

Dynamic and Robust Streaming in and between

Connected Consumer-Electronic Devices

Philips Research

VOLUME 3

Editor-in-Chief

Dr. Frank Toolenaar

Philips Research Laboratories, Eindhoven, The Netherlands

SCOPE TO THE ‘PHILIPS RESEARCH BOOK SERIES’

As one of the largest private sector research establishments in the world, Philips
Research is shaping the future with technology inventions that meet peoples’ needs and
desires in the digital age. While the ultimate user benefits of these inventions end up
on the high-street shelves, the often pioneering scientific and technological basis
usually remains less visible.

This ‘Philips Research Book Series’ has been set up as a way for Philips researchers
to contribute to the scientific community by publishing their comprehensive results and
theories in book form.

Dr. Ad Huijser
Chief Executive officer of Philips Research

The titles published in this series are listed at the end of this volume.

Streaming in and between
Connected Consumer-

Electronic Devices

Edited by

Peter van der Stok

The Netherlands

Dynamic and Robust

Philips Research Laboratories, Eindhoven,

ISBN-10 1-4020-3453-9 (HB) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-10 1-4020-3454-7 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

© 2005 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming,

recording or otherwise, without written permission from the Publisher,

with the exception of any material supplied specifically for the purpose of

being entered and executed on a computer system, for exclusive use

by the purchaser of the work.

Printed in the Netherlands.

ISBN-13 978-1-4020-3453-4 (HB) Springer Dordrecht, Berlin, Heidelberg, New York

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-13 978-1-4020-3454-1 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York

Table of Contents

Introduction, Peter van der Stok...vii

Building predictable systems on chip: an analysis of guaranteed

communication in the aethereal network on chip, t

Om Prakash Gangwal, Andrei R dulescu, Kees Goossens,

Santiago González Pestana and Edwin Rijpkema...1

Service-based design of systems on chip and networks on chip,

Kees Goossens, Santiago González Pestana, John Dielissen,

Om Prakash Gangwal, Jef van Meerbergen, Andrei R dulescu,
Edwin Rijpkema, and Paul Wielage..37

Cache-coherent heterogeneous multiprocessing as basis for streaming

applications,

Jos van Eijndhoven, Jan Hoogerbrugge, Jayram M.N.,

Paul Stravers, and Andrei Terechko...61

Dataflow analysis for real-time embedded multiprocessor system

design,n

Marco Bekooij, Rob Hoes, Orlando Moreira, Peter Poplavko,

Milan Pastrnak, Bart Mesman, Jan David Mol, Sander Stuijk,

Valentin Gheorghita, and Jef van Meerbergen...81

Resource reservations in shared-memory multiprocessor SOCs,
Clara Otero Pérez, Martijn Rutten, Liesbeth Steffens,

Jos van Eijndhoven, and Paul Stravers..109

Streaming in consumer products,

beyond processing data,a

Giel van Doren, and Bas Engel………..139

A robust component model for consumer electronic products

Hugh Maaskant……………………...167

Robust video streaming over wireless in-home networks,

Jeffrey Kang, Harmke de Groot, Peter van der Stok, Dmitri Jarnikov,
Iulian Nitescu, and Felix Ogg…………...193

Perceived quality of wirelessly transported videos,
Reinder Haakma, Dmitri Jarnikov, and Peter van der Stok........................213

vii

Introduction

Consumer electronic (CE) devices are no longer the boxes, which r

operate on their own for a given fixed application (like TV watching).

Instead, CE devices are becoming more complex, incorporate more

functionality, and have to operate in an environment that is constantly

changing. In addition, the CE devices are interconnected.

Consequently, the possibility emerges to update them on the fly. Such

flexibility can only be supported by realizing a large part of the CE

functionality in software.

On the other hand, the latest chip technologies like Network on Chip

(NoC) or Systems on Chip (SoC) incorporate more functionality on an

ever-decreasing surface and volume. The CE industry is clearly at a

crossroad: flexibility asks for software solutions, but performance asks

for hardware solutions. Currently there is no general rule that will tell

us whether a given functionality should be provided in software or

hardware. This open choice is clearly reflected in this book, where

both approaches are equally represented.

Within the context of ever-increasing complexity, one subject is

becoming more important over the years: communication media and

protocols. Gradually, homes now contain multiple PCs or digital

appliances, which drives the emergence of home networks. The

subject of streaming video between CE devices becomes important

given the arrival of (wireless) home networks. The chips that

constitute the CE devices are reaching such levels of complexity that

networks are also used on chips within CE devices. Therefore,

networks are used between CE devices as well as within the CE

devices themselves.

Traditionally, a network operator manages the network to adapt to

user wishes. In the home, no such operator is present and measures

must be taken in chips and network to auto-manage the network. k

viii Introduction

Making such networks robust for user (re)configurations takes a large

design effort. Both network and chips must be resilient against

unexpected user behavior, perturbed communication, and unexpected

inputs. The networks and chips must support a dynamic environment

in which the user selects new videos, changes destinations or sources

and generally does not want to be bothered by logistic issues in these

networks.

This book provides a comprehensive overview of the challenges that

face us. The book shows that there are many similarities between

traditional networking and networks in the chip. However, different

constraints lead to new trade offs and original solutions.

The book focuses on the robustness aspects of the chosen technologies

in the area of video steaming. Management of resources such as

memory, bandwidth, CPU cycles, bus cycles is an aspect that is

prominent in many of the sections.

The first three chapters of the book discuss the essential features of

the future Systems on Chips and their interconnecting Network on

Chip. Chapter one describes mechanisms to guarantee throughput and

latency in the NoC. The predictability of the underlying network is

essential to provide predictable applications, and predictable and

robust CE devices. Over-dimensioning of the chip’s capacity is not

always desirable because much cost is put in the prevention of aa

conditions that happen rarely. Therefore the NoC supports both hard

guarantees, and soft guarantees. The soft guarantees are provided with

sufficient probability given the network load. The hard guarantees are

always provided for a set of conditions, which are never violated.

Chapter 2 goes in more detail into the offered communication

services. It shows how the services match with the communication

requirements of the possible application classes. The subject of

chapter 3 is the use of memory in a SoC that contains a complete

multiprocessing system. The programming of these complex devices

is facilitated by providing memory models that obey a set of cache

coherence requirements. The chapter explains the underlying

mechanisms to guarantee the offered memory model.

The following chapter 4 complements the former three by

concentrating on the analysis necessary during application design to

shorten the design cycle. The chapter explains how simulation

together with dataflow techniques increase the effectiveness of the

analysis. Chapter 5 discusses the reduction of interference between the

Introduction ix

individual applications. The key term is resource reservation and them

guarantee that applications remain within their allotted resource

bounds. Three resources are discussed in detail: the CPU, the shared

cache, and the memory bus.

Chapters 6 and 7 concentrate more on the software architecture of

consumer products. In chapter 6 the role of the SW platform and the

required streaming infrastructure in these products is discussed. It will

be shown that the tradeoffs in a streaming platform to come to a cost-

effective solution puts an additional burden on the product

architecture, next to the required innovative and differentiatingd

features. From these tradeoffs, it is shown that the role of the

streaming infrastructure goes beyond the traditional communication of

data. Chapter 7 looks at a higher level to solve the composition

problem when different versions of the same software functionality, or

different software functionalities need to be combined in one product.

The proposed software framework assists in reasoning on the

composition and increases the probability that the final composition

satisfies the global functional and extra-functional properties.

Chapters 8 and 9 tackle the problem of streaming video over a

wireless medium. In section 8 it is explained how scalable video code

prevents the occurrence of artifacts, which have their cause in the

dependencies between the video frames generated during the encoding

process. A controlled removal of parts of the video quality prevents

artifacts while maintaining the playing of a lower quality enjoyable

video. Section 9 investigates in more detail how the quality reduction

is perceived by the users.

I want to thank all who have contributed to make this book a success.

Jean Gelissen has initiated the writing of this book by pointing out the

large amount of knowledge on video streaming shared by the

members of the former IST sector. The support and encouragement by

Eelco Dijkstra, Jaap van der Heijden and Albert van der Werf

motivated the authors enormously and made writing this book

feasible. Last but not least, I want to thank all authors who have put a

large effort in writing original and valuable chapters.

Peter van der Stok

Chapter 1

BUILDING PREDICTABLE SYSTEMS ON
CHIP: AN ANALYSIS OF GUARANTEED
COMMUNICATION IN THE AETHEREAL
NETWORK ON CHIP

Om Prakash Gangwal, Andrei Rădulescu, Kees Goossens,˘
Santiago González Pestana and Edwin Rijpkema´
Philips Research Laboratories, Eindhoven, The Netherlands
{O.P.Gangwal, Andrei.Radulescu, Kees.Goossens,

Santiago.Gonzalez.Pestana, Edwin.Rijpkema}@philips.com

Abstract: As the complexity of Systems-on-Chip (SoC) is growing, meeting real-time re-
quirements is becoming increasingly difficult. Predictability for computation,
memory and communication components is needed to build real-time SoC.
We focus on a predictable communication infrastructure called the Æthereal
Network-on-Chip (NoC). The Æthereal NoC is a scalable communication infras-
tructure based on routers and network interfaces (NI). It provides two services:
guaranteed throughput and latency (GT), and best effort (BE). Using the GT ser-ffff

vice, one can derive guaranteed bounds on latency and throughput. To achieve
guaranteed throughput, buffers in NI must be dimensioned to hide round-tripffff

latency and rate difference between computation and communication IPs (Intel-ffff

lectual Property). With the BE service, throughput and latency bounds cannot
be derived with guarantees. In this chapter, we describe an analytical method to
compute latency, throughput and buffering requirements for the Æthereal NoC.ffff

We show the usefulness of the method by applying it on an MPEG-2 (Moving
Picture Experts Group) codec example.

Keywords: Networks-on-chip, Systems-on-chip, Time division multiplexing, Real-time sys-
tems, Predictable systems, Guaranteed throughput and latency connections, Best
effort connections, Analysis and Verification of Networks-on-chip.ffff

1. INTRODUCTION
As systems on a chip (SoC) grow in size and complexity, the current ways

of system interconnect, such as buses and switches, cannot be used anymore,

1
P. van der Stok (ed.),
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 1-36.
© 2005 Springer. Printed in the Netherlands.

2 Chapter 1

because of, e.g., scalability and layout problems. For such complex sys-
tems, networks on chip (NoCs) have emerged as an interconnect solution.
Some examples of NoC are SPIN (Adriahantenaina, Charlery, Greiner, Mor-
tiez and Zeferino, 2003; Guerrier and Greiner, 2000), Æthereal (Goossens, van
Meerbergen, Peeters and Wielage, 2002; Radulescu, Dielissen, Gonz˘ alez Pes-´
tana, Gangwal, Rijpkema, Wielage and Goossens, 2005; Rijpkema, Goossens,
Radulescu, Dielissen, van Meerbergen, Wielage and Waterlander, 2003), Nos-˘
trum (Millberg, Nilsson, Thid and Jantsch, 2004), SoCBUS (Wiklund and Liu,
2003), QNoC (Bolotin, Cidon, Ginosar and Kolodny, 2004), aSOC (Liang,
Swaminathan and Tessier, 2000), and others (Benini and De Micheli, 2001;
Benini and De Micheli, 2002; Dally and Towles, 2001; Karim, Nguyen and
Dey, 2002).

Most of the current interconnects, as well as NoCs have been built to offerffff
best-effort (BE) communication services. BE communication infrastructuresffff

are not analyzable. Therefore, they require simulations to verify if the spec-
ified requirements are fulfilled. Because for complex chips, the interconnect
is a central component in the system (Goossens, Gangwal, Rover and Niran-¨
jan, 2004), complete system simulations are required for system verification.
Covering worst-cases for all configurations is not possible through simulations,
because they are based on sample (demanding) inputs, which are never guar-
anteed to cover worst-case and corner cases. Problems that may appear during
simulations are resolved by adjusting parameters in one or several of the many
arbiters. If any change, system has to be resimulated again. There are three
main problems with such systems: 1) long simulation times at each change,
2) numerous changes because of interdependences which lead to change side
effects, and 3) worst-case behavior is not necessarily covered.ffff

To solve these problems, we advocate the use of throughput and latency
guarantees (Goossens et al., 2004; Goossens et al., 2002; Rijpkema et al.,
2003). Each IP (Intellectual Property) module (i.e., computation and memories
modules) can then be designed in isolation, because the interconnect require-
ments are made explicit. As the communication has a guaranteed behavior, the
composed system will function according to the specifications provided all IP
modules meet their specifications (correct by construction system) (Goossens
et al., 2004). If IP modules have predictable behavior, the system behavior can
be formally verified, without the need of simulations. If IP modules do not
have predictable behavior, providing guarantees in the interconnect is still use-
ful, because of the system compositionality resulted from offering guarantees:ffff

the system does not need to be simulated as a whole, but simulating only IP
modules is enough. Moreover, there are no interdependencies, and, therefore,
modifying parts of the system does not affect other parts of the system.ffff

In this chapter, we focus on verifiable systems without a need of simula-
tions. We define a model to characterize traffic of streaming IP modules, which

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 3

Slave

consumer

producer

NoC

REQ

RESP

REQ

RESP

NI NI

forward channel

reverse channel

Master

producer

consumer

βF,M βF,S

βR,SβR,M

connection

Figure 1-1. Connection example.

are chharacterized by the fact that they produce/e lly. Us-consume data periodical
ing this and the Æthereal NoC’s guaranteed-throughput service, we show howhis and the Æthereal NoC’s guaranteed-throughput service, we sho
to compute the latency and throughput for the worst-case. We also computeompute the latency and throughput for the worst-case. We also co
the loower-bound sizes of the buff les thaters between the NoC and the IP modulffff

guarantee the latency and throughput requirements are met. All these computa-antee the latency and throughput requirements are met. All these co
tions have been implemented in a verification tool, which is used by the Æthe-have been implemented in a verification tool which is used by the
real design flow (Goossens, Dielissen, Gangwal, Gonzalez Pestana, R´ adulescu˘
and Rijpkema, 2005; Goossens, Gonzalez Pestana, Dielissen, Gangwal, van´
Meerbergen, Radulescu, Rijpkema and Wielage, 2005) to dimension and con-˘
figure the NoC to satisfy the application requirements. We illustrate the use
of the verification tool by applying it to an MPEG-2 (Moving Pictures Expert
Group) codec example.

The chapter is organized as follows. In the next section, we describe the ba-
sics of the Æthereal NoC, focusing on the guaranteed-throughput and -latency
communication services. In this section, we also define a communication
model for the IP modules, and introduce some notation used in the chapter.
In Section 3, we use these models to derive the throughput resulting from a
given NoC for which the slots have been allocated. In Section 4, we compute
the lower-bound sizes of the buffers between NoC and the IP modules. Further,ffff

in Section 5, we derive the latency that results from a given system consisting
of a NoC and its attached IP modules. Our, throughput, buffer size, and la-ffff

tency formalizations and their implementation in a verification tool are shown
in use by means of an MPEG-2 codec example in Section 6. We present our
conclusions in Section 7. To ease reading, we also include in Section 8 a list
of symbols used throughout the paper.

2. AN ANALYTICALLY VERIFIABLE SoC
MODEL

In this section, we first describe the Æthereal NoC, focusing on the aspects
that impact NoC analysis. Then, we list the conditions that IP modules need to
satisfy to enable (sub)system analytical verification.

