed in [40] [64] [110] as shown in Fig. 3.20. The joint probability distribution 
of Xi and X2 is then passed to clique Ci to obtain the joint distribution of 
X i , X2 and X5 as 

V{XuX2,X,) =V{X,\Xi,X2)V{XuX2). (3.120) 

The same procedure is repeated for clique C2. The computation for clique C3 
is performed as 
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Fig. 3.20. A clique tree that can be traversed to completely determine the distri­
bution of delay at the output node [19]. (©2005 IEEE) 

Table 3.2. The number of nodes, edges and cliques in the DAG for the ISCAS'85 
benchmark circuits, along with the size of the largest clique. The size of the largest 
clique is observed to grow much more slowly than the size of the circuit [19]. 

Circuit Nodes Edges Max Clique 

cl7 

c432 

c499 

c880 

cl355 

C1908 

c2670 

C3540 

c5315 

c7552 

11 

196 

243 

443 

587 

913 

1426 

1719 

2485 

3719 

12 

336 

408 

729 

1064 

1497 

2075 

2936 

4386 

6144 

4 

38 

32 

53 

49 

67 

89 

189 

139 

77 

Cliques (%) 

8 

150 

183 

305 

402 

678 

1084 

1195 

1701 

2593 

V{X2,X^,Xe) = V{Xe\X2)V{X^,X2) 

^ • ^ P ( X 2 , X 3 , X 6 ) X ] P ( X 1 , X 2 , X 5 ) . 

(3.121) 

V{X2) 
X3 Xi 

All the computations as shown in Fig. 3.20 can be performed similarly 
to find the distribution for Xg. Using this approach the complexity of delay 
pdf computation for the output node can be reduced from 0{m'^) to 0{'m'^), 
where c is the size of the largest clique in the graph. Table 3.2 shows the size 
of the largest clique for the ISCAS'85 [23] benchmark circuits. The size of 
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the largest clique is much smaller than the circuit itself, and grows at a much 
smaller rate as circuit size increases. 

The specification of the Bayesian network involves the computation of 
conditional probabilities for all combinations of the states of inputs and out­
puts. To reduce the computational overhead involved, [19] proposes to use the 
following techniques: 

1) Fanin reduction: The number of conditional probabilities that need to 
be evaluated grows exponentially with the number of inputs of a gate. Thus, 
a large reduction in computation can be achieved by breaking down a large 
fanin gate into two stages, each with a smaller number of fanins. 

2) Series reduction: Before constructing the Bayesian network, all series 
edges in a graph are merged into a single edge using the procedure described 
in Sec. 3.2. 

3) Input reduction: If a node has two or more inputs, and the earliest 
arrival time at one of the nodes is greater than the latest arrival time at 
another node, then the connection to the latter node can be broken since it 
does not impact the pdf of delay at the output. 



Statistical Power Analysis 

The two main components of power dissipation are dynamic and static power 
dissipation. Dynamic power dissipation corresponds to power dissipated dur­
ing the switching of nodes in a circuit and is spent in charging capacitances 
associated with the transistors and wires. On the other hand, static power 
dissipation corresponds to power dissipation due to the continuous flow of 
currents through the devices even in steady-state, when the logic states are 
not changing. In this chapter, we will develop techniques to statistically ana­
lyze different components of power. Let us first review some of the basics of 
power dissipation. 

The dynamic power dissipation is given by the well-known equation 

Pnyn = ^ddf Z_j ^gatePswitch^ (4-1) 
gates 

where the summation is over all gates in the design. Cgate is the capacitance of 
a gate, Vdd is the supply voltage, / is the frequency of operation and Pswitch is 
the switching probability of the gate. Here we have neglected the short-circuit 
component of dynamic power dissipation, which is due to the current that 
flows from the power supply to the ground when the devices are switching 
and both the pull-up and pull-down network of a gate are conducting. This 
component of power dissipation is generally small and can be safely neglected. 
However, it is important to note that if a design is highly unoptimized and 
has large transition times, then the short-circuit power dissipation can form 
a significant fraction of the total power dissipation. 

Leakage power has grown with process scaling process to contribute a sig­
nificant fraction of the total power budget. A study from Intel Corporation 
shows that leakage power will contribute approximately 50% of the total power 
dissipation in the 90 nm technology node. The prominence of leakage currents 
{Ioff) in modern integrated circuits (ICs) has been spurred by the continued 
scaling of subthreshold voltage (Vth) and gate oxide thickness [Tox)- In ad­
dition, both subthreshold and gate leakage currents are known to be highly 
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sensitive to process variations due to its exponential dependence on many of 
the key process parameters. Hence, it is critical to analyze leakage power sta­
tistically. The focus of this chapter will be to develop techniques which enable 
efficient and accurate statistical analysis of leakage power. 

4.1 Overview 

Leakage currents can arise due to varying phenomena. Reference [28] lists eight 
different mechanisms of leakage current. Not all these components of leakage 
are important during normal modes of operation, and subthreshold leakage 
{Isub) and gate leakage {Igate) currents are the most significant components 
of leakage current. In future technologies, band-to-band tunneling (BTBT) 
[121] leakage is expected to increase considerably and will form another major 
component of leakage power dissipation. 

The exponential relationship dependence of Isub on Vth and Igate on TQX 
is central to the problem of both leakage analysis and optimization. This 
continued scaling in Vth and Tox in scaled technologies in order to maintain 
good device switching speeds at low supply voltages, has been the reason for 
large leakage currents. With the proliferation of portable applications that 
spend significant time in standby mode, large loff values become a criti­
cal roadblock to improved battery lifetimes [62]. Thus, leakage power min­
imization has become a key objective and a number of methods for leak­
age reduction have been proposed for standby mode and during run-time 
[76],[66],[95],[128],[151],[57],[68],[149],[148],[107]. 

In addition to the rapid growth of loff with each technology generation 
fluctuations of loff from die to die or even gate to gate have also increased. 
This is especially true for subthreshold leakage currents, since controlling Vth 
is made more difficult in nanometer scale MOSFETs by Drain-Induced Bar­
rier Lowering (DIBL) and discrete dopant effects [13]. While DIBL has been 
a problem since channel lengths first reached submicron dimensions, it is ex­
acerbated in sub-100 nm devices by fundamental scaling limitations on oxide 
thickness (Tox)- Reductions in Tox have kept DIBL at reasonable levels since 
the gate could also be more strongly coupled to the channel. Discrete dopant 
effects are important only in very narrow devices at advanced technologies 
but lead to potentially large random fiuctuations in channel doping levels, 
and hence, Vth- In a projected 50nm technology, the Vth 3cr uncertainty due 
to discrete dopant effects is expected to be comparable to the magnitude of 
the nominal Vth itself [13]. For Tox values below 1.5 nm, gate oxide leakage 
effects become significant and limit the scalability of Tox - Although gate oxide 
thickness is generally well controlled in a process, the strong exponential de­
pendence of Igate on Tox causcs large variations in Igate due to small variations. 
The BTBT component of leakage, expected to become a major contributor 
in future generations, is also exponentially sensitive to variation in channel 
doping. 
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Fig. 4 .1 . Dependence of mean and standard deviation of leakage current on 3(7 
variation in gate-length. 

With the growing uncertainty in process parameters, estimation of loff 
for a device becomes difficult, making the use of traditional delay-oriented 
corner models for leakage analysis impractical [98]. Worst-case model files 
can easily exhibit 10-lOOX larger loff than a nominal device, which leads to 
excessive guard-banding and overly conservative design practices. However, 
ignoring loff variability altogether is also not an option since a small number 
of very leaky devices can easily dominate the total static power consumption. 
Figure 4.1 shows that the average leakage can be much larger ( 30% for PMOS 
with a 3c7 variation in gate-length of 12.5%) than the nominal leakage due to 
the exponential dependence of current on the gate-length. This observation 
also invalidates the use of nominal device model files for even typical dies. 
The results also show that the degradation of PMOS leakage current with 
variations in the gate-length is much worse than the NMOS counterpart with 
the same degree of gate-length variation. This is due to the fact that DIBL 
effects in PMOS devices are typically worse than in NMOS devices [142]. 

Monte Carlo (MC) simulations provide a method to analyze the effect of 
process variations. However, MC techniques are very expensive in terms of 
time complexity and cannot be used to efficiently guide leakage optimization. 
Hence, an analytical approach to leakage current estimation is very useful to 
enable the prediction of leakage power in a design before it has been fabricated 
[69]. In this chapter, we first discuss leakage models and then discuss tech­
niques to estimate the mean and variances of diff'erent components of power 
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dissipation at the chip-level proposed in [69]. We then discuss an approach to 
estimate the mean and variances of leakage currents for a design described at 
the gate-level. A technique proposed to estimate the complete probability dis­
tribution function (pdf) of subthreshold leakage using empirical subthreshold 
equations considering both intra-die and inter-die components of variation is 
then presented. Finally, techniques to estimate the impact of environmental 
parameters on leakage currents proposed in [136] are discussed. 

4.2 Leakage Models 

We first discuss the traditional device equations that are used to model various 
components of leakage currents that we will be using throughout this chapter. 
The subthreshold leakage current is the current that flows between the source 
and drain of a device when the device is turned off. The charge transport 
occurs through diffusion along the surface of the device and is expressed as 

where 

hu. = Jo exp ( ^ i ^ j (̂ 1 _ exp ( ^ - ^ ) ) (4.2) 

h = iJ^^Co^{WIL,sf)V^{n - 1) (4.3) 

where CQX is the gate oxide capacitance, VT = KT/q is the thermal voltage, 
Vth is the threshold voltage of the device, and n is the subthreshold swing 
coefficient. The threshold voltage of a device depends on the source-to-body 
voltage Vsb and the drain-to-source voltage Vds of the device due to body and 
DIBL effects, respectively, and can be expressed as 

Vth = Vfb + |20p| + -^J2qNches{\2(l>p\ + Vsb)- XdVds (4.4) 

where Vfb is the flat-band voltage, (pp is the surface potential, A^ is the body 
effect factor, q is the charge of an electron, Nch is the channel doping concen­
tration, Es is the permittivity of Silicon, and Â^ is the DIBL coefficient. 

The gate leakage current results from the tunneling of electrons (holes) 
from the substrate to the gate of a NMOS (PMOS) device. As shown in 
Fig. 4.2, the gate tunneling current is composed of several components. Igso 
and Igdo are the leakage currents that flow through the gate-to-S/D extension 
overlap regions, and Igc is the gate-to-inverted channel tunneling current. A 
fraction of Igc flows to the source (Igcs) and the drain (Igcd) [25]. The key 
dependency of gate leakage on process parameters can be expressed as [28]: 

2 

Tox J ^ V ^ ^dd 
ioate = WAj^Yexp(-B,^] (4.5) 
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Fig. 4.2. Components of tunneling gate current. 

where TQX is the oxide thickness, W is the device width, and Ag and Bg are 
process dependent physical parameter. The equation shows that gate leakage 
is a strong function of gate oxide thickness. 

The BTBT component of leakage of a device in the off state can be ex­
pressed as [93]: 

6 IBTBT^ Y^ WLkA^j^Vddexp 
side, bottom E. 

-BE: ,3/2 

a 
(4.6) 

where Lgide = ^j the junction depth, I/bottom = LSDE + Ld {Ld being the 
length of the junction), ^side and ^bottom are the electric fields at the side 
and bottom junctions, A and B are physical parameters, and Eg is the band-
gap voltage. The dominant component of BTBT leakage comes from the side 
component since the doping concentration is strongest at the sides of the 
junction, the above expression can be simplified as 

I BTBT = WXjA-
E. 

1/2 Vdd exp 
-BE\ 

,3/2 

(4.7) 

where 

2qNhaloNsd (.. ,KT (NhaloNsd (4.8) 

where N^aio is the halo doping concentration, Nsd is the source/drain doping 
concentration, and n^ is the intrinsic doping concentration. 

These expressions define the dependence of various components of leak­
age currents on the device characteristics. We will discuss approaches to use 
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these equations directly for statistical analysis, however it will become ob­
vious as we go through the next few chapters that it is better to simplify 
these equations. This is achieved by capturing the strong sensitivities from 
the above expressions and using empirical expressions to model the leakage 
current components. 

4.3 High-Level Statistical Analysis 

High-level statistical analysis techniques are useful to estimate performance 
parameters of a design when detailed information about the design is not avail­
able. Early in the design stage detailed gate-level information is not available 
and only parameters such as the total device width and the relative fraction 
of on/off devices in a design are available. Considering 4.1 we note that due to 
the linear dependence of dynamic power dissipation on gate-length and gate 
width, any given variation in these process parameters results in a similar 
variation in dynamic power. However, leakage components are exponentially 
related to process parameters and small variations in these process parameters 
result in large variations in the leakage current itself. 

Since leakage currents have very wide distributions, using worst-case mod­
els can result in huge overestimation of leakage. In addition, as noted before 
the nominal values of process parameters do not correspond to the average 
value of leakage currents. Such information can, therefore, become crucial in 
allowing the designers to make critical changes regarding leakage power dis­
sipation early in the design process. For example, such information can point 
designers to sections of the design where excessive leakage power is consumed 
and specialized leakage reduction techniques can be utilized to control the 
leakage power dissipation for those sections of the design. 

To estimate the impact of the within-die component of variation in leakage 
power, we discuss the approach proposed in [69]. The variations in the process 
parameters are assumed to be normally distributed. Given an estimate of 
the total device width in a design the average subthreshold leakage current 
considering variations can be expressed as 

where /Q is the nominal subthreshold leakage current per unit width, w is the 
total device width, fi and a are the mean and standard deviation, respectively, 
of the process parameter represented as x [69]. The above equation can be used 
to consider the impact of variations in both gate-length or threshold voltage. 
In the case where x represents gate-length, a captures the relationship between 
gate-length and subthreshold leakage whose numerical value can be estimated 
using SPICE simulations. If the parameter x represents Vth then a will be nVr 
as in (4.2). The second exponential term in the above equation thus captures 
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the dependence of subthreshold leakage current on the process parameter 
being considered. The first exponential term in the above equation represents 
the Gaussian distribution of x and provides the fraction of device width that 
can be expected to be associated with a given value of the process parameter 
X. Equation (4.9) can then be re-written as 

E[Isub] = IQW 

= IQU) 

1 f a^\ r--

1 
a^/2^^ ' 'PV2A2 2Avŷ  exp 

— {x — ji)'^ fi — X 

2^2 4- A + 2 A ^ ' ^ " 

X — fi ^ V 

~V2a 72A/ 
dx. (4.10) 

The integral in the above equation is then rewritten using the transformation 

dx = V2adt (4.11) t = 
X — LL a 

L V2a A/2AJ 

which simplifies the integral to 

r^rr 1 r 1 / CT^ \ f s/2„ ^ s/2X / ON , 

E[Isub] = hw—j= exp —^ 1 / exp \-t ) d< 

hw ( a^\ 

v/2o V2X) V2o V2X 
(4.12) 

where erf is the error function. The algebraic details regarding the derivation 
of (4.12) can be found in [69]. Note that when a; :$> 1 then erf{x) —> 1 and 
both terms in the error function in (4.12) become much greater than one. 
Therefore, the final simplified expression for leakage can be written as 

E[Isub] = lowexp 
2A2 

(4.13) 

The results in [69] present leakage power measurement data for 960 sam­
ples of a 180 nm 32-bit microprocessor. Upper bound of leakage current was 
estimated by assuming that all gates are operating at their worst-case corner, 
while the lower bound was estimated by using nominal values for all process 
parameters. Results show that for most of the samples, using a lower bound 
as an estimate underestimates the leakage by as much as 6.5X and using an 
upper bound results in overestimation by 1.5X. The technique discussed above 
shows a good correlation with data and the calculated leakage is within 20% 
of the measured value for more than 50% of the samples, as compared to 11% 
and 0.2% when upper and lower bounds are used as estimates. 
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Fig. 4.3. Ratio of measured to calculated subthreshold leakage current distribution 
for the upper and lower bound analysis techniques described [69]. (©2005 IEEE) 

In general, The technique can be extended to estimate other components 
of leakage power as well. The key step in this technique was to simplify the 
subthreshold leakage model to only have an exponential dependence on the 
process parameter under consideration (if the dependence is expressed linearly, 
as in the case of device width, then the problem boils down to the situation 
in dynamic power estimation). Though the simple model is inexact, as can be 
easily seen by looking at the expressions in (4.2) and (4.5), reasonable accuracy 
can be achieved by using a fitting parameter (a in this case). Models which 
satisfy this criterion have been developed for gate leakage [78] and are found to 
provide good fidelity and accuracy. The approach outlined above can then be 
directly extended to consider the impact of variations in gate leakage. Similar 
simplifications of leakage expressions will form the cornerstone of many of the 
techniques that we will discuss in later sections. 

4.4 Gate-Level Statistical Analysis 

In this section we will develop techniques to analyze the power dissipation 
of a gate-level design. As compared to the previous section, the approaches 
discussed in this section will be concerned with the estimation of leakage 
currents for individual gates and then the summation of these estimates to 
calculate the overall leakage of a design. In this section, we will first develop 
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a general technique that has been used to estimate the mean and variance 
of leakage currents [129] and present the appHcation of this technique to es­
timate the mean and variance of various leakage current components. Later 
in the section we will discuss the techniques to estimate the complete pdf of 
subthreshold leakage current considering both intra-die and inter-die varia­
tions [117]. The technique used to integrate intra-die and inter-die variation 
is fairly general and can be easily incorporated into other approaches, that 
consider only intra-die variation, to consider both components of variation as 
well. 

4.4.1 Dynamic Power 

If we consider the equation of dynamic power dissipation (4.1) it is evident that 
process variation result in variation in dynamic power only through variation 
in the switched capacitance, as the switched capacitance varies linearly with 
gate-length and gate widths. Furthermore, the variation in dynamic power 
dissipation is much smaller compared to variations in leakage power which de­
pends exponentially on a number of process parameters, as we saw earlier. The 
impact of variations in gate-length or gate width on dynamic power dissipa­
tion can be easily estimated since the dynamic power dissipation is a weighted 
sum of the individual random variables (RVs) (representing gate-length or gate 
width). The gate-lengths are assumed to come from a multinormal probabil­
ity distribution, and can be mapped to a linear combination of independent 
RVs using principal component analysis as discussed in Chap. 2. Therefore, 
the sum can be represented as another Gaussian RV. The parameters of the 
Gaussian RV are estimated using the following property of Gaussian RVs. 

Let Xi be an independent Gaussian RVs with mean /x̂  and standard de­
viation ai and let F be a hnear combination of the X^'s which is expressed 
as: 

F - ^ a , X , - } - 6 (4.14) 
i 

then the mean and variance of Y can be expressed as: 

/ i y = ^ a ^ / X i -\-b 

<^y = JZ<^l<^l (4-15) 

On the other hand, dynamic power dissipation has an inverse dependence 
on TQX and, hence it is not as straightforward to consider this impact. It is 
important to note that the TQX variations are generally very well controlled as 
compared to the variations in gate-length and gate width, and the variations 
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in Tox can generally be ignored while considering dynamic power. Also note 
that variation in process parameters results in a similar variation in dynamic 
power in terms of the ratio of SD and mean. Hence, variations in dynamic 
power dissipation have not been a pressing concern, compared to the variation 
exhibited by leakage power. 

4.4.2 Leakage Power 

The first step to estimate the overall pdf of leakage power dissipation is to 
estimate the mean and variance of different components of power dissipa­
tion. As in the previous section, we assume that the variations in the process 
parameters are normally distributed. 

Estimating Parameters of the Distribution 

Considering only intra-die variations, let g(x) represent the dependence of 
some component of leakage current on a process parameter x which is assumed 
to be distributed according to the distribution function f{x). The mean or 
the expected value of g{x) can then be expressed as 

/

oo 

9{x)f{x)dx (4.16) 
-OO 

using the Law Of The Unconscious Statistician (LOTUS). Then using Taylor's 
formula, g{x) can be expanded around the mean value of x and (4.16) can be 
re-written as 

E [g{x)] = r (f^^-^ix- rjA f{x)dx (4.17) 

= f2^ Ti^-vrrndx (4.18) 
where r] is the expected value of f{x). The term within the integral in (4.18) 
corresponds to the central moments of f{x). If f{x) is assumed to be Gaussian 
then only the terms corresponding to even values of n contribute to the sum. 

Since variations in process parameters are generally within a range of 10-
30% of the mean value, we can assume that x is concentrated around its mean 
value. Using this assumption, we can neglect higher order terms in (4.18). 
Note that improvements in accuracy can only be obtained by considering two 
additional higher order derivatives,. Each such addition in (4.18) provides two 
orders of improvement in accuracy. A similar approach can be used to estimate 
higher order moments of p(x), where instead of taking the Taylor's expansion 
of g{x), the appropriate function of g{x) is used. 



4.4 Gate-Level Statistical Analysis 143 

Having established the general approach to estimate the parameters of 
any source of power dissipation, let us now consider the case of subthreshold 
leakage in a single device which is turned off. In the off-state, the gate-to-
source voltage (Vgs) of a device is zero and the drain-to-source voltage (Vds) 
is Vdd^ which results in the simplified expression for subthreshold leakage as 

/„. = /. (l - exp (:f!) ) e.p ( ^ ) ^ /i »p ( ^ ) . (4.19) 

. Equation (4.19) shows that the subthreshold leakage current is a function of 
the threshold voltage, drawn dimensions, and gate-oxide thickness. Hence, to 
estimate the variation in subthreshold leakage, the dependence of threshold 
voltage on other process parameters needs to be established. 

The approach developed in [129] uses simplified expressions for the body 
effect and DIBL coefficient to estimate this dependence. If we consider varia­
tions in gate-length alone, the variation in threshold voltage can be expressed 
as 

+ ^)^^Kl^>^, (4.20) AVth ^ dVthd)^ dVthdXb _ ^v„, 
AL dXd dL dXb dL 

The dependence of the body effect coefficient A(, on the process parameters is 
expressed as 

(4.21) 

On the other hand, the physical dependence of Â^ on process parameters is 
much more complicated and empirical expression developed in [97] can be 
used. Using (4.20), and isolating the terms in (4.19) which depend on gate-
length we obtain: 

/^„, = IM^exp f-Vtk + Kl^'iL-Kom)\ ^ ^^K^L (4 22) 
L \ nVr I L 

Hence, using PL(^ ) = e^^^/x in (4.16) we can estimate the mean of leak­
age power considering variations in gate-length. Expressions similar to (4.20) 
are developed in [129] to estimate the variations in subthreshold leakage due 
to variations in other process parameters. This approach to estimate the de­
pendence of threshold voltage on process parameters neglects all second-order 
effects in the body-effect coefficient and DIBL and, therefore, results in inac­
curacies. An improvement to this approach was recently proposed in [156]. In 
this work the dependence of dVth/^L in (4.20) on gate-length is captured by 
calculating its average value over the range of variations in gate-length (di3cr). 
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Having analyzed the simphfied problem of evaluating the mean and vari­
ance of an individual device, let us now consider the case when a set of devices 
are connected in parallel or series, which is used in the construction of most 
gates. Since the different devices in a gate are in close proximity of each other, 
the RV defining the variations in these gates can be assumed to be perfectly 
correlated. We now consider the case where there are n devices in parallel. In 
this case, the overall leakage Isub,parr can be expressed as 

n 

J-suh,parr ^^ / ^ J-sub,i (4.ZOJ 

i = l 

where Isub.i is the individual leakage of each device. The evaluation of the 
mean and variance of the set of parallel devices now becomes straightforward 
and can be expressed as 

M [-^sub^parr 

n 

Var [Isub ] = X^C72[/SUM]- (4.24) 

The case of series-connected devices is much more complicated since no 
accurate and simple expression is known to exactly estimate the leakage cur­
rent through a stack of off devices. Various approaches for the analysis of 
leakage current in stacks have been developed [33], [56]. The approach in [56] 
is simple but is not found to provide accurate results. The approach in [33] is 
more accurate and general in the sense that it can model stacks of arbitrary 
length. Based on this approach, statistical models for the leakage current of a 
stack with two off transistors can be obtained with some minor assumptions. 
The approach can in theory be extended to stacks with a larger number of off 
transistors, although the complexity increases rapidly with the stack length. 
For the purpose of analysis, [33] assumes that the on transistors in a stack 
behave as short circuits which is true except for the case when the top-most 
transistor of the stack is on and induces a Vth drop in the voltage seen by the 
rest of the stack. Barring this case, the source-drain voltage of the lower off 
transistor (since we have only two off transistors in the case) is given by [33], 

T/ ^ ^ ^ 1 (4.25) 

The leakage current expression (4.2) for a stack can then be simplified to 

T T (''^th\ r (-{yth + nVds)\ , . „„. 
Isub,series == -̂ 0 exp I —^ j - IQ exp I — ) (4.26) 
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which expresses the leakage current as a difference of two exponential 
terms. To estimate the mean and SD of this expression we utilize the fact 
that 

E[X - y] - E[X] - E[Y] 

E[{X - y)2] = E[X'^] + E[Y^] - 2E[XY] (4.27) 

where X and Y are any two RVs. Note that, under the assumption that vari­
ation in Vds are small, the terms whose expected values need to be evaluated 
are in the same form as (4.19) and the same steps as discussed above can be 
repeated. Again, we notice that approximations need to be made while per­
forming statistical analysis, if physical models for leakage currents are used, 
which can result in inaccuracies. 

The general approach outlined in (4.16)-(4.18) has also been used to es­
timate the mean and variance of gate leakage and band-to-band tunneling 
(BTBT) leakage [121] currents in [94]. Having established techniques to es­
timate the mean and variance of different components of leakage power dis­
sipation, we now discuss techniques to estimate the complete pdf of leakage 
currents. First, we develop a new empirical model to obtain the desired ac­
curacy with certain key characteristics which simplifies the estimation of the 
complete pdf while providing reasonable accuracy. 

Simultaneous variation of multiple parameters 

The approach discussed above can be easily extended to consider simultaneous 
variations in process parameters. The problem of evaluating the leakage in this 
case is simplified by our earlier approximation of linearizing the effect of the 
change in threshold voltage with the process parameters (4.22). Under these 
assumptions the expression of the subthreshold current can be expressed in 
the form of (4.22) as 

Isub = Kgi{x)g2{y) (4.28) 

where x and y are two different process parameters. Ideally, the choice of pro­
cess parameters which are used in the analysis should be made such that the 
parameters are independent of each other. This implies that parameters such 
as gate-length and threshold voltage should not be used as process parame­
ters since variations in gate-length result in variations in threshold voltage. A 
better approach in this case is to consider variations in gate-length, channel 
doping and gate oxide thickness, which can be assumed to have independent 
variations. Under this assumption, we have a product of two independent RV 
in (4.28), which can be handled using the fact that the expectation of the 
product of two independent RVs is the same as the product of their expec­
tations. Using this fact, we can estimate the mean and standard deviation of 
the leakage current in terms of the functions in (4.28) as 
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^x[I,ub] = E[Kg^ix)g2{y)] = KE[g,{x)]E[g2{y)] 

'^[Isub] = ^JK^{E[gUx)]E[g|iy)] - E^[g,{x)]E^g2iy)]). (4.29) 

The terms in the right hand side of (4.29) can be evaluated using the technique 
developed to estimate moments of leakage currents considering variations in 
a single parameter. 

The same ideas can also be extended to estimate the parameters of total 
leakage [94]. The total leakage can be expressed as: 

^leak = Igdo + hub (4.30) 

Then, the mean and SD of total leakage can be obtained using the first two 
moments, which are expressed as: 

E[Iieak] — E[Isub] + ^[Igdo] 

E[llak] = E[Isub] + E[Igdo] + 2E[Isul,Igclo]. (4.31) 

The cross product term has the same exponential form as the other compo­
nents of leakage currents and is treated similarly, by writing it as a product 
of functions of single process parameters. 

The results obtained in [94] are shown in Tables 4.1 and 4.2 where Vf^ is 
the fiat-band voltage, Ndep is the channel doping concentration and Nhaio is 
the halo doping concentration. The results show that Monte Carlo and ana­
lytical results track very well except for cases when the variations are larger 
than 20%, where the SD shows significant error. This could result from the 
fact that only the first few terms are retained in the Taylor's expansion in 
(4.18) and higher order terms become important when variations in process 
parameters are larger. As expected, gate leakage shows the strongest sensitiv­
ity to variations in Tox due to its strong exponential relationship. Subthreshold 
leakage shows strong sensitivity to variations in L, Tox, and V}^, but is much 
less sensitive to variations in doping concentrations, corroborating the results 
found in [129]. Generally, variations in TQX are very well controlled and most 
of the variations in Igui, result from variations in gate-length and threshold 
voltage. 

