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Preface

Traditional deterministic computer-aided-design (CAD) tools no longer serve
the needs of the integrated circuit (IC) designer. These tools rely on the use
of corner case models which assume worst-case values for process parame-
ters such as channel length, threshold voltage, and metal linewidth. However,
process technologies today are pushed closer to the theoretical limits of the
process equipment than ever before (sub-wavelength lithography is a prime ex-
ample) — this leads to growing levels of uncertainty in these key parameters.
With larger process spreads, corner case models become highly pessimistic
forcing designers to overdesign products, particularly in an application-specific
integrated circuit (ASIC) environment. This growing degree of guardbanding
erodes profits, increases time to market, and generall will make it more diffi-
cult to maintain Moore’s Law in the near future.

The concept of statistical CAD tools, where performance (commonly gate
delay) is modeled as a distribution rather than a deterministic quantity, has
gained favor in the past five years as a result of the aforementioned growing
process spreads. By propagating expected delay distributions through a circuit
and not a pessimistic worst-case delay value, we can arrive at a much more ac-
curate estimation of actual circuit performance. The major tradeoff in taking
this approach is computational efficiency. Therefore, we can only afford to use
statistical CAD tools when their performance benefit is compelling. In earlier
technologies this was not the case. However, many companies now feel that
the levels of variability, and the stakes, are high enough that the day of sta-
tistical CAD has arrived. An inspection of current CAD conference technical
programs reflect a large amount of interest from both academia and industry;
the current year’s Design Automation Conference (DAC) has at least a dozen
papers on this topic, nearly 10% of the conference program. While a large
fraction of this work has been in extending traditional deterministic static
timing analysis (STA) to the statistical regime, power is also critical due to
the exponential dependencies of leakage current on process parameters.

As a result of the above trends, the pace of progress, in the past few years
in statistical timing and power analysis has been rapid. This book attempts to
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summarize recent research highlights in this evolving field. Due to the rapid
pace of progress we have made every effort to include the very latest work
in this book (e.g., at least five conference publications from the current year
are included in the reference list). The goal is to provide a “snapshot” of the
field circa mid-2005, allowing new researchers in the area to come up to speed
quickly, as well as provide a handy reference for those already working in this
field. Note that we do not discuss circuit techniques aimed at reducing the
impact of variability or monitoring variability, although we feel these will play
a key role in meeting timing, power, and yield constraints in future ICs. The
focus here is on CAD approaches, algorithms, modeling techniques, etc.

On a final note, a key to the widespread adoption of statistical timing
and power analysis/optimization tools is designer buy-in. This will only come
about when there is open discussion of variability data, variation modeling
approaches (e.g., Does a Quad-Tree model accurately capture the actual be-
havior of spatially correlated process parameters?), and related topics. We
believe that the recent progress in algorithms for statistical analysis and opti-
mization has brought us to the point where these practical issues, and not the
underlying tool capabilities, are the limiting factor in commercial acceptance
of the approaches described in this book.

This book is organized into six chapters. The first chapter provides an
overview of process variability: types, sources, and trends. The second chapter
sets the stage for the following four chapters by introducing different statisti-
cal modeling approaches, both generic (Monte Carlo, principal components)
and specific to the topic of integrated circuit design (Quad-Tree). The third
chapter summarizes recent work in statistical timing analysis, a ripe field of
research in the past 4-5 years. Both block-based and path-based techniques
are described in this chapter. Chapter 4 turns attention to power for the
first time — both high-level and gate-level approaches to modeling variation in
power are presented with emphasis on leakage variability. Chapter 5 combines
ideas from the previous two chapters in examining parametric yield. This im-
portant performance metric may replace other more traditional metrics, such
as delay or power, in future ICs as the primary objective function during the
design phase. Finally, Chapter 6 describes current state-of-the-art in the sta-
tistical optimization area — the work to date is primarily aimed at timing yield
optimization and ranges from sensitivity-based to dynamic programming and
Lagrangian relaxation techniques.

The authors would like to thank Carl Harris of Springer Publishers for
arranging for this book to be published and also for consistently pushing us
to the finish line. We thank Sachin Sapatnekar for comments on the general
content of the book and we also thank Amanda Brown and Paulette Ream
for help in proofreading and generating figures.

Ann Arbor Michigan, Ashish Srivastava
May 2005 Dennis Sylvester
David Blaguw
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1

Introduction

The impact of process and environmental variations on performance has been
increasing with each semiconductor technology generation. Traditional corner-
model based analysis and design approaches provide guard-bands for parame-
ter variations and are, therefore, prone to introducing pessimism in the design.
Such pessimism can lead to increased design effort and a longer time to mar-
ket, which ultimately may result in lost revenues. In some cases, a change in
the original specifications might also be required while, unbeknownst to the
designer performance is actually left on the table. Furthermore, traditional
analysis is limited to verifying the functional correctness by simulating the
design at a number of process corners. However, worst case conditions in a
circuit may not always occur with all parameters at their worst or best pro-
cess conditions. As an example, the worst case for a pipeline stage will occur
when the wires within the logic are at their slowest process corner and the
wires responsible for the clock delay or skew between the two stages is at the
best case corner. However, a single corner file cannot simultaneously model
best-case and worst-case process parameters for different interconnects in a
single simulation. Hence, a traditional analysis requires that two parts of the
design are simulated separately, resulting in a less unified, more cumbersome
and less reliable analysis approach. The strength of statistical analysis is that
the impact of parameter variation on all portions of a design are simultane-
ously captured in a single comprehensive analysis, allowing correlations and
impact on yield to be properly understood.

As the magnitude of process variations have grown, there has been an
increasing realization that traditional design methodologies (both for analysis
and optimization) are no longer acceptable. The magnitude of variations in
gate length, as an example, are predicted to increase from 35% in a 130 nm
technology to almost 60% in a 70 nm technology. These variations are generally
specified as the fraction 30/p (30 is assumed to be the worst case shift in
the parameter), where o and p are the standard deviation and mean of the
process parameter, respectively. Thus a 60% variation in 70 nm technology
implies that the standard deviation of the distribution of gate length across a
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large number of samples is 14 nm. With variations as large as these, it becomes
extremely important that the designers treat these variation in a statistical
manner rather than using gaurd-bands in deterministic analysis.

1.1 Sources of Variations

The traditional approach to ensuring acceptable yield is to estimate mar-
gins, while assuming worst-case process and environmental conditions. With
increasing clock frequency and the growth of variations, these margins have
become a larger fraction of the total clock cycle, making the traditional tech-
niques hard to sustain. Part of this difficulty is that margins do not result from
a single source of randomness. They are, in fact, used to capture a host of
physical effects that are either truly statistical (and hence unknown at design
time), or are hard to model while performing analysis.

The first step to consider the impact of variations during the design pro-
cess is to understand the sources of variations and the impact they have on
performance. We first characterize the variations based on their sources.

1.1.1 Process Variations

Process variations are fluctuations in the value of process parameters observed
after fabrication. These variations result from a wide range of factors during
the fabrication process which determine the ranges of variations. It is obvious
that large variations in process parameters will lead to designs that devi-
ate strongly from their specifications. These variations effect the performance
characteristics of devices as well as interconnects. The resulting distribution
for performance across a large set of fabricated samples leads to the defini-
tion of parametric yield, which is the fraction of manufactured samples that
meet the performance constraints. Parametric yield should be contrasted to
manufacturing yield that defines the fraction of samples manufactured with-
out catastrophic manufacturing failures (such as wire shorts and opens) that
render a given sample useless at any frequency.

For a given process technology, two different designs can have significantly
different parametric yield. This results from the fact that the same variations
in process parameters may influence two designs in very different manners.
For example, we will see in Chap. 2 that designs with a large number of timing
critical signals have an increased susceptibility to process variations. In this
context, we define the so-called timing yield as the fraction of samples of a
design that meet the timing constraint, and similarly we define the power yield
as the fraction of samples that meet the power constraint.

1.1.2 Environmental Variations

These variations capture the variations in the surrounding environment in
which a chip sits during its operation. This includes temperature variations,
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variation in the power supply and variations in switching activity (defined by
the input vectors). A reduced power supply lowers the drive strengths of the
devices and hence degrades performance. Similarly, an increased temperature
results in performance degradation for both devices and interconnects. It is
important to understand that these variations depend on the work-load of the
processor and are hence time-dependent. Thus, the set of input vector com-
binations that result in a worst-case voltage supply drop can occur on any
possible sample of the design but will, in all likelihood, occur only intermit-
tently during its operational life time. Thus, power supply and temperature
variations are generally not treated statistically, since every shipped chip is
required to operate without failures over its entire operational life-time. Power
supply drops and high temperatures are, therefore, assumed during the ver-
ification of a design. However, identifying specific worst-case conditions for
temperature and power supply variation is extremely difficult. Therefore, de-
signers often focus on minimizing temperature and supply variations as much
as possible, such as ensuring that the voltage drop on a power grid is always
within 5%-10% of the nominal supply voltage.

A particularly interesting situation occurs when process variations in-
creases the current demands on the power supply grids. In older technologies,
leakage power dissipation was a concern only in designs that spent a large
fraction of their time in stand-by. With leakage power becoming a significant
contributor to total power dissipation, leakage currents flowing through the
power grid can result in significant supply voltage drops. Moreover, assum-
ing that all devices are operating at their highest leakage will be extremely
pessimistic. In this situation, it becomes important to estimate the mean and
variance of voltage drops and temperature hot-spots based on variation in
process parameters [50], [51], since worst-case leakage induced power-supply
drops and hot-spots cannot be expected to occur on each sample of a design.

Leakage currents themselves also increase strongly with an increase in
temperature, just as increasing leakage currents may result in a higher tem-
perature. In certain cases, this positive feedback can be strong enough to
cause thermal runaway, where the currents and temperature in the design
continue to increase until failure. Thus, it is important that chip level leakage
and temperature analysis are performed in a self-consistent manner [156].

1.1.3 Modeling Variations

These variations result from the fact that the power and delay models used
to perform design analysis and optimization are inaccurate and do not per-
fectly capture device characteristics. These models, if conservative, will make
it harder to meet design specifications, whereas aggressive models will result
in yield loss. The sample-space of these variations is over design iterations,
with different modeling errors at different design points. The tradeoff, in us-
ing smaller margins to capture modeling variations, involves the likelihood of
tuning particular paths post-fabrication or going through the entire design
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process again. Thus, we typically want to be conservative while accounting
for modeling variations, since it affects all fabricated samples of a design.

1.1.4 Other Sources of Variations

Though most variations are included within the previous three classes of vari-
ations, there are physical effects that result in a change in process parameter
with time. These effects include phenomena such as hot electrons, negative
bias temperature instability (NBTI) and electromigration. Hot electron and
NBTTI effects result in device degradation with time causing the threshold
voltage of the device to rise. Electromigration may cause increased wire resis-
tance due to a reduction in the width of a wire, which increases the resistance
of the wire and increases propagation delay. In the worst case, it will result in
wire opens and shorts causing functional failure. The impact of these varia-
tions depends strongly on process and environmental variations. A wire that
has a smaller width to start-off (due to patterning) and is used to provide
current to a hot section of the design that demands large currents is much
more likely to fail due to electromigration. If these effects are not properly
accounted during the design process, they may result in timing errors that
become visible during operation or burn-in. The analysis of these variations
is particularly difficult, since they become visible after a reasonable time of
operation. Therefore, techniques such as burn-in, which are accelerated test
techniques, are used. These testing techniques are used to stress the design
to operate under worst-case conditions. However, these testing techniques are
expensive and have a large application time.

1.2 Components of Variation

For the purpose of design analysis, it is beneficial to divide the variations
into two categories: inter-die and intra-die variations. As we will see in later
chapters, these components influence the performance of a design differently.
Moreover, the influence of these components also depends on how well the
design is optimized, which impacts the number of critical paths in a design.

1.2.1 Inter-die Variations

Inter-die variations refer to a parameter variation that has the same value
across a single die, and hence captures variations that occur from die-to-die,
wafer-to-wafer and lot-to-lot. Since these variations are independent, they are
all represented using a single variational term for ease of analysis. These vari-
ations are thus represented by a single value for each die and represent a
shift in the mean or expected value of the parameter distribution from the
nominal value. These variations include gate-length variations due to fluctua-
tions in the time of exposure during fabrication and metal thickness variations
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between different metal layers. Thus, considering inter-die variations for a pro-

cess parameter, we can write the value of a parameter for a device as a random
variable (RV).

P = Pyom + A-Pintcr (11)

where P,on is the nominal value of the process parameter and Ppq, is a zero
mean RV that captures the inter-die variation. The RV Py has a single
value for all components on the die. The inter-die variations are generally as-
sumed to have a simple distribution, such as Gaussian, with a given variance.
These variations may have systematic trends across dies that can be captured
if the specific orientation and location of a die on the wafer is known. How-
ever, the designer typically has no control where his chip will be placed on a
wafer. Moreover, this information is not available at design time and hence
the impact of these factors on process parameters must be captured using a
random variable.

Inter-die variations in a single process parameter are easily captured by
corner models, which assume that all devices and interconnects on a given
sample of the design have a value that is shifted away from the mean by a fixed
value that degrades (improves) performance, for slow (fast) path analysis.
However, when a number of process parameters are considered simultaneously
it is important to consider the correlation between these process parameters.
As discussed above, thickness of metal layers that are negatively correlated
can result in timing failures when the logic is slower than nominal and clock
is faster than nominal. The number of process corners at which a design needs
to be simulated for functional correctness thus increase exponentially with the
increase in process parameters.

1.2.2 Intra-die Variations

Intra-die variation is the component of variation that causes device parameters
to vary across different locations within a single die. Thus, each device on a
die requires a separate RV to represent its intra-die variation. Depending
on the source of variations, intra-die variations may be spatially correlated
or spatially uncorrelated. Though all variations are random, the accepted
terminology is to use the term random variations specifically to refer to the
uncorrelated component of intra-die variations.

It is obvious that intra-die variations result in a huge increase in the di-
mensionality of the problem by requiring an extra RV for each device. In
addition, these RVs are correlated due to proximity-effects. Since, it is com-
putationally very expensive to generate samples of correlated RVs of high
dimensionality, traditional statistical analysis methodologies such as Monte
Carlo become unsuitable in scenarios where intra-die variations are signifi-
cant, whereas deterministic approaches fail to capture the effect of intra-die
variations completely. Spatially correlated random variations can be handled
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by dividing the chip into regions that can be assumed to be perfectly corre-
lated and using a correlation matrix to capture the correlation among these
RVs. If the number of these perfectly correlated regions are small, they can
be handled easily.

Now, considering both intra-die and inter-die variations for a process pa-
rameter, we can write the value of a process parameter as

P = Puom + APter + APintra(af'ia yi)
= Puom + APiter + APspatial(xiv yl) + APra.ndom,i (1~2)

where APiya (24, ¥;) represents intra-die variation that consists of a spatially
correlated component A Pypatia1, which is a function of the location on the die
and an independent or so-called random component AP andom,i that has no
correlation with other devices and is represented as a separate RV for each
device.

Intra-die variations can also be classified based on their origin as: wafer-
level trends, layout dependent variations and statistical variations.

Wafer-level Variations

Wafer-level variation originate due to effects such as lens aberrations and
result in bowl-shaped or other known distributions over the entire reticle, which
results in a slanted profile of the process parameter across a single die. Again,
the direction of slant varies depending on the orientation of the die on the
wafer and cannot be ascertained a priori.

Layout Dependent Variations

Layout dependent variations result in different geometric dimensions due to
lithographic and etching techniques that are used during fabrication. These
include fabrication steps such as chemical mechanical polishing (CMP) and
optical proximity correction (OPC). CMP results in variations in dimensions
due to dishing (shown in Fig. 1.1) and erosion. Dishing arises from the fact
that all excess copper must be removed from the wafer — to accomplish this
goal, a wafer is typically over-polished, removing some of the copper that is
supposed to remain. As copper etches much faster than the surrounding di-
electric, the wire ends up being shorter than the oxide. Dishing is the vertical
distance between the final oxide level and the lowest point in the copper wire.
A substantial amount of dishing leads to increased resistance, worsened pla-
narity, and overall process non-uniformity. Constraints are set on the process-
ing equipment (including slurries and pads) to limit the amount of dishing in
the widest wire expected in a given process. Oxide erosion is another problem
— normally in this case CMP is applied to an array of dense lines. The oxide
between wires in a dense array tends to be over-polished compared to nearby
areas of wider insulators (that is, oxide between sparse features will be thicker
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Dishing in Cu
interconnect

= /.

S10,

Fig. 1.1. Dishing results in smaller height of copper interconnects resulting in higher
resistance, with wider wires having the largest impact.

V51 V1§ V53 V33 V3§

active layer contact poly-Si gate

VXY: Vertical, Left, Right 1: Dense
HXY: Horizontal, Left, Right 3: Denso
5: Isolated

Fig. 1.2. Characterization of polysilicon lines based on their orientation and dis-
tance to nearby polysilicon lines [104]. (©2005 IEEE)

than that between dense features). Both dishing and oxide erosion are prob-
lematic in wide lines and dense arrays, respectively, and are therefore layout
dependent. They lead to higher resistances and more surface non-uniformity.

The patterning of features smaller than the wavelength of light used in op-
tical lithography results in distortions due to the diffraction of light referred
to as optical proximity effects (OPE). Shorter wavelength lithography tech-
nology is too costly and unstable to be used in current technologies. Changes
made to the mask layout to account for these distortions are known as opti-
mal proximity corrections (OPC). Another technique that is used to improve
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the performance of sub-wavelength lithography is phase-shift masks (PSM),
which exploits the phenomenon of interference to enable patterning of features
with higher resolution. OPEs are also layout dependent and result in different
CD variations depending on their environment (presence of neighboring lines)
and orientation (vertical or horizontal). Figure 1.2 shows the classification of
polysilicon lines based on their orientation and distance to the neighboring
lines from the left and right edges. The edge is characterized as being dense
if the next line is at the minimum possible distance, denso if the next line is
at some intermediate distance, and isolated if the next line is further apart.
Based on test-chip measurements, the work in [104] found that proximity CD
variation is a strong function of both the orientation and the nearby environ-
ment. Controlling these variations has become extremely critical in current
technologies and has resulted in an explosion in the number of design rules.
Polysilicon routing in two orthogonal directions may no longer be allowed in
certain technologies, so that better control can be achieved in one single direc-
tion. Since these variations are layout dependent, they are generally treated
as spatially correlated intra-die variations.

Statistical Variations

Statistical quantization effects, such as random dopant variations, have also
grown with scaling of process dimensions. The number of dopant atoms in
the channel region of a device decreases as the critical dimension is scaled
down. As the number of dopant atoms becomes less, small variation in their
number result in a large variation in device performance. Moreover, the actual
location of these atoms also plays a role in determining the threshold voltage
of a device, further increasing the variability. These variations are true random
variations with no correlation across devices and represent one source of intra-
die random variations. Such random variations can result from a host of other
sources as well, such as lithography, etching, CMP etc. Although their impact
in current technologies is small, it is expected to grow as process parameters
scale. Their impact on performance has been manageable since random intra-
die variations have the well known averaging effect, and their impact on path
delay decreases with increasing logic depth. However, they result in an increase
in mean circuit delay. In addition, the trend to increase clock frequency of a
design using aggressive pipelining has resulted in smaller logic depths, which
increases the effect of these random intra-die variations.

These variations have a strong influence on leakage power as well, which
has become a big cause for concern even in current technologies. As an exam-
ple, increased Vy, variability and lower V;;, values (which result in a much
higher leakage) can result in functional failures in dynamic logic designs.
To counter worst-case leakage scenarios, a stronger keeper device is required
which has a negative impact on both power and performance. Adaptive post-
fabrication techniques such as [74], which turn on a subset of parallel keeper
devices depending on the variations will become useful in these scenarios.
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We have classified variations as being inter- and intra-die variations with
intra-die variations having spatially correlated and random components. An-
other equivalent view is to divide variations as being spatially uncorrelated
and correlated with the correlated variation further divided as being intra- or
inter-die variations depending on their correlation distance [158]. However, we
will work with the previous definition of variations throughout the remainder
of this book.

1.3 Impact on Performance

In this section, we will discuss the impact of variation on performance pa-
rameters. However, first we need to establish the components of variations
that dominate each of the device and interconnect parameters. Variation in
gate-length is perhaps the most critical device variation and has significant
components of both inter-die variation (resulting from variation in duration
of exposure) and intra-die variation (resulting from lens aberration and other
lithography effects) [158], [124]. The intra-die variations in gate length are
also expected to have significant components of spatially correlated variation
with a small amount of random variations.

Device threshold voltage presents an interesting picture, since it is depen-
dent on a number of process parameters such as channel doping concentration
and gate length. Variations in gate length result in a change in the Drain In-
duced Barrier Lowering (DIBL) coefficient which results in a change in the
threshold voltage. Thus, it is beneficial to separate the variation of thresh-
old voltage between gate length independent variation, resulting from chan-
nel doping variations which are random intra-die variations, and gate length
dependent variation (which has equal components of inter-die and spatially
correlated intra-die variations). In current technologies, most of the variation
in threshold voltage is due to variation in gate length and is thus spatially
correlated. However, in future technologies random dopant variations are ex-
pected to increase raising the level of random variations significantly. In terms
of interconnect parameters variations, most of the variations are spatially cor-
related intra-die variations and inter-die variations.

The trends in the magnitude of process variations is shown in Fig. 1.3
based on the National Technology Roadmap of Semiconductors [99]. The fig-
ure shows the increase in the variability of interconnect parameters such as
wire width W, wire thickness T, wire height H and resistivity p, along with
device parameters such as gate-oxide thickness T,, and threshold voltage Vr
and environmental factors such as power supply voltage Vyq. It shows that
variations in gate-length are expected to increase significantly as compared to
other process parameters, with variability increasing in all parameters.

The impact of the variations on power and performance was highlighted in
[20], which showed measured data over 1000 samples of a design manufactured
in an 180 nm technology. The results showed a 20X variation in leakage current
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Fig. 1.3. Variability trends in key process parameters with scaling process technol-
ogy. The x-axis is time with numbers representing the last two digits of the year and
the y-axis represents variability in process parameters [99]. (©2005 IEEE)
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Fig. 1.4. Large variations in leakage power and performance are attributed to
process variations [20]. (©2005 IEEE)
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for a 1.3X variation in performance. The large variations in leakage result in
a large fraction of samples that fail to meet the power constraint. Moreover,
these samples are the high performance samples of a design and hence result
in a two sided constraint on the region that represents samples that meet both
the timing and power constraint.

Though the problem of variations seems to be growing tremendously, [124]
recently showed that spatial correlated variations have been kept within man-
ageable limits due to better polysilicon CD control. It was argued that the
impact of inter-die variation can be kept within limits through better analysis
and design techniques.



2

Statistical Models and Techniques

Traditionally, circuit performance has been modeled in the industry using
worst-case models which are used to predict the performance of a design un-
der worst-case process, temperature, and voltage conditions. However, with
scaling process dimensions, the impact of process variations has grown, mak-
ing traditional worst-case models extremely pessimistic. This results in the
reduction of feasible regions for the design and increases design effort. Addi-
tionally, most of this effort is aimed at accounting for worst-case situations
that will most likely not occur in actual designs. This has resulted in signif-
icant interest in statistical modeling techniques that can be used to enable
statistical analysis and optimization.

Although the need for statistical modeling has been acknowledged to be
critical, industry has been reluctant in adopting modeling techniques that can
be used to replace traditional worst-case models. This stems from the fact that
statistical models are expensive and difficult to construct, and unless analysis
and optimizations tools are built on top of these modeling techniques, the
utility and validity of these models will be questionable.

In this chapter, we will discuss key statistical techniques, such as princi-
pal component analysis, that have been extensively used in developing tech-
niques for process variation modeling and analysis to simplify the problem
of simultaneously considering different components of variations. We will also
look at specialized modeling techniques to account for sources of variations
as discussed in Chap. 1. Having developed the basic infrastructure to model
process variation, we will then discuss performance modeling techniques us-
ing response surfaces. Then we will discuss statistical gate-delay models and
interconnect-delay models that have seen substantial research activity in the
past few years.

Before we discuss modeling techniques, let us spend some time understand-
ing the basics of a crucial statistical technique known as Monte Carlo. This
will serve as a benchmark against which all modeling and analysis techniques
will be tested for accuracy. The need for techniques such as Monte Carlo be-
comes obvious as soon as we look at the scale of the problem at hand. We
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will show that the error in Monte Carlo techniques reduces with the number
of samples n as O(n~'/2). Hence, obtaining an accuracy improvement of two
orders of magnitude requires that the number of samples be increased by four
orders of magnitude. Thus, the number of simulations required to obtain rea-
sonable accuracy using Monte Carlo is generally extremely large and using a
Monte Carlo based analysis or optimization engine will be prohibitive. Even
though this seems to be computationally demanding, this dependence is much
better than non-statistical techniques where the error reduces as O(n~1/%),
where d is the dimensionality of the problem.

Therefore, Monte Carlo methods are used in almost all cases to evaluate
the results obtained using newly developed analysis techniques. These tech-
niques, which are, in general, orders of magnitudes faster than performing
Monte Carlo simulations, lay the framework for the development of optimiza-
tion engines that provide improvements in a reasonable amount of time. How-
ever, it is important to understand the basics of Monte Carlo simulations, so
that they are used reasonably as golden models to test the accuracy of new
techniques.

2.1 Monte Carlo Techniques

Numerical methods that make use of random numbers are known as Monte
Carlo methods. One of the most important applications of Monte Carlo meth-
ods is in the evaluation of multi-dimensional integrals, and hence finds exten-
sive application in areas such as yield estimation [154].

Non-statistical numerical techniques to estimate one dimensional definite
integrals proceed by dividing the region, over which the integration needs to
be performed, into a number of identical parts. Let us apply the technique to
estimate the definite integral as shown in Fig. 2.1

I= /b f(z)dz. (2.1)

The interval [a, b] is divided into n equal subintervals such that a = ¢ < 1 <
Ty < -+ < x, = b. The integral (2.1) can then be approximated by

b 1=n—1 i+ ;
1=/a f(z)dz ~ Z:; f(%ﬂ)h (2.2)

where h = (b — a)/n. This method is known as the midpoint method, since it
approximates the area under the curve f(z) in a subinterval using the value of
the function at the midpoint of the subinterval. If the function varies linearly
within the subinterval, then the value estimated using the midpoint method
is exact. Hence, in the general case, midpoint method incurs an O(h?) error
in each subinterval of the integral. Since the total number of subintervals is
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Fig. 2.1. Midpoint method to approximate the integral of f(z), or the area under
a curve.

inversely proportional to h, the overall error incurred in estimating the integral
is O(h). Thus, we can finally write

i=

n—1 x+$
> f<7’ 21“>h+0(h)
=0

-1
- f <$i + Tiy1

Iz/abf(:c)dacz

7

I~

> ) h+0(n™?). (2.3)

1=0

The approach can be easily extended to two dimensional integrals. We now
consider the case where the area enclosed by a curve is estimated as shown in
Fig. 2.2. Using the ideas from the one dimensional case, the two dimensional
surface is divided into a set of n equal sized squares with dimensions (h, h). If
the midpoint of the square is enclosed by the curve, then the square contributes
to the integral, otherwise not. Note that the square either contributes fully
to the area or contributes nothing. The error in estimating the area of the
square that actually contributes to the area of the curve is therefore O(h?).
Since the number of squares that intersect the curve is O(h), the overall
error in estimating the area is again O(h). However, the number of function
evaluations required to estimate the area is now proportional to 1/h2, which
results in an overall error in the integral of O(n~'/2). Note that if this idea is
extended to the evaluation of multi-dimensional integrals of dimension d, the
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Fig. 2.2. Estimating the area enclosed by the curve C enclosed by a rectangular
bounding box A’.

error falls off at a very slow rate of O(n~'/?) as the number of samples in the
d-dimensional space are increased. Thus we see that to maintain a reasonable
accuracy, the number of function evaluations required by the midpoint method
grows rapidly with the dimensionality of the integral.

Let us again estimate the area enclosed by a curve as shown in Fig. 2.2,
now using a statistical technique. Instead of partitioning the entire region
A’, we generate n random points independently and assume that ng of these
points lie within the region enclosed by the curve. Now we can approximate
the area enclosed by the curve as

Ao~ Ag =A™ (2.4)
n

where A4+ is the area of the region A’ and A¢ is the area enclosed by the curve
C as shown in the figure. What is the advantage of this method compared
to the midpoint method? To answer this question we need to estimate the
error incurred in using approximation (2.4). The probability that a randomly
generated point lies within the area enclosed by the curve is simply Ac/A 4.
If we generate n such samples, then the number of points found to be within
C can be expressed as

n
ng = le (25)
i=1

where z; is the result of the i** measurement of z, which is 1 if the randomly
generated i** point lies within C' and 0 otherwise. The expected value of ng
can then be expressed as
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E[ng) = E [Z x} = Z Elz] (2.6)

where E[z] is the expected value of z, which has a binomial distribution with
n samples and a probability of success Ac/Aa:. The expected value of z can
then expressed as

_ Ac  Ac
Elz] =0 (1 AA’) + 1% Ay = A (2.7)

Substituting (2.6) and (2.7) into (2.4) and taking expectations we get

ElAc) = AAIE[n—O] = AA'-nA—C = Ac (2.8)
n nAa
and we find that on average the measurement of ng will result in an accurate
estimate of the area enclosed by C. The class of estimators whose expected
value of error is zero are known as unbiased estimators, therefore Monte Carlo
provides an unbiased estimate of the area.
Let us now consider the variance of the estimate provided by Monte Carlo.
We know from Chebyshev’s inequality [109] that for a RV «

[\

o

Plo-nlze<% (29)
where 1 and o are the expected value and the standard deviation of x, respec-
tively. Setting § = 02/e? we can rewrite (2.9) as

P (]a: —nlz %) <s. (2.10)

Since the expected value of ng gives the exact value of A¢, using (2.10) allows
us to estimate the error in the value of ng in terms of the number of samples
for a fixed desired level of accuracy. First, let us calculate the variance of ng:

(E--s[])

=FE (Z (i — E[ﬂ))

=1

Var[no) = E [(no - E[nO])Q]

=F <i$i_E
i=1

n

=E|> (xi—Ela])*+2 Y (v — Elz])(z; — Elz])| . (2.11)

Li=1 =1
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Since different measurements of x are assumed to be independent, the second
term on the right in (2.11) does not contribute to the expression and (2.11)
can be simplified as

n

Var[no) = E [Z(Sﬂz - E[x])2

i=1
= nE[z? — 2z, Ez] + E*[z])
= n(E[z?] — E?[z]). (2.12)
Now
_ AC Ac _ AC
E[z?] = 0% <1 - 71;) +1% % A= AL (2.13)

therefore, the standard deviation o of ny can be written as

Ony = V/Var[ng] = \/; (ﬁ—j) <1 - %). (2.14)

Since the estimate of the area enclosed by C is proportional to the ratio no/n,
using (2.10) and (2.14), the error in the estimate is O(n~'/2). Note that the
estimation in error is independent of the dimensionality of the problem. This
gives us the very interesting and important result that the error incurred by
Monte Carlo methods does not depend on the dimensionality of the problem.
Note that the error in Monte Carlo is fundamentally of a different nature.
The error in the midpoint method was due to the inability of the linear ap-
proximation to fit the actual integrand, whereas in Monte Carlo methods, the
error has a probabilistic origin. Additionally, for one dimensional integrals the
midpoint method is more accurate since the error is O(n~!) whereas Monte
Carlo methods provide an accuracy which is O(n~'/2). For two dimensional
integrals both the methods provide similar accuracy, and for higher dimen-
sions Monte Carlo methods are always more accurate. The disparity between
the accuracy of both the methods increases with the dimensionality of the
problem, since the inaccuracy of the midpoint method increases rapidly.

Note that to improve the accuracy of the integral by a factor of two while
using Monte Carlo would always require an increase in the number of samples
by a factor of four. On the other hand, analytical methods such as the midpoint
method require an increase in the number of samples by a factor 27 /2 where
D is the dimensionality of the integral. If D > 4, then Monte Carlo methods
fare better in this respect as well as compared to analytical midpoint methods.

For our purposes, we will use Monte Carlo methods to estimate the mo-
ments of physical or performance parameters. The main goal will be to esti-
mate the quantity
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Elg(X)] = /m o(2)f (2)dx (2.15)

where X is a RV with probability density function f(z), g(z) is a function of
the RV X, and R is the region of interest. If we can generate samples of the
RV X, then the integral can be estimated as an average of the values of g(x)
at these sample points. This approach shows better convergence properties
and reduces the runtime of Monte Carlo based techniques.

2.1.1 Sampling Probability Distributions

Monte Carlo methods rely on sampling the space of interest using random
samples by generating uniform statistically independent values in the region.
As it turns out, it is very difficult to generate truly random numbers using
computers. Specialized pieces of hardware are used in certain applications
to generate random numbers that amplify the thermal noise of a resistor
or a diode and then sample it using a Schmitt trigger. If these samples are
taken at sufficient intervals of time, we obtain a series of random bits. How-
ever, in software, random numbers have to be modeled using pseudo-random
number generators. Pseudo-random numbers, as the name suggests, are not
truly random and are typically generated using a mathematical formula. Most
computer languages use linear congruential generators. These generators are
defined by three positive integers a (multiplier), b (increment), and m (modu-
lus) and given an initial seed (the first pseudo-random number 7(), generates
pseudo-random numbers in the following fashion:

Tk+1 = arg + b(mod m). (2.16)

If desired, the random numbers generated can be mapped to a given range
by dividing the numbers obtained using the above generator by m. Note that
the 7¢’s can only take one of the m values. Hence, in all practical implementa-
tions m is a very large number (eg. 232). Also, the choice of a is critical to the
randomness of the number generated. More details regarding pseudo-random
generators can be found in [75].

We will now review some of the general techniques used to sample arbitrary
probability distributions and algorithms to generate samples of some of the
pertinent RVs that we will deal with throughout this book.

Inverse Transform Method

Let us assume that the probability distribution function (pdf) of a RV X that
we want to sample is given by f(z). The cumulative probability distribution
(cdf) F(z), which gives the probability that X < z, is then given by

F(z) = /_x f(z)de. (2.17)
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Let us take samples of X, which will have a probability density of f(z).
Now we will use these samples of X to obtain samples of F'. Consider a small
region * < X < x + dx on the x-axis of the cdf. The number of sample points
in this region will be proportional to the integral of the pdf in this range. Note
that this is equal to the change in the value of the cdf. Hence, the number of
sampling points within a range is equal to the length of the region sampled
as well. Therefore, these samples of F'(z) will be uniformly distributed in the
range [0,1].

Using this idea we can write

u= F(z)
= F(u) (2.18)

where u represents samples of a uniformly distributed random variable, and
F~1is the inverse of F'. Hence, if we can find the inverse of F' we can use this
technique to generate random numbers distributed according to the probabil-
ity distribution f(z).

Transformation Method

Now let us consider two RVs, X and Y, which are related such that Y = f(X),
where f is a monotonic function (inverse of f is well defined). Let the pdf of
X and Y be fi(z) and fy(y), respectively. Then from the conservation of
probability it follows that

P (2)dz| = [Py(y)dy| (2.19)

which states that the probability of finding X between z and z + dx is the
same as the probability of finding Y between y = f(z) and y + dy = f(x + dx)
as illustrated in Fig. 2.3. From (2.19) it follows that

_ fa(z)

| ()|
When f is non-monotonic, the left hand side in (2.19) is replaced by a sum-
mation of the ranges of x that correspond to the given range of y on the right
hand side in (2.19). An equivalent for (2.20) can then be immediately con-
structed [109]. Therefore, to generate samples of a RV Y we need to find a RV
X whose samples can be easily obtained such that X and Y satisfy (2.20).