4 Chapter 1

request message format response message format

ADDR [31:0]

WDATA [31:0]

. . .

WDATA [31:0]

CMD&FLAGS [31:0]

RDATA [31:0]

. . .

RDATA [31:0]

1 .. N

words

1 .. N

words

Figure 1-2. Example request and response message formats.

payload [Lw-1:0]

payload [Lw-1:0]

. . .

payload [Lw-1:0]

C
R

E
D

IT

R
Q

ID

A
D

D
R

o
r

P
A

T
H

header (Lh)

payload

Figure 1-3. Æthereal packet format.

2.1 The Æthereal NoC Model
Thee Æthereal NoC (R et al.,adulescu and Goossens, 2004; Rijpkema˘

2003; Goossens et al., 2002) provides communication services on onnec-co
tions (R ectionsadulescu and Goossens, 2004). As shown in Figure 1-1, conne˘
are between two IP modules: one master, which is the module initiating theetween two IP modules: one master, which is the module initiati
communication, and one slave which is the target module responding in themunication, and one slave which is the target module responding
communication1. On each connection, we follow existing on-chip commu-
nication protocols, such as AXI, Advanced eXtensible Interface, (ARM Ltd.,
2003), OCP, Open Core Protocol, (OCP International Partnership, 2003), or
DTL, Device Transaction Level protocol, (Philips Semiconductors, 2002), and
implement a transaction-based communication. That is, the masters issue re-
quest messages, consisting of a command (e.g., read/d write), flags (e.g., burst
length, mask, etc), address, and possibly write data (see Figure 1-2). Requests
are transported via the NoC to the slave, which interprets and executes them,
possibly issuing a response message, consisting of read data or acknowledg-
ments/error flags (see Figure 1-2). In the current analysis, we use a simplified
model where no acknowledgments/error flags are included.

From a NoC point of view, the request and response messages are just data
which is packetized and transported over the NoC. The packet header (see Fig-

1More complex connections are possible, e.g., between one master and multiple slaves, but this is outside
the scope of this chapter. For further information on the types of connections, please refer Radulescu and˘
Goossens, 2004

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 5

NoC

producer
MSG MSG

NI NI
consumer

credits

to report

remote

buffer space

Figure 1-4. Credit-based flow control.

ure 1-3) added by the NoC has Lh words (in the current Æthereal implementa-
tion, Lh = 1), where the word is the unit of application data that is transferred
on a single clock edge, and is measured in Lw number of bits (currently, in
Æthereal a word consists of Lw = 32 bits)2.

A connection consists of two channels: one forward channel, on which re-
quest messages are transferred, and one reverse channel, on which response
messages are transferred. For each channel, there are two buffers that decoupleffff

IP modules from the NoC: one buffer in the network interface (NI) accept-ffff

ing messages in the NoC, and one buffer at the NI delivering messages to theffff

destination IP module (see Figure 1-1). For a connection ci, these buffers areffff

denoted βF,FF M, βF,FF S , βRββ ,S and βRββ ,M for the buffers associated to the forwardffff

channel at master and slave sides, and those associated to the reverse channel
at the slave and master sides, respectively. As shown in Figure 1-1, for each
channel there is a producer (the master for a forward channel, and the slave for
a reverse channel), and a consumer (the slave for a forward channel, and the
master for a reverse channel).

The NoC provides credit-based end-to-end flow control (Tanenbaum, 1996)
for every channel in the NoC. This means that at the producer’s NI, there is a
counter (“remote buffer space” in Figure 1-4) tracking the available space inffff

the buffer at the consumer NI. Initially, this counter is set to the size of theffff

consumer NI’s buffer. Whenever the producer NI sends a word, the counter isffff

decremented, and, if it reaches zero, no data is allowed to be sent to prevent
buffer overflow at the consumer NI. When the consumer’s NI delivers messagesffff

to the consumer IP module, another counter (“credits to report” in Figure 1-4)
is incremented. This credit value needs to be sent to the producer’s NI, to let

2A glossary of symbols is provided at the end of this chapter.

6 Chapter 1

the “remote buffer space” counter correctly follow the consumer’s NI buffff fferffff
empty space3.

This implies that besides application messages, credit information is also
transported for every channel in the network. In our implementation, and,
hence, also in our model, the credit information is transported in the packet
header (see Figure 1-3). If data is transported on the same connection in the
same direction in which credits must be sent, the credit is piggybacked on the
created packets in the header (see Figure 1-3). If there is no data to be sent,
empty packets are sent (i.e., consisting of only headers with credit informa-
tion). Because of implementation reasons (fixed number of bits in the header),
there is a maximum amount of credits that can be sent with one packet: MFCM .
Consequently, the total amount of credits that can be transported on the NoC
is a function of the number of packet headers that are sent.

Throughput and latency guarantees are provided using time-division multi-
plexed circuits (Rijpkema et al., 2003). Communication streams are mapped
to connections, for which time slots in a slot table are reserved. For each slot,
a circuit is set up between the producer and the consumer that communicate
with each other. These circuits are dedicated to only the producer and the con-
sumer involved, and, therefore, any interference between different connectionsffff

is prevented. By using time-division multiplexing, the circuits are changed
at each time slot. This allows link bandwidth to be shared between multiple
connections.

To improve link utilization even further, we implement pipelined circuits.
That is, basic units of data (i.e., the amount of data that fits in a slot) are trans-
ferred across consecutive links in consecutive slots. For example, in Figure 1-5
we show links L1, L2, L3, L4 and L5, for which slots X1, X2 and Y are re-
served. Each of the slots on consecutive links are allocated consecutively (e.g.,
X1 has reservations in slots 1, 2, 3 and 4 for L1, L2, L3 and L4, respectively).
In the bottom part of the figure, we show how data is transferred in the network
following the slot reservations.

All of the NoC components (routers and NIs) run at the same frequency fnocff
(500 MHz for Æthereal), corresponding to a clock period of TnocTT = 1/ fnocff (2 ns
for Æthereal). As already mentioned, all links have the same link width
Lw. This results in a raw link bandwidth of BL = Lw × fnocff (16 Gbit/t s, or
500 Mwords/s).

3An alternative way of preventing overflow at the consumer’s NI buffers is to rely on the link-level flowffff

control. This would be possible for best-effort communication, however, data could wait in the NoC ifffff

a consumer does not consume data fast enough, and NoC congestion and/d or deadlock may also occur,
disturbing NoC functionality. For guaranteed communication, there is no link-level flow control, and, hence,
credit-based flow control is the only way to prevent buffer overflow in the case consumer’s behavior is notffff

fully known.

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 7

NI R R R NI
X1 Y X2 – – X1 Y X2 X2 – X1 – – X2 – X1

X1 – (X2)

X1 (X2)

X2 X1 –

X2 X1

time

from previous

slot table iteration

to next

slot table iteration

– – – Y

–

–

Y

Y

L1 L2 L3 L4

L4L3L2L1

L5

Figure 1-5. NoC with pipelined circuits using slots.

All NoC links have associated slot tables of equal sizes. We denote the slot
sequence in a slot table with S, and slot table size with |S|. All the slots have
an equal size: Ls (a slot has Ls words of Lw bits, which are transferred in Ts =

Ls × TnocTT seconds). For the Æthereal NoC, Ls = 3 words, and Ts = 6 ns. Note
that a slot should be large enough to at least accommodate a complete packet
header, because the packet header contains the routing information, and this
information is needed to forward the slot to the correct destination (Ls > Lh).

Given a slot table size, we define Bs = BL/|S| to be the bandwidth associated
to a reserved slot, and Bw = Bs/Ls to be the bandwidth associated to a reserved
word.

The slot allocation and assignment of each connection ci are stored in the
network interfaces. For a connection ci, there are two slot allocations: SF

i ∈ S
and SRSSi ∈ S, for the forward and reverse channels, respectively.

The slot allocation for each link in the NoC is correct when (1) the number
of allocated slots does not exceed the slot table size, (2) every slot of a link
is allocated to at most one channel, and (3) when a channel traverses several
links, the slots allocated for those links are consecutive.

2.2 The IP Module Model
On a connection ci, IP modules are assumed to produce and/d or consume

data in bursts, distributed uniformly in time. That is, application bursts always
come within a fixed-length periodic time interval T . As shown in Figure 1-6,
we consider two cases:

8 Chapter 1

D
T

D

Regular periodic communication Irregular periodic communication

tt

Figure 1-6. Periodic communication model.

regular, when the time between any consecutive data transfer is exactly T ,

irregular, when data can be transferred at any time within a period T .

The IP module behavior is modeled by the data rate and burst size. The
data rate for a connection ci, measured in link-width words per second, is de-
noted for writes and reads by RWr

IP,i and RRd
IP,i, respectively. This includes the

application data (i.e., read or write data), but not the bandwidth required by
the command, command flags, and address. The reason to specify only the
application data is ease of specifications, as it allows to focus only on the way
the application communicates, without being linked to any particular protocol

p por protocol implementation.
Burst sizes, denoted by LRdLLDATAL ,i and LWr

DATAL ,i for a connection ci, represent the
amount of data that is transferred in a single read or write transaction (i.e.,
using a single read or write command), respectively. In our current model,
a read transaction consists of a request containing a read command on the
forward channel, and a response with read data on the reverse channel. A write
transaction consists of a request containing a write command and write data on
the forward channel, and no response on the reverse channel.

Together with the number of words needed to encode the command and
its address LRdLLCMD,i and LWr

CMD,i (2 words for the Æthereal NoC for both read
and write commands), we can fully characterize the messages. For conve-
nience, we use the command to data ratio, γRdγγi = LRdLLCMD,i/L

RdLLDATAL ,i and γWr
i =

LWr
CMD,i/L

Wr
DATAL ,i. Knowing γRdγγi and γWr

i , we can compute the command and ad-
dress rate as RRd

CMD,i = RRd
IP,i × γRdγγi and RWr

CMD,i = RWr
IP,i × γWr

i .
As an example, let us consider a connection ci with RRd

IP,i = 12 Mwords/s, and
LRdLLDATAL ,i = 16 words. Then γRdγγi = LRdLLCMD,i/L

RdLLDATAL ,i = 2/16 = 0.125. The resulting
command and address rate is RRd

CMD,i = RRd
IP,i×γRdγγi = 12×0.125 = 1.5 Mwords/s.

From IP rate and burst sizes, we derive the period with which the IP module
produces and/d or consumes data. For a connection ci, we assume these periods
are identical for the master and slave IP modules attached to ci. To capture the
possible difference in read and write patterns on a connection, the IP periodsffff

are defined separately for reads and writes as T Rd
IPT ,i = LRdLLDATAL ,i/R

Rd
IP,i and T Wr

IPT ,i =

LWr
DATAL ,i/R

Wr
IP,i, respectively.

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 9

Flow control is sent in the opposite direction compared to data (be it com-
mands, addresses or application data). The credit stream must be enough to
compensate for the data stream.

2.3 Notation
In this section, we further define operations and notation to help in our anal-

ysis. We use the channel type ch (i.e., F=forward and R=reverse) and compu-
tation type comp (i.e., P=producer, C=consumer, M=master, S=slave) as su-
perscripts, and attributes to specialize the symbol attr (e.g. CMD=command,
DATA=data, I=input, O=output) and connection index conn id as subscripts
for a given symbol:

Symbolch,comp
attr,conn id (1-1)

We introduce two new operators: ⊕ and � for addition and subtraction mod-
ulo (denoted as %) |S|, respectively, as follows:

s ⊕ s′ = (s + s′)%|S| (1-2)
s � s′ = (|S| + s − s′)%|S| (1-3)

For each connection ci, we define for both forward and reverse channels a
set F ch

iFF containing the blocks of contiguous slots allocated for that connection.
A block from slots s to s′ (including s and s′ inclusive) is described by a tuple
containing the first slot s and the block length:

F ch
iFF = {〈s, ((s′ � s) + 1)〉 | s, s′ ∈ Sch

i ∧
(s � 1) � Sch

i ∧
(s′ ⊕ 1) � Sch

i ∧
∀s′′, (s′ � s) ≥ (s′′ � s), s′′ ∈ Sch

i } (1-4)

We define an “empty” set Ech
i containing the contiguous blocks of slots not

allocated to each channel of a connection ci:

Ech
i = {〈s, ((s′ � s) + 1)〉 | s, s′ � Sch

i ∧
(s � 1) ∈ Sch

i ∧
(s′ ⊕ 1) ∈ Sch

i ∧
∀s′′ (s′ � s) ≥ (s′′ � s), s′′ � Sch

i } (1-5)

Using F ch
iFF , we can also defineH ch

iHH as the set of slots which contain headers
in the case there is data sent at full rate. As in Æthereal packets correspond
to blocks of slots (Radulescu et al., 2005), at each block of slots a header is˘
introduced:

H ch
iHH = {sh ∈ Sch

i | 〈sh, λ〉 ∈ F ch
iFF } (1-6)

10 Chapter 1

3. THROUGHPUT ANALYSIS
The available throughput for a connection depends on the slot allocation

for sending data and flow control information and the size of buffers in NIs.ffff

For this analysis, we assume that slot allocation for a connection is given. To
fully utilize the available bandwidth, buffers must be dimensioned based onffff

the analysis of Section 4 and there must be enough bandwidth available for
sending flow control information.

To derive available throughput, for a given connection ci, network specific
overheads (e.g., packet header) and transaction specific overheads (e.g., com-
mand and address) need to be subtracted from the raw bandwidth based on the
slot allocation, Si.

We first consider the case of a producer connected to a consumer through
a channel ch with a slot allocation of Sch

i . We call Nch
hN
,i the number of headers

introduced in one slot table iteration of a channel ch.

Nch
hN ,i = |H ch

iHH | (1-7)

WhereH ch
iH denotes a set of allocated slots, where a header will be sent, for the

channel ch.
We define Wch

r,i as the total number of words reserved for the channel in a slot
table iteration. These words are divided in two categories, the first one is used
to carry headers Wch

hW
,i, and the second one is used to carry payload data4 Wch

p,i
(see Figure 1-3).

Wch
rWW ,i = |Sch

i | × Ls (1-8)

Wch
hW ,i = Nch

hN ,i × Lh (1-9)

Wch
pW ,i = Wch

rWW ,i −Wch
hW ,i (1-10)

Based on the bandwidth associated to a reserved word Bw, we define raw
bandwidth Bch

r,i, header bandwidth Bch
h,i, and payload bandwidth Bch

p,i for a given
channel ch.

Bch
r,i = Wch

rWW ,i × Bw (1-11)

Bch
h,i = Wch

hW ,i × Bw (1-12)

Bch
p,i = Wch

pW ,i × Bw (1-13)

The maximum flow control value that can be sent in one packet header is
denoted by MFCM and the rate to send flow control words by Θch

FC,i = Nch
hN
,i × Bw.

4Recall that in the payload data, we include command, address, and application data (see Section 2.1 for
explanation).

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 11

For a correct operation, the amount of credits sent (using flow control headers)
on opposite channel (e.g. R) must be greater than or equal to the amount of
data consumed by the consumer on a channel ch (e.g. F).

ΘF
FC,i × MFCM ≥ RR,M

i (1-14)

ΘR
FC,i × MFCM ≥ RF,FF S

i (1-15)

where RR,M
i and RF,FF S

i are the data rate of the consumer on the reverse channel
and forward channel, respectively.

In the following sections, we derive exact formulas for throughput of write-
only, read-only and read-write connections. Furthermore, we also provide for-
mulas to check whether the given slot allocation meets the flow control require-
ments or not.