Estimating the probability density function 

We begin by describing the method to compute an analytical expression for the 
pdf of subthreshold leakage for an individual device using simplified empirical 
models. First, the dependence of Isub on L is characterized by the function h 
such that Isub = h{L), which is then used to determine the inverse function 
9{hub)i that expresses L as a function of Isub '- L = h~^{Isub) = 9{Isub)' In 
order to compute the pdf of the leakage, it is essential that: 
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Table 4.1. Comparison of the analytical approach with Monte Carlo simulations in 
estimating the impact of process variation on Igdo (Nominal value is 8.43nA) [94]. 

Parameter 
Varied 

Vdd 

-L OX 

J- OX 

LsDE 

W 

All 

All 

Variation 
(3CT) 

20% 

10% 

10% 

20% 

10% 

10% 

20% 

Mean(nA) 
Monte Carlo 

8.54 

9.30 

12.50 

8.44 

8.43 

9.40 

12.89 

Mean(nA) 
Analytical 

8.56 

9.32 

12.55 

8.43 

8.43 

9.36 

12.74 

SD(nA) SD(nA) 
Monte Carlo Analytical 

1.71 

4.43 

14.20 

0.56 

0.28 

4.55 

14.82 

1.68 

4.29 

11.00 

0.56 

0.28 

4.46 

11.80 

Table 4.2. Comparison of the analytical approach with Monte Carlo simulations in 
estimating the impact of process variation on I sub (Nominal value is 3.72nA) [94]. 

Parameter 
Varied 

Vft 

Vdd 

^^ pocket 

Ndep 

L 

-Lox 

w 
All 

All 

Variation 
(3C7) 

10% 

20% 

20% 

20% 

20% 

20% 

10% 

10% 

20% 
(y^^=10%) 

Mean (n A) 
Monte Carlo 

7.09 

3.74 

4.44 

3.78 

6.97 

4.51 

3.73 

9.11 

17.55 

Mean (n A) 
Analytical 

6.08 

3.74 

4.45 

3.79 

6.27 

4.54 

3.73 

8.38 

15.00 

SD(nA) SD(nA) 
Monte Carlo Analytical 

11.70 

0.46 

2.91 

0.72 

13.62 

3.17 

0.38 

19.18 

61.43 

7.54 

0.43 

2.62 

0.72 

9.45 

2.88 

0.38 

11.66 

38.00 

(1) the function ^ is a closed-form expression, and 
(2) the function h is differentiable over the given range of currents. 
Unfortunately, the complexity of the relationship between leakage current 

and channel length (i.e., the function h{L)) does not allow for the derivation of 
g{Isub) such that it satisfies these two conditions. Therefore, an approximate 
empirical fit has to be used for the function h{L) so that the required inverse 
function can be computed while maintaining good accuracy. Given the closed 
form expression of g{Isuh) and the pdf of L = fx{L)^ we can express the pdf 
of I sub using the above expressions as [109]: 

JyKhuh) = — j ^ . — (4.32) 
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where fy is the pdf of I sub- In this analysis, we assume that the drawn gate-
length has a Gaussian distribution with a fixed mean ji and standard deviation 
a. Using these assumptions the pdf of Igub can be written as follows: 

Finally, to calculate the mean and standard deviation of the leakage current 
distribution of a gate, we perform numerical integration of fy{Isub) over the 
given range of leakage currents: 

fJ^lhub] = E[Isub] = y ^hubfyihub) 

(^[hub] = 

\ 
E'?.»W..1.)-(E'- 'AU»I.)] Ĵ  (i-3i) 

The next step is to compute fy{Isub) ^^ more detail for a single device. We 
initially discuss the approach for a single device and then extend the approach 
for a stack of two or more transistors. 

Single Transistor Stacks (Inverters) 

Based on the BSIM3 device model, the subthreshold current through a device 
can be expressed as (4.2). The term (1 — exp{—Vds/VT)) can be neglected 
for an inverter since Vds = Vdd is much greater than the thermal voltage Vr-
We also set Vgs = 0 since the source nodes of either device in an inverter 
are tied directly to a supply rail or to the ground rail. Vth is the threshold 
voltage and is given by (4.4). These equations in principle enable us to calcu­
late the mean and standard deviation (SD) using the device model-files for a 
given technology. However, analytical expressions for leakage current based on 
these parameters are found to fit very poorly even for 180 nm technologies. In 
particular, nebulous definitions for the values for technology constants such 
as Nsub and Xj produce large errors in the analytical current expressions. 
Furthermore, the models for body-effect coefficient and particularly DIBL co­
efficient used in the previous section to estimate the mean and variance of 
subthreshold leakage are inadequate and can produce unrealistically small 
values for these parameters resulting in large errors in the values for leakage 
currents. 

Note that the actual BSIM3 model used to compute leakage current in 
SPICE simulations is much more complex than these simplified expressions. 
In addition, the constraints placed on functions g and h necessitates the use 
of further simphfications to derive a suitable analytical expression for current 
in terms of drawn gate-length. Figure 4.4 shows that a simplified BSIM3 
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Fig. 4.4. Comparison of the BSIM3 fit and analytical fit for h{L) with results from 
SPICE. 

model vastly overestimates the leakage current for devices with gate-lengths 
that deviate by more than 5% from the nominal value. Since these conditions 
correspond to the devices that contribute a large portion of leakage current, 
the resulting pdf will be skewed to the right, rendering the simplified BSIM3 
fit unacceptable. Therefore, we use a new empirical model to express leakage 
current / as a function of L. This empirical model is expressed as 

hub = qi exp {q2L + qsL^) = h{L) (4.35) 

This expression circumvents the use of Vth as an intermediate variable in 
expressing the current as a function of the gate-length. However, it maintains 
the general form of the BSIM3 model and has the following properties: 

(1) It preserves the exponential dependency of I on L. 
(2) It is easily invertible (as shown below). 
(3) It yields closed form expressions for both I and L. 
(4) It accurately fits currents for both individual NMOS/PMOS as well as 

transistor stacks. 
Figure 4.4 also shows the comparison between the values for leakage cur­

rent obtained from SPICE simulations and the values obtained from both the 
simplified BSIM3 fit and the empirical fit for a single stacked device (4.35) 
for a 10% variation in gate-length. From the plot it can be seen that the em­
pirical model provides a much better fit over a wide range of channel lengths. 
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Fig. 4.5. Comparison of the SPICE pdf with the analytical pdf 

Equation 4.35 is a simple exponential quadratic equation that can be inverted 
to obtain an analytical expression for L as follows: 

^ = 55 h* + Iq^-Aqsln fJi-\\ = 
\-^SUb y 

= 9{Isub) (4.36) 

Using the expressions (4.33) and (4.34) with the functions g and h as 
specified by (4.35) and (4.36), we can obtain the pdf of / . Figure 4.5 presents 
the comparison between the pdf obtained from SPICE simulations and the 
pdf obtained analytically for a single stacked device with 10% 3a variation in 
gate-length. The plots of the pdfs, including the tail portion, match well and 
have a lognormal shape. 

Series-Connected Devices (Stacks) 

In the case of a stack of transistors, the gate-length variation impacts the 
leakage current of the bottom transistor in the stack in two ways: 

1) gate-length variation of the bottom transistor directly modulates its 
threshold voltage. 

2) gate-length variation of the top transistor indirectly affects the leakage 
of the bottom transistor by altering the voltage drop across the top transistors 
of the stack. 

Hence, the analytical expression of current as a function of gate-length is 
more complex for a stack of multiple transistors. Since the devices in a stack 



4.4 Gate-Level Statistical Analysis 151 

are placed close together in the layout, the simplifying assumption can be 
made that their gate-length variations are perfectly correlated. Similar empir­
ical expressions for stacks of two and three transistors are also derived, and 
the method can be extended to stacks of arbitrary length in a straightforward 
manner. 

In an inverter the term (1 - exp{-Vds/VT)) in (4.2) was neglected since 
the drain-source voltage Vds in the leaking device was much greater than 
the thermal voltage Vr. However, for a device with stacks of two or three 
transistors, the value of the intermediate node voltage {Vds2 and Vdss) is much 
lower. The empirical model (4.35) is sufficiently general enough to model the 
leakage current in stacked circuits using the same general form. The current 
can be empirically modeled with a new set of fitting parameters in (4.35). 
Naturally, this set of constants is different for different stack depths and also 
for NMOS and PMOS devices, since the drain-source voltages differ in these 
situations. Equation (4.36) is then solved using the suitable coefficients in the 
quadratic expression to obtain the value of channel length as a function of 
I sub' The pdf for stacked devices can be similarly determined. 

As discussed in the previous section, the on transistors in a stack can be 
approximated as a short circuit except for the case in which the on transistor 
is at the top (bottom) of a NMOS (PMOS) stack. This effect can be modeled 
by estimating the leakage current under the assumption that the Vth drop is a 
constant value that corresponds to the nominal Vth of the device. This allows 
us to use the same models for stacks of transistors with an effectively reduced 
power supply voltage. 

Leakage Distribution of Circuit Blocks 

Having developed a methodology to accurately predict the pdf of a single 
gate, we will discuss the approach to estimate the leakage current distribution 
of circuit blocks considering within-die variations. For now, we assume that 
process parameters in different gates are independent of each other and hence 
uncorrected. Since the distribution of the leakage currents of a single gate 
is close to lognormal the leakage current for a circuit block as a whole is a 
sum of lognormals. Thus, to find the distribution of the total leakage current, 
given k lognormal RVs we need to find the distribution of the sum S given as 

5 - Xi + X2 + • • • + Xfc - ê ^ + ê 2 + .. • + ê '̂  (4.37) 

where Xi^,.. ,Xk are independent lognormal RVs. Sums of lognormals, as­
suming independence, can be well approximated by another lognormal RV 
[16]. Various approaches are known to estimate the parameters of the final 
lognormal used to approximate the sum. As shown in [16] the simple Wilkin-
son^s approximation [127] is more accurate as compared to other complex ap­
proaches for our range of interest in the cumulative distribution function (cdf) 
of leakage current. In Wilkinson's approximation the sum of the mean and 
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variance of the individual gate leakage current distributions, X i , X 2 , . . . ,XA; 
is matched with the first two moments of S, which gives 

f^[S] - E[S] - //I + /i2 + • • • + /i/o 

<^[S] = yj^l-^crl^^^^^al (4.38) 

where the /i's and a's are the means and standard deviations of the leakage 
currents of the individual gates. To express the resulting pdf of the circuit 
subthreshold leakage current as a lognormal, we note that the lognormal pdf 
is given as 

"•''^'7iWT.'^''[ i^ ) ^''"^ 
where a and P are the parameters of the lognormal distribution. If F(/x, a) is 
a Gaussian random variable and the corresponding lognormal X is related to 
y as X = exp(F), then the parameters of the lognormal are the mean and 
variance of the corresponding Gaussian distribution. We can compute these 
parameters based on the mean and variance of the lognormal. The mean and 
variance of the lognormal can be expressed as a function of its parameters as: 

E[X] = exp {a + p^/2) 

Var[X] = exp (2(a + p^/2)) - exp(2a + p'^), (4.40) 

Equation (4.40) can be solved for a and /? (the mean and variance of the 
Gaussian that are the parameters of the lognormal) in terms of the mean and 
variance of the lognormal as: 

1 f E^[X] 
a = - In ' 

f3' 

2 V-̂ [̂̂ ] + Var[X] 

The parameters of the lognormal can then obtained using (4.41), which 
completely determines the pdf of the leakage current of the circuit block con­
sidering uncorrelated within-die variations. Note that for large circuit blocks 
the leakage current distribution will approach a Gaussian due to the central 
limit theorem [109]. On the other hand, as shown in [88], both S (4.37) as well 
as the log of S can be approximated by a lognormal when a large number of 
independent lognormals are summed. Thus, for large k, the shape of a lognor­
mal distribution tends towards the shape of a Gaussian distribution [47], and 
using a lognormal distribution to approximate sums of lognormals is justified. 
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Table 4.3. Comparison of subthreshold leakage estimated obtained using the an­
alytical approach with Monte Carlo simulations considering intra-die and inter-die 
variations in gate-length. 

Circuit 

cl7 

c432 

c499 

c880 

cl355 

cl908 

c2670 

c3540 

c6288 

Mean(nA) 
Monte Carlo 

0.2 

7.1 

19.0 

17.0 

21.0 

16.0 

32.0 

39.0 

120.0 

Mean(nA) 
Analytical 

0.3 

7.2 

20.0 

17.0 

22.0 

17.0 

33.0 

40.0 

120.0 

Error(%) 

8.3 

1.4 

5.3 

0.0 

4.8 

6.3 

3.1 

2.6 

0.0 

SD(pA) 
Monte Carlo 

36.0 

190.0 

280.0 

280.0 

320.0 

260.0 

350.0 

420.0 

900.0 

SD(pA) 
Analytical 

37.0 

210.0 

330.0 

330.0 

370.0 

300.0 

410.0 

480.0 

1010.0 

Error(%) 

2.8 

10.5 

17.9 

17.9 

15.6 

15.4 

17.1 

14.3 

12.2 

Table 4.3 compares the results obtained using the approach discussed 
above as compared to Monte Carlo simulations for the ISC AS'85 benchmark 
circuits [23], for a 3a variation in gate-length of 10%. The Monte Carlo mean 
and SD are estimated using a random input vector for each circuit. The re­
sults show that the average error in estimating the mean over all the circuits 
is 3.5% with a maximum error of 8.3%. The average error in the SD is 13.7% 
with a maximum error of 17.9%. 

Accounting for Inter-Die and Intra-Die Variations 

As discussed in Chap. 1 process variation can be classified into inter-die vari­
ation and intra-die variations. Intra-die variation refers to variations within 
a particular circuit block or chip, whereas inter-die variations occur as fluc­
tuations from one die to the next. The drawn gate-length of a transistor i is 
expressed as an algebraic sum of the nominal gate-length (I/nominai)? ^^^ intra-
die variation (ALintra) and the inter-die variation (ALjnter)- Consequently, the 
total variance is also a sum of the inter-die and intra-die variances: 

-^gate, i — -^nominal + ALinter + A L 
2 _ 2 I 2 

•^gate, i ^inter ' ^intra, i ^ L t e . i =" ^i i ter + ^hitra, i (4-42) 

where <J[nter aiid crintra ^^^ ^^^ SD's of the inter-die and intra-die variations in 
gate-length, respectively. Note that in the (4.42), the RV ALinter is shared by 
all devices in a design (creating correlation between their leakage currents), 
whereas the random variables AL[^^^g^s assigned to each of the transistors are 
independent (reducing the correlation of their leakage currents). ALinter can 
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i:^ 
Channel Length 

Weighted Sum | 
• I 

Leakage Current Leakage Current 

Fig. 4.6. Probability density functions for (a) Channel length considering only 
intra-die variation with its discrete sampling (b) Leakage current pdf corresponding 
to each discrete sample point in (a) considering intra-die gate-length variation (c) 
Leakage current considering both inter- and intra-die variation. 

also be interpreted as variations in the mean gate-length of different samples 
of a chip, whereas ALintra represents variations in gate-length of individual 
devices from this mean value. Note that the above approach estimates the pdf 
of subthreshold leakage of a circuit block considering only intra-die variations 
given the mean value of gate-length. Thus we can utilize Bayes' Theorem [109], 
which states that the probability of an arbitrary event A, can be expressed as 

V{A)= f2 T^{A\X = x)V{X = x) (4.43) 

where X is a RV with a pdf f{x). If X represents the RV associated with inter-
die variations then the probability of the event that the subthreshold leakage 
of a circuit block considering both components of variations lies within a given 
range, can be estimated using (4.43). The term associated with the conditional 
probability in (4.43) corresponds to the evaluation of the pdf discussed when 
only intra-die variations are considered given a mean value of that variation. 

To compute the total leakage, accounting for both types of gate-length 
variation, the pdf of Linter can be discretized as shown in Fig. 4.6(a). For each 
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Fig. 4.7. The relation between the standard deviation of total leakage current in a 
chip and the number of blocks that constitute the chip sheds insight on the validity 
of gate independence assumptions. 

discrete point I/inter,j on the pdf of Linter, consider the intra-die variation of 
the channel length as a normally distributed pdf, whose mean is Ljnterj and 
standard deviation is aintra- Corresponding to this distribution of channel 
length, we obtain a pdf of the leakage current for the circuit using the approach 
outlined in (4.32)-(4.41). Thus, we obtain a family of these pdfs of leakage 
current as shown in Fig. 4.6(b), where each pdf is associated with a conditional 
probability that corresponds to the pdf value of Linterj on the pdf of I/inter-
To obtain the pdf of leakage current considering both inter- and intra-die 
variation we form a weighted sum of the family of pdfs using (4.43). This can 
be expressed as 

V{Isub < i < huh + A/) = 
n 

= E f ^ i n t r a , j ( ^ u 6 < ^ < huh + A / ) 

' interv-^inter,j )) (4.44) 

where Pinter (Winter, j) Is the probability of occurrence of j ^ ^ point in the set 
of n discrete points selected on the inter-die pdf. Pintra is calculated based 
on the lognormal distribution of the leakage current corresponding to the j ^ ^ 
p o i n t , I/inter,j OU t h e I/inter pdf. 
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Intra-chip variations often exhibit spatial correlation such that devices 
that are closer to one another have a higher probability of being alike than 
devices that are far apart. In our analysis so far, we have assumed that the 
intra-die gate-length variation expressed by the random variables ALintra 
assigned to each gate is independent. However, spatial correlation will result in 
dependence of these random variables. Hence, we examine the impact of such 
correlation on the statistical leakage estimation using Monte Carlo simulation. 

Por simplicity, we model the effect of spatial correlation using clusters of 
gates in a circuit, such that ALintra of gates within a cluster are perfectly 
correlated, while ALintra of gates between different clusters are independent. 
Large cluster sizes therefore reflect a stronger spatial correlation of intra-die 
gate-length variation while small cluster sizes reflect a weak spatial correlation. 
Pigure 4.7, shows that the standard deviation of subthreshold leakage current 
for a design as a function of the number of clusters in the design. As the 
number of clusters is decreased, the size of each individual cluster increases, 
representing a stronger spatial correlation. Prom the plot, we see that, due to 
the averaging effect of a large number of uncorrelated variables, the variability 
in leakage current converges to a relatively small value as the number of 
clusters is increased. For designs with 250 or more clusters, the standard 
deviation has largely converged, and the impact of spatial correlation can be 
ignored. In other words, we can approximate the case having 250 gate clusters 
with perfectly correlated intra-die gate-length variation within each cluster, 
with the case where all gates are considered to have independent intra-die 
gate-length variation (as assumed in the analysis in this section). 

In typical process technologies, spatial correlation drops off sharply for 
distances greater than 0.1mm. Hence, even for a small design with a die area 
of 2.5 mm^, the number of independent gate clusters is sufficient to perform 
statistical leakage current analysis assuming independence of intra-die gate-
length variation. Since most practical designs are significantly larger than 
2.5 mm^, spatial correlation does not pose a significant issue for statistical 
leakage current estimation for such designs. In Chap. 5 we will consider an 
approach to consider the impact of these correlated variations for small designs 
based on principal components analysis. 

Pigure 4.8 shows the impact of varying the distribution of inter-die process 
variation on the pdf of the leakage current while keeping the standard devi­
ation of the total gate-length atotai=15% of the mean. The figure shows that 
when inter-die process variation is increased (and consequently the intra-die 
variation is decreased), the pdf tends to a lognormal shape. Note that for the 
case where there is no intra-die process variation, all gate-lengths on a single 
die will be at their nominal values. Hence, the pdf of this leakage current due 
to inter-die process variation alone should be similar to the pdf of the leakage 
current of a single gate which, as we know, can be closely approximated by a 
lognormal. The figure suggests that, since leakage current is well characterized 
in terms of the IDDQ values across die, the shape of this leakage current pdf 
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Fig. 4.8. Probability density functions of leakage current for different contributions 
of inter- and intra-die process variation. The total variation is 15%. 

Table 4.4. Comparison of subthreshold leakage estimated obtained using the an­
alytical approach with Monte Carlo simulations considering intra-die variations in 
gate-length. 

Circuit 

cl7 

c432 

c499 

c880 

cl355 

cl908 

c2670 

c3540 

C6288 

Mean(nA) 
Monte Carlo 

0.4 

10.0 

28.0 

24.6 

32.2 

23.6 

48.2 

57.5 

186.7 

Mean(nA) 
Analytical 

0.4 

10.0 

27.0 

23.9 

30.6 

23.3 

45.4 

54.5 

175.4 

Error(%) 

0.0 

0.0 

3.6 

2.8 

5.0 

1.3 

5.8 

5.2 

6.1 

SD(pA) 
Monte Carlo 

0.5 

9.2 

24.1 

21.2 

30.2 

21.9 

41.3 

47.4 

183.5 

SD(pA) 
Analytical 

0.4 

7.6 

19.5 

17.4 

23.9 

17.5 

33.7 

38.2 

152.0 

Error(%) 

20.0 

17.4 

19.1 

17.9 

20.9 

20.1 

18.4 

19.4 

17.2 

can be a useful way to estimate the contribution of the inter-die or intra-die 
component to the total process variation. 

Table 4.4 compares the results of the analytical approach to Monte Carlo 
simulation considering both intra- and inter-die variation. The table lists the 
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data for the case where intra-die and inter-die standard deviation have been 
assumed to be 10% and 11% of mean, respectively, which make up a total stan­
dard deviation of 15% variation based on (4.42). As can be seen, the error in 
the estimated mean is always within 6.1% and that for the standard deviation 
within 21%. When comparing the median and the 95th/99th percentile points 
estimated using the traditional approach to the statistical approach, we can 
see that the traditional approach significantly overestimates the leakage for 
higher confidence points since all the devices are assumed to be operating at 
a pessimistic corner point. Since the relationship between the gate-length and 
leakage current is monotonic, the median point as estimated by the traditional 
analysis is very close to the nominal leakage current. 

4.4.3 Temperature and Power Supply Variations 

To this point in the chapter we have been concerned with the impact of vari­
ations in process parameters on power dissipation. In this section, we will 
consider variation in power supply and temperature. As discussed in Chap. 1, 
these variations are fundamentally different from process variations and a 
completely different set of techniques needs to be used to consider their im­
pact. 

If we consider the expressions for dynamic and leakage power (subthreshold 
and gate), we can note that only subthreshold leakage is dependent on vari­
ations in temperature. As shown in [136] subthreshold leakage has a super-
linear dependency on temperature, and a change in temperature of 30^C can 
affect leakage by as much as 30%. Variations in power supply have strong 
quadratic and cubic impact [76] on dynamic and leakage power, respectively. 
In this section, we will discuss a technique proposed in [136] to estimate dy­
namic and subthreshold leakage power while considering variations in power 
supply and temperature, which can be easily mapped to consider variations 
in other components of leakage current as well. This work proposed the first 
approach to consider realistic variations in supply voltage and temperature 
which are strongly infiuenced by the power grid decouphng capacitor locations 
[32] and the profile of the currents drawn by the transistors. In addition, these 
variations demonstrate strong locality and linear approximations of the tem­
perature and power supply variations over a chip results in large inaccuracies. 

Variations in supply voltage and temperature cause variations in the cur­
rents drawn from the power grid by the active devices that impacts the amount 
of power dissipated in this region as well. This, in turn, affects the supply volt­
age (through IR-drop etc.), and the temperature (increased power dissipation 
results in a higher temperature). Thus, a solution to this problem involves 
an iterative solution of a nonlinear set of equations. Therefore, we need an 
efficient tool capable of performing full-chip power grid and thermal analysis. 
Generally, a set of nonlinear equations is solved using an iterative Newton-
Raphson technique [105], which become impractical for current VLSI designs. 
In this work an iteration-based approach as outhned in Fig. 4.9 is used to 
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Fig. 4.10. Model for the complete power supply network [136]. (©2005 IEEE) 

improve efficiency. This technique is built upon an eflficient temperature and 
power grid simulator which act as inputs to the leakage (LPT) and dynamic 
power models. This loop is then repeated until convergence is achieved. We 
will first discuss the analysis techniques for the power grid and temperature 
simulation techniques used in [136] and then discuss the leakage and dynamic 
power models. 

Most chip-level power grid techniques decouple the large power grid net­
work from the nonlinear devices which are connected to this network. Assum­
ing a perfect power supply grid, the current used by the nonlinear devices are 
estimated. This current should consist of both the leakage currents as well as 
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Fig. 4.11. Thermal model of a chip [136]. The package and heat sinks are assumed 
to be thermally ideal with constant temperature. (©2005 IEEE) 

the current required for switching. These current profiles are then modeled as 
idealized current sources and connected to the resistive power grid network 
to complete the power supply network. In general the power grid network is 
modeled as a resistive mesh with layers of metals being connected through re­
sistive vias. The decoupling capacitors act as capacitances between the power 
and ground networks and the top metal layer is connected to the ideal voltage 
regulators through resistive and inductive elements. 

In particular, leakage current estimation only requires a DC solution of 
the power grid network. In this case the inductive and capacitive elements are 
replaced by shorts and opens, respectively, and the entire network becomes 
a large hnear network of resistances. This is represented in Fig. 4.10 where 
the VDD-grid and GND-grid are resistive networks which are connected to 
the package which is again modeled as a resistive network. A typical power 
grid can consist of millions of nodes and specialized techniques are required 
to solve these systems with reasonable memory and run-time requirements. 
The implementation in [136] uses an iterative algebraic multi-grid AMG solver 
solver [135]. The technique simplifies the problem by initially coarsening the 
power grid which maps the problem to a smaller power grid. The solution ob­
tained using the coarser grid is (using direct solution of the matrix equations) 
is then mapped back to the original power grid using interpolation techniques. 

The decouphng technique used to simphfy the problem of analyzing the 
power grid is also utilized to obtain a thermal solution of the chip. The full-
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chip thermal model is shown in Fig. 4.11 which includes the silicon substrate, 
the package and the heat sinks. The thermal profile in a general 3D medium 
satisfies the heat conduction equation 

p^^dTi^o^z^ = V[k{x, y, z, T)S/T{x, y, z, t)] + g{x, y, z, t) (4.45) 

subject to the boundary condition 

k{x, y, z, T) ^ ^ ^ g ^ ' ^ ' ^ ^ + hiT{x, y, z, T) = / ,(x, y, z) (4.46) 

where T is the temperature, g is the power density of heat sources (which 
in our case would be the power density of devices at the silicon surface), k 
is the thermal conductivity, p is the material density, Cp is the specific heat 
capacity, hi is the heat transfer coefficient on the boundary, fi is a function 
of the position and n^ is the unit vector normal to the surface element i. 
Under normal operating conditions the thermal conductivity can be assumed 
to be independent of position and temperature. In addition, under steady 
state conditions the differentials with respect to time drop-out which simplifies 
(4.45) to 

kV^T{x, y, z) -K g{x, y, z) = 0. (4.47) 

Depending on the packaging type, which determines the positions of the heat 
sinks, different forms of boundary conditions need to be enforced which can 
be obtained from (4.48). 

k{x, y, z, T) ^^^^/^^^^^ + /i ,r(x, y, z, t) = / ,(x, 2/, z) (4.48) 
arii 

The above partial differential equation (PDE) in (4.47) is solved using 
standard finite-difference techniques. The method requires the domain of in­
terest to be replaced by a grid. At each grid point each term in the partial 
differential is replaced by a difference formula which may include the values of 
T at that and neighboring grid points. The thermal resistance of each of the 
3D grid cube of dimensions (dx, dy, dz) to the flow of heat in the direction x 
is expressed as 

kayaz 

To obtain the thermal resistance at the convective boundary, dx/k in (4.49) is 
replaced by the heat transfer coefficient. By substituting the difference formula 
and the discretized thermal resistances into the PDE, a difference equation is 
obtained which is solved to obtain the solution to the original PDE. Again, as 
in the power supply analysis case, the solution of the complete set of difference 
equations involves a huge number of nodes, and an AMG based solver is used. 
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Table 4.5. Comparison of various leakage estimation scenarios (Initial leakage es­
timate is 9.6W) [136]. 