Consider the case where we want to generate samples of a Poisson distri-
bution. The pdf of the Poisson distribution is expressed as

fy(y) (2.20)

eV if 0<y<

2.21
0 ow. ( )

fy(y) = {

then choosing y = —Inx we get
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y +dy

>
X

Fig. 2.3. The probability that + << X << z + dz is equal to the probability that
y << Y << y+dy for the case when Y varies monotonically with X.

1 if 0<x<1

2.22
0 o.w. ( )

o) = {
hence the pdf of Y and X satisfy (2.20). Therefore, if we generate uniform
samples in the range [0,1], then the negative natural log of these samples will
have a Poisson distribution. This method requires a differentiable pdf, which
is a restriction particularly when dealing with discrete RVs.

Acceptance-Rejection Method

If both the above methods are inapplicable due to the restrictions imposed
on the pdf of the RV then the acceptance-rejection method may be used. Let
us consider the case where we want to generate samples of a RV X whose
pdf is as shown in Fig. 2.4. The acceptance-rejection method consists of the
following steps. First, generate uniform samples in the range [Zmin, Zmaz]- For
each sample z; evaluate the value of f,(z). Next, generate another random
sample a in the range [0, max f,(z)]. If ; > a, then accept the sample z;,
otherwise reject it. The accepted samples are then distributed according to
the pdf f,.

To generate samples of a Gaussian RV using this approach, we must trun-
cate the pdf of the RV. Since most of the values of a Gaussian RV are concen-
trated around its mean, a +40 range around the mean is sufficient to capture
the behavior of the Gaussian RV. The steps outlined can then be applied to
this truncated Gaussian RV to generate the desired random samples.
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Fig. 2.4. The acceptance-rejection method to generate samples of a RV with a given
distribution function.

Generating Multivariate Gaussian RVs

Now let us look at techniques that may be used to generate multivariate
Gaussian RVs. We will use the transformation method to generate samples of
a one dimensional Gaussian RV. If u; and ug are independent uniform RVs
in the range [0,1], then

y1 = sin27u;\/ —21Inwuy
Yo = cos2muiy/ —2Inwusy (2.23)

are two independent Gaussian RVs with zero mean and unit variance. The
Gaussian random numbers generated using the above transformation, also
known as the Boz-Muller transformation, can then be used to generate sam-
ples of a Gaussian RV with an arbitrary mean and variance. To obtain the
desired mean and variance for the Gaussian RV, we use the fact that given
two Gaussian RVs that are related as Y = aX + b

E[Y] = aE[X] +b (2.24)
Var[Y] = E[Y?] - E*[Y] = a*Var[X].

To generate an n-dimensional multivariate random variable with a covari-
ance matrix 3 and mean A, the first step is to generate n independent random
variables with zero mean and unit variance. Then, take a sample of these RVs
(X), and generate a new sample X’ from X such that
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X' =A+LX (2.25)
which gives
EX=A
Cov[X'] = EX'X'T] — EX'|E[X'T] = LLT. (2.26)

Hence, if LLT = ¥ we have the samples of the desired multivariate Gaussian
RV. The evaluation of L from X is a popular technique in matrix computation,
known as Cholesky decomposition [55], for symmetric positive-definite matri-
ces. Cholesky decomposition factorizes a symmetric positive-definite matrix
into a product of a lower and upper triangular matrix, which are the transpose
of each other. Hence, L is a lower triangular matrix in (2.26). The covariance
matrix of a set of RVs is known to be symmetric and positive-definite. There-
fore, Cholesky factors can be obtained for 3. Writing out (2.26) in compo-
nents, we can solve for the elements of L and readily obtain

i1 1/2
Li; = (Eu‘ -> L?k>
k=1
1 i—1
Lyi= 1 (2,, —;LikLﬂc> j=i+1,i+2,...,N.  (2.27)

Using these techniques, samples of the required RV to perform Monte Carlo
analysis can be generated. For most purposes, variations in VLSI designs are
assumed to be Gaussian. Consequently, while analyzing intra-die variations,
we need to generate samples of a multi-normal RV.

Though we have described the theoretical foundation of Monte Carlo based
simulations, there are a number of practical issues that must be kept in mind.
It must be ensured that the result of a Monte Carlo based simulation has
converged and that further increase in the number of samples will not result
in a large change in the value of the target parameter. A number of issues
arising in Monte Carlo simulations in VLSI designs were highlighted in [126].
One of the most important computational issues involved in generating the
required RVs is that, in most cases, correlated RVs are required to sample the
space. This requires Cholesky decomposition of the correlation matrix, which
has a computational complexity of O(n®) for an n xn matrix. This becomes
prohibitive as soon as the number of RVs being considered increases beyond a
few thousand (this may be the case if intra-die variations are considered). Ad-
ditionally, techniques that aim to reduce the complexity of matrix operations
based on sparsity are not applicable. This is due to the fact that some process
parameters, such as threshold voltage, have significant correlations across the
chip. Since threshold voltage variations have a strong component of random
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dopant variations as well, these RVs cannot be assumed to be perfectly cor-
related as well. Spatial correlation models such as PCA and Quad-Tree based
modeling, which we will discuss in the next section, can be used in these
situations to reduce the computational complexity.

2.2 Process Variation Modeling

Process variation can be considered to operate at two different levels; at the
chip level, which we call inter-die variation, and at the transistor level, which
we refer to as intra-die variation. As discussed in Chap. 1, the demarcation
between these two components is not very strict since variations that need to
be modeled as intra-die variations may have a correlated component across
a chip as well. However, the impact of inter-die variations and intra-die vari-
ations on circuit performance is very different. Additionally, as we saw ear-
lier, the number of RVs that we deal with increases rapidly when intra-die
variations are considered, which increases computational costs (particularly
when intra-die variations are spatially correlated). In this section, we will dis-
cuss techniques that have been proposed to simplify modeling and analysis
techniques when dealing simultaneously with both correlated and indepen-
dent sources of variations. We also discuss models that have been developed
to specifically understand the impact of certain physical phenomena, such
as random dopant effects, which exhibit themselves as variations (process or
time-dependent) on circuit performance. However, we first discuss Pelgrom’s
model, which has been widely used to understand the mismatch in devices
resulting from random and correlated sources of variations.

2.2.1 Pelgrom’s Model

Pelgrom’s model [111] has been the most widely used modeling technique
to capture the mismatch in transistors arising due to variations in process
parameters. The approach is based on analyzing the impact of variations (both
random and correlated) in the frequency domain and abstracting key features
of both intra-die and inter-die variation.

Let us consider a parameter P that varies over the surface of a die in the
x-y plane due to process variations. Variations in P for different values of co-
ordinates (z,y) result in mismatch of transistors, which have been designed
to have the same characteristics. The overall mismatch between two regions
(R1) and (R2) corresponding to the points (z1,y1) and (x2,y2), respectively,
which have an area Ay can be expressed as

AP = —/%5 (//121 P(z,y)dzdy — //R2 P(m,y)dxdy) . (2.28)
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The integral in (2.28) can be viewed as a convolution of the function describ-
ing P (P(z,y)) in the x-y plane and a function f,(z,y) which describes the
geometry of the problem and can be expressed in this case as

+1/A0 if (z,y) € Ry
fq(w,y)={—1/Ao if (z,y) € R (2.29)
0 ow.

Thus, we can rewrite (2.28) as

AP(z,y) = (Px fy)(z,y) = /—00 /voo fo@ v )Pz —2',y—vy')dz'dy’ (2.30)

where * is the convolution operator. If we take the Fourier transform of (2.30),
the convolution can be written as a product of Fourier transforms of the two
functions, which effectively separates the process and the geometry dependent
terms of the mismatch. The equation in the frequency domain can be written
as

AP(wwywy) = f(fg(may)) f(P(:c,y)) = *;C!J(wm’wy) P(wx:wy) (2'31)

where the operator F represents the two-dimensional Fourier transform. Let
us consider the specific case where the transistors have a nominal device width
W, gate length L, are separated by a distance d, and are laid out as shown in
Fig. 2.5. In this case, the Fourier transform of the geometry dependent part
takes the form

1 —iw, & —iwy,
Folwg,wy) = m//y2 folz,y)e “=Te™v¥da dy

1 —d./2+L/2 ,W/2 (waztwyy)
_ 1 e iwatw,y) 4g 4y (2.32)
WL /dm/2~L/2 /—W/2

| de/2HL/2 W2 Conntony)
- e '\WetTW¥dr dy = I — 1.
WL /dm/2—L/2 /—W/2

The integral Is can be evaluated as

do/24+L/2 —iwyy\ (W72
I = L/ e iws) (e - y) I dz
WL Jg, 2-1/2 —lwy

-w/2
—iw,W/2 _ ,iw,W/2 —iw, L/2 _ siwgL/2 .
_ (e ' [ ) (e : (] >e-—|w$dw/2‘ (233)
—iw, W —iwe L

Using Euler’s Theorem, (2.33) simplifies to
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dy

Fig. 2.5. Estimating the mismatch between transistors that lie on the x-axis sepa-
rated by a distance dj.

e (D) (S e

Similarly, I; can be evaluated and differs only in the last term compared
to (2.34) with the exponent being positive. Hence, we can write

rtensa = (i7" ) ("

Now let us consider the process-dependent term in (2.31). As discussed
in Chap. 1, variations can be divided into two classes where either the varia-
tion is random across transistors or correlated. Since random and correlated
variations behave differently, Pelgrom uses different modeling techniques to
capture their impact.

The variations in the parameter P are assumed to be the result of many
events of a random process. The random process is treated as independent
across gates, and is assumed to behave as a source of white noise. Hence, ran-
dom variations can be modeled as normally distributed noise sources [111]. If
we assume that these variations have zero mean and are small enough such
that the resulting variations in P can be assumed to be linear, then the vari-
ations in P can also be modeled as normally distributed zero mean RV. The

) sin(wgdy/2). (2.35)
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Fourier transform of a white noise random process is a constant in the fre-
quency domain, and therefore, has equal contribution from all frequencies.
This is intuitive, since a randomly varying signal should have equal compo-
nents from all frequencies.

On the other hand, the correlated component of variation is a deterministic
process. Again, assuming the impact of these variations on P can be captured

using a linear relation, [49] expresses the correlated component of variation in
P as

APeorr = APpom + oy + a2y (236)

where the nominal value of the correlated variation AP,,,, for a particular
die can be estimated if the origin corresponding to these variations on the
wafer is known (and is deterministic), and a; and «q are parameters which
depend on the process and the choice of the coordinate system for the die.
Hence, if the position of the dies on the wafer are known, then this component
of variation can be precisely predicted from the knowledge of process gradi-
ents [49]. Unfortunately, the information regarding the placement of dies on a
wafer is generally not available. Additionally, this information is not available
at the design stage and cannot be used to design for variability. However, lay-
out techniques such as Quad Common-Centroid Configuration [46] have been
proposed to effectively cancel the impact of correlated variations. A reason-
able approach is to model the correlated component as a stochastic process,
with a low-frequency component whose frequency is inversely proportional
to the correlation distance of the variation being considered. Again, due to
the assumption of small variations, the variation in P can be assumed to be
normally distributed [111].

From the characterization of a random process, we know that the variance
in the samples of a random process is proportional to the power content of
the process. Thus, the overall variation in parameter P can be expressed as

1 o0 o]
o%(AP) = 4—2/ / |P(way wy | |Fy(we, wy|* dw, dwy,. (2.37)
T J—00 J—00

The above integral can be evaluated using the definite integral properties of
even and odd functions, and the following definite integral of a sinc function:

SR
/ 8122w de = (2.38)
to finally obtain
A2
o?(AP) = v_VpZ + S2d2 (2.39)

where A, and S, are process-dependent parameters that capture the depen-
dency of P on device area and spacing, respectively.
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Using this model, simple expressions for the variance of a number of key
parameters, such as threshold voltage (Vi) and gate oxide thickness (Tbz),
can be expressed as

A?
o*(Vin) = 375 + 5%, D° (2.40)
2 A%o.: 2 2
0*(Toa) = 7% + %, D (2.41)

where Ay, , Sv,,., Ar,, and St,, are process dependent constants. Considering
variations in W and L themselves, Pelgrom notes that the variations arise
due to edge roughness and [111] uses a one dimensional variant of the analysis
described above, concluding that the random variation in W and L can be
expressed as

(L) = flm—ib- (2.42)
2 Aly
o?(W) = < (2.43)

Based on these expressions, variations in key performance metrics, such as
device on-current, can be easily predicted. The coefficients used in the equa-
tions above are estimated using information from test structure measurements
for the process.

Pelgrom’s model is extensively used in analog design to analyze the mis-
match between transistors that are required to match perfectly, as in analog
designs. Based on (2.40), it can be inferred that large devices located close
to each other will be well matched, and that increasing the device area is a
possible approach to reduce the mismatch between devices [90].

2.2.2 Principal Components Based Modeling

This section will detail the variability modeling infrastructure based on Princi-
pal Component Analysis (PCA). This framework for simultaneously handling
process random and correlated variations was first developed in [30] for sta-
tistical timing analysis and has since been used in a number of later works to
model process variations. As discussed in Chap. 1, process parameters have
an inter-die (which is fully correlated across a chip) and an intra-die compo-
nent of variation. The intra-die component can again be categorized as being
correlated and random. The overall intra-die variation is then expressed as a
sum of correlated and random components and the sum of variances of both
these components provides the overall variation in the process parameter.
To handle the correlated components of variations (inter-die and correlated
intra-die) the overall chip area is divided into a grid as shown in Fig. 2.6. In the
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Fig. 2.6. Partitioning of a circuit using a 2D grid to model the correlated component
of variation.

absence of inter-die process variations, the correlation coefficient varies from
one (within the same square of the grid) and falls off to zero with increasing
distance. Due to inter-die process variations, squares on the grid that lie at
the opposite corners of a large design may have non-zero correlations and the
correlation in this case falls off to a value higher than zero. This minimum
value depends on the relative contribution of inter-die variations to the total
correlated component of variation.

Let us now consider the RVs required to model variations in a given pro-
cess parameter. Each square in the grid corresponds to a RV of the process
parameter which has correlations with all other RVs corresponding to other
squares on the grid. Squares that are much further away should demonstrate
lower correlation compared to adjacent squares on the grid in this model. If
we want to consider the impact of these RVs on the performance parameters
of the design, we need to consider the correlations in these RVs at all points
during the analysis. To simplify the problem, this set of correlated RVs is re-
placed by another set of mutually independent RVs with zero mean and unit
variance using the principal components of the set of correlated RVs.

Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique that is used
to identify patterns in data, and expresses the data in a much simpler and
informative fashion. PCA maps a given set of correlated RVs to a new set of
uncorrelated RVs, which are called the principal components, such that most
of the variability in the original RVs is captured by the first few principal
components as shown in Fig. 2.7.
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Fig. 2.7. Most of the variation in the shaded data is along one of the dotted axis
which represents the first principal component.

Let us assume that we have a vector of n RVs X’ = (X}, X5,..., X)T
which are distributed according to a given multivariate probability density
function. Assume that this multivariate pdf has a mean vector A and a covari-
ance matrix X. Let us generate a new vector of RVs X = (X1, Xa,..., X,)T
such that X = X’ — A which implies that the new set of RVs are zero mean
and have the same covariance matrix 3. The first principal component Y;
of the components of X is a linear combination of the components and is
expressed as

Y1 = a1 X1 +apXo+ -+ a1, X, = alTX. (244)

This linear combination has the property that its sample variance is the great-
est for all normalized «'s. Therefore, we can rewrite the problem of identifying
the first principal component as

n n
max E E alialeij =a1T2a1

i=1 j=1
n
s.t. Zafi = alTal = 1. (245)
i=1
Introducing a Lagrange multiplier A [15], we include the constraint into the

objective function, and then take partial derivatives with respect to the com-
ponents of ; to obtain

'(9—&; (Otszal - )\(alTal — 1)) =0
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2(X — Aoy = 0. (2.46)

Since a3 = 0 (which satisfies the above equation) corresponds to the mini-
mization of the objective function, we know that S — AI has a non-empty null
space. Hence the determinant of S — AI is zero, which implies that )\ is an
eigenvalue of the covariance matrix, with ai; being the associated eigenvector.
Let us look at the objective function again in light of this fact and note that

a1TSa; = a1 Thar = ). (2.47)

Thus we find that the objective function is maximized when A is chosen to be
the largest eigenvalue of 3. Also, we know that since X is a positive-definite
symmetric matrix, all its eigenvalues are positive and real. Let us now estimate
the second principal component, which is expressed as

Y1 = an X1+ ageXo + -+ agn X, = azTX (248)

and is a solution of the optimization problem

n n
max Z Z Qroi0ipj 2y5 = agTEaz
i=1 j=1
n
s.t. Zagi =alaz =1 (2.49)
=1

n
T
E a1 = oy az =0

i=1

where the added constraint forces the new principal component Y5 to be or-
thogonal to Y;. Again, introducing the constraints into the objective function
using Lagrange multipliers A; and Az, and differentiating with respect to the
components of ap we obtain

0
ga-; (aTEaz — /\1(1 — azTaz) — )\galTaz) =0
2(2 - )\11)(12 - )\2(11 =0. (250)

If we multiply the above equation by o3 on the right, we obtain Ay = 0,
which implies that \; is an eigenvalue of the matrix 3. Considering (2.47),
we note that for the optimal solution to (2.49), A\; corresponds to the second
largest eigenvalue of 3, and a2 is the corresponding normalized eigenvector.

Extending this approach to estimate other principal components Y}’s
(where we introduce additional constraints that Y; is orthogonal to Y; for
1 < ¢ < j), we find that the coefficients of the principal components cor-
respond to the eigenvectors with decreasing magnitude. Hence we can write
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Y = AX where A is the nxn orthogonal matrix whose rows are the eigen-
vectors of X.

Estimating the mean vector and covariance of the RVs Y we find

E[Y] = AE[X] =0
Cov[Y] = E[YYT] = B[AXXTAT] = AE[XXT]AT = ASAT  (251)
= AATDiag(\, ..., \n) = Diag(\1, ..., \p) = D.

Using (2.51) we can generate a set of uncorrelated zero mean unit variance
principal components P that are related to the original RVs (X’) by the
following relation

X’ = A+DY2A7'P. (2.52)

The approach can also be used to compress data by using the first few
principal components to express the data, since most of the variations in the
data can be captured in the first few principal components. Hence PCA finds
extensive use in areas such as image compression as well. For our purposes,
we will use PCA-based techniques to simplify the correlation structure of
variations in process parameters across a chip.

Another important fact regarding principal components of a set of random
variables distributed according to a multi-normal distribution follows from the
following properties of multi-normal distributions.

Property 2.1. Let the p-dimensional random vector X be distributed according
to the multi-normal distribution with mean vector A and covariance matrix
3 of rank p. If A is any m X p matrix of real numbers with rank m < p, the
new m-component random vector Y=AX is a multi-normal random vector
with mean vector AA and covariance matrix ASAT.

Property 2.2. Let X; and X5 be random variables that are distributed accord-
ing to a multivariate Gaussian distribution, then X; and X, are statistically
independent if and only if their covariance is zero.

Based on Property 2.1, we note that principal components are a linear combi-
nation of the original RVs, and will be distributed according to a multi-normal
distribution. From (2.51), we know that the principal components are uncor-
related, which, along with Property 2.2, implies that the principal components
are independent RVs. Therefore any linear combination of the principal com-
ponents will also be a Gaussian RV. This result will be very useful when we
discuss statistical analysis techniques based on principal component analysis.

2.2.3 Quad-Tree Based Modeling

This approach to model process variations was first proposed in [4] and is also
based on partitioning the overall die area into a number of regions. However,
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instead of adopting a covariance matrix based model to consider correlated
components of variations, it uses an additive approach to consider the spatial
dependence of process parameters. Let us consider the variation in a given
process parameter; the value of the process parameter for a device 7 can be
expressed as

Xtotal,i = X'nom + AXinter + AXintra,i (253)

which is a sum of the nominal value of the process parameter (X,om), the
variation due to inter-die variation (Xjn¢er), which is the same for all gates,
and the intra-die variation corresponding to that particular gate (Xintra,i)-
The terms corresponding to the intra-die variation for different gates can be
correlated. Similar to the PCA-based modeling approach, we seek to identify
a set of uncorrelated RVs that can be used to model the overall variation in
the process parameter.

This is achieved by recursively dividing the area of the die into four equal
parts, which is known as Quad-Tree partitioning. As the regions of the die
are recursively divided into parts, the number of parts increase by a factor
of four for each additional level of partitioning as shown in Fig. 2.8. Each
partition in this hierarchical scheme is then assigned to a RV, where the RVs
are independent of each other. The intra-die RV associated with a gate ¢ is
now defined to be the sum of the RV associated with the lowest level partition
that contains the gate ¢ and RVs at each of the higher partitioning levels that
intersect with the lowest level partition. This can be mathematically expressed
as

AXintras = > AX, + AXE (2.54)

0<l<k,r intersects i

where X, are the RVs associated with the partitions in the multi-level Quad-
Tree and X7 is the random component of variation of gate i, which is inde-
pendent of the variation in any other gate. As an example, the term that is
completely random between different gates could be used to model variations
in threshold voltage arising due to random dopant fluctuations.

The pdfs of the individual partitions of the Quad-Tree are generated in the
following fashion to ensure that the sum expressed in (2.54) always represents
the correlated component of intra-die variation. All the RVs corresponding
to a single level of partition are assumed to have the same distribution. The
overall variation in the correlated component is distributed across different
levels based on the degree of expected correlation. If the process parameters
are known to be correlated over large distances then a larger fraction of the
variation is assigned to higher partitioning levels. Based on this modeling
scheme we note that gates that lie close to each other will be associated to the
same RVs in the Quad-Tree for most levels and therefore have high correlation.
On the other hand, gates that are far apart only have a few common RVs and
hence their overall correlation is smaller.
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Fig. 2.8. Modeling spatial correlation using Quad-Tree partitioning. The numbering
of regions in different levels is done as shown in the figure and a region (%, j) intersects
the regions (141,45 —3) — (¢+1, 4j).

2.2.4 Specialized Modeling Techniques

In this section we will discuss some of the modeling techniques that have been
proposed to understand and quantify the impact of certain physical phenom-
ena that results in variability. We will discuss models for random dopant
variations that result in V;;, variations, and are expected to have a strong
influence in future technologies. We will also discuss modeling techniques for
NBTI, which results in a change in V;;, with time, and electromigration which
results in opens and shorts in metal lines.

Random Dopant Variation

Since the number of doping impurities in the channel depletion layer has
been reducing with technology scaling, both the number of dopants and their
placement results in variations in the observed threshold voltage of the device.

If the event of different dopant atoms being introduced into the device
is treated as independent Bernoulli trials, then the number of dopant atoms
in a given volume v (IN) across different devices can be shown to follow the
Poisson distribution if the volume being considered is small compared to the
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total volume [91]. This follows from the fact that the probability of exactly
obtaining a given number of successes, out of a large number of trials (tending
to infinity) results in a Poisson distribution. Thus the probability that there
are Ny atoms within the volume v can be expressed as

(Navv)NO
Ny!

where N, is the mean value of the concentration of Ng. The mean and vari-
ance of this distribution is expressed as

P(N = Np) = exp(—Ngyv) (2.55)

M[N] = Noyv

[N] = v/ Ngyv. (2.56)

Based on (2.56) we can infer, that although the absolute variance of the
number of dopant atoms reduces as the concentration is reduced, the variation
as a fraction of the mean, which is expressed as

alN] 1

1N Nayv
increases for lower doping concentrations. This implies that variations in
dopant concentrations will result in larger variability in threshold voltage
for low V4, devices. However, the variation in leakage power depends on the
absolute variation in V4, and random dopant fluctuations will result in a
smaller variability in leakage current. It is important to note that this consid-
ers variations arising due to random dopant variations. Variations in current
technologies are dominated by gate length variations, and low Vi, devices
are considered to be more susceptible to variations due to worse Vi, roll-off
characteristics.
The volume in the above equations that we are interested in is the channel
volume,

(2.57)

v=WLW, (2.58)

where W and L are the device width and length, respectively, and Wy is the
depletion width, which is expressed as

W, = 4epes;|Pr| (2.59)
qNaw

where € is the permittivity of vacuum, €g; is the relative permittivity of
Silicon (Si), ¢ is the charge on an electron and @ is the Fermi potential,
which is expressed as

Pp = ]—“qzln (N‘“’> (2.60)



36 2 Statistical Models and Techniques

Gate

X=0

> Y
Xo
Source A R R R 1

AQ

v

X

Fig. 2.9. Cross-section of a MOS device, showing a layer of dopants at a distance
o from the Si — SiO5 interface.

where n; is the intrinsic carrier concentration of Si (1.1x 10 em=3@300 K).
Though this simple approach gives us insight into the impact of variation in
the number of dopants, it does not consider the impact of the placement of
these dopant atoms.

Now let us discuss one of the simple models proposed in [138] that considers
the impact of the variation in placement of these dopant atoms along the depth
of the device on threshold voltage. Assuming that the device is in inversion, the
voltage drop from the surface of Si — SiO4 interface to the edge of the depletion
region (2.59) is constant. Let us now assume that we have an additional surface
charge density AQ that is introduced at a distance zo from the surface, as
shown in Fig. 2.9. This results in a change in the electric field, which increases
in the region from 0 < x < z(. Since the voltage drop to the edge of the
depletion region remains the same, the electric field in the region g <« < Wy
reduces. This change in electric filed is illustrated in Fig. 2.10 for the simplified
case, where the initial doping profile is uniform. This change in electric field
will result in a change in threshold voltage, which can be simply expressed as
(if the second order term due to region C shown in Fig. 2.10 is ignored)

AQ To )
A = 1—— 2.61
‘/th Com ( Wd ( 0 )

which depends on zg, the distance from the surface at which the extra charge
sheet is present. Assuming that the doping process is a sequence of Bernoulli
trials (the distribution is binomial), we can express the standard deviation of
AQ as
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Fig. 2.10. Change in vertical electric field due to the additional sheet of charge in
Fig. 2.9. Poisson’s equation dictates that the area of Regions A and B be equal.

q\/Nsup(z)LW Az
AQ] = qo[N] = 2.62
oAQ) = go[N] g (262)
where Ngyp(z) is the doping concentration profile. The overall variance in

threshold voltage can then be obtained by integrating the variances introduced
by each of the infinitesimal charge sheets.

z=Wy
MWl = [ (olavia)?

=0

=Wy q2 z 2
= — N 1— — . 2.
/z o sug(x)( Wd) de (2.63)

Now let us define an effective doping concentration Ngpp, which is a
weighted average of Nsyp(z) as

N, =3 ——=|1—-—] dz 2.64
prr=3 [ 7 (264

which yields a simple expression for the standard deviation of threshold volt-
age:
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_q [NpgrpWy
olVin] = o e, (2.65)

From (2.64) we can infer that the strongest contribution to Ngpp is from
the variations in doping concentrations that are closest to the surface, and the
placement of the dopant atoms will have a strong impact on the variation in
threshold voltage. Based on 3-D atomistic simulations, [13] showed that differ-
ent models, including the one discussed here, provide good trends of threshold
voltage variations with variations in key device characteristics. However, they
fail to provide accurate quantitative estimates for the variation. Both [138]
and [13] note that threshold voltage variation can also result from variations
in doping profiles along the width of the transistor, which are not captured
by the random dopant model (2.65). These variations can result in parts of
the transistor associated with a section of the transistor width having a small
number of dopants — this section therefore turns on earlier than the rest of
the transistor. The probability of such events increases with the device width
and results in a reduction in threshold voltage.

Negative Bias Temperature Instability (NBTI)

We saw in Chap. 1 that NBTI, which results from the generation of trap-
sites at the Si/SiO9 interface at elevated temperatures, yields a degradation
(increase) in threshold voltage of PMOS devices with time. Experimental ev-
idence has shown that trap-sites generated when Vg, = —Vgyq are partially
annealed away when the PMOS device is in the off-state. Hence, to reduce
the pessimism introduced through a constant negative-bias analysis, it is im-
portant that both modes of PMOS operation are considered.

For the inversion mode of PMOS operation, the rate of generation of inter-
face traps (Nyr) is initially a function of the rate at which the Si — H bonds
can be broken (kf), and the rate at which hydrogen is annealed (k,) at the
interface [139]. During the latter stages, the rate is limited by the diffusion of
hydrogen. The reaction-diffusion (RD) model used to capture this phenomena
at the interface is expressed as

dN
dtIT =ky(No— Nir) —k:NgNir (2 =0) (2.66)
dN[T dNH 4] dNH
=Dyg——+ - 0 1) 2.67
dt 4w T3 @ (0<z<9) (267)
d?Ny  dNy
&Ny _ dNi 5 o 2.68
Dy 92 T (6 <z <To) (2.68)
N,
DH%:EE — kN (x> Th) (2.69)

where z is the distance from the Si/SiO9 interface (into the oxide), Ny and
Dy are the concentration and diffusion coefficient of hydrogen, respectively,
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Np is the number of Si — H bonds that are unbroken at t = 0, T, is the oxide
thickness,  is the interface thickness and k, is the recombination velocity
at the oxide-polysilicon interface. The most typical phase that is observed
is when the rate of hydrogen diffusion controls trap generation. Under the
additional assumption of slow trap generation, the number of interface traps
as a function of time can be expressed as

ks N,
Nip ~ ,/—%(Dmﬁ)l/“. (2.70)

In the annealing phase, £ = 0 and the number of interface traps can be
expressed in terms of the number of interface traps at the beginning of the
annealing phase (Nyp(;—t,)) and the time ¢ spent in the annealing phase, as

[139)
_ | Gt/to
Nir = Ni1(t=t,) | 1 Tr it ) (2.71)

Both the models ((2.70) and (2.71)) have been shown to be consistent with
experimental data, and can be used to estimate the degradation in threshold
voltage directly from the following relation

qNrr
COZ

Considering the temperature sensitivity of N7, note that the term ks No/k,
in (2.70) is approximately temperature independent and the only dependence
is through the diffusion coefficient of hydrogen Dy, which follows an Arrhe-
nius relationship. Also NBTT is known to be electric-field dependent, and the
dependence arises through the dependence of ks on electric field in the oxide,
which is expressed as

AVyp =

. (2.72)

kf = BO’()EOQE exp (anc> (273)
Eo

where B, the bond dissociation coefficient, and o, the hole capture cross-
section, are known to have weak electric field dependence. Effects such as
NBTT are now seen to be reliability problems as well as performance issues.
Since, traditional design margins are hard to suatain it is becoming increas-
ingly important that additional pessimism is not introduced through consid-
erations such as NBTI degradtion under DC conditions.

Electromigration Modeling

As discussed in Chap. 1, electromigration occurs when high energy electrons
moving through the metal lines collide with the metal atoms. The transfer
in momentum from the electrons to the metal atoms causes the metal atoms
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Fig. 2.11. Grain boundaries in polycrystalline materials.

to diffuse and creates an open in the wire, or alternatively, can cause shorts
between adjacent wires due to metal atom pileup.

Electromigration occurs when there is a fluz divergence of metal atoms,
which generally occurs at points known as triple points. These triple points
occur when three grain boundaries (bounding surface between crystals as
shown in Fig. 2.11) meet within a wire. Failure time has generally been treated
as a RV since the time to failure is dependent on the position of these grain
boundaries. Additionally, the probability of failure of long wires is greater
than the probability of a shorter wire, because there is a higher probability
that a triple point lies on the longer wire than the shorter wire.

Traditional failure time distribution for electromigration based faults has
been found to give a good fit to a lognormal, which provides the probability
that the failure time of a wire t’fi’"e is less than ¢t as

g

P(t¥ire < t) = & (mt — “) (2.74)

where @ is the cdf of a standard Gaussian distribution function and can be
expressed in terms of the error function as

B(t) = /; (\/LZ_W exp (;)) dt = % (1 +erf (%)) . (2.75)

Different values of © and ¢ in (2.74) can be used to capture the character-
istics of a given wire, such as its length, width and current density. Note that
since the RV is modeled as a lognormal, the probability for negative values of
failure times is zero, which is physically consistent. However, a contradiction
does arise when we consider a group of n wires. In this situation, the failure
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Fig. 2.12. The cumulative probability distribution of the failure time for a group
of wires approaches a step function as the number of wires (n) increases.

time (t4"°*?) is the time at which any of the wires in the group fails and can
be expressed as

PET <t)=1- ﬁ (1 ~ 3 (1“2——“’)) . (2.76)

=1
As we increase the number of wires in the group, the above expression tends
to a unit step function, as shown in Fig. 2.12, and the probability density
function becomes a delta function at ¢ = 0. This implies, that as soon as the
design is switched on, at least one of the wires will fail, which is inconsistent
with observations.

Based on empirical evidence, namely that the mean time to failure of long
wires approaches a non-zero value as the length of the wire increases, [153]
proposes to use a shifted lognormal (SLN) to model electromigration failures.
Based on the SLN model the failure time equation (2.74) can be rewritten as

; In(t —0) —p
P <t)=9 (——————;——- (2.77)
where § is the amount of shift, and is process dependent. It has also be shown
[153] that the SLN model is a simpler and more accurate approximation than
the complicated physical eletromigration model when the activation energy for
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grain boundaries is assumed to have a truncated normal distribution, which
directly results in a non-zero failure time for very long wires.

2.3 Performance Modeling

In this section, we will discuss modeling techniques that can be used to de-
velop models for performance parameters (such as delay and power) in terms
of process parameters. These models will allow us to analyze the impact of
variations on the performance of a design and to perform optimization.

2.3.1 Response Surface Methodology

Response surface methodology (RSM) refers to a set of approaches that are
used to approximate the relationship between a parameter of interest y and
a set of underlying variables X = (z1,22,...,2,)7 in a functional form. This
unknown functional form is known as the response surface model. Though
there is a vast amount of literature on RSM, with [92] serving as a good
reference, we are mostly concerned with developing models for performance
parameters that depend linearly on the underlying variables. This stems from
the fact that variations in process parameters are generally small, therefore
resulting performance variations can be assumed to be linearly related. In
future generations, increasing levels of process variation may necessitate the
use of higher order models. Therefore, we will also briefly look at the RSM
techniques to handle quadratic response surfaces, which will be used in some
sections later in this book.

Let us consider a parameter y that is approximated as i and is assumed
to vary linearly with the underlying variables X. For the sake of discus-
sion, assume that the zeroth component of this vector is 1, which gives

X = (1,21, 29,...,%,)7. Now we can write
7=a’X (2.78)
where a = (ag, 1, ...,®,) is a n+1-dimensional vector, whose components

are known as regression coefficients, and the process of estimating these coef-
ficients is known as regression analysis. Now assume that we make m obser-
vations of y for a set of m different combinations of values of X. Let

yi=fX)maizy+ ot =a’X;  1<i<m (2.79)

where f is the unknown functional form that we seek to approximate using
the linear expression (2.79). To establish a good approximation, a standard
measure of the error in approximation is the sum of squared errors. Therefore,
based on the information we have (i.e., the m observations) we seek a vector
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o that minimizes the sum of the squared errors for these m observations. The
error term (e), which we want to minimize, can be expressed as

2
m n

€= Z Yi — Zajxij . (280)
Jj=1

i=1

Taking the partial derivatives of (2.80), with respect to the a’s and equating
them to zero, we obtain the following set of equations

a m n
5.;;222 yi— Y ajzij | ek =0 0<k<n (2.81)
j=1

=1

which gives

m n
S| vz =Y ajzgaw | =0 0<k<n (2.82)
i=1 j=1

These equations can be expressed in matrix form as

r m 1 m m m
(&%)
E Yi m E T4 E X2 E Tni
i=1 i=1 i=1 i=1
m m m m m (%1
2
E YiT1i E T4 _5_ Ty, E T13T2¢ * E T1iTni
i=1 i=1 i=1 i=1 i=1 Qo
= 2 .
§ YiZT2q E T2q E T2iT14 E To; E X2iTn;
i=1 i=1 i=1 i=1 i=1 :

m m m m '
> it D Tni Y Tt Y Tniai 0 Y Ty On
Li=1 - Li=1 1=1 1=1 i=1 J L .
which can also be succinctly expressed as
ATZ = ATAx (2.84)

where Z is the column vector of the observed values of y for m observations,
and A is a m x (n 4+ 1) matrix whose first column is all 1’s while the rest
of the columns correspond to the values of the variables (z’s) used to make
the observations of y. The above equation can also be obtained using ideas
from vector projections. In a simplified scenario, we basically need to solve the
equation Z = A« for a. However, based on our data this equation might not
have a solution. In this case, the best alternative is to find a that reduces the
mean squared error. This happens when the error vector Z — A« is orthogonal
to the space spanned by the columns of A. This implies
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Fig. 2.13. The dependence of the log of leakage on gate length can be accurately ap-
proximated using a linear approximation whereas leakage itself is difficult to model,
showing significant error even if a quadratic model is used.