3.1 Throughput for write-only connections
For a write connection ci, all data (including command, address, write data)

are sent on the forward channel and reverse channel is used only for sending
flow control data. The available data throughput for write data is derived from
Equation (1-13):

BF
p,i = WF

pW ,i × Bw (1-16)

The available data RWr
DATA,i and command RWr

CMD,i throughput for write data (ex-
cluding packet overhead), for a given command to data ratio γWr

i , is:

RWr
DATA,i =

BF
p,i

(1 + γWr
i)

(1-17)

RWr
CMD,i = γWr

i × RWr
DATA,i (1-18)

The specified data rates RWr
IP,i are met when RWr

DATA,i ≥ RWr
IP,i.

On the reverse channel, no data is sent for write transactions but flow control
information (i.e., amount of data removed from buffer of the NI of consumer)ffff

needs to be sent. For a correct operation, the amount of credits sent (using a
flow control header in a packet) must be greater than or equal to the amount of
data consumed by the consumer. By substituting values for channel type (i.e.,
R) and the specified data rates in Equation (1-15), the condition is:

ΘR
FC,i × MFCM ≥ (1 + γWr

i) × RWr
IP,i (1-19)

3.2 Throughput for read-only connections
For a read connection ci, commands and flow control information for read

data is sent on the forward channel and on the reverse channel read data and
flow control information for commands is sent.

12 Chapter 1

The available data throughput for sending commands (excluding packet
header overhead) is derived from Equation (1-13). As we only send commands
through the forward channel, the available data throughput BF

p,i is fully used for
commands RRd

CMD,i
RRd

CMD,i = BF
p,i = WF

pW ,i × Bw (1-20)

The available data throughput for sending read data (excluding packet
header overhead) is derived from Equation (1-13). As we only send data
through reverse channel, the available data throughput BR

p,i is fully used for
sending data RRd

DATA,i
RRd

DATA,i = BR
p,i = WRWWpW ,i × Bw (1-21)

For a command to data ratio of γRdγγi , the conditions when the specified data RRd
IP,i

and command rates are met are:

RWr
DATA,i ≥ RRd

IP,i (1-22)

RWr
CMD,i ≥ γRdγγi × RRd

IP,i (1-23)

For a correct operation, the amount of credits sent (using flow control head-
ers) for the forward (reverse) channel must be greater than or equal to the
amount of data (command) sent in the reverse (forward) channel. By substitut-
ing the values for the data rates in Equations (1-14) and (1-15), the conditions
are:

ΘF
FC,i × MFCM ≥ RRd

IP,i (1-24)

ΘR
FC,i × MFCM ≥ γRdγγi × RRd

IP,i (1-25)

3.3 Throughput for read-write connections
For the forward path, which is used for read commands, write commands,

write data, and end-to-end flow control for read data, the data rate is defined
as:

RF,FF RdWr
i = RRd

CMD,i + RWr
CMD,i + RWr

DATA,i (1-26)

For the reverse path, read data and flow control for forward data are sent.
The reverse data rate is defined as:

RR,RdWr
i = RRd

DATA,i (1-27)

For a read-write connection, the conditions when the specified data rates are
met are:

RF,FF RdWr
i ≥ (1 + γWr

i) × RWr
IP,i + γ

Rdγγi × RRd
IP,i (1-28)

RR,RdWr
i ≥ RRd

IP,i (1-29)

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 13

NoC
NI

producer
MSG MSG

NI

consumer

decoupling decoupling
round-trip

latency hiding

β Cβ P

βDC
P βDC

CβRL

C

Figure 1-7. Buffers are logically split in (1) decoupling buffff ffersffff βP
DCβ and βC

DCβ ow-, and (2) flo
coontrol round-trip latency hiding buffersffff βC

RLβ .

ad-For a correct operation, the amount of credits sent (using flow control hea
ers) for the forward (reverse) channel must be greater than or equal to thers) for the forward (reverse) channel must be greater than or equal to t
ammount of data (command and/d el.or data) sent in the reverse (forward) channe
By substituting the values for the data rates in Equations (1-14) and (1-15) theBy substituting the values for the data rates in Equations (1-14) and (1-15) t
coonditions are:

ΘF
FC,i × MFCM ≥ RRd

IP,i 30)(1-3

ΘR
FC,i × MFCM ≥ (1 + γWr

i) × RWr
IP,i + γ

Rdγγi × RRd
IP,i 31)(1-3

4. BUFFER SIZE ANALYSIS
As shown in Figure 1-1, an Æthereal connection consists of two channels:

one forward channel, and one reverse channel. Each channel has one buffer atffff

the producer side (forward buffer at the master side, and reverse buffff ffer at theffff

slave side), and one buffer at the consumer side (forward buffff ffer at the slaveffff

side, and reverse buffer at the master side). Both buffff ffers at the producer andffff

consumer side are used to decouple the IP blocks from the NIs, namely to
hide the differences in operating frequency and communication pattern of theffff

IP blocks and NI. Moreover, the consumer-side buffer is also used to hide theffff

round-trip latency of reporting the flow-control credits.
For analysis purposes, we split the buffer at the consumer in two: one partffff

for flow-control round-trip latency hiding (β((C
RLβ), and the other for decoupling

(β((C
DCβ) (see Figure 1-7). In an actual implementation, for efficiency reasons,

these two parts should be merged into a single bufferffff βC = βC
RLβ + βC

DCβ . In the
following two sections we describe how to compute the worst-case size for
these two kinds of buffers.ffff

4.1 Decoupling Buffers
The decoupling-buffer size computation relies on the fact that modules ex-ffff

changing data exhibit a particular behavior. In our context, consisting of real-
time audio/o video applications, it is safe to assume that modules transfer data
periodically, with an upper bound on the amount of data transferred per period.

14 Chapter 1

NoC
NINI

producer consumer

output module

of buffer βP

input module

of buffer βP
output module

of buffer βC

input module

of buffer βC

β Cβ P

Figure 1-8. For each buffer, there are an input module (filling the buffff ffer) and an output moduleffff

(emptying the buffer).ffff

This is, the traffic generated or consumed by a module is characterized by the
following parameters (see Section 2.2 and Figure 1-6):

Period (T) is the minimum period in which a constant amount of data is sent.
For a connection ci of an IP module , T corresponds to T Rd

IPT ,i, and/d or T Wr
IPT ,i

for read and write transactions, respectively. For an Æthereal NoC with
arbitrary slot allocation on a connection ci’s channel, the period T is
equal to the duration of a complete slot table rotation |S| × Ts. When
slots are allocated equidistantly in blocks of k contiguous slots, T is
taken (|S| ×Ts × k)/|Sch

i |. As shown further in this section and Section 5,
a smaller period T implies smaller buffers and shorter worst-case laten-ffff

cies.

Data amount (D) is the upper bound on the transferred data in the given pe-
riod. For the IP modules, D corresponds to the messages, and is equal
to LWr

CMD,i + LWr
DATAL ,i for write requests, LRdLLCMD,i and LRdLLDATAL ,i for read requests

and read responses sent on a connection ci, respectively. For a NoC
with arbitrary slot allocation on a connection ci’s channel, D is equal
to the number of payload words Wch

p,i transferred in a complete slot ro-
tation. In case of equidistantly allocated blocks of k contiguous slots,
D = Wch

p,i × k/|Sch
i |.

Regular or irregular to specify if an IP module transfers data in the same or
in an arbitrary position within the interval T , respectively. IP modules
can be either regular or irregular. An Æthereal NoC, however, always
transfers data in the reserved slots, which do not change from a slot
table rotation to another. For this reason, the NoC is always periodic
over a complete slot table rotation period |S| × Ts. For connection ci’s
channel with equidistantly allocated blocks of slots, there may be jitter
in the slot allocation, and, if there is jitter, NoC will be periodic irregular
over |S| × Ts × k/|Sch

i |.
We use the same method of computing the buffer size for all the decouplingffff

buffers, at producer and consumer sides, and for all connections. To simplifyffff

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 15

T

Regular periodic communication:

at least �t/T� data elements transferred

Irregular periodic communication:

at least (�t/T� - 1) data elements transferred

tt

t t

Figure 1-10. Lower bounds for periodic data transfer.

the discussion, we call the module attached to the input of the buffer the inputffff

module (producer, and NI at the consumer side), and the module attached to the
output of the buffer the output module (NI at the producer side, and consumer),ffff

as shown in Figure 1-8.
Given an input module and an output module, let their periods be TIT and

TO, and the data amount per period be DI and DO, respectively. The maximum
buffer size required between an input moduleffff MIM and an output module MO is
given by the maximum difference between the data produced byffff MIM and the
data consumed by MO over any time interval.

To compute this maximum difference for an arbitrary time interval of dura-ffff

tion t, we must consider the worst-case for data production and consumption,
respectively. We consider the two cases presented in Section 2.2: regular and
irregular.

The worst-case data to be buffered is when the amount of produced dataffff

over an arbitrary time interval t is maximized. As shown in Figure 1-9, for the
regular case, the amount of produced data is bounded by the minimum number
of periods TIT that covers the time interval considered t:

φR
I (t) ≤

⌈
t

TIT

⌉
× DI (1-32)

16 Chapter 1

input DI = 2, TI = 2

output DO = 7, TO = 7

buffer

filling

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

time1

2

3

4

5

6

7

0

8

9 DI + DO

Figuure 1-11. Example buffer filling for almost regular production and consumption of data.ffff

FFor the irregular case, one more data item needs to be added because of the
arbitrary position that the data may take inside the period:

φI
I(t) ≤

(⌈
t

TIT

⌉
+ 1
)
× DI (1-33)

Similarly, the worst-case data consumption occurs when the amount of con-
sumed data over a time interval t is minimized. As shown in Figure 1-10, for
the regular case, the amount of data is minimized by the number of periods T
that fit in the time interval t:

φR
O(t) ≥

⌊
t

TO

⌋
× DO (1-34)

For the irregular case, one more data item needs to be subtracted because of
the arbitrary position that the data may take inside the period:

φI
O(t) ≥

(⌊
t

TO

⌋
− 1
)
× DO (1-35)

The buffer filling is a function of timeffff t, and is less than or equal to the
difference of the amount of data sent byffff MIM (i.e., φI(t)), and the amount of data
that can be received by MO (i.e., φO(t)) (see Figure 1-11 for an example). In
the case MO can consume more data than the MIM can produce, the buffer fillingffff

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 17

is zero:
φ(t) ≤ max {φI(t) − φO(t), 0} (1-36)

For both regular production and regular consumption of data, the worst-case
buffer size requirements are:ffff

φRR(t) ≤ max {φR
I (t) − φR

O(t), 0} (1-37)

From Equations (1-32), (1-33), (1-34) and (1-35), and assuming the input
rate is at most the output rate of the considered buffer (ffff DI/TIT ≤ DO/TO):

φR
I (t) − φR

O(t) ≤
⌈

t
TIT

⌉
× DI −

⌊
t

TO

⌋
× DO

≤
(

t
TIT
+ 1
)
× DI −

(
t

TO
− 1
)
× DO

≤ DI + DO + t ×
(

DI

TIT
− DO

TO

)

≤ DI + DO (1-38)

From (1-37) and (1-38):

φRR(t) ≤ DI + DO (1-39)

In other words, the maximum buffer filling for regular periodic input andffff

output modules is equal to the sum of the data produced DI and consumed DO
in the periods TIT and TO, respectively.

In the case of a NoC-based system, the buffers always reside in betweenffff

an IP module (master or slave) and the NoC. The Æthereal NoC provides
guaranteed-bandwidth data transfers using slot reservations in slot tables. Con-
sequently, the NoC behavior is always regular and periodic.

In this chapter, we address the cases in which the IP module behavior is pe-
riodic and can be either regular or irregular. As the NoC is always regular and
periodic, Equation (1-39) covers the case in which the IP module is periodic.
For an irregular consumer, the worst-case buffer size requirements are givenffff

by:
φRI(t) ≤ DI + 2 × DO (1-40)

and, for an irregular IP module producer, the worst-case buffer size require-ffff

ments are given by:
φIR(t) ≤ 2 × DI + DO (1-41)

These two equations are derived similarly to Equation (1-39).

18 Chapter 1

For a connection ci for which the throughput is guaranteed, there are a num-
ber of slots reserved in the slot table for the forward and reverse channels.
As explained in Section 3, the bandwidth reserved with these slots is split in
bandwidth for headers (WhWW ,i) and bandwidth for payload (WpW ,i). In the interval
given by the slot table period (|S| × Ls/BL), the data is produced/d consumed
regularly. The NoC acts as an output module at the master side for the forward
channel, and at the slave side for the reverse channel, and as an input module
at the master side for the reverse channel and at the slave side for the forward
channel.

Let us first consider the case when the master and slaves produce and con-
sume data regularly. For a non-acknowledged write-only connection ci, the
decoupling buffer sizes (measured in words offfff Lw bits) for forward master and
slave, and reverse slave and master are given by:

βF,FF M
DCβ ,i = (LWr

DATAL ,i + LWr
CMD,i) +WF

pW ,i (1-42)

βF,FF S
DCβ ,i = WF

pW ,i + (LWr
DATAL ,i + LWr

CMD,i) (1-43)

βRββ ,SDCβ ,i = 0 (1-44)

βRββ ,MDCβ ,i = 0 (1-45)

respectively5.
For a read-only connection, buffer sizes are given by:ffff

βF,FF M
DCβ ,i = LRdLLCMD,i +WF

pW ,i (1-46)

βF,FF S
DCβ ,i = WF

pW ,i + LRdLLCMD,i (1-47)

βRββ ,SDCβ ,i = LRdLLDATAL ,i +WRWWpW ,i (1-48)

βRββ ,MDCβ ,i = WRWWpW ,i + LRdLLDATAL ,i (1-49)

For a read-write connection, buffer sizes are a sum of the buffff ffers for theffff

write-only and read-only cases:

βF,FF M
DCβ ,i = (LWr

DATAL ,i + LWr
CMD,i + LRdLLCMD,i) +WF

pW ,i (1-50)

βF,FF S
DCβ ,i = WF

pW ,i + (LWr
DATAL ,i + LWr

CMD,i + LRdLLCMD,i) (1-51)

βRββ ,SDCβ ,i = LRdLLDATAL ,i +WRWWpW ,i (1-52)

βRββ ,MDCβ ,i = WRWWpW ,i + LRdLLDATAL ,i (1-53)

For the case the master and/d or slave produce or consume data irregularly
in their periods, the buffer requirements at the masterffff /r slave side double (see

5There is no buffer needed for the reverse channel, because, in the write-only case, there is no data beingffff

sent in the reverse channel. Slots must still be reserved for the transportation of credits, however, they are
not buffered in the NI, but processed directly.ffff

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 19

Equations (1-40) and (1-41). Let us consider, for example, the case in which
both master and slave produce and consume data irregularly. For a write-only
connection, buffer sizes are given by:ffff

βF,FF M
DCβ ,i = 2 × (LWr

DATAL ,i + LWr
CMD,i) +WF

pW ,i (1-54)

βF,FF S
DCβ ,i = WF

pW ,i + 2 × (LWr
DATAL ,i + LWr

CMD,i) (1-55)

βRββ ,SDCβ ,i = 0 (1-56)

βRββ ,MDCβ ,i = 0 (1-57)

For a read-only connection, buffer sizes are given by:ffff

βF,FF M
DCβ ,i = 2 × LRdLLCMD,i +WF

pW ,i (1-58)

βF,FF S
DCβ ,i = WF

pW ,i + 2 × LRdLLCMD,i (1-59)

βRββ ,SDCβ ,i = 2 × LRdLLDATAL ,i +WRWWpW ,i (1-60)

βRββ ,MDCβ ,i = WRWWpW ,i + 2 × LRdLLDATAL ,i (1-61)

For a read-write connection, buffer sizes are again a sum up of the buffff ffersffff

for the write-only and read-only cases:

βF,FF M
DCβ ,i = 2 × (LWr

DATAL ,i + LWr
DATAL ,i + LRdLLCMD,i) +WF

pW ,i (1-62)

βF,FF S
DCβ ,i = WF

pW ,i + 2 × (LWr
DATAL ,i + LWr

CMD,i + LRdLLCMD,i) (1-63)

βRββ ,SDCβ ,i = 2 × LRdLLDATAL ,i +WRWWpW ,i (1-64)

βRββ ,MDCβ ,i = WRWWpW ,i + 2 × LRdLLIPL ,i (1-65)

4.2 Round-Trip Latency-Hiding Buffers
The round-trip latency-hiding buffer is located in the NI at the consumerffff

side (see Figure 1-7). It is needed to compensate for the time from which a
producer NI reduces its credits when sending packets until it receives back
the credits from the consumer NI. If this buffer is too small, the producer NIffff

can run out of credits and temporarily stall its transmission of packets, and,
therefore, does not meet its bandwidth requirements.