Variations 
Considered 

Voltage 
Temperature 

Voltage 

Temperature 

Uniform 

A y AT 
(mV) (^C) 

min: -4 min: -4.2 
max: -184 max: 25.3 

min: -4 
max: -184 

min: -4.2 
max: 25.3 

-120 0 

Total Leakage 
(W) 

7.75 

7.77 

9.63 

5.31 

Using the simulation techniques described above the temperature and 
power supply map of the entire silicon surface can be obtained. The next 
step in the power estimation approach, as outlined in Fig. 4.9, is to calculate 
the change in power dissipations based on the new temperature and supply 
voltages estimated in the simulation step. An empirical second-order poly­
nomial model is used, where the coefficients are obtained using regression 
analysis, and has the form: 

^^""r^^J't'!'^ = l + a,AT + a2{AT)^ + hAV + b2{AVf+C2ATAV (4.50) 
^/ea/c(O,0j 

The values of these coefficients are found to have very small variations 
from one standard cell to the other. Dynamic power is assumed to be inde­
pendent of temperature variations and has a simple quadratic dependence on 
power supply variations. The results obtained using the above approach show 
that the leakage power is more strongly affected by power supply variations as 
compared to temperature variations. After one iteration of the approach, the 
leakage power of a design becomes less than the initial value due to the corre­
lation in power supply and temperature variations. Table 4.5 lists the leakage 
estimate after one iteration. The uniform variation refers to uniform 10% Vdd 
drop and a uniform 85^(7 temperature. This simple assumption results in a 
30% underestimation in leakage. In addition, most of the correction in leakage 
from the initial estimate is found to happen in the first iteration. For the case 
of the design used in Table 4.5 the first iteration provides a 19.2% reduction 
in leakage. Further iterations only result in a change in 0.5%. Thus, using only 
one iteration is sufficient to provide reasonable accuracy in the leakage power 
estimate. 

In this chapter, we have discussed techniques to analyze various leakage 
power components with variations in process and environmental parameters. 
In the next chapter, we will use the ideas developed in this chapter and in 
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Chap. 3 to estimate the true parametric yield of a design given both power 
and performance constraints. 



Yield Analysis 

As we have seen in previous chapters, variations have a tremendous impact 
on both power and performance of current integrated circuit (IC) designs. In 
particular, leakage power which has grown to contribute a significant fraction 
of total power and is also known to be highly susceptible to process variations 
due to its exponential dependence on threshold voltage [28]. In [20], a 20X 
variation in leakage power for 30% delay variation between fast and slow 
dies was reported. Both the variation in leakage power and delay affect the 
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number of dies that meet the specifications, and therefore affect yield. In 
this chapter, we will discuss yield analysis techniques, which consider both 
delay and leakage variabihty. We will be specifically concerned with the strong 
inverse correlation between power and delay and the impact this has on the 
fraction of dies that satisfy both timing and power constraints. Figure 5.1 
shows the situation where total power is dominated by dynamic power [116]. 
This causes parts that have a lower delay (smaller gate length) to have a 
lower total power dissipation as well. However, with increasing leakage power 
the situation changes, as illustrated in Fig. 5.2. Samples of a design that can 
operate at higher frequencies now dissipate more power as well becuase the 
feasible region in terms of yield in now constrained from both sides. This 
results in a significant loss in parametric yield. 

This change in yield loss can be easily captured by considering the corre­
lation in power and performance, which has changed from being positive in 
dynamic power dominated systems to negative in leakage power dominated 
scenarios. This correlation results in most of the fastest chips in a lot to have 
unacceptable leakage and vice versa and results in the two-sided constraint on 
yield. To demonstrate the importance of power-delay correlation. Table 5.1 
shows yield for varying values of correlation factors at which simple expres­
sions for yield can be obtained. F{x) represents the the cdf function of a 
Gaussian RV. The yields are estimated for delay constraints of D standard 
deviations (SD) from the mean at a fixed power constraint P, The results in 
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Table 5.1. Estimated yield for different values of correlation coefficient. Power 
constraint is set at 1.5X the nominal leakage power. 

Corr=-1.0 

Yield max 
Expression {^(D) + ^ (P) ,0) 

D=- l 

D=0 

D - 1 

D=2 

D - 3 

0.000 

0.100 

0.441 

0.577 

0.599 

Estimated Yield 
Corr=0.0 

(0.5+^(D))* 
(0.5 + ^ (P) ) 

0.095 

0.300 

0.505 

0.586 

0.599 

Corral .0 

0.5 
^(min(D, P)l 

0.159 

0.500 

0.600 

0.600 

0.600 

Table 5.1 clearly show that the correlation of power and delay has a strong 
impact on parametric yield, particularly for mid- to high-performance speed 
bins. 

This yield loss will worsen in future technologies due to increasing process 
variations and the continued significance of leakage power. Another trouble­
some observation is that increased variation not only results in a larger spread 
of leakage power but also in higher average leakage power. Additionally, most 
current optimization approaches do not consider process variations and are 
unaware of their impact on yield. These approaches invariably result in the 
formation of a timing wall and result in yield loss due to increased suscepti­
bility to process variations [14]. 

In the last two chapters we have looked at a number of techniques to per­
form statistical timing or power analysis. However, these analysis approaches 
neglect the correlation of power and performance. Hence, performing opti­
mization based on these analysis methodologies can potentially harm overall 
parametric yield. In particular, timing yield optimization using a statistical 
timing analyzer will result in yield loss due to the power constraint while 
power minimization techniques will harm timing-based yield. Hence in this 
chapter we will discuss true yield estimation approaches, which consider both 
power and performance. We will look at optimization in more detail in the 
next chapter. 

Recently, [118] presented a chip-level approach to estimate the yield in 
separate frequency bins given a power constraint. This high-level approach is 
based on global circuit parameters such as total device width on a chip. Since it 
does not use circuit specific information from a gate level netlist, it is difficult 
to use for optimization of gate-level parameters, such as the threshold voltage 
and sizes of individual gates. However, it is able to provide insight into the 
achievable parametric yield early in design cycle and can be crucial in making 
alterations in the design early in the design cycle to achieve better yield. This 
approach will be discussed in Sec. 5.1. 
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Another important requirement for an accurate yield estimation approach 
is to consider all classes of variations which have significantly different impact 
on delay [21] and power [117], as discussed in Chap. 3 and Chap. 4. Pro­
cess variations are typically classified into inter-die and intra-die components. 
Intra-die variations are further classified as having correlated and random 
components. Traditionally, inter-die variations have been the dominant source 
of variations but with process scaling, the random and correlated components 
of intra-die variations now exceed inter-die variations [44]. The relative magni­
tude of these components of variation also depends on the process parameter 
being considered. For example, gate length variations are generally considered 
to have roughly comparable random and correlated components whereas gate 
length-independent threshold voltage is commonly assumed to vary randomly 
due to random dopant fluctuations [124]. The approach proposed in [130] con­
siders all sources of variations and performs gate level yield analysis. This will 
be the focus of our discussion in Sec. 5.2. Finally, in Sec. 5.3, we will consider 
the sensitivity of parametric yield to the supply voltage [116], and develop 
a yield estimation approach by mapping back the feasible region from the 
power-performance space to the space of process parameters. 

5.1 High-Level Yield Estimation 

The computation of a high-level estimate for yield which was proposed in 
[118] and is based on developing expressions for the total leakage of a design, 
considering both subthreshold and gate leakage. Both inter-die and intra-die 
variability in gate length, threshold voltage and oxide thickness is considered. 
The expressions for leakage are developed in terms of the global or the inter-die 
variability, which has a given fixed value for a particular sample of a design. 
Since the model is developed for full-chip yield estimation, the contribution of 
the correlated component of intra-die variability can be safely neglected. This 
follows from our discussion in Sec. 4.4.2 where we found, that for a design of 
reasonable size, the impact of correlation on leakage variance is minimal. 

In addition, based on simulations performed using Berkeley predictive 
technology models (BPTM) and industry data showing the relative impact 
of inter- and intra-die variability, the authors argue that chip-performance is 
dictated by global variability in gate length. Based on these observations, dif­
ferent frequency bins are mapped to a feasible global gate length fluctuation, 
which is then used to estimate the fraction of chips that meet the leakage 
power dissipation constraint. 

5.1.1 Leakage Analysis 

Let us first consider the analytical model used to estimate the leakage current 
of a given design, which is expressed as a sum of the subthreshold and gate 
leakage current 
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^tot = -^sub 4- /gate- (5.1) 

Both components of leakage current are expressed as a product of the 
nominal leakage and a function that captures the variation in leakage from 
the nominal value based on variations in process parameters. Let us represent 
this variation in process parameters as a vector A P , using which we can write 
leakage current as: 

/ ( A P ) (5.2) 

where /ieak,nom represents the leakage under nominal conditions. As we saw 
in Chap. 4, using analytical leakage expressions based on BSIM device mod­
els results in extremely comphcated expressions for the non-linear function / , 
which makes further statistical analysis cumbersome. To simplify the problem, 
a carefully selected empirical equation is used to capture the nature of / that 
provides sufficient accuracy and ease of analysis. The variation in process pa­
rameters A P is decomposed into an intra-die and inter-die component, which 
are referred to as local (APi) and global (APg) variations, respectively. Thus, 
the random variable (RV) corresponding to the total variation is expressed as 
a sum 

A P = A P i + APg (5.3) 

where the sum of the variances of the global and local variations gives the 
overall variance in the process parameter. Now, let us consider the choice of 
/ for each of the components of leakage and perform statistical analysis to 
estimate the leakage distribution using these expressions for / . 

Subthreshold Leakage 

To capture the dependence of subthreshold leakage on variations in process 
parameters using a functional form, we note that it is exponentially dependent 
on threshold voltage. However, the threshold voltage is itself related to a 
number of physical parameters through complex device phenomena. A number 
of second order effects such as DIBL, narrow width effect and other short 
channel effects play a significant role in determining the subthreshold leakage 
current. Considering the three process parameters of interest (Leff, Vth ^^^ 
Tox), subthreshold leakage is most strongly influenced by variations in channel 
length. Channel length independent Vth variation arises mostly due to random 
dopant variations and has a significant role in leakage variability as well. 
However, TQX is a comparatively well controlled process parameter and has a 
much smaller influence on subthreshold leakage [129], given the much smaller 
sensitivity of subthreshold leakage to gate oxide thickness. Based on these 
observations we can capture the variation in subthreshold leakage on process 
parameters as 
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/(AP)=/i(ALeff)/2(AVift) (5.4) 

where ALeff captures the dependence of subthreshold leakage on Leff and the 
associated influence on threshold voltage, and AVth captures the variation 
in subthreshold leakage resulting from doping concentration variations. For 
better accuracy, / i is assumed to be an exponential of a quadratic function 
of gate length (as in Chap. 4). This accuracy improvement is much more sig­
nificant in sub-lOOnm technologies as shown in Fig. 5.3 which compares a 
quadratic and linear exponential fitting function with SPICE data obtained 
for 60 nm devices using BPTM models. As shown in the figure, a linear ex­
ponential is not able to accurately model the leakage value for low values of 
gate lengths that have the maximum subthreshold leakage. Therefore, using 
a linear exponential will result in an underestimation of mean leakage. 

On the other hand, a linear exponential is found to provide reasonable ac­
curacy while considering doping concentration variations. Thus, we can write 

/ ( A P ) = exp 
L + C2L^ 

Cl 
exp (5.5) 

where ci, C2 and cs are fitting parameters which can be obtained using SPICE 
simulations. Using (5.5) and (5.2), we can finally write 



5.1 High-Level Yield Estimation 171 

T T ( L + C2L^^-c^V\ 
4ub = 4ub,nom exp ( 1 . (5.6) 

Decomposing the variabihty into global and local components as 

L = Lg + Li V = Vg + Vi (5.7) 

we can rewrite (5.6) as 

where the A '̂s are assumed to be in the same ratio as the c '̂s and are related 
as 

^ = l-^2c2Lg. (5.10) 

The above relation can be easily obtained by matching the two right hand sides 
in (5.8). We now calculate the expected value of leakage for a given sample of 
a design that correspond to a fixed global variabihty in process parameters. 
Based on our discussion regarding correlations in leakage variability, we can 
assume that the RVs, which correspond to local variability for each gate, are 
mutually independent. Recall that the central limit theorem states that the 
sum of a large number of independent RVs 

x = x i + x 4 - 2 H -\- Xn (5-11) 

converges in distribution to a Gaussian distribution with the following param­
eters 

fJ'x = Mm + Mx+2 + "' + /^Xr^ (5-12) 
2 , 2 

^xi + ^X2 ^ ' = < + < + ••• + < (5-13) 

where /x̂  and cr̂  correspond to the mean and standard deviation of RV i, re­
spectively. Note that if the above expression is not dominated by one RV, and 
there are a large number of a RVs with comparable mean and variance, then 
the ratio jJ^x/^^x -^ 0 as the number of summed RVs increases. Therefore, if we 
sum a large number of similar RVs, the final distribution can be approximated 
as a single value which corresponds to the sum of the mean of individual RVs. 
Now taking the expectation over the local variabihty in (5.8), we can write 
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-'sub ^ ^sub,nom e x p 
Lg + C2LI + C3K 

Cl 
(5.14) 

E exp I 
Li + AsL^ + AgVi 

Ai 

Since the RV Vi captures the variation in threshold voltage that results from 
random doping fluctuations, it is assumed to be statistically independent of 
L ,̂ which gives: 

^sub ^ ^sub,nom CXp I 
Lg + C2LI + C^Vg 

Cl 
(5.15) 

E exp 
Li + A2l/f 

Ai exp 

The expected value of a lognormal RV F = e^, where X is Gaussian RV 
with mean fix and sigma cr̂ ;, can be expressed as 

^y = exp(/ /^ + ^ j (5.16) 

Using the above expression and the fact that any linear multiple of a Gaussian 
RV is Gaussian, we can write: 

E 

Var 

e x p | 

r / exp(^ 

. ^ / . 

' ̂ 1̂ 
. ^ / . 

= £; 
r / e x p l -

X \ l 
'2a} 

1 
-£;2 

r X 
a 

(5.17) 

(5.18) 

To handle the squared exponential term, we need to estimate the mean 
and variance of RVs of the form Z = Qi-x-\-a2X )/ai ^ ^j^j^h can be obtained in 
closed form for the case when X is a zero mean Gaussian RV with standard 
deviation cr̂ ,̂ as 

Var[Z] = E 

1 ^ 2a2 2 

01 exp 

exp 
-X ±a2X^\ 

2a\ + Aa'laia2 

-E^[Z]. 
{ax/2) J_ 

Using the above expressions, (5.15) can be rewritten as 

(5.19) 

(5.20) 

where 
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r _ , ( Lg + C2LI + CsVg\ 

-'subjg — -'sub, nom CXp I 

S,= yi+^-^al] exp I ; ; : :^^^^^^ 1 (5.21) 

Sy = exp 

To calculate the full-chip subthreshold leakage, the above expression is 
evaluated separately for NMOS and PMOS devices and then multiplied by the 
effective PMOS and NMOS device width, respectively. Effective width is the 
actual device width scaled by the percentage of devices that are expected to be 
non-conducting on average, and the appropriate scale factor which captures 
the stacking effect that reduces subthreshold leakage when devices connected 
in series are simultaneously non-conducting. Finally, we can write the full chip 
subthreshold leakage (for a given fixed global variation) as 

S^S^+\T.^]C,,,SES^ (5.22) 

where AT, P represent the set of NMOS and PMOS devices, respectively, Wd 
represents the device width, q represents the scaling factor based on the prob­
ability of the transistor being off and the number of off transistors in series. 
The scale factor q can be different for NMOS and PMOS devices which is 
represented by the superscripts N and P , and SL and Sy are as expressed in 
(5.21), and are calculated separately for NMOS and PMOS devices. 

Gate Leakage 

Gate leakage is known to be extremely sensitive to variations in TQX and 
hence any variation in gate leakage resulting from variations in gate length 
variations can be safely ignored. The strong sensitivity of gate leakage results 
from a strong exponential dependence of gate leakage current on gate oxide 
thickness. Moreover, variations in gate length have a linear dependency on 
gate leakage and do not affect the mean gate leakage current. As we saw in 
subthreshold leakage, discussed above, we can use the central limit theorem 
to approximate the leakage current by its mean value. 

We first approximate / ( A P ) as 

/ ( A P ) = /gate, nom e x p (-^\ (5 .23) 
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where T corresponds to the variation in gate oxide thickness, and the fitting 
parameter a can be obtained using SPICE simulations. Again, decomposing 
the total variation into local and global components we can write 

4 a t e = i'gate, nom e x p ( ^ 1 e x p ( j (5.24) 

where /gate, nom is the nominal gate leakage current, Tg is the global fluctuation 
in gate oxide thickness which is constant for a given sample of the design and 
Ti is the local variabihty in gate oxide thickness. Using the same arguments as 
in the case of subthreshold leakage, we again approximate the local variability 
as a scaling factor, and write 

/gate ^ -^^[/gatej = /gate,g'S'T (5.25) 

where 

T -T f-lA 
- 'ga te ,g — -'gate, nom 6XP I I 

The full-chip gate leakage can now be written as 

(5.27) 

where the summation is across PMOS and NMOS devices. We use the scale 
factor p for gate leakage instead of q for subthreshold leakage in (5.22). 

The total leakage is obtained using (5.1) by summing the expressions for 
subthreshold leakage (5.22) and gate leakage (5.27). Note that we have con­
sidered only two kinds of devices (PMOS and NMOS) in the above equations. 
In the case where we have devices with different nominal threshold voltages or 
gate oxide thicknesses, we will have additional terms which account for these 
devices. 

Table 5.2 compares the leakage estimated using the above analytical tech­
nique with Monte Carlo methods. We consider three different cases: 1) with­
out any variability, 2) with only global variability, and 3) with both local and 
global variability. The results are generated using 60 nm BPTM devices. The 
middle columns list the amount of variations in each of three process parame­
ters considered. The results show that the error in the analytical approach is 
always less than 5% as compared to Monte Carlo and points to good accuracy 
of the proposed leakage analysis methodology. Furthermore, the table also 
shows that when within die variability is considered, the leakage of the design 
increases by a further 15%, which results from the exponential dependence of 
leakage currents on process parameters. 
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Table 5.2. Comparison of the analytical approach with SPICE based Monte Carlo 
simulations. 

Case ] 

No Variation 

Only die-to-die 

No Variation 

Parameter 

{L„ Li) 

(0,0) 

(-1,0) 

sigma (a) 

(yg,Vl) ( 

(0,0) 

(-1,0) 

( - 1 , ± 3 ) ( - 1 , ± 3 ) ( 

values Mean Leakage [iJiA) 

[Tg^ Ti) Experimental Analytical 

(0,0) 

(-1,0) 

- 1 , ± 3 ) 

14.97 

20.82 

24.01 

15.22 

21.32 

24.95 

5.1.2 Frequency Binning 

Parametric yield analysis is performed by frequency binning, in which sam­
ples are analyzed for their maximum operating frequency and placed into a 
frequency bin that corresponds to the measured performance. However, if the 
performance is below a lower limit, the sample is discarded as being useless. 
In addition, a power constraint is imposed on each of the frequency bins. Chip 
samples that dissipate more power than a given value are also discarded be­
cause they exceed the heat dissipation capacity of the heat removal system. 
This hmit may also be imposed by the kind of package used for the design. 

With continued technology scaling, subthreshold leakage has grown to con­
tribute a significant fraction of the total power budget, which correlates neg­
atively with circuit delay, and high performance chips are frequently found to 
have power which is higher than the imposed constraint. This is known as the 
two-sided constraint on the yield of current designs. We will look at this issue 
in more detail in the following section. 

Circuit performance is a function of all three process parameters we used 
for leakage analysis. However, of the three, gate length variation is found 
to have the strongest influence on circuit performance. This is illustrated in 
Fig. 5.4 which shows the variation in the delay of a 17-stage ring oscillator in a 
100 nm process for varying amount of variation in global values of process pa­
rameters. Variation in gate length can be seen to have the strongest influence, 
while variation in threshold voltage and gate oxide thickness have minimal 
impact on performance. This results from the fact that a smaller gate oxide 
thickness or threshold voltage increases the drive strength of a gate which 
reduces delay. However, it also increases the capacitive loading of the pre­
vious gate, which increases delay. The same dependence holds true for local 
variability and therefore, we can neglect the impact of variations in threshold 
voltage and oxide thickness, both global and local, on circuit performance. 

In Chap. 3, we found that local variations in gate length have a strong in­
fluence on the mean circuit delay while global variations result in an increased 
variance of circuit delay. However, this work is based on the assumption that 
local variation in gate length do not have a strong influence on delay. An ap­
proach that considers this impact will be discussed in the next section. Thus, 
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Fig. 5.4. Comparison of the influence of parameter variation on ring oscillator delay. 

the performance of a design can now be approximated as a function of global 
variations in gate length alone. 

5.1.3 Yield Computation 

We will now discuss a technique to estimate the yield of a design in each of the 
frequency bins based on our discussion of leakage variability and frequency 
binning. Using the mapping between performance and global gate length fluc­
tuation, we can estimate the range of the parameter Lg that corresponds to 
each of the performance bins. We assume that the frequency bin is represented 
by the smallest value of Lg in this range, for the purpose of leakage compu­
tations. Using this value of global gate length variability, we can rewrite the 
leakage equation for samples within this frequency bin as 

/3ub = A^ exp ( - ^ ) + Af exp ( - ^ ) 

•^gate = AJ^ e x p -§V<-pf-5 
(5.28) 

(5.29) 

where expressions for As and Ag can be easily obtained using parameters in 
(5.21), (5.22) and (5.27). Note that total leakage can now be expressed as a 
sum of four RVs, where each RV has a lognormal distribution. Since sums 
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of correlated or uncorrelated lognormal RVs can be accurately approximated 
by another lognormal, we can express the distribution of total leakage as a 
lognormal. Let us represent the total leakage as 

/tot = e^' + e^2 4. e^3 ^ ^x, ^y^+Y2-\-Ys-{-Y^ ^ Z (5.30) 

where X^'s are Gaussian RVs and F^'s are lognormal RVs. To approximate the 
sum in the equation above as another lognormal RV, we can use Wilkinson's 
method, which is based on matching the first two moments of /tot with the 
moments of Z, Note, in contrast to the approach discussed in Chap. 4, where 
we confronted uncorrelated RVs, we are deahng with correlated RVs in (5.27). 
This does not overly complicate matters since the expected value remains the 
same as in the case of uncorrelated RVs and is expressed as 

E [/tot] = E [Fi] + E [Y2] + E [Y^] + E [Y^] (5.31) 

which can be easily evaluated using (5.17). When we perform variance compu­
tation, we need to compute the expected value of the product of y/5. We can 
simplify this computation since the product of two lognormal RVs is another 
lognormal RV: 

4 

= ^ E [ e ^ ^ + ^ ^ ] . (5.32) 

The above expectation can now be calculated by estimating the moments of 
Xi + Xj, which is straightforward given the mean, variance and correlation 
of Xi and Xj. Having estimated the mean ///̂ ^̂  and variance ///̂ ^̂  of total 
leakage, we then calculate the parameters that define the lognormal RV /tot-
These parameters correspond to the mean and variance of the Gaussian RV 
associated with this lognormal RV, which were shown in Chap. 4 to be 

'̂°K;gfî ,.. )^iv,/.ot-oiQg(.2 r i2 ) (̂ -33) 
9 / ^? 

_2 i „™ / 1 I ^t( 

-'tot 

< A o . = l o g ( l + i ^ ) - (5.34) 

The quantile numbers for the lognormal distribution can also be expressed 
in terms of the Gaussian cdf (or the error function), since an exponential 
transformation is monotonic. The cdf of a lognormal RV is expressed as 
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Fig. 5.5. Scatter plot showing the fluctuation in total circuit leakage power. 

CDF (/total) = ^ 1 +erf log ( / to t ) - / i iV , / to t 

V^^iV, hot 
(5.35) 

where erf refers to the error function. Using the above equation, the leakage 
constraint for a given desired yield as well as the fraction of chips that satisfy 
a given power constraint can be estimated. 

Figure 5.5 shows the scatter plot of leakage, generated using SPICE simu­
lations, for 2000 samples of a circuit. The x-axis corresponds to the variation 
in the global gate length (which is a first-order approximation of performance) 
in terms of the number of sigma deviations from the nominal value. If all sam­
ples are considered, we see that we get an overall spread of 14X in leakage 
currents. In addition, for a given value of Lg we observe a distribution in leak­
age, which in the case of L^ = 0 has a spread of 3X. This local distribution for 
a given Lg value results from variation in the global variations in threshold 
voltage and gate oxide thickness, which have a strong influence on the overall 
leakage power but a weak impact on performance. The band structure does 
not result from local variability since local variability in process parameters 
acts as a scahng parameter for large designs and does not result in a distribu­
tion for leakage. The variation in circuit leakage for a given value of Lg will 
result in a fraction of chips having power dissipation levels which are higher 
than the imposed constraint and will result in reduced yield. 

In Fig. 5.6, we superimpose analytically generated contours on top of the 
previous figure. These contour plots are generated by calculating /ijv, hot ^^^ 
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Fig. 5.6. Scatter plot of leakage with superimposed analytically computed contour 
lines. 

(^Njtot f̂^ ^^^^ value of Lp, and then using (5.35) to generate the leakage 
power number that corresponds to a given percentile point on the local distri­
bution. The figure shows that for values of gate length much smaller or much 
larger than nominal, most samples are within a Icr range. However, for nom­
inal values of gate length, a significant fraction of samples result in leakage 
which lies outside the la range. This can be understood from the fact that 
global variabihty in L^, Vg and Tg are independent and the probabiUty that 
all these process parameters are at their process corners is much smaller than 
the probability that Lg lies close to its nominal value and Vg and Tg are at 
their corners. This implies that for frequency bins that correspond to nominal 
performance, there is a potential for a much larger loss in yield if leakage 
power constraints are defined in terms of sigma deviations from the nominal 
leakage power for that particular bin. However, the same power constraint is 
generally imposed on all frequency bins, and given the wedge shaped distri­
bution for the complete scatter plot, we can expect the lowest yield for the 
highest performance bin. 

Since Lg directly corresponds to performance, we can partition the scatter 
plot as shown in Fig. 5.7, where the vertical lines now correspond to perfor­
mance bins. Note that when assuming a frequency constraint which corre­
sponds to the performance obtained at a global gate length variability of la , 
we throw away all samples of a design that lie to the right of this region in this 
scatter plot. The power constraint imposed on all performance bins is that 
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Fig. 5.8. Analytically computed yield for each frequency bin for different power 
constraints. 
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the power is less than 1.75X the nominal leakage power. Given this constraint, 
we see that samples that lie above this line in the scatter plot correspond to 
samples of the design that are too leaky and are hence discarded. Figure 5.8 
plots the yield in each of the performance bins for different power constraints. 
We see that most samples in the lowest performance bin satisfy the power 
constraint. However, a significant fraction of the samples in the high perfor­
mance bins fail to meet the power constraint. For the power constraint of 
1.75X, we find that 27.4% of the samples are lost in the highest performance 
bin {Lg < —3a). This has significant impact on earned revenues, since high 
performance are generally sold at a much larger profit margin. 

In this section, we looked at a high-level approach to consider the impact 
of the correlated variation in performance and leakage power. In the next 
section, we will develop a gate-level yield analysis technique that can be used 
to perform gate level optimization to improve the parametric yield of a design 
under power and performance constraints. 