AT(Z - Aa) =0, (2.85)

which is identical to (2.84).

By solving the matrix equation in (2.84), we can estimate the components
of a.. Thus, using the above techniques we can approximate the impact of
variations on performance parameters up to the first order. It is important
to note that knowledge of the dependence of performance parameters on pro-
cess parameters is extremely useful and provides information regarding what
response surface models can be used as reasonable approximations. In par-
ticular, consider the case of subthreshold leakage power, which is known to
have an exponential dependence on gate length variations. Subthreshold leak-
age is a strong function of gate length due to the dependency of V4, on L
through DIBL, as discussed in Chap. 1. Variations in threshold voltage can
be assumed to be linearly proportional to variations in gate length, for current
level of variations. Therefore, while performing analysis of subthreshold leak-
age we can use linearized models to approximate y = In I5yp, where Iy is the
subthreshold leakage current. This is shown in Fig. 2.13 where both a linear
and quadratic model to fit leakage are shown to result in huge inaccuracies,
while a linear model is sufficient to model the dependence of the log of leakage
on gate length.
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If better accuracy is desired, then higher-order models can be used to
approximate the response surface of the parameter y. Let us the consider the
case of a second-order model, where we express the response surface as

7=aTX +XTBX (2.86)
where B is a n xn matrix. The technique used to estimate a in (2.79) can
be easily extended to estimate the elements of o and B in (2.86). This is
achieved by treating the second-order terms in (2.86) as another component
of A in (2.84). To simplify, let us assume that the original X consists of only
two components 1 and xg2, which gives

T = ag + a1x1 + agxg + azx? + a4x? + asr Ty (2.87)

where the a’s are the parameters of the response surface we wish to generate.
Treating the second-order terms as additional components of X, we rewrite

i/\ =ag + a1x1 + a9 + a3x3 + a4T4 + a5Ts (2.88)

where 3 = 2%, ©4 = 2% and z5 = z172. The a’s can then be approximated
using m observations (2.83), which gives P = MN where

m
E Yi
i=1
m
E YiT14
1.7-—;L1 ag
E YiT2; a1
i=1 a2
m
. 2 a3
YiZy; a4
—
Y as
2
E Yilo;
=1

m
Z YiZT1iT2q

Li=1 J

(2.89)
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It is clear that the complexity of this approach increases exponentially with
the order of the model used. However, delay and power in most cases can be
accurately modeled using low-order models. Alternatively, techniques such as
those used to model the dependence of Iy, on gate length as discussed above
may be used. General techniques such as PCA can also be used to reduce the
number of variables used to represent variations in process parameters. In this
case, only the dominant eigenvectors of the correlation matrix are retained,
simplifying the process of generating a response surface.

Additionally, using models of order higher than one results in non-normal
distributions for the parameters of interest, and using non-normal probabil-
ity distribution is computationally unattractive. In the next section, we will
discuss the computational problems associated with second-order models of
performance parameters.

2.3.2 Non-Normal Performance Modeling

As process technologies scale, the variations in some of the process parameters
have continued to increase. The techniques we have discussed in the previous
sections have modeled the impact of process variations on performance using
a linearized model. However, in future technologies where variations can be
as large 35%, the error introduced through the linear models may be unac-
ceptable. Higher order models will have to be used to capture the impact of
these variations on performance parameters. The first casualty of such a re-
quirement is the Gaussian distrbution of performance metrics. Now, instead
of dealing with linear combinations of Gaussian RVs, which can be mapped to
another Gaussian RV, we will need to deal with complicated density functions.

Since the aim of modeling techniques is to enable efficient analysis and
optimization, the probability distributions used to model performance param-
eters should, at the least, allow efficient evaluation of probabilities at different
points. An approach to efficiently evaluate these probabilities, using a second
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order dependence of performance on process parameters called Asymptotic
Probability EXtraction approach, APEX, was proposed in [79]. It uses ideas
from interconnect simulation, such as moment matching, to approximate the
complete distribution of the performance metric being considered.

Given a performance metric p = f(X) that depends on n process parame-
ters represented by the vector X, and considering a second-order dependence
of f on X, we can express f as

f(X) = f(Xnom) +aTAX + AXTBAX (2.90)

where X, is the nominal value of the process parameters and AX represents
the variation in process parameters, which can be approximated by Gaussian
RVs with a correlation matrix . Using PCA (2.52) we write

AX =DY2ATY (2.91)

where Y is a set of uncorrelated Gaussian RVs with zero mean and unit
variance, and the matrices A and D are as discussed in Sec. 2.2.2. Using
(2.91), we rewrite (2.90) as

F(Y) = f(Xpom) +aTDY2ATY + YTDY/2ABATDY2Y
=c+ca’Y+YTCY (2.92)

where the matrix C will be symmetric.

Moment Matching Technique

Now we will discuss moment matching techniques that have been extensively
used in interconnect simulation [27]. In these techniques, the impulse response
of a RC tree is modeled as a pdf and the step response is modeled as the
corresponding cdf. The pdf is then estimated by matching the moments of
the pdf to the moments of the circuit expressed as a Linear Time-Invariant
(LTI) system.

To estimate the pdf of the performance parameter p for a given circuit,
the Time-moments of p are expressed as

—1)k [o°
ml = (—k—l')—/_ f* fo(z) dz (2.93)

where f,(z) is the distribution function of p and m}, is the k-th order moment
of p. Note that the time-moments defined in (2.93) differ from the standard
definition of probabilistic moments only by a scaling factor of (—1)*/k!. Also,
if we consider the Fourier transform of f,(x), we obtain the characteristic
function of p which can be expressed as
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From (2.94), we have a power-series expansion for F(w) around the point
w = 0. Also, we know that the characteristic function for typical distributions
has a maximum magnitude at w = 0 and it tends to 0 as w goes to infinity as
shown in Fig. 2.14. Hence, the pdf of functions can be accurately estimated
by estimating the first few moments [113].

Let us assume that we have an M-th order LTI system whose impulse
response corresponds to f,. We can express the transfer function of such a
system in the Laplace domain as

M
a
H(s) = : 2.95
6= (2.95)
which in the time domain gives
M .

h(t) = Yisq aiet for >0 (2.96)

0 for t<0

The time-moments of H can be expressed as



2.3 Performance Modeling 49

w_ (CDE [ o~ _ai
my = t*h(t)dt = - T (2.97)
- i=1 "1
We assume for now that we can estimate the moments of p. We can then
match the estimated moments to the moments of H and solve for b}s and a}s
using (2.97), and approximate f, by h in (2.96).
If we consider only the first 2M/ moments of H and f,, we get the following
system of non-linear equations

ai a9 anp _
<b1+b2+ +bM>—m0

[¢5] as ap
- —+—+~-+—~>
(b% b3 b

ma (2.98)

ay as ap
_(V_M+IJ2_M+'“+I)_2—M> = Map—1-
1 2 M

The above set of equations can be solved using an iterative Newton-Raphson
technique. However, iterative techniques can have convergence issues and tend
to use heuristic techniques such as step-size control to achieve good perfor-
mance. Reference [79] uses the technique proposed in [113] as part of the
Advanced Waveform Evaluation, AWE, technique to solve the above set of
equation, which is based on matching the first 2M moments to develop an
mth-order approximation of the impulse response.

Thus the above technique can be used to approximate the pdf and cdf of
the parameter p, which can be expressed as

¢ M a; o bit _
edf (p) ~ / h(r)dr = 2= (€ = 1) for 20 (2.99)
0 0 for t<0

Now we will discuss an efficient technique proposed in [79] to estimate the
moments of p.
Moment Evaluation

In the discussion above, we assumed that the moments of p were already
provided to us. When we attempt to compute moments, we need to compute
the expected values of powers of a quadratic function (2.92), which can be
expressed as a higher order polynomial by

FEOY) = (co+ Y + YTCY)F = oy g™ -y (2.100)
%
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where y; is the i-th component of Y, and «fs and ﬁlfjs are constants. The
yis are uncorrelated since they are generated using PCA; therefore, we can

express the k-th order moment as
E[f*(Y)] =) i Ely"] Elys™] -+ Elys~]. (2.101)

The expected values on the right hand side of (2.101) can be obtained by
noting that, since the y}s are Gaussian RVs with zero mean and unit variance,
their moments can be expressed as

0 k odd
k) _
E[yi]_{l-&--(k—l) k even’ (2.102)

The odd moments in (2.102) are zero, since the Gaussian pdf is an even
function. However, the computational complexity of this approach, called the
direct moment evaluation approach, of determining the moments of p explodes
for large values of k since the number of terms in (2.102) grows exponentially
with increasing values of k.

We will now discuss a polynomial complexity algorithm to evaluate the
moments of p. Consider (2.92) and note that C is a symmetric matrix. Due
to the Spectral Theorem, [55] any symmetric matrix can be diagonalized and
we can write

C =SLs” (2.103)

where S is an orthogonal matrix whose rows are the normalized orthogonal
eigenvectors of C, and L is a diagonal matrix with the eigenvalues of C on
the diagonal. Now (2.91) can be written as

F(Y) =co+ciT(SST)Y + (YTS)L(STY) (2.104)
f(Z)=co+q'Z2+2"LZ
=co+ Y (qiz + Liz}) (2.105)
=1

where q = ¢17S and Z = STY is a vector of RVs that are linear combinations
of yis and are therefore normally distributed. Since L is a diagonal matrix we
do not have any cross-product terms in (2.105). In addition, if we consider
the correlation matrix of Z = (21,22, ...,2,)7 we get

E[2Z7) = E[(STY)(STY)T) = E[STYYTS]
=STE[YYT|S =STIS =1 (2.106)
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Therefore, if the yjs are uncorrelated then the z]s are uncorrelated as
well. Using this transformation we can simplify our problem and compute the
moments of p recursively. First, let us define

(Co + Zv:(qizi + Lﬂ?)) } . (2.107)

=1

wu,v) =E

Using the above definition we can write the recursive relation

wlu,v) = E (Co + Z(qizi + Liz?)) }
L i=1
- v—1 u
=K (CO + Z(szz + Liziz) + quzy + vaﬁ) }
L i=1

u v—1 J
=F (j) (Co + Z(qizi + lef)> (quv + vag)v—a
i=1

=0

u v—1 J
. Z u> E (Co + Z(Qizi + LiZ,'Z)) E [(quzy + vaﬁ)u_j]

i=1

(
(j) (,v—1)E E:: (qoz0) " (Ly22)" j—kD
-y <<]) n(j,v — 1)§ kpv=i=kEg [zﬁv—zj—’c])) . (2.108)

Using the above recursive relation, we can estimate moments by first gen-
erating the lower order moments. Any lower order moment is generated by
first generating moments corresponding to smaller v values. If we want to esti-
mate the first M moments, we need to use the above recursive relation O(Mn)
times, where n is the dimension of the vector Z. In each of the recursive steps,
we need to evaluate O(M) terms. Thus, the overall complexity of the recur-
sive binomial moment evaluation step in (2.108) is O(M?2n). If we consider the
cubic complexity of the diagonalization in (2.103), the overall complexity for
estimating moments is O(M?2n +n3). Thus, binomial moment evaluation has
polynomial complexity and is shown to provide a 108X speedup over direct
moment evaluation for the ISCAS’89 S27 circuit.

PDF shifting

Up to this point we have assumed that the pdf we are trying to estimate has
the form of (2.96), and hence is positive only for non-negative values of ¢. This
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Fig. 2.15. The pdf of p in two different cases where a significant fraction of the pdf
lies to the left of the origin or if it has a large positive mean value [79].

results from our assumption that the pdf can be approximated by the impulse
response of a LTI system; the system would become non-causal if the impulse
response has non-zero values for ¢t < 0.

Therefore, we will need to shift the pdf’s of parameters that have a signif-
icant probability of being negative. On the other hand, if we shift the pdf’s
to the right by a large amount (which could happen since many of the com-
monly used pdfs are non-zero over (—00,00)), we will have a large delay for
the corresponding LTI system used to estimate the pdf. This degrades the
accuracy of moment matching methods where we rely on matching the first
few moments of the LTI system and the pdf of p. Additionally, we might also
want to left shift a pdf that lies far away from the origin on the positive t-axis
as shown in Fig. 2.15. Thus, we need to estimate the amount of shift s needed,
such that the probability that f, < s (shaded region in Fig. 2.16) is smaller
than a threshold €, which can be mathematically expressed as

Pp—s<0)<e (2.109)

This probability can be estimated using C (2.9). A Generalized Chebyshev
Inequality is also developed and used to obtain tighter bounds. Using the
generalized inequality [79]

E[(p— w)*]
nk
where p = E[p] and k is a positive even integer, we can upper bound the

probability in (2.109) as

Plp—pl2n) < (2.110)
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Fig. 2.16. Defining s such that the probability that p lies in the shaded region is
below a given threshold [79].

El(p — w)*]
SPlp—plzp—s) < ——7—. 2.111
Using (2.109) and (2.111) we choose the shift amount s = y — § such that
El(p—p)*
which gives a total shift of
& : o\ Yk
(= (5) Bl
$=p— min (2.113)

k=24, €

and minimizes the required shift of the mean from zero such that the condition
in (2.109) is satisfied. Note that when the pdf of p is far from the origin on the
right, we obtain a left-shift (s > 0) that is smaller than the mean. Similarly,
when the pdf is on the other extreme we obtain a right-shift (s < 0) with a
magnitude larger than the mean value of the pdf. After an approximation to
the altered pdf has been obtained, the original pdf can be simply recovered by
shifting the t-axis in the opposite sense. Experimental results [79] show that
the minimum in (2.113) is achieved for higher order moments, which points to
the usefulness of the generalized inequality. Also, using moments higher than
10 results in values that are very close, and do not have a significant impact
on reducing the shift.



54 2 Statistical Models and Techniques

If we consider the accuracy of the moment matching method we can infer
that the approximated pdf will have better accuracy for higher confidence
points. This follows from the observation that

F(w)|w=o = /oo f(t)dt (2.114)

where F' is the Fourier transform of f, which implies that an approximation
of the Fourier transform around w = 0 will provide a good approximation
for integrals with a longer span on the t-axis. Hence [79] proposes that, when
lower confidence points need to be estimated, better accuracy can be achieved
by approximating — f instead of f using the pdf shifting property to move the
pdf of —f into the desired region. The moments estimated for providing an
approximation for higher confidence points can be reused, since E[(—p)¥] =
(1) E[p*).

Table 2.1 provides comparisons of the above approach while estimating the
delay of ISCAS’89 benchmark circuits. The second column in the table (Lin-
ear) implies that the pdf has been approximated assuming a linear dependence
of p on the process parameters (which incurs an error of 4.48% compared to
1.10% for a second-order response surface). The third column refers to Monte
Carlo simulations using 10,000 runs. All the errors are with respect to the re-
sults obtained using Monte Carlo simulations with 1,000,000 runs. The table
shows that APEX provides nearly a 100x and 10x improvement in estimation
error compared to the linear model and Monte Carlo, respectively, while still
providing a 200x speedup in run-time over Monte Carlo.

2.3.3 Delay Modeling

Until now, we have discussed general techniques that can be used to han-
dle variations in any process and performance parameter. In this section, we
specifically look at developing delay models for gates that can be used for
statistical analysis.

Table 2.1. Estimation errors compared to Monte Carlo simulation with 1,000,000
runs [79].

Confidence point Linear Monte Carlo(10* runs)  APEX

1% 1.43% 0.34% 0.04%
10% 4.63% 0.64% 0.01%
25% 5.76% 0.47% 0.03%
50% 6.24% 0.32% 0.02%
75% 5.77% 0.25% 0.02%
90% 4.53% 0.66% 0.03%

99% 0.18% 0.78% 0.09%
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Delay models for gates are generally based on table lookup or analytical
equations. In a deterministic scenario, lookup table based gate delay models
are generally used where transition time at the input and the output load-
ing are used as indices to find the delay. The delay values for intermediate
transition times and output loads are obtained using linear interpolation. The
technique developed in [102] to develop statistical delay models uses both
linear response surfaces and table-lookup based models to capture statistical
variations in delay.

The approach proposed in [102] notes that it is difficult to develop response
surfaces for modeling delay with varying transition times and output loads
over a large range. A standard lookup table based approach is used to capture
this variation in delay. However, each entry in the lookup table is modeled as
a response surface of the form

d=dy+a’X (2.115)
where X = (z9, 21, .. . ,xn)T is the vector of process parameters of interest and
(do, @)T = (do, g, 1, . .., )T is the vector obtained using response surface

analysis, where the required data can be generated using SPICE simulations.
This captures the dependence of delay on the variation in process parameters.
If a straightforward approach is used, we will need np+ 1 parameters for each
response surface in a p-transistor discharging/charging path while considering
variations in n process parameters. The increase in the number of coefficients
of the response surface results in an increase in characterization time needed to
develop RSM models. Additionally, the time required for delay calculation also
increases. The increase in number of variables results from intra-die variations
that cause the individual transistors to vary independently. First, we will
discuss the approach to model the delay of an inverter.
Let us write each process parameter as

;i = Wi + A(Zi)intra + A(Z:)inter (2.116)

where p; is the nominal value of the i-th process parameter z;, A(Z;)intrq 1S
the intra-die component of variation and A(;)inter is the inter-die component
of variation which is the same for all transistors on a die. Pelgrom’s model
for intra-die variations shows that this component of variation is independent
of the location of the transistors and their separation, and therefore the RV
associated with the random component of variation for each of the transistors
can be treated as statistically independent. In addition, both components of
variations can be modeled as Gaussian RVs.

Now let us consider the simplified case of the delay of a single inverter,
where the delay of the gate is determined by a single NMOS or PMOS tran-
sistor depending on the direction of the transition. In this case, based on
(2.115)-(2.116) we can write the delay of the inverter as
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d=do+ Y i+ A@)intra + ATi)inter)

=1
= do + aT (1 + Xintra + Xinter) (2.117)

where Xjnter and Xintra are the vector of the inter- and intra-die variations
of the transistors. Note that even though the random variables A(z;)intrqe for
different transistors are independent for a particular 7, the RV associated with
a particular transistor for different i’'s may be correlated. Similarly the RVs
that make up the vector Xintra may be correlated. Principal components prove
useful here again, and the correlated set of random variables are transformed
to a set of uncorrelated RVs using (2.52):

Xinter = Dgl/zAgTPg
Xintra = Di'/2A, TPy, (2.118)

Note that the mean vector of the RVs in the above equations are zero and are
already accounted for by the u}s, and we can rewrite (2.117) as

n
d= <d0 +y ai/,ni> +a D2 A TP, + aTD/2A, TP,
i=1

= dpom + @TDg2A TPy + oD, /2A, TP, (2.119)

where dyom is the nominal delay of the inverter when there are no variations
in process parameters, and each component of Pz and P; are independent
Gaussian RVs with unit variance and zero mean. It is important to note that
the random vector of Pg is common to all transistors in the design, and
therefore the dependence of dy on this random vector needs to be maintained.
This allows a statistical timing analyzer to consider the correlation in delays
of different gates. On the other hand the RVs in the random vector P, are
independent across transistors and can be lumped together (being a sum of
independent Gaussian RVs) into another Gaussian RV, which results in the
following equation for the delay of the inverter

d = dpom + ‘rgTPg + 1oy (2.120)

where

dnom = do + an
7_gT _ Dgl/2aTAgT

n=, (aTD/2AT)? (2.121)
i=1

p ~ N(0,1).
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The above expression captures the impact of both intra-die and inter-
die variations on delay. The coefficients in the delay expression can be easily
obtained using (2.121) from the simple RSM model (2.115) and the charac-
teristics of process variations such as standard deviation and the correlation
coefficients.

Complex Gates

Now let us the consider the case where we have several transistors involved
simultaneously in charging or discharging the output capacitance. In this case,
we require a term for the variation for each transistor in the path. The RSM
for this gate is generated while assuming that all transistors are perfectly
correlated, which again gives us an expression of the form (2.115).

Now let us rewrite (2.117) for a complex gate, while considering all com-
ponents of variation as

d=dy+ Z (BT (ke + Xintor,k + Xintra,k)) (2.122)
k=1

where we have m transistors on the charging/discharging path, and the vec-
tor By’s are coefficients that express the dependence of delay on the process
parameters related to different transistors. Since Xjnter,k is the same for all
transistors, we can express (2.122) as

m m m
d= (dO + ZﬂkTﬂ'k> + (Z ﬁkT> Xinter + Z ﬂkTXintra,k- (2123)
k=1 k=1

k=1

Here we have assumed that the original RSM (2.115) for complex gates is
generated while assuming that all transistors are perfectly correlated, which
implies

ol = i BT (2.124)

k=1

using which, we can rewrite (2.123) as

n m
d=dpom + 75" Pg+ Y D TikDjk- (2.125)
ij=1k=1

In this equation, Pg is the vector of principal components of Xinter (2.118),
dnom and Tg are as expressed in (2.121), p} S are the principal components
of the Xintra,k’s that represent the intra-die variation in the jth principal
component of intra-die variation for transistor k, and 7/ ;s are the coefficients
for each of the principal components of intra-die varlatlon for each transistor.
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On the other hand, the coefficients for p}ks cannot be obtained from the
simple RSM that we have, since we do not have any information in our RSM
regarding the dependence of delay on the parameters associated with a partic-
ular transistor. To simplify the problem, [102] assumes that given that varia-
tions are small, the variation in delay resulting from variations in a particular
process parameter for different transistors can be assumed to be linearly re-
lated. This results in the assumption that

Tik = T50 * Sk (2.126)
where s, determines the relative sensitivity of delay to variation in different

transistors. Since the p;- S are independent N(0,1) variables, we can rewrite
(2.125) using (2.126) as

n m
d = dpom + 'rg Z Z Tj08kPjk

i=1k=1

m n
= dnom + TgTPg + Z Si Z TjoPj (2.127)
k=1 j=1

where p;-s are N(0,1) RVs. If all transistors are assumed to be perfectly cor-
related we find

P = (Z sk) > Tiop; (2.128)
k=1 j=1

where 7; and p; are as defined in (2.121). Using the above equation we can
rewrite (2.127) as

ST 2
d= dnom + TgTPg + ln{c?l—s}c'rlpl' (2129)

2ie1 Sk
The above equation clearly shows the reduction in the impact of intra-die
variation on gate delay compared to the impact of inter-die variations. This is
due to the well known averaging effect that reduces the variance of a sum of
uncorrelated RVs compared to correlated RVs. The model above requires the
computation of the sensitivity constants sis beyond the computation of the
RSM itself. The approaches used to estimate the sensitivity values present a
direct trade-off in terms of accuracy and runtime. For example, estimation of
the sensitivity values at typical values of transition time and load capacitance
compared to the case where the sensitivity is evaluated for each transition
time and load capacitance incurs an error of 0.76% in estimated delay for a
4-input NAND gate. Assuming that all sensitivity values are equal results in
an error of 5.4%. However, if intra-die variability is neglected (all transistors
are assumed to perfectly correlated), results in an overestimation in delay of
89%. Similar results for a multi-stage inverter chain are shown in Fig. 2.17.
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Fig. 2.17. Significant error in delay modeling occurs if intra-die variations are
assumed to be perfectly correlated. Delay modeling when sensitivity calculation is
performed (a) for all conditions (b) only for nominal conditions of load and input
transition times. Results shown are for an inverter chain [102]. (©2005 IEEE)

2.3.4 Interconnect Delay Models

Due to technology scaling, the contribution of interconnect delay to the over-
all delay of a design has become significant. More interestingly, worst-case
variations in interconnects often cannot be captured using worst-case corner
models for interconnects [83] due to their context dependent nature. Signifi-
cant work has therefore been done to capture the impact of interconnect delay
considering statistical back-end variations. In this section, we discuss an an-
alytical model to estimate the mean and variance of delay and an interval
arithmetic based approach to estimate bounds on interconnect performance.
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Statistical Delay Metrics

Delay metrics have been used in interconnect analysis to predict 50% delay
and slew rates in a computationally efficient manner. Closed-form metrics are
especially attractive since they reduce the computational overhead further,
and are extensively used in incremental timing analysis and optimization en-
gines. Most of the metrics, such as Elmore [45], D2M [10], S2M [8], Lognormal
(11] (which are closed form), and h-gamma [80] and Weibull [82] (which are ta-
ble lookup), are based on circuit moments. Circuit moments can be efficiently
calculated using techniques such as path-tracing as employed in Rapid Inter-
connect Circuit Evaluator (RICE) [119]. Additionally, most of the closed-form
metrics are based on the first few moments of the circuits. Delay estimation
using a large number of moments are generally not closed-form and require
nonlinear iterations, which can easily dominate the runtime required for delay
estimation [112].

We now consider an RC interconnect, whose circuit moments are a func-
tion of the resistances and capacitances of its branches. These resistive and
capacitive elements are a function of the interconnect geometry which is influ-
enced by process variations. Based on the observation that process variations
result in variations in interconnect delay which are normally distributed, [9]
proposed to capture the effect of process variations on the resistive and ca-
pacitive elements using a linear model

R = Ryom + TP
C = Cpnom +8TP (2.130)

where P is a p-dimensional vector of the variations in the process parame-
ters of interest, and the vectors a and 3 are weighting coefficients. In par-
ticular, considering variations in the width and thickness of the interconnect,
which impacts both the resistive and capacitive components, and variations in
inter-layer dielectric (ILD) thickness, which causes variations in the capacitive
elements, we can write

R = Ryom + a1 AW + ap AT
C = Chom + B1AW + B AT + B3sAH (2.131)

where R,om and Chpom are the nominal values of the resistance R and capac-
itance C respectively. AW and AT represent the variation in interconnect
width and thickness respectively, and AH represents the variation in ILD
thickness. The coefficients o’s and #'s can be estimated using SPICE simu-
lation or by using empirical expressions such as those developed in [89] that
relate the resistance (R), capacitance to ground (Cynq) and coupling capaci-
tance (Ceo) to the geometrical parameters of an interconnect. For the simple
case where the wire of interest has a wire on either side (as shown in Fig. 2.18)
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Fig. 2.18. Cross-section of a generic interconnect structure.
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where W is the interconnect width, T is the interconnect thickness, H is
the ILD thickness and S is the spacing between interconnects. Taking par-
tial derivatives of the above equations with respect to the process parameter
directly provides the values for the o’s and #'s to be used in (2.131).

The next step is to estimate the impact of variation in R and C on the
circuit moments. The path tracing technique, which is used for moment cal-
culation of RC trees, relates the p-th order moment of a node ¢ to the circuit
elements and the lower order moments at node % as

mi =Y —RiCrpmi_, (2.133)
all nodes k

where C} is the capacitance at node k and R;; is the resistance of the in-

tersection of paths from the source node to nodes ¢ and k. Note that since

we are concerned with tree-like structures when dealing with interconnects,

these resistive paths are unique. Let us consider the specific circuit shown in

Fig. 2.19. The first order moment at node 3 can be expressed as

m} = —Ry(Cy + Ca + C3) — RsCs. (2.134)
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Fig. 2.19. Example RC circuit for variational analysis.

Introducing the equations for the resistive and capacitive terms in terms of
variations in process parameters (2.130), we can rewrite (2.134) as

m3 =m3 pom) + V1T P + PTV,P (2.135)

where P is the p-dimensional vector of the variation in process parameter, V;
is the p-dimensional vector of coefficients and V3 is a pxp matrix that captures
the second order terms of the variations in the moment m3. The entries of V;
and Vg can be expressed in terms of the parameters of the expressions of the
form (2.130) for the resistive and capacitive elements in (2.134). Note that
the number of higher-order terms increase with the order of the moment and
increases the complexity in estimating the moments. Based on experimental
measurements to be discussed later, [9] makes the assumption that neglect-
ing the higher-order terms in (2.135) does not have a significant impact on
the delay estimated using the delay metrics. This assumption simplifies the
problem and allows the i-th moment of the j-th node to be written in the
form

ml =ml, .+ AP (2.136)

(3

Having estimated the moments of the circuit in terms of the circuit and
process variation parameters, the next step is to estimate the impact on delay.
If the scaled Elmore delay model is used, which uses only the first moment,
we can estimate the delay at the node j by

dBimore = (In2)m = (In2)(m’ (nom) T A1TP). (2.137)

Note that (2.137) represents the delay as a linear combination of the variations
in process parameters. If the original parameters are modeled as independent
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Fig. 2.20. Comparison of delay distribution obtained from Monte Carlo simulations
and the statistical D2M metric [9].

Gaussian RVs, then the delay of the interconnect also becomes Gaussian. Even
if the original process parameters are modeled as coming from a correlated
multi-normal distribution, they can be easily mapped to a set of independent
RVs using principal component analysis.

Now let us consider delay metrics, such as D2M that use higher order
moments to provide better accuracy than the scaled Elmore delay model. The
D2M delay metric is expressed as

(1ng) )
m}

(ml(nom) + AlTP)2
\/mg(nom) + A2TP

Since the above expression is nonlinear in terms of the moments, it results
in a non-normal distribution for delay. The above expression can be again
linearized using Taylor’s expansion while retaining the first order terms, and
a Gaussian delay distribution is obtained.

The experimental results shown in [9] show that the linearity assumptions
used in simplifying the variational delay metrics results in insignificant error.
As shown in Fig. 2.20 the delay distribution of a simple line with nominal
metal thickness of 600 nm and ILD thickness of 450 nm for a 30% 3o vari-
ation in all dimensions obtained using Monte Carlo simulations. The figure
clearly shows that the distribution remains Gaussian and corroborates the
assumptions made in developing the variational delay metrics.

i

dpam

(In2) (2.138)
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Fig. 2.21. Error in the statistical D2M model as a function of the magnitude of
variation in physical dimensions [9].

The impact of increasing variability on the linearity assumption is con-
sidered in Fig. 2.21. The figure shows that increasing variability causes the
error incurred by the analytical D2M delay metric to increase as expected.
However, the errors are shown to be smaller than 10% even for significant
process variations of as much as 30%.

Comparing the mean and standard deviations in delay obtained using D2M
discussed above and those obtained using Monte Carlo simulations for a set
of randomly generated test cases, the error in mean and standard deviation is
found to be 1.2% and 3.8% respectively. The metal line widths were varied be-
tween 400 nm and 800 nm, and the ILD thickness was varied between 250 and
to 550 nm to generate 2900 random test cases. These results show the valid-
ity of the assumptions made in developing the linear model. The approach is
fairly simple and can also be easily extended to consider the distribution of
slews using the S2M metric [8], and ramp inputs using the PERI metric [71].

Estimating Bounds on Interconnect Timing

The technique of estimating bounds on interconnect delay in the presence of
variations was first proposed by [59]. The bounds, which were expressed as
intervals or ranges, were estimated using the Rubenstein-Penfield model [122]
which provided bounds on the Elmore delay.

The central idea of the approach in [59] is to use known bounds of the
resistive and capacitive elements to estimate a bound on the delay of the in-
terconnect. To achieve this, arithmetic operators (+, —, x, /) were replaced by
interval arithmetic operators (4,9, ®, @) that act on ranges of real numbers
instead of real numbers, and are expressed as
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(211, T12] @ [T21, T22] = [T11 + 21, T12 + T22)

[11011, 5612] O [za1, $22] = [xu — T2, T12 — $21]

(211, 212] ® [w21, T22] = [min(z11201, T11Z22, T12%21, T12T22), (2.139)
max(T11T21, 11222, T12T21, T12T22)]

[z11, 212] @ [21, T22] = [T11, Z12]) ® [1/@21, 1/222] if O & [z21, w2o].

If the intervals are degenerate, i.e., the lower and upper bound of the in-
terval are the same, then all interval arithmetic operators behave identically
to their arithmetic counterpart. Hence, in the case where no variability is
assumed, both forms of arithmetic provide the same result. Additionally it
can be shown that the result obtained using the arithmetic expression and
any of the real numbers from the ranges provided to the interval arithmetic
expression is subsumed in the final range provided by the interval arithmetic
expression [59]. Though the bounds provided by interval arithmetic are there-
fore correct, they are extremely loose. One of the main reasons for this stems
from the fact that interval arithmetic does not have a multiplicative inverse
and therefore instead of having

X/X = [x11, 212] @ [211, ®12) = [1, 1] (2.140)

where X represents some variable that is known to have a given range, we
obtain

[®11, T12] @ [T11, 212] = [T11/®12, T12/%11) (2.141)

for positive intervals. One of the improvements suggested in [59] was to min-
imize the use of the @ operator by performing Taylor series expansion of the
dividing terms. The problem can also be considered to arise from the lack of
information regarding the correlation between operands of the interval arith-
metic operators, and results in overestimation of the ranges whenever ranges
of correlated variables are operated upon using interval arithmetic. As an
example, consider the case where we subtract two perfectly correlated and
identical ranges. If this interval arithmetic were cognizant of their correlation
we will obtain a degenerate range as a result, which is [0, 0]. In reality we
arrive at [a — b, b — a] where [a, b] is the range of the initial variable.

This problem was considered in [86], which used an improvement of inter-
val arithmetic known as affine arithmetic [134]. The basic idea of modeling
correlations in intervals has some similarity to the idea of principal compo-
nents analysis used to analyze correlated RVs. Any given range of real numbers
is expressed as an affine sum expressed as

X = [.'1111. 11312] =ap + Zaiei (2.142)

i=1
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where €]s are independent ranges from -1 to +1, and the a’s are real numbers.
We will call this form of expressing the range as the canonical form. Let us
now redefine the interval arithmetic operators as affine arithmetic operators
for addition and subtraction for two affine arithmetic variables which are
expressed as

n
Al =aog + E Q€
=1

Ay =Po+ Y Bie; (2.143)
i=1

and define the @ and © as

A+ Ay = (a0 + fo) + ) (a5 + Bi) &

M=

7

1

Ay — Ay = (g = Bo) + ) (i = Bi) & (2.144)

'P’J=

1l

i=1

which are again in canonical form. The advantage of defining the result of
operators in canonical form is that the operators can then be recursively
applied, and any expression that can be written in terms of these operators
can be easily evaluated.

Let us consider the effect of redefining the operators on the subtraction of
perfectly correlated identical ranges as described above. Now the ranges are
expressed as

X=Y=o00+) aic; (2.145)
=1
and using (2.144) we obtain X —Y = 0 as desired. Let us now extend this
idea for the operator ® applied to the variables defined in (2.143)

A1 ® Az = (Oéo + Z%ﬂ) (ﬁo + Zﬁm)

=1 =1

= aofo + Z (0fBi + o) € + (Z an) <Z ﬁiei>(2.146)
i=1

=1

and we find a problem that the final result is not in canonical form. As noted
above the results need to be in canonical form to be able to make any progress
using this idea. As shown in [134] we can tradeoff the tightness of the bounds
to achieve this goal. We rewrite the expression in (2.146) by approximating
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the problematic last term in terms of an additional independent range, which
effectively adds a component to the €;s which is independent of the other
€;s. The coefficient of this additional term is simply approximated as the
largest possible range that the last term can contribute, and is mathematically
expressed as

(gawl) <g ﬁm) = (g@l) <§ Iﬂi[) €nti- (2.147)

Note that we have lost all correlation information of the last term in (2.146)
when we use this approximation, which as shown above results in overestima-
tion of the range of bounds. Details regarding the approximation of operations
such as division, square-root and exponentials in canonical form can be found
in [134]. To map any particular real number algorithm to a interval algorithm,
we need to define one additional operation of comparison of real numbers for
intervals. Comparison of intervals is not well defined when the intervals inter-
sect and [86] notes that redefining this comparison to be the comparison of
midpoints of the respective ranges results in an added advantage that using
degenerate ranges provides the nominal case results. Using these basic oper-
ations any algorithm that uses only these basic operators can be mapped to
a interval based algorithm. In particular, for interconnect analysis the mo-
ment generation techniques (2.133) and delay metrics (2.137)-(2.138) can be
directly mapped to interval based expressions.