To compute the minimum size of round-trip latency-hiding buffer, we needffff

to compute the worst-case latency necessary for the credits to be reported back
to the NI from where the data is sent. The buffer size must be larger than orffff

equal to the maximum amount of credits that can be consumed when sending
data without being reported back to the sender NI.

For a connection ci, the round-trip latencies T M
RLT ,i and T S

RLT ,i from when the
data is sent by the producer NI (at master and slave, respectively) until the first

20 Chapter 1

credits reach back the producing NI is given by:

T M
RLT ,i = T F,FF T

LT ,i + T R,T
LT ,i + max

〈s,λ〉∈EREEi

λ (1-66)

T S
RLT ,i = T R,T

LT ,i + T F,FF T
LT ,i + max

〈s,λ〉∈EF
i

λ (1-67)

where T F,FF T
LT ,i and T R,T

LT ,i refer to the amount of time to transport data (given by the
number of hops, i.e., the number of links traversed by the packets of a channel
from the producer to the consumer) on the forward and reverse channels, re-
spectively, and EF

i and EREEi refer to the slots not reserved (to send flow control)
for the forward and reverse channels, respectively. The first two terms repre-
sent the network latency in both directions, and the third term represents the
time flow control has to wait in the NI until it can be sent. This formula repre-
sents the latency until the first credits are returned. Recall that the maximum
amount of credits that can be transported in a packet is bounded to MFCM .

To address the case in which the amount of data transferred in the T F
RLT ,i

and T R
RLT ,i intervals is larger than MFCM , we compute the amount of flow control

that can accumulate in any time interval spanning over 0 < δ ≤ |S| slots6

at the destination NI without being reported back with credits (in case it is
consumed)7:

φF,FF acc
i (δ) = Ls × max

〈s0,λ〉∈F F
iFF

{ | {s ∈ SF
i | 0 < s � s0 ≤ δ} | −

| {s ∈ HRHHiHH | 0 < s0 � s ≤ δ} |
}
−

MFCM × min
s0∈HRHHiH

| {s ∈ HRHHiHH | 0 < s0 � s ≤ δ} | (1-68)

φR,acc
i (δ) = Ls × max

〈s0,λ〉∈F RFFiFF

{ | {s ∈ SRSSi | 0 < s � s0 ≤ δ} | −
| {s ∈ HF

iHH | 0 < s0 � s ≤ δ} |
}
−

MFCM × min
s0∈HF

iH
| {s ∈ HF

iHH | 0 < s0 � s ≤ δ} | (1-69)

where the first terms represent the maximum amount of data that can be trans-
ferred in the interval δ (excluding headers), and the second terms represent the
minimum amount of credits that can be transported back to the sender in the
same interval δ.

6This interval is practically a sliding window of δ slots: [t, t + δ× Ls/BL], where t is any time aligned to the
slot boundary.
7For a correct slot allocation, for each channel, the maximum amount of credits that can be sent by the
consumer in a slot table rotation (MFCM × |HRHHiHH | and MFCM × |HF

iHH |) must be larger than or equal to the amount
of data produced by the producer NI in a slot table rotation (WF

p,i and WRWWp,i, respectively).

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 21

Let δF,FF acc
i and δRδδ ,acc

i be the largest interval less than a slot table rotation (i.e.,
0 ≤ δF,FF acc

i ≤ |SF
i | and 0 ≤ δRδδ ,acc

i ≤ |SRSSi |) for which βF,FF acc
i and βRββ ,acc

i are maxi-
mized, respectively. Then

T M
RLT ,i = T F,FF T

LT ,i + T R,T
LT ,i + δ

F,FF acc
i (1-70)

T S
RLT ,i = T R,T

LT ,i + T F,FF T
LT ,i + δ

Rδδ ,acc
i (1-71)

represent the minimum time intervals in which the worst-case amount of data
(the maximum amount of data) matches with the worst-case amount of credits
(the minimum amount of credits).

The buffering to hide the round-trip latency is then:ffff

βF,FF S
RLβ ,i =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢T
M
RLT ,i

|SF
i |

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ ×WF
pW ,i + β

F,FF acc
i (δF,FF acc

i) (1-72)

βRββ ,MRLβ ,i =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢
T S

RLT ,i

|SRSSi |

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ ×WRWWpW ,i + β
Rββ ,acc
i (δRδδ ,acc

i) (1-73)

The first terms represent the buffering needed to accommodate the data sentffff

in complete table rotations (when latency is larger then a complete slot rota-
tion), and the second terms represent the buffering needed to accommodateffff

the maximum amount of data that can be sent in the fraction of the latency
overlapping with a partial slot table rotation.

4.3 Total Buffer Sizes
As mentioned earlier, the buffer sizes in the network interfaces are given byffff

several components: decoupling buffers and credit round-trip latency-hidingffff

buffers. At the producer sides (ffff β((F,FF M
i and βRββ ,Si), the buffers are for decouplingffff

buffer only, while at the consumer sides (ffff β((F,FF S
i and βRββ ,Mi), the buffers are usedffff

for both decoupling and credit round-trip latency-hiding. As a result, the bufferffff
sizes are given by:

βF,FF M
i = βF,FF M

DCβ ,i (1-74)

βF,FF S
i = βF,FF S

DCβ ,i + β
F,FF S
RLβ ,i (1-75)

βRββ ,Si = βRββ ,SDCβ ,i (1-76)

βRββ ,Mi = βRββ ,MDCβ ,i + β
Rββ ,MRLβ ,i (1-77)

5. LATENCY ANALYSIS
The latency of a connection ci, TLT ,i is composed of the latency of forward

channel T F
LT ,i, reverse channel T R

LT ,i and IP latency T IP
LT ,i (see Figure 1-12). For the

22 Chapter 1

1

Slave

consumer

producer

NoC
NI NI

forward channel

reverse channel

Master

producer

consumer

βF,M βF,S

βR,SβR,M

TL,i
R

TL,i
IP

TL,i
F

Figure 1-12. Latency of a connection.

sake of simplicity, we calculate latency in terms of slot cycles, so, in all the
formulas that we derive for latency a multiplication factor of Ts must be used
when converting them in terms of seconds.

We first address the general case with one producer and one consumer con-
nected through a channel (see Figure 1-13). The latency for a channel,nected through a channel (see Figure 1-13) The latency for a channel TT ch

LT ,i,
is measured from the time a word data is accepted by the NI at producer side
until the same word is accepted by the consumer. Note that the latency of a
channel depends on the behavior of the consumer. We consider two cases for
consumer:

Unoccupied consumer, when a consumer is ready to consume data as soon
as data are offered by the NI at the consumer side.ffff

2

NoC
NI

producer
MSG MSG

NI

consumer

β Cβ P

βDC

P
βDC

CβRL

C

TL,i
ch,P TL,i

ch,T TL,i
ch,C

TL,i
ch

Latency of a channel.

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 23

Occupied consumer, when a consumer delays consumption of data due
to, for example, sharing of the same port by many connections or when the
consumer cannot, for some reason, accept the data.

In the previous section buffering values for a channel between a producerffff

and a consumer are derived such that full utilization of bandwidth can be
achieved, i.e., the producer never stalls because of lack of credits. Buffers areffff

introduced at the producer NI (called producer buffer) as well as at consumerffff

NI (called consumer buffer), these buffff ffers contribute to the latency (see Fig-ffff

ure 1-13). We split total latency for a channel T ch
LT ,i in three components, T ch,P

LT ,i
the time required for the data in front of the current word to leave the producer
NI, T ch,T

LT ,i the latency to transport a word from producer NI to the consumer NI
(given by the number of hops), and T ch,C

LT ,i the time required for the data in front
of the current word to leave the consumer NI.

T ch
LT ,i = T ch,P

LT ,i + T ch,T
LT ,i + T ch,C

LT ,i (1-78)

The latency T ch,P
LT ,i depends on the slot allocation. For a given slot allocation

the amount of data that can be removed from the producer buffer during oneffff

iteration of slot table is denoted by Wch
p,i (see Equation (1-10) on page 10). In

the worst-case, the buffer is full, meaning that as many words as the buffff ffer sizeffff

βch,P
i must be sent. We divide the data of the buffer into two parts, first part isffff

an integer multiple n of Wch
p,i and the second is remainder r.

βch,P
i = n ×Wch

pW ,i + r (1-79)

The time T ch,P
LT

I ,i
to send the first part of the buffer isffff n iterations of the slot

table. However, to derive time T ch,P
LT

RL ,i to send the remainder data r, first a func-
tion Wch

pmin,i
(d) is defined to calculate the minimum number of payload words

that can be sent for a given window size d. The payload words are calculated
by subtracting the number of words used for sending headers from the total
number of words that can be sent for the allocated slots for the channel in the
given window.

Wch
pW

min,i
(δ) = min

s∈S

{
Ls × |{s′ ∈ Sch

i | s′ � s < δ}|−
|{s′ ∈ H ch

iH | s′ � s < δ}|
}

(1-80)

Figure 1-14 shows the number of payload words sent for the given values of δ
in an example slot allocation. For a window size of 4 (i.e., δ = 4) two extreme
possibilities for payload p=2 and p=7 and the minimum value for payload is 2.

The set {δ ∈ � | Wch
pmin,i

(δ) ≥ r} defines the values of window in which at
least the remaining data r can be sent. The minimum value in this set is not the

24 Chapter 1

3

H P PP PP P P HPH P

Slot 1

δ=4, p=7
δ=3, p=2

δ=4, p=2

2 3 4 5 6 7 8

Figure 1-14. The amount of payload data p sent for a given window d for an example slot
table size of 8.

worst-case delay value as it does not include all empty slots around allocated
slots. For example, to send a payload of 2 (i.e., p = 2) the set of window
is {3, 4, 5, 6, 7, 8} (derived from the condition above) and the minimum of the
set is 3 that is not the worst-case value rather the worst-case value is 4 (see
Figure 1-14). So, we define an upper bound (Wch

pmin,i
(δ) < (r + Ls)) for the set

such that it only allows sending the minimum payload data of remainder plus
the number of words in a slot. As the minimum payload words are discrete
values with the maximum step size of Ls, this upper bound also ensures that
the set of window is not empty. The maximum value of the bounded set gives
the worst-case delay to transfer the remaining data.

T ch,P
LT

RL ,i = max
{
δ ∈ � | r ≤ Wch

pW
min,i

(δ) < (r + Ls)
}

(1-81)

The total latency T ch,P
LT ,i is the sum of the integer part T ch,P

LT
I ,i

and the remainder
part T chh,PP

LT
RL ,i .

T ch,P
LT ,i = T ch,P

LT
I ,i
+ T ch,P

LT
RL ,i (1-82)

= n × |S| +max
{
δ ∈ � | r ≤ Wch

pW
min,i

(δ) < (r + Ls)
}

(1-83)
where

n =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢β
ch,P
i

Wch
p,i

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
r = βch,P

i %Wch
pW ,i

T ch,T
LT ,i = Number of hops between producer NI and consumer NI. (1-84)

The latency for the consumer buffer,ffff T ch,C
LT ,i , depends on the consumption

pattern of the consumer. We consider the case of an unoccupied consumer
which is ready to consume data as soon as it is offered by the consumer NI.ffff

In this case, the consumer buffer would always remain empty as consumer isffff

aggressively removing data. Hence, latency caused by the consumer bufferffff
does not have any contributions to the total latency, (i.e., T ch,C

LT ,i = 0).

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 25

In the case of an occupied consumer, we assume that in the worst-case a
consumer consumes (RIP,i × TC

IPT ,i) data words in a period TC
IPT ,i (see Section 2).

T ch,C
LT ,i is given by the number of consumer periods needed to empty a full buffer.ffff

We convert it into the number of slot periods by dividing it by the time required
to traverse a slot Ts.

T ch,C
LT ,i =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
βch,C

i

RC
IP,i × TC

IPT ,i

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ ×
TC

IPT ,i

Ts
(1-85)

We derive the latencies for a given connection (read and/d or write) from the
latencies for a given channel in the following sections.

5.1 Latency for write-only connections
The latency T Wr

LT ,i for a write-only connection ci depends only on the forward
channel as data are only sent in forward direction. The latency for the oc-
cupied consumer case is the same as the latency of the forward channel (see
Equation (1-78)).

T Wr
LT ,i = T F

LT ,i = T F,FF M
LT ,i + T F,FF T

LT ,i + T F,FF S
LT ,i (1-86)

For the latency of the unoccupied consumer case the latency introduced due
to the buffer in the forward channel at the slave sideffff T F,FF S

LT ,i is always zero as
consumer keeps the buffer empty.ffff

The specialized formulas are derived by substituting the values of channel,
component type and and data rates in Equations (1-83), (1-84) and (1-85).

T F,FF M
LT ,i =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢β
F,FF M
i

WF
p,i

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ × |S| +
max
{
δ ∈ � | (β((F,FF M

i %WF
pW ,i) ≤ WF

pW
min,i

(δ) < ((β((F,FF M
i %WF

pW ,i) + Ls)
}

T F,FF T
LT ,i = Number of hops in forward direction.

T F,FF S
LT ,i =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
βF,FF S

i

(1 + γWr
i) × RWr

IP,i × T Wr
IPT ,i

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ ×
T Wr

IPT ,i

Ts

5.2 Latency for read-only connections
The latency T Rd

LT ,i for a read-only connection ci, depends on the both forward
and reverse channel as read commands are sent in the forward direction and
read data are sent in the reverse direction. We further add the latency of IP to
provide responses T IP

LT .

T Rd
LT ,i = T F

LT ,i + T IP
LT + T R

LT ,i (1-87)

26 Chapter 1

By substitution Equation (1-78) for each channel, T Rd
LT ,i is given as:

T Rd
LT ,i = T F,FF M

LT ,i + T F,FF T
LT ,i + T F,FF S

LT ,i + T IP
LT + T R,S

LT ,i + T R,T
LT ,i + T R,M

LT ,i (1-88)

For the unoccupied consumer case, there are no latency contributions from
slave buffer in the forward channel (i.e.,ffff T F,FF S

LT ,i = 0) and master buffer in theffff

reverse channel (i.e., T R,M
LT ,i = 0) as both sides can accept data as soon as it is

offered by the respective NIs.ffff

The specialized formulas are derived by substituting the values of channel,
component type and data rates in Equations (1-83), (1-84) and (1-85).