5.2 Gate-Level Yield Estimation 

To perform gate-level yield analysis, we need to perform gate-level timing 
and power analysis which considers all components of variations and consid­
ers correlation between power and delay that they introduce. Since variations 
in dynamic power are comparatively insignificant, we will again concentrate 
on the variations in leakage power and subtract the nominal dynamic power 
dissipation from the total power budget to estimate yield using a given de­
lay constraint and leakage power budget. In addition, both the leakage and 
timing analysis are performed using the same underlying RV so that the final 
correlation between leakage and timing can be estimated. The correlated com­
ponents are modeled in this analysis approach using a principal component 
based approach that allows us to express the underlying variations in terms of 
independent Gaussian RVs. We then develop an approach to perform statis­
tical leakage power analysis and express the circuit leakage power in terms of 
the same underlying process variations used to express the delay of the circuit. 
With increasing circuit size, the impact of the random component of varia­
tion on the variance of power reduces to zero due to the central limit theorem 
[109]. Thus, although the random component impacts the statistical circuit 
delay, the correlation between the random components of power and delay has 
a vanishingly small impact on the overall correlation in power and delay. We 
will show that even for small circuits with a few hundred gates, the random 
component has neghgible impact on the overall variance of power. Since the 
correlation due to correlated process parameters is already captured, the cor­
relation in power and delay can be computed allowing the construct of their 
joint probabihty distribution function (jpdf). Based on this jpdf of delay and 
power a closed-form approach is developed to estimate the yield of a design 
given delay and leakage constraints. 
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To simphfy the analysis, we will consider process variations in gate length 
and gate length-independent threshold voltage (Vtho) alone, although the ap­
proach can be easily extended to consider other sources of variations. The 
modeling of process variations and the timing analysis is very similar to the 
statistical timing analysis approach described in Chap. 3 using principal com­
ponents analysis. The process parameters are expressed as a sum of correlated 
and random components and the sum of variances of both these components 
provides the overall variation in the process parameter. To handle the corre­
lated components of variations (inter-die and correlated intra-die) the overall 
chip area is divided into a grid as discussed in Chap. 2 (Fig. 2.6). To simplify 
the problem, we replace the set of correlated RVs by another set of mutu­
ally independent RVs with zero mean and unit variance using the principal 
components of the set of original correlated RVs. A vector of RVs X with a 
correlation matrix C, can be expressed as a linear combination of the principal 
component vector Y as 

X ^ S - h D ^ / ^ A - ^ Y (5.36) 

where S is the mean vector associated with X, D is a diagonal matrix with 
elements being the eigenvalues of the covariance matrix of the RVs of X and 
A is the matrix whose columns are the eigenvectors of the covariance matrix. 
Since the correlation matrix of a multivariate (non-degenerate) Gaussian RV 
is positive-definite, all elements of D are positive and the square-root in (5.36) 
can be evaluated. 

We now express the delay and leakage power of an individual gate as 

i=l 

I = exp Ivnom + Y^M^^p)] (5-38) 

where dnom and exp(ynom) are the nominal values of delay and leakage power 
respectively, and the a^s and p^s represent the sensitivities of delay and the 
log of leakage to the process parameters under consideration. The variable 
APp represents the fluctuation in the process parameters from their nominal 
value. 

In a statistical scenario, the process parameters are modeled as RVs. If the 
overall circuit is partitioned using the 2-D grid, the delay of individual gates 
can be expressed as a function of these RVs. Using the principal component 
approach, the delay in (5.37) can be expressed as 

d == Ĉnom + y^A^pY] 'yji^J + ^^^ C '̂̂ )̂ 
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where Zj's are the principal components of the correlated RVs APpS in (5.37)-
(5.38) and the jji^s can be obtained from principal component analysis (5.36). 
R ^ N{0,1) in the above equation represents the random component of varia­
tions of all the process parameters lumped into a single term that contributes 
a total variance of rj^ to the overall variance of delay. Similarly, the leakage 
power for an individual gate can be expressed as 

/ = exp Kom + Yl (^P^^Ji^J + ^ /^ 1 • (5-40) 

Now, using these expressions we will perform timing and power analysis. 
These canonical forms for the representation for delay and power will be main­
tained all through the analysis. We will also find that the loss in information 
due to the lumping of the random component of variation (which results in a 
large simplification during analysis) results in an insignificant error. We will 
first discuss the details of timing analysis, which will be a simple extension 
of the approach outlined in Chap.3, to consider the random component of 
variation. 

5.2.1 Timing Analysis 

The delay of each gate ' j ' can be expressed as follows using the expression 
developed in the previous section as: 

n 

dj = â -,0 + Y^ciijZi + an-[.i,jRj' (5-41) 
i=l 

This serves as the canonical expression for delay. The mean delay is equal 
to the nominal delay and is expressed as dj^nom- The principal components 
are represented by RVs Zi's and the RV corresponding random component 
is represented as R. The a^^'s function as scaling parameters to obtain the 
sensitivity of gate delay to the parameters represented by each of the RVs. 
Since the RVs used in the above expression are statistically independent zero 
mean unit variance Gaussian RVs, we can express the variance of gate delay 
as 

Varidj)=\J2<A+<+i,j (5-42) 

and the covariance of delay with any one of the principal components can be 
obtained as 

Cov{dj,Zi) = E [dj,Zi]-E [dj] E [zi] = a^j Vi - 1,2,... , n. (5.43) 
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To perform statistical timing analysis, we need to define the max and the 
sum operation for delay expressions. We assume the delay expression at each 
node in the circuit graph is represented in canonical form (5.41), and we define 
the sum operation for two delay expressions dj and dk as: 

S\im{dj,dk) = aj^nom + cik,o + ^ {dij + Cii,k) ^i + y «n+i j + ^n+i,fc- (^'44) 

The max operation is hard to compute accurately and results in a non-
normal distribution which makes further analysis complicated. It has been 
argued that the max of two Gaussian RVs can be closely approximated by an­
other Gaussian RV for the purpose of timing analysis [30] [141] [3]. In addition, 
we discussed in Chap. 3 that the delay distributions arising due to correlated 
reconvergent fanouts can be tightly upper bounded by assuming them to be 
independent. Let nodes / ,m and n be related such that 

di = ma,x{dm, dn). (5.45) 

Assuming that the delay at node k can again be expressed in canonical form, 
we can write a set of n -h 2 equation to estimate the coefficients of the delay 
expression at node k in terms of the coefficients at nodes m and n. This is 
achieved by matching the first two moments of dk obtained using expression 
for the max of two Gaussian RV and matching the correlation of di with each 
of the principal components. These expressions, which were developed in [35], 
are discussed in Chap. 3. Using these expressions, the set of n + 2 equations 
can be written as 

ai^o = E[ma,x{dm,dn)] 

ai^i = Cov{di, Zi) = Cov{ma,x{dm, dn), zi) Vi == 1,2,... , n (5.46) 
/ n \ 1/2 

ttn+i,/ == I Far(max(dm, dn)) - ^ a\i \ 

To evaluate the terms in the set of equations above, we need to use ex­
pressions for the mean and variance of the canonical delay expression. We 
also need to estimate the covariance of two delay expressions which can be 
expressed as 

n 

Cov{dm,dn) = ^ (5.47) 
i=l 

By modeling the random component, the timing analysis steps are able 
to preserve the mean, variance and correlations, avoiding the need to scale 
the coefficients of the principal components to match variance, as we did in 
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Chap. 3, which results in the delay expressions losing their exact correlation 
with the principal components. For gates with more than two inputs, the 
technique described above is applied iteratively. 

Using the technique described above, we can develop an expression for 
the delay of a circuit in terms of the RVs associated with process parameter 
variations. We now discuss the steps to perform leakage analysis, where the 
goal is to preserve the correlation between delay and power, which is achieved 
by performing a similar principal component-based analysis approach using 
the same underlying RVs. 

5.2.2 Leakage Power Analysis 

As in (5.38), leakage power is expressed as an exponential of a Gaussian RV, 
which is known to have a lognormal distribution. The leakage power for a 
complete circuit block can be expressed as a sum of correlated lognormal 
RVs. The authors in [1] show that this sum can be accurately approximated 
as another lognormal RV. It is also shown that the approximation performed 
using an extension of Wilkinson's method [127], which is based on matching 
the first two moments, provides good accuracy. Using the principal compo­
nents of timing analysis, we can write the canonical form for leakage power 
as 

Ij = exp I bo J + ^ bijZi + bn-{-i,jR j (5.48) 

where the Zi^s are principal components of the RVs (used for timing analysis 
as well) and the coefficients 6j's can be computed using (5.36) and (5.38). 
Using expressions for mean and variance of lognormal RVs, the mean and 
variance of leakage power of gate j can be expressed as 

/ 1 ^+^ \ 

E[lj] = exp\boj + -Y.blA (5.49) 

( n + l \ / 1 '̂ •^^ \ 

2boj + J2 ^h j - exp f 2boj + -Y^ 4j j • 
The correlation of the leakage of a particular gate with the lognormal RV 
associated with one of the principal components is expressed as: 

/ ^ n+i \ 

E[lj,Zi]=exp\boj + - Y. 4 , i + K j + l ) ' Vi = l , 2 , . . . , n . (5.50) 

Similarly, the correlation between the leakage currents of two gates can be 
expressed as: 
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E[lmJn\ = exp I 6o,m̂ O,n 

^ + 6i,n)' j + 6^+1,^ + 6^+1,^ j J. (5.51) 

As compared to timing analysis, we only need to define the sum operation 
for leakage analysis, since the leakage for a circuit block is simply the sum 
of the leakage of individual gates. We again make the simplifying assumption 
that the sum of two lognormal RVs can be expressed as another lognormal and 
we express the resulting lognormal in the same canonical form (5.48). This 
process is then iteratively continued to sum the leakage of all gates under 
consideration. Note that if the random variables associated with all the gates 
are summed in a single step then the overall complexity of the power analysis 
approach becomes 0{ii?)^ where n is the number of gates in the circuit, due to 
the need to evaluate the complete correlation matrix. However, in the iterative 
summation approach, we sum two RVs of leakage in canonical form in each 
iterative step to obtain another RV in the same canonical form. To find the 
coefficients in the expression for the sum of the RVs, we match the first two 
moments (as in Wilkinson's method) and the correlations with the lognormal 
RVs associated with each of the Gaussian principal components. We outline 
one iterative step where we sum Im and In to obtain //. 

h —lm + In (5.52) 

Each iterative step again becomes equivalent to solving a set of equations and 
the resulting coefficients can be expressed as 

Ki = l<̂ g 
Elhe' 

E[li]E[e Zi] 

^^[^rr}:.f^l\) V. = l,2,...,n. (5.53) 
XE\lm]+E[ln])E[e-

The remaining two coefficients are expressed as 

. ^ 1 , ( (•EM + EjU)^ 
00,/ 2 '°^ \ {E[k] + EUY + Var{h) + Var{Q + 2Ccyv{lblc)} ^ ' ' 

bn+l,l 
Var{lm) + Variln) + 2Cov{lmln) ^ " ' ^'^ 

{E[lm]+E[ln]Y 

n 

i=l 

(5.55) 

The expectations, variances and covariances in (5.53)-(5.54) can be evaluated 
using (5.49)-(5.51). 
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The timing and power analysis techniques outlined above can now be used 
to efficiently estimate the individual probability distribution functions of delay 
and leakage power. The correlation in delay and leakage power arising from 
the correlated components of variation can be estimated since the correlated 
variations are expressed in terms of the principal components used to develop 
the expressions for both delay and power. 

As will be shown in the results, the dependence of the variance of leakage 
power on the random component is very weak. This arises due to the fact that 
the random component associated with each gate is independent and hence the 
ratio of standard deviation to mean for the sum of these independent RVs is 
inversely proportional to the square root of the number of RVs summed [109]. 
This ratio does not reduce for correlated RVs - therefore, if a large number of 
RVs are summed with both correlated and random components, the overall 
variance is dominated by the variance of the correlated component. Hence 
the correlation due to the random component, which is difficult to compute 
efficiently, is insignificant and will be neglected. 

5.2.3 Yield Est imat ion 

We now use the delay and power expressions to estimate the parametric yield 
of a design given leakage power and delay constraints. The parametric yield 
of a circuit given delay and power constraints can be expressed as 

Y = V{d<do,l<lo). (5.56) 

which is the probability of the circuit delay being less than do, while the leak­
age power dissipation is less than po. Since delay and power are correlated, the 
yield cannot be simply computed by multiplying the separate probabilities. 
Let us refer back to the results regarding multinormal distributions discussed 
in Sec. 2.2.2. Under the assumption that the RVs used to represent the corre­
lated and random variations are part of a multinormal distribution, the joint 
distribution of delay and the logarithm of leakage power becomes a jointly 
normal bivariate Gaussian distribution. We express the yield in terms of two 
A/'(0,1) RVs, No and A î, which are jointly normal as: 

Y = V(NO< ^ ° - ^ M , i V x < i 2 l l l _ * i i l ) . (5.57) 

Since correlation does not change under a linear transformation with positive 
coefficients, the correlation between Âo and Ni remains the same as the cor­
relation between delay and log of leakage power. The correlation coefficient of 
the two Gaussian RVs in the yield equation above can now be obtained using 
(5.47). 

An approach to evaluate the probability in the above expression is to 
perform numerical integration of the jpdf over the desired region, but this is 
computationally inefficient. A look-up table based approach, though efficient, 
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Fig. 5.9. Transformation of the feasible region from (a) to (b) under the transfor­
mation expressed in (5.58) for negative values of correlation. 

involves substantial inaccuracy due to the required interpolation as noted in 
[24]. Hence, we adopt an analytical approach to estimate the yield which makes 
the approach efficient and practical within a yield optimization framework. 

The feasible region defined by a pair of correlated RVs is transformed to 
region defined by a pair of uncorrelated RVs using the following transforma­
tion: 

Ro = No; Ri = 
Ni - pNo 

(5.58) 
( l -p2 ) l / 2^ 

This transformation maps the feasible region from a rectangle to a triangle 
as shown in Fig. 5.9 for the case where p < 0, which is the case of interest. 
The desired probabihty can be obtained by using approximate expressions 
developed in [24] for evaluating probabilities of uncorrelated bivariate Gaus­
sian RVs in regions of the form shown in Fig. 5.9(c). We will also use the 
fact that uncorrelated RVs, that are distributed according to a joint Gaussian 
distribution, are also independent. 

To evaluate the probability of the region shown in Fig. 5.9(b), we partition 
the figure as shown. The desired probabihty can then be expressed as a sum 
of the probabihties in Regions 1-6 which can be evaluated as follows: 

Region 1: The region is already in the form required in Fig. 5.9(c), 
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Region 2: The integral of the region is circularly symmetric. Hence, if the 
axes are rotated such that the dotted hne as shown in Fig. 5.9(b) lies along 
the X-axis, then Region 2 is also in the same form as Fig. 5.9(c), 

Region 4 '• The probabihty in this region is 

V{Ro <0,0<Ri<X) (5.59) 

where X is the point where the vertical hne cuts the RQ axis. Since RQ and 
Ri are statistically independent, this probability can be expressed as 

V{Ro < 0)7^(0 < i^i < X) = 0.5^(X) (5.60) 

where ^ is the cdf for a Gaussian RV, 
Region 3, 5, 6: The probability for this region can be expressed as 

V{Ro < 0, i^i < 0) + V{3 + 6) - V{6 + 7) (5.61) 

The first and second terms in (5.61) correspond to a region that is in the 
same form as Region 4 and the region for the third term is in the same form 
as Region 1. Thus, the desired yield expressed in (5.56) can be efficiently 
estimated using closed-form expressions. 

In terms of computational complexity, the above approach differs from the 
principal components based statistical timing analysis approach discussed in 
Chap. 3 in the computation of an extra term associated with the random 
component. The overall complexity of the timing analysis remains 0{nNg)^ 
where n is the number of terms in the delay expression that corresponds 
to the number of partitions into which the circuit is divided, and Ng is the 
number of gates in the circuit. The power analysis is similar and requires an 
additional 0{nNg) steps. The correlation computation requires an additional 
0{n) steps, and the yield estimation runs in constant time. The computation 
of the principal components requires 0{pn^) steps where p is the number of 
process parameters required. The cubic dependence results from the eigen­
vector computation required during principal component analysis. Since the 
principal components need to be calculated only once, it does not impact 
the overall complexity and hence the overall complexity of the approach is 
0{nNg). Thus, the runtime can be expected to increase quadratically with 
increase in circuit size since the size of the partitions remains the same. 

Table 5.3 shows results for the ISCAS'85 [23] and MCNC benchmark cir­
cuits. The benchmark circuits are synthesized using an industrial 130 nm tech­
nology. Only channel length and gate length-independent threshold voltage 
variations are considered in these results. A 3a variation of 20% of the nom­
inal value is assumed. All variation in Vtho is assumed to be random (due to 
random dopant effects), whereas half the variation in channel length is consid­
ered to be correlated. The table compares the means and standard deviations 
of delay and power obtained using the proposed approach and Monte Carlo 
based simulations. The table also compares the coefficient of correlation of 
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Table 5.3. Comparison of the analytical timing and power analysis approach and 
Monte Carlo based simulation results 

Benchmark 

Circuit 

c432 

c499 

c880 

cl908 

c2670 

C3540 

c5315 

c6288 

c7552 

i2 

i3 

i4 

i5 

i6 

17 

18 

i9 

ilO 

Average 

Analytical 

Delay Delay Leakage 
Mean SD Mean 

0.91 

0.89 

0.82 

1.22 

0.91 

1.43 

1.23 

3.32 

1.12 

0.47 

0.27 

0.38 

0.34 

0.31 

0.34 

0.52 

0.53 

1.41 

0.04 

0.03 

0.04 

0.04 

0.04 

0.06 

0.04 

0.11 

0.04 

0.02 

0.01 

0.02 

0.01 

0.01 

0.02 

0.02 

0.02 

0.05 

12.20 

36.14 

30.00 

19.03 

7.47 

57.54 

88.41 

116.73 

85.39 

4.53 

0.83 

11.34 

20.63 

13.90 

22.71 

26.71 

24.47 

49.55 

Error as compared to Monte Carlo 

Leakage Corre- Delay Delay Leakage 
SD lation Mean SD Mean 

4.05 

10.29 

8.64 

5.38 

2.34 

14.70 

20.95 

25.38 

20.27 

1.46 

0.26 

3.73 

5.98 

4.58 

6.69 

7.66 

7.91 

12.59 

-0.91 

-0.95 

-0.88 

-0.95 

-0.93 

-0.74 

-0.87 

-0.79 

-0.86 

-0.91 

-0.89 

-0.87 

-0.88 

-0.88 

-0.65 

-0.94 

-0.83 

-0.86 

0.5% 

0.4% 

1.1% 

2.1% 

1.7% 

2.0% 

1.4% 

2.6% 

0.6% 

5.0% 

1.0% 

2.6% 

1.0% 

1.5% 

3.1% 

1.5% 

1.8% 

2.4% 

1.8% 

8.4% 

11.4% 

11.1% 

11.9% 

9.8% 

10.4% 

12.0% 

13.4% 

16.2% 

20.1% 

16.8% 

20.6% 

17.8% 

10.4% 

14.4% 

18.0% 

13.4% 

11.1% 

13.7% 

0.1% 

0.9% 

1.1% 

1.0% 

1.7% 

1.3% 

2.7% 

3.6% 

2.5% 

0.2% 

1.0% 

0.9% 

0.0% 

0.4% 

0.6% 

1.4% 

0.6% 

2.3% 

1.2% 

Leakage 
SD 

11.1% 

8.8% 

8.3% 

9.2% 

10.3% 

6.4% 

5.2% 

5.3% 

5.4% 

10.1% 

3.9% 

8.1% 

7.3% 

9.0% 

10.5% 

7.9% 

3.0% 

7.4% 

7.6% 

Corre­
lation 

2.0% 

4.9% 

4.9% 

4.0% 

0.7% 

0.9% 

4.1% 

3.2% 

8.8% 

4.9% 

3.6% 

1.7% 

8.7% 

6.4% 

3.6% 

6.6% 

0.7% 

5.5% 

4.2% 

delay and the log of leakage power which is required for yield estimation as 
discussed above. 

The results show that the estimates obtained using the discussed approach 
for the values of the mean delay and leakage power are very accurate with an 
average error of 1.2% and 1.8% respectively. The standard deviations show 
an average error of 7.6% and 13.7% for power and delay respectively. Note 
that in general, circuits with smaller logic depth show larger error in delay 
compared to circuits with larger logic depths. It is also found that circuits 
which have a larger error have a significant component of the overall variation 
in delay arising from random variations. This results from the fact that the 
correlations in the random component are neglected, which can result in an 
overall smaller variance. However, the coefficient of correlation between the 
log of leakage power and delay shows very good match to MC results with an 
average error of 4.2%. 
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Fig. 5.10. Contribution of random variation to the variance of delay and leakage 
power for different circuits. 

Figure 5.10 shows the contribution of the random component of variation 
to the variance in delay and leakage. The contribution of the random compo­
nent to delay of a path is inversely proportional to the depth of the critical 
paths and can generally be expected to be small for circuits with large logic 
depths. However, with varying circuit size the contribution of random com­
ponent has no consistent trends. This results from the fact that the length 
of the critical path is not directly proportional to circuit size. Moreover, the 
contribution of random variation to delay also depends on the number of crit­
ical paths in a circuit. On the other hand, the contribution of the random 
variations to leakage variance is typically small and can be seen to decrease 
with increasing circuit size. The overall contribution of the random compo­
nent to the variance of leakage power is 1.8% on average with a maximum of 
3.6%. This confirms the assumption that the impact of the random compo­
nent of variation is negligible when estimating the correlation in power and 
performance. 

Figure 5.11 shows a representative jpdf of the log of leakage and delay, 
which is a bivariate Gaussian jpdf which is described as 

/ (X,y) (x ,y) = 
27ryr 

:exp 
- 1 

2(1 - n2^ 
X- 12a 
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Fig. 5.11. Joint probability distribution function for the bivariate Gaussian distri­
bution for c3540. 

- 2 p X - /J^a y-f^y\ _̂  (y-f^y (5.62) 

where fix and ax are the mean and variance of RV X (which in our case 
represents delay) and /x̂  and ay are the mean and variance of RV Y (which 
represents the log of leakage). The contours of the jpdf are ellipses with center 
at the mean of delay and the log of leakage, and have the equation 

X fix 
2p 

X - fix y - ^y 

+ 
y - ^^y 

- 2 ( l - p 2 ) l o g ( l - a ) (5.63) 

where a represents the fraction of the jpdf enclosed within the ellipse. The 
major-axis of the ellipse makes an angle 0 with the with the x-axis that is 
expressed as 

tan 
2paxay 

^ l - ^ y 
(5.64) 

This angle is 135^ if ax = ay and p < 0 (independent of the exact value of the 
correlation coefficient). If ax = ay and p = 0 then the ellipse degenerates into 
a circle. In addition, as the correlation is allowed to increase to an extreme 
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Fig. 5.12. Scatter plots obtained using MC simulations, (a) Delay and leakage for 
c3540 (b) Delay and log of leakage for c3540 (c) Delay and leakage for c499 (d) Delay 
and log of leakage c499. 

value of ±1 , the contours of the jpdf concentrate around the major axis and 
merge into a hne. Figure 5.12 shows the scatter plots obtained using MC-
based simulations for two of the benchmark circuits. The scatter plots on 
the left show the lognormal nature of leakage power which is more evident 
for the case of c499 (Figure 5.12(c)) being one of the smaller circuit in the 
benchmark suite. Circuit c499 also shows a high correlation between delay and 
power which is evident from the concentration of the jpdf along the major axis 
of its contours. The scatter plots on the right show the Gaussian nature of 
the jpdf of the log of leakage and delay, since the shape of the scatter plots 
closely resembles an ellipse. 

Table 5.4 compares the yield estimates achieved using the principal compo­
nent based approach to those obtained using Monte Carlo based simulations 
for all benchmark circuits at different performance bins. For both bins, the 
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Table 5.4. Yield estimates for different frequency bins using the analytical approach 
and Monte Carlo based simulations. 

Benchmark Monte Carlo Analytical Yield Neglecting 
Correlation 

D <D^ Df,<D D <D^ D^<D D < D^ D^ < D 
D < lAD^ D < I.ID^ D < I.ID^ 

c432 

c499 

c880 

cl908 

c2670 

c3540 

c5315 

c6288 

c7552 

i2 

iS 

i4 

i5 

i6 

17 

18 

19 

ilO 

Average 

0.17 

0.17 

0.2 

0.18 

0.16 

0.22 

0.19 

0.22 

0.2 

0.17 

0.17 

0.19 

0.18 

0.2 

0.22 

0.18 

0.19 

0.2 

0.19 

0.43 

0.46 

0.43 

0.48 

0.44 

0.43 

0.48 

0.47 

0.47 

0.4 

0.4 

0.4 

0.45 

0.39 

0.38 

0.46 

0.44 

0.46 

0.44 

0.14 

0.15 

0.16 

0.14 

0.14 

0.2 

0.19 

0.21 

0.19 

0.14 

0.15 

0.15 

0.16 

0.15 

0.21 

0.15 

0.17 

0.18 

0.17 

0.46 

0.49 

0.46 

0.49 

0.47 

0.44 

0.48 

0.46 

0.47 

0.45 

0.45 

0.46 

0.47 

0.45 

0.4 

0.49 

0.45 

0.47 

0.46 

0.31 

0.32 

0.32 

0.32 

0.31 

0.33 

0.33 

0.34 

0.33 

0.31 

0.31 

0.31 

0.32 

0.31 

0.32 

0.32 

0.31 

0.33 

0.32 

0.3 

0.32 

0.31 

0.32 

0.3 

0.32 

0.33 

0.34 

0.33 

0.3 

0.3 

0.3 

0.31 

0.3 

0.3 

0.32 

0.31 

0.32 

0.31 

leakage power is constrained to be less than I.IX the mean leakage value. Two 
different performance bins are constructed with delay confined to less than 
l.OX and between l.OX and I.IX the mean delay. The proposed approach is 
seen to provide good estimates of the yield for the different frequency bins 
with an average error in yield of 2%. If the correlation in power and delay is 
ignored, the yield in the different bins can be both significantly overestimated 
(up to 15% in the high performance bin) and underestimated (up to 16% in 
the low performance bin) as shown in the last three columns of the table. 

5.3 Supply Voltage Sensitivity 

In the previous two sections, we presented an analysis of yield under variations 
in process parameters. Power supply is an additional lever that the designer 
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can play with to influence the frequency and power of a design. In this manner, 
significant improvements in the shipping frequency or the yield of a design can 
be obtained. This idea was proposed and investigated in [116]. The approach 
develops a mathematical approach to analyze yield by mapping the feasible 
region in the power frequency space to the space of global variation in the 
physical parameters, gate length and threshold voltage. 

As we saw in Sec. 5.1, the performance of a design can be captured reason­
ably accurately while considering variation in global gate length alone. The 
frequency can be assumed to be proportional to the saturation current of a 
device, which can be expressed using the alpha-power model [123] as 

where Vtho is the threshold voltage, a is the velocity saturation coefficient, 
L is the nominal gate length of a device and AL represents the fluctuation 
in global gate length. Since variations are typically small, we can assume the 
frequency to be linearly dependent on the fluctuation in gate length and using 
Taylor's theorem, we can rewrite (5.65) as 

where kf is a proportionality constant and fn is the frequency under nominal 
process conditions. 

Let us now consider the influence of process parameters on the different 
components of power. Total power dissipation can be expressed as 

P = PDyn + P c a t e + ^Sub (5.67) 

where PDyn is the dynamic or switching power dissipation, Pcate is the gate 
leakage power, and Psub refers to the subthreshold leakage power. Dynamic 
power can be simply expressed as 

Dyn afC (̂ 1 + ^ ) Vid = PDyn, n ( l + ^ ) , (5-68) 

where a is the switching activity factor and / is the frequency of operation, the 
term ( l+AL/L) captures the dependence of the switching capacitance on gate 
length to flrst-order and PDyn,n is the nominal dynamic power dissipation. 

Gate leakage power is proportional to the device area, and is therefore 
directly proportional to the variation in gate length. In addition, gate leakage 
current is exponentially related to the power supply due to the increase in 
electric filed across the gate oxide. Note, that though we are not concerned 
with variation in Vdd, this dependence will play an important role when we 
consider the sensitivity of yield to supply voltage, which is our goal in this 
analysis. The gate leakage can be expressed as 
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Poate = kgi{L + A L ) K i r f e x p (fc^sK/d) = PGate,n U + " ^ j , (5.69) 

where Kgi^ Kg2 are proportionahty constants and PGate,n is the nominal gate 
leakage power. 