2.3.5 Reduced-Order Modeling Techniques

In deep-submicron (DSM) technologies a larger number of moments are re-
quired to provide a reasonable approximation to the actual response. Asymp-
totic waveform evaluation (AWE) [113] iteratively estimates the first 2M/ mo-
ments of the circuit in the Laplace domain, where M is much less than the
actual order of the circuit. These moments are then used to generate an M-
pole approximation of the transfer function, which can be directly mapped to
the time domain response. A number of reduced-order modeling approaches
have been proposed in the context of process variations. In [84] the congruence
transformation-based PACT and PRIMA techniques were combined with ma-
trix perturbation analysis, [60] used a balanced truncation realization based
interconnect analysis, while [86] extended AWE and PRIMA to consider vari-
ations using interval arithmetic techniques. However, all these methods are
unable to preserve passivity, and therefore time-domain simulations in com-
bination with nonlinear devices can lead to numerical instability. A fast tran-
sistor level simulator (TETA) was proposed in [41] and was carefully coupled
with variational interconnect models [84] in [2] to resolve passivity issues.

We will discuss the basic ideas used in reduced-order modeling techniques
such as AWE, PRIMA and PACT and then discuss the proposed techniques
to extend them to the case with process variations.
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AWE

AWE is a Pade approzimation based on using the first 20 moments of the
circuit to develop an approximation for the transfer function of the network.
These moments can be efficiently estimated using path-tracing (2.134) or using
modified nodal analysis and provide a computationally efficient approach to
approximate the characteristics of the network. Since any linear RLC circuit
with a single input and output can be described using Modified Nodal Analysis
(MNA) as

(G+sC)X=b (2.148)

y=c'X (2.149)

where G is the conductance matrix, C is the susceptance matrix, b is the
excitation vector, X is the state-vector and c is the vector relating the state

variables to the output variable y. The moments of the circuit are related to
the state variables X as

X(s) = xo + x15 + Xg82 + - - (2.150)
m; = cTx; (2.151)

where m; is the i-th order moment of the circuit, and defines the transfer
function as

H(s) = mg 4+ mys+ mas® + - - (2.152)

Introducing (2.150) into (2.148) and comparing terms we note that the mo-
ments of the circuit can be recursively approximated as

GX() =b
GXi = -—CXi_l (2.153)

and (2.151). Note that these equations are not solved by explicitly inverting
the matrix, but by LU factorization which can be very efficient if the involved
matrices are sparse, which is generally the case when dealing with RC inter-
connects (however, this may not hold for RLC circuits). Having estimated
the moments, the next step is to develop an g-th order approximation for the
circuit that has the form

. bo+bis+-- + bq_lsq_l

a
(s) 1+ais+---+ags?

(2.154)

where H is an approximation of H. AWE computes the coefficients of this
approximation by matching the estimated moments (using (2.153)) to the mo-
ments of the g-th order approximation. Equating the expressions in (2.152)
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and (2.154) and matching the coefficients of s results in a set of linear equa-
tions for the coefficients of the denominator and the numerator of the transfer
function, which can be expressed as

bo =my
bl =mi + moa; (2155)

by = mg + miay + moasg

bg—1 = mg_1+mg_2a; + - +moag_1

for the first ¢ powers of s. The remaining equations that result from matching
coefficients of s7 to 5297 ! yield

mg +mg-_1a1 + -+ +moag =0
Mg+1 +mga1 + -+ +miag =0 (2.156)

Maq—1 + Mag—2a1 + -+ +mg_1aq = 0.

Equations (2.156) only involve the coefficients of the denominator of the
approximate transfer function, which can now be solved as a set of simul-
taneous linear equations. The poles can then be found by finding the roots
of the polynomial expression, that makes up the denominator of the trans-
fer function. The coefficients of the numerator are found using an additional
matrix-vector multiplication and the residues of the poles are found using a
solution of a matrix equation.

Though AWE is computationally efficient, it is found to suffer from prob-
lems such as ill conditioning of higher moments and instability. Ill conditioning
of AWE follows from (2.153) which shows that the moments of a circuit are
approximated using a sequence of the form

R,AR,..., A" 'R, ... (2.157)

where R = G™'b and A = —G~!C. Since the above sequence converges
rapidly to an eigenvector of A, a higher order AWE approximation does not
add more information or accuracy to the reduced order model. Thus ill con-
ditioning of higher moments occurs when moments beyond some high order
are used to estimate the poles. These moments might not contain additional
useful information and may affect AWE such that it starts producing poles in
the right-half s-plane. This results in an unstable approximation for inherently
stable systems. Although asymptotic stability can be guaranteed by dropping
unstable poles and readjusting the residues to improve accuracy, the reduced
order models provided by AWE cannot be guaranteed to be passive. Passivity
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ensures that when the system is connected to nonlinear devices, the simulation
results in stable output responses. Projectional methods, such as Pole Analy-
sis Via Congruence Transformation (PACT) [72] and Passive Reduced-order
Interconnect Macromodeling Algorithm (PRIMA) [101], were later proposed
that are numerically stable and guaranteed to produce passive reduced order
models. We will now briefly describe PRIMA and PACT, which will also be
extended to perform interconnect analysis while considering variations.

PRIMA

Consider the following set of MNA equations describing an N-port linear
circuit in terms of n x n matrices G and C, representing the conductance and
susceptance matrix respectively, as

Gx + C(jl—)t( = Bujn (2) Uout (t) = LTx (2.158)

where x represents the variables of MNA, u;, and ugyu¢ represent the vector
of input excitations and outputs, respectively, which are related to the MNA
variables using the matrices B and L. A set of sufficient conditions for passivity
is that the matrices G and C are positive-definite and that B = L. If we
are only interested in the voltage-current characteristics of the interconnect
block, then using a Z-parameter formulation we have B=L. Also, the matrices
of this system are generated using electromagnetic analysis and are typically
positive-definite, implying that our system is passive. Defining R = G™'B
and A = —~G~!C, we can rewrite (2.158) as

x = A%’tf + Ruin(t) (2.159)

which results in the following representation for the transfer function

cTadj(I - sA)R

det(I — sA)
where adj and det refer to the adjoint and determinant of the matrix. Note
that the denominator in the above equation is similar to the characteristic
equation of matrix A, and has roots that are the reciprocal of the eigenvalues
of A. Therefore the poles of the system can be approximated by finding the
poles of matrix A.

PRIMA is based on projecting the n x n matrices, used to define MNA, to a
smaller subspace (V) of dimension g resulting in a set of matrices of dimension
q X q. This is achieved either through orthogonal projection, where the error
vector is required to be orthogonal to subspace V, or oblique projection, where
an additional ¢ dimensional subspace (U) is defined (distinct from V) and the
error vector is required to be orthogonal to the subspace U. PRIMA uses
orthogonal projection, which results in a congruence transformation and is
known to preserve positive-definiteness. This transformation results in

H(s) =cT(I-sA)"'R = (2.160)
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Vo' GVgxq + Vchqu =V Buin(t) uout(t) = BTVaxq (2.161)
where Vg is a n X ¢ orthogonal matrix with the column vectors being the
basis of subspace V on which the set of equations are projected. The subspace
V is generally defined to be the block Krylov subspace, which is the span of
the low order block moments

colsp Vg = Kr (AR, L%J) =span(R, AR, ..., Al/N-1IR)  (2.162)

where we have assumed that ¢ is chosen such that [¢/N| is an integer. This
matrix can be generated using the block Arnoldi algorithm which uses QR
factorization to generate basis vectors for the subspace V. The poles can
then be estimated by estimating the eigenvalues as in (2.160). Note that the
congruence transformation is applied to (2.158) and not to (2.159). Therefore
if the matrices in (2.159) define a passive system, then (2.161) also satisfies
conditions of passivity.

PACT

PACT is based on two congruence transformations that are used to reduce the
size of the admittance matrix of RC networks by dropping unwanted poles,
while guaranteeing stability and passivity. We will discuss a slightly different
form of PACT presented in [84]. PACT uses the admittance formulation for
the state equations and partitions the conductance and susceptance matrices
as

(2.163)

o [Gr GcT] _[Ce Cc”
Ge Gp |Cc Ci

and rewrites (2.158) as

(& e [E D[] =[] e

where xp and xjy represent the m port node voltages and the n internal node
voltages, respectively. The matrices Gp and Cp are referred to as port ma-
trices, Gy and Cj are referred to as internal matrices and Gy and Cj are
referred to as connection matrices. The right hand side of the above equation
defines the currents injected into the system and is zero for the entries corre-
sponding to internal nodes. The port and internal matrices can be shown to
be symmetric, and if the system is known to have a unique DC solution then
the connection conductance matrix can be shown to be positive semi-definite.
Since Y (s)xp = bp, using (2.158) we can write
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Y(s) = Gp + sCp — (Ge + SCc)T(GI + SCI)_l(GC +sCg). (2.165)

The first congruence transformation is used to match the DC gain of the
system, so that the DC behavior of the system does not change when unwanted
poles are dropped from the system. This transformation is based on the matrix
X, which can be written as

x= [*GILGC (I)] N [\I’ [I)] (2:166)

which results in a new conductance matrix G’ = XTGX and a new suscep-
tance matrix C’ = XTCX, of the form

GI - —GP - GCTV 0 _ Gi) 0
- L 0 GI - 0 G]
r T T T T
o = Cp+ V' Cc+Cc'V+VICV (Cc+C[V) (2.167)
_ Cc +CrV Cr
LA c'CT]
[Cc Cr

which results in the following expression for Y (s)

Y(s) = Gp + sCp — s*CLT (G1 + sC1) ' Cy. (2.168)

The second congruent transformation in PACT is developed based on the
following result from matrix theory.

Theorem 2.3. [84]. Let A and B be two symmetric matrices and let B be
positive-definite, then there exists a matriz U such that UTBU = I and
UTAU = A, where A is a real diagonal matriz.

Based on the above theorem we can define U such that
UTGiU=1 UTC,U=A (2.169)
and rewrite (2.168) as

Y(s) = G + sCp — s>°CTUT (I + sA)'UCK. (2.170)

Note that matrix U has a column space that spans the generalized eigenspace
of (Gi, Cy). Now PACT constructs a reduced order model

Y(s) = Gp + sCp — sCTUT (I + sA,)"'UCG (2.171)
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by considering only a few of the eigenvectors in U that correspond to dominant
generalized eigenvalues. This desired matrices U, and A, can be efficiently
generated using Cholesky decomposition and Lanczos method [55].

Details regarding AWE and other passive reduced order modeling tech-
niques can be found in [27]. We will discuss two techniques that have been
proposed to extend these reduced-order modeling techniques to consider vari-
ations.

Interval Analysis

In this section we will use interval arithmetic based techniques developed
for interconnect delay analysis in the previous section to extend AWE and
PRIMA. Additionally the €}s as defined in (2.142) are now unit variance
zero mean normal RVs, in keeping with canonical models used in statistical
timing analysis. As we will see in the next chapter, this formulation to capture
sources of variations is exactly the same as principal component analysis,
which simplifies the steps involved in considering correlation among different
RVs. We can use the resistive and capacitive elements expressions of (2.131).
Note that though we have written these variables we will interpret them as
intervals and use interval arithmetic based operations. Initial ranges for the
€¢’s can be chosen such that they capture most of the region of the Gaussian
distribution.

To use interval arithmetic for AWE or PRIMA, we only need to define
equivalent operations in interval arithmetic for the operations used in AWE
or PRIMA. Let us first consider AWE and outline the basic steps. To develop
an interval arithmetic based AWE, the LU decomposition steps are replaced by
an interval LU solve and the roots of the polynomial can be estimated using
Laguerre’s Method [114]. This approach does not involve steps that require
taking derivatives and can be implemented using simple interval operations,
absolute value and square-root operations.

The key steps required to develop an interval arithmetic based PRIMA
algorithm are basic matrix operations, orthogonalization, LU decomposition
(used in block Arnoldi) and eigen-decomposition. Eigen-decomposition is per-
formed in [86] using a QR decomposition followed by an inverse iteration,
which can be performed using interval operations already defined. All of the
remaining operations can also be performed using the interval operations pre-
viously defined.

The final poles and residues are then statistically sampled to generate the
distribution of delay, by computing the 50% delay for each sample. Note that
the final sampling is done in a much lower order space, and better accuracy
can be obtained with fewer samples. An implementation of this approach [86]
showed an error in mean and standard deviation of 4.1% and 5.6% for four
designs compared to Monte Carlo based AWE simulation. Similar results for
PRIMA showed errors of 4.9% and 5.9% for mean and standard deviation,
respectively. Figure 2.22 demonstrates the pdf obtained using intervals and
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Fig. 2.22. Comparison of delay distribution obtained from Monte Carlo simulations
and interval arithmetic based (a) AWE, (b) PRIMA [86].

that obtained using Monte Carlo simulation. The results are for 5% global
variation, 30% local variation and 16 initial uncertainity symbols, and show
good accuracy.
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Perturbation Analysis

The key while considering variations in interconnects is to estimate the re-
sulting fluctuations in the positions of the poles of the system, which impact
critical circuit characteristics. To understand the impact of these [84] uses key
ideas from matrix perturbation theory to assess the impact of these variations.

Let us consider PACT, which involves two congruence transformations,
and define the same operations in a situation where we consider variations
in process parameters. First, we assume that variations in process parame-
ters are sufficiently small enough to allow us to express the susceptance and
conductance matrix as

G =Go + AGiw; + AGaws
C = Co + AClwl + AC2U}2 (2172)

where we have considered two sources of variations w; and ws. Again, as in
PACT, we partition these matrices such that

Gp = Gpo + AGpyw; + AGpaws
G1 = Gyo + AGriw; + AGraws
Gc = Geo + AGcirw: + AGgaw; (2.173)
Cp = Cpo + ACprw; + ACpaws
Cr = Cyo + ACr1w; + ACrawe
Cc = Cco + ACcirw; + ACcaws
The crucial step is determining V = Gy 'Gg, when Gy and Gg are

influenced by variations. In [84], V is obtained using Taylor’s expansions while
retaining terms up to second order

VaVgo+AViiw; + AVzl’LU% + AViwy + AV22U)§ (2174)

where the parameters in the above equation are obtained by evaluating V for
a set of sample points. Note that V can also be obtained at these points V
from the DC solution of the circuit. Setting the susceptance matrix in (2.164)
to zero, the port and internal voltages are related as:

Gexp +Gixy =0
X = —GI_IGcXP = Vxp. (2.175)
Thus, the columns of V can be obtained by setting one of the port voltages

to unity and grounding all the other nodes. Using (2.174) we can express the
matrices corresponding to (2.167) as
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Gp =Gp +GcTV
= (Gpo + AGpiw; + AGpaws) + (Geoo + AGciwr + AGgaws)T
(V() + AViiwy + AVzl’LUf + AViaws + Angwg‘) (2176)

retaining only terms up to second order we obtain

G;) ~ Gpg + AGp11w; + Aszlwf + AGpi2wg + Aszwa (2.177)

where

Gpo = Gpo + Geo Vo

AGpi1 = AGpy + AGc1 TV + Geol AV,

AGp21 = AGcoTAVa + AGe1TAVy, (2.178)
AGp12 = AGpy + AGc2 Vo + GeoT'AVy,

AGp22 = AGgoTAVas + AGeTAVy,.

Similar expressions can be derived for the partitions of C}, with many more
terms than the expressions above. Now let us consider the second congruence
transformation. However, before we begin the analysis we need a few results
from matrix perturbation theory [55]

Theorem 2.4. [84]. Let A be a symmetric matriz with eigenvalues Ay > Ag >
© 2 An, and let P be a symmetric perturbation matriz with eigenvalues
p1 > pg > - > pn. Then N\;, the i—th largest eigenvalue of A + P

Ai € [Ni +pn, Ai + 1l

Theorem 2.5. [84]. Let A and B be two symmetric matrices. Additionally,
let B be positive-definite, and define matrices X1 and Xg such that

e A= [ 4]
| pioxa= 5 g

where A1, B1, Az and B2 are diagonal matrices. Let Py and P2 be symmet-
ric matrices that represent the perturbations in A and B, respectively. If the
distance between eigenvalue clusters of (A1, B1) and (Az, B2) is large, and
the matriz perturbations are small, then there exist matrices S1 and Sg such
that the column space of [X1 + X281, X2 +X1S2| spans the eigenspace of the
perturbed matrices (A + Py, B+ Pa2).
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Theorem 2.4 tells us that for small variations the resulting eigenvalues are
always close to the nominal eigenvalues, and Theorem 2.5 then applied to
the second congruence transformation in PACT, tells us the behavior of the
matrix U, in (2.170) under process variation. However, direct application of
Theorem 2.5 is not computationally feasible since matrices S; and S, are not
known beforehand and require us to solve a set of generalized Sylvester equa-
tions. Since these matrices can be expected to depend on the perturbations
themselves, [84] uses a Taylor’s expansion for A, and U, (2.171) as

Ar =~ Ag + AAuwl + AAzlw% + AAPlzwg + AApgz'wg
U, ~Ug+ AU3w; + AUzl’w% + AUpiows + AUpzz’w%. (2.179)

The parameters in the above equation can again be obtained by estimating
the dominant eigenvectors for a set of sample points. Finally, this allows us to
express the variational reduced order model using (2.171), where the matrices
are replaced with their variational counterpart as discussed in this section.

PRIMA involves calculation of a matrix X that can be used to perform
a congruence transformation. As in PACT when variations are considered, a
variational reduced order model in PRIMA can be constructed using a first-
order Taylor series expansion of X as

X =Xo + AX 3wy + AXowq (2.180)

where the parameters can be evaluated using a set of sample points.

Note that while considering variations we have performed a congruence
transformation in which higher order terms associated with the varying pa-
rameters w; and wy are dropped. Thus the overall transformation does not
remain a true congruence transformation and we lose passivity. However, (2]
proposed that a transistor level timing simulator like TETA can be used
in these situations. TETA obviates the need for passivity, since it uses a
successive-chord method instead of Newton-Raphson’s method to solve the
system of nonlinear equations. This allows nonlinear devices to be mapped to
a Norton equivalent model with constant impedance. Therefore, if the macro-
modeling approach is stable then the stability of the overall simulation can
be guaranteed.



3

Statistical Timing Analysis

The focus of this chapter is on techniques to perform efficient timing analysis
of circuit blocks while considering process variations. The result of such an
analysis is invariably a probability distribution of delay. In the previous chap-
ter, we looked at Monte Carlo techniques that can be used to estimate the
distribution of circuit delay as well, and early approaches to perform statisti-
cal timing analysis were based on Monte Carlo techniques [61], [67]. However,
even if only inter-die variations are considered, there already exist variations
in three standard dimensions: process variations in devices, temperature and
power supply variations. In addition, each metal layer contributes four other
RVs corresponding to the metal line width, spacing, height and inter-layer
dielectric (ILD) thickness variations. Thus, even in this highly simplified case
where all intra-die variations are neglected, there are a significant number
of RVs, making enumerative circuit simulations prohibitive, even as a golden
model.

As process technologies have scaled, intra-die variations have grown to play
a significant role in determining delay and power distributions. The RV that
captures intra-die variations can be independent or spatially correlated (with
correlation < 1) across gates, making Monte Carlo based techniques even
more expensive. On the other hand, corner based models are rendered useless
as well. Even if all corner cases are considered (which is a large number),
we cannot guarantee that the worst-case is covered by these corner cases.
Thus, it is imperative that the timing characteristics of a design are analyzed
statistically.

The crucial difference between statistical and deterministic scenarios lies
in the notion of critical paths. In a statistical sense, there is no single path in
the circuit that can be identified as being the critical path of the circuit, or
the path with the maximum delay. Any path in the circuit from the inputs to
outputs can therefore become critical, depending on how variations manifest
themselves on a particular sample of the chip. Generally, critical paths are
redefined in a statistical setting as a set of paths that have a high probability
(higher than a given threshold) of becoming the slowest path in the circuit.
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Another frequently used definition is that a path is critical if the probability
that the path delay exceeds a given deterministic critical delay for the circuit
is higher than a certain threshold. Note that these two definitions are not
equivalent, however both can be used to analyze and optimize circuits. The
first definition is useful when the objective is to reduce the delay of a circuit,
and the second definition becomes useful when we are analyzing/optimizing
the circuit under delay constraints.

In this chapter, we will look at techniques to estimate the probability
distribution of delay for circuit blocks. Most of the statistical timing analy-
sis techniques fall into one of two categories - block-based timing analysis or
path-based timing analysis. Block-based timing analysis is based on a topo-
logical traversal of the timing graph, whereas path-based techniques rely on
extracting a set of paths from the circuit and performing timing analysis on
all paths within this smaller circuit. We will also look at approaches that have
been proposed to estimate timing yield using integration techniques in the
parameter-space, and a Bayesian Networks based approach.

3.1 Introduction

We first discuss a simplified statistical model for the distribution of the maxi-
mum operating clock frequency (FMAX) of a chip [21], which corresponds to
the distribution of maximum delay. This modeling technique provides insight
on the influence of different components of variations on the distribution of
FMAX.

Consider a single critical path within the circuit. If the delay of a single
gate is modeled as a Gaussian RV, then the delay of a path can be modeled
as a sum of Gaussian RVs. If these Gaussian RVs are part of a multinormal
distribution, then the critical path delay can be expressed as a Gaussian RV
as well.

Let us consider the delay of a single critical path within the circuit and
also assume that the distribution of path delay under inter-die and intra-die
random variations is a Gaussian RV with standard deviation ointer and ingra,
respectively. However, the mean delay of a single path does not change under
variations (assuming variations in delay can be captured using a linear func-
tion of process variations), and is assumed to be Tyom. It is important to note
that the variance in path delay due to intra-die random variations depends on
the number of gates in a path and reduces with increasing logic depth. This
results from the fact that intra-die random variations are independent across
gates, and therefore, if

Hpath = Hgate; + Hgates T+ + Hgate, (31)

then the variance due to intra-die variation can be expressed as



3.1 Introduction 81

. _ /2 2 T2
Tintra,path = \/aintra,gatm + Uintra,gate; + + Uintra,gate,, (32)

whereas, the variance due to inter-die variations (which are identical across
gates) can be expressed as

Ointer,path = Cinter,gate; T Ointer,gates + -+ Tinter,gate,, - (33)
This implies that the contribution of intra-die variations reduces with increas-
ing depth. Assuming that all gate delays have the same variance, we can write
Ointra,path _ Ointra
Ointer,path \/ﬁo'inter

Considering only intra-die random variations, the probability that the critical
path meets timing can be expressed as

(3.4)

t"lﬂ-x
Pintra,p(t < tmax) = / fintra(t)dt (35)
0

where fintra represents the pdf of a Gaussian RV with mean T}, and variance
a?nm.a. Let us represent the cdf of fintra 8s Fintra. Then, the probability in (3.5)
can also be expressed as Fipgra(tmax ). To estimate the timing yield of a circuit,
we need to consider all critical paths in the circuit. Let us assume that the set
of critical paths has N, paths with identical mean and variance of delay. If all
paths are perfectly correlated, then only a single path can be considered to
capture the delay of the circuit as a whole. However, if paths are uncorrelated,

we need to express the probability that the circuit meets timing as

Pintra, circ(t S tmax) = Pintra.,pl(t S tmax) e Pintra,pr (t S tmax) (36)
= (Pintra,p(t < tmax))N’) . (37)

The pdf of circuit delay can then be computed by differentiating the cdf of
delay in the above equation with respect to ¢, which gives

dFin ra,circ
fintra, circ(t) = _dt(t—) (38)
= Np fintra(t) (I:‘intra(t))N')¢1' (39)

The pdfs obtained using the above expression are plotted in Fig. 3.1 for a
varying number of critical paths. It can be observed that, as the number of
critical paths increases, the pdfs shift to higher delay values. This implies that
the probability that the design meets a timing constraint reduces. In addition,
the pdfs becomes tighter as the number of critical paths increases and circuit
delay becomes less sensitive to intra-die variations. Also, the circuit delay pdf
sensitivity on the number of paths IV, reduces as the number of paths increase.
It is important to note that though the pdfs seem to be Gaussian in Fig. 3.1,
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Fig. 3.1. Probability distribution function of circuit delay with varying number of
uncorrelated critical paths considering intra-die variations. The mean delay increases
while variance decreases with increasing number of critical paths.

the actual distribution is not Gaussian, which is obvious from (3.8). The tail
towards the right of the pdfs is larger, than that to the left, for cases with
many critical paths.

If we consider only inter-die variations, the delay pdfs of all paths are
perfectly correlated since all paths are affected similarly. In this case, a single
Gaussian RV can be used to capture the delay of a circuit. In the presence of

both intra-die and inter-die variations, the circuit delay T¢i,. can be expressed
as

Teive = Thom + ATintra + ATinter (3'10)

where Tyom is the nominal delay of the circuit and AT is the change in
delay considering intra-die distribution and ATjyte, is a Gaussian RV with zero

mean and o2 . variance. The distribution for total circuit delay can then be

computed by convolving these three distributions:

fpath(t) = fnom * fintra(t) * finter(t) (3.11)

where * represents the convolution operator and fyom is an impulse at t =
Tnom-

Based on the analysis above and Fig. 3.1, we expect that for circuits with a
large number of critical paths, intra-die variations will have a strong influence
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on the mean delay, while their impact on variance will be significantly reduced.
Most of the variance in circuit delay will be contributed by inter-die variations.
The frequency of a circuit is inversely proportional to the delay of the
circuit, therefore the RV FMAX can be expressed as FMAX =1 /Tpath- The
distribution function of a RV Y = g(X) (fy(y)) can be expressed as [109]

_ fa(z1) i fa(Tn)
9" (1)l g’ ()]
where f,(z) is the pdf of X, and z1, ..., =, are the real roots of the equation

y = g(z) and ¢’ represents the derivative of g. Using (3.12) we can write the
distribution of FMAX as

fy(y) (3.12)

frmax(f) = }lgfpath (-}) : (3.13)

Now let us consider circuit-specific techniques that can be used to perform
statistical analysis of circuit delay.

3.2 Block-Based Timing Analysis

Block-based timing analysis techniques perform a topological traversal of the
timing graph. The traversal of the timing graph is therefore exactly the same
as in traditional static timing analysis (STA). The overall statistical timing
analysis can then be expected to be computationally efficient if the computa-
tions required to perform timing analysis for each node in the timing graph
are small. However, instead of deterministic delay values we propagate delay
distributions, complicating the analysis. In addition, the delay distributions
might be correlated due to spatial correlations in process parameters and re-
convergent fanouts. Spatial correlations result from the fact that gates close
together in the layout have similar variations in process parameters. On the
other hand, correlations due to reconvergent fanouts can cause delay of far-
away paths to be correlated, if they originate from a common node. Consider
a gate that fans out to a set of paths and then some of these paths reconverge
and fanin to a multiple input gate. These paths then have a component of
delay that is identical and causes the delay at the input of the reconvergent
node to become correlated.

To handle probability distributions, [81] introduced the idea of using dis-
cretized distribution functions. The approach was used to handle intra-die
variations while assuming all distributions to be independent and is discussed
in Sec. 3.2.1. Using the same general framework, [6] proposed an approach
to consider correlations due to reconvergent fanouts and develops tight upper
and lower bounds for the actual delay distribution, while [43] uses a heuris-
tic enumerative approach to handle these correlations. These approaches are
discussed in Sec. 3.2.2. However, all these approaches neglect correlations in
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Fig. 3.2. Sampling a probability distribution of delay to generate a discrete proba-
bility distribution. The discrete probability distribution should be re-normalized so
that it represents a valid pdf.

process parameters due to inter-die variations and the correlated component
of intra-die variations. Canonical delay models pdfs were therefore proposed
in [3], [30] and [146] to handle all components of process variation and build on
the ideas of Quad-Tree and PCA-based analysis discussed in Chap. 2. These
techniques are discussed in Sec. 3.2.3. Finally, in Sec. 3.2.4 we discuss an ap-
proach to handle multiple switching events while performing statistical static
timing analysis (SSTA) [5].

3.2.1 Discretized Delay PDFs

The approach by [81] was one of the first techniques to perform SSTA using
discretized pdfs to handle probability distributions. This technique performs
SSTA in a computationally deterministic fashion, as opposed to Monte Carlo
techniques which are inherently random. The gate delays are now defined as
discrete delay distributions that are generated as shown in Fig. 3.2 given a
sampling step (may be user specified). Note that the discrete pdfs should be
renormalized so that the sum of the probabilities for the discrete events is
equal to one. The sampling step provides a tradeoff in terms of runtime and
accuracy. Using a small sampling step will result in good accuracy, since the
discrete delay pdf will have a shape very close to the original continuous delay
pdf. However, the larger number of samples in the discrete delay pdf increases
the computational requirements of SSTA. Using a very large sampling step
decreases accuracy, and in the case where the sampling window is larger than
the width of the gate delay pdfs SSTA degenerates into a traditional STA
approach. Thus, we have defined the delay of each node within the timing
network using a discretized delay pdf. We will always assume that the delay
pdf is non-zero only over a finite range of delay values.

The next step in SSTA is to propagate the distribution of circuit delay from
the primary inputs to the primary outputs. Hence, as in STA we need to define
operations that sum the delay distribution at the input of the gate with the
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Fig. 3.3. Computing the delay pdf at the output of a gate for a degenerate input
delay pdf. The numbers on the x-axis represent the delay value associated with the
particular discrete probability distribution sample.

gate delay distribution or perform the max of delay distributions in the case of
multiple input gates. In the case of a degenerate or deterministic input delay
distribution, the sum operation is fairly simple and involves the computation
of the output delay pdf by simply shifting the gate delay distribution as shown
in Fig. 3.3. However, in the case when the input delay pdf is non-degenerate,
we can generate a set of these shifted output delay distributions. Each of these
shifted pdfs occur with a probability corresponding to the probability of the
discrete event in the input delay pdf that resulted in this output delay pdf.
This set of shifted pdfs can then be combined using Bayes’ Theorem which
states that

P(B) =) P(B|A=i) P(A=1) (3.14)

where P(B|A = 1) refers to the probability of Event B, given that A = 1.
Thus, we need to generate the shifted pdfs with scaling, where the scaling
factor is the probability of the discrete input event. These events can then be
grouped according to the above equation by summing the probability at each
of the discrete points, as shown in Fig. 3.4, where the probability at the top of
each discrete event corresponds to a non-normalized probability. The actual
probability of an event in the figure can be obtained by dividing the number
by the sum of the numbers corresponding to all the discrete events in each
discrete pdf.

The same idea can be used to analyze this case more formally using the
definition of a timing graph.
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Definition 3.1. A timing graph is a directed acyclic graph having ezxactly one
source and one sink: G = {N, E, ns, ny}, where N = {n1, na,...,ng} is a
set of nodes, E = {e1,ea,...,el} is a set of edges, ng € N is the source node
and ny € N is the sink node and each edge e € E is an ordered pair of nodes
e = (ng, nj).

The edges in the timing graph correspond to connections from gate inputs
to outputs and the nodes correspond to nets in a circuit. A probabilistic timing
graph is defined as a timing graph where each edge is associated with a dis-
tribution corresponding to the delay of that edge. The source and sink nodes
are imaginary nodes and are connected to the nodes representing the primary
inputs and outputs of a circuit, respectively. Each of the edges connecting the
source node has a delay corresponding to the arrival time at the input node,
to which this edge is connected at the other end.

Consider a timing graph with a set of series arcs. These arcs can be reduced
to a single arc, which has a delay pdf equal to the sum of the individual path
delay distributions of the two arcs. Consider Fig. 3.5(a) which shows two tim-
ing arcs with node delay pdfs p(¢) and ¢(¢) (we will refer to the corresponding
cdfs with their capital letters). These two arcs can be replaced by a single arc
with a delay distribution r(t) that satisfies

R(t) :/ r(t)dt:/tth <tp(t1)q(t2)dt1 dt,

—0o0

oo t—t1
_ / / p(t1)q(ts)dts dt (3.15)
_ /_Oo p(t)Q(t — t1)dty.

Differentiating both sides in the above equation we get the standard result
that

o0

)= [ pleate - ), (3.16)
— 00

which implies that the pdf of a sum of two RVs is expressed as a convolution

of the two pdfs.

In the case of multiple fanin gates, we can generate an output delay pdf
for each input node using the scaling and grouping / convolution technique
described above. The next step is to calculate the max of these individual
pdfs to estimate the final delay at the output of the last multi-input gate. In
the case of Fig. 3.5(b), we can replace the two arcs with a single arc having an
edge delay pdf r(t). Assuming independence of p(t) and ¢(t), the probability
that 7(t) < to is the probability that both ¢(t) and p(t) are less than tq. This
is mathematically expressed as )
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R(t) = P(t)Q(t) (3.17)
differentiating with respect to ¢ we obtain the pdf r(¢) as

r(t) = P(t)q(t) + p(t)Q(2). (3.18)

The SSTA approach proposed in [6] propagates discretized pdfs through
the circuit as explained above. However, [43] propagates piecewise linear
(PWL) cdfs through the circuit, while gate delays are maintained as delay
pdfs. The sum and max operations are performed using (3.15) and (3.17),
respectively. Each multiplication in the convolution and max computation
results in a quadratic function, generating a total of O(n?) quadratic func-
tions, where n is the number of linear elements in the piecewise linear pdf.
These quadratic functions are then re-sampled at preset probability values to
generate a PWL cdf that is propagated through the circuit.

Both these approaches require O(|E| + |V|) sum or max operations where
E and V are the sets of arcs and nodes in the timing graph. Each sum and
max operation requires O(n?) computations, where n is the number of dis-
cretization of the delay pdf. Thus the overall complexity is O(n2(|E| + |V])).
Note that as delay pdfs are propagated through the circuit they become wider
and the number of discretizations increase for a given sampling step. The long
tails of the discretized pdfs are typically characterized by very small proba-
bilities and significant improvement in runtime can be achieved by pruning
them. The tradeoff involved in pruning and the loss in accuracy is investigated
in [81]. It is shown that the runtime improves by more than 10X when the
minimum probability threshold for pruning is increased from le-10 to le-5.
The inaccuracy for the case where the minimum probability of pruning is le-5
is 0.11% and 3.24% for mean and variance, respectively (compared to Monte
Carlo).

Having discussed the basics of SSTA, let us now attempt to consider cor-
relations in the propagated delay pdfs at different points in the timing graph
arising due to gates with multiple fanouts. These correlations need to be han-
dled properly at points of reconvergence to maintain good accuracy in SSTA.

3.2.2 Reconvergent Fanouts

The approach discussed above assumes that the distribution of delay at each
input of a node is independent. Even if spatial correlations are ignored, recon-
vergent fanouts cause delay pdfs to be correlated which must be considered
to maintain accuracy of statistical timing analysis. Figure 3.6 illustrates a
simple circuit with a reconvergent fanout node. If we backtrace paths from
the inputs of Gate 4 to the primary inputs (PIs), we notice that Gate 1 lies
in both these paths and causes the input delays of Gate 4 to be correlated.
Therefore (3.17)-(3.18) can no longer be used. Also, note that if the arrival
time at the node of Gate 3 connected directly to the PI is much greater than
the arrival time at the other node, then the output of Gate 3 is determined by
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Fig. 3.6. Multiple fanouts originating from Gate 1 reconverge at Gate 4 and result
in correlation between the inputs of Gate 4.
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Fig. 3.7. Mean and variance of the max of two identical Gaussian RVs with zero
mean and unit variance for varying correlation coefficients.

the PI and the inputs of Gate 4 become independent (assuming arrival times
at PIs are independent). This masking of correlation at reconvergence further
complicates the analysis.