T F,FF M
LT ,i =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢β
F,FF M
i

WF
p,i

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ × |S| +
max
{
δ ∈ � | (β((F,FF M

i %WF
pW ,i) ≤ WF

pW
min,i

(δ) < ((β((F,FF M
i %WF

pW ,i) + Ls)
}

T F,FF T
LT ,i = Number of hops in forward direction.

T F,FF S
LT ,i =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
βF,FF S

i

γRdγγi × RRd
IP,i × T Rd

IPT ,i

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ ×
T Rd

IPT ,i

Ts

T IP
LT ,i = Latency of IP to provide responses after receiving requests.

T R,S
LT ,i =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢β
Rββ ,Si

WRWWp,i

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ × |S| +
max
{
δ ∈ � | (β((Rββ ,Si %WRWWpW ,i) ≤ WRWWpW

min,i
(δ) < ((β((Rββ ,Si %WRWWpW ,i) + Ls)

}
T F,FF T

LT ,i = Number of hops in reverse direction.

T R,M
LT ,i =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
βRββ ,Mi

RRd
IP,i × T Rd

IPT ,i

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ ×
T Rd

IPT ,i

Ts

5.3 Latency for read-write connections
By substituting the buffer sizes derived for read-write case from Section 4.3ffff

in equations defined in Section 5.1 and Section 5.2, latency for write and read
transactions can be calculated.

6. VERIFICATION TOOL AND RESULTS
We have developed a tool to verify the performance of a SoC against its

specifications using the analytical method described in the previous sections.
This verification tool takes as input NoC attributes (e.g., slot table size, slot
size, word width, and frequency), a NoC configuration per connection (e.g.,

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 27

connection id, slot table allocation for both channels, number of hops for each
channel, transaction type), and the specified values for throughput, latency and
buffer sizes per connection. The tool derives the required buffff ffering, the worst-ffff

case latency, and the minimum throughput for each connection. We have de-
veloped this tool in MatlabTM and the tool produces results in XML (Exten-
sible Markup Language) format which can be converted in HTML (Hypertext
Markup Language) format.

The tool provides bounds for buffering for each connection and availableffff

slack (e.g., additional amount of buffer) from the specified values. This infor-ffff

mation allows to build correct NoCs with properly dimensioned buffers. Theffff

available slack information can be used to reduce the cost of a NoC by strip-
ping additional buffers because the cost of a NoC is dominated by the costffff

of buffering (Rffff adulescu et al., 2005). In our tool flow (Goossens, Dielissen,˘
Gangwal, Gonzalez Pestana, R´ adulescu and Rijpkema, 2005), for GT connec-˘
tions, we can automatically adjust buffer size to the derived bounds for eachffff

connection.
This tool derives exact values for throughput, assuming buffers are dimen-ffff

sioned using the derived bounds, for a given slot allocation. Furthermore, it
checks whether the given slot allocation meets the specified data rates and the
required flow control rates in the forward and the reverse direction. When these
requirements are not met, the tool provides detailed feedback about what re-
quirements are not met with exact numbers. Note that these verification equa-
tions have been incorporated in our slot allocation tool to build our NoCs in a
correct-by-construction manner.

The tool also calculates the worst-case latency for both unoccupied con-
sumer case and occupied consumer case, per connection basis. It also provides
feedback whether we meet the specified latency requirements or not.

The tool processes one connection at a time, so, execution time of the tool
is linear in number of connections in a SoC. The execution time was approx-
imately a minute for a complex SoC with as many as 200 connections. We
demonstrate the usefulness of the analysis method and the tool through an
MPEG-2 codec example.

6.1 Example
The example MPEG-2 codec SoC has 16 IPs and 3 memories and 21 guar-

anteed throughput read-write connections (see Figure 1-15). A connection is
specified between an initiator port and target port with read and/d or write band-
width requirements, burst size and latency requirements. These connections
have bandwidth requirements varying from 54 to 120 Mbytes/sec and burst
sizes varying from 16 to 64 bytes.

28 Chapter 1

Figure 1-15. Description of connections for the example MPEG-2 codec.

6.2 Analysis Results and Observations
We build two NoCs for the example MPEG-2 codec. The first is an au-

tomatically generated (using our tool flow (Goossens, Dielissen, Gangwal,
Gonzalez Pestana, R´ adulescu and Rijpkema, 2005; Goossens, Gonz˘ alez Pes-´
tana, Dielissen, Gangwal, van Meerbergen, Radulescu, Rijpkema and Wielage,˘
2005) minimum mesh topology of size 2x3 using a slot table size of 64 (called
ex64) and the second is manually mapped and dimensioned 1x3 mesh topol-
ogy using a slot table size of 8 (called ex8). The results for both examples are
shown in Figure 1-16 and 1-17, respectively. First we describe what is shown
in the result tables then we compare results for both NoCs. The key points to
observe in this comparison are the effects of the size of a NoC, the size of affff

slot table, and the burst size on the buffer sizes, the latency, and the throughputffff

of a connection.
The first column of the table shows the unique connection identifiers of the

connections, the second column shows the type of transactions allowed on the
connection (i.e., read and/d or write). The third and fourth columns provide in-
formation about slot table size and allocated number of slots for both forward
and reverse channel. The fifth and sixth columns show the specified through-
put values and available throughput for the given slot allocation in Mbytes per
second. Notice that the available throughput is not exactly equal to the spec-

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 29

ified value rather it is usually more than the specified value because the slot
allocation results in terms of integer number of slots, the available bandwidth
may exceed the specified bandwidth. Note that the bandwidth per slot depends
on the slot table size (i.e., the larger the slot table the smaller is the bandwidth
per slot). A larger slot table provides more options to match closely with the
specified throughput. For example, the available throughput for read connec-
tion 1 matches more closely to the specified value (i.e., 72 MB/s) for the ex64
architecture with 64 slots (i.e., 114.58 MB/s) than for the ex8 architecture with
only 8 slots (i.e., 166.67 MB/s).

The next four columns are for the latency represented in nanoseconds. It
shows the specified latency and worst-case latency including contributions
from the NoC, contributions of an occupied consumer port, (i.e., Sched col-
umn), and the given latency of the consumer to send responses, (i.e., IP
column) (see Figure 1-12). Note that, for low bandwidth read connections
scheduling latencies dominate the unoccupied consumer latency. A connection
with low bandwidth requirements gets its turn to be served by the consumer af-
ter long time (as the port of consumer is occupied with other connections of
high bandwidth requirements) leading to high latency. By deriving unoccupied
consumer latency and latency due to an occupied consumer port separately, one
can understand which part of the latency is due to what reason. When compar-
ing the results for the ex64 architecture with the ex8 architecture, the latency
for the ex64 architecture is always larger than for the ex8 architecture due to
larger buffer sizes and larger mesh for the ex64 architecture.ffff

The rest of the columns show the specified and the computed buffer sizes,ffff

and the slack for all four buffers (forward master, forward slave, reverse slaveffff

and reverse master), respectively. The slack information tells where additional
buffering is required (when it is a negative number), and where the specifiedffff

buffer size is higher than needed (when it is a positive number). The buffff fferffff
sizes for all buffers is larger for the ex64 architecture than the ex8 architectureffff

due to larger NoC (mesh) and more number of allocated slots. Recalling the
equations for buffering, we observe that buffff ffer sizes are proportional to theffff

number of allocated slots per channel. We can also back annotate these bufferffff
sizes per connection automatically and run the analysis again. The results after
running the analysis are shown in Figure 1-18.

When comparing the results for the two different topologies (ex64 and ex8)ffff

for the given example, we observe that larger slot table sizes allow a good
match for the specified throughput requirements but they result in larger bufferffff
sizes and latency. The net effect of all these is an increase in area due toffff

the larger slot tables itself and larger buffer sizes. Figure 1-19 provides theffff

overview of area numbers (for 0.13µ CMOS technology) for both topologies
with derived buffering (i.e., buf-opt suffff ffix) and with a fixed buffer size of 40ffff

(i.e., buf-no-opt suffix). As expected router cost is higher for ex64 topology as

30 Chapter 1

Figure 1-16. Results of GT verification for the ex64 architecture.

Figure 1-17. Results of GT verification for the ex8 architecture.

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 31

Figure 1-18. Results of GT verification with derived buffer sizes for the ex8 architecture.ffff

Area comparison

0.51 0.51
0.30 0.30

2.35

1.51

2.51

1.30

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

ex64-no-opt ex64-buf-opt ex8-no-opt ex8-buf-opt

A
re

a
 i

n
 m

m
2

NI area

Router area

Figure 1-19. Comparison of various topologies and buffering.ffff

32 Chapter 1

compared to ex8. It is clear from Figure 1-19 that cost of NI dominates the cost
of network. The cost of the network can thus be reduced by carefully choosing
the network parameters (e.g., slot table size and number of routers and their
connections to IPs).

Our technique allows analysis of each GT connection independently leading
to a composable design. The complete design is analyzable without the use of
any simulation techniques.

7. CONCLUSIONS
To build predictable systems all components of the system must be pre-

dictable. This includes computation components, memory components and
communication components. Our focus is on predictable communication com-
ponents (i.e., Æthereal NoC). We explain that guaranteed services are required
to do worst-case analysis of a NoC without performing time consuming sim-
ulations that may not cover the worst-case, anyways. An analyzable commu-
nication infrastructure is a must to build correct-by-construction predictable
systems. We derived bounds for worst-case values for buffer sizes, latency,ffff

and throughput for the Æthereal NoC. We show how these techniques can be
applied using an MPEG-2 codec example. Furthermore, we show that the cost
of the communication infrastructure can be reduced with derived values for
buffer sizes and quick exploration of various topologies through our analysisffff

without a need of simulation.

8. GLOSSARY

Symbol Brief description
(subscript i denotes a connection identifier)

Page

βF,FF M
DCβ ,i Decoupling buffer size for forward channel at masterffff

side, in words
18

βF,FF S
DCβ ,i Decoupling buffer size for forward channel at slave side,ffff

in words
18

βRββ ,MDCβ ,i Decoupling buffer size for reverse channel at master side,ffff

in words
18

βRββ ,SDCβ ,i Decoupling buffer size for reverse channel at slave side,ffff

in words
18

βF,FF S
RLβ ,i Buffer size needed to hide the round-trip latency delay offfff

the flow control for the forward channel at the slave side,
in words

21

Continued on next page . . .

AN ANALYSIS OF GUARANTEED COMMUNICATION FOR NoCs 33

Symbol Brief description Page
βRββ ,MRLβ ,i Buffer size needed to hide the round-trip latency delayffff

of the flow control for the reverse channel at the master
side, in words

21

βF,FF M
i Total buffer size at the master side of the forward chan-ffff

nel, in words
21

βF,FF S
i Total buffer size at the slave side of the forward channel,ffff

in words
21

βRββ ,Mi Total buffer size at the master side of the reverse channel,ffff

in words
21

βRββ ,Si Total buffer size at the slave side of the reverse channel,ffff

in words
21

γWr
i Command to data ratio for a write connection 8

γRdγγi Command to data ratio for a for a read connection 8

Θch
FC,i Flow control symbol rate for channel ch, in Symbol/l sec 10

BL Raw link bandwidth, in words/sec 6
Bch

h,i Header bandwidth for channel ch, in words/sec 10

Bch
p,i Payload bandwidth for channel ch, in words/sec 10

Bch
r,i Total raw bandwidth for channel ch, in words/sec 10

Bs The bandwidth associated to a reserved slot, in words/sec 7
Bw The bandwidth associated to a reserved word, in

words/sec
7

Ech
i Blocks of contiguous slots not allocated to channel ch 9

F ch
iFF Blocks of contiguous slots allocated to channel ch 9

fnocff Frequency of a NoC, in Hz 6
H ch

iH Slots containing headers for channel ch 9

LCMD Number of words used to encode the command and ad-
dress in a message

8

LDATAL The amount of words that is transferred in a single trans-
action

8

Lh Packet header length, in words 5
Ls Slot size, in words 7
Lw Word length, in bits 5

Continued on next page . . .

34 Chapter 1

Symbol Brief description Page
MFCM The maximum flow control value that can be sent in one

header (or symbol)
6

RRd
CMD,i The available data throughput for read commands, in

words/sec
12

RWr
CMD,i The available data throughput for write commands, in

words/sec
11

RRd
DATA,i The available data throughput for read data, in words/sec 12

RWr
DATA,i The available data throughput for write data, in

words/sec
11

RRd
IP,i The specified data throughput for a read connection, in

words/sec
8

RWr
IP,i The specified data throughput for a write connection, in

words/sec
8

S Sequence of slots in a slot table 7
|S| Slot table size 7
Sch

i Sequence of slots allocated to channel ch 7

T Rd
IPT ,i The period with which an IP module issues/processes/

read commands, in seconds
8

T Wr
IPT ,i The period with which an IP module issues/processes//

write commands, in seconds
8

T IP
LT IP latency to provide responses after a request is made,

in seconds
25

TLT ,i Latency of a connection ci, in seconds 21
T F,FF T

LT ,i Latency to transport data in the forward channel, in sec-
onds (given by the number of hops)

20

T R,T
LT ,i Latency to transport data in the reverse channel, in sec-

onds (given by the number of hops)
20

T ch
LT ,i Latency of a channel ch in seconds 22

T Rd
LT ,i Latency of a read-only connection, in seconds 26

T Wr
LT ,i Latency of a write-only connection, in seconds 25

TnocTT Clock period of a NoC, in seconds 6
Ts Time required to traverse a slot, in seconds 7
Wch

hW
,i Number of header words sent in one iteration of 10

Continued on next page . . .

REFERENCES 35

Symbol Brief description Page
the slot table for channel ch

Wch
p,i Number of payload words sent in one iteration of the slot

table for channel ch
10

Wch
r,i Total number of words sent in one iteration of the slot

table for channel ch
10

References

Adriahantenaina, A., Charlery, H., Greiner, A., Mortiez, L. and Zeferino,
C. A., 2003, SPIN: A scalable, packet switched, on-chip micro-network,
Proc. Design, Automation and Test in Europe Conference and Exhibition
(DATE).

ARM Ltd., 2003, AMBA AXI Protocol Specification.
Benini, L. and De Micheli, G., 2001, Powering networks on chips, Int’l Sym-

posium on System Synthesis (ISSS), pp. 33–38.
Benini, L. and De Micheli, G., 2002, Networks on chips: A new SoC paradigm,

IEEE Computer 35(1), 70–80.
Bolotin, E., Cidon, I., Ginosar, R. and Kolodny, A., 2004, QNoC: QoS ar-

chitecture and design process for network on chip, Journal of Systems
Architecture 50(2–3), 105–128. Special issue on Networks on Chip.

Dally, W. J. and Towles, B., 2001, Route packets, not wires: on-chip intercon-
nection networks, Proc. Design Automation Conference (DAC), pp. 684–
689.

Goossens, K., Dielissen, J., Gangwal, O. P., Gonzalez Pestana, S., R´ adulescu,˘
A. and Rijpkema, E., 2005, A design flow for application-specific net-
works on chip with guaranteed performance to accelerate SOC design
and verification, Proc. Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE).