The subthreshold leakage is exponentially proportional to the threshold 
voltage of the device and can be expressed as 

î sub « ksiVddexp {-ks2{Vtm + AF^/, - r^Vdd)) (5.70) 

where fegi, ^^2 are proportionality constants and r] is the DIBL coefficient, 
which causes a reduction in the threshold voltage of a device with increase in 
drain-to-source voltage. This DIBL coefficient decreases with the increase in 
gate length and can be empirically expressed as 

r] = r]Q-pi{L-\- AL)-p2{L + AL)^ f^ rjn - {pi +P2L)AL (5.71) 

where rjn is the DIBL coefficient under nominal process conditions. Using 
(5.71), we can rewrite (5.70) as 

Psuh « ksiVddexp{-ks2{ytho - V^dd)) 

exp{-ks2{AVth + {Pi +P2L)ALVdd))) (5.72) 

= Psuh,nexp{-ks2{AVth + {pi+P2L)ALVdd))). (5.73) 

Having estabhshed the dependence of frequency and the different compo­
nents of power on variation in process parameters, we now discuss the steps 
that are used to map the feasible region from the performance and power 
perspective to the feasible region in the space of variations in gate length and 
threshold voltage. The parametric yield is defined as the probabihty that the 
frequency is greater than a given minimum desired value /min and the power 
dissipation is less than a given maximum value Pmax- The constraint on fre­
quency can be used to establish a constraint on the maximum gate length and 
this inequality is mathematically expressed as: 

Lmax < i^ + (AL)max = < L + ^ ( l - ^ ) . (5.74) 

For a given value of gate length fluctuation /, the gate leakage and dynamic 
power components are independent of variations in threshold voltage and their 
sum can be used to enforce a constraint on the subthreshold leakage power of 
the design. This gives, 

Psuh< (Poyn, „ + PCate, n) ( ^ + { ) • (^-75) 
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Table 5.5. Yield estimates for using the analytical yield model and SPICE based 
Monte Carlo simulations [116]. 

Frequency Power Yield Yield 
Constraint Constraint SPICE Analytical 

0.95 

0.95 

0.95 

1 

1 

1 

1.05 

1.05 

1.05 

1 

1.1 

1.2 

1 

1.1 

1.2 

1 

1.1 

1.2 

41.16 

63.18 

72.30 

7.64 

30.84 

42.70 

0.02 

3.46 

14.24 

40.02 

63.00 

72.00 

10.06 

31.56 

42.73 

0.26 

4.84 

12.71 

Using, (5.73) we can rewrite the above inequality in terms of the minimum 
possible threshold voltage Fmin as 

min 

_ T / ^ ,„ /Pmax - (Ppyn.n + PGate.n)(l + l/L)\ 

We now define the parametric yield Y in terms of the integral of a bivariate 
normal distribution function of gate length and threshold voltage as 

1 /•i-max fOO / T2 \ f V'^ \ 

Y = -—= / / exp - — ^ exp - ^ - ^ dLdVth^ (5.77) 

where GL and ay^^ correspond to the variance of global variation in gate length 
and threshold voltage, respectively. The above expression can then be evalu­
ated using numerical integration. Note, that in (5.77) we have assumed that 
L and Vth are independent RVs. However, any correlation between these two 
parameters can be easily considered, by integrating the appropriate bivari­
ate distribution in the (5.77). Table 5.5 compares the yield estimate obtained 
using the analytical approach with the yield obtained using SPICE based 
Monte Carlo simulation for a 15-stage ring oscillator in a 90 nm technology 
with Vdd = 1V. It can be seen that the analytical yield estimation approach 
provides good accuracy. 

To consider the sensitivity of yield to supply voltage, we need to consider 
the impact both in performance and power. Consider (5.77) and note that 
yield is defined by the constraint on gate length Lmax and the constraint on 
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Fig. 5.13. Sensitivity of the constraint on minimum threshold voltage to changes 
in supply voltage [116]. (©2005 IEEE) 
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Fig. 5.15. Parametric yield as a function of the supply voltage [116]. (©2005 IEEE) 

threshold voltage Fmin • Lowering the supply voltage lowers the power dissipa­
tion and results in a relaxation on the constraint on Fmin- This is illustrated 
graphically in Fig. 5.13 which plots the maximum possible tolerable variation 
in Vth that satisfies the power constraint that Pmax ^ l-l-Pnom, ^oi varying 
supply voltages. As the supply voltage is lowered, the feasible region in terms 
of Vth increases. As an example for a global variation in gate length that cor­
responds to -2cr, a change in supply voltage from 1.0 V to 0.9 V results in a 
reduction of the feasible Vmin from -2.1cr to 1.8cr. 

On the other hand, lowering the supply voltage has a strong negative 
influence on the performance of the design as well. Figure 5.14 illustrates the 
change in the feasible region in terms of variations in gate length with varying 
supply voltage for a performance constraint of /min > 0.95 Fnom- In this case, 
reducing the supply voltage from 1.0 V to 0.9 V results in a reduction of the 
feasible region from 1.55(7 to 0.50(7. Note that the sensitivity of the feasible 
region to supply voltage is a strong function of the value of the supply voltage 
as well. 

Figures 5.14 and5.15 show regions where small changes in voltage can 
result in either a large or a small change in the feasible region. In terms of 
yield, the constraint imposed on power and performance also has a strong 
influence on the sensitivity of yield to supply voltage. This can be understood 
by considering the distribution of power or performance. If the constraint is 
close to the nominal, then small changes in the constraint, due to changes in 
supply voltage will have a strong impact on the overall yield. However, as we 
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Fig. 5.16. Sensitivity of the optimized yield and the optimal supply voltage to the 
frequency constraint for a power constraint of 1.2X the nominal power [116]. (©2005 
IEEE) 

move towards the corner and the constraints become either too tight or too 
loose the sensitivity of yield to changes in the constraint also becomes smaller. 

Figure 5.15 plots the estimated parametric yield with varying supply volt­
age, both using the analytical approach and using SPICE based Monte Carlo 
simulations. The analytical results are obtained by repeating the analysis for 
different supply voltage values. The plot shows good accuracy of the analytical 
approach and shows that the parametric yield is strongly sensitive to varia­
tions in supply voltage. A small change of even 5% in supply voltage results 
in a 15% degradation in yield. 

The constraint imposed on Lmax Is a strong function of the frequency con­
straint. Hence, we would expect a large sensitivity of yield to small changes 
in the timing constraint. This is illustrated in Fig. 5.16, which plots the opti­
mal power supply voltage that maximizes the yield and the maximized yield 
for varying frequency constraints. The figure shows that both the yield and 
the optimal supply voltages are strongly dependent on the yield constraint. 
For loose timing constraints, a lower value of power supply voltage becomes 
optimal, since it results in lower power dissipation as well. As the timing con­
straint becomes tight, the optimal power supply voltage increases to maintain 
good timing yield. However, this has a negative impact on power dissipation 
and the overall yield suffers. The same trends can also be found for the power 
constraint, which is shown in Fig. 5.17. 
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Fig. 5.17. Sensitivity of the optimized yield and the optimal supply voltage to the 
power constraint where the minimum frequency is constrained to be more than 0.9X 
the nominal frequency [116]. (©2005 IEEE) 

Based on the above analysis, we see that the supply voltage has a strong 
influence on yield and can be used as a level to improve the yield or ship­
ping frequency of a design. We can maximize the shipping frequency, which 
is defined to be the frequency of the slowest part, while ensuring a given min­
imum yield for the design. For a given supply voltage, the yield constraint 
Hmits the maximum gate length, which can then be used to estimate the low­
est frequency of a sample, or the shipping frequency. Figure 5.18 plots this 
shipping frequency as the supply voltage is varied for a 20% yield in this bin. 
The flat regions of the plot are regions where the supply voltage is so large 
that the overall yield constraint cannot be met for any performance target. 
Also, we see that the supply voltage can be tuned for a design to maximize 
the shipping frequency of the design. Taking this idea a step further, we can 
tune the supply voltage for each sample of a design sold and this tunable 
supply voltage can be higher for low performance parts (which are low power) 
and lower for high performance parts (which are high power). Hence, using 
this approach we can expect to increase the yield of a design significantly. In 
addition, an important issue in adaptive supply designs would be to have a 
design flow that has been tailored to suit this approach. In this case, design 
should have nominal power and performance that satisfy the constraints with 
minimal variance. Any variation in process parameters on either side of their 
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Fig. 5.18. Maximum shipping frequency as a function of the supply voltage. The 
desired yield is 20% with the power constrained to less than 1.2X the nominal power 
dissipation [116]. (©2005 IEEE) 

nominal values rsulting in a variation in power and performance can then be 
tuned using a small range of supply voltages. 



Statistical Optimization Techniques 

To this point in the book, we have discussed the details regarding statistical 
analysis techniques for delay, power, and yield. In this chapter, we will use 
some of these analytical techniques to drive optimization methods that will be 
used to improve the performance of a given design. Most of the earlier work 
in circuit optimization has been limited to deterministic optimization using 
corner model based case-files. These approaches are blind to the impact of the 
decisions made during the optimization step on the overall parametric yield 
of the design, and invariably result in the formation of a timing wall as shown 
in Fig. 6.1. This results from the fact that the optimizer has no incentive to 
reduce the delay of non-critical paths. As we know, all near-critical paths can 
strongly affect the circuit delay distribution due to process variabihty; and 
hence, the design becomes more susceptible to process variations. 

In [14] the authors proposed an uncertainty-aware heuristic approach that 
performed deterministic optimization using a nonhnear optimizer, while avoid­
ing the build-up of a timing wall. This was achieved by adding an additional 
term to the objective function that is a function of the slack available on the 
primary outputs. The new objective function (to be minimized) is defined as 

z+j2m) (6.1) 
iePO 

where z is the delay of the circuit, PO is the set of primary outputs, and / is 
a function of di, which is defined for each primary output as 

di = z-ATi- RATi (6.2) 

where AT and RAT represent the arrival and the required arrival times, re­
spectively. The choice of the function / is crucial to the optimization, as it 
defines the level of importance given to the slack available on non-critical 
paths. Since our focus is to develop true statistical optimization techniques 
we will not go into details that need to be considered when choosing / (de­
tails can be found in [14]). The discussion is provided to emphasize that, in 
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Fig. 6 .1 . Deterministic optimization results in the formation of a timing wall. 

a statistical scenario, the definition of a critical path becomes vague and it 
is no longer possible to isolate a single critical path. Thus, a true statistical 
optimization technique will not be focused on improving the performance of 
a single critical path. However, the timing yield of a design can be improved 
by identifying paths that have a significant probability of becoming critical, 
given process variation. In certain situations a set of deterministic non-critical 
paths might have a much higher probability of becoming critical than a single 
deterministic critical path and in this case, efforts to improve the timing of 
the critical path will be futile in improving the timing yield of the design. 

Another important issue that needs to be addressed before we delve into 
statistical optimization is the choice of objective function that should be op­
timized. In a deterministic scenario the objective function can be represented 
as the circuit delay or power. However, in a statistical scenario these perfor­
mance parameters are described as probability distributions and the objective 
function should be based on parameters that define these distributions. Min­
imizing the expected value or the standard deviation or a linear combination 
of these parameters are some of the possible choices. In [115], the authors use 
the concept of utility theory to define a measure for the statistical criticality 
of the nodes, which is used as an objective function. The sensitivity-based 
approach in Sec. 6.2.5 introduces the notion of a profit function that directly 
corresponds to the revenue that can be generated. In a microprocessor set­
ting, where companies perform speed-binning and sell higher frequency parts 
at a higher cost, the profit function can be approximated by a rising ramp, 



c 
o 

c 
3 

"s 

6.1 Optimization of Process Parameters 205 

* Microprocessor 
•ASIC design 

Frequency 

Fig. 6.2. Generic profit functions for a microprocessor and ASIC design. 

which represents higher profits for high frequency components (as shown in 
Fig. 6.2). In the ASIC market, a chip can only be sold if it meets the spec­
ifications. Furthermore, all samples of an ASIC design are sold at the same 
price. Therefore, a step profit function can be used to capture this situation. 

In this chapter we will first discuss a general framework that will be used 
to optimize values of process parameters to minimize power dissipation using 
a robust optimization technique. Then we will discuss statistical optimization 
techniques based on gate sizing to perform timing and power optimization, 
which has been the focus of significant recent work in this area. Finally, we 
will look at some of the techniques that have been proposed to perform buffer 
insertion and threshold voltage assignment in statistical scenarios. 

6.1 Optimization of Process Parameters 

Power consumption has become a top priority in modern circuit design and 
multiple supply and threshold voltages have been shown to be extremely ef­
fective in reducing total power dissipation. Previous implementations using 
multiple supply and threshold voltages have shown impressive savings in both 
the dynamic and leakage power of a design [143], [120]. The effectiveness of 
multiple supply voltage {Vdd) techniques was first shown to scale poorly in 
[58]; however, [132] showed that using multiple supply and threshold volt-
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ages (Vth) in conjunction is very effective in achieving large power savings in 
sub-IV technologies. 

In this section, we will discuss the selection of appropriate values for the 
supply and threshold voltages to minimize power dissipation. This problem 
was investigated under deterministic conditions in [58], [132]. In [58], the au­
thors proposed an approach to select optimal supply and threshold voltages 
in either multiple Vdd or multiple Vth designs by minimizing dynamic or static 
power, respectively. This approach was extended in [132] to the selection of 
both Vth and Vdd and considers optimization of total power in multi-Vdd/Vth 
systems. However, both these approaches ignore process variations and per­
form deterministic power optimization only. 

We will discuss the robust optimization based approach developed in [131] 
to consider the impact of process variation while selecting the optimal Vdd/Vth 
values in imx\ti-Vdd/Vth designs by minimizing power dissipation of a generic 
CMOS digital system. To simplify the problem, it is assumed that the network 
consists of non-intersecting parallel paths. A path-delay distribution of the 
network is assumed and is used to quantify the number of paths having a 
particular delay when the design is synthesized at the fastest combination of 
supply and threshold voltage. The goal of power optimization is to determine 
the fraction of each path of the network that should be assigned to a particular 
combination of supply and threshold voltage in order to minimize the power 
dissipation under a given timing yield constraint. The timing yield constraint 
is expressed as a minimum probability with which the delay of a path is 
constrained to be less than a given critical delay for the network. 

Using this approach, we can estimate the achievable power savings in the 
available Vdd/Vth space. The Vdd/Vth point that results in the lowest power 
dissipation is then identified as the optimal Vdd/Vth- Note, that although we 
do not discuss gate leakage in this section, the approach can be easily extended 
to perform dual-To^ allocation to minimize gate leakage power. 

The high-level framework expresses both delay and power as a function 
of supply and threshold voltage. Since power grid variations are temporal 
(depending on the input vector combination) a worst-case drop can occur 
in any sample of a chip, and worst-case models should be used to consider 
Vdd variations. On the other hand, variations in Vth are process-dependent 
and its impact on both power and performance should be considered statisti­
cally. Threshold voltage variability is a concern due to DIBL effects as well as 
discrete dopant effects, which are exacerbated in highly scaled technologies. 
Let us define the threshold voltages, which are assumed to be normally dis­
tributed, as a sum of a nominal value and a random variable (RV), which can 
be expressed as 

Vth = VTH + Vth (6.3) 

where VTH is the nominal value of the threshold voltage and Vth is a zero 
mean Gaussian RV with a variance equal to the variance of Vth- In addition, 
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the RVs associated with different threshold voltages in a mu\t\-Vth process 
are assumed to be mutually independent, since different threshold voltages 
correspond to different implantation steps in the process. However, the ap­
proach can be adopted to handle arbitrary correlations among the different 
threshold voltages, if the threshold voltages are jointly distributed according 
to a multinormal distribution. These correlations can result from variation in 
threshold voltage resulting from correlated variations in gate length, which 
will influence both threshold voltages similarly. 

Consider a generic logic network that consists of a set of paths with Â  
distinct delays. This is achieved by discretizing the path-delay distribution at 
N discrete delay points. Let the number of paths with delay Di {I < i < N) 
be Pi, then the total number of paths in the network P is expressed as 

i=N 

P=Y.Pi- (6.4) 

Now consider one of the paths (say k) and assume Vi and Vthi to be 
the supply voltage and threshold voltage in the initial single Vdd/yth system. 
The network is assumed to be operating at the highest Vdd and lowest Vth 
initially, which gives the fastest design and allows for easy handling of the 
power optimization step. Let Ck and Wk be the total capacitance and device 
width of the path, respectively. The total initial dynamic power can then be 
expressed as 

P^y- = fCkV^ (6.5) 

where / is the frequency of operation. Considering the same path implemented 
in an n — Vdd/Tn — Vth design, let us define C^j's and Wij^s as the capacitances 
and device widths operating at a supply voltage Vi and threshold voltage 
with a nominal value VTHJ • The total dynamic power dissipation can now be 
expressed as 

n m 

i=l j=l 

and the static power of the design can be expressed as 

n m / _ T / \ 

Pr'" = ̂0 E E V^W,, exp ( ^ j (6.7) 

where n is the subthreshold swing coefficient and VT = kT/q is the thermal 
voltage. Additionally the Qj ' s and Wi/s satisfy the equation 

n m n m 

Y,Y.^ij = Ck EE^«^ = f̂c- (6-8) 
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The delay of the path is calculated using the alpha-power law model [123] 

as 

Dk = YY ^^^^^ (6.9) 

where a is the velocity saturation coefficient that varies from 1 to 2. 
As shown in [58], the total capacitance and transistor width along a path 

are largely proportional to the path delay. Hence, the Wij's in (6.7) can be 
replaced by Cij 's and /Q is replaced by IQ to absorb the change in the prefactor 
of (6.7) when moving from widths to capacitances. Since we have expressed 
both the power and delay of the circuit as a function of only one set of un­
knowns, the Cij^s, we can formulate the power optimization problem with 
the Cij^s as the optimization variables. In the following discussion within this 
section we will also refer to the solution vector of the optimization problem 
as c. 

6.1.1 Timing Constra int 

Let us assume for now, that the required timing yield of each path in the 
network (p) is pre-determined, which allows us to express the delay constraint 
as 

V{Tcritica\-Dk>0)>pk. (6.10) 

This equation constrains the probability that path Pk has a delay less than the 
critical delay of the circuit to be more than pk. We will look at an approach 
to estimate the pk^s in the Sec. 6.1.3. To simplify the timing constraint we 
express (6.9) as 

which can be approximated using Taylor's expansion as 

Since the variations in process parameters are typically small compared to 
their nominal values, the above approximation is very accurate. As an exam­
ple, using nominal values of Vth and Vdd as 200 mV and 1.2 V respectively, 
we find an approximation error of only 1.4% for the worst-case variation {3a 
point), where we have assumed a 3a variation in Vth of 30%. This approxima­
tion allows us to write the delay as a linear combination of the Gaussian RVs 
t't/i's, as defined in (6.3). At this point, we can write the mean and variance 
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of D)^ as a function of c (the vector of C^^'s), using the properties of Gaussian 
RVs. Now we can express (6.10) as 

V ((Teritical " Dk) - iV(/ifc(c), (7fc(c)) > 0) > Pk (6.13) 

which can be rewritten as 

-/x/,(c) - V2 erfinv (1 - 2pk) Gk (c) < 0 (6.14) 

where erfinv is the inverse of the error function. Let us now show that (6.14) 
defines a convex set [15] under the condition that pk > 0.5. 

Theorem 6.1. Let X = (^1,^2? • • • ^^n)"^ be a vector of random variables, 
whose components are jointly distributed according to a multinormal distri­
bution. Then the variance and standard deviation of the linear combination 
y = a-^X are convex in a. 

Proof A sufl[icient and necessary condition for a function to be convex is that 
its Hessian matrix is positive semi-definite at each point for which the function 
is defined. We can write the variance of y as 

cr^(a) = a ^ S a (6.15) 

where S is the covariance matrix of the components of X. We know that S is 
symmetric and positive semi-definite. Since 

Hu(u^Au) - A + A^, (6.16) 

the Hessian matrix of (6.15) is 2S which is positive semi-definite; and therefore, 
the variance of the Hnear combination y = a ^ X is convex in a. To prove the 
convexity of standard deviation, we express the standard deviation as 

i 3 

To show the convexity of (6.17), we need to show that 

a(l9a + (1 - 0)h) < 6>a(a) + (1 - 6>)a(b) (6.18) 

which is equivalent to 

( E E(^«^ + (1 - )̂̂ )̂(̂ «̂  + (1 - ^)h)pm^of-'' < 

e{J2 E aiajPijCiajf-^ + (1 - ^ ) ( ^ ^ bibjPijatajf-'. (6.19) 
^ J 

Using the standard arithmetic-geometric inequahty and squaring both sides, 
we can rewrite the above (after some algebra) as 
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22 z2 V^i^J^i^JPiJ^i^J < 
^ J 

^J2 Yl ''i^JPiJ^i<'j)'''^iYl Yl bibjPijCTiCTjf-^ (6.20) 
i J i j 

which follows from Holder's inequality [22]. 

Since jik is linear in c, both ///c(c) and -/ifc(c) are convex functions. ak{c) 
is the standard deviation of a linear combination of mutually independent 
random variables, and was shown to be convex in Theorem 6.1. Also, we know 
that if f{x) defines a convex function, then the set {x\f{x) < k} is convex, 
and that non-negative weighted sums of convex functions are convex. The 
condition that the weights in (6.14) of a linear combination be non-negative 
is satisfied when 

V2 erfinv (1 - 2pk) < 0, (6.21) 

which implies that Pk ^O.b. 
Since the target yield for a given path is always much greater than 50%, 

this condition is easily satisfied {pk is the yield of a single path; even if just 
a few paths have yield close to 0.5 then the overall yield of the design will be 
very small). It is important to note that if the pk's are themselves treated as 
optimization variables, then the set defined by (6.14) does not remain convex, 
even though the inverse error function is still convex in our domain of interest. 
This results from the fact that (6.14), in this case, becomes a product of two 
convex functions, which is not convex in general [22]. Thus simultaneous opti­
mization of total power and yield of each path is therefore not possible using 
the above convex formulation. To solve this, [131] separates the problems of 
yield allocation for each path (discussed later) and actual power minimiza­
tion given the desired yield values for each path. Yield allocation is used to 
determine the pk^s values that are then used in power optimization. Let us 
first look at the power minimization approach itself. 

6.1.2 Objective Function 

The objective function of the power optimization procedure is a statistical 
parameter of the power dissipation of the network. We consider three different 
optimization functions. The objective functions are considered as a sum of the 
statistical parameter of dynamic and leakage power components, normalized 
by the nominal dynamic and leakage power of the initial design, respectively. 
As shown in [132], minimizing such a weighted sum can be used to minimize 
the total power if the weighting factor is appropriately chosen. In our case, 
this would allow us to minimize the appropriate statistical parameter of the 
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total power dissipation. The weighting factors can also be chosen to result in 
a larger reduction in leakage or dynamic power, if so desired. 

Equations (6.6) and (6.7) are used to express the dynamic and leakage 
power for an individual path, respectively. To calculate the total power of the 
network, recall that we have assumed that the amount of capacitance, and 
hence, the device width on a path is proportional to the initial nominal delay of 
the path in the single Vdd/Vth environment. Thus, the total power dissipation 
can be readily obtained by calculating a weighted sum of the power dissipation 
of all paths in the network, where the weighting factor is the initial nominal 
delay. Since the dynamic power does not involve any random variables, the 
dynamic power component can be expressed as in (6.6) for all of the following 
cases. 

Mean Power 

The leakage power, as expressed in (6.7), is a sum of lognormal (exponential 
of a Gaussian) RVs. If X ~ A^(/i, (T) and Y = exp{X) then the expected value 
of Y can be expressed as 

E[Y]=exp(j,+ Y)- (6-22) 

Using (6.7) and (6.22), average leakage can be expressed as 

« r = /; E EEVi'Cyexp ( ^ + 1 (^y) . (6.23) 
paths i=l j = l \ ^ ^ / 

Nominal Power 

Nominal leakage power is the leakage power under nominal process conditions 
and can be expressed as 

p^^^ = 0̂ E E E ^(^^^ «-p ( ^ ) • (6-24) 
paths i=l j=l ^ ^ 

High Percentile Leakage Power 

The variance of the lognormal RV Y, as defined above, can be written as 

Var[Y] = exp (2 (/x + (J^)) - exp (2/i + a^) . (6.25) 

Equations (6.7) and (6.25) can be used to express the variance of leakage 
power as 
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m l ^ \ 

nr'̂  = /oE EE • (6-26) 
3 — \ ypaths i=l / 

It is important to consider the order of summation in (6.26), since we need 
to sum the capacitance (representing width) operating at a given threshold 
voltage across all paths before we can square the terms. A higher percentile 
point of the probability distribution of total power can now be expressed as 

pstatic pstatic i ^ . / pstatic (a 0'7\ 
•^ percentile •* mean \^ i^ y -^ var "> \y.^t ) 

where n is a positive constant. Equations (6.23) and (6.24) are linear in the 
optimization variables C^^'s, and hence represent convex functions of the com­
ponents of c. Equation (6.27) can be shown to be convex using Theorem 6.1, 
which shows that the standard deviation of a linear combination of RVs is con­
vex in the weighting coefficient. Since we are interested in higher percentiles 
of power for which n > 0, we have a non-negative weighted sum of convex 
functions, which is convex. 

Since we have represented all the objective functions as convex functions, 
their unique global minimum can be efficiently determined. The complete 
power minimization problem can now be cast as 

Min : / (c) (6.28) 

s.t. : - iik{c) + PkCTk{c) < 0 k = l,..,,N 

where / : 3ft̂*-̂  ^ 9ft is a convex function, p^^s are positive constant and the 
functions /i^'s and a/c's are convex. 

6.1.3 Yield Allocation 

To perform the power optimization step discussed above, we must first identify 
yield constraints for all k paths in the circuit. This yield allocation problem 
is non-trivial as shown in the following example. The simplest yield allocation 
method assumes all paths in the optimized circuit will be equally likely to 
violate timing. In this case, if the desired parametric yield is 0.99 and there 
are N paths in the network, then each path must have a yield of 0.99^/^^. 
This situation is depicted in Fig. 6.3 as the uniform yield allocation case. 
Assuming an initial yield distribution of the paths as shown in the figure, 
the optimal yield allocation, which enables the maximum reduction in power, 
should assign yield targets to each path that are lower than the initial yield, 
such that the power dissipation is minimized while the complete network has 
the desired timing yield. Figure 6.3 shows an expected solution of optimal yield 



6.1 Optimization of Process Parameters 213 

c 
E 
H 
_c 
"S o 

I* 
!5 

o 

•o 

1 00 -

0.96-

0.92-

0.88-

0.84-

7 ^ 

Initial Yield 
^ • Optimal Yield Allocation 
• • Uniform Yield Allocation 

• 1 * 1 ' 1 ' 1 -

\ 

\ 

\ 

\ 

\ 

— ' 1 ' 

0.0 0.2 0.4 0.6 0.8 

Path Delay (Normalized) 

1.0 

Fig. 6.3. Different yield allocation options have a significant impact on the opti­
mization problem. 

allocation which tightly constrains the fast paths and is thus able to loosely 
constrain the slow paths, while maintaining the overall yield of the network. 
On the other hand, uniform allocation can potentially constrain paths to have 
a post-optimized yield higher than their initial yield (this is seen in Fig. 6.3 for 
paths with near critical delay). In these cases, the power optimization problem 
becomes infeasible since there are no available means to increase the timing 
yield of a path. Thus, it is necessary that yield be reasonably allocated among 
the different paths in the network before power optimization is performed. We 
assumed in Sec. 6.1.1 that the yield for each path pk^s were pre-determined. 
We now set up a convex optimization problem to determine these p^'s in order 
to provide the desired timing yield for the complete network. 

The global constraint on the p^'s can be expressed as 

N 

k=i 

Pk >Y (6.29) 

where the P^'s are as defined in (6.4) and Y is the desired timing yield of 
the circuit. The objective of yield allocation is to assign a yield to each path 
such that the objective functions defined above are minimized. We perform 
a gradient search to improve the yield allocation given an initial solution. 
Therefore, we express the objective function for yield allocation as 
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^^ dpk 
a' Ac=2_^ak^ Apk (6.30) 

k 

where a is a constant vector representing the vector of coefficients of the Cij 's 
in the objective function for power optimization. The gradient terms in (6.30) 
are estimated along the curve where (6.14) is satisfied with equality. The yield 
allocation problem can then be expressed as 

Mm: yak-^—Apk 

N 

s.t.: n^^r^^^ (6.31) 
/ c = l 

0.5 <pfc < 1, fc = 1,...,A^. 