The correlations in input delay pdf have a strong impact on the mean and
variance of delay at the output of a gate. Figure 3.7 shows the mean and
variance of the max of two identical Gaussian RVs with zero mean and unit
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variance, as their correlation is varied. If the RVs are perfectly correlated then
the max of the two RVs is essentially equal to one of the RVs and the max
has zero mean and unit variance. As the correlation reduces, the distribution
of the max tightens towards the right of the original distribution of the RVs,
and the mean of the max progressively increases while variance decreases.

An exact approach to handle reconvergent fanouts was proposed in [6],
which is based on generating multiple copies of the timing graph for each
dependence node (to be defined later) and for each discretization of the delay
pdf, and has a worst-case runtime complexity that increases exponentially
with circuit size. Hence, we will also consider two computationally feasible
approaches that consider reconvergent fanouts. The approach presented in [6]
develops exact lower and upper bounds on the pdf of delay while [43] proposes
a heuristic approach to handle reconvergent fanout nodes.

Exact Approach

To consider the impact of correlation at the inputs of a reconvergent fanout
node [6] defines the notion of a dependence set, which is based on the inter-
section of fanin subgraphs. A fanin subgraph is defined as:

Definition 3.2. A fanin subgraph G, of a timing graph G, at node n is a
timing graph consisting of all edges and nodes of G, that lie on a path from
the source node ns of Gy to node n, and where node n is set as the sink node
ny of G, n.

Definition 3.3. Consider a pair of fanin nodes np 1 and ny, 2 of node n, with
fanin subgraphs Gs1 and G 2. The intersection graph G consists of edges
and nodes shared by Gs1 and Gy, 2, excluding the source node ng. The set
of dependence nodes for the fanin node pair np 1 and ny o is the set of nodes
{n1, na, ..., ng, ...}, such that nq lies on the intersection graph G, and such
that nq has one or more fanout edges that lie on either Gs1 or Gg, 2, but not
both. The set of dependence nodes for node n is the union of the dependence
sets over all possible pairs of its fanin nodes.

Definition 3.4. A node in a timing graph G, with a non-empty dependence
set is defined to be a reconvergent node. The union of the dependence set of
all reconvergent nodes in a timing graph is the dependence set of the timing
graph.

Consider Fig. 3.8(a) and note that the timing graph has reconvergence at
Nodes d and f. Nodes a, e, and h are not reconvergent nodes since the only
node in the intersection of their fanin subgraphs is the source node, which does
not contribute to delay. Consider Node f and note that the set of dependence
nodes f is {b, d}, since these nodes lie in the fanin subgraphs of both the
fanins and have an edge that does not lie in both the fanin subgraph (Node
a does not lie in the dependence set since all its fanout edges lie in both the



3.2 Block-Based Timing Analysis 91

Fig. 3.8. DAG for a circuit with nodes {a,b,d} forming the set of dependence nodes
(a) Shaded intersection graph for the fanin subgraphs of Node ns (b) subgraph from
ns to a can be replaced by a single edge e;. (©2005 IEEE)

fanin subgraphs). Similarly, the dependence set of d can be found to be {a}.
Thus, the dependence set for this timing graph is {a, b, d}, which represent
the nodes that have multiple fanouts and lie on the edge of the intersection
of fanin subgraphs and result in correlation at some later reconvergent node
in the timing graph.

To perform timing analysis on this timing graph, the set of nodes in the de-
pendence set is first topologically sorted. The subgraph from the source node
to the first node in the sorted dependence set can be replaced by a single edge
using the series and parallel reduction techniques described above. This step
can be performed since none of the nodes in this subgraph have fanouts that
result in correlated inputs at reconvergence. At each node in the dependence
set, a set of timing graphs is generated corresponding to each discrete sample
of the pdf at this node. This single discrete probability event is then prop-
agated through the timing graph, with more timing graphs being generated
at each dependence node encountered downstream in the DAG. Each of the
timing graphs generated is associated with a probability of occurrence that
corresponds to the product of the probabilities of the discrete events from
which the timing graph originated. The final arrival time pdf at a node can
then be obtained by performing a weighted sum of the pdfs at that node from
all the timing graphs generated. The weighting factor is the probability as-
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sociated with the particular timing graph. Note that this procedure follows
from Bayes’ Theorem, which states that

k
pa(t) =Y pipa,ilt) (3.19)
1=0

where pg ;(t) is the timing pdf at node z for a timing graph generated with
probability p;. Since each timing graph is generated from a series of discrete
events, the product of these discrete events corresponds to p; in the above
equation. It has also been shown in [6] that the set of dependence nodes at
which the timing graphs are generated, through enumeration of the discrete
probabilistic events, is both sufficient and necessary for the computation of
the exact pdf of delay.

Statistical Bounds

Let us now discuss a computationally efficient approach to compute lower and
upper bounds on the cdf of delay. We first define the stochastic upper bound
of a cdf.

Definition 3.5. Consider a cdf P(t). A cdf Q(t) is said to be a stochastic
upper bound of P(t) if

Q(t) < P(t), Vt. (3.20)

The upper bound of a cdf is illustrated in Fig. 3.9. It can be observed
that for a given probability (which corresponds to a timing yield) the upper
bound always predicts a larger delay, and is therefore a conservative bound.
Similarly, we can define a lower bounding cdf that gives a smaller delay for a
given probability or a higher probability for a fixed delay. The upper bound
on the latest arrival time is important for critical path analysis since we are
interested in the worst possible delay for the circuit and an overestimate is
preferable. Similarly, lower bounds for earliest arrival times are preferable for
fast path analysis to identify potential hold time violations. We will discuss
the approach to generate upper and lower bounds for late arrival times, and
the approach can be easily extended to the case of early arrival times.

The authors in [6] prove that if all correlations arising due to reconvergent
fanouts are neglected, then the resulting delay cdf is an upper bound on the
exact delay cdf. This simplifies the analysis as well, since all timing pdfs can
be propagated through the circuit while assuming independence, as discussed
above. Now, let us prove the theorem upon which this result is based.

Theorem 3.6. Let x, y and z be independent RVs and assume that their pdfs
are non-zero for a finite range of delay values. Let 1 and zo be independent
RVs that are distributed identically to z, then the cdf of max(x1 + y, T2 + 2)
is an upper bound for the cdf of max(z +y, = + 2).
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Fig. 3.9. The upper bound of a delay cdf provides a conservative estimate of circuit
delay for a given timing yield.

Proof. The cdf of P can be expressed as

PO= [ @) dedyds

z+max(y,z)<t
= / / q(y)r(z) / p(z) dz dyd=. (3.21)
0 0 z<min(t—y,t—z

Similarly, the cdf of @ can be expressed as

Q) = / p1(21)p2(x2)q(y)r(2) dzs dza dy dz
z1+y<t,z2+2<t

:/Ooo/owq(y)r(Z) / p(z1)dzy / p(z)dezdydz. (3.22)
z1<t—y z<(t—2)/a

Let us consider the case when ¢t —y < t — z, for which (3.21) can be simplified
as
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Fig. 3.10. Lower bound computation for two dependent arrival times. ((©2005
IEEE)

P(t) = /OOO/O ~ dw)r(2) / p(@)dz | dydz. (3.23)

z<t—y

Comparing (3.23) and (3.22), we note that the integrand for Q has an addi-
tional term compared to the integral for P. The additional term represents
the probability of a RV being less than a given value and is always less than
1, therefore the integrand for @) is always less than the integrand for P, which
implies that Q(¢t) < P(¢t).

The other case when t —y < (¢t — z)/a can also be similarly analyzed to
obtain the same condition. This implies that Q(t) defines an upper bound for
P(t). A detailed version of the proof can be found in [6].

This proves the result that neglecting correlations results in an upper
bound of the exact delay pdf. Now let us develop a lower bound on the delay
pdf. The lower bound on the cdf for z = max(z, y) can be obtained from the
relation that

(max(z(t), y(t)) P(x(t) < 1)

(Z@t)<t)=r <t) <
< t) = P(max(z(t),y(t)) <t) < P(y(t) <), (3.24)

P(Z

P(Z(t)
which implies that Z’(t) = min(X (¢), Y(¢)), as illustrated in Fig. 3.10, is a
lower bound for the cdf of z. The computation of the lower bound can now
be performed by selecting the minimum of the values of the cdf of = and y
for all discrete time points. The number of computational steps required for
the computation of both the lower and upper bounds increases linearly with
circuit size and is computationally feasible. If the lower and upper bounds are

close, then these bounds provide a good approximation to the actual delay
pdf. However, if these bounds are very different, then the technique of selective



3.2 Block-Based Timing Analysis 95

Table 3.1. Comparison of Monte Carlo and upper and lower bounds of mean delay
for the ISCAS’85 benchmark circuits. The difference in the bounds is observed to
be small [6].

Circuit Monte-Carlo Lower Bound Upper Bound Difference (%)

cl7 1.399 1.369 1.428 4.2
c432 7.740 7.448 8.060 7.6
c499 5.168 4.730 5.282 10.5
c880 9.253 9.057 9.448 4.1
c1355 10.232 9.444 10.444 9.6
c1908 14.540 14.250 14.782 3.6
c2670 12.829 12.469 13.112 4.9
¢3540 16.995 16.651 17.351 4.0
c5315 17.381 17.251 17.649 2.3
c6288 46.911 45.242 48.591 6.9
c7552 15.851 15.558 16.081 3.3

enumeration proposed in [6] can be used. Selective enumeration is based on
the exact approach discussed above, and selects a small subset of dependence
nodes at which the timing graphs are enumerated.

Table 3.1 compares the mean delay obtained using the upper and lower
bounds and those obtained using Monte Carlo simulations for the ISCAS’85
benchmark circuits [23]. The table shows that the Monte Carlo results always
lie between the lower and upper bounds, verifying the concept of computing
lower and upper bounds. Moreover, the difference between the lower and upper
bounds is typically small and the bounds can be used as a close approximation
to the exact delay cdf.

Dependency Lists

The approach proposed in [43] is based on maintaining dependency lists for
all nodes in the timing graph. The dependency list for a node n corresponds
to the nodes in the DAG on which the arrival time at the inputs of node n
depends. In the worst-case, this list can grow to be as large as the size of
the circuit itself. Hence, [43] proposes a heuristic approach to limit the size
of these lists, and performs timing analysis while considering reconvergence
arising only from nodes within the dependency lists.

Consider Fig. 3.11 and note that the delay at the inputs of the gate can
be written as

D; = A, + D



96 3 Statistical Timing Analysis

Fig. 3.11. Reconvergence can be handled by estimating the maximum of the sum
of path delay and adding the delay up to the node that acts as the dependence node.

D; = A, + Dy (3.25)

where A, is the cdf of the arrival time at node r and D; and D, correspond
to the delay pdf of paths 1 and 2, respectively. Note that the sum operation
in the above equation actually represents a convolution. Now, the delay at the
output of the gate can be expressed as

Ao, = max(A, + D1 + Djo, Ay + Dy + Dj,). (3.26)

The presence of A, causes the two delays, whose max needs to be computed
in the above expression, to be correlated. Therefore a simple multiplication of
their corresponding cdfs will not provide the correct result. However, we can
rewrite (3.26) as

A, = A+ max(D1 + Djo, Doy + Djo). (327)

Now, the max operation can be performed as previously discussed and the
resultant delay pdf can be convolved with the arrival time cdf at node r to
estimate the delay cdf at node 0. To perform the above computation we need
to establish the multiple-fanout node in the circuit that causes the input delay
pdfs to be correlated, and moreover we need to calculate the delay pdf of the
paths from node r to the inputs of the gate. These path delay pdfs can be
computed by traversing the path from one end to the other. Another approach
that is computationally efficient is to note that

Dy =A;,— A,
Dy = A; — A,. (3.28)
The statistical subtraction in the above equation is performed using moment

matching in [43]. The computation of A; is performed as a convolution of A,
and D; (which are independent), therefore we can write
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ulAd] = ulA,] + (D]
o?[A;] = 0*[A,] + ?[Dy]. (3.29)

Using (3.29) we can write

u[D1] = plAs] = plA,]
o?[Dy] = o?[A] — o [A,]. (3.30)

Note the negative sign in the above expression for the variance of D;. If these
expressions are developed directly from (3.28), then we need to consider the
correlation between A; and A,. The approach in [43] uses the first two mo-
ments of path delays to fit a Gaussian pdf to the distribution of path delay.
However, the approach is general and can be extended to perform higher
order moment matching using Pade approximation techniques (discussed in
Chap. 2) to determine the distribution of path delay. Although path delay
computation can be performed efficiently as discussed above, identifying the
multiple-fanout nodes for all inputs in a multiple-input gate is not straightfor-
ward. This is the case because an input of a gate typically depends on more
than one previous node that may have correlations to other inputs due to the
sharing of sub-paths.

In [43], the authors propose to tackle this problem by maintaining depen-
dency lists for each node in the timing graph. The dependency list is ideally a
list of all nodes on which the arrival time at that node depends. However, to
limit the size of these lists the size of the list at a node is maintained below a
user-specified limit. To ensure that nodes that are important to capture the
correlation (due to reconvergence) are not removed while truncating the list,
the lists are stored in a levelized fashion with nodes having the highest level
appearing first. Thus, when lists are truncated nodes with the lowest levels, or
that are far away from the current node, are removed. While performing a lev-
elized traversal of the timing graph, at each node we look at the dependency
list of all the inputs of the node, which are then inserted into the dependency
list of the current node using insertion sort. In addition, while generating the
dependency list of a multiple-input gate, the dependency list associated with
nodes that have a much smaller arrival time compared to other inputs are not
included.

The pseudo-code for arrival time computation at a node o based on the
arrival time at its inputs is shown below as depMaz. To propagate the arrival
time in a multi input gate to the output, the first step is to identify the set
of nodes that occur in two or more dependency lists of the inputs. If there is
no common node then there are no dependency nodes for the current node,
and the analysis proceeds as discussed previously. However, if there are re-
convergent nodes then the analysis is performed by computing the max of
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the path delays (A,,) from the multiple fanout node (v) to the node under
consideration (o). This max path delay pdf is then convolved with the arrival
time delay pdf at node v to compute the arrival time pdf at output node v.
This procedure is then repeated over all such nodes v to compute the arrival
time delay pdf at node o.

depMax(0)
A, = —00
L=NULL
for each input 7 of o
for each vertex v in DL;
if (v occurs in DL of other inputs)
insert (v, L, level(v)) .
make a list of inputs in whose DL’s v occurs
if (L is NULL)

inputs are independent: Proceed as described previously

else
for each v in L
Agy = —00

for each input ¢ such that v € DL;
Apw = maX(ona A — Ay + Dio)

on = Av + on
Ao, = max(A,, Aoy)
return A,

3.2.3 Canonical Delay PDF's

The previous section showed that discretized pdfs can be used to handle intra-
die variations and correlations due to reconvergent fanouts. However, the ap-
proach becomes cumbersome when it is used to handle correlated intra-die
and inter-die variations. A number of SSTA approaches based on canonical
delay models have been proposed that allow efficient handling of the corre-
lated component of variation. The approaches in [30][146][77][3] are based on
the assumption that the delay at all nodes in the circuit can be expressed
in a canonical form. In addition, [30][146]{77] make the assumption that the
canonical delay model has a Gaussian form.

The Gaussian approximation for delay is based on the assumption that
variations in process parameters are typically small and their impact on
gate/circuit delay is linear. The Gaussian approximation introduces inaccu-
racies due to two reasons: 1) In addition to the statistical sum, we also need
to perform the statistical maz of node delay pdfs and the max of two Gaus-
sian RVs is not an exact Gaussian RV. 2) Process variations are expected
to grow in future technologies, making the assumption of linearity between
gate delay variations and process variations less accurate. However, in practice
this assumption does not lead to large errors in current technologies and we
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Fig. 3.12. The pdf of the max of two identical Gaussian RVs for varying correlation
coefficients. The error introduced through the Gaussian delay assumption increases
as the correlation in gate delay reduces from +1 to -1.

make this assumption for most of our analysis while discussing SSTA using
canonical delay models.

The error introduced due to the Gaussian approximation depends very
strongly on various characteristics of the pdfs whose max is being computed.
If one of the pdfs is defined only for values that are much lower than the
values for which the other pdf is defined, then its values are dominated by the
larger pdf and the maximum has a Gaussian shape, leading to small errors.
In the case where the pdfs are defined for comparable values, then the error
depends on their variance and correlation. Figure 3.12 plots the maximum
of two Gaussian RVs with identical mean and variance as their correlation
coefficient is varied. As can be clearly observed, with decreasing correlation
coefficient the distribution progressively tightens and loses its Gaussian na-
ture. In the extreme case where the two pdfs are negatively correlated the
pdf has a shape that resembles a tight Gaussian distribution with its left half
removed.

Before we discuss canonical delay models, we examine some of the work
done in SSTA using continuous delay pdfs which will help us in performing
SSTA using canonical delay expressions. One of the first works to perform
SSTA using the Gaussian delay assumption for each node [17], was based on
expressions for the mean and variance of a max of two Gaussian RVs. These
parameters, along with the assumption of normality for node delay pdfs, were
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used to propagate gate delay pdfs through the circuit. Note that the sum of two
Gaussian RVs is Gaussian and can be easily handled within such an analysis.
This approach was extended in [141] to consider arbitrary correlations in gate
delay pdfs, arising due to reconvergent fanouts and correlation between the
delay of different gates within timing graphs. However, when correlations are
considered, the complexity of the algorithm increases from O(|V| + |E|) to
O(|V||E]), where |V| and |E| are the number of nodes and edges in the graph.

The approach maps a combinational logic block to a DAG, which has a
vertex for each pin in the circuit and an edge for each net in the circuit or
timing arc of a gate. The edge delays represent the delay of the timing arcs and
the node delay pdf represent the distribution of the delay from the primary
inputs to that node. Each edge is associated with a rising and falling delay,
which are normally distributed based on the distribution of gate length. In
addition, the delay of any two edges that correspond to the same gate are
also assumed to have a known correlation coefficient. Since, the rising and
falling delay of a gate are associated with different types of transistors (NMOS
and PMOS), they are assumed to be independent. This assumption does not
hold true for interconnect delay where the rising and falling delays will be
correlated depending on the variation in physical dimensions of the wire and
its environment. However, we will assume that the rising and falling delays
are independent for all edges in the graph. The delays are then propagated
through the graph to estimate the delay distribution from the primary inputs
to any node within the graph. Depending on the type of timing arc (inverting
or non-inverting), the rising delay at the input defines a rising or falling delay
at the output of the node.

Consider Fig. 3.5(a) and assume that the edge delays p(t) and ¢(t) are
Gaussian RVs. As in Sec. 3.2.2 the two series edges p and ¢ in the graph can
be replaced by a single edge r such that,

E[r] = Elp] + Eq] (3.31)
Var[r] = Var[p] + Varlq]. (3.32)

Note that in the above equations we used the assumption that the delays of
two edges across gates are not correlated. Using this technique we reduce the
initial graph to a graph such that all series edges are replaced by a single
edge. However, when performing such a reduction we need to maintain the
correlation between the delay of some edge = and 7, based on the correlation
between x and p (pgp) and between = and y (pgy). The correlation coefficient
of the delay distributions u and v for a pair of edges is defined as

Py = Eluv] — E[u]E[v] (3.33)

OuOy

where o2 represents the variance of distribution i. Now, let us consider the
correlation of the reduced edge r with an arbitrary edge z,
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Using (3.31) we can simplify (3.34) as

Tu

(3.34)

_ (Elzp] - E[]E[p]) + (Elzq] — E[z]Elq))
_ PapTa0p + pxqgccng '

0g\/0p + 02

_ PapTp + Paq9gq
NEET

which expresses the correlation of edge delay « in terms of its correlation with
the edges removed (p and ¢) and their variances. Thus, using this approach
we can reduce a series of edges to a single edge while maintaining correlation
with other edges in the graph.

In the case of parallel edges the situation becomes much more complex
since we need to estimate the maximum of delay distributions, which is known
to have a non-Gaussian distribution. In addition, we need to handle the cor-
relation in node delays to account for reconvergent fanouts. The standard
assumption is that the max of two Gaussians has a Gaussian shape. Then,
based on the estimated mean and variance of the max of Gaussian RVs, the
complete distribution of the output node is defined. However, note that as
in the case of series edges we cannot simplify the graph by merging parallel
edges since the correlation of the delay distribution for the fanin nodes is un-
known. Consider two edges (p,r) and (g,r) and assume that the delay from
the primary inputs to node p and g are known and have a correlation of ppq.
The edge delays to node r from p and ¢ can be combined with the node delay
(exactly as the case for series devices) to obtain two delay distribution x and
y with a correlation p. Now, if z = max(z, y), then the mean and variance of
z can be expressed using expressions developed by Clark [35]:

TUu

(3.35)

E[2] = p9(B) + py®(=B) + ap(B) (3.36)
Var(z] = (u2 + 02) 8(8) + (12 + o2) &(—B)
+ (ko + py) ap(B) — E?[2] (3.37)

where

o= \/0% + 02 —2pogoy

Igzﬂm_ﬂy
[0
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o(z) = \/—12_; exp (“T”Q) (3.38)
B(z) = \/% /; exp (%’-2) dy.

If z is assumed to be Gaussian then the above equations completely define the
distribution of delay at the output node. In addition, the correlation between
the delay at an arbitrary node ¢t and z (p;,) can also be estimated given the
correlation between node delays at t and = (ps,;) and between t and y (p¢y) as

iz = 0Ptz P(B) + aypiy(—0)
tz VVar|z]| '

If a node has more than two inputs, then the approach can be used recursively

(3.39)

z = max(ini, max(ing, - ) (3.40)

to calculate the final delay distribution at the output.

Let us now outline the timing algorithm using the ideas discussed. To
perform SSTA, [141] first simplifies the graph using the series edge reduction
technique. Next, let us define a front, which is the set of nodes in the circuit for
which the distribution of delay from the primary inputs is known. In addition,
the correlation in delay between any pair of nodes on the front is also known.
This set is initialized to be the set of primary inputs of a combinational logic
block at the start of the algorithm. In each step of the algorithm a node is
selected such that all the nodes which are its immediate predecessors lie in the
front. Now, timing analysis is performed for this node using the max operation
described above. The correlation of the output node with any node that lies in
the front and has a fanout node that goes to any other node not in the front
is also calculated. The node is then added to the front, and the procedure is
continued as long as the set of nodes in the front is not the same as the set of
primary outputs.

Consider Fig. 3.13, which represents a graph that has been obtained by
reducing all series edges to a single edge. At the start of the algorithm nodes
1, 2 and 3 define the front. At this point, only node 4 satisfies the condition
that all its immediate predecessors lie in the front set. The delay at node 4 is
then computed by adding the node delay of 2 to the edge delay (2,4), and the
correlation of the delay at node 4 with nodes 1 and 3 is calculated. Note that
we do not need to calculate the correlation of node 4 with node 2 since node 2
does not fanout to any other node in the graph that does not lie in the front.
This implies that at any later stage of the algorithm node 2 is not going to
act as a fanin edge and we will not need its correlation with any other node.
The next step is to add node 4 to the front and calculate the delay pdf of
nodes 5 and 6 using the max operation as defined above. Similarly the delay
at node 7 is calculated, which defines the delay distribution of the circuit.
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Fig. 3.13. A front-based technique to consider correlations in path delays due to
reconvergent fanouts.

At the end of the algorithm we have a set of delay distributions with their
respective correlations that can be used to calculate the timing yield (the
probability that a sample of the design meets the timing constraint) for a
given cycle time T as

D D D
P(Delay < D) = / / / f(z1,29,...,2p)dzydzg - - - dzyy (3.41)
— 00 —00 — 00

where f represents the joint multinormal distribution of delay at the output
nodes. The above expression also defines a sample of the cdf of delay and can
be numerically computed at a set of points to define the complete cdf, which
can then be differentiated to find the pdf of the maximum delay of the circuit.

Hence, we see that considering correlation within a gate alone results in
an increase in complexity. However, as discussed in Chap. 1 the gate length
of transistors within a gate are generally very strongly correlated and the
correlation drops off rapidly as the distance between gates increase. Therefore,
a better approach to capture the influence of correlated variations is to assume
that transistors within a gate are perfectly correlated and use a distance-
based map to define the correlation structure across gates. This kind of delay
modeling is extremely cumbersome using the approach we have at hand. Now,
let us discuss canonical delay model based timing analysis techniques that
allow for efficient delay computation when considering spatially correlated
process variations.

Tightness Probability

The concept of tightness probability was proposed in [146] and models delay
as a function of n global variations and a random component as
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n
d = dnom + Y 0 AX; + an1AR (3.42)

i=1
where dnom is the nominal delay, AX; represents the fluctuation in the ith
global parameter (p = 1 across gates) X;, R represents the random variation
(p = 0 across gates) and the coefficients o’s represent the sensitivity of delay
to the corresponding parameter. The above equation represents a canonical
model of delay and provides Gaussian distributions for edge delays if the global
parameter variations X; and random variation R, are Gaussian. Without loss
of generality we can assume these RVs to have zero mean and unit variance.
These Gaussian delay pdfs in canonical form are then propagated through
the circuit to estimate the node delay pdf at each of the nodes of the graph
while maintaining the node delay in the same form as (3.42). Let us consider

an edge (u,v) with an edge delay pdf of

n
de = dnom,e + Zai,eAXi + CVvH—l,eAR (343)

i=1

and let the node delay pdf at node u be

n
dy = duom,u + Y _ 0, uDX; + ani1,u AR (3.44)
i=1
then the delay pdf at node v can be simply obtained by summing the two
pdfs, which consists of arithmetically adding the coefficients that correspond
to the same process parameters. Thus, the delay pdf at v is

n
dy = dnom, ut dnom,c + Z(ai,u + ai,e)AXi + A/ 047214.1, « T a?ﬂ.], eAR (345)

i=1

where we have assumed that the random component of delay is independent
across gates. Consider two edges el and e2 with canonical pdfs and assume
that the delay from the primary inputs to their source node are p and gq,
respectively, and are known in canonical form. The edge delays to the output
node from p and g can be combined with the node delay (exactly as in the
case for series nodes) to obtain two delay distributions = and y. Let « and y
have the form

dy = dnom,x + Z ai,mAXi + an—H,wAR

i=1

n
dy = dnom,y + 9 _ i,y AX; + a1,y AR. (3.46)

i=1
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The correlation of x and y and their variance can be expressed as

Var(z] = Z?:ll a?,x Varly] = Z?:ll a?yy
Pxy = Z?:ll Qi o QG y. (3.47)

Based on these expressions we can use Clark’s expression to estimate the
mean of z = max(z,y), which defines the first term of the canonical delay
expression. To estimate the remaining components [146] uses the concept of
tightness probability, which is defined as the probability that a sample of a RV
z has a value greater than a sample of RV y, and is mathematically expressed
as

Z—dnom,y T—dnom, x

b _ /°°so 2 = duomx | (x/vfzrm)—”””y( Varm) "
v VVar|z] /1-p2,

dnom X dnom
= <————— ’y> (3.48)
«

— 00

where ¢, @ and « are as defined in (3.38). Using the concept of tightness prob-
ability and the fact that in traditional timing analysis the delay at the output
is completely defined by either of the inputs, [146] proposes to use a weighted
sum of the coefficients of the input delays to define the coefficients of output
delay. The weighting parameter is chosen to be the tightness probability, and
thus we can write

QG 7z = 7):1:>y04i,m + (1 — 'P;z;>y)ai,y 1<i<n. (349)

The coefficient of the random component of the max is computed such
that the variance of z = max(z,y) estimated using Clark’s expressions and
that estimated using the canonical expression are identical. This defines the
canonical expression completely.

The delay pdfs can now be propagated using the above approach to handle
series and parallel nodes. This approach neglects the correlations arising due
to reconvergent fanouts and thus results in a conservative estimate as shown in
the previous section. However, the canonical model can be extended to handle
these correlations at the cost of additional computational complexity. This is
achieved by maintaining the list of source nodes for the random component
of delay while delay pdfs are propagated through the circuit [155]. In general
the number of terms in these expressions will be equal to the number of nodes
in the timing graph with a random delay component and result in substantial
overhead.
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Principal Components

In Chap. 1 process parameters were expressed as a sum of a nominal value and
an intra-die and inter-die variation coefficient. In addition, intra-die variation
has correlated and random components, with the contribution of each being
defined by the maturity of the process and the particular process parameter.
In Chap. 2 we discussed principal component analysis and found that the cor-
related variations can be handled by dividing the chip area using an nxn grid
and associating a RV to each square in the grid to represent the variations in
that grid. The correlation among these RVs is captured by defining an n?xn?
correlation matrix. Using principal component analysis we transform this set
of correlated RVs to a set of uncorrelated RVs. This step also involves the
eigen-decomposition of the correlation matrix and is computationally expen-
sive. However, this step needs to be performed only once for each correlation
structure and does not add to the computational complexity of SSTA itself.

If the delay of an edge i is initially defined to be linearly dependent on
the process parameters as in (3.42), then after performing PCA we can write
delay as a function of the principal components Y, which are Gaussian RVs
with zero mean and unit variance, as

di =a;0+a;, 1Ay1 + - + i nAYn. (3.50)

This expression now has the same form as (3.42) but captures variations due
to spatially correlated variations as well. The additional cost is paid in terms
of principal component analysis which has a complexity of O(pn®), where p is
the number of process parameters and n? is the number of squares in the grid.
Once the edge delays are defined as in (3.50), the sum and max operations can
be defined in a fairly straightforward manner. The approach proposed in [30]
uses Clark’s expressions to estimate the mean, variance and the correlation
with the principal components (y) and equates it to the respective quantity
for the max expression.

Let us consider the case where d, = max(d;,d;) and outline the steps
required for this computation. We assume that the delay pdfs are defined in
the form (3.50). The mean is expressed by the first term and the variance and
correlation of d; and d; can be calculated as

+1 +1
V(lr[di] = E‘Z:l aiyi Var[d]] = 2':1 a%,]_
Paid; = Lhey Ok, ik, 5. (3.51)

In addition, the correlation of d; with the principal component yy is sim-
ply ai k. The first term in the expression for d, is defined to be the mean,
calculated using Clark’s expressions. The remaining coefficients are the cor-
relations coefficients of d, with the principal components and are defined to
be the correlation coefficient obtained using Clark’s expression. This results
in an expression that maintains the mean and the first-order correlation with
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the principal components. However, this approach may result in a mismatch
in variance. To handle this error [30] proposes to scale the coefficients of the
principal components in the expression for d, by a factor calculated as the
ratio of the variance of d, obtained after the above steps and that predicted
by Clark’s expression. This results in a small mismatch in the correlation co-
efficient with the principal components. Note, that we have neglected random
variations in the principal component based approach — if random variations
are considered, then timing analysis can be performed while maintaining the
mean, variance and correlation coefficient [130]. We will discuss this approach
in more detail in Chap. 5 where a PCA-based analytical approach is used to
determine the parametric yield of a design under delay and power constraints.

The overall complexity of the approach can be estimated by observing
that we need to map the delay expression to the canonical delay model for
O(|V|+|E|) delay elements, which are the timing arcs and interconnects. Since
each mapping requires O(n) computation, the overall complexity of generating
the delay models is O(n(|V|+|E|)). The complexity of both the sum and max
computations is O(n), and they are performed O(|V|+ |E|) and O(|E|) times,
respectively. Thus the overall complexity of the approach is O(n(|V| + |E|)).
There is an additional cost in terms of PCA itself, as mentioned before this
is a one time investment for all future analysis and is not considered to be a
part of the overall SSTA complexity. In the case where we consider p process
parameters, the overall complexity becomes O(np(|V| + |E|)).

Quad-Tree Modeling

The Quad-Tree modeling scheme, which was introduced in Chap. 2, mod-
eled the intra- and inter-die components of variation by generating a tree-like
structure that successively divides each region of the chip into four smaller
pieces. Each piece was assigned to a RV from a set of independent RVs and
correlation at the gate level was captured by the squares that were common
to the delay expression for a pair of gates. The canonical delay model used in
the Quad-Tree based SSTA technique [3] is similar to the ones in (3.42) and
(3.50) used in the previous two analysis methodologies. However, the anal-
ysis technique is different from the canonical delay model based techniques
discussed above. It bears more similarity to the discrete pdf propagation tech-
nique discussed in Sec. 3.2.2 and does not make the Gaussian assumption for
delay pdfs.

In Chap. 2 the variation in the process parameter for a particular gate i
was expressed based on Fig. 2.8 as

AXintrai = Z AXy,+ AXZR (3.52)

0<l<k,r intersects 1

using which we can write the canonical form for delay as
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di = dnom,i + Z (78 k:APk + A-Dramdom, i (353)
k
To propagate the node delays through the graph we need to define the sum
and max operation such that the final expression is also in canonical form.
The sum expression can be defined as d, = d; + d;:

d, = dnom, i +dnom,j —+—Z(C¥iY kt+aj k)APk +ADrandom, i +ADrandom,j (354)
k

where the sum involving the nominal delay and the coefficient of the spatially
correlated component is the standard arithmetic operation. However, the sum
involving the random component is a sum of two RVs and a simple convolu-
tion is performed to calculate the distribution of this sum. Since the random
component of an edge is independent of the random component of the input
node delay, the above computation is exact.

Since there is no straightforward way to compute the max of two RVs
expressed in canonical form as expressed above, [3] proposes to generate a
bound for the max operation using the following theorem.

Theorem 3.7. For any given numbers ay, ag,..., Gy and 1, Ta,..., Tp

n n n
max 5 a;, E z; | < E max(a;, ;).
i=1  i=1 i=1

Using Theorem 3.7 max d, = max(d;, d;), can be conservatively approximated
as

d, = max(dnom, i, dnom,j) + Z(absmax)(ai,k,aj,k)APk
k
+ maX(ADrandom,i + Al)random,j) (355)

where absmax selects the value with the largest arithmetic absolute value
while retaining the sign. The max of the nominal value is also an arithmetic
max operation, however the max of the random components is a max of RVs.
These RVs are correlated due to reconvergent fanouts and computing their
max while neglecting the correlation results in an upper bound (as shown in
Sec. 3.2.2).

To reduce the pessimism introduced due to the above conservative bounds,
[3] notes that the above bound is exact if one of the delays (say d;) completely
dominates delay d;. Complete domination is said to occur if all of the following
conditions hold:

(1) dnom,i > dnom,j

(2) i,k > ok

(3) The minimum value of AD andom,i With non-zero probability is greater
than the maximum value of AD andom,; With non-zero probability
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However, if these conditions are not met then the max operation as de-
fined above defines a conservative upper bound. In this case multiple arrival
time delay pdfs are propagated through the circuit. At each node a subset of
the pdfs are propagated through the node, while the other pdfs are merged
using the max operation as defined in (3.55). The subset pdfs to be merged
are selected to minimize the conservatism introduced, which is achieved by
selecting the pdfs with the smallest mean delays. This strategy propagates
the pdfs with large mean delay through the circuit, which can be expected to
have a strong influence on the overall pdf of delay and thus effectively reduces
the error due to the conservative upper bound.

At the primary outputs (POs), the delay of each PO can be defined as a
pdf by convolving each of the terms in the canonical expression and then cal-
culating their maximum numerically. However, these delay pdfs are correlated
and we require the following theorem from [3] to show that the max arrival
time through the circuit can be bounded by ignoring the correlation in the
delay pdfs at the POs.