Goossens, K., Gangwal, O. P., Rover, J. and Niranjan, A. P., 2004, Interconnect¨
and memory organization in SOCs for advanced set-top boxes and TV
— Evolution, analysis, and trends, in J. Nurmi, H. Tenhunen, J. Isoaho
and A. Jantsch (eds), Interconnect-Centric Design for Advanced SoC and
NoC, Kluwer, chapter 15, pp. 399–423.

Goossens, K., Gonzalez Pestana, S., Dielissen, J., Gangwal, O. P., van Meer-´
bergen, J., Radulescu, A., Rijpkema, E. and Wielage, P., 2005, Service-˘
based design of systems on chip and networks on chip, in P. van der

36 Chapter 1

Stok (ed.), Dynamic and Robust Streaming in and Between Connected
Consumer-Electronic Devices, Kluwer.

Goossens, K., van Meerbergen, J., Peeters, A. and Wielage, P., 2002, Networks
on silicon: Combining best-effort and guaranteed services,ffff Proc. De-
sign, Automation and Test in Europe Conference and Exhibition (DATE),
pp. 423–425.

Guerrier, P. and Greiner, A., 2000, A generic architecture for on-chip packet-
switched interconnections, Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), pp. 250–256.

Karim, F., Nguyen, A. and Dey, S., 2002, An interconnect architecture for net-
working systems on chips, IEEE Micro 22(5), 36–45.

Liang, J., Swaminathan, S. and Tessier, R., 2000, aSOC: A scalable, single-
chip communications architecture, Proc. Int’l Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT).

Millberg, M., Nilsson, E., Thid, R. and Jantsch, A., 2004, Guaranteed band-
width using looped containers in temporally disjoint networks within the
Nostrum network on chip, Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE).

OCP International Partnership, 2003, Open Core Protocol Specification. 2.0
Release Candidate.

Radulescu, A., Dielissen, J., Gonz˘ alez Pestana, S., Gangwal, O. P., Rijpkema,´
E., Wielage, P. and Goossens, K., 2005, An efficient on-chip network
interface offering guaranteed services, shared-memory abstraction, andffff

flexible network programming, IEEE Transactions on CAD of Integrated
Circuits and Systems 24(1).

Radulescu, A. and Goossens, K., 2004, Communication services for networks˘
on chip, in S. S. Bhattacharyya, E. F. Deprettere and J. Teich (eds),
Domain-Specific Processors: Systems, Architectures, Modeling, and Sim-
ulation, Marcel Dekker, pp. 193–213.

Rijpkema, E., Goossens, K. G. W., Radulescu, A., Dielissen, J., van Meerber-˘
gen, J., Wielage, P. and Waterlander, E., 2003, Trade offs in the design
of a router with both guaranteed and best-effort services for networks onffff

chip, Proc. Design, Automation and Test in Europe Conference and Ex-
hibition (DATE), pp. 350–355.

Philips Semiconductors, 2002, Device Transaction Level (DTL) Protocol Spec-
ification. Version 2.2.

Tanenbaum, A. S., 1996, Computer Networks, Prentice-Hall.
Wiklund, D. and Liu, D., 2003, Socbus: switched network on chip for hard real

time embedded systems, Proc. Int’l Parallel and Distributed Processing
Symposium (IPDPS).

Chapter 2

SERVICE-BASED DESIGN OF SYSTEMS ON
CHIP AND NETWORKS ON CHIP

Kees Goossens, Santiago González Pestana,´
John Dielissen, Om Prakash Gangwal, Jef van Meerbergen,
Andrei Rădulescu, Edwin Rijpkema, and Paul Wielage˘
Philips Research Laboratories, Eindhoven, The Netherlands
{Kees.Goossens,Santiago.Gonzalez.Pestana}@Philips.com

Abstract: We discuss why performance verification of systems on chip (SOC) is difficult,
by means of an example. We identify four reasons why building SOCs with pre-
dictable performance is difficult: unpredictable resource usage, variable resource
performance, resource sharing, and interdependent resources. We then intro-
duce the concept of a service, aiming to address these problems, and describe
its advantages over “ad-hoc” approaches. Finally, we introduce the ÆTHEREAL

network on chip (NOC) as a concrete example of a communication resource that
implements multiple service levels.

Keywords: System design, embedded system, system architecture, real time, network on
chip, quality of service, performance analysis, best effort.

1. INTRODUCTION
Moore’s Law results in increasing computational power, which enables so-

phisticated functions to be incorporated in ever-smaller devices. Consumer
electronics is shifting from discrete tethered devices to pervasive systems em-
bedded in every-day objects. The increased interaction with the real world (e.g.
managing the intelligent home, as opposed to e.g. a stand-alone personal com-
puter) requires real-time reactions, a high degree of reliability, and, for user
comfort, predictable behaviour.

Moreover, as the computational power of these systems grows, more ad-
vanced algorithms are introduced, such as MPEG4 (moving-picture experts
group) and 3D graphics. These algorithms make use of the increased flexi-
bility (software-programmability) of embedded systems. Combining variable

37
P. van der Stok (ed.),
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 37-60.
© 2005 Springer. Printed in the Netherlands.

38 Chapter 2

resource requirements (computation, storage, and communication) with the ro-
bust and predictable behaviour required by embedded consumer-electronics
devices is the challenge that we address in this chapter.

The embedded systems just described are implemented using one or more
chips, which together contain one or more systems on a chip (SOC). SOCs
are composed of hardware components (intellectual property, or IP), which
are interconnected by a communication infrastructure, here assumed to be a
network on a chip (NOC).

Designing a SOC is an expensive undertaking, requiring large hardware and
software design teams. The bulk of the effort of SOC design resides not in the
design of the IP, but in their composition or integration into a larger, working
whole. Verifying that the ensemble of IP behaves correctly with the required
functionality and real-time performance is the bottle neck in SOC design.

In this chapter we advocate that the notion of services can ease system de-
sign. Computation, communication, and storage services enable the construc-
tion of modular SOCs, allowing compositional verification.

Overview In the following section we describe and analyse the problem of
performance verification of SOCs. Building on the notions of resources, their
usage and performance, we show that unpredictable resource usage, variable
resource performance, and resource sharing, complicate the construction of
predictable systems. In Section 3 we define the service concept, describe its
advantages over “ad-hoc” approaches, and show how it addresses the perfor-
mance verification problems identified earlier. In Section 4 we describe a con-
crete application of the concepts. The ÆTHEREAL NOC implements two com-
munication service levels (Goossens, Dielissen, van Meerbergen, Poplavko,
Radulescu, Rijpkema, Waterlander and Wielage, 2003; R˘ adulescu and Goos-˘
sens, 2004). We describe their implementation, intended usage, and how they
tackle the problems listed above. In Section 5 we reflect and conclude.

2. RESOURCES: THEIR PERFORMANCE
AND USAGE

IP re-use addresses the so-called design-productivity gap by using IPs in
derivative and multiple designs. This approach works well for components,
such as peripherals, memories, programmable processors, communication in-
frastructure, and real-time operating systems (RTOS). Platforms (Keutzer, Ma-
lik, Newton, Rabaey and Sangiovanni-Vincentelli, 2000), such as Philips’s
Nexperia (de Oliveira and van Antwerpen, 2003), provide the next level of re-
use, by defining interfaces and protocols to connect the re-usable components
(both hardware and software).

SERVICE-BASED DESIGN OF SOC AND NOC 39

As an example, consider one of Philips’s largest SOCs to date, PNX8550,
shown in Figure 2-1 (Goossens, Gangwal, Rover and Niranjan, 2004), which¨
exemplifies the Philips Nexperia platform. Many parts of its design are re-

VPK

TSDMA S

S

PMA

W

W

Simplified block diagram of PNX8550.

used from earlier designs, or are standard components that can be found in
the library of Nexperia-compliant IP. They are combined using the device-
transaction-level (DTL, 2002) hardware and TriMedia streaming software ar-
chitecture (TSSA) software protocols, and use the PSOS operating system, as
prescribed by the platform.

PNX8550 implements many set-top-box and video-enhancement functions,
which require predictable real-time audio and video streaming. Performance
verification is the difficult task of ensuring that the assembly of the large num-
ber of computation, storage, and communication IP meets all real-time con-
straints under all circumstances.

Although platforms have made assembling a SOC much easier, insufficient
steps have been taken in applying the same ideas to performance verification
of the resulting SOC. We tackle this issue by enriching the platform concept
with services, to allow more explicit descriptions of, and reasoning about per-
formance.

2.1 Why is Performance Verification Difficult?
Consider PNX8550, and assume that both TriMedia processors (TM32 in

Figure 2-1) have a cache, and run multiple real-time tasks scheduled by a RTOS.
If we want to know the time it takes a task on one of the TriMedia processors to
communicate with a task on the other TriMedia using shared external memory,

40 Chapter 2

there are several issues to consider. First, each task shares its TriMedia with
other tasks. PSOS supports task preemption, and its arbitration mechanism
therefore determines the delay before a tasks is active. Second, the caches may
or may not contain the instructions and/or data of the task in question, resulting
in a varying delay before the requested data is produced. Moreover, the cache is
shared with other tasks on the same TriMedia. For example, an interrupt prior
to swapping in the task could have flushed the cache, delaying the task’s start.
Third, the communication between the tasks uses the external memory. The
memory is attached to the memory controller, which is again a shared resource
with a sophisticated arbiter. Depending on the arbitration scheme employed,
the write and read latencies and bandwidths may be influenced by other traffic
contending for the external memory, such as the MIPS and the streaming traffic
from the pipelined memory-access (PMA) interconnect (Goossens et al., 2004).
As a result of these phenomena, computing the communication performance
(latency and bandwidth) between the two tasks is non-trivial.

Resources and Users In the above example, we can identify several
kinds of resources: computation (TriMedia, MIPS, IP such as the quality tem-
poral noise reduction or QTNR), communication (device-control-and-status (DCS)
and PMA interconnects), and storage (caches, off-chip and on-chip memories).
These are used by several types of users: tasks (of computation), communi-
cation connections (of communication), and buffers for intermediate results or
for communication (of storage).

In the example there are four independent factors complicating the perfor-
mance analysis, as shown in Table 2-1: unpredictable resource usage, variable
resource performance, users sharing resources, and (inter)dependence of mul-
tiple resources. We discuss each in turn below.

Table 2-1. Independent factors complicating performance analysis.

user resource
uncertainty unpredictable usage variable performance

multiple shared resource resource dependence

2.1.1 Unpredictable resource usage.

Algorithms defined by newer data compression standards, such as MPEG,
are increasingly dynamic. For example, MPEG2’s data compression allows
variable bit rates, and MPEG4 uses dynamic object creation. As a result, the
usage of resources (computation, communication, and storage) to encode or
decode is variable. Figure 2-2 shows an abstract example of time-varying usage
of a resource (“instantaneous usage”).

SERVICE-BASED DESIGN OF SOC AND NOC 41

time
renegotiate resource usage

e.g release & request

worst-case usage

instantaneous usage

requested usagere
s
o

u
rc

e
u

s
a

g
e

Figure 2-2. Variable resource usage and requested performance.

As an example, compressed MPEG2 data streams usually contain so-called
I frames followed by several B and P frames. I frames are larger than B and P
frames, and require more computation to decode them. However, I frames are
required to decode B and P frames, and hence the memory requirements (size
and bandwidth) to decode B and P frame are larger than those for I frames.
However, a set-top box, for which PNX8550 is designed, must display a con-
stant number of pictures per second on the TV screen, regardless of the content
MPEG stream. Thus, even in a SOC with predictable resources, if their usage is
variable, care has to be taken to ensure results with constant quality.

2.1.2 Variable resource performance.

As shown abstractly in Figure 2-3, resources themselves can have varying
performance. The “instantaneous performance” of a resource, such as instruc-
tions per second, can vary over time for architectural reasons, as we describe
below.

time

reconfigure offered performance

e.g. change power mode

worst-case performance

instantaneous performance

offered performance

re
s
o

u
rc

e
p

e
rf

o
rm

a
n

c
e

Figure 2-3. Variable resource performance and offered performance.

Computation resources, such as a MIPS, can have variable performance due
to low-power (sleep) modes, which introduce a wake-up delay. In addition,
techniques to reduce power consumption, such as voltage and/or frequency

42 Chapter 2

scaling, give rise to multiple steady-state performance levels. As a result, the
time it takes to perform a given fixed computation can vary.

Storage resources provide two examples of architectural variability: caches
and volatile memories. A cache returns the requested data after a variable
time. If the requested data is in the cache, it is returned quickly, but in the
case of a cache miss, the data is returned after a much longer time. A cache
therefore improves the average performance, but not the guaranteed (worst-
case) performance. Although cache has a known deterministic algorithm, it is
difficult to characterise its performance.

Volatile memories, such as dynamic random-access memories (DRAM), lose
their data after some time, unless it is refreshed. The periodic refresh takes a
long time, compared to a single memory access. This can result in unpre-
dictable access times to the memory, depending on whether a read access is
delayed by a refresh or not. Moreover, the order of read and write transactions,
as well as the order in which transactions access the memory banks has a large
impact on the memory’s nett bandwidth. The nett bandwidth is the number of
user data words per second as opposed to the number of cycles per second that
the memory is occupied (gross bandwidth). Memory controllers therefore of-
ten reorder transactions to maximise the (average) nett memory bandwidth. As
a result, the memory bandwidth and latency that a user experiences is depen-
dent on his transactions (e.g. mix of reads and writes). Although the memory
controller uses a known deterministic algorithm, the resulting average perfor-
mance is difficult to characterise, like for caches, described above.

It is important to note that the variation in resource performance is not in-
trinsic, but is a consequence of the resource architecture. (Single-event upsets,
such as alpha particles are an exception. They must be dealt with using error-
correcting techniques.) The variable resource performance can be due to the
resource’s internal behaviour that, however, affects the user (e.g. processor
sleep modes and SDRAM refresh), or it can be user dependent and difficult to
capture (e.g. caches, or memory transaction reordering). In Section 3.2.2 we
show examples of how architectures can be made predictable, and how their
behaviour can be made to depend more clearly on the behaviour of users, using
services.

2.1.3 Shared resources.

Consumer-electronics SOCs such as PNX8550 must deliver huge computa-
tional performance at low cost to the end-user. The number of computation,
communication, and storage resources must therefore be minimised, and be
used efficiently. Often this entails sharing a resource between multiple users.

For example, the programmable processors (TriMedia, MIPS) are shared be-
tween multiple tasks, and often include a real-time operating system (RTOS)

SERVICE-BASED DESIGN OF SOC AND NOC 43

with some arbitration policy, which makes a task’s execution time dependent
on other tasks. Moreover, modern processors pipeline instructions, perform
speculative execution, and so on. As a result, executing a given number of in-
structions may take different lengths of time, depending on e.g. the interleaving
with other instruction streams. As a result, computing the number of (millions
of) instructions per second (MIPS) as opposed to processor clock speed, may
be difficult.

External memories are expensive because they raise the cost of the chip
package, by introducing extra pins. In PNX8550, therefore, a single large ex-
ternal memory is used for the communication between streaming IPs. The
scarce memory bandwidth is shared to near its capacity by the programmable
processors and streaming IP. As we saw in the previous section, the memory’s
nett bandwidth is strongly impacted by the order of read and write transactions,
as well as the order in which transactions access the memory banks. The mem-
ory controller therefore reorders transactions of the multiple users to maximise
the nett memory bandwidth. As a result, the memory bandwidth and latency
that a single user experiences is dependent on not only his, but also on other
users’s transactions.