The above optimization problem can be easily mapped to a convex optimiza­
tion problem by introducing an extra variable, and the final yield allocation 
problem can then be written as 

Min: S^^k-^ ^Pk 
k ^P^ 

s-t.: \i{plnP>l (6.32) 

0.5 <pfc < 1, fc = l , . . . , iV 

i < / ^ < i / y 

where (3 is the added variable. The equivalence of 6.31 and 6.32 can be readily 
estabhshed. Let us consider the convexity of (6.32). The objective function is 
linear in the variables of the optimization and is, therefore, convex. The last 
two constraints obviously define convex regions, so it needs to be established 
that the first constraint, which is of the form 

\{xT>l (6.33) 
i 

defines a convex region. Let u and v be two vectors that satisfy (6.33). Let 
us form a convex combination of u and v and consider 

Y{{6ui + {l-e)vir\ (6.34) 
i 

Using the general form of the standard arithmetic-geometric inequality [22], 
which states that 
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a^6^-^ < 6>a + (1 - 0)b 

for a, 6 > 0 and 0 < ^ < 1, we can write 

n(^«.+(i-^Kr>n(«Nn" 
i i 

(6.35) 

i-e 

> 1 (6.36) 

which implies that any convex combination of two points within the set defined 
by (6.33) belongs to the set defined in (6.33). Therefore, the constraints define 
a convex region and (6.32) represents a convex optimization problem. 

To improve upon the initial guess, the initial yield allocation is performed 
by assuming the coefficients of pfc's in (6.32) to be the ratio of the initial 
delay to the initial yield. Hence, paths with lower initial timing yield (due to 
higher delay), have a higher weighting factor in the objective function. The 
yield allocation optimization then steers towards smaller values of p for these 
paths. This fulfills the goal of yield allocation, in that these initially critical 
paths are allowed to dominate the circuit yield, whereas non-critical paths 
should not be allowed to significantly degrade parametric timing yield. Yield 
allocation and power minimization can then be iteratively performed and the 
results are found to converge (within 1%) in 2-3 iterations for almost all cases. 
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This approach was used to analyze xnulti-Vth/Vdd using process and tech­
nology parameters that are typical of a 90 nm CMOS process, assuming an 
initial Vdd of 1.21^ and a low Vth of 200 mV in a dual-l^/i process. The stan­
dard deviation of threshold voltages is considered to be 10% of its nominal 
value [26]. This results in higher threshold voltages having a higher standard 
deviation than lower threshold voltages. This may not always hold (as we 
saw in Chap. 2, this is true for variations originating from random dopant 
variations); therefore, an additional experiment where low Vth devices exhibit 
larger relative variability than their high Vth counterparts is considered. 

The initial path delay distribution is assumed to have a symmetric tri­
angular shape as shown in Fig. 6.4. The a:-axis is the nominal path delay 
normahzed to the nominal delay of the longest path in the network. Note that 
the shape of the path delay histogram can take on any form within the context 
of the optimization approach. Since the initial design operates at the lowest 
threshold voltage and highest supply voltage, both the mean and variance of 
all path delays are minimized. Thus, any applied optimizations will necessarily 
result in a lower yield, due to the introduction of a higher threshold voltage or 
lower supply voltage. Therefore, we must allow for a reduction in the target 
yield. For most of the results an initial yield of 98% is used, which is then 
allowed to reduce to 93%. The requirement to meet the initial yield of the 
circuit can be used to define the critical delay of the network. To determine 
the parameter NUM in Fig. 6.4, data from [53] is used, which shows that the 
number of critical paths in a circuit varies from 100 to 1000. A path is defined 
to be critical if the probability that the path can have a delay larger than 
the critical delay is greater than 0.5%. This information can then be used to 
determine the parameter NUM. For the analysis, the number of critical paths 
in the circuit with a 3cr Vth variation of 30% is 200, translating to a total of 
10,000 paths in the generic logic network. 

Figure 6.5 shows the mean leakage power as a function of a second thresh­
old voltage value in a dual-Vi/i optimization (a single Vdd is used). The power 
in this and subsequent figures is shown normalized to the nominal power of 
the initial design operating at a single Vdd and Vth- As can be clearly seen, 
with an increase in the level of variability the optimal second threshold volt­
age reduces. For example, the difference in optimal Vth2 between a purely 
deterministic optimization and an expected 3a level of 30% of the mean is 
approximately 40 mV. This can be understood by noting that with increas­
ing variations, devices with higher nominal Vth suffer not only a larger delay 
penalty (due to the growing Vth/Vdd ratio), but also a larger power penalty 
stemming from their larger variation (consider (6.23)). Even more critical is 
that the achievable leakage power savings when considering process fluctu­
ations is significantly degraded compared to the deterministic case. For the 
most part, this occurs since roughly half of the devices inserted for a given Vth 
will exhibit thresholds smaller than the nominal value. Due to the exponential 
dependency of leakage on Vth, the insertion of high Vth devices will often re­
sult in much less leakage reduction than expected from the nominal conditions 
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Fig. 6.5. Average power reduction as a function of the second threshold voltage. 
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Fig. 6.7. Reduction in a higher percentile of power as a function of the second 
threshold voltage. 

based on process spread. In Fig. 6.5, the power savings reduce from roughly 
90% in the deterministic case to just over 70% under a reasonable level of Vth 
variability. 

One of the curves in Fig. 6.5 is obtained by assuming a fixed level (a == 
20mV) of variation in Vth^ regardless of the nominal value. This experiment 
attempts to investigate whether trends showing optimal second Vth values 
smaller given uncertainty are artifacts of the assumption that mean/sigma for 
Vth is assumed to be constant, therefore penahzing higher threshold values. 
The figure clearly shows that, even in this situation, the optimal high Vth in a 
dnal-Vth system is lower compared to the case without considering variations. 
It is also interesting to note that, while determining the threshold voltages to 
be offered in a process, an overestimation of the process variation leads to a 
larger degree of performance degradation compared to an underestimation of 
the variability levels. This is due to the sharp increase in mean leakage for the 
use of threshold voltages smaller than optimal. 

Figure 6.6 shows the nominal leakage power as a function of a second 
threshold voltage in dual-V /̂̂  optimization. The nominal leakage shows similar 
trends to the average leakage previously discussed. Also, as the second thresh­
old voltage is reduced, the curves corresponding to different variation levels 
converge. As the difference between the two threshold voltages increases, the 
fraction of the circuit allocated to the higher Vth becomes strongly dependent 
on the magnitude of process variability (due to the constraint on timing yield) 
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and the curves diverge. Figure 6.7 shows the dependence of a minimized higher 
percentile of the leakage power distribution on the second threshold voltage 
value. This plot corresponds to the value of leakage power that is two stan­
dard deviations away from the mean, indicating an n of 2 in (6.27). The figure 
shows that the curves are much more spread out here than in Fig. 6.5 and 
Fig. 6.6 since the power values at this point in the distribution are extremely 
sensitive to variation in threshold voltage. Also the trend showing that lower 
threshold voltages become optimal as variability rises holds true in this case 
as well. Thus, we can say that for power optimization, the difference between 
the two thresholds decreases with the increase in process variability (assuming 
a fixed lower bound on one of the Vth^s). 

Figure 6.8 shows the dependence of the achievable power reduction on 
the yield backoff used to perform the power optimization of the network. 
Recall that the circuit must absorb at least a small timing yield penalty when 
applying low power optimization techniques such as dual-Vi/i ^iid dnal-Vdd- As 
shown in the figure, the achievable power reduction decreases rapidly as the 
yield loss is tightened. Specifically, reducing the backoff from 5% (our default 
scenario) to 2% results in an increase in power dissipation of approximately 
20%. This dependence can be expected to increase for a path delay distribution 
in which the fraction of near-critical paths is larger than in our assumed path 
delay distribution. 
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Figure 6.9 shows the reduction in leakage power in a triple-Vi/^ environment 
when 3cr variation is 30% of nominal. The introduction of a third Vth provides 
additional power savings of 7%, compared to dual-Vth alone. Keeping in mind 
the cost of the additional masks required for a third Vth, this power advantage 
is not overly attractive. 

When dynamic power is considered during power optimization, the im­
pact of variabihty is significantly reduced, since dynamic power does not vary 
with fluctuations in Vth- In real-world situations, well-controlled gate oxide 
thickness results in dynamic power variations that are typically very small 
compared to variations in components of leakage power. However, when we 
minimize dynamic and subthreshold leakage power using a duel-Vdd/Vth tech­
nique, we expect a change in the optimal solution. This follows from the fact 
that Vth variabihty leads to a significant difference in the optimal value of 
the second Vth- Hence, the optimal value of the second Vdd in a duel-Vdd/Vth 
process can also be expected to differ from the deterministic optimal value 
in order to maintain reasonable drive strengths for gates operating at low 
Vdd and high Vth- Figure 6.10 shows the reduction in total power (consider­
ing dynamic and subthreshold leakage) as a result of simultaneous duel-Vdd 
and dual-Vt/i power optimization without considering variations in Vth- The 
initial design at low Vth and high Vdd Is assumed to have equal contribu­
tion from dynamic and leakage power. Overall the total power increases when 
considering variation in Vth- This is due to an increase in the subthreshold 
leakage component of the total power under process variation. However, the 
difference between the deterministic and statistical case is much smaller here 
compared to the case where only subthreshold leakage power is considered. 
This again results from the fact that dynamic power is insensitive to varia­
tions, and therefore, the overall impact of variations on power dissipation is 
considerably much smaller. The figure also shows that the optimal value of the 
second supply voltage shifts slightly towards a higher value, due to an increase 
in the optimal value of the lower threshold voltage. This is the other factor 
responsible for reducing the total power savings obtained by the application 
of a dual-Vdd/Vth process. 

Thus, we see that there are two key components to the power optimization 
formulation: 1) we must allocate a yield budget to individual paths (or more 
generally, to sets of paths with similar delay characteristics) such that power 
can be effectively minimized, and 2) the power optimization itself which can 
target various points along the power distribution including high percentile 
points that represent problematic leaky dies for example. The yield allocation 
formulation is actually a more general problem, and techniques that can be 
used to generate a set of timing yield constraints for a lower level of hierarchy 
based on timing yield constraints for a higher abstraction level will be very 
useful for any statistical optimization technique. For example, a technique to 
establish yield constraints for each combinational block based on the yield 
constraint on the complete design will be needed to use any statistical opti­
mization technique developed for combinational designs. This problem clearly 



222 6 Statistical Optimization Techniques 

differentiates statistical and deterministic optimization, where all combina­
tional blocks will be required to meet a given timing constraint based on the 
clock cycle. 

Additionally, note that the technique discussed in this section can be 
mapped directly to the gate sizing problem, assuming a Hnearized delay model, 
using a path-based analysis. However, the crucial step in gate sizing will be 
to map the yield constraints on each path to each of the timing arcs of the 
circuit, since the number of paths within a circuit can be exponentially large 
in number. The general conclusions also point to greatly degraded power sav­
ings achievable by dusl-Vth processes when considering variability. Thus, the 
use of more than two threshold voltages in a process will provide substantially 
reduced improvements and the timing yield vs. power reduction tradeoff will 
allow the designer to consider interesting design decisions. In addition, the 
power-yield tradeoff curve in Fig. 6.8 shows that a small degradation in para­
metric timing yield can be seen to have large positive impact on achievable 
power reductions, through dual-Vi^ and other low-power design techniques. 

6.2 Gate Sizing 

A large amount of work has been done in the area of deterministic gate siz­
ing. TILOS [52] was the first to show that the gate sizing problem can be ex­
pressed as a convex optimization problem. However, the convex optimization 
approach required an enumeration of all paths in the circuit (which increases 
exponentially with circuit size). Therefore, TILOS starts from a minimum 
sized circuit and uses a sensitivity-based heuristic to iteratively select and up-
size gates that provide the maximum improvement in performance as long as 
the desired timing goal is not met. In [125], the authors used a novel ellipsoidal 
approach to solve convex optimization problems, whose runtime complexity 
was independent of the number of constraints, to propose an exact approach 
for gate sizing with polynomial complexity. This path-based formulation of a 
gate sizing problem (for area minimization) can be expressed as 

Min: Y, 
i 

s.t. : Y^Di<Do Vp € P (6.37) 

Li <Xi<Ui Vi = 1 , . . . , n 

where x^'s are the gate sizes of an n-gate design, DQ is the delay constraint 
for the design, Di represents the delay of a gate, P is the set of paths in a 
circuit and Li and Ui are the lower and upper bounds on the size of each of 
the gates. An equivalent problem for timing optimization can be formulated 
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by treating DQ as a variable and changing the objective function to minimize 
Do while enforcing a constraint on the area of the design. 

The delay of a path can be shown to be a posynomial in terms of gate sizes 
and the optimization problem in (6.37). A posynomial, which has a general 
form 

F(X) = ^ c , n < ^ ^ (6.38) 

where c's are positive coefficients, can be mapped to a convex function using 
a simple exponential transformation. Note that in the above formulation we 
have a constraint for each path in the network, which might be exponential 
in the number of gates in a circuit. Even though the approach in [125] had 
polynomial complexity, the runtime performance of this approach was not 
found to be good in practice. The problem with the exponential number of 
constraints was resolved in [31], which proposed a node-based formulation for 
the gate sizing problem, expressed as 

Min: Y^ 
i 

s.t. : aj < DQ Vj G outputs 

aj -\- Di <ai Vi = 1 , . . . , n and Vj € inputs(i) (6.39) 

Di < Gi yi G inputs 

Li <Xi <Ui Vi = 1 , . . . , n. 

Here a^'s are additional variables and represent the arrival times at the re­
spective nodes, inputs and outputs are the primary inputs and outputs of the 
design respectively, and inputs{i) refer to the inputs of the gate that feeds 
node i. 

The above problem can be solved using Lagrangian relaxation. The ap­
proach proposed in [31] estimates the values of the Lagrange multipliers by 
solving the dual optimization problem using subgradient optimization. The 
values of Lagrange multipliers are then used to calculate the optimal device 
widths. We will discuss this technique in more detail while considering the 
extension of Lagrangian relaxation to statistical gate sizing in Sec. 6.2.2. The 
key advantage of this formulation is that the numbers of constraints are now 
polynomial in terms of the number of gates in the design. However, the ap­
proach is amenable only to simple convex delay models, since we need the 
duality gap to be zero to estimate the Lagrangian multipliers using the dual 
problem. 

Other approaches that have been used to perform gate sizing include [137], 
which performs iterative slack assignment and gate sizing assignment to con­
verge to an optimal solution. The approach presented in [37], combines an 



224 6 Statistical Optimization Techniques 

accurate dynamic timing simulator with a nonlinear optimizer, which makes 
the approach exact and able to handle problems associated with static timing 
analysis such as false paths. However, this comes at the cost of significant 
computational overhead. A large amount of work has also been done to tailor 
nonlinear optimizers to techniques that suit gate sizing, and a survey of var­
ious techniques that have been investigated can be found in [39]. Recently a 
number of approaches have been proposed to perform statistical gate sizing, 
even though the field of statistical gate sizing is much younger than determin­
istic gate sizing. This is still a very active area of research with new techniques 
being developed to reduce computational complexity and provide better per­
formance. 

A straightforward node-based formulation for statistical gate sizing can 
be developed by allocating a deterministic delay to each node in the circuit, 
which is a linear function of its mean // and standard deviation cr, and then 
performing deterministic gate sizing using the standard node-based formula­
tion approach discussed above. If a delay oi ii+^~^{r])a, where ry is the desired 
timing yield, is assigned to each node, then we assign a worst-case delay to 
each node where the worst-case is now defined by the desired yield. There­
fore, we do no better than a deterministic optimization technique. However, 
if the value of rj is chosen appropriately then the design margins assumed in 
worst-case design can be reduced while simplifying the optimization approach 
itself. However, determining the appropriate value of r] is fairly complicated 
(in Sec. 3.4.3 we discussed an approach to estimate rj for timing yield analysis). 

The key difference between iterative statistical and deterministic gate siz­
ing is that a single path cannot be identified as being critical, since a large 
number of paths have significant probability of being critical. Depending on 
the actual values of different process parameters for a given sample of the 
design any one of these paths can limit performance. If we seek a statistical 
ordering of gate delays, we need to define an ordering relationship for prob­
ability distributions instead of a deterministic ordering,. The strongest such 
relationship is known as stochastic ordering, which says that given two RVs 
X and Y,Y is stochastically greater than X if 

V{X >u)> V{Y >u) yue (-00, GO). (6.40) 

This relationship is illustrated in Fig. 6.11. This is a very strong condition 
and even in simple directed acyclic graphs (DAGs), this condition is not seen to 
hold among a large number of delay distributions of different paths as many of 
the path delay distributions are found to have cross-over points. Thus, most 
statistical gate sizing techniques try to integrate some form of a statistical 
timing analyzer within the optimization and seek to identify paths that have 
the strongest influence on the final probability distributions of delay. This is 
in contrast to a deterministic approach that identifies a critical path within 
the network and attempts to reduce the delay of the identified critical path. 
Additionally, uncorrelated intra-die variations are independent across gates 
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established for Z with either X or Y in this example. 

and their impact at the circuit level is much smaller due to the averaging 
effect, as discussed in Chap. 3. Hence, it is important that this property of 
intra-die variations is considered while statistically optimizing circuits. 

6.2.1 Nonlinear Programming 

As we saw in Chap. 3, the mean and variances of gate delay can be simply 
obtained by summing the mean and variance of the maximum of the input ar­
rival times and the mean and variance of the gate delay. However, calculating 
the maximum of a set of probabihty distributions is comphcated. Even under 
a Gaussian approximation, Clark's expressions [35] are required to estimate 
the probability distribution of the maximum. Using the nonlinear expression 
used to express the max function, [63] employs the node-based gate sizing for­
mulation (6.39) to express the statistical gate sizing problem as a nonlinear 
optimization problem, which is solved using a large-scale nonhnear program­
ming package, such as LANCELOT [38]. 

The formulation is based on a delay model of the form 

di = cio.i + cti,i 
Qoad, i + Z^jGfanouts(i) ^ i n j ^ j 

Xo 
(6.41) 

where di represents the delay of gate i, ao represents the size independent 
intrinsic delay of a gate, ai represents the sensitivity of gate delay to output 
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capacitive loading, Cioad is the capacitive loading other than that associated 
with the input gate capacitance of the fanout gates, Cin represents the input 
gate capacitance for a gate per unit width and x represents the size of a gate. 
The above equation is rewritten as 

diXi = ao,iXi + ai^i Cioad,i + Qn ^ Xj (6.42) 
y jiGfanouts(i) J 

which results in a linear constraint in terms of gate sizes and its usefulness 
will be discussed later. The statistical gate sizing problem is then expressed 
as 

M i n : / ( / io , CT̂ ) 

s.t. : iJ^o = E[ max aj] = / ^ ( / i o , . . . , / i j , . . . ,o-o,... ,a^-,...) 
:/Goutputs -" ^ ^ 

al = VaT[ max aj] =/^( /XQ, . . . , / i j , . . . ,cro, • • • , ^ j , • •.) 
J G outputs 

Â tti = Mdi + E[ max aj] Vi = 1 , . . . , n (6.43) 
j G input (i) 

^a, = ^ l + ^ ^ ^ [ max a^] V i - l , . . . , n 
:;€ input (i) 

lidi^i = ao^iXi + ai^i Cioad,i + Cin ^ Xj \ Vi = 1 , . . . , n 
y j€fanouts(i) J 

(^di =9{l^di) Vi = 1 , . . . , n 
Li <Xi<Ui Vi = 1 , . . . , n 

where fia and a a represent the mean and variance of delay, respectively. Sim­
ilarly jid and Gd represents the mean and variance of gate delay, and the 
variance of gate delay is assumed to be related to the mean of gate delay 
through the function g. The functions /^ and /^ are used to obtain the mean 
and variance of the delay of the max of a set of arrival times, respectively 
(the functional form is as discussed in Chap. 3). Note that the expressions 
for the mean and variance are only available for the max of two arrival times. 
Therefore, any node in the circuit that involves the max of more than two 
arrival times has to rewritten recursively using additional variables. Also, / 
is the objective function that depends on the variance and mean of the cir­
cuit delay and can have any desired form. For example, if we are interested 
in minimizing the average case delay, then f = JIQ- However, if we are inter­
ested in maximizing FMAX (Chap. 3) for 99.8% of the samples of the design, 
then under the assumption that delay has a Gaussian distribution, we have 
f = fj,o-\- 3cro. 

To obtain efficient performance from a non-linear optimizer, it is useful to 
provide information regarding the first and second derivatives of the objective 
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function and the constraints. Writing the gate delay model in the form (6.42) 
rather than (6.41) has the advantage that it reduces the number of nonlinear 
terms in the constraint, and thus simplifies the expressions for the derivatives. 
This was one of the first approaches that was aimed at improving the timing 
yield of VLSI circuits while considering within-die variations. However, this 
approach does not consider inter-die variations, and it is not straightforward 
to consider correlations in gate delays using this approach. 

To handle these problems, we consider an approach that completely de­
couples the statistical timing analysis from the optimization step and is thus 
amenable to integration with any statistical timing analysis engine. 

6.2.2 Lagrangian Relaxation 

The nonlinear programming approach to gate sizing was based on expressing 
the statistical timing engine within a non-linear program used to optimize the 
design, and hence increased the overall complexity of the optimization. An­
other class of solution methodologies iteratively solves a simpler optimization 
problem and uses the statistical timing analyzer to perform incremental up­
dates to the optimization problem. The approach proposed in [34] is based on 
this idea. It iteratively formulates the node-based gate sizing problem (6.39) 
while updating the timing constraints imposed on the circuit using a statisti­
cal timing analyzer. Therefore, the choice of the statistical timing analyzer in 
not constrained, and any of the approaches discussed in Chap. 3 can be used. 
The optimization problem itself is solved using the approach proposed in [31], 
which is based on Lagrangian relaxation. 

Lagrange multipliers are used to simplify a constrained optimization prob­
lem into an unconstrained optimization problem by incorporating the con­
straints into the objective function. Let us consider the node-based formula­
tion of the gate sizing problem in (6.39). The complicated constraints on the 
arrival times are included into the objective function using Lagrange multi­
pliers (A's) and the problem is restated as: 

Min : Lx{x, a) = ̂  aiXi + ^ Â o («j - ^o) 
•i jG inputs 

n 

+ X I Y^ ^a i^J + Di-ai)+ Y^ Xmi {Di - ai) (6.44) 
i=l :;Ginput(z) iGinputs 

s.t. : Li < Xi <Ui Vi = 1 , . . . , n. 

Kuhn-Tucker conditions [15] are then applied to the above problem, while 
minimizing the objective function (known as the Lagrangian) with respect 
to the variables corresponding to the arrival times. Using these conditions 
we obtain the relation that for any gate, the summation of the values of the 
Lagrange multiphers associated with the inputs is equal to the summation 
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of the values Lagrange multipliers associated with the fanouts. This can be 
mathematically expressed as 

i€output(fc) jEmput{k) 

Plugging this condition back into the Lagrangian (6.44), we can simphfy the 
Lagrangian such that it is independent of the arrival times. In [31] it is shown 
that the simplified problem can be solved exactly, using an iterative technique 
while considering only one gate at a time. However, to solve the problem using 
the iterative technique we need to determine the optimal values of Lagrange 
multipliers. To achieve this, a Lagrange dual problem is formulated and solved 
to determine these Lagrange multipliers. The Lagrange dual problem is known 
to be a convex optimization problem, but the objective function may not be 
differentiable. Hence, techniques such as subgradient optimization are used to 
solve this problem. An improvement to solve the Lagrangian dual problem 
was also suggested in [140], which combines a gradient based search technique 
with subgradient optimization to improve convergence. 

Since a deterministic approach is not our focus here, we will not discuss 
the details of this approach further and the interested reader is referred to [31] 
for more information. Let us now discuss the technique used in [34], which 
iteratively updates the timing constraint in the gate sizing problem based on 
input from the statistical timing analyzer. 

Yield Constraint 

The authors in [34] perform gate sizing to minimize the area of the design 
while ensuring that a desired timing yield is achieved. This is achieved by it­
eratively solving the gate sizing problem while updating the timing constraint 
Do imposed on the circuit using information from a statistical timing ana­
lyzer. This can be understood using Fig. 6.12, which shows how the timing 
constraint is updated from Do to DQ in going from one iteration to the next. 
Let us consider the case where a timing yield of 84.1% is desired. Assuming 
that the delay has a Gaussian distribution, the delay constraint is modified 
to DQ — (J, where DQ is the initial timing constraint and a is the standard de­
viation of delay obtained using statistical timing analysis. Statistical timing 
analysis is performed at the end of each iteration to estimate the distribution 
of delay of the circuit. If the variance of delay remains same and the nominal 
delay constraint used in the optimization correspond to the mean delay then 
the yield constraint is met. If the timing yield constraint is met, then we stop, 
otherwise the timing constraint imposed on the circuit is modified based on 
the variance of delay and gate sizing is performed again using the Lagrangian 
approach. 

This approach decouples the statistical timing analysis and optimization 
steps and simphfies the problem. However, this makes the optimization bhnd 
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Fig. 6.12. Modifying the delay constraint to account for variations in delay. 

to most of the statistical information and it is therefore not effective in pro­
viding good solutions. Additionally, the modification of the delay constraint 
cannot be guaranteed to converge to a final solution. Consider the case where 
intra-die variations have a strong influence, which results in a statistical mean 
delay that is significantly different from the deterministic mean delay. In this 
case, even if we deterministically ensure that all paths have a delay smaller 
than Do — cr, we cannot guarantee that the overall timing yield of the circuit 
with respect to the delay constraint of ^o is 84.1%. 

6.2.3 Utility Theory 

The concepts of utility functions have been prevalent in the realm of eco­
nomics, which by its nature, must be studied statistically. Utihty functions 
are useful in situations where minimizing the expected value alone is not suf­
ficient, and therefore a utility function is defined and one seeks to maximize 
the utility function or equivalently minimize a disutility function, which is 
defined to be the negative of the utility function. 

A reasonable utihty (disutihty) function for circuit delay should be mono-
tonically decreasing (increasing), since a lower delay value is always more 
desirable than a higher delay value. Based on the convexity or concavity we 
can identify two classes of utility functions. If the utility (disutility) function 
is concave (convex) then it defines risk averse behavior, otherwise the utility 
function is said to be risk inclined. Consider a game where we need to invest 
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Fig. 6.13. A concave utility function represents a risk-averse preference. In addition, 
a concave objective function can be efficiently maximized using convex optimization 
techniques. 

an amount (WQ) to play the game, and we either lose the money or get back 
double the amount we invested, both with equal probability. Consider a con­
cave utility function, as shown in Fig. 6.13, and assume that the chances of 
winning and losing the game are equal. In this case, the expected value of 
the utility, which is the average of the utility values when we lose and win 
the game, is lower than before we play the game (due to the concavity of the 
utility function). Hence, to maximize the utility we should not invest in the 
game, representing a risk averse investment strategy. However, the expected 
utility is greater if we play the game, for a convex utility function, and we 
are risk inclined. The concept of utility functions was introduced in statistical 
gate sizing in [115] and was used to represent the potential timing yield loss 
associated with different paths in a circuit. 

The disutility function of a path in the network is defined in [115] to be 
of the form 

U^ = Dl + D^ (6.46) 

where Dp and Up are the delay and disutility of a path p, respectively. The 
above disutility function is convex, and hence defines a risk-averse utility 
function. Note that we seek to maximize (minimize) the utihty (disutility) and 
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hence standard optimization techniques can be used to efficiently optimize the 
problem if the utility (disutility) function is concave (convex). 