Theorem 3.8. Let x, x1, T2, y and z be positive, independent RVs with pdfs
p(z), p(z1), p(x2), ¢(y), 7(2) noting that 1 and x2 have the same pdf as RV
x. For any positive constant value a, the cdf of RV max(x+vy, ax+ z) is upper
bounded by the cdf of RV max(z1 + y, axa + 2).

Proof. The cdf of P can be expressed as

P(t) = / p(2)q(y)r(z)dz dy dz

z+y<t,az+2z<t
0o oo

= [ [Cawre [ padedyaz @50
0 0 z<min(t—y, (t—z)/a)

Similarly, the cdf of P’ can be expressed as

P/(t) = / p1(1)pa(@2)a(y)r(2)dzs das dy dz

r14+y<t,are+2<t
=// q(y)r(z) / p(x1)day / p(z)dz dy dz. (3.57)
0 -0 z1<t—y z<(t—2)/a

Let us consider the case when t —y < (¢ — 2)/a, for which (3.56) can be
simplified to

P(t) = /000/000 q(y)r(z) / p(r)dz | dydz (3.58)

z<t—y
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Fig. 3.14. Neglecting multiple input switching cases results in a 16% error in mean
delay estimation and a 10% error in the delay at higher percentile points. Timing
simulations considering MIS also show a smaller variance in delay [5]. (©2005 IEEE)

Comparing (3.58) and (3.57), we note that the integrand for P’ has an addi-
tional term compared to the integral for P. The additional term represents
the probability of a RV being less than some value and is always less than 1,
therefore the integrand for P’ is always less than the integrand for P, which
implies that P’(t) < P(t).

The other case when t —y < (¢t — z)/a can also be similarly analyzed to
obtain the same condition. Therefore P’ defines an upper bound for P.

3.2.4 Multiple Input Switching

A number of issues complicate traditional timing analysis such as false paths,
multiple input switching and input slope effects. In this section we discuss
an approach to handle multiple input switching (MIS) in statistical timing
analysis that was proposed in [5]. Multiple input switching refers to the sce-
nario when multiple inputs of a gate switch in close temporal proximity of
each other, resulting in an increase in propagation delay of the gate. The
probability of such an event becomes higher in SSTA since we deal with delay
pdfs instead of a deterministic arrival time, and thus the chances that two
switching events overlap is much higher.

For all analysis discussed previously, we assumed that only one input is
switching, known as the single input switching (SIS) assumption. In the case
of SIS, we handle multi-input gates by propagating the input delay pdfs to
the output by convolving it with the delay pdf of the appropriate timing
arc, and then computing the maximum of all such delay pdfs over all inputs.



3.2 Block-Based Timing Analysis 111

<

o

W 0.05f s
g " -
S 0.045} N
w

( *) sigma of gate delay pdf
0.04 (.) approximate model B

-3 -2 -1 0o 1 2 3
Difference between input arrival time instances (FO4)

1.3 T T T T T T

1.2} (*) mean of gate delay pdf B
( . ) approximate model

A B

mean(FO4)

1 i

0.9 I o — .

0.8— L L . L L
-3 -2 -1 (o] 1 2 3
Difference between input arrival time instances (FO4)

Fig. 3.15. Change in the mean and variance of gate delay as a function of the
difference between the switching times of the two inputs of the gate [5]. (©2005
IEEE)

Figure 3.14 shows the inaccuracy introduced by this assumption. The figure
is generated by performing normal SSTA. However, for each multi-input gate
the actual output delay pdf (considering proximity switching) is computed
through Monte Carlo simulations.

The modeling approach proposed in [5] is based on a deterministic MIS
model proposed in [29]. This deterministic model proposed to use a delay
push-out (D.PO.) factor for different combinations of input arrival times at a
multi-input gate, which increases the delay by a constant factor when nodes
with MIS are encountered. Figure 3.15 shows the change in mean gate delay
and standard deviation as a function of the difference between the delay of
the switching times of the two inputs, obtained by performing Monte Carlo
simulations for variations in gate length for transistors in the logic gate. As
can be observed, the mean gate delay attains a maximum when both inputs
switch simultaneously and reduces as the separation between the switching
times increases, finally saturating to the mean delay of the SIS case. However,
the standard deviation shows a minimum when both inputs are perfectly
aligned. This results from the fact that the devices corresponding to these
inputs within the logic gate are not perfectly correlated and thus the overall
variance in delay reduces from the case of SIS. As the difference between the
switching times of the two inputs increases, the standard deviation saturates
to the standard deviation for the SIS case.

To model these effects analytically [5] notes that the increase in mean gate
delay is a weak function of the standard deviations of the process variations
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themselves. Neglecting this dependence, the increase in mean delay can be
approximated using a deterministic MIS model. The standard deviation is
modeled as a piecewise linear function that is exactly equal to the SIS case
for large separation in switching times and approximates the MIS region using
a simple linear interpolation of the variance for the two SIS cases, as illustrated
in Fig. 3.15. Mathematically, the standard deviation considering MIS o, is
expressed as

0s1 if ADA<L-X
Om = { os2 if ADA>0 (3.59)
amin(osy,os2) + (1 — o) max(os1,052) 0.wW.

where ADA is the separation in the switching time of the two inputs, X
is the difference between the arrival times beyond which the effect of MIS
become negligible and o = |ADA|/X. We can now use this model to perform
MIS-aware SSTA.

Consider a two input gate with a discretized delay pdf for each of the input
pins. For each combination of the discrete events in the two input pdf we get
a different value for ADA, and therefore a different gate delay pdf. Assuming
that the gate delay pdf is Gaussian we can generate the gate delay pdf based
on the model for mean and variance developed above. Using this gate delay an
output delay pdf is generated by scaling the gate delay pdf by the maximum
of the input delay events. Thus, for O(n?) combinations of discrete events on
the input we generate O(n?) output delay pdfs. Each of these output pdfs is
then scaled by the product of the probability of the two discrete events on the
input to which this output delay pdf corresponds. These scaled pdfs are then
grouped by summing the probabilities of all events occurring at a given time
point. Since we need to combine O(n?) delay pdfs, each with n discretizations,
we get an overall complexity of O(n?). Since the number of discretizations are
typically small, ranging from 5-10, this increase in complexity is reasonable.

To extend the above analysis for more than two input gates, note that
a straightforward extension would result in computational complexity that
increases exponentially with the number of inputs. The approach proposed in
[5] iteratively considers a pair of input pins to generate the final output delay
pdf. Let us consider the steps involved in performing MIS-aware SSTA for a
three input gate with input pins A, B and C.

1) The first step is to order the nodes based on the mean delay at the
input pins. We refer to the ordered set of input pins as 1, 2 and 3, with
input 1 having the smallest mean delay.

2) Considering the two earliest switching inputs (1 and 2) we can generate
the output delay pdf using the technique described above.

3) Next, compute the output delay pdf assuming a SIS occurring on input
pin 2 and compare it to the output delay pdf calculated assuming MIS on
inputs 1 and 2. Compute the increase in mean delay as p12 and the decrease
in variance as oys.
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Fig. 3.16. The approach proposed in [5] to handle MIS shows good accuracy com-
pared to results obtained using Monte Carlo SPICE simulations. ((©2005 IEEE)

4) Now, reduce the variance of the input delay pdf of node 2 by o12. Then,
for all pairs of discrete events on input pins 2 and 3 (with delay d2 and d3)
compute the gate delay pdf. Instead of shifting the delay pdf by max(ds, d3)
as in the case of two input gates, it is shifted by max(dz + p12, ds).

5) The next two steps of scaling the output delay pdfs by the product of
the probabilities of the discrete events on the inputs and the grouping step
remain the same as in the case of two input gates.

Using this heuristic approach, gates with more than two inputs can be
handled efficiently and the number of computations required grows linearly
with the number of inputs.

Figure 3.16 shows the delay pdf of a circuit obtained using the SIS as-
sumption and considering MIS through Monte Carlo and compares these with
results from the MIS-aware SSTA approach discussed in this section. Over a
set of benchmarks [5] found that the SIS assumption results in an average
error of 13.2% and -10.2% in the mean delay and standard deviation, respec-
tively, with the maximum error being 26% and -20%. MIS-aware SSTA was
found to provide good accuracy with an average error of 0.01% and 2.07% in
mean delay and standard deviation, respectively. The maximum error in this
case was found to be 0.2% and 7.0% for the mean and standard deviation,
respectively.
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3.3 Path-Based Timing Analysis

Path-based statistical timing analysis techniques are based on performing tim-
ing analysis on a selected set of paths in a given circuit. These paths are
expected to have a significant probability of becoming critical and therefore
have the strongest influence on the circuit delay pdf. The goal of path-based
SSTA is to estimate the distribution of the maximum delay of the selected set
of paths. If the delay of each gate is assumed to be Gaussian, then the delay
of a single path is Gaussian since it is a sum of Gaussian RVs. The crucial
step is to estimate the maximum of these Gaussian RVs in order to compute
the circuit delay pdf. The simplified timing analysis approach discussed in
Sec. 3.1 is an example of path-based statistical timing analysis.

Let us consider a circuit where we select a set of N paths to perform
path-based SSTA. Using these paths we can define the cdf of circuit delay as

F(t) = P(max Dy,...,Dy < t) = Px([ {D: < t}) (3.60)

where X is the correlation matrix for the vector of path delays. The above
equation can be rewritten by normalizing the path delays to standard Gaus-
sian RVs Z; as

F(t) = Px (ﬂ{Zv < %0 - (3.61)
Note that even if gate delays are not assumed to be Gaussian, path de-
lays can be assumed to be Gaussian since a sum of independent RVs rapidly
converges (for most practical correlation structures involved in circuit delay
computation) to a Gaussian RV due to the Central Limit Theorem [109].

A path-based statistical delay computation was proposed in [54]. The ap-
proach was based on the delay computation of each path and was able to
account for signal transition times and output loading. However, the analysis
is performed on one path at a time and the number of critical or near-critical
paths in an optimized circuit can be large. In general, path-based techniques
suffer from the fact that it is unclear how to select the initial set of paths, since
a path with a significantly smaller delay may become critical for a particular
combination of process parameters. In addition, performing timing analysis
on one path a time is computationally very expensive.

In this section we will discuss the approach proposed in [103] to compute
bounds for the delay cdf, which is based on the theory of stochastic majoriza-
tion. The first step is to extract a subgraph G’ from the complete timing graph
G that contains the k longest paths of the circuit in terms of their determinis-
tic delay, and then perform a topological traversal of the subgraph to estimate
the bounds. The approach has a complexity of O(|V| + |E|), where V and E
are the sets of nodes and edges in a DAG, respectively. The improvement in
computational complexity of this path-based approach compared to other ap-
proaches rests on the use of a topological traversal to establish bounds on the
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cdf of delay of all paths in the network. The path extraction step is performed
using the approach proposed in [152], which can be used to list the k most
critical paths in the circuit.

Theorem 3.9. Let X be an n-dimensional centered multinormal Gaussian
distribution. Let X1 and Xo be two nxn correlation matrices such that

(21)1‘]‘ > (22).,;]', Vl,j [S {1, e ,'n} (362)
then
n n
Ps, (m{Xz < az}> > Psx, (ﬂ{Xl < ai}> (3.63)
i=1 1=1
is true for all vectors a = (a1, ...,a,)7.

Using the above theorem we can bound the probability in (3.61) as (as-
suming a correlation matrix for path delays to be X)

A

Py (ﬂ{zi < %[[D’j]}) > Py, <ﬂ{zi < %;Tf[%}) (3.64)
Ps <ﬂ{Zz < %[[D'i]]}) < PSrmax (ﬂ{Zz < %QE—[%?—]]})

where 3 ,yin is the correlation matrix generated by setting all the off-diagonal
terms to min; ;(X);;, and Xmax is the correlation matrix generated by setting
all the off-diagonal terms to max; ;(X);;. The computation of the bounds is
simpler because all off-diagonal terms are equal, which implies that all RVs
have the same correlation coefficient. However, since the probability computa-
tion requires an integral over a non-equi-coordinate (length of each axis in the
region is different) region, the above step is still computationally expensive.

The authors in [103] use the ideas of strong and weak stochastic majoriza-
tion to compute the above developed probability bounds.

Definition 3.10. Let X and Y be two n-dimensional RVs. X is said to
strongly stochastically majorize Y or X > Y, if

PIX € A] > (L)P[Y € 4] (3.65)
for every Borel-measurable Schur-convez (Schur-concave) set A.
Definition 3.11. Let X and Y be two n-dimensional RVs. X is said to
weakly stochastically majorize Y or X >> Y, if

PlX € A] > (S)P[Y € 4] (3.66)

for every Borel-measurable increasing Schur-convez (decreasing Schur-concave)
set A.
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Using the above definition and properties of multinormal distributions it
can be shown that if t = (¢1,t2,...,t,) and t = (¢,%,...,%), where

I
t==> t (3.67)
n i=1
then t > £ [103]. In addition, if £ = (£,£,...,), where
n

1=

t= min; (3.68)

then t > t. This implies,

P (ﬁ{zi < ,;}> <P (ﬁ{zi < t}) <P (ﬁ{zi < ﬂ) o)

Note that the above bounds are defined using the probability of a multi-
normal RV (with same off-diagonal terms in the correlation matrix) over an
equi-coordinate region that can be efficiently computed. To compute the above
bounds, the only required information is the maximum and minimum value
of the correlation between any two paths.

Now let us discuss a technique that can be used to compute the maximum
and minimum of the correlation between two paths in a DAG. Assume that
the delay of a node i can be expressed as

di = dnom,i + a; P; + b; P (3.70)

where dnom,i is the nominal delay of the gate, P is the global value of a process
parameter P, and P; represents the random variation in the process parameter
for gate ¢, and a; and b; are fitting parameters. The variance of node delay
can then be expressed as

Var(d;] = a? Var[P,] + b? Var[P] (3.71)

where variance of P; represents intra-die random variations and variance of
P represents inter-die variations. In addition, P; and P are assumed to be
independent Gaussian RVs with equal variance. Without loss of generality,
we can assume that P; and P are standard Gaussian RVs with zero mean and
unit variance. The correlation between node delays can now be expressed as

cov(d;, dj) _ bib;
VVarldilVarldi] /(a2 + 12)(a2 + 12)

corrld;, d;] = (3.72)

The term
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bi

Va2 + b2

is defined to be the chip-to-node correlation of node i. Note that the correlation
between the delay of two nodes can be estimated by taking the product of
their node-to-chip correlations.

The delay of any path p can be expressed as sum of node delays, and their
correlation (or path correlation) can be expressed as

frode — (3.73)

n

corr Z di, Y dj (3.74)
=1 j=1

Z?ll bi Z?:] b, .
(s ) (St + (San)’)
As in the case of node delay we can define a chip-to-path correlation as
path _ E:r;l bi

f, )
T o e ()

As we perform a traversal of path p assume that the path that includes the
first k£ nodes has a chip-to-path correlation of f and let the next node have
a delay of dnom k+1 + ak+1Pr+1 + br4+1P. Then, after some algebraic steps we
can write the chip-to-path correlation of the path that includes the next node

as
fk+l f2 ,@ ( Y )

2
bkt bjet1

(3.75)

where

h(k) T R2(k)
a2
B= hf&l) (3.77)

k
h(k) = bi.
i=1

Thus while traversing a DAG we only need to propagate the chip-to-path
correlation and h(k) through the nodes. Since computation of the bounds
requires us to estimate the maximum and minimum path correlations, we
must compute the minimum and maximum chip-to-path correlation at each
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PO of the DAG. The product of the two largest and two smallest chip-to-
path correlation coefficient gives the largest and smallest path correlation,
respectively.

3.4 Parameter-Space Techniques

In the previous section we discussed techniques to estimate timing yield using
the pdf of maximum arrival time at the output of a design. These methods
are also known as performance-space methods, since we map the impact of
variations in process parameters to variations in performance. The timing
yield calculation given the distribution of the maximum arrival time at the
output is fairly simple, however generating the distribution itself is a compli-
cated task. Another class of timing analysis techniques known as parameter-
space methods is the focus of this section. These methods find a region in
the parameter-space that represents the feasible region in terms of a timing
constraint on the design. The pdf of the process parameter is then integrated
over the feasible region, which is much more complicated than the hypercubic
feasible region in performance-space. However, this approach to estimate the
probability that the design satisfies the timing constraint deals with a dis-
tribution that is fairly simple and in most cases assumed to be multinormal.
Monte Carlo based integration techniques can be used to estimate the timing
yield by computing the surface integral of the feasible region [48]. However,
these approaches have high computational requirements that quickly become
unreasonable when intra-die variations are considered along with spatial cor-
relations and reconvergence.

3.4.1 Parallelepiped Method

Two different parameter-space approaches that provide reasonable tradeoffs
between runtime complexity and accuracy were proposed in [65]. The methods
are path-based timing approaches based on linear models for gate delay and
slew as a function of variations in process parameters and are amenable to
any arbitrary distribution of the underlying process parameters. The subset of
paths to be statistically analyzed are selected based on results from a nominal
static timing analysis engine. Statistical timing analysis is then performed on
each of the n paths to estimate the slack, which is expressed as

P
8; = Snom,i t+ ZaijAPj (3.78)
=1
where Spom,; is the slack of path ¢ under nominal conditions, AP; represents
the variation in the j** of the p process parameters and «;; is the sensitivity of
the slack of path i to variations in process parameter j. If a positive slack dj is
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Fig. 3.17. The parallelepiped technique to approximate the integral in parameter-
space. The squares in the center and the extreme right are completely feasible or
infeasible are not subdivided further. (©2005 IEEE)

desired for each of the paths, then the feasible region in the performance-space
of path slacks can be expressed as

Yperf = {S|Si > dOy i= 172, v 7n} (379)

where s is a vector of path slacks. Note that the above region defines a n-
dimensional hypercube in s-space. An equivalent set (in the sense that a sam-
ple in the corresponding space has the same probability of lying within these
sets) Yparam in the parameter-space can be defined as

P
Yparam = {AP|Snom,i + »_ ijAP; > do, i =1,2,...,n} (3.80)

i=1

where AP is a p-dimensional vector of variation in the parameter-space. Note
that each of the above n equations defines a hyperplane in the parameter-space
and the feasible region is a convex polyhedron analogous to the feasible region
in linear programming problems. Generating each of the corner points of this
polyhedron is a computationally complicated task and thus determining the
feasible region Yparam is not straightforward. One of the techniques proposed
in [65] is based on determining the feasible region by recursively dividing the
complete parameter-space into smaller parallelepipeds [36].

A parallelepiped in three dimensions is a prism whose sides are all paral-
lelograms, and it is a convex object. The timing analysis procedure is based
on the fact that if a set of points satisfy a set of linear constraints, then
so will any point generated using a convex combination of the initial set of
points. The complete set of points that can be generated using convex com-
binations of points is also known as the convex hull of the set of points. Since
a parallelepiped is a convex object, if we find that each of its vertices are
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feasible in terms of the constraints expressed in (3.80), then the entire par-
allelepiped is feasible. If a parallelepiped has some vertices that are feasible
and some that are infeasible, then the parallelepiped is divided into smaller
parallelepipeds (by dividing it in half along each axis). This procedure is re-
cursively continued until a parallelepiped is generated such that all its vertices
are either feasible or infeasible. At the end of this procedure a weighted sum
of the parallelepipeds based on their location is calculated to estimate the
timing yield. This procedure is illustrated in Fig. 3.17, where the squares (a
parallelepiped in 2-dimensions) in the center (right boundary) of the figure
are not sub-divided since all their vertices are feasible (infeasible). However,
any square that intersects the boundary of the convex region is shown to be
further divided until a square is generated with all its vertices either inside or
outside the convex region.

In practice, the initial bounding box as shown in Fig. 3.17 can be generated
using a hypercube of size which has dimensions of +4¢. Since the probability
that a given process parameter lies outside this bound is very small, even if the
space is feasible in terms of performance the weighting coefficient of a region
outside the bounding box would be sufficiently small to make its contribution
insignificant. In addition, a limit is imposed on the number of recursion levels
used in dividing a parallelepiped and a lower bound on the yield is obtained
by counting squares at the lowest recursion level only if all its vertices are
feasible. If only some of the vertices are feasible at this point in recursion then
the entire region is assumed to be infeasible.

This approach has a complexity that grows exponentially with maximum
recursion depth R and the dimension of the parameter-space p. This follows
from the fact that through the course of the algorithm we generate a 2P-ary
tree. Thus we need to perform O(2P%) statistical timing analysis checks. If the
statistical timing analysis check has a complexity that grows as the product
of the number of paths and process parameters, then the overall complexity
of this approach is npO(2°PF).

3.4.2 Ellipsoid Method

Another approach to determine a lower bound to the region shown in Fig. 3.17
determines the volume of the largest ellipsoid that can be inscribed in the
feasible region expressed in (3.80). Then we can integrate the probability
distribution of the process parameters over this space, which can be easily
characterized, instead of the complete feasible region defined by the convex
polyhedron. This is illustrated figuratively in Fig. 3.18. Let us rewrite the
original constraint set (3.80) as

Yparam = {AP|ATAP > by, i = 1,2,...,n} (3.81)

where bg = vec(d1 — Snom,1,---) (vec is an operator that converts a set of n
numbers to a m-dimensional column vector), and A is a P xn matrix with
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Fig. 3.18. The ellipsoid technique uses an ellipse to approximate the feasible region
and provides a simple representation of the region over which the integration is
performed. (©2005 IEEE)

Aij = oy;. The set of points enclosed by an ellipsoid can be expressed as a
matrix operation on the set of points within the unit sphere as

E={By+dl[yll <1} (3.82)

where B is a symmetric positive-definite matrix. The volume of this matrix is
represented by the determinant of matrix B (det(B)). Therefore, our goal is
to find the matrix B with the largest determinant such that all points in the
set E (3.82) satisfy (3.81). This constraint can be represented as

AT(By +d) < by, |ly| < 1. (3.83)

Writing out the above set of equations component-wise we obtain

ATBy + ATd <by;, i=1,....n, [ly) <1 (3.84)

which can be simplified using the Cauchy-Schwarz inequality as

IBAT| + ATd <bp;, i=1,...,n. (3.85)

Now, we can write the problem of embedding the ellipse with the largest
volume within the region defined by the constraint (3.85) as

Max : log det B
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st. |BAT|| + ATd <by;, i=1,...,n (3.86)
B>0
B =BT

where B > 0 implies that B is required to be positive-definite and the ob-
jective function still maximizes determinant det B since log is a monotonic
operator. The above problem is a convex optimization problem and can be
solved using standard non-linear convex optimization techniques. However,
efficient primal-dual interior point methods are available [144][157] that solve
the problem in comparatively few iterations. These techniques are based on
the ideas of interior-point methods used to solve linear and semi-definite pro-
gramming problems. In fact, semi-definite problems are a special class of the
above optimization problem in (3.86) [144].

3.4.3 Case-File Based Models for Statistical Timing

The previous two approaches seek a computationally efficient approach to de-
fine the feasible region based on parallelepipeds and ellipsoids. Now, we discuss
the ideas presented in [96], which seek to define bounds on the yield of a sim-
plified set of paths and develops methods upon which yield based case-files can
be defined, guaranteeing a given yield if the design meets timing constraints
using the developed case-file. The approach seeks to avoid the problems as-
sociated with handling spatially correlated variations. In the previous section
we looked at techniques that used PCA to simplify the correlation structure.
However, generating the correlation structure from process data is time con-
suming and complicated and in many cases the information is not available
during the design phase. Moreover, the correlation structure can be process-
dependent, which has a direct bearing on the complexity of timing analysis. As
discussed, PCA has a computational complexity that increases very strongly
with increasing grid-size, however it was argued that since PCA is a one-time
investment it does not increase the complexity of SSTA. If the correlation
changes significantly due to changes in layout then the above argument falls
through and we need to perform PCA after changes have been made to the
layout. The approach in [96] shows that it is sufficient to know the variance
of process parameters and the number of principal components to perform
parametric-space timing analysis. The number of principal components can
be estimated by identifying the number of basic independent physical process-
ing steps that lead to systematic process variations. Alternatively, this number
can be estimated by measuring the yield of a test-chip fabricated using the
same process and using the proposed model to back-calculate the number of
principal components, which can then be used for other designs.

Let us consider a process parameter X and define the parametric yield as

Y()=PX@GE) <z,i=1,2,...,n) (3.87)
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where n is the number of basic structures in the design for which X is defined.
Let us decompose X (i) as

X(Z) = Xnom + Xintcr + Xintra(i) (3.88)

where Xpom is the nominal value of the parameter X, Xinter is the inter-die
variation which is the same for all i’s and Xju,a(4) is the intra-die variation
which is different for each structure ¢ in the design. In addition, the intra-die
variation has a systematic component that depends on the spatial co-ordinates
(zi, ¥;) of i and a random component. This can be expressed as

Xintra(i) = Xsys(wia yz) + Xrand(i)~ (389)

The overall variance in parameter X for the i*" instance can then be expressed
as

UQ(i) = Ui2nter + U:ys(xh yl) + U?and(i)' (390)

The systematic component can be expressed using PCA as

P
Xsys(Tiy yi) = Zaijzj (3.91)
j=1

where Z; are Gaussian RVs with zero mean and unit variance. Note that
the only parameters we are interested in are p, which is the number of PCA
components, and > ; a?j which is the variance of the spatially correlated com-
ponent of variation in parameter X (¢). Using the above modeling approach
we rewrite (3.87) as

Y (z) = P(Xnom + Xinter + Xsys (i, ¥i) + Xrana (i) < 2,1 =1,2,...,n). (3.92)

Let us normalize the RV representing inter-die variations and define 2o =
Xinter/Cinter, and consider an event A that zo is u standard deviations away
from its mean value. Now using Bayes’ Theorem, which states that

P(B) = i P(BIA = u)P(A = ), (3.93)

we can write

0o
Y((L‘) = / P( Xsys(xi» yi) + Xrand('i)
)
<z — Xnom — Cintrath, 1 = 1,2,...,n)d(u) du (3.94)

where ¢ is the distribution of zg, which is the standard Gaussian pdf. The
probability term in the above expression depends on the intra-die component
of variation alone. Now, let us define
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Xmax = m?X(Xsys(xia yi) + Xrand (Z)) (395)

and let the cdf of Xpax be Vinax, then we can rewrite (3.94) as

Y(x) = / Vmax(w — Xnom — Uintrau)¢(u) du
—o0
=F [Vmax(m — Xnom — UintraZO)] . (396)

Now consider the case when p = 1 and note that this corresponds to the
case when systematic intra-die variations are perfectly correlated across the
die. This can be expected to be true for gate-length variations in very small
designs. In this case we can rewrite (3.96) as

Vinax(a) = /_°° H’P(Xrand(i) < a = ogys(@i, yi)v)p(v) dv (3.97)

=1

where v is a Gaussian RV with zero mean and unit variance. The probability
in the above expression can be written as the cdf of a standard Gaussian RV
D as

Orand (74)

Vinax(a) = /oo ﬁqs (w) é(v) dv. (3.98)
T =1

Since @ is a monotonic function we can lower bound Viax(a) as

@) s /0 I’z{@ (a — v min; (agys (i, yi))) $(v) dv
=1

O'rand(i)
oo M a — v max;(osys(Ts, ¥i))

Similarly, taking the maximum and minimum value of the random variation,
we can rewrite (3.99) when a > 0 as

Vinax(a) > /; " (“ = v min (0sys (3, y"))) o(v) dv (3.100)

maxi(arand (7'))
a/ max;(osys (T, yi)) a— max‘(g (:l: y))
n ¢< % sys.uz ) v) dv
/0 maxi(o'rand(z)) ¢( )
N /00 5 (a — vmax; (sys(Ts, ¥s))
a

min; (orand ()

)ty av

/ max; (osys (Ti, i)

and when a <0 as
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a — v min,(osys(Ti, ¥i))
RN o) 0

+/ao 5 (a — v min; (0sys (i, yi))) b(v) dv

/ ming(osys (s, ¥i)) min; (0rand (7))

+ /Ooo @ (a — v maxi(Geys (s, yi))) #(v) dv. (3.101)

min; (Urand (Z))

a/ min; (oays (i, ¥i))
o (

The bound developed above holds with equality if ginter = Osys = Orand = 0,
in which case the expression for Vipax(a) simplifies to

Vmax(@) = E [qs" (5 - z1>] . (3.102)

o
Using (3.102) we can lower bound the yield as

Y(z)=E [qsn (ff-%(—ﬂ — 20— z1>] . (3.103)

Now let us consider the case where p > 1. In this case we can write (3.96) as

j=

P
Vinax(a) =P (Zaijzj + Xeana(i) <@, i=1,2,.. n)

1
- /oi_ °: (Hpi(a)> $(z1) - p(zp)dar - - dzp(3.104)

i=1

where

p
Pi(a) =P | Xrana(i) <a— Zaijzj' . (3.105)
Jj=1

Using Cauchy’s inequality

n n
Zaijzj < Z(l?j : (3106)
j=1 j=1 j

we can develop a bound on P;(a) as

Pi(a) =P (ZP: a;jz; < a— Xrand(i))
j=1
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- Xrand (Z) (3 107)

n
P Xrand(i) S a — Usys(xia y‘l.) Z ZJZ'

J=1

a— Usys(xh yi) Z?:l Z2

Orand (Z)

=

Through the use of Cauchy’s inequality, [96] develops a bound for the
yield that is independent of the a;;s themselves, and is only dependent on the
overall variance. Now, using the above expression Vjax can be bounded as

a — Usys(wiv yi) E?:l 2

Vmax(a) > E | [[ © p—r

i=1

a — maxi(osys(mh yz)) Z;‘lzl zjz

> E|on :
Orand (7')

(3.108)

From the theory of probability distributions we know that the squared sum of
p independent Gaussian RVs has a chi-square distribution with p degrees of
freedom, which is symbolically represented as Xf,- Thus, we can rewrite (3.108)
as

Vinax(a) > /oo " (a — max; (Tsys(Ti, yi))ﬁ) fra () d. (3.109)

0 Orand (7')

As in the case of p = 1, we can develop bounds for the cases when a is
either positive or negative using the maximum and minimum values of the
variance of the random component.

Let us now integrate the ideas developed above with a path-based timing
analysis technique. Consider a set of N critical paths and assume that these
paths are node-and-edge disjoint. This assumption effectively makes the delay
distribution of each path independent in terms of correlations arising due to
reconvergence, and the only correlation results from correlated variations in
process parameters. For this simplified network, we can express the timing
yield as

Y(to) = P(D; <to,j=1,...,N). (3.110)

Now, we can develop bounds for the yield expression in (3.110) using the
expressions developed above. However, as in the case of electromigration, as
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the number of paths tends to infinity the yield of a design goes to zero. To
resolve this contradiction, [96] proposes to use a truncated normal distribution
for process parameters and derives bounds on the yield of designs which is
found to be independent of the number of paths n. Let us represent this bound
as Yp(z). In the context of (3.110), if the desired yield is y we can write

to = Yy H(y). (3.111)

If we assume that each of the paths is an M-gate path and that gate delay
can be expressed as

k
Di=Y P, (3.112)
=1

which represents the gate delay as a function of k process parameters (Pj) and
o's capture the sensitivity of gate delay to each of the process parameters,
then each gate delay should satisfy the constraint that

k
to
i S ;aiﬂu (3.113)

This implies that we can construct a worst-case delay model that can be used
to perform traditional timing analysis on the design while guaranteeing that
the desired timing yield is achieved. If we assume that the worst-case file is
developed with equal margins for all process parameters, then we have the
condition that

B_P_ B4 (3.114)
op, op, op,
Combining (3.113) and (3.114) we get
t
Azl (3.115)
M3 i, aiop,

which gives the point at which worst-case files should be developed to
guarantee a desired yield y for the circuit. It is important to note that such a
case-file can only be developed for cases where all critical paths have similar
logical depths, and is not applicable to all DAG topologies.

3.5 Bayesian Networks

The Bayesian Network based approach was proposed in [19] and computes
the exact pdf under the assumption that node delays are independent. Since
the delay at the inputs of a gate are correlated due to reconvergent fanouts, it
is not possible to compute the distribution of delay at the output node of the
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Triangulated DAG

Fig. 3.19. A Bayesian Network for timing analysis is generated by moralizing and
then triangulating the DAG [19]. (©2005 IEEE)

DAG based only on the individual distribution of delay at the inputs of the
node. Developing an expression for the joint pdf in terms of the gate delay
pdfs of all nodes in the circuit is also computationally infeasible. Although
the approach based on Bayesian networks has exponential complexity, the
complexity grows exponentially with the size of the largest clique in the circuit
and not the circuit size itself. A clique is a subset of nodes in the circuit, such
that each pair of nodes are connected by an edge. The size of the largest clique
in the circuit grows much more slowly than circuit size and results in better
performance using this approach. Now let us define a Bayesian network.

Definition 3.12. A Bayesian network is a set of variables and a set of
directed edges between the wvariables that form a DAG. Each variable A
has a finite number of mutually exclusive states that it can take and if
By,...,B, are its predecessor nodes, then a conditional probability distribu-
tion P(A|Bu, ..., By) is associated with each node.

The approach is based on breaking down the computation of the complete
joint distribution of delay of each node in a circuit to smaller factors. Let us
consider a DAG as shown in Fig. 3.19. The probability distribution of the
delay of node 8 (Xg) can be represented as

P(Xs)= Y. P(X1,Xa,...,Xs) (3.116)
X100, X7
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However, computing the complete joint distribution function of X3y is com-
putationally very expensive. If the DAG has n nodes with each node taking
m discrete values, then the overall number of computation steps required
in (3.116) is O(m™). However, the above expression can be simplified using
Bayes’ Theorem to

P(Xs)= > P(XslX1,Xa,...,X7)P(X1,Xa,..., X7).  (3.117)
X1,.,X7

Since X7 and Xg are the only predecessor nodes of Xg, we have

P(Xs| X1, Xa,. .., X7) = P(Xs| X6, X7). (3.118)

Using the above relation we can simplify (3.116), and then using expressions
of the form (3.118) for each node we can finally write (3.116) as

P(Xs) = D P(Xs|Xe, X7)Y D> P(Xr|X5,X4) Y P(X2)

Xe,X7 X5 Xa X2
D P(Xs| X2, X1)P(X1) Y P(X6| X3, X2)P(Xs).  (3.119)
X1 XB

Using the above equation the joint probability distribution can be broken
down so that we do not need to compute the joint distribution of more than
three variables at a time. The process of breaking down the joint distribution
into factors is performed by first changing the DAG into a graph by removing
the directionality with each edge. The graph is then moralized by connecting
the predecessors of each node by an edge, since the delay pdf of a node can be
completely determined by the joint distribution of the delay of the inputs. The
next step involves triangulation of the graph to remove all chordless cycles of
length greater than three. Thus, Bayesian networks ensure a partitioning of
the initial DAG such that, by partitioning the circuit into cliques, the delay
pdf of a node in the graph can be found by computing the joint distribution
of nodes within a clique.

The cliques are then arranged within a clique tree, using techniques de-
scribed in [40]{64][110] as shown in Fig. 3.20. The joint probability distribution
of X; and X, is then passed to clique C; to obtain the joint distribution of
X1, X2 and X5 as

P(Xl,Xz,X5) ='P(X5|X1,X2)'P(X1,X2). (3.120)

The same procedure is repeated for clique Cy. The computation for clique Cj
is performed as
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Fig. 3.20. A clique tree that can be traversed to completely determine the distri-
bution of delay at the output node [19]. (©2005 IEEE)

Table 3.2. The number of nodes, edges and cliques in the DAG for the ISCAS’85
benchmark circuits, along with the size of the largest clique. The size of the largest
clique is observed to grow much more slowly than the size of the circuit [19)].