Finally, shared “single-hop” communication infrastructures between multi-
ple IP, such as busses and switches, contain a single arbiter, and face similar
issues. For example, the DCS busses in PNX8550 use round-robin arbitra-
tion, and the PMA communication infrastructure uses a multi-level arbitration
scheme (described in Goossens et al., 2004).

In all cases, many different arbitration policies are possible, when sharing
a resource, e.g. first-come first-serve, round-robin, time-division-multiple-
access (TDMA), and rate-monotonic scheduling. From the perspective of a
single resource user, they introduce uncertainty regarding the resource perfor-
mance. For example, the latency or bandwidth of a memory or bus may vary,
depending on the behaviour of other users. This complicates the construction
of a predictable SOC as a whole. Therefore, to design a predictable SOC it is
helpful if shared resources use arbitration mechanisms amenable to analysis,
e.g. TDMA (Rijpkema, Goossens, A. Radulescu, van Meerbergen, Wielage and˘
Waterlander, 2003), deadline-monotonic scheduling (Audsley, Burns, Richard-
son and Wellings, 1991). Next to this, to facilitate reasoning about perfor-
mance, each user of a resource is preferably presented with a view on the re-
source that is independent of other users.

2.1.4 Dependence of multiple resources.

In the example at the start of this section, the two communicating tasks
each used two shared resources: the programmable processor (computation)
and the external memory (storage). (The communication infrastructure is not

44 Chapter 2

shared for the programmable cores.) To reason about task-to-task communi-
cation performance, we must reason about all arbiters that are involved: it is
the composition of the arbiters that determines the end-to-end performance.
For example, a bandwidth guarantee of x bytes/sec on both processors and
the external memory (ignoring caches), does not guarantee that the end-to-end
(i.e. task-to-task) bandwidth is x. In the worst case, mismatched arbitration
can cause starvation, resulting in zero bandwidth. The presence of “gates” or
“bridges” in an architecture (see, e.g, Figure 2-1) couple arbiters of different
resources, and are an indication that these issues could arise. (In fact, the gate
and bridge in PNX8550 are well-behaved (Goossens et al., 2004).)

We use the term (inter)dependence for the effect that arbiters of different
resources interact in an unforeseen or unintended manner, possibly degrading
end-to-end performance. All shared resources that are used by a single user
must be taken into account in an end-to-end performance analysis. Several ap-
proaches tackling this analysis are being investigated (Sha and Sathaye, 1993;
Richter, Jersak and Ernst, 2003; Bekooij, Moreira, Poplavko, Mesman, Pastr-
nak and van Meerbergen, 2004), and they rely on expressing the user behaviour
(e.g. worst-case execution time) and local arbitration policies in a single for-
malism for end-to-end reasoning.

As a special case, when the resources are of the same type, more specialised
approaches exist. In particular, NOCs are “multi-hop” communication infras-
tructures, meaning that they are composed of multiple routers (or switches),
each with their local arbiter. Fundamentally, this leads to the problem of inter-
fering arbiters identified above. There is a great deal of research on providing
end-to-end service guarantees in computer networks (Zhang, 1995; Rexford,
1999), and NOCs (Rijpkema et al., 2003; Goossens et al., 2003; Millberg, Nils-
son, Thid and Jantsch, 2004; Liang, Swaminathan and Tessier, 2000) to which
we return in Section 4.

For the construction of predictable SOCs, it must be possible to clearly de-
scribe and manage the interrelations and interdependencies between the be-
haviours of multiple resources. We believe that services, defined in the next
section, provide a first step towards this goal.

2.2 Conclusions
We identified four reasons why performance verification is difficult: un-

predictable resource usage, resources with variable performance, sharing of
resources, and dependencies between multiple resources. These causes are in-
dependent and several of them usually act simultaneously, as we saw in the
example of Section 2.1.

The first reason, unpredictable resource usage, is often externally imposed
(external standards). Many algorithms, however, are, or can be made pre-

SERVICE-BASED DESIGN OF SOC AND NOC 45

dictable, perhaps at some cost. We believe that service (levels), introduced
below, can be used to characterising resource usage, in order to limit the ef-
fects of unpredictable resource requirements. The remaining reasons are due
to architectural choices, which are under our own control. Service-based de-
sign, introduced in the next section, can help in making the right choices.

3. OFFERING AND USING SERVICES
In the previous section we identified four reasons why performance verifica-

tion of SOCs is difficult, based on resources and resource users. In this section
we describe and contrast two approaches to build SOCs: ad hoc and based on
services. We motivate why we believe the latter has many advantages.

Ad-Hoc Systems The ad-hoc approach basically consists of instantiating
a number of resources, adding arbiters to those that are shared. Performance
verification is then difficult for the following reasons.

To verify the performance of a SOC it must be considered in its entirety. It
is not possible to consider the constituent resources in isolation because
their behaviours are (inter)dependent and can interfere with one another,
as we saw in Section 2.1.4.

To accurately understand the complete SOC behaviour, current practice
uses simulation of all (interdependent) resources in full detail. However,
accurate simulation of the complete SOC is slow, which limits the number
and length of simulations that can be performed. Moreover, simulation
can only cover a small part of all possible SOC states and inputs (traces).
It may be difficult to force a SOC to be in its worst state (e.g. longest
latency) with simulation, especially if the worst state is unknown in ad-
vance. As a result, the observed worst case of the simulated traces can
be much smaller than the real worst case. This could lead to underdi-
mensioned resources (such as communication buffers), and a SOC that
will not function correctly under all circumstances.

If, during the performance verification process, a SOC is found to not
meet its specification, a simulation trace does not necessarily give insight
in how to remedy the problem. The most obvious cure, increasing the
number of (shared) resources, may actually decrease the performance.

It is not easy to make ad-hoc SOCs robust. Activation of a new user (e.g.
a picture-in-picture in a set-top box) may cause a working SOC to fail
completely, instead of affecting only the new user. We shall return to
this issue below, in Section 3.2.1.

Below, we propose a compositional solution that is based the concept of ser-
vices, to characterise and decouple the behaviour of both resources and users.

46 Chapter 2

3.1 Services
We compose a SOC of resources such as processors, memories, and NOCs.

These resources offer services,1 which are requested and used by users. A
user service request includes attributes to specify the desired service level.
Examples of computation, communication, or storage service attributes are
(Radulescu and Goossens, 2004):˘

Uncorrupted completion, e.g. of a write transaction to a memory, or its
transport by the communication resource. If an action completes, then it
is guaranteed to be correct.
Guaranteed completion. This is not automatic; e.g. a task may be
blocked until a minimum amount of memory is available, and in a NOC

data may be dropped in case of congestion.
(Minimum) capacity, e.g. amount of buffering, the number of simulta-
neous users of a resource.
Ordering: is there any ordering between subsequent actions? Examples
are read transactions from one master IP to multiple slave IPs, which in a
NOC can come back out of order, and also multiple computations which
can finish out of order on a processor.
(Minimum) average throughput, measured in instructions per second for
computation resources, and bytes per second for memory and communi-
cation resources.
(Maximum) bound on the completion time. Guaranteed completion is
defined as an unspecified completion time less than infinity; here the
maximum is finite and known in advance. Examples are the latency of
a read transaction on the memory, or its transport by the communication
resource.
(Maximum) variation in completion time (jitter), which is important for
real-time audio and video.

These service attributes can be combined to specify a particular service level,
e.g. a communication connection between two IPs could be lossless, ordered,
with 100 Mbyte/sec average throughput, and with a maximum latency of 0.8
microseconds.

A resource can offer different services levels (or differentiated services, Ku-
mar, Lashman and Stiliadis, 1998) to different users at the same time. For ex-
ample, a NOC may offer communication services with different latency, through-
put and jitter levels, e.g. for control traffic (low latency, low throughput) and

1Or: resources are used to offer services. In this chapter a narrow view on services is taken, by restricting
them to a single kind of resource (computation, storage, or communication). It is possible and useful
to generalise services to use multiple resources, as well as lower-level services. Examples are database,
printing, or secure-storage services.

SERVICE-BASED DESIGN OF SOC AND NOC 47

streaming traffic (high throughput, low jitter). It is fruitful to offer different
services levels simultaneously to increase the resource utilisation, as argued in
(Goossens et al., 2003; Rijpkema et al., 2003).

Most services must be negotiated (Figure 2-4): a user must specify and re-
quest his desired service level from the resource. A service level describes both

resource offers services

user uses services

offer service level (performance)

request service level (usage)

negotiation (e.g. with quality of service)

Figure 2-4. Users (request service level) negotiate with resources (offer service level).

the performance offered by a resource to a user (e.g. “the NOC has only lossless,
ordered connections available with at most 10 Mbyte/sec average throughput”),
as well as the (potentially different) performance requested by a user (“the cur-
rent task graph requires three connections with 5 Mbyte/sec average through-
put but without loss or ordering constraints”). If the resource commits to the
request, then the service is then guaranteed to be available until the user re-
leases the service, when he no longer needs it. Otherwise the resource rejects
the request, and the user must give up or retry with different (lower) service
requirements. Note that a service is either committed to (i.e. guaranteed) or
not. A resource cannot renegade on its commitment.

Services must be negotiated because the resource must ensure that its capac-
ity (storage size, instructions per second, bytes per second, etc.) is not over-
subscribed, to avoid invalidating the services it has already committed to. Re-
sources manage their number of users by performing admission control, which
is why users must specify their required services in advance. Moreover, after
admission, users must be prevented from using more than their allocated share
of the resource (Otero Perez, Rutten, van Eijndhoven, Steffens and Stravers,´
2005).

The service concept is well established: it originated in protocol communi-
cation stacks, e.g OSI (Rose, 1990) and has been extended to cover resource
discovery, leases, etc. in approaches such as Sun’s Java Jini (Jin, 2001), and
HAVi (HAV, 2000; Lea, Gibbs, Dara-Abrams and Eytchison, 2000). A lease
is a service that is valid for a certain amount of time (we have assumed it will
remain valid until the user releases it). This is more robust, in case the resource
user does not correctly release resources (e.g. in the case of unreliable com-

48 Chapter 2

munication between user and resource, or malicious or fault users), or when
resources are inherently unreliable. Although currently not required for SOCs,
we anticipate that these techniques will be applicable in the long term.

3.2 The Advantages of Using Services
We will now describe how services are used to ease each of the four ob-

stacles to building predictable SOCs, identified in Section 2.1: unpredictable
resource usage, variable resource behaviour, shared resources, usage of multi-
ple dependent resources (Table 2-1). Table 2-2 outlines how services address
each case; a fuller description is given below.

Table 2-2. Services simplify performance analysis.

user resource
uncertainty characterise unpredictable usage abstract variable performance

multiple virtualise shared resources decouple resource behaviours

3.2.1 Services characterise unpredictable resource usage.

Quality of service is the process whereby a trade off is made between the
available resources and the requests to implement the functionality (quality)
required by the user (Figure 2-4). For example, suppose that a set-top box dis-
plays a high-definition film, when the user requests a picture in picture (PIP)
(Otero Perez, Steffens, van der Stok, van Loo, Alonso, Ru´ ız, Bril and Valls,´
2003). With the resources available in the SOC it may not be possible to honour
this request. The first possible course of action (“ad-hoc,” common in personal
computers) is to activate the PIP anyway. This will result in a mode where nei-
ther the high-definition film nor the PIP are displayed correctly, and the result
can be anything from a “blue screen” (crashed system) to a garbled screen. Al-
ternatively, in a service-based SOC, the quality-of-service manager requests the
additional services required by the PIP (e.g. additional memory bandwidth)
from the appropriate resources. If not all resources commit to the requested
services, then the high-definition film and PIP can not be activated simultane-
ously. The SOC could inform the user that this is the case. (Note that the high-
definition film has been running undisturbed throughout this process.) Another
option would be to change the high-definition film to a standard-definition film
(requiring fewer resources), freeing enough resources to also support the PIP.

Here we are concerned not so much with quality of service, but rather how
to enable it. Services form the basis, by abstracting variable resource usage
to requested services for users (see Figure 2-2), and by abstracting variable

SERVICE-BASED DESIGN OF SOC AND NOC 49

resource performance to offered services (see Figure 2-3) for resources. We
first discuss discuss the former, the next section describes the latter.

Different service levels abstract instantaneous resource requirements of the
user. This allows less frequent negotiation (“negotiated usage” versus “instan-
taneous usage” in Figure 2-2), at the cost of claiming too many resources. The
limits of this trade off are continuous negotiation (returning to “instantaneous
usage”) and worst-case design with no negotiation (“worst-case usage”). Two
renegotiations are shown in Figure 2-2: the first reduces the negotiated usage,
and the second increases it.

Services simplify the interface and corresponding interaction between user
and resource because the requirements of the user are requested using abstract
service levels, instead of detailed descriptions of actual instantaneous usage.
This simplifies the implementation of resources.

Moreover, as the PIP example demonstrates, SOCs are more robust when
using services because it is possible to verify in advance that a mode change
will succeed, without disturbing active functions.

3.2.2 Services abstract variable resource performance.

Different service levels offered by a resource can also abstract its variable
resource performance. As an example, in Figure 2-3 the instantaneous actual
performance of a resource (e.g. voltage-controlled processor) may be variable
and difficult to capture exactly. The offered performance therefore offers sim-
plified view on the resource (e.g. piece-wise constant). Two reconfiguration
points are shown, which could correspond to an adaptation of voltage to change
processor speed.

Services offer an abstract view on resource performance, to make it simpler
for users to claim the performance they desire. For example, a NOC user could
ask for a connection with 100Mbyte/sec average throughput and a maximum
latency of 2 microseconds. The NOC translates this abstract request for nett
bandwidth (user data per second) to its internal representation of gross band-
width (which takes into account, e.g. packetisation and flow-control overhead,
and the number and spacing of TDMA slots). The underlying NOC arbitration
policy (TDMA or otherwise) and architecture (flow control or not), etc. that
implement the services are hidden from the user because they are irrelevant to
him. The translation from gross resource performance to what is offered nett
to the user may not be easy, as we have seen in Section 2.1.2. In Section 4 and
elsewhere in this volume (Gangwal, Radulescu, Goossens, Gonz˘ alez Pestana´
and Rijpkema, 2005) we describe in more detail the ÆTHEREAL NOC where
this translation has been implemented successfully.

Abstract services also make QOS independent of particular resource imple-
mentations. QOS managers match the requested user services with the offered

50 Chapter 2

resource services. After resources have committed to providing services they
must not renegade on its commitment, because this makes the notion of nego-
tiation superfluous, and makes it hard for the QOS manager to offer a reliable
service to end users. Taking processor power management as an example,
Simunic, Boyd and Glynn, 2004 describes how resources can autonomously
change their performance (e.g. frequency) to optimise a power budget. This
impacts the service levels users receive. Instead resources should regulate
their performance in concordance with its users. A good example is the au-
tonomous islands of performance of Meijer, Pessolano and Pineda de Gyvez,
2004, where a resource’s performance (operating frequency) is specified by
the user, and the resource internally finds an optimal operating point (using
adaptive voltage scaling and adaptive body bias) that guarantees the requested
performance, even under (varying) environmental conditions (such as silicon
processing variations, and voltage drops). Predictable system-level power and
performance management can be built on top of these islands of performance
(Hu and Marculescu, 2004).