Having defined the disutihty function for path delay, let us define some 
parameters to model the delay of a path. Assume a given correlation matrix 
C for node delay with elements QJ , and that each node i has a mean delay 
r]i and a delay variance af. The relationship that a given path p dominates 
another path q was defined in [115] as the condition that 

E[Up]>E[Uq]. (6.47) 

Similarly, a subset of paths Pj7 C P is said to be the set of undominated 
paths, if for each path p E Pu the following holds 

E[Up]>E[U,] yqeP\Pu- (6.48) 

where P\Pu represents the set of paths P without any paths from the set Pu-
The expected value of the disutility can be expressed as 

E[Uj,]=E[Dl] + E[Dj,]. (6.49) 

The first term in the above equation can be written as 

^[^pl = ( E ^̂  ) + E ^' + 2 E "i^^'i^i (6.50) 

giving 

\i£p ) iGp iJ^P i^P 

Using this definition of dominance, we seek to identify the set of undomi­
nated paths from the source to the sink of the network and define the overall 
objective function for our optimization using the nodes that lie on these un­
dominated paths. Let Psi be the set of paths from the source s to some node i 
within the network, and let the sink node be identified as t. The deterministic 
notion of domination, which implies that if a path pi dominates a path p2 at 
the intermediate node i, then the path pi to t will dominate the path p2 to 
t, is not valid statistically. Due to variations the path pi may no longer be 
dominated by p2 at some arbitrary node in between i and t. This results from 
the fact that node delays in the fanout cone of node i may be correlated to 
the path delays. Therefore, if two paths pi, p2 G Psi satisfy 

S[(7pJ>S[C/pJ (6.52) 

they are only said to imply temporary preference, with pi being preferred over 
P2- Permanent preference is said to occur when the two paths satisfy 
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E[Uj,,+j,]>E[Uj„+p] ypePit. (6.53) 

This implies 

E [(Dp, + Dp)2] + E [Dp, + Dp] > E [{Dp, + Dpf] 

+E[Dp,+Dp] ypePit. (6.54) 

The above equation can be simplified using the following relations 

E [Dp, Dp] = J2Yl ''ii^i'^i + ̂  [^Pi] + -̂ [-̂ p] 

E [Dp,Dp] = J2Y1 ^^0^^"^^ + ^ [^P2\ + ^[Dp] (6.55) 
i^P2 j^P 

as 

E [Up,] - E[Up,] + 2E[Dp] iE[Dp,] - E[Dp,]) 

Cij (7i (Tj Vp G Pit. (6.56) 
\i^Pi,J^P i^P2,j^P J 

Though the above expression establishes the conditions that can be used to 
identify the set of undominated paths in a circuit, it requires us to consider all 
paths Pit which is computationally very expensive. As we discussed before, 
temporary dominance does not imply permanent dominance because node 
delays might be correlated. To identify the set of nodes in the fanout cone of 
i that can be possibly correlated with the path delays pi and p2, a correlation 
front is defined, denoted by F^(a), and is said to be the set of nodes in the 
fanout cone of i whose delay distributions have correlations of at least a with 
any node in the fanin cone of node i. Now, let us assume a is small enough 
so that the path delay contributed by the nodes in the fanout cone of i other 
than those within the correlation front are independent of the path delays of 
paths pi and p2- Using the above assumption, any path Pa can be partitioned 
into Pii and Pu, such that node I lies on the correlation front. The condition 
for permanent preference (6.53) can then be rewritten as 

^ Wpi-^Pii-\-Pit] > ^ Wp2+Pii-\-Pit] (6.57) 

which is equivalent to 

E[Up,+pJ - E[Up,+pJ + 2E[Dp„] iE[Dp,+p,,] - E[Dp,+pJ) > 0. (6.58) 
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This can now be used to reduce the complexity of the steps required to check 
for permanent preference by only considering paths in the set Pu^/l G Fi{a)^ 
by rewriting the above condition as 

^[f^Pi+P.J > E[U^2+Pul (^rid (6.59) 

^[^Pi+PiJ - H^P2+Pii\ > —:^—— E?77-j—v/ e ti{a). 

Now we can use a dynamic programming approach to estimate the un-
dominated paths at the terminal node t. This is achieved by starting from 
node 5, and pruning the set of undominated paths by establishing permanent 
preference among the set of paths Psi at each node by computing the set 
Fi{a). Even though pruning techniques can be employed, this approach has 
an exponential worst-case computational complexity. Also, the correlations 
that arise from reconvergent fanouts may be neglected as a result of the con­
struction of the correlation front. However, it is able to capture the effect of 
spatial correlations if gates that are logically closer are also close together in 
the layout. 

The goal of gate sizing optimization is to reduce the weighted sum of 
the disutility function of the set of nodes that lie on the set of undominated 
paths. For all such nodes, [115] defines a criticality index as the number of 
undominated paths that pass through the node. Additionally, the mean delay 
of each path is constrained to be smaller than a critical delay Tmax- The mean 
delay of a node i (rji) is modeled as 

where r̂  is the intrinsic gate delay independent of size 5 ,̂ c is the gate input 
capacitance per unit size and a^ captures the sensitivity of gate delay to load 
capacitance. Similarly, the variance of delay can be expressed as 

2 _ I 9di\ 2 , f 9di ^ 2 
CTt- { ^ ] a^r. + { T:T7^ ] ^y,,. + 

jG fanouts (i) 

ddi \ o f ddi 

dLj ^̂  \dVthj + E m-m^ ''v..^- («•") 
which estimates the variance in delay based on the variation in process pa­
rameters of the gate i itself, and variations in its fanout gates. The complete 
gate sizing problem can now be expressed as a nonlinear optimization problem 

Min: Y^WiE[Ui] 
ieN 

file:///dVthj


234 6 Statistical Optimization Techniques 

No area penalty 
20% area penalty 

R̂ ^̂  30% area penalty 

c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c7552 

Benchmark Circuit 

Fig. 6.14. Improvement in clock period required for 95% yield improves as a larger 
area penalty is allowed [115]. 

s.t. : max E[Dp] < T^ax 
peP 

E[Ui] = {rif + a^) + Vi Vi e AT 

H _ ^i _ ^ i 

Area <A + AA 

(6.62) 

where N is the set of all nodes that lie on the set of undominated paths, rji 
and ai are as defined in (6.60) and (6.61) respectively, and Wi is the criti-
cality index of a node as defined above. The optimization is performed using 
LANCELOT and allows an area increase of AA while minimizing the disutil­
ity function. Results show that a large improvement in yield can be achieved 
with this approach compared to deterministic optimization using nominal case 
models even when no area penalty is incurred, as shown in Fig. 6.14. As ex­
pected, increasing the area penalty allows for further increases in timing yield 
as well. 

Though the technique shows significant improvements, the foundation of 
this approach lies in path-based analysis making it unsuitable for large circuit 
structures since they have a very large number of paths. 
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6.2.4 Robust Optimization 

In this section, we extend the ideas introduced in Sec. 6.1 to develop a gate 
sizing algorithm. This approach to gate sizing was proposed in [87]. It uses 
a linear gate delay model [18] to develop a robust linear programming for 
gate sizing. The robust optimization problem is then mapped to an equiv­
alent second-order conic program (SOCP) problem. A SOCP involves the 
minimization of a linear function under a second-order conic constraint. A 
second-order cone constraint of dimension n is defined as 

II AiX + bill < Ci^x + di (6.63) 

where x is the vector of optimization variables, Ai, bi, Ci^ are arbitrary row 
vectors and di is a constant. SOCPs are a special class of convex optimization 
problem and can be efficiently solved using convex optimization techniques. 
However, specialized techniques to solve SOCP, such as primal-dual interior 
point methods, exist and can also be used [85]. The aim of this optimization is 
to minimize the sum of device sizes of a design while enforcing a timing yield 
constraint on the design. The sum of device sizes with different weighting fac­
tors is a measure of power dissipation, therefore the optimization problem here 
is the minimization of power dissipation under statistical timing constraints. 
We will limit the scope to power optimization and the yield allocation step as 
discussed in Sec. 6.1 will be assumed to have been performed a priori in an 
optimal manner providing the yield constraint on each path. 

In a deterministic scenario the gate sizing problem is as posed in (6.37). 
We will write the statistical gate sizing problem as 

Min : ^ Xi 

s.t. : P ^ A < i^o > r/p ypeP (6.64) 
\iep J 

Li < Xi < Ui Vi = 1 , . . . , n 

where P is the set of paths, Di is the delay associated with node i (assumed to 
be a Gaussian RV), and the constraint enforces the condition that the timing 
yield of path p is rjp. The mean and variance of path delay 

Dp = ^Di (6.65) 
i£p 

can be easily obtained using the covariance matrix C for the node delays and 
is expressed as 
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iEp 

Let us now assume that the RVs associated with gate delays are independent. 
If this is not the case, then they can be mapped to such a set of independent 
RVs using PCA and the following analysis remains the same. Let us rewrite 
the constraint in (6.64) as 

V (^Dp CFDp J 

Note that the RV associated with Dp has been mapped to a Gaussian RV 
with unit variance and zero mean. The constraint can now be rewritten as 

^^^J^>^-\n) (6.68) 

where ^ is the cumulative distribution function of a standard Gaussian RV. 
We saw in Sec. 6.1 that this condition defines a convex set if 77 > 0.5. The 
same assumption is made here as well. 

Up until now we have neglected the dependence of gate delay on output 
loading, which is expressed by 

Di = Ti + ai —— (6.69) 
Si 

where TI is the intrinsic delay of gate i, and the second term captures the 
impact of loading capacitance on gate delay. Note that our optimization vari­
ables are gate sizes, and the delay model is not a linear function of the gate 
sizes. The problem is modeled as a robust linear problem by using a linear 
gate delay model [18] instead of (6.69), which sacrifices some accuracy. This 
linear model has the form 

Di = ai- biSi + Ci ^ Sj (6.70) 
j€fanouts(i) 

where the constants a ,̂ bi and Q are fitting coefficients. To capture the vari-
abihty in delay due to variations in gate length and threshold voltage, [87] 
lumps the variations into coefficients in the above expression and treats them 
as Gaussian RVs whose parameters can be obtained using SPICE simulations. 
Now we can write the variance of delay as 

Var[D^i = s^ial+\ > sj \ a^. (6.71) 
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Fig. 6.15. A piecewise linear delay model can provide better accuracy at the cost 
of a much larger number of constraints. 

The inaccuracy introduced by the linearized delay model can be reduced by 
using a piecewise linear delay model instead of a single linear delay model over 
the entire range of device widths. This delay model is defined as a maximum 
of a set of linearized models, which provides better accuracy for small regions 
of gate sizes as shown in Fig. 6.15. The constraints on delay are specified 
for all combinations of delay models, which automatically constrains delay to 
be greater than the maximum delay. The piecewise linear model provides a 
much better approximation for the delay of a gate. However, this improvement 
in accuracy is at the expense of an exponential increase in the number of 
constraints. If the number of logic stages in a path is n and each logic gate 
has a delay model with three piece-wise linear components then the number 
of constraints in (6.70) increases by a factor of n^. 

Using the linearized delay assumption, we can finally write down the op­
timization problem as 

Min : ^ Si 

...: J: ai - llhiSi-V llci ^^ Sn 

jfGfanouts('i) 

(6.72) 
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To improve the computational complexity due to the path-based nature of 
the problem defined above, [87] proposes to transform the above gate sizing 
problem (6.72) using a node-based formulation, where the delay of each gate 
is expressed as 

Di = ai- fib^Si + /ici + ^ iv) 2 2 , 2 

1/2 

(6.73) 

/ 

Note that using the above approximate delay expression for each gate 
results in a much larger variation in path delay. The expression fails to cap­
ture the averaging effect of independent intra-die variations and assumes that 
variations across gates are perfectly correlated. However, if intra-die varia­
tion is small then the overall impact on delay is also small, and [87] found 
that the above approach provided an additional average savings in area of 
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20% compared to deterministic optimization. The results also showed that 
the difference in the area of the final design for different yield constraints is 
significant for tightly constrained designs as shown in Fig. 6.16. The figure 
also indicates that tight timing constraints become infeasible for certain yield 
levels, and that designing for the nominal case results in extremely low yields. 
The sensitivity of area to yield for different timing constraints is also shown 
exphcitly in Fig. 6.17, which shows that this sensitivity is very strong for 
tight timing constraints and grows as the desired yield increases. The amount 
of variation in process parameters also plays a key role in determining the 
area; this sensitivity is seen in Fig. 6.18. Again, we find that this sensitivity 
is strongest for tight timing constraints. Based on these results, we can con­
vincingly say that statistical design techniques will be extremely important 
for highly performance constrained designs. 

6.2.5 Sensitivity-Based Optimization 

The technique proposed in [7] uses an accurate estimate of the sensitivity of the 
delay pdf to sizing changes of each gate. The gate that provides the maximum 
improvement (corresponds to the maximum sensitivity) is then sized up, and 
this process is repeated while the desired timing yield is not met. This work 
uses the discretized pdf approach for statistical timing analysis as discussed in 
Chap. 3, and can be used to minimize objective functions based on the profit 
functions discussed previously. This directly corresponds to the maximization 
of earned revenues. However, for ease of exposition and generality we will use 
the 99*^ percentile point of the cdf as the objective function. 

The straightforward way to implement this approach is to iteratively per­
turb the size of each gate in the original unperturbed circuit and then perform 
statistical timing analysis on the perturbed circuit, which propagates the im­
pact of upsizing the gate on gate delay to the output node. Based on the 
statistical timing analysis results we can estimate the sensitivity of each gate, 
which is defined as 

S = ^ (6.74) 
Aw ^ ^ 

where AT99 is the improvement in the 99*̂ * percentile point of the circuit delay 
cdf and Aw is the change in gate size. However, we soon run into runtime 
issues. Each upsizing move is preceded by a computation of the sensitivity for 
all gates. Therefore, for each upsizing move we have a runtime complexity of 
0{N^E). If 0{N) upsizing moves are performed, then the overall complexity 
of sizing is 0{N^E). This quickly becomes untenable with increasing design 
size. To counter this problem, [7] introduced pruning techniques that identify 
gates that have a smaller sensitivity without running a full statistical static 
timing analysis (SSTA) run. 

Consider Fig. 6.19, which shows the delay cdf corresponding to the un­
perturbed circuit (C). After a gate has been perturbed, the new cdf is as 
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Fig. 6.19. Arrival time cdfs at the output of the candidate gate for the perturbed 
and unperturbed circuit and the lower bounding cdf for the perturbed circuit. 

illustrated by Cp. Note that the perturbation in gate size results in both a 
shift and as a change in the shape of the cdf. We wish to define the perturbed 
cdf as simply a shifted version of the unperturbed pdf. Therefore, we define a 
lower bound for the perturbed cdf, which is illustrated as C in Fig. 6.19. Note 
that the lower bound is defined so that the maximum difference between the 
unperturbed cdf and the perturbed cdf A^ is the same as the uniform differ­
ence between the unperturbed cdf and the lower bound of the perturbed cdf. 
This will be crucial in using these lower bounds to perform pruning. Note that 
this difference is well defined since we are dealing with discretized cdfs, and 
is not amenable to timing analysis techniques where continuous probability 
distributions are used. Now we can define C" in terms of C as 

C\t-Ai) = C{t). (6.75) 

Also, since the shape of the two cdfs is identical, the same relation holds true 
for the pdfs corresponding to these two cdfs. Let us consider the impact of the 
basic operations of statistical timing analysis {sum and max) on the maximum 
difference between two cdfs of the same shape as they are propagated through 
a circuit. Recall that in the case of a sum operation, we convolve the arrival 
time cdf at the input of a node with the pdf of the node delay, to obtain the 
arrival time cdf at the output of the node. Let Ci and C^ correspond to input 
cdfs, and Co and C'^ correspond to the output cdfs. We can then write that 
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/•CXD /»C>0 

Co{t)= Q ( t - r M r ) d T = / Ciiit - Ai) - T)piT)dT 
Jo Jo 

= C'M - Ai) (6.76) 

where p represents the node delay pdf. This implies that the sum operation 
maintains the difference between the two cdfs. Now let us consider the max 
operation and define two input cdfs as Ci and C2 and their corresponding 
perturbed cdfs as C{ and C2. Let us assume that these cdfs are related as 

C[{t - Ai) = Ci{t) C'S - A2) = C2{t) (6.77) 

and also assume that Ai > A2. Recall that the output cdf in the case of a 
max operation is the product of the input cdfs. Therefore 

C,{t) = C^{t)C2{t) C',{t)^C[{t)C'^{t). (6.78) 

We define another lower bound for C2 that is lower than C2 and is defined 
as 

C ^ ( 0 - C ^ ( t + Ai). (6.79) 

Note that for all /;, C2 has a larger value than C2. Using this we can write 

Co{t) = C[{t - Ai)C^(t - A2) < C[{t - A,)C!^{t - Ai) - C;(t - Ai) (6.80) 

which imphes that the separation between the cdfs at the output Ao is less 
than Ai. This result, combined with the result obtained for the sum operation, 
indicates that the separation in the perturbed and unperturbed cdf is at its 
maximum at the perturbed node and decreases monotonically as the two cdfs 
are propagated through the circuit. 

However, in the case of multiple-fanout nodes multiple perturbed pdfs are 
generated that will later recombine. Therefore, we need to define a perturbation 
front, which is the set of nodes that are at the same maximum edge distance 
from the perturbed node, where the maximum edge distance is defined as the 
length of the longest path from one node to the other. For each perturbation 
front, the maximum separation for the cdfs on any of the nodes is defined 
to be the separation between the two cdfs. This maximum separation is then 
used to define the sensitivity of the gate at this stage of cdf propagation. 

Based on these results, we can now define a pruning criterion. The sen­
sitivity of a node i as defined in (6.74) is bounded above by Ai/Awi, where 
A^ is the maximum separation in the perturbed and the unperturbed cdfs 
at the fanout node. Moreover, we know that the separation of the cdfs de­
creases as we propagate the cdfs through the circuit graph. Therefore, at any 
stage of propagation if we find that the separation corresponds to a sensitivity 
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Fig. 6.20. Partitioning the circuit for efficient heuristic calculation of sensitivities. 

value that is smaller than the sensitivity value of another gate (that has been 
previously computed), we can prune out the sensitivity calculation for this 
node. It is obvious that for this technique to provide good pruning we need 
to identify a gate with a high sensitivity early in the sensitivity computation 
step. A reasonable approach is to propagate the perturbed cdfs for all gates 
in an iterative manner. In each iteration, the perturbed cdfs for all gates are 
propagated towards the output node through one level. As soon as one of the 
propagated cdfs reaches the output, its true sensitivity is calculated and it 
can be used to prune out other cdfs that are still propagating to the output. 

To further reduce the runtime associated with this approach, [7] uses an 
additional heuristic to estimate the separation in the cdfs of the perturbed 
and unperturbed circuits. An initial SSTA run is used to propagate the cdfs 
for the arrival time and required arrival times. This is achieved by partitioning 
the circuit as shown in Fig. 6.20 for each node x. The circuit is partitioned 
into a shaded region called the impact subgraph^ which includes the fanin 
and fanout cone of the node x. The delay pdf of the impact subgraph can 
then by obtained by convolving the arrival time pdf at node x, A^f^ and the 
required arrival time pdf at node x, A^h- Now, if we resize node x then the new 
arrival time pdf A^j can be obtained by performing a local statistical timing 
analysis step, where the nodes that are the immediate fanins of node x along 
with node x are re-analyzed. Since Axh is obtained by backward traversal, 
resizing a node x does not impact Axh- The new delay pdf for the impact 
subgraph can now be obtained by convolving A'^^ with A^h- Note that the 
change in the pdf for the impact subgraph is not a direct a measure of the 
change in circuit delay. Ideally, the change in circuit delay can be obtained by 
convolving the delay pdfs of the perturbed impact with the delay pdf of the 
remainder circuit However, [7] proposes a heuristic to convolve the impact 
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Fig. 6.21. Pre- and post-sizing gate delay pdf for c880 

subgraph delay with the delay pdf of the complete circuit. This heuristic is 
found to work well because of the following property. Consider the case that 
the delay of the impact subgraph is small as compared to the delay of the 
complete circuit. Then small changes in the delay pdf of the impact subgraph 
due to perturbations in gate sizes will have a strongly diminished impact on 
the final circuit delay pdf, resulting in a smaller sensitivity. 

The heuristic approach is inaccurate but fast, so this approach can be 
used to select a small fraction of the nodes that have a higher sensitivity. The 
pruning based accurate technique can then be used to select the node with the 
maximum sensitivity. This approach shows an approximate speedup of 89X 
while providing the same performance as the exact approach. The approach 
was found to provide an average improvement of 7.6% over all ISCAS'85 
benchmark circuits with a maximum improvement of 16.5%. 

Figure 6.21 compares the delay pdf for the ISCAS'85 benchmark circuit 
c880 before and after gate sizing. The sized circuit has an area penalty of 33%, 
but it shows a much smaller mean delay as well as a much smaller variation 
in delay. This improves the yield as well as the robustness of the circuit to 
process variabihty. 
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Fig. 6.22. Buffer insertion is used to reduce the delay associated with long inter­
connects. 

6.3 Buffer Insertion 

With process technology scaling, wire delay has grown to contribute a sizable 
fraction to total circuit delay. Buffer insertion and wire sizing are two well-
known techniques that are used to reduce wire delay. The delay of a wire 
is proportional to the product of the resistance and capacitance of the wire. 
Since both the capacitance and resistance are proportional to the length of the 
wire, the delay of the wire exhibits a quadratic dependence on the wire length. 
Buffer insertion divides the wire into a number of segments and renders the 
wire delay linearly proportional to the length of the wire [106]. Additionally, 
buffers are also used to decouple large loads from the critical path of the 
circuit. 

The buffer insertion problem can be stated formally as: given a routing 
tree with a single source and multiple sinks, find the set of edges of the tree to 
be buffered to minimize the delay of the interconnect tree (shown in Fig. 6.22). 
Van Ginneken [145] presented an optimal buffer insertion dynamic program­
ming based approach. The approach has quadratic complexity in the number 
of possible choices for buffer locations, assuming a single buffer in the library. 
This approach has been the foundation for later work in the area of buffer in­
sertion. However, nearly all these approaches neglect the impact of variations 
in process parameters and the lack of exact design information early in the 
design cycle. In this section, we provide a quick overview of Van Ginneken's 
approach and then discuss an extension to perform statistical buffer insertion 
proposed in [73], which relaxes the assumption that the exact wire lengths of 
the interconnects are known and instead treats them as RVs. 
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6.3.1 Deterministic Approach 

The dynamic programming approach proposed by Van Ginneken uses the 
Elmore delay model while modehng a distributed RC line with the capacitor 
at the center of the Une. The inputs to the algorithm consist of an unbuffered 
interconnect tree, a set of B potential locations on the tree for buffer insertion, 
and the delay and loading characteristics of a buffer. 

The algorithm then traverses the interconnect structure from the Â  leaf 
nodes of the structure to the source while maintaining a set of solutions for 
each node, represented by the pair (L, D) where L is the capacitive load seen 
by the node and D is the delay of the subtree rooted at that node assuming 
that the subtree is driven by a drive with infinite strength. Suppose that a 
wire of length I is attached at a node n, then the solutions at the root of the 
attached wire can be obtained by 

D'^ = Dn + rlLn + — L'„ = Ln + cl (6.81) 

where r and c represent the wire resistance and capacitance per unit length, 
respectively. If a buffer can be inserted at node n, then an additional solution 
is generated. This solution is given as 

Dn = Dn-\- D\yui + RhufLn L'^ — Cbuf (6.82) 

where jDbufj -̂ buf and Cbuf aî ^ the intrinsic delay, drive resistance and input 
capacitance of the buffer, respectively. Similarly, let subtrees rooted at nodes 
m and n merge at node fc, then the solutions at k are obtained as 

Dfc = max(Dn, Dm) Lk = L^ + Lm- (6.83) 

Using these basic operations, solutions at the root of the tree can be gen­
erated. The solution with the minimum delay is selected and then retraced 
back through the tree to determine the buffering configuration that led to the 
minimum delay. A naive implementation of the approach generates an expo­
nential number of solutions since the number of solutions at the root of two 
subtrees with 0{m) and 0{n) can be 0{mn), corresponding to all possible 
combinations of solutions. Van Ginneken's approach prunes out non-optimal 
solutions while traversing the tree and only generates 0(m4-n) solutions cor­
responding to the above situations, and therefore runs in polynomial time (the 
actual complexity is 0{B'^ + ^ ) ) - Van Ginneken notes that a solution is prov-
ably suboptimal if it has both a larger delay and capacitive load compared to 
another solution. Therefore, when we merge two subtrees (6.83) there are only 
n + m possible delay values in the solutions, since the delay value should cor­
respond to the delay of either of the subtrees. The minimum loading solution 
for each of the delay values prunes out all other solutions. Thus, a merge oper­
ation only results in a number of solutions equal to the sum of the number of 
solutions for each subtrees. Additionally, if a node is a possible candidate for 
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buffer insertion, then the number of solutions is increased by only one. This 
results from the fact that the load capacitance for all solutions corresponding 
to a buffered solution is the same (Cbuf), and the solution with the minimum 
delay will prune out all other solutions. Thus, the number of solutions at the 
root of the interconnect tree will be only B -\-l. Now we discuss an extension 
of this approach in a statistical scenario, which was proposed in [73]. 

6.3.2 Statistical Approach 

The deterministic approach discussed above assumed the availabihty of exact 
wire lengths. However, the lack of information regarding the low level lay­
out as well as variations in process parameters force us to model the wire 
lengths as RVs instead of deterministic numbers. If the exact wire length is 
not known, then an average of worst-case estimates of wire length could be 
used in the above approach. However, handling process variations using aver­
age values results in a large probability that the interconnect tree will fail to 
meet the timing constraint. On the other hand, if the worst-case estimates are 
used a much larger design effort is required to satisfy the timing constraints, 
resulting in an insertion of a large number of buffers and the corresponding 
adverse power implications. In [73], the delay and loading that comprise a 
solution in Van Ginneken's approach are represented as distributions. Thus, 
in a delay-capacitance space, instead of dealing with point solutions we can 
represent these variability-aware solutions as rectangles whose sides corre­
spond to the interval of delay and capacitance for this solution. The solutions 
can again be combined using the same equations used in the deterministic sce­
nario. However, the pruning technique, which provides polynomial complexity 
and optimality, cannot be applied in a statistical scenario and new pruning 
techniques are required. 

The first pruning technique is to remove solutions that are worse both 
in terms of delay and capacitance. This happens when the rectangle corre­
sponding to one of the solutions does not overlap the other rectangle in any 
dimension as shown in Fig. 6.23. A heuristic approach to further reduce the 
number of solutions was proposed in [73], which is based on a probabilistic 
comparison of two solutions. A probabilistic pruning measure is defined as 

V{A =^ B) = P(AprunesB) = V{DA <DB,LA<LB) (6.84) 

which is approximated by the product of the probability that DA < DB and 
that LA < LB- A symmetric expression can be written for the probability 
that B prunes A. The probability that both the solutions co-exist can then be 
written as 

V{A r^B) = V{A coexists with B) = 1 - V{A -^ B) - V{B => A). (6.85) 
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Delay 

Fig. 6.23. Solution B is always worse than Solution A, and hence, can be pruned 
out. 

The max of the three probabilities {A=^ B^ B =^ AandA ^ B) defines the 
relation between these two solutions. The problem of selecting a set of solu­
tions such that the maximum number of solutions can be pruned is mapped to 
a DIRECTED MAXIMAL INDEPENDENT SET problem. This is achieved 
by constructing a directed graph where each node corresponds to a solution, 
and an edge from node A to node B exists if node A prunes node B. Addi­
tionally, the cost associated with each node is defined to be the out-degree 
of the node and represents the number of solutions that will be pruned by 
selecting this node. The solution of the problem is a set of nodes such that no 
two nodes in the set are connected by an edge. Each node not in the set has 
an edge from one of the nodes in the set and can be pruned out and the sum 
of the costs of the nodes in the set is maximized. This problem is known to be 
AT'P-complete and is solved heuristically by iteratively assigning a node to the 
set from the graph that has the maximum cost and then deleting all nodes in 
the graph that have a directed edge from this node. This process is repeated 
as long as there are nodes in the graph. Though these techniques can be used 
to reduce the number of solutions, none of these techniques guarantee that 
the algorithm will run in polynomial time. 