Circuit Nodes Edges Max Clique Cliques (%)

cl7 11 12 4 8
c432 196 336 38 150
c499 243 408 32 183
c880 443 729 53 305
cl355 587 1064 49 402
c1908 913 1497 67 678
c2670 1426 2075 89 1084
c3540 1719 2936 189 1195
ch315 2485 4386 139 1701
c7552 3719 6144 7 2593
P(X2, X5, X6) = P(X6|X2)P(X5,X2) (3.121)
_ P(X 273()(2,){3,)(6 ;7) X1, Xa, Xs).
1

All the computations as shown in Fig. 3.20 can be performed similarly
to find the distribution for Xg. Using this approach the complexity of delay
pdf computation for the output node can be reduced from O(m™) to O(m°),
where c is the size of the largest clique in the graph. Table 3.2 shows the size
of the largest clique for the ISCAS’85 [23] benchmark circuits. The size of
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the largest clique is much smaller than the circuit itself, and grows at a much
smaller rate as circuit size increases.

The specification of the Bayesian network involves the computation of
conditional probabilities for all combinations of the states of inputs and out-
puts. To reduce the computational overhead involved, [19] proposes to use the
following techniques:

1) Fanin reduction: The number of conditional probabilities that need to
be evaluated grows exponentially with the number of inputs of a gate. Thus,
a large reduction in computation can be achieved by breaking down a large
fanin gate into two stages, each with a smaller number of fanins.

2) Series reduction: Before constructing the Bayesian network, all series
edges in a graph are merged into a single edge using the procedure described
in Sec. 3.2.

3) Input reduction: If a node has two or more inputs, and the earliest
arrival time at one of the nodes is greater than the latest arrival time at
another node, then the connection to the latter node can be broken since it
does not impact the pdf of delay at the output.



4

Statistical Power Analysis

The two main components of power dissipation are dynamic and static power
dissipation. Dynamic power dissipation corresponds to power dissipated dur-
ing the switching of nodes in a circuit and is spent in charging capacitances
associated with the transistors and wires. On the other hand, static power
dissipation corresponds to power dissipation due to the continuous flow of
currents through the devices even in steady-state, when the logic states are
not changing. In this chapter, we will develop techniques to statistically ana-
lyze different components of power. Let us first review some of the basics of
power dissipation.
The dynamic power dissipation is given by the well-known equation

PDyn = ‘/dzdf Z Cgatepswitcm (4'1)

gates

where the summation is over all gates in the design. Cyq4. is the capacitance of
a gate, Vyq is the supply voltage, f is the frequency of operation and Psyitch is
the switching probability of the gate. Here we have neglected the short-circuit
component of dynamic power dissipation, which is due to the current that
flows from the power supply to the ground when the devices are switching
and both the pull-up and pull-down network of a gate are conducting. This
component of power dissipation is generally small and can be safely neglected.
However, it is important to note that if a design is highly unoptimized and
has large transition times, then the short-circuit power dissipation can form
a significant fraction of the total power dissipation.

Leakage power has grown with process scaling process to contribute a sig-
nificant fraction of the total power budget. A study from Intel Corporation
shows that leakage power will contribute approximately 50% of the total power
dissipation in the 90 nm technology node. The prominence of leakage currents
(Iof¢) in modern integrated circuits (ICs) has been spurred by the continued
scaling of subthreshold voltage (V;,) and gate oxide thickness (T,z). In ad-
dition, both subthreshold and gate leakage currents are known to be highly
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sensitive to process variations due to its exponential dependence on many of
the key process parameters. Hence, it is critical to analyze leakage power sta-
tistically. The focus of this chapter will be to develop techniques which enable
efficient and accurate statistical analysis of leakage power.

4.1 Overview

Leakage currents can arise due to varying phenomena. Reference [28] lists eight
different mechanisms of leakage current. Not all these components of leakage
are important during normal modes of operation, and subthreshold leakage
(Isup) and gate leakage (Igqte) currents are the most significant components
of leakage current. In future technologies, band-to-band tunneling (BTBT)
[121] leakage is expected to increase considerably and will form another major
component of leakage power dissipation.

The exponential relationship dependence of I, on Vi, and Igate on Toy
is central to the problem of both leakage analysis and optimization. This
continued scaling in V4, and T, in scaled technologies in order to maintain
good device switching speeds at low supply voltages, has been the reason for
large leakage currents. With the proliferation of portable applications that
spend significant time in standby mode, large I,fs values become a criti-
cal roadblock to improved battery lifetimes [62]. Thus, leakage power min-
imization has become a key objective and a number of methods for leak-
age reduction have been proposed for standby mode and during run-time
[76],(66],[95],[128],[151],[57],[68],[149],[148],[107].

In addition to the rapid growth of I,fs with each technology generation
fluctuations of I, ¢ from die to die or even gate to gate have also increased.
This is especially true for subthreshold leakage currents, since controlling Vi,
is made more difficult in nanometer scale MOSFETs by Drain-Induced Bar-
rier Lowering (DIBL) and discrete dopant effects [13]. While DIBL has been
a problem since channel lengths first reached submicron dimensions, it is ex-
acerbated in sub-100 nm devices by fundamental scaling limitations on oxide
thickness (Ty). Reductions in T,, have kept DIBL at reasonable levels since
the gate could also be more strongly coupled to the channel. Discrete dopant
effects are important only in very narrow devices at advanced technologies
but lead to potentially large random fluctuations in channel doping levels,
and hence, V;;. In a projected 50 nm technology, the V;;, 30 uncertainty due
to discrete dopant effects is expected to be comparable to the magnitude of
the nominal V, itself [13]. For T,, values below 1.5nm, gate oxide leakage
effects become significant and limit the scalability of T,,. Although gate oxide
thickness is generally well controlled in a process, the strong exponential de-
pendence of Igq¢c 0n Ty causes large variations in Ig,¢. due to small variations.
The BTBT component of leakage, expected to become a major contributor
in future generations, is also exponentially sensitive to variation in channel
doping.
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Fig. 4.1. Dependence of mean and standard deviation of leakage current on 3o
variation in gate-length.

With the growing uncertainty in process parameters, estimation of I,z
for a device becomes difficult, making the use of traditional delay-oriented
corner models for leakage analysis impractical [98]. Worst-case model files
can easily exhibit 10~100X larger I,¢s than a nominal device, which leads to
excessive guard-banding and overly conservative design practices. However,
ignoring I, variability altogether is also not an option since a small number
of very leaky devices can easily dominate the total static power consumption.
Figure 4.1 shows that the average leakage can be much larger ( 30% for PMOS
with a 30 variation in gate-length of 12.5%) than the nominal leakage due to
the exponential dependence of current on the gate-length. This observation
also invalidates the use of nominal device model files for even typical dies.
The results also show that the degradation of PMOS leakage current with
variations in the gate-length is much worse than the NMOS counterpart with
the same degree of gate-length variation. This is due to the fact that DIBL
effects in PMOS devices are typically worse than in NMOS devices [142].

Monte Carlo (MC) simulations provide a method to analyze the effect of
process variations. However, MC techniques are very expensive in terms of
time complexity and cannot be used to efficiently guide leakage optimization.
Hence, an analytical approach to leakage current estimation is very useful to
enable the prediction of leakage power in a design before it has been fabricated
[69]. In this chapter, we first discuss leakage models and then discuss tech-
niques to estimate the mean and variances of different components of power
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dissipation at the chip-level proposed in [69]. We then discuss an approach to
estimate the mean and variances of leakage currents for a design described at
the gate-level. A technique proposed to estimate the complete probability dis-
tribution function (pdf) of subthreshold leakage using empirical subthreshold
equations considering both intra-die and inter-die components of variation is
then presented. Finally, techniques to estimate the impact of environmental
parameters on leakage currents proposed in [136] are discussed.

4.2 Leakage Models

We first discuss the traditional device equations that are used to model various
components of leakage currents that we will be using throughout this chapter.
The subthreshold leakage current is the current that flows between the source
and drain of a device when the device is turned off. The charge transport
occurs through diffusion along the surface of the device and is expressed as

Iy = Igexp (K‘%—;—/—T‘—/t—h) (1 — exp (*&?s)) (4.2)

Iy = HOOow(W/LEff)V%(n -1) (4.3)

where C,, is the gate oxide capacitance, Vp = KT/q is the thermal voltage,
Vin is the threshold voltage of the device, and n is the subthreshold swing
coefficient. The threshold voltage of a device depends on the source-to-body
voltage Vi, and the drain-to-source voltage Vg, of the device due to body and
DIBL effects, respectively, and can be expressed as

where

A
Vin = Vyo + 2651 + 5\/20Nenes (1265 + Vio) = AaVas (44)
ox

where Vy is the flat-band voltage, ¢, is the surface potential, A, is the body
effect factor, ¢ is the charge of an electron, N, is the channel doping concen-
tration, €, is the permittivity of Silicon, and A4 is the DIBL coefficient.

The gate leakage current results from the tunneling of electrons (holes)
from the substrate to the gate of a NMOS (PMOS) device. As shown in
Fig. 4.2, the gate tunneling current is composed of several components. Igs,
and I 4, are the leakage currents that flow through the gate-to-S/D extension
overlap regions, and Iy is the gate-to-inverted channel tunneling current. A
fraction of I, flows to the source (Igcs) and the drain (Igeq) [25]. The key
dependency of gate leakage on process parameters can be expressed as [28]:

2
T
b= (7)o (-0 @3
oxr
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Fig. 4.2. Components of tunneling gate current.

where T, is the oxide thickness, W is the device width, and A4 and By are
process dependent physical parameter. The equation shows that gate leakage
is a strong function of gate oxide thickness.

The BTBT component of leakage of a device in the off state can be ex-
pressed as [93]:

€k ~BE,"”
IBTBT = Z WLkA_l/z‘Vdd exXxp| ————— (46)
side, bottom E.q £k

where Lgige = X; the junction depth, Lyottom = Lspr + La (L4 being the
length of the junction), &side and &pottom are the electric fields at the side
and bottom junctions, A and B are physical parameters, and Fg is the band-
gap voltage. The dominant component of BTBT leakage comes from the side
component since the doping concentration is strongest at the sides of the
junction, the above expression can be simplified as

_BE3/2
IprBT = WXjA—é%/—szdexp (—E—i—) (4.7)
g9
where
2thaloNsd ( KT (NhalaNsd)>
=4 ——— Vs —In{ —— 4.8
£ \/GSi(Nhalo + Nsd) da q " n12 ( )

where Npqi0 is the halo doping concentration, N4 is the source/drain doping
concentration, and n; is the intrinsic doping concentration.

These expressions define the dependence of various components of leak-
age currents on the device characteristics. We will discuss approaches to use
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these equations directly for statistical analysis, however it will become ob-
vious as we go through the next few chapters that it is better to simplify
these equations. This is achieved by capturing the strong sensitivities from
the above expressions and using empirical expressions to model the leakage
current components.

4.3 High-Level Statistical Analysis

High-level statistical analysis techniques are useful to estimate performance
parameters of a design when detailed information about the design is not avail-
able. Early in the design stage detailed gate-level information is not available
and only parameters such as the total device width and the relative fraction
of on/off devices in a design are available. Considering 4.1 we note that due to
the linear dependence of dynamic power dissipation on gate-length and gate
width, any given variation in these process parameters results in a similar
variation in dynamic power. However, leakage components are exponentially
related to process parameters and small variations in these process parameters
result in large variations in the leakage current itself.

Since leakage currents have very wide distributions, using worst-case mod-
els can result in huge overestimation of leakage. In addition, as noted before
the nominal values of process parameters do not correspond to the average
value of leakage currents. Such information can, therefore, become crucial in
allowing the designers to make critical changes regarding leakage power dis-
sipation early in the design process. For example, such information can point
designers to sections of the design where excessive leakage power is consumed
and specialized leakage reduction techniques can be utilized to control the
leakage power dissipation for those sections of the design.

To estimate the impact of the within-die component of variation in leakage
power, we discuss the approach proposed in [69]. The variations in the process
parameters are assumed to be normally distributed. Given an estimate of
the total device width in a design the average subthreshold leakage current
considering variations can be expressed as

Bllo) = Tow—e— [ exp (_(_”” _ “)2) exp (” - 5”) de  (4.9)

oV2or Jg 202

min

where I is the nominal subthreshold leakage current per unit width, w is the
total device width, u and o are the mean and standard deviation, respectively,
of the process parameter represented as « [69]. The above equation can be used
to consider the impact of variations in both gate-length or threshold voltage.
In the case where x represents gate-length, a captures the relationship between
gate-length and subthreshold leakage whose numerical value can be estimated
using SPICE simulations. If the parameter x represents V3, then a will be nVr
as in (4.2). The second exponential term in the above equation thus captures
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the dependence of subthreshold leakage current on the process parameter
being considered. The first exponential term in the above equation represents
the Gaussian distribution of z and provides the fraction of device width that
can be expected to be associated with a given value of the process parameter
z. Equation (4.9) can then be re-written as

1 o? Tmaz —(x-p? p-z —0o?
E[I = Jow——=— — _
[Tsub) Owa o exp (2)\2> /x exp < = -+ \ + o2 ) dz

min

1 o? Tmaz T— o \?
- L TEL 7 ) lde. (410
v O <2>\2> /:c P K V2o \/§>\> } e @10

min

The integral in the above equation is then rewritten using the transformation

T— o
t=|"E 4 —
[ 20 V2\

which simplifies the integral to

] = dz = V20dt (4.11)

Tmagx —H a
0'2 20 + V2
2)\2

Iw (2
2 P 2xz

where erf is the error function. The algebraic details regarding the derivation
of (4.12) can be found in [69]. Note that when > 1 then erf(z) — 1 and
both terms in the error function in (4.12) become much greater than one.
Therefore, the final simplified expression for leakage can be written as

EIsw) = Iow% exp (

2
E[Isub] = Ipwexp <2UW) (4.13)

The results in [69] present leakage power measurement data for 960 sam-
ples of a 180 nm 32-bit microprocessor. Upper bound of leakage current was
estimated by assuming that all gates are operating at their worst-case corner,
while the lower bound was estimated by using nominal values for all process
parameters. Results show that for most of the samples, using a lower bound
as an estimate underestimates the leakage by as much as 6.5X and using an
upper bound results in overestimation by 1.5X. The technique discussed above
shows a good correlation with data and the calculated leakage is within 20%
of the measured value for more than 50% of the samples, as compared to 11%
and 0.2% when upper and lower bounds are used as estimates.
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Fig. 4.3. Ratio of measured to calculated subthreshold leakage current distribution
for the upper and lower bound analysis techniques described [69]. (©2005 IEEE)

In general, The technique can be extended to estimate other components
of leakage power as well. The key step in this technique was to simplify the
subthreshold leakage model to only have an exponential dependence on the
process parameter under consideration (if the dependence is expressed linearly,
as in the case of device width, then the problem boils down to the situation
in dynamic power estimation). Though the simple model is inexact, as can be
easily seen by looking at the expressions in (4.2) and (4.5), reasonable accuracy
can be achieved by using a fitting parameter (a in this case). Models which
satisfy this criterion have been developed for gate leakage [78] and are found to
provide good fidelity and accuracy. The approach outlined above can then be
directly extended to consider the impact of variations in gate leakage. Similar
simplifications of leakage expressions will form the cornerstone of many of the
techniques that we will discuss in later sections.

4.4 Gate-Level Statistical Analysis

In this section we will develop techniques to analyze the power dissipation
of a gate-level design. As compared to the previous section, the approaches
discussed in this section will be concerned with the estimation of leakage
currents for individual gates and then the summation of these estimates to
calculate the overall leakage of a design. In this section, we will first develop
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a general technique that has been used to estimate the mean and variance
of leakage currents [129] and present the application of this technique to es-
timate the mean and variance of various leakage current components. Later
in the section we will discuss the techniques to estimate the complete pdf of
subthreshold leakage current considering both intra-die and inter-die varia-
tions [117]. The technique used to integrate intra-die and inter-die variation
is fairly general and can be easily incorporated into other approaches, that
consider only intra-die variation, to consider both components of variation as
well.

4.4.1 Dynamic Power

If we consider the equation of dynamic power dissipation (4.1) it is evident that
process variation result in variation in dynamic power only through variation
in the switched capacitance, as the switched capacitance varies linearly with
gate-length and gate widths. Furthermore, the variation in dynamic power
dissipation is much smaller compared to variations in leakage power which de-
pends exponentially on a number of process parameters, as we saw earlier. The
impact of variations in gate-length or gate width on dynamic power dissipa-
tion can be easily estimated since the dynamic power dissipation is a weighted
sum of the individual random variables (RVs) (representing gate-length or gate
width). The gate-lengths are assumed to come from a multinormal probabil-
ity distribution, and can be mapped to a linear combination of independent
RVs using principal component analysis as discussed in Chap. 2. Therefore,
the sum can be represented as another Gaussian RV. The parameters of the
Gaussian RV are estimated using the following property of Gaussian RVs.

Let X; be an independent Gaussian RVs with mean p; and standard de-
viation o; and let Y be a linear combination of the X;’s which is expressed
as:

then the mean and variance of Y can be expressed as:

My = Zamﬂrb

3
oy = [ alo?. (4.15)
i

On the other hand, dynamic power dissipation has an inverse dependence
on T,, and, hence it is not as straightforward to consider this impact. It is
important to note that the T, variations are generally very well controlled as
compared to the variations in gate-length and gate width, and the variations
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in To, can generally be ignored while considering dynamic power. Also note
that variation in process parameters results in a similar variation in dynamic
power in terms of the ratio of SD and mean. Hence, variations in dynamic
power dissipation have not been a pressing concern, compared to the variation
exhibited by leakage power.

4.4.2 Leakage Power

The first step to estimate the overall pdf of leakage power dissipation is to
estimate the mean and variance of different components of power dissipa-
tion. As in the previous section, we assume that the variations in the process
parameters are normally distributed.

Estimating Parameters of the Distribution

Considering only intra-die variations, let g(z) represent the dependence of
some component of leakage current on a process parameter  which is assumed
to be distributed according to the distribution function f(z). The mean or
the expected value of g(z) can then be expressed as

Els@)] = [ 9(e)f(@)z (1.16)
using the Law Of The Unconscious Statistician (LOTUS). Then using Taylor’s
formula, g(x) can be expanded around the mean value of x and (4.16) can be
re-written as

Elg(z)] = /OO (Z g’;l(ln) (- 77)") f(z)dz (4.17)
— \n=0 :

=> gr;.n) /Oo (z —n)"f(z)dz (4.18)
n=0 ' —00o

where 7 is the expected value of f(z). The term within the integral in (4.18)
corresponds to the central moments of f(z). If f(z) is assumed to be Gaussian
then only the terms corresponding to even values of n contribute to the sum.

Since variations in process parameters are generally within a range of 10—
30% of the mean value, we can assume that x is concentrated around its mean
value. Using this assumption, we can neglect higher order terms in (4.18).
Note that improvements in accuracy can only be obtained by considering two
additional higher order derivatives,. Each such addition in (4.18) provides two
orders of improvement in accuracy. A similar approach can be used to estimate
higher order moments of g(z), where instead of taking the Taylor’s expansion
of g(z), the appropriate function of g(z) is used.
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Having established the general approach to estimate the parameters of
any source of power dissipation, let us now consider the case of subthreshold
leakage in a single device which is turned off. In the off-state, the gate-to-
source voltage (Vgs) of a device is zero and the drain-to-source voltage (Vys)
is V4, which results in the simplified expression for subthreshold leakage as

-V, -V -V
Iwo = Iy (1 — exp <—Vf‘i)> exp (ﬁ) = I} exp ( nVZﬁ) . (419)

. Equation (4.19) shows that the subthreshold leakage current is a function of
the threshold voltage, drawn dimensions, and gate-oxide thickness. Hence, to
estimate the variation in subthreshold leakage, the dependence of threshold
voltage on other process parameters needs to be established.

The approach developed in [129] uses simplified expressions for the body
effect and DIBL coefficient to estimate this dependence. If we consider varia-
tions in gate-length alone, the variation in threshold voltage can be expressed
as

AV _ OVendda | OVindN _ v,
AL ONg AL~ 0O\, dL L

The dependence of the body effect coefficient A, on the process parameters is

expressed as
2W X,
Ap=1- 1/1 — -1 4.21
b ( +Xj > I (4.21)

On the other hand, the physical dependence of Ay on process parameters is
much more complicated and empirical expression developed in [97] can be
used. Using (4.20), and isolating the terms in (4.19) which depend on gate-
length we obtain:

(4.20)

Toup = (4‘22)

I(/)Lnom ex —Vin + KXM (L — Lnom) — _I&eIﬁL
L P nVr -T°
Hence, using g1,(z) = e1%/z in (4.16) we can estimate the mean of leak-

age power considering variations in gate-length. Expressions similar to (4.20)

are developed in [129] to estimate the variations in subthreshold leakage due

to variations in other process parameters. This approach to estimate the de-
pendence of threshold voltage on process parameters neglects all second-order
effects in the body-effect coefficient and DIBL and, therefore, results in inac-
curacies. An improvement to this approach was recently proposed in [156]. In
this work the dependence of dVy,/dL in (4.20) on gate-length is captured by
calculating its average value over the range of variations in gate-length (+30).
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Having analyzed the simplified problem of evaluating the mean and vari-
ance of an individual device, let us now consider the case when a set of devices
are connected in parallel or series, which is used in the construction of most
gates. Since the different devices in a gate are in close proximity of each other,
the RV defining the variations in these gates can be assumed to be perfectly
correlated. We now consider the case where there are n devices in parallel. In
this case, the overall leakage Isyp parr can be expressed as

n
Isub,parr = ZIsub,i (423)

where Igyp,; is the individual leakage of each device. The evaluation of the
mean and variance of the set of parallel devices now becomes straightforward
and can be expressed as

sub parr Z w [Isub z]

Var sub pa'rr Z o [Isub 1] (424)

The case of series-connected devices is much more complicated since no
accurate and simple expression is known to exactly estimate the leakage cur-
rent through a stack of off devices. Various approaches for the analysis of
leakage current in stacks have been developed [33], [56]. The approach in [56]
is simple but is not found to provide accurate results. The approach in [33] is
more accurate and general in the sense that it can model stacks of arbitrary
length. Based on this approach, statistical models for the leakage current of a
stack with two off transistors can be obtained with some minor assumptions.
The approach can in theory be extended to stacks with a larger number of off
transistors, although the complexity increases rapidly with the stack length.
For the purpose of analysis, [33] assumes that the on transistors in a stack
behave as short circuits which is true except for the case when the top-most
transistor of the stack is on and induces a V;;, drop in the voltage seen by the
rest of the stack. Barring this case, the source-drain voltage of the lower off
transistor (since we have only two off transistors in the case) is given by [33],

nVr AdVad
s = —-—m 1 . -2
Va 1+2)\d+)\bln[exp<n >+ ] (4.25)

The leakage current expression (4.2) for a stack can then be simplified to

-V — (Vi + nVy,
Isub,series = Ipexp <TL_Vf:) — Ipexp (_‘(-t{lWT—d)) (4.26)
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which expresses the leakage current as a difference of two exponential
terms. To estimate the mean and SD of this expression we utilize the fact
that

E[X —Y] = E[X] - E[Y]
E[(X -Y)? = E[X?| + E[Y?] - 2E[XY] (4.27)

where X and Y are any two RVs. Note that, under the assumption that vari-
ation in Vg, are small, the terms whose expected values need to be evaluated
are in the same form as (4.19) and the same steps as discussed above can be
repeated. Again, we notice that approximations need to be made while per-
forming statistical analysis, if physical models for leakage currents are used,
which can result in inaccuracies.

The general approach outlined in (4.16)—(4.18) has also been used to es-
timate the mean and variance of gate leakage and band-to-band tunneling
(BTBT) leakage [121] currents in [94]. Having established techniques to es-
timate the mean and variance of different components of leakage power dis-
sipation, we now discuss techniques to estimate the complete pdf of leakage
currents. First, we develop a new empirical model to obtain the desired ac-
curacy with certain key characteristics which simplifies the estimation of the
complete pdf while providing reasonable accuracy.

Simultaneous variation of multiple parameters

The approach discussed above can be easily extended to consider simultaneous
variations in process parameters. The problem of evaluating the leakage in this
case is simplified by our earlier approximation of linearizing the effect of the
change in threshold voltage with the process parameters (4.22). Under these
assumptions the expression of the subthreshold current can be expressed in
the form of (4.22) as

Is‘u,b = Kgl(m)QQ(y) (428)

where z and y are two different process parameters. Ideally, the choice of pro-
cess parameters which are used in the analysis should be made such that the
parameters are independent of each other. This implies that parameters such
as gate-length and threshold voltage should not be used as process parame-
ters since variations in gate-length result in variations in threshold voltage. A
better approach in this case is to consider variations in gate-length, channel
doping and gate oxide thickness, which can be assumed to have independent
variations. Under this assumption, we have a product of two independent RV
in (4.28), which can be handled using the fact that the expectation of the
product of two independent RVs is the same as the product of their expec-
tations. Using this fact, we can estimate the mean and standard deviation of
the leakage current in terms of the functions in (4.28) as
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ilTous) = ElKg1(2)g2(y)] = K Elg (2)] Elga(v)]
0Tt = \/ KB (@) Bl W) - B2lo1 @) E[a(v))).  (4.29)

The terms in the right hand side of (4.29) can be evaluated using the technique
developed to estimate moments of leakage currents considering variations in
a single parameter.

The same ideas can also be extended to estimate the parameters of total
leakage [94]. The total leakage can be expressed as:

Ileak = Igdo + Isub (4'30)

Then, the mean and SD of total leakage can be obtained using the first two
moments, which are expressed as:

E[Ileak:] = E[Isub] + E[Igdo]
Elfor) = ElI2u) + Ell5a0) + 2E[subTgao). (4.31)

The cross product term has the same exponential form as the other compo-
nents of leakage currents and is treated similarly, by writing it as a product
of functions of single process parameters.

The results obtained in [94] are shown in Tables 4.1 and 4.2 where Vi, is
the flat-band voltage, Ngep is the channel doping concentration and Npqi, is
the halo doping concentration. The results show that Monte Carlo and ana-
lytical results track very well except for cases when the variations are larger
than 20%, where the SD shows significant error. This could result from the
fact that only the first few terms are retained in the Taylor’s expansion in
(4.18) and higher order terms become important when variations in process
parameters are larger. As expected, gate leakage shows the strongest sensitiv-
ity to variations in Ty, due to its strong exponential relationship. Subthreshold
leakage shows strong sensitivity to variations in L, T,;, and V3, but is much
less sensitive to variations in doping concentrations, corroborating the results
found in [129]. Generally, variations in T,, are very well controlled and most
of the variations in I, result from variations in gate-length and threshold
voltage.

Estimating the probability density function

We begin by describing the method to compute an analytical expression for the
pdf of subthreshold leakage for an individual device using simplified empirical
models. First, the dependence of I, on L is characterized by the function h
such that Iy, = h(L), which is then used to determine the inverse function
9(Isup), that expresses L as a function of Iy : L = A~ (Lews) = g(Lsup)- In
order to compute the pdf of the leakage, it is essential that:
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Table 4.1. Comparison of the analytical approach with Monte Carlo simulations in
estimating the impact of process variation on Ig4, (Nominal value is 8.43nA) [94].

Parameter Variation Mean(nA)  Mean(nA) SD(nA) SD(nA)

Varied (30) Monte Carlo Analytical Monte Carlo Analytical
Vi 20% 8.54 8.56 1.71 1.68
Tox 10% 9.30 9.32 4.43 4.29
Tox 10% 12.50 12.55 14.20 11.00

Lspr 20% 8.44 8.43 0.56 0.56
w 10% 8.43 8.43 0.28 0.28
All 10% 9.40 9.36 4.55 4.46
All 20% 12.89 12.74 14.82 11.80

Table 4.2. Comparison of the analytical approach with Monte Carlo simulations in
estimating the impact of process variation on Is,, (Nominal value is 3.72nA) [94].

Parameter Variation Mean(nA)  Mean(nA) SD(nA) SD(nA)

Varied (30) Monte Carlo Analytical Monte Carlo Analytical
Vio 10% 7.09 6.08 11.70 7.54
Vaa 20% 3.74 3.74 0.46 0.43

Npocket 20% 4.44 4.45 2.91 2.62
Naep 20% 3.78 3.79 0.72 0.72

L 20% 6.97 6.27 13.62 9.45
Tox 20% 4.51 4.54 3.17 2.88
W 10% 3.73 3.73 0.38 0.38
All 10% 9.11 8.38 19.18 11.66
All 20% 17.55 15.00 61.43 38.00

(Vp=10%)

(1) the function g is a closed-form expression, and

(2) the function h is differentiable over the given range of currents.

Unfortunately, the complexity of the relationship between leakage current
and channel length (i.e., the function h(L)) does not allow for the derivation of
9(Isup) such that it satisfies these two conditions. Therefore, an approximate
empirical fit has to be used for the function h(L) so that the required inverse
function can be computed while maintaining good accuracy. Given the closed
form expression of g(Isys) and the pdf of L = f,(L), we can express the pdf
of Iy, using the above expressions as [109]:

ollins) = 248002)) (4.32)
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where f, is the pdf of I;,. In this analysis, we assume that the drawn gate-
length has a Gaussian distribution with a fixed mean u and standard deviation
o. Using these assumptions the pdf of I,; can be written as follows:

1) = (i) (s ) o (FLE2=25) .

Finally, to calculate the mean and standard deviation of the leakage current
distribution of a gate, we perform numerical integration of fy(Zsus) over the
given range of leakage currents:

M[Isub sub leubfy sub)

2
U[Isub] = leubfy(fsub (Z Isubfy sub ) . (4'34)

The next step is to compute fy(I5y) in more detail for a single device. We
initially discuss the approach for a single device and then extend the approach
for a stack of two or more transistors.

Single Transistor Stacks (Inverters)

Based on the BSIM3 device model, the subthreshold current through a device
can be expressed as (4.2). The term (1 — exp(—Vys/Vr)) can be neglected
for an inverter since Vys = Vg is much greater than the thermal voltage Vr.
We also set Vg, = 0 since the source nodes of either device in an inverter
are tied directly to a supply rail or to the ground rail. V;, is the threshold
voltage and is given by (4.4). These equations in principle enable us to calcu-
late the mean and standard deviation (SD) using the device model-files for a
given technology. However, analytical expressions for leakage current based on
these parameters are found to fit very poorly even for 180 nm technologies. In
particular, nebulous definitions for the values for technology constants such
as Ny and X; produce large errors in the analytical current expressions.
Furthermore, the models for body-effect coefficient and particularly DIBL co-
efficient used in the previous section to estimate the mean and variance of
subthreshold leakage are inadequate and can produce unrealistically small
values for these parameters resulting in large errors in the values for leakage
currents.

Note that the actual BSIM3 model used to compute leakage current in
SPICE simulations is much more complex than these simplified expressions.
In addition, the constraints placed on functions g and h necessitates the use
of further simplifications to derive a suitable analytical expression for current
in terms of drawn gate-length. Figure 4.4 shows that a simplified BSIM3
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Fig. 4.4. Comparison of the BSIM3 fit and analytical fit for h(L) with results from
SPICE.

model vastly overestimates the leakage current for devices with gate-lengths
that deviate by more than 5% from the nominal value. Since these conditions
correspond to the devices that contribute a large portion of leakage current,
the resulting pdf will be skewed to the right, rendering the simplified BSIM3
fit unacceptable. Therefore, we use a new empirical model to express leakage
current I as a function of L. This empirical model is expressed as

Lous = qrexp (2L + gsL?) = h(L) (4.35)

This expression circumvents the use of V;, as an intermediate variable in
expressing the current as a function of the gate-length. However, it maintains
the general form of the BSIM3 model and has the following properties:

(1) It preserves the exponential dependency of I on L.

(2) It is easily invertible (as shown below).

(3) It yields closed form expressions for both I and L.

(4) It accurately fits currents for both individual NMOS/PMOS as well as
transistor stacks.

Figure 4.4 also shows the comparison between the values for leakage cur-
rent obtained from SPICE simulations and the values obtained from both the
simplified BSIM3 fit and the empirical fit for a single stacked device (4.35)
for a 10% variation in gate-length. From the plot it can be seen that the em-
pirical model provides a much better fit over a wide range of channel lengths.
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Fig. 4.5. Comparison of the SPICE pdf with the analytical pdf

Equation 4.35 is a simple exponential quadratic equation that can be inverted
to obtain an analytical expression for L as follows:

1 a1
L — — 2 _ 4 1 = Isu 43
243 ( wr \/q2 B (Isub>> g( b) ( 6)

Using the expressions (4.33) and (4.34) with the functions g and h as
specified by (4.35) and (4.36), we can obtain the pdf of I. Figure 4.5 presents
the comparison between the pdf obtained from SPICE simulations and the
pdf obtained analytically for a single stacked device with 10% 3¢ variation in
gate-length. The plots of the pdfs, including the tail portion, match well and
have a lognormal shape.

Series-Connected Devices (Stacks)

In the case of a stack of transistors, the gate-length variation impacts the
leakage current of the bottom transistor in the stack in two ways:

1) gate-length variation of the bottom transistor directly modulates its
threshold voltage.

2) gate-length variation of the top transistor indirectly affects the leakage
of the bottom transistor by altering the voltage drop across the top transistors
of the stack.

Hence, the analytical expression of current as a function of gate-length is
more complex for a stack of multiple transistors. Since the devices in a stack
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are placed close together in the layout, the simplifying assumption can be
made that their gate-length variations are perfectly correlated. Similar empir-
ical expressions for stacks of two and three transistors are also derived, and
the method can be extended to stacks of arbitrary length in a straightforward
manner.

In an inverter the term (1 — exp(—Vys/Vr)) in (4.2) was neglected since
the drain-source voltage Vys in the leaking device was much greater than
the thermal voltage V. However, for a device with stacks of two or three
transistors, the value of the intermediate node voltage (V452 and Vys3) is much
lower. The empirical model (4.35) is sufficiently general enough to model the
leakage current in stacked circuits using the same general form. The current
can be empirically modeled with a new set of fitting parameters in (4.35).
Naturally, this set of constants is different for different stack depths and also
for NMOS and PMOS devices, since the drain-source voltages differ in these
situations. Equation (4.36) is then solved using the suitable coefficients in the
quadratic expression to obtain the value of channel length as a function of
Isup. The pdf for stacked devices can be similarly determined.

As discussed in the previous section, the on transistors in a stack can be
approximated as a short circuit except for the case in which the on transistor
is at the top (bottom) of a NMOS (PMOS) stack. This effect can be modeled
by estimating the leakage current under the assumption that the Vy;, drop is a
constant value that corresponds to the nominal V;, of the device. This allows
us to use the same models for stacks of transistors with an effectively reduced
power supply voltage.