3.2.3 Services virtualise shared resources.

In Section 2.1.3 we discussed how sharing a (constant-performance) re-
source can result in a variable performance for a single user. However, when,
in a service-based SOC, a resource commits a particular service level to a user,
it guarantees that the service is available to the user independent of other users
of the resource. Thus, every user has his own virtual resource, with a perfor-
mance that has been agreed upon during negotiation.

As a result, the users can be simpler because they have fewer failure modes.
A user can be affected by the other users only during negotiation for a ser-
vice (when the resource rejects the request), instead of any point in time (as
happened in the ad-hoc implementation of the PIP example of Section 3.2.1).
Services can thus isolate users from one another. This avoids the need for
cooperation between users (such as required by e.g. the internet’s transmis-
sion control protocol), and can make the SOC more robust against erroneous or
misbehaving users (Kumar et al., 1998).

3.2.4 Services decouple usage of multiple resources.

In Section 2.1.4 we observed that when a user uses multiple shared re-
sources, unforeseen interactions (dependencies) between these resources can
affect the end-to-end performance the user obtains. The previous section showed
that services decouple (or isolate) users of a single shared resource, and that
each user can reason about his services independent of other users. As a result,

SERVICE-BASED DESIGN OF SOC AND NOC 51

when a user uses multiple shared resources, he can reason about all resource
reservations independently (they are decoupled).

However, as discussed in Section 2.1.4, and as is shown elsewhere (Bekooij
et al., 2004), resource requirements are interdependent when end-to-end per-
formance guarantee must be given that involve multiple resources. For exam-
ple, when two tasks on different processors communicate via shared memory,
the processor bandwidth, memory bandwidth, and memory buffer size are in-
terdependent.

Although services do not remove this interdependence, there are several ad-
vantages when they are used. First, resource performance is reasoned about
in terms of abstract nett service levels rather than the actual detailed resource
implementation. Second, users of shared resources can be considered indepen-
dently because they each have their own virtual resource. Both cases reduce the
complexity of the QOS manager, which can use data-flow (Bekooij et al., 2004),
and other (Richter et al., 2003) techniques to compute the resource reservations
that ensure end-to-end (e.g. task-to-task) performance guarantees.

3.3 Conclusions
In this section we introduced the notions of services and service levels. A

requested service level serves to abstract or simplify the description variable
resource requirements of a user (Figure 2-2) by hiding internal details and dy-
namism. Similarly, an offered service level serves to abstract or simplify the
description of the variable offered performance of a resource (Figure 2-3). Fig-
ure 2-4 then shows how a QOS manager matches the requested and offered ser-
vices, using negotiation. Abstract, implementation-independent services are
an important enabler for effective QOS.

Services decouple the multiple users of a single resource (Section 3.2.3),
as well as the multiple resources used by a single user (Section 3.2.4). As a
result, resource users can be simpler, and SOCs can be made more robust. Al-
though resource interdependencies are not eliminated by services, they become
explicit and more abstract.

Service-based design can reduce functional and performance verification of
the complete SOC in several ways. First, users and resources are specified in
terms of their services. For example, a communication or storage resource
can be specified to support a certain number of users with particular service
levels (e.g. with nett bandwidths). Following this, they can be independently
designed, implemented, and their function and performance verified, because
their specifications and implementations do not depend on other users or re-
sources. Users implement their functionality making use of (building on top
of) services provided by the resources. It is easier to reason about abstract ser-
vices provided by resources than about their combined implementations. After

52 Chapter 2

integrating the verified user and resource implementations, the SOC as a whole
must be verified. Because resources are known to be correct, system verifica-
tion can take place at the level of services offered by the resources, and not
performed on the ensemble of all user and resource implementations (the ad-
hoc approach). This compositional method is also known as assume-guarantee
reasoning (Henzinger, Qadeer and Rajamani, 2000), because by guaranteeing
the performance or behaviour of components (service providers), this guaran-
tee can be used as a safe assumption in the performance analysis in the larger
SOC using it (service users). Services naturally provide the abstraction for the
guarantee step.

In the next section we will show how the ÆTHEREAL NOC can be automat-
ically generated, programmed, and verified because it has been designed with
these concepts in mind.

4. CASE STUDY: THE ÆTHEREAL
NETWORK ON CHIP

The communication infrastructure is key in any platform (Sgroi, Sheets,
Mihal, Keutzer, Malik, Rabaey and Sangiovanni-Vincentelli, 2001) because it
integrates all IP into a larger SOC, and because it is the locus of the platform
communication protocols. The communication infrastructure is therefore a
natural place to initiate a service-based design method. In this section we
discuss how Philips’s ÆTHEREAL NOC (Goossens et al., 2003) attempts to
solve the issues raised in Section 2 by introducing communication services, as
described in Section 3.

user NoC view

internal NoC view

R
DSP

memory
NI

NI dedicated IP

NI

memory

NI

a
b

R NI embedded FPGA
c

a
c

User
resources

NI NI

a

CPU

b

b

a
c R

R c

subsystem

connection

Figure 2-5. SoC composed of heterogeneous IP interconnected by a NoC.

Figure 2-5, shows the basic architecture of a NOC. There are two different
points of view: (a) that of the NOC user, where the whole NOC can be seen as

SERVICE-BASED DESIGN OF SOC AND NOC 53

a single resource providing communication services to different users, and (b)
the internal NOC view consisting of multiple interacting resources.

A NOC is composed of two components: routers (R) and network interfaces
(NI), see Figure 2-5. Routers transport data within the NOC. NIs convert the IP

view on communication (e.g. read and write transactions) to the NOC’s internal
view (e.g. packets, flow control). Importantly, the NIs also implement the
service abstraction, reducing the NOC’s internal multiple-resource view to a
NOC user’s single-resource view.

In the remainder of this section we describe ÆTHEREAL’s service-based
communication model, which comprises best-effort (BE) and guaranteed-through-
put (GT) service levels. We explain their characteristics and intended uses, and
how they aim to enable service-based SOC design.

4.1 The Æthereal Communication Model
As discussed above, in the NOC internal view, ÆTHEREAL is a multi-hop

interconnect, i.e. it contains multiple components (routers and NIs). Each
of these components has a constant performance (e.g. every NOC link has
2Gbyte/sec bandwidth, Rijpkema et al., 2003). The NOC is shared by multi-
ple users, who may have variable resource requirements.

ÆTHEREAL offers communication services, and comprises the best-effort
(BE, Section 4.1.1) and guaranteed-throughput (GT, Section 4.1.2) service lev-
els. These service levels have different characteristics and intended uses. The
BE service level exhibits several of the problems listed in Table 2-1, whereas
the GT service level does not. However, as argued in Goossens et al., 2003, it
is advantageous to offer both service levels to increase resource utilisation and
hence reduce cost.

Communication services are provided on connections (Radulescu and Goos-˘
sens, 2004). A connection specifies the communication between one master
(e.g. the digital-signal processor DSP of Figure 2-5) and one or more slaves
(e.g. distributed shared memories). Figure 2-5 shows three example connec-
tions. The user indicates the required service level per connection by speci-
fying communication attributes, as described in Section 3.1. A BE connection
offers uncorrupted, lossless, ordered communication, to which GT connections
add minimum throughput, maximum latency, and maximum jitter.

As discussed in Section 2.1, the translation from the user view on perfor-
mance to the NOC view on performance may be far from trivial. We illustrate
this for NOCs in Figure 2-6. A user of a NOC most often reasons in terms of ap-
plication data, such as bits per second of an MPEG stream (“nett bandwidth”).
Assuming this data is memory-mapped, the IP uses read and write transactions
to access the data, and a command and address are added to the application
data. The NI convert these transactions into packets, by chopping it into pieces

54 Chapter 2

CMDADDR

DATA3DATA4 PH PHCMDADDRDATA1DATA2

DATA1DATA2DATA3DATA4

DATA1DATA2DATA3DATA4

R

Link bandwidth

(gross bandwidth)

Application bandwidth

(nett bandwidth)

Packet

Transaction

User data

T1

T2
T3

− Packet headers

NI

IP

− Flow control

− Buffer size

− Nr slots

− Packet length

Services

Figure 2-6. From user view to NoC view on communication.

and adding a header. Packets may be of different lengths, and the NOC may
also internally generate packets that are not visible to the user, e.g. for flow
control. As a result, the gross bandwidth to be claimed inside the NOC will be
more than the requested bandwidth for the application data. The strength of
ÆTHEREAL NOC is that the communication services include this nett to gross
bandwidth translation (described in detail in Gangwal et al., 2005).

The following two subsections describe the BE and GT service levels, and
how they enable the move from the internal NOC view on communication to the
user’s view on communication, by solving the problems described in Table 2-1
(resource sharing, interdependent resources).

4.1.1 The best-effort service level.

We first describe what the BE service level consists of, and how it is im-
plemented. Then we list which of the problems of Table 2-1 are present, and
finally motivate the reasons for offering BE service level.

BE connections implement uncorrupted, lossless, ordered data transport (trans-
action completion is a result of absence of data loss). This is implemented by
a common NOC architecture (Rijpkema et al., 2003): a packet-switched NOC,
with input-queued routers using worm-hole routing and round-robin arbitra-
tion. Packets are never dropped, and credit-based end-to-end flow control is
used to avoid congestion. Packet ordering is ensured by deterministic source
routing.

A NOC will be shared by multiple users, and their packets may clash inside
the NOC. To solve this contention, routers and NIs use local round-robin arbitra-
tion. However, when a connection uses multiple routers or NIs, the combined
effect of multiple interdependent arbiters becomes difficult to characterise. In-
put queuing causes interdependencies between different connections (called
head-of-line blocking), and worm-hole routing causes interdependencies be-
tween arbiters of different routers. As listed in Table 2-3, these are examples

SERVICE-BASED DESIGN OF SOC AND NOC 55

Table 2-3. The best-effort service level.

problem (cf. Table 2-1) BE service level
unpredictable resource usage not addressed

variable resource performance not applicable
resource shared by multiple users local round-robin arbitration
multiple interdependent resources local round-robin arbitration

of resource sharing and interdependent resources. Note that unpredictable re-
source usage is not addressed by the BE service level, and that each of the
routers and NIs has a constant performance.

As a result, end-to-end (IP-to-IP) service guarantees such as throughput,
latency, and jitter can not be given. Thus, only simulation can be used to
correctly dimension a NOC (including its topology, buffer sizes, etc.) for given
application requirements (throughput, latency, etc.).

Nonetheless, ÆTHEREAL offers the BE service level for a number of rea-
sons. First, it enables a NOC to be used where user resource requirements can
not be characterised well, or are highly variable. Moreover, not all applications
require real-time guarantees, such as web browsing or graphics. By using the
BE service level the NOC resources can be dimensioned for the average instead
of worst-case communication requirements. This allows a higher resource util-
isation, potentially using fewer resources, i.e. a smaller NOC. The BE service
level therefore trades real-time performance for higher resource utilisation.

4.1.2 The guaranteed-throughput service level.

We first describe what the GT service level consists of, and how it is imple-
mented. Then we list how the problems of Table 2-1 are addressed.

The GT service level adds minimum throughput, and maximum latency and
jitter bounds to the BE service level. This is implemented by a NOC architecture
first introduced by ÆTHEREAL (Rijpkema et al., 2003): a global distributed
TDMA arbitration scheme that emulates pipelined time-division-multiplexed
circuit-switched connections. ÆTHEREAL implements the global TDMA arbi-
tration in a distributed manner (using only local synchronisation). This scheme
eliminates contention, and hence ensures minimal buffering in routers (one-flit
input queues for worm-hole routing). Figure 2-5 shows an example NOC with
three GT connections, labelled a, b, and c, with the corresponding TDMA tables
and slot reservations.

A NOC will be shared by multiple users, as is the case for the BE service
level. However, the GT service level avoids contention in the NOC by means of
global TDMA arbitration. The same scheme also eliminates resource interde-
pendencies due to head-of-line blocking and worm-hole routing. As a result,

56 Chapter 2

Table 2-4. The guaranteed-throughput service level.

problem (cf. Table 2-1) GT service level
unpredictable resource usage must be characterised

variable resource performance not applicable
resource shared by multiple users analysable global TDMA arbitration
multiple interdependent resources analysable global TDMA arbitration

throughput, latency, and jitter guarantees can be derived as described elsewhere
in this volume (Gangwal et al., 2005). As listed in Table 2-4, this solves re-
source sharing and interdependent resources that plagued the BE service level.
When a GT connection is requested, the required throughput, latency, and jitter
must be specified, to reserve communication resources (essentially, buffers and
slots in the TDMA tables), in contrast to a BE connection. Thus, the resource
usage must be characterised by the user, as discussed in Section 3.2.1. Finally,
note that each of the routers and NIs has a constant performance.

User view: GT service-level request:
open_connection("decoder.mc","mem.p2","GT",

72 Mbyte/sec,2.5 ms,16 byte,72 Mbyte/sec,1.7 ms,16 byte)
throughput, latency, burst size for read & write

Internal NoC view: GT reservation:
open_connection("decoder.mc","mem.p2",

"GT","22-32","3 1 0",33, "GT","7-13","1",60)
type, slots, path, credits for request & response

Figure 2-7. Service level versus GT connection reservation.

As a result, end-to-end (IP-to-IP) service guarantees such as throughput,
latency, and jitter can be given on GT connections. The GT service level first
enables the transition from an internal NOC view to a service-based user view
(Figure 2-6). That is, the internal structure of the NOC is hidden for the user,
and the collection of resources (routers and NIs) behaves as a single resource.
A single global arbitration scheme (TDMA) implements resource sharing, and
resource interdependencies are eliminated. Second, building on top of this,
the user’s (nett) requirements are translated to internal NOC (gross) resource
reservations by the NOC, as advocated in earlier sections. A simplified example
for a single connection is shown in Figure 2-7. A user specifies a connection
from a master to a slave with required nett bandwidth and latency constraints,
for given burst sizes, as shown in the top half of the figure. This is translated
to the internal resource reservation view, consisting of slots, path, credits, etc.,
shown in the lower half of the figure.

Disadvantages of the GT service level include the need to characterise user
communication requirements in advance. Between negotiation points (Fig-

SERVICE-BASED DESIGN OF SOC AND NOC 57

ure 2-2), resources are reserved for the worst-case, potentially increasing the
NOC size. The GT service level therefore trades real-time performance for pos-
sibly higher resource requirements.

4.1.3 Combining BE and GT services levels.

In the two preceding sections we have introduced the BE and GT service
levels. The former aims for high resource utilisation for which it sacrifices
throughput and latency guarantees. The latter aims for real-time performance
guarantees, potentially at the cost of more resources (a larger NOC). By of-
fering both service levels, ÆTHEREAL resources are reserved as required for
GT connections, but unclaimed or unused GT bandwidth is used by BE connec-
tions. As a result, real-time (GT) services and good resource utilisation (low
cost) are combined (Rijpkema et al., 2003; Goossens et al., 2003).

4.2 The Æthereal Design Flow
The ÆTHEREAL NOC design flow (Goossens, Dielissen, Gangwal, Gon-

zalez Pestana, R´ adulescu and Rijpkema, 2005) comprises design-time˘ NOC

generation (i.e. dimension and generate the NOC hardware based on user re-
quirements), NOC configuration (compute the resource reservations from the
user requirements, as shown in Figure 2-7), NOC simulation, and NOC perfor-
mance verification (for GT connections). User requirements are