The exponential increase in the number of solutions occurs when we are 
not able to effectively prune out solutions while merging subtrees. Another 
pruning technique proposed in [73] is based on the fact that the starting time 
for the solutions that are generated when merging trees with m and n solu­
tions are m -{- n. Therefore, if we select one solution for each starting point 
we obtain an algorithm with polynomial complexity. This can be achieved by 
solving the COMPLETE R-PARTITE MAX COST CLIQUE [12] problem 
on an undirected graph, which is generated as follows. Each solution corre­
sponds to a node in the graph, and the nodes that correspond to the same 
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Fig. 6.24. The solutions obtained by merging subtrees with m and n solutions can 
be partitioned into m + n sets based on starting points in time. 

starting point in time are not connected by any edges. All other nodes have 
edges in between them, where the weight of the edge is probability of the two 
solutions being co-optimal (6.85). The solution of the problem then identifies 
a clique within this graph with the maximum cost, and therefore, has one 
solution for each of the rn + n starting time points as shown in Fig. 6.24. 
Moreover, the selected solutions are such that the solutions have the highest 
probability of co-optimality, implying that the larger solution space is covered 
by these solutions. However, the problem of identifying the maximal clique 
in a complete r-partite graph is ATP-complete and needs to be solved heuris-
tically. The graph is first levelized according to the starting time-points of 
the solution and is then traversed in a levelized fashion. For each node in a 
set, a set of cliques is formed by merging it with potential solutions from the 
previous levels. The solution with the maximum cost is then assigned to be 
the solution at this node and is stored. Similar to the deterministic case, the 
solutions corresponding to the addition of a buffer are actually lines, since the 
load capacitance is the same for all solutions. The probability that a given 
solution prunes out all other solutions is calculated based on (6.85), and the 
solution with the maximum probability is retained. 

The three pruning techniques described above provide a clear trade-off in 
terms of runtime and optimality. The first technique prunes out the minimum 
number of solutions and is guaranteed to be optimal. The second pruning 
technique is neither optimal nor polynomial but is much more efficient in 
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reducing the number of solutions compared to the first pruning technique. 
Finally, the third pruning technique has polynomial complexity but it does 
not guarantee optimahty and is extremely aggressive in pruning out solutions. 
The results provided in [73] show that deterministic Van Ginneken results in 
a buffered interconnect tree that has a large probability of timing failure. 
Probabihstic optimization result in in the timing constraints being satisfied 
with a very high probabihty. Interestingly, the number of buffers inserted using 
deterministic and probabilistic techniques was found to be similar; however, 
buffer locations were different. 

6.4 Threshold Voltage Assignment 

Traditional leakage power optimization has been performed using assignment 
of non-critical sections of the circuit to a higher threshold voltage. Due to the 
exponential dependence of leakage power on threshold voltage a large reduc­
tion in leakage power can be achieved [147]. Since higher threshold voltages are 
associated with a significant delay penalty, a number of approaches have used 
gate sizing to increase the fraction of gates that can be assigned to the higher 
threshold [128] [100] [108] [150] [70]. However, these approaches do not consider 
variation in process parameters, and therefore have a negative impact on the 
parametric yield of a design. 

The tremendous impact of variability on leakage currents was demon­
strated in [20], which showed 20X variation in leakage power for 1.3X varia­
tions in delay between fast and slow dies. This shows that statistical informa­
tion should play a key role while optimizing leakage power. Given the strong 
impact of variations on leakage, any optimization that seeks to optimize leak­
age power through techniques such as dual-Vth while neglecting variations will 
invariably result in yield loss. Figure 6.25 compares the pdfs and cdfs of a pre-
and post-optimized design. The pre-optimized design refers to a design opti­
mally sized to meet a delay target with just one threshold voltage. The design 
is then optimized for leakage power using an additional threshold voltage [128] 
while nominal delay is constrained to remain identical. Note that the post-
optimized pdf exhibits many more paths at the slow-end of the distribution, 
which indicates a parametric yield loss. Based on this figure, we conclude that 
it is important to devise optimization approaches that make use of available 
statistical information to simultaneously maintain timing yield while improv­
ing power dissipation. Furthermore, the use of dnal-Vth devices increases the 
susceptibihty of the design to variations due to strong leakage variations in 
low Vth devices and a high delay sensitivity in high Vth devices. 

6.4.1 Sensitivity-Based Optimization 

The technique proposed in [133] uses a heuristic approach to extend determin­
istic sensitivity-based dual-Vt/^ techniques to the statistical domain. The first 
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Fig. 6.25. Impact of deterministic dual-Vi/i optimization approaches on delay pdf 
and cdf showing timing yield loss post-optimization. 

step towards statistical optimization is to use statistical analysis techniques 
rather than deterministic analysis techniques. This work uses the statistical 
timing analyzer discussed in Sec. 3.2.2 [6]. This work also introduces the con­
cept of statistical sensitivities^ which are used to perform sensitivity-based 
statistical optimization. The optimization is performed using a standard cell 
library, where each gate is characterized for delay and power. Leakage power 
is independent of capacitive loading and input transition time and is modeled 
by 

•fleak = 9 (Lga-te) = ^0 e x p 
-L, gate 

a i 
exp 

-'gate 

dl 
+ lnao {6M) 

where Lgate is gate length and ao and ai are fitting parameters that can 
be estimated using Unear regression. Delay is modeled using a look-up table 
(indices are load capacitance and input transition time). For each index a 
delay model of the form 

D = f (Lgate) = ao + aiLgate + a2l/gate i^'^^) 

where ao, ai and a2 are fitting parameters, is used to estimate the mean and 
variance of gate delay, which is then fed to a statistical timing analyzer. Note 
that the indices need to be deterministic, and therefore, using this modehng 
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approach requires a deterministic timing analysis run before statistical timing 
analysis can be performed. Let us first review a modified form of the deter­
ministic dnel-Vth technique [128] that will be extended to consider variations. 

Deterministic Approach 

The deterministic approach is a different form than the approach proposed 
in [128]. The initial design, which operates at the lower Vth exclusively, is 
first sized to meet the timing constraint using a TILOS-like optimizer [52]. A 
sensitivity measure is defined as 

^l^ie = l ^ ^ / a c / C g a t e (6.88) 
|AP| 
\AD\' 

and evaluated for all low Vth gates in the circuit. AP and AD in (6.88) are the 
changes in power dissipation and delay of the gate when the low Vth gate is 
swapped with a high Vth gate (of same size and functionality). The gate with 
the maximum sensitivity is then swapped with a high Vth version of the gate. 
If the circuit now fails to meet timing, a new sensitivity measure is defined as 

arcs 

where 5min is the worst slack observed in the circuit and jFiT is a small positive 
quantity to maintain computational stability. Equation (6.89) is then evalu­
ated for all gates in the circuit. This form of the sensitivity metric places a 
higher weighting to gates lying on the critical paths of the circuit. The arcs 
over which the summation is taken represent the falling and rising arcs asso­
ciated with each of the inputs of the gate. Thus, for a 3-input NAND gate the 
sensitivity measure will be obtained by summing over all six possible arcs. The 
A P and AD in this case are the change in power and delay when the gate is 
upsized to the next available size in the hbrary. The gate with the maximum 
sensitivity is then upsized, and the process is repeated until either the circuit 
meets timing or the power dissipation increases relative to its level prior to 
gate Gl being set to high Vth- In the case of the latter event, gate Gl is set 
back to high Vth and is flagged to prevent the gate from being reconsidered 
for high Vth assignment later in the optimization. A summary of the steps in 
this deterministic dual-\4/i is as follows: 



6.4 Threshold Voltage Assignment 253 

determinis t ic dual-Vth 
STEP 0: Perform timing and power analysis; Pot/;ero=Power 
STEP 1: Calculate sensitivity (5^^^P) of low Vth gates 
STEP 2: Set gate with maximum S'^^^P to high Vth 
STEP 3: Perform timing analysis 
STEP 4: if circuit meets timing goto STEPO 
STEP 5: Calculate sensitivity 5^^""^^^ for all gates 
STEP 6: up-size gate with maximum 5^^"^^^^ 
STEP 7: Perform timing and power analysis 
STEP 8: if {Power > Powers) undo moves and goto STEP 0 
STEP 9: if timing is met goto STEP 0 
STEP 10: goto STEP 5 

Statist ical Approach 

The statistical dual-T^/i and sizing problem can be expressed as an assignment 
problem that seeks to find an optimal assignment of threshold voltages (from 
a set of two thresholds) and drive strengths (from a set of drive strengths 
available in a standard cell library) for each of the gates in a given circuit 
network. The objective is to minimize the leakage power measured at a high 
percentile point of its cdf while maintaining a timing constraint imposed on 
the circuit. The timing constraint is also expressed as a delay target for a high 
percentile point of the circuit delay. These timing and power constraints can 
be determined based on desired yield estimates, such as 95% or 99%. This 
formulation serves to simphfy the problem and allows traditional iterative 
optimization approaches to be easily adapted to statistical optimization. 

Two major enhancements to the previously described deterministic ap­
proach need to be incorporated to enable statistical leakage optimization. 
The first enhancement requires that the timing check in STEP3 of the de­
terministic dwsX-Vth approach is performed using statistical timing analysis. 
The required percentile point on the delay cdf used to specify the constraint 
should now be obtained from the pdfs generated by the SSTA engine rather 
than a corner model case file. 

A deterministic timing analyzer can be used to determine the input slope 
at each of the gates, which can then used along with the output capacitance 
as indices if look-up table based delay models are used. The mean and vari­
ance are estimated using (6.86)-(6.87), which are then passed onto the SSTA 
engine to evaluate the cdf of the arrival and required times at each circuit 
node. Note that while performing the statistical timing analysis additional 
dummy source and sink nodes are added to the circuit, hence the delay con­
straint needs to be checked at just one point within the network. As discussed 
in Chap. 3, using statistical delay analysis reduces the pessimism in timing 
since all gates cannot be expected to be simultaneously operating at their 
worst-case corners, an assumption that is inherently made when performing 
a corner-based worst-case analysis. We will see later that optimizing a circuit 
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to meet a delay constraint using worst-case analysis results in a substantial 
loss in circuit performance optimality. The situation is worsened for leakage 
power optimization because of the exponential dependence of leakage power 
on threshold voltage. 

The second enhancement uses the statistical information in the fitting 
functions of delay and power to guide the optimization by replacing the sen­
sitivities evaluated in STEPl and STEP4 with statistical sensitivities. These 
statistical sensitivities are then evaluated at a confidence point on the PDF of 
the sensitivity. Since generating pdfs of the sensitivity metrics themselves is 
fairly complicated and computationally intensive, we estimate the statistical 
sensitivities by evaluating the mean and standard deviation of these pdfs (i.e., 
we only concern ourselves with the first and second central moments of the 
sensitivity pdfs and not their entire shape). Also, the dependence of slack on 
gate length of the devices is not straightforward and we make the assumption 
that the slack is independent of gate length while calculating the moments of 
the sensitivities. The sensitivities in (6.88)-(6.89) can now be expressed as a 
product of two independent random variables X and Y where X is depen­
dent on Lgate and Y is not. Thus, X corresponds to the ratio of the change in 
power and change in delay, and Y corresponds to the slack dependent terms in 
(6.88)-(6.89). Given two independent random variables X and F , the expec­
tation of their product is the same as the product of their expectation. Using 
this fact, we can estimate the mean and standard deviation of the sensitivities 
using the independence assumption made above and the following relations: 

E[XY] =E[X]E[Y] 

Var [XY] = E UxY - E [XY]f] = E [X^] E [Y^] - E^ [XY] (6.90) 

where E[X] is the expected value of X alone and E[Y] is the expected value 
of Y alone. The mean and variance of the terms involving Lgate {^ in (6.90)) 
are expressed as a function / of Lgate alone, using the delay and power models 
(6.86) and (6.87). The expected value is then written as 

/

oo 

/ (Lgate) P {Lg^te) dLgate (6.91) 

-oo 

where p(Lgate) is the pdf of gate length. Applying Taylor series expansion to 
the above expression we can rewrite it as 

E [/ (Lgate)] = / " ( / ( M ) + /'(M)(^gate - M) + " " ' 

where /x is the mean of Lgate- This gives 
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E [/ (V,e)] = /(M) + ^ ^ ^ ^ + • • • + / ' " ( M ) | J (6.93) 

where r}i is the i*^ central moment of Lgate and the odd central moments of 
^gate are set to zero. This approximation can be used to obtain the mean and 
variance of the sensitivities. For our analysis, we found that a fourth-order 
approximation of /(Lgate) was sufficient for good accuracy. 

The moments of the slack dependent terms {Y in Equation (6.90)) are 
estimated using the slack pdfs obtained from the SSTA engine. The statistical 
sensitivities are now redefined by evaluating at n standard deviations away 
from the mean. Since the shape of the sensitivity pdfs is not known, n is 
not known even if a known confidence point is desired. We will later look at 
the impact of n on the optimization results. The approach can also be easily 
extended to multiple delay constraints, where a set of percentile points on 
the delay PDF can be constrained to be less than some desired values. As an 
example, this flexibility is well suited to microprocessor designs where we can 
simultaneously constrain the 95*̂ * and 99*^ percentile delay to concurrently 
target different yields for different performance bins. 

The worst-case time complexity of the algorithm can be expected to be 
0{n^) since the SSTA engine has a linear time complexity [6] and in the 
worst-case we may up-size the entire circuit each time we set a gate to high 
Vth' This would happen when we maximally size-up the circuit each time we 
set a gate to high Vth Y^^ still fail to meet timing (this also requires the total 
power not to surpass the original circuit through all up-sizing moves). Note 
that in the worst-case the 0(n^) complexity results because the total number 
of up-sizing moves (and reversed up-sizing moves) is 0(jn?) since every gate 
is up-sized to the maximum size available in the library whenever a gate is 
set to high T̂ /i? and all the moves are then reversed. If the total number of 
up-sizing moves that are reversed is assumed to be linearly proportional to 
the number of gates in the circuit, the overall complexity of the algorithm 
reduces to 0{ri^) since the total number of up-sizing or cell-swapping moves 
now become linearly proportional to the number of gates in the circuit. 

The benchmark circuits are synthesized using an industrial 130 nm stan­
dard cell library with a Vdd of 1.2 V and a high and low Vth of 0.23 V and 
0.12 V, respectively. For the delay constraints, we consider two different cases 
where the delay is constrained at the 95*̂ * or 99*̂ ^ percentile. Leakage power 
is optimized at the same percentile point used to express the delay constraint. 
To make a fair comparison of the statistical and deterministic approaches, the 
best and worst-case corner models for the gates are developed for the same 
percentile point at which the delay constraint was specified for a particular 
experiment (95*^ or 99*^). 

Figure 6.26 shows the impact of evaluating the sensitivities at different 
points along their distribution (relative to the mean) on the final optimiza­
tion results for two ISC AS'85 [23] benchmark circuits. The sensitivities are 
evaluated at a fixed number of standard deviations away from the mean, rep-
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Fig. 6.26. Impact of n on statistical optimization 

resented as n. The curves are obtained through multiple runs of the algorithm. 
Each time the algorithm is run, the delay constraint is progressively tightened 
to obtain a complete power-delay curve. For both 95*̂ ^ and 99*^ percentile de­
lay constraints, we observe that considering n = —1.63 (corresponding to 
the 5*̂ ^ percentile point on a Gaussian) leads to the best power-delay curve 
characteristics. For the 99*^ percentile case we observe that both n = —1.63 
and n = —2.33, which corresponds to the V* percentile point in a Gaus­
sian, perform similarly. The significant improvement over the cases where 
a high percentile point of the sensitivities is used to select the gate to be 
swapped/up-sized can be understood by noting that a low percentile point on 
the sensitivity distribution gives a high confidence that the sensitivity value 
is at least as large as the value at the decision-making point. 

Figure 6.27 compares three different optimization approaches outlined 
above. In particular we sub-divide the statistical optimization approach into 
two stages - 1) with statistical constraints^ which relies on SSTA but does 
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Fig. 6.27, Power-delay curves for the three optimization approaches. 

not include statistical sensitivities, and 2) with statistical sensitivities, which 
includes both improvements described above. The 95% delay and 95% power 
are estimated using the statistical estimation techniques discussed previously 
for all curves except that labeled -delay using corner models. It is interesting 
to note that the incorporation of statistical sensitivities provides an additional 
reduction of 40% in leakage power at the tightest delay constraint compared 
to the case where we only use the SSTA engine to enforce the delay constraint. 
This indicates that, although the use of a statistical timing analysis frame­
work is clearly important, statistically modeling the power and delay impact 
of change in l^/i Is equally critical. Additionally, the optimization based on 
corner models (using the traditional approach) is not able to meet the very 
tight constraints on the 95*̂ ^ percentile of delay that are met by optimiza­
tions that employ an SSTA engine due to the pessimism of the corner model 
approach. 

The last curve in Fig. 6.27 labeled delay using corner models, shows the 
results for the optimization using corner models where the delay is calculated 
using worst-case models. The curve shows that if statistical information is 
not provided to the designer a small overestimation in the delay leaves large 
performance improvements on the table, since designs are generally optimized 
within a strict delay constraint. Also, high-performance circuits generally op­
erate in a steep region of the power-delay curve and a small overestimation 
in delay can be expected to result in a large loss in the achievable improve­
ments of the performance parameter being optimized. It can be seen that the 
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Table 6.1. Power savings for the statistical approaches compared to a corner-model 
based approach [133]. 

Circuit 

c432 

c499 

c880 

cl908 

c2670 

c3540 

c5315 

c6288 

Average 

Power(95%) 

0 P T 2 0 P T 3 

16.3% 

4.3% 

9.5% 

12.7% 

5.3% 

35.3% 

17.8% 

15.0% 

14.5% 

39.3% 

30.7% 

13.2% 

23.6% 

20.3% 

43.5% 

34.3% 

26.5% 

28.9% 

Power(99%) 

0 P T 2 OPT3 

18.0% 

23.9% 

8.0% 

11.5% 

36.8% 

7.3% 

31.1% 

22.4% 

19.9% 

35.7% 

30.3% 

50% 

35.5% 

45.6% 

15.3% 

39.6% 

36.1% 

36.0% 

Gate 

count 

165 

519 

390 

432 

965 

962 

1750 

2502 

Runtime 

(min) 

1 

13 

8 

10 

20 

19 

68 

115 

different optimization cases also tend to converge as the delay constraint is 
relaxed. This can be understood by noting that as the delay constraint is re­
laxed, a larger fraction of gates are assigned to high Vth and hence the final 
state becomes increasingly independent of the order in which the gates are 
assigned to high Vth-

Table 6.1 summarizes the improvement in leakage power for the ISCAS'85 
benchmark circuits [23] for the statistical optimization approaches described 
above, compared to a deterministic approach. 0PT2 and 0PT3 refer to the 
optimization with statistical timing constraints alone, and with both statis­
tical timing constraints and sensitivities, respectively. The results are shown 
for the best delay constraint that can be met using the corner models, thus 
the results in Table 6.1 for the 95*^ and 99*̂ ^ percentile cases correspond to 
different delay constraints. Average reductions in leakage power of approxi­
mately 14% and 29% can be achieved using 0PT2 and 0PT3, respectively, 
for the 95*̂ ^ percentile case compared to a traditional deterministic approach. 
A larger average improvement of approximately 20% and 36% is observed for 
the 99*̂ ^ percentile case. These delay points correspond to the high frequency 
bin and are most affected by leakage power dissipation. The last columns of 
the table hst the size of the circuits and the runtime for the algorithm and we 
see that the runtime follows the quadratic complexity predicted above. 

Figure 6.28 compares the pdf of leakage power for the three optimization 
approaches for both loose and tight delay constraints. These power curves 
are all taken with identical 95% delays, or identical performance. For loose 
delay constraints all three optimization approaches result in fairly similar 
pdfs for leakage power. This again reflects the fact that the different opti­
mization approaches behave very similarly for loose delay constraints. The 
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Fig. 6.28. Probability distribution functions of leakage power for a (a) loose delay 
constraint (b) tight delay constraint. 
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tighter constraints clearly separate the leakage power pdfs of the statistical 
and deterministic approaches. It is interesting, to note that although statis­
tical sensitivities lead to a smaller 95*^ percentile leakage power compared to 
the other approaches, the variance is marginally larger when compared to the 
optimization using only statistical constraints. Fig. 6.28(b) corresponds to the 
highest performance parts being manufactured and using statistical optimiza­
tion leads to not only a much smaller average leakage power but also reduces 
the spread of the distribution considerably, significantly impacting yield. Any 
statistical timing analyzer can be easily integrated within this approach. Ad­
ditionally, correlated sources of variations can be considered using the timing 
and power analysis methodology, as discussed in Chap. 5, to perform gate-
level yield analysis. However, note that this approach is not a true parametric 
yield optimization approach, since even if both the power and timing yield 
are 95%, the overall parametric yield of the design can be as low as 90% 
depending on the correlation of power and performance. 

6.4.2 Dynamic Programming 

Dynamic programming techniques, which are used to solve problems such as 
buffer insertion, was used to perform dual Vth assignment in [42]. Dynamic 
programming approaches are suitable for tree structures but suffer from the 
problem that it becomes very difficult to handle reconvergent fanouts, which 
are found commonly in DAGs used to represent combinational logic. Let us 
first discuss the approach, while assuming that there is no reconvergence. In 
this case the DAG is actually a tree. Later we will discuss heuristics presented 
in [42] to handle reconvergence in DAGs. 

In this approach each node of a DAG is associated with a set of possible 
implementations. Each implementation is associated with a probabihty distri­
bution for delay and a cost. The cost in dnal-Vth assignment can be used to 
represent the expected value of leakage and dynamic power for that particu­
lar implementation. The nodes within the DAG are topologically ordered, and 
then traversed from the primary inputs to primary outputs in a topological 
fashion. A set of solutions, where each solution is a pair of cost and delay dis­
tribution, are obtained at each node of the DAG during the traversal. These 
solutions form the set of Pareto optimal solutions, and are obtained based 
on the set of solutions at the inputs of the gate and the different possible 
implementations of the gate itself. 

When a single input gate is encountered the delay distribution at the 
output can be obtained by convolving the cdf of the delay at the input of a 
gate with the delay pdf of one of the possible implementations of the gate as 
discussed in Chap. 3. This gives the output delay cdf as 

Coutit) = f Cin{t - r)pd{T)dr (6.94) 
Jo 
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Fig. 6.29. Cross-over point before which Cin2 has a higher value and after which 
Cini has a higher value 

where Cout and Qn are the delay cdfs at the output and input of the gate, 
respectively and pd is the delay pdf of the gate. The cost at the output is the 
sum of the input cost and the cost associated with the gate. If the number 
of solutions at the input is 0{m) and the possible implementations for the 
gate is 0(n) then the number of possible solutions at the output of the gate 
is 0{mn). Since this becomes computationally very expensive, [42] proposes 
a heuristic approach to prune a large number of these solutions, as will be 
discussed later. 

In the case of a multiple input gate, we need to perform a max operation 
before the sum operation (6.94) can be performed. As we saw in Chap. 3 the 
maximum of a set of cdfs can be obtained by simply multiplying the cdf values 
at the corresponding point on the time axis 

C m a x ( 0 — C'inl(^) ^ 0 2 ^ (6.95) 

where Cmax represents the cdf of the max of Cini and Cin2- The cost associated 
with the max operation is again the sum of the costs associated with the cdf 
whose max is being considered. After propagating the set of solutions to the 
output, a set of Pareto optimal solutions in terms of cost and the probability 
of timing failure are obtained. 

As presented above, the number of solutions increases exponentially as 
we traverse the DAG. Therefore, pruning techniques need to be employed 



262 6 Statistical Optimization Techniques 

to reduce the number of solutions at a node. The pruning technique in [42] 
defines the concept of a cross-over point for delay cdfs. A cross-over point is a 
point 0̂ on the time-axis such that the cdfs which that the maximum value for 
t = IQ and t = f^ are different. These cross-over points divide the time-axis 
into a number of partitions as shown in Fig. 6.29. Note that if cdfs A and B 
have 0(m) and 0{n) cross-over points, then the number of cross-over points in 
the cdf obtained using a max operation is 0 (m + n). This can be understood 
by noting that a cross-over point in the merged max cdf must correspond 
to a cross-over point in either of the cdfs, since the cdf in a max operation 
is obtained by multiplying the cdf values of the merging cdfs. Given this, we 
need to retain all co-optimal solutions corresponding to the regions into which 
the time axis is partitioned by the cross-over points. The co-optimality results 
from the second part of the solution, representing the cost associated with the 
cdf. Therefore, if a solution in co-optimal in any of the partitions, then that 
particular solution is retained. 

To achieve polynomial complexity for the approach [42] proposes to limit 
the solution at any node by the number of solutions at the fanin inputs. 
Thus after a max operation the solutions are pruned such that the number of 
solutions is equal to the summation of the number of solutions whose max is 
performed. Similarly, in the case of a sum operation the number of solutions 
is pruned to the sum of the number of solutions at the input and the number 
of possible implementations of the gate. This pruning is achieved by defining 
a max-indicator for each solution, which refers to the fraction of the time 
axis where that cdf has a value larger than any other cdf. Prom the possible 
range of max-indicator values, a set of max-indicator points are selected which 
are equal to the number of solutions that one wants to retain at that node. 
For each max-indicator value selected, the solution with the minimum cost is 
retained and all other solutions are pruned out. Following this pruning step 
only a polynomial number of solutions are retained at each node, and therefore 
the entire dynamic programmmg approach now runs in polynomial time. 

We now turn to the problems associated with reconvergent fanouts that 
arise when using dynamic programming based approaches. The first problem 
appears while merging delay cdfs. The merged cdfs might correspond to dif­
ferent choices for the gates that are in the subtree rooted at a multiple fanout 
node from which the two merged cdfs originate. The second problem arises 
while summing costs, since summing the costs now results in the cost asso­
ciated with the common subtree being counted multiple times. The second 
problem is solved by estimating the cost after a max operation by summing 
the cost of each node in the subtree for each solution generated at the output. 
The first problem can be solved by maintaining lists of the fanin gates and 
their assignment for each solution, and if a conflict is found in the assignment 
of a gate before merging solutions then this solution is not generated. Note 
that tackling these problems results in a significantly large overhead both in 
terms of run-time and memory requirements, and is not suitable for large 
designs. 
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Table 6.2. Comparison of cost and delay results obtained using deterministic and 
probabilistic constraints. PF=Probability of failure, Det.=Deterministic optimiza­
tion and Stat.=Statistical optimization [42]. 
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0.3 

0.2 

0.2 

0.2 

0.2 

0.4 

0.2 

0.2 

0.1 

0.2 

0.2 

0.2 

Table 6.2 compares the results obtained using deterministic and statisti­
cal dynamic programming based approaches. The second column states the 
delay constraint enforced on the circuit, and we can see that columns five 
and six show that the deterministic optimization results in a large probability 
of timing failure whereas the statistical approach is always able to meet the 
constraint on timing failure specified in the last column. Note that results are 
for the case where both the deterministic and statistical approaches result 
in similar costs, and that the cost for deterministic optimization is always 
smaller than the cost for statistical optimization. However, the results are 
generated with the expected value of the delay used as an estimate for deter­
ministic delay, resulting in an average probability of failure of approximately 
50%. Additionally, only intra-die variations are considered which have the 
strongest influence on the mean delay and this further penalizes the results 
obtained using the deterministic approach. 

In this Chapter we reviewed some of the techniques that have been pro­
posed to perform statistical optimization to date. We observed that other than 
sensitivity-based techniques that decouple statistical analysis from statistical 
optimization, most of the other optimization approaches suffer from high com­
plexity. Mapping these techniques to a computationally efficient approach, re­
sults in a loss in achieved performance improvements. The sensitivity-based 
statistical techniques themselves do not guarantee optimality however, and 
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integrating them with statistical timers that consider all components of vari­
ations is not straightforward in all cases. Current approaches that perform 
statistical timing or power optimization also tend to neglect the strong correla­
tion in power and performance as discussed in the previous chapter, hence per­
forming timing yield optimization results in loss in yield due to the power con­
straint and vice-versa. Therefore there remains a need to develop approaches 
that are truly statistical in nature and maximize yield through timing and 
power optimizations while considering their correlation. 
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