Leakage Distribution of Circuit Blocks

Having developed a methodology to accurately predict the pdf of a single
gate, we will discuss the approach to estimate the leakage current distribution
of circuit blocks considering within-die variations. For now, we assume that
process parameters in different gates are independent of each other and hence
uncorrelated. Since the distribution of the leakage currents of a single gate
is close to lognormal the leakage current for a circuit block as a whole is a
sum of lognormals. Thus, to find the distribution of the total leakage current,
given k lognormal RVs we need to find the distribution of the sum S given as

S=X1+Xo+ -+ X =e' fe¥2 ... f eV (4.37)

where X1,..., X are independent lognormal RVs. Sums of lognormals, as-
suming independence, can be well approximated by another lognormal RV
[16]. Various approaches are known to estimate the parameters of the final
lognormal used to approximate the sum. As shown in [16] the simple Wilkin-
son’s approxzimation [127] is more accurate as compared to other complex ap-
proaches for our range of interest in the cumulative distribution function (cdf)
of leakage current. In Wilkinson’s approximation the sum of the mean and
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variance of the individual gate leakage current distributions, X1, Xo,...,Xg
is matched with the first two moments of S, which gives

u[Sl = E[S] = p1 + p2 + - + i
o[S] = \/o%+0§+---+0,% (4.38)

where the 's and ¢’s are the means and standard deviations of the leakage
currents of the individual gates. To express the resulting pdf of the circuit
subthreshold leakage current as a lognormal, we note that the lognormal pdf

is given as
S S —(In(z) — a)?

where a and [ are the parameters of the lognormal distribution. If Y (u, o) is
a Gaussian random variable and the corresponding lognormal X is related to
Y as X = exp(Y), then the parameters of the lognormal are the mean and
variance of the corresponding Gaussian distribution. We can compute these
parameters based on the mean and variance of the lognormal. The mean and
variance of the lognormal can be expressed as a function of its parameters as:

E[X] = exp (a+ £?/2)
Var[X] = exp (2(a + 8%/2)) — exp(2a + (7). (4.40)

Equation (4.40) can be solved for o and § (the mean and variance of the
Gaussian that are the parameters of the lognormal) in terms of the mean and
variance of the lognormal as:

1 B(X]
a=3zh <E2[X] + Var[X])

f? =1n <M¥E—]2-[%f—2[)q) : (4.41)

The parameters of the lognormal can then obtained using (4.41), which
completely determines the pdf of the leakage current of the circuit block con-
sidering uncorrelated within-die variations. Note that for large circuit blocks
the leakage current distribution will approach a Gaussian due to the central
limit theorem [109]. On the other hand, as shown in [88], both S (4.37) as well
as the log of S can be approximated by a lognormal when a large number of
independent lognormals are summed. Thus, for large &, the shape of a lognor-
mal distribution tends towards the shape of a Gaussian distribution [47], and
using a lognormal distribution to approximate sums of lognormals is justified.
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Table 4.3. Comparison of subthreshold leakage estimated obtained using the an-
alytical approach with Monte Carlo simulations considering intra-die and inter-die
variations in gate-length.

Circuit Mean(nA) Mean(nA)  Error(%) SD(pA) SD(pA)  Error(%)

Monte Carlo  Analytical Monte Carlo Analytical

cl7 0.2 0.3 8.3 36.0 37.0 2.8
c432 7.1 7.2 14 190.0 210.0 10.5
c499 19.0 20.0 5.3 280.0 330.0 17.9
c880 17.0 17.0 0.0 280.0 330.0 17.9
cl355 21.0 22.0 4.8 320.0 370.0 15.6
¢c1908 16.0 17.0 6.3 260.0 300.0 15.4
c2670 32.0 33.0 3.1 350.0 410.0 17.1
c3540 39.0 40.0 2.6 420.0 480.0 14.3
c6288 120.0 120.0 0.0 900.0 1010.0 12.2

Table 4.3 compares the results obtained using the approach discussed
above as compared to Monte Carlo simulations for the ISCAS’85 benchmark
circuits [23], for a 3¢ variation in gate-length of 10%. The Monte Carlo mean
and SD are estimated using a random input vector for each circuit. The re-
sults show that the average error in estimating the mean over all the circuits
is 3.5% with a maximum error of 8.3%. The average error in the SD is 13.7%
with a maximum error of 17.9%.

Accounting for Inter-Die and Intra-Die Variations

As discussed in Chap. 1 process variation can be classified into inter-die vari-
ation and intra-die variations. Intra-die variation refers to variations within
a particular circuit block or chip, whereas inter-die variations occur as fluc-
tuations from one die to the next. The drawn gate-length of a transistor ¢ is
expressed as an algebraic sum of the nominal gate-length (Lyominal), the intra-
die variation (ALjytra) and the inter-die variation (ALipter). Consequently, the
total variance is also a sum of the inter-die and intra-die variances:

Lgate,i = Lnominal + ALinter + ALintra,i

2 2 2
Ugate,i = Ointer + Uintra,i (4'42)

where ipter and Tintra are the SD’s of the inter-die and intra-die variations in
gate-length, respectively. Note that in the (4.42), the RV ALjnter is shared by
all devices in a design (creating correlation between their leakage currents),
whereas the random variables AL{ , . s assigned to each of the transistors are
independent (reducing the correlation of their leakage currents). ALipter can
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also be interpreted as variations in the mean gate-length of different samples
of a chip, whereas ALj,a represents variations in gate-length of individual
devices from this mean value. Note that the above approach estimates the pdf
of subthreshold leakage of a circuit block considering only intra-die variations
given the mean value of gate-length. Thus we can utilize Bayes’ Theorem [109],
which states that the probability of an arbitrary event A, can be expressed as

(e0]
PA) = Y PAX =z)P(X =1) (4.43)
T=—00

where X is a RV with a pdf f(z). If X represents the RV associated with inter-
die variations then the probability of the event that the subthreshold leakage
of a circuit block considering both components of variations lies within a given
range, can be estimated using (4.43). The term associated with the conditional
probability in (4.43) corresponds to the evaluation of the pdf discussed when
only intra-die variations are considered given a mean value of that variation.
To compute the total leakage, accounting for both types of gate-length
variation, the pdf of L;user can be discretized as shown in Fig. 4.6(a). For each
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Fig. 4.7. The relation between the standard deviation of total leakage current in a
chip and the number of blocks that constitute the chip sheds insight on the validity
of gate independence assumptions.

discrete point Linter,j on the pdf of Linter, consider the intra-die variation of
the channel length as a normally distributed pdf, whose mean is Lipter,; and
standard deviation is ointra. Corresponding to this distribution of channel
length, we obtain a pdf of the leakage current for the circuit using the approach
outlined in (4.32)-(4.41). Thus, we obtain a family of these pdfs of leakage
current as shown in Fig. 4.6(b), where each pdf is associated with a conditional
probability that corresponds to the pdf value of Liyter,; on the pdf of Linger-
To obtain the pdf of leakage current considering both inter- and intra-die
variation we form a weighted sum of the family of pdfs using (4.43). This can
be expressed as

n

7D(Isub <i< Isub + AI) = Z (Pintra,j(-[sub <1< Isub + AI)

j=1

Pinter (Linter, j )) (444)

where Pinter(Linter,j) is the probability of occurrence of 4t point in the set
of n discrete points selected on the inter-die pdf. Py, is calculated based
on the lognormal distribution of the leakage current corresponding to the jt*
point, Linter,j on the Liter pdf.
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Intra-chip variations often exhibit spatial correlation such that devices
that are closer to one another have a higher probability of being alike than
devices that are far apart. In our analysis so far, we have assumed that the
intra-die gate-length variation expressed by the random variables AL;nirqa
assigned to each gate is independent. However, spatial correlation will result in
dependence of these random variables. Hence, we examine the impact of such
correlation on the statistical leakage estimation using Monte Carlo simulation.

For simplicity, we model the effect of spatial correlation using clusters of
gates in a circuit, such that AL, of gates within a cluster are perfectly
correlated, while AL, of gates between different clusters are independent.
Large cluster sizes therefore reflect a stronger spatial correlation of intra-die
gate-length variation while small cluster sizes reflect a weak spatial correlation.
Figure 4.7, shows that the standard deviation of subthreshold leakage current
for a design as a function of the number of clusters in the design. As the
number of clusters is decreased, the size of each individual cluster increases,
representing a stronger spatial correlation. From the plot, we see that, due to
the averaging effect of a large number of uncorrelated variables, the variability
in leakage current converges to a relatively small value as the number of
clusters is increased. For designs with 250 or more clusters, the standard
deviation has largely converged, and the impact of spatial correlation can be
ignored. In other words, we can approximate the case having 250 gate clusters
with perfectly correlated intra-die gate-length variation within each cluster,
with the case where all gates are considered to have independent intra-die
gate-length variation (as assumed in the analysis in this section).

In typical process technologies, spatial correlation drops off sharply for
distances greater than 0.1 mm. Hence, even for a small design with a die area
of 2.5 mm?, the number of independent gate clusters is sufficient to perform
statistical leakage current analysis assuming independence of intra-die gate-
length variation. Since most practical designs are significantly larger than
2.5mm?, spatial correlation does not pose a significant issue for statistical
leakage current estimation for such designs. In Chap. 5 we will consider an
approach to consider the impact of these correlated variations for small designs
based on principal components analysis.

Figure 4.8 shows the impact of varying the distribution of inter-die process
variation on the pdf of the leakage current while keeping the standard devi-
ation of the total gate-length oota1=15% of the mean. The figure shows that
when inter-die process variation is increased (and consequently the intra-die
variation is decreased), the pdf tends to a lognormal shape. Note that for the
case where there is no intra-die process variation, all gate-lengths on a single
die will be at their nominal values. Hence, the pdf of this leakage current due
to inter-die process variation alone should be similar to the pdf of the leakage
current of a single gate which, as we know, can be closely approximated by a
lognormal. The figure suggests that, since leakage current is well characterized
in terms of the Ippg values across die, the shape of this leakage current pdf
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Fig. 4.8. Probability density functions of leakage current for different contributions
of inter- and intra-die process variation. The total variation is 15%.

Table 4.4. Comparison of subthreshold leakage estimated obtained using the an-
alytical approach with Monte Carlo simulations considering intra-die variations in
gate-length.

Circuit Mean(nA) Mean(nA)  Error(%) SD(pA) SD(pA) Error(%)
Monte Carlo  Analytical Monte Carlo Analytical

cl7 0.4 0.4 0.0 0.5 0.4 20.0
c432 10.0 10.0 0.0 9.2 7.6 17.4
c499 28.0 27.0 3.6 24.1 19.5 19.1
c880 24.6 23.9 2.8 21.2 17.4 17.9
c1355 32.2 30.6 5.0 30.2 23.9 20.9
c1908 23.6 23.3 1.3 21.9 17.5 20.1
c2670 48.2 45.4 5.8 41.3 33.7 18.4
c3540 57.5 54.5 5.2 47.4 38.2 194
c6288 186.7 175.4 6.1 183.5 152.0 17.2

can be a useful way to estimate the contribution of the inter-die or intra-die
component to the total process variation.

Table 4.4 compares the results of the analytical approach to Monte Carlo
simulation considering both intra- and inter-die variation. The table lists the
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data for the case where intra-die and inter-die standard deviation have been
assumed to be 10% and 11% of mean, respectively, which make up a total stan-
dard deviation of 15% variation based on (4.42). As can be seen, the error in
the estimated mean is always within 6.1% and that for the standard deviation
within 21%. When comparing the median and the 95th/99th percentile points
estimated using the traditional approach to the statistical approach, we can
see that the traditional approach significantly overestimates the leakage for
higher confidence points since all the devices are assumed to be operating at
a pessimistic corner point. Since the relationship between the gate-length and
leakage current is monotonic, the median point as estimated by the traditional
analysis is very close to the nominal leakage current.

4.4.3 Temperature and Power Supply Variations

To this point in the chapter we have been concerned with the impact of vari-
ations in process parameters on power dissipation. In this section, we will
consider variation in power supply and temperature. As discussed in Chap. 1,
these variations are fundamentally different from process variations and a
completely different set of techniques needs to be used to consider their im-
pact.

If we consider the expressions for dynamic and leakage power(subthreshold
and gate), we can note that only subthreshold leakage is dependent on vari-
ations in temperature. As shown in [136] subthreshold leakage has a super-
linear dependency on temperature, and a change in temperature of 30°C can
affect leakage by as much as 30%. Variations in power supply have strong
quadratic and cubic impact [76] on dynamic and leakage power, respectively.
In this section, we will discuss a technique proposed in [136] to estimate dy-
namic and subthreshold leakage power while considering variations in power
supply and temperature, which can be easily mapped to consider variations
in other components of leakage current as well. This work proposed the first
approach to consider realistic variations in supply voltage and temperature
which are strongly influenced by the power grid decoupling capacitor locations
[32] and the profile of the currents drawn by the transistors. In addition, these
variations demonstrate strong locality and linear approximations of the tem-
perature and power supply variations over a chip results in large inaccuracies.

Variations in supply voltage and temperature cause variations in the cur-
rents drawn from the power grid by the active devices that impacts the amount
of power dissipated in this region as well. This, in turn, affects the supply volt-
age (through IR-drop etc.), and the temperature (increased power dissipation
results in a higher temperature). Thus, a solution to this problem involves
an iterative solution of a nonlinear set of equations. Therefore, we need an
efficient tool capable of performing full-chip power grid and thermal analysis.
Generally, a set of nonlinear equations is solved using an iterative Newton-
Raphson technique [105], which become impractical for current VLSI designs.
In this work an iteration-based approach as outlined in Fig. 4.9 is used to
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Fig. 4.9. Iterative flow used for leakage estimation under power supply and tem-
perature variations [136]. (©2005 IEEE)

package

VDD Grid

CHCNCHO

GND Grid

Fig. 4.10. Model for the complete power supply network [136]. (©2005 IEEE)

improve efficiency. This technique is built upon an efficient temperature and
power grid simulator which act as inputs to the leakage (LPT) and dynamic
power models. This loop is then repeated until convergence is achieved. We
will first discuss the analysis techniques for the power grid and temperature
simulation techniques used in [136] and then discuss the leakage and dynamic

power models.

Most chip-level power grid techniques decouple the large power grid net-
work from the nonlinear devices which are connected to this network. Assum-
ing a perfect power supply grid, the current used by the nonlinear devices are
estimated. This current should consist of both the leakage currents as well as



160 4 Statistical Power Analysis

L0888 T

Si Si Si Si Heat sources

SiO, layer (SOI)

Full 3D Substrate

FETEE LT e

Fig. 4.11. Thermal model of a chip [136]. The package and heat sinks are assumed
to be thermally ideal with constant temperature. (©2005 IEEE)

the current required for switching. These current profiles are then modeled as
idealized current sources and connected to the resistive power grid network
to complete the power supply network. In general the power grid network is
modeled as a resistive mesh with layers of metals being connected through re-
sistive vias. The decoupling capacitors act as capacitances between the power
and ground networks and the top metal layer is connected to the ideal voltage
regulators through resistive and inductive elements.

In particular, leakage current estimation only requires a DC solution of
the power grid network. In this case the inductive and capacitive elements are
replaced by shorts and opens, respectively, and the entire network becomes
a large linear network of resistances. This is represented in Fig. 4.10 where
the VDD-grid and GND-grid are resistive networks which are connected to
the package which is again modeled as a resistive network. A typical power
grid can consist of millions of nodes and specialized techniques are required
to solve these systems with reasonable memory and run-time requirements.
The implementation in [136] uses an iterative algebraic multi-grid AMG solver
solver [135]. The technique simplifies the problem by initially coarsening the
power grid which maps the problem to a smaller power grid. The solution ob-
tained using the coarser grid is (using direct solution of the matrix equations)
is then mapped back to the original power grid using interpolation techniques.

The decoupling technique used to simplify the problem of analyzing the
power grid is also utilized to obtain a thermal solution of the chip. The full-
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chip thermal model is shown in Fig. 4.11 which includes the silicon substrate,
the package and the heat sinks. The thermal profile in a general 3D medium
satisfies the heat conduction equation

orT Yy 2, ¢
pey DY ik, 2 TV, 2 )] ol ) (445

subject to the boundary condition

k(z,y, 2,T) M

on;

where T is the temperature, g is the power density of heat sources (which
in our case would be the power density of devices at the silicon surface), &
is the thermal conductivity, p is the material density, ¢, is the specific heat
capacity, h; is the heat transfer coefficient on the boundary, f; is a function
of the position and n; is the unit vector normal to the surface element 3.
Under normal operating conditions the thermal conductivity can be assumed
to be independent of position and temperature. In addition, under steady
state conditions the differentials with respect to time drop-out which simplifies
(4.45) to

+hiT(2,y,2,T) = fi(z,y,2) (4.46)

kV2T(z,y,2) + g(z,y,2) = 0. (4.47)

Depending on the packaging type, which determines the positions of the heat
sinks, different forms of boundary conditions need to be enforced which can
be obtained from (4.48).

T (x,y,z,t)
Bni

The above partial differential equation (PDE) in (4.47) is solved using
standard finite-difference techniques. The method requires the domain of in-
terest to be replaced by a grid. At each grid point each term in the partial
differential is replaced by a difference formula which may include the values of
T at that and neighboring grid points. The thermal resistance of each of the
3D grid cube of dimensions (dz, dy,dz) to the flow of heat in the direction
is expressed as

k(fcay,Z,T) + hiT(x’y,Z7t) = fi(xay7z) (448)

dz
Ry = kdydz"

To obtain the thermal resistance at the convective boundary, dz/k in (4.49) is
replaced by the heat transfer coefficient. By substituting the difference formula
and the discretized thermal resistances into the PDE, a difference equation is
obtained which is solved to obtain the solution to the original PDE. Again, as
in the power supply analysis case, the solution of the complete set of difference
equations involves a huge number of nodes, and an AMG based solver is used.

(4.49)
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Table 4.5. Comparison of various leakage estimation scenarios (Initial leakage es-
timate is 9.6W) [136].

Variations AV AT Total Leakage

Considered (mV) (°C) (W)

Voltage min: -4 min: -4.2 7.75
Temperature max: -184 max: 25.3

Voltage min: -4 7.77

max: -184

Temperature min: -4.2 9.63
max: 25.3

Uniform -120 0 5.31

Using the simulation techniques described above the temperature and
power supply map of the entire silicon surface can be obtained. The next
step in the power estimation approach, as outlined in Fig. 4.9, is to calculate
the change in power dissipations based on the new temperature and supply
voltages estimated in the simulation step. An empirical second-order poly-
nomial model is used, where the coefficients are obtained using regression
analysis, and has the form:

Lieak (AT, AV)
Ileak(ov O)

The values of these coefficients are found to have very small variations
from one standard cell to the other. Dynamic power is assumed to be inde-
pendent of temperature variations and has a simple quadratic dependence on
power supply variations. The results obtained using the above approach show
that the leakage power is more strongly affected by power supply variations as
compared to temperature variations. After one iteration of the approach, the
leakage power of a design becomes less than the initial value due to the corre-
lation in power supply and temperature variations. Table 4.5 lists the leakage
estimate after one iteration. The uniform variation refers to uniform 10% Vg4
drop and a uniform 85°C temperature. This simple assumption results in a
30% underestimation in leakage. In addition, most of the correction in leakage
from the initial estimate is found to happen in the first iteration. For the case
of the design used in Table 4.5 the first iteration provides a 19.2% reduction
in leakage. Further iterations only result in a change in 0.5%. Thus, using only
one iteration is sufficient to provide reasonable accuracy in the leakage power
estimate.

In this chapter, we have discussed techniques to analyze various leakage
power components with variations in process and environmental parameters.
In the next chapter, we will use the ideas developed in this chapter and in

=14a; AT+ a3(AT)2 + b, AV + by (AV)2 + o ATAV (4.50)
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Chap. 3 to estimate the true parametric yield of a design given both power
and performance constraints.



5

Yield Analysis

As we have seen in previous chapters, variations have a tremendous impact
on both power and performance of current integrated circuit (IC) designs. In
particular, leakage power which has grown to contribute a significant fraction
of total power and is also known to be highly susceptible to process variations
due to its exponential dependence on threshold voltage [28]. In [20], a 20X
variation in leakage power for 30% delay variation between fast and slow
dies was reported. Both the variation in leakage power and delay affect the
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number of dies that meet the specifications, and therefore affect yield. In
this chapter, we will discuss yield analysis techniques, which consider both
delay and leakage variability. We will be specifically concerned with the strong
inverse correlation between power and delay and the impact this has on the
fraction of dies that satisfy both timing and power constraints. Figure 5.1
shows the situation where total power is dominated by dynamic power [116].
This causes parts that have a lower delay (smaller gate length) to have a
lower total power dissipation as well. However, with increasing leakage power
the situation changes, as illustrated in Fig. 5.2. Samples of a design that can
operate at higher frequencies now dissipate more power as well becuase the
feasible region in terms of yield in now constrained from both sides. This
results in a significant loss in parametric yield.

This change in yield loss can be easily captured by considering the corre-
lation in power and performance, which has changed from being positive in
dynamic power dominated systems to negative in leakage power dominated
scenarios. This correlation results in most of the fastest chips in a lot to have
unacceptable leakage and vice versa and results in the two-sided constraint on
yield. To demonstrate the importance of power-delay correlation, Table 5.1
shows yield for varying values of correlation factors at which simple expres-
sions for yield can be obtained. F(z) represents the the cdf function of a
Gaussian RV. The yields are estimated for delay constraints of D standard
deviations (SD) from the mean at a fixed power constraint P. The results in
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Table 5.1. Estimated yield for different values of correlation coefficient. Power
constraint is set at 1.5X the nominal leakage power.

Estimated Yield

Corr=-1.0 Corr=0.0 Corr=1.0
Yield max (0.5+9®(D))* 0.5
Expression ($(D) + $(P),0) (0.5 + &(P)) &(min(D, P)l

D=-1 0.000 0.095 0.159
D=0 0.100 0.300 0.500
D=1 0.441 0.505 0.600
D=2 0.577 0.586 0.600
D=3 0.599 0.599 0.600

Table 5.1 clearly show that the correlation of power and delay has a strong
impact on parametric yield, particularly for mid- to high-performance speed
bins.

This yield loss will worsen in future technologies due to increasing process
variations and the continued significance of leakage power. Another trouble-
some observation is that increased variation not only results in a larger spread
of leakage power but also in higher average leakage power. Additionally, most
current optimization approaches do not consider process variations and are
unaware of their impact on yield. These approaches invariably result in the
formation of a timing wall and result in yield loss due to increased suscepti-
bility to process variations [14].

In the last two chapters we have looked at a number of techniques to per-
form statistical timing or power analysis. However, these analysis approaches
neglect the correlation of power and performance. Hence, performing opti-
mization based on these analysis methodologies can potentially harm overall
parametric yield. In particular, timing yield optimization using a statistical
timing analyzer will result in yield loss due to the power constraint while
power minimization techniques will harm timing-based yield. Hence in this
chapter we will discuss true yield estimation approaches, which consider both
power and performance. We will look at optimization in more detail in the
next chapter.

Recently, [118] presented a chip-level approach to estimate the yield in
separate frequency bins given a power constraint. This high-level approach is
based on global circuit parameters such as total device width on a chip. Since it
does not use circuit specific information from a gate level netlist, it is difficult
to use for optimization of gate-level parameters, such as the threshold voltage
and sizes of individual gates. However, it is able to provide insight into the
achievable parametric yield early in design cycle and can be crucial in making
alterations in the design early in the design cycle to achieve better yield. This
approach will be discussed in Sec. 5.1.
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Another important requirement for an accurate yield estimation approach
is to consider all classes of variations which have significantly different impact
on delay [21] and power [117], as discussed in Chap. 3 and Chap. 4. Pro-
cess variations are typically classified into inter-die and intra-die components.
Intra-die variations are further classified as having correlated and random
components. Traditionally, inter-die variations have been the dominant source
of variations but with process scaling, the random and correlated components
of intra-die variations now exceed inter-die variations [44]. The relative magni-
tude of these components of variation also depends on the process parameter
being considered. For example, gate length variations are generally considered
to have roughly comparable random and correlated components whereas gate
length-independent threshold voltage is commonly assumed to vary randomly
due to random dopant fluctuations [124]. The approach proposed in [130] con-
siders all sources of variations and performs gate level yield analysis. This will
be the focus of our discussion in Sec. 5.2. Finally, in Sec. 5.3, we will consider
the sensitivity of parametric yield to the supply voltage [116], and develop
a yield estimation approach by mapping back the feasible region from the
power-performance space to the space of process parameters.

5.1 High-Level Yield Estimation

The computation of a high-level estimate for yield which was proposed in
[118] and is based on developing expressions for the total leakage of a design,
considering both subthreshold and gate leakage. Both inter-die and intra-die
variability in gate length, threshold voltage and oxide thickness is considered.
The expressions for leakage are developed in terms of the global or the inter-die
variability, which has a given fixed value for a particular sample of a design.
Since the model is developed for full-chip yield estimation, the contribution of
the correlated component of intra-die variability can be safely neglected. This
follows from our discussion in Sec. 4.4.2 where we found, that for a design of
reasonable size, the impact of correlation on leakage variance is minimal.

In addition, based on simulations performed using Berkeley predictive
technology models (BPTM) and industry data showing the relative impact
of inter- and intra-die variability, the authors argue that chip-performance is
dictated by global variability in gate length. Based on these observations, dif-
ferent frequency bins are mapped to a feasible global gate length fluctuation,
which is then used to estimate the fraction of chips that meet the leakage
power dissipation constraint.

5.1.1 Leakage Analysis

Let us first consider the analytical model used to estimate the leakage current
of a given design, which is expressed as a sum of the subthreshold and gate
leakage current
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Itot = Isub + Igate- (5-1)

Both components of leakage current are expressed as a product of the
nominal leakage and a function that captures the variation in leakage from
the nominal value based on variations in process parameters. Let us represent
this variation in process parameters as a vector AP, using which we can write
leakage current as:

Ileak = Ileak,nomf(AP) (5'2)

where [ieak,nom represents the leakage under nominal conditions. As we saw
in Chap. 4, using analytical leakage expressions based on BSIM device mod-
els results in extremely complicated expressions for the non-linear function f,
which makes further statistical analysis cumbersome. To simplify the problem,
a carefully selected empirical equation is used to capture the nature of f that
provides sufficient accuracy and ease of analysis. The variation in process pa-
rameters AP is decomposed into an intra-die and inter-die component, which
are referred to as local (APy) and global (APg) variations, respectively. Thus,
the random variable (RV) corresponding to the total variation is expressed as
a sum

AP = AP, + AP, (5.3)

where the sum of the variances of the global and local variations gives the
overall variance in the process parameter. Now, let us consider the choice of
f for each of the components of leakage and perform statistical analysis to
estimate the leakage distribution using these expressions for f.

Subthreshold Leakage

To capture the dependence of subthreshold leakage on variations in process
parameters using a functional form, we note that it is exponentially dependent
on threshold voltage. However, the threshold voltage is itself related to a
number of physical parameters through complex device phenomena. A number
of second order effects such as DIBL, narrow width effect and other short
channel effects play a significant role in determining the subthreshold leakage
current. Considering the three process parameters of interest (Les, Vi, and
T,:), subthreshold leakage is most strongly influenced by variations in channel
length. Channel length independent V3, variation arises mostly due to random
dopant variations and has a significant role in leakage variability as well.
However, Ty, is a comparatively well controlled process parameter and has a
much smaller influence on subthreshold leakage [129], given the much smaller
sensitivity of subthreshold leakage to gate oxide thickness. Based on these
observations we can capture the variation in subthreshold leakage on process
parameters as
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Fig. 5.3. Comparison of quadratic and linear exponential fit of leakage with effective
channel length. Nominal Leg=60nm.

f(AP) = fi(ALeg) f2(AVin) (5.4)

where A L.g captures the dependence of subthreshold leakage on Leg and the
associated influence on threshold voltage, and AV}, captures the variation
in subthreshold leakage resulting from doping concentration variations. For
better accuracy, f; is assumed to be an exponential of a quadratic function
of gate length (as in Chap. 4). This accuracy improvement is much more sig-
nificant in sub-100nm technologies as shown in Fig. 5.3 which compares a
quadratic and linear exponential fitting function with SPICE data obtained
for 60 nm devices using BPTM models. As shown in the figure, a linear ex-
ponential is not able to accurately model the leakage value for low values of
gate lengths that have the maximum subthreshold leakage. Therefore, using
a linear exponential will result in an underestimation of mean leakage.

On the other hand, a linear exponential is found to provide reasonable ac-
curacy while considering doping concentration variations. Thus, we can write

F(AP) = exp <—-L-%'Z> exp (—"—3K> (5.5)

1

where ¢y, ¢o and c3 are fitting parameters which can be obtained using SPICE
simulations. Using (5.5) and (5.2), we can finally write
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L+ cL? 4 c3V
Isub = Isub,nOm exp (**%) . (5.6)
1
Decomposing the variability into global and local components as
L=L,+1IL; V=V,+V (5.7)

we can rewrite (5.6) as

(Lot L) +ea(Lg + L)* +es(Vy + Vl>) (5.8)

Iy = Isub,nom exp ( c
1

Lo+ coL2 + ¢35V, L 2
g 2Cg 3 g) exp(— 1+ Azf\zl + )\3%)(5'9)
1 1

= 1sub,nom €XpP (—

where the \;’s are assumed to be in the same ratio as the ¢;’s and are related
as

Ci

L =14 2cL,. (5.10)

Ai
The above relation can be easily obtained by matching the two right hand sides
in (5.8). We now calculate the expected value of leakage for a given sample of
a design that correspond to a fixed global variability in process parameters.
Based on our discussion regarding correlations in leakage variability, we can
assume that the RVs, which correspond to local variability for each gate, are
mutually independent. Recall that the central limit theorem states that the
sum of a large number of independent RVs

converges in distribution to a Gaussian distribution with the following param-
eters

[ e o N R S N (5.12)
o2=02 40 +- 402 (5.13)

where u; and o; correspond to the mean and standard deviation of RV i, re-
spectively. Note that if the above expression is not dominated by one RV, and
there are a large number of a RVs with comparable mean and variance, then
the ratio py/o; — 0 as the number of summed RVs increases. Therefore, if we
sum a large number of similar RVs, the final distribution can be approximated
as a single value which corresponds to the sum of the mean of individual RVs.
Now taking the expectation over the local variability in (5.8), we can write
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(5.14)

L,+ 62L2 + 3V,
Iy, ~ Isub,nom exp (_ 2 . 2 g)

C1

E|: ( Ll+/\2Ll2+)\3Vi):|
exp | — 3 )
1

Since the RV V; captures the variation in threshold voltage that results from
random doping fluctuations, it is assumed to be statistically independent of
L;, which gives:

C1

2
e (2575 [ oo (51
)\1 C1

The expected value of a lognormal RV Y = e¥X, where X is Gaussian RV
with mean u, and sigma o, can be expressed as

I, = Isub,nom €xp <_

o2
by = €Xp (,uw + 7’”) (5.16)

Using the above expression and the fact that any linear multiple of a Gaussian
RV is Gaussian, we can write:

E[exp (-%)] = exp (—% + %) (5.17)
vor oo ()] <o (2)] -2 [ 2] o

To handle the squared exponential term, we need to estimate the mean
and variance of RVs of the form Z = e(-X+a2X?)/ %1 which can be obtained in
closed form for the case when X is a zero mean Gaussian RV with standard
deviation o, as

-1
2a9 o2
ElZ] = 1 74 52 ____r
2] ( + a1 Uz) P <2a% +4a%a1a2>

Varl2) = E [exp (%)] — E*[Z). (5.19)

Using the above expressions, (5.15) can be rewritten as

Isub ~ Isub,gSLSV (520)

where
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C1

-1
2)\2 U%
S = 1 ! .
L ( + A1 UL‘) P (2&% + 40’%[/\1)\2 (5.21)

Aoy,
Sy = exp L.
( 222

To calculate the full-chip subthreshold leakage, the above expression is
evaluated separately for NMOS and PMOS devices and then multiplied by the
effective PMOS and NMOS device width, respectively. Effective width is the
actual device width scaled by the percentage of devices that are expected to be
non-conducting on average, and the appropriate scale factor which captures
the stacking effect that reduces subthreshold leakage when devices connected
in series are simultaneously non-conducting. Finally, we can write the full chip
subthreshold leakage (for a given fixed global variation) as

Ly + coL? + ¢35V,
Isub,g = Isub,nom €xXp (“ g ! -

%% w.
Ly =~ <Z q_]\;i) sub, gS}JVSV + (Z q_};i> sub, gS}jSV (522)

deN depP

where N, P represent the set of NMOS and PMOS devices, respectively, Wy
represents the device width, ¢ represents the scaling factor based on the prob-
ability of the transistor being off and the number of off transistors in series.
The scale factor ¢ can be different for NMOS and PMOS devices which is
represented by the superscripts NV and P, and Sy, and Sy are as expressed in
(5.21), and are calculated separately for NMOS and PMOS devices.

Gate Leakage

Gate leakage is known to be extremely sensitive to variations in T,, and
hence any variation in gate leakage resulting from variations in gate length
variations can be safely ignored. The strong sensitivity of gate leakage results
from a strong exponential dependence of gate leakage current on gate oxide
thickness. Moreover, variations in gate length have a linear dependency on
gate leakage and do not affect the mean gate leakage current. As we saw in
subthreshold leakage, discussed above, we can use the central limit theorem
to approximate the leakage current by its mean value.
We first approximate f(AP) as

T

f(AP) = lgate, nom €XP (_E> (523)
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where T' corresponds to the variation in gate oxide thickness, and the fitting
parameter a can be obtained using SPICE simulations. Again, decomposing
the total variation into local and global components we can write

T, T
Igate = Igate,nom exp (_Zg) exp <_—El) (5.24)

where Igate, nom is the nominal gate leakage current, Ty is the global fluctuation
in gate oxide thickness which is constant for a given sample of the design and
T; is the local variability in gate oxide thickness. Using the same arguments as
in the case of subthreshold leakage, we again approximate the local variability
as a scaling factor, and write

Igate ~ E[Igate] = gate,gST (525)

where

T
Igate,g = lgate, nom €XP <_;g>
2
oT,
St = —L], 5.26
T exp <2a2> ( )

The full-chip gate leakage can now be written as

Lgate = (Z %) IN e ST + (Z %) If e ST (5.27)
deN deP

where the summation is across PMOS and NMOS devices. We use the scale

factor p for gate leakage instead of ¢ for subthreshold leakage in (5.22).

The total leakage is obtained using (5.1) by summing the expressions for
subthreshold leakage (5.22) and gate leakage (5.27). Note that we have con-
sidered only two kinds of devices (PMOS and NMOS) in the above equations.
In the case where we have devices with different nominal threshold voltages or
gate oxide thicknesses, we will have additional terms which account for these
devices.

Table 5.2 compares the leakage estimated using the above analytical tech-
nique with Monte Carlo methods. We consider three different cases: 1) with-
out any variability, 2) with only global variability, and 3) with both local and
global variability. The results are generated using 60 nm BPTM devices. The
middle columns list the amount of variations in each of three process parame-
ters considered. The results show that the error in the analytical approach is
always less than 5% as compared to Monte Carlo and points to good accuracy
of the proposed leakage analysis methodology. Furthermore, the table also
shows that when within die variability is considered, the leakage of the design
increases by a further 15%, which results from the exponential dependence of
leakage currents on process parameters.
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Table 5.2. Comparison of the analytical approach with SPICE based Monte Carlo
simulations.

Case Parameter sigma (o) values Mean Leakage (©A)
(Lg, Li) (V4, Vi) (Ty, Ti) Experimental Analytical
No Variation  (0,0) (0,0) (0,0) 14.97 15.22
Only die-to-die (-1,0)  (-1,0)  (-1,0) 20.82 21.32
No Variation (—1,%3) (—1,%3) (—1,£3) 24.01 24.95

5.1.2 Frequency Binning

Parametric yield analysis is performed by frequency binning, in which sam-
ples are analyzed for their maximum operating frequency and placed into a
frequency bin that corresponds to the measured performance. However, if the
performance is below a lower limit, the sample is discarded as being useless.
In addition, a power constraint is imposed on each of the frequency bins. Chip
samples that dissipate more power than a given value are also discarded be-
cause they exceed the heat dissipation capacity of the heat removal system.
This limit may also be imposed by the kind of package used for the design.

With continued technology scaling, subthreshold leakage has grown to con-
tribute a significant fraction of the total power budget, which correlates neg-
atively with circuit delay, and high performance chips are frequently found to
have power which is higher than the imposed constraint. This is known as the
two-sided constraint on the yield of current designs. We will look at this issue
in more detail in the following section.

Circuit performance is a function of all three process parameters we used
for leakage analysis. However, of the three, gate length variation is found
to have the strongest influence on circuit performance. This is illustrated in
Fig. 5.4 which shows the variation in the delay of a 17-stage ring oscillator in a
100 nm process for varying amount of variation in global values of process pa-
rameters. Variation in gate length can be seen to have the strongest influence,
while variation in threshold voltage and gate oxide thickness have minimal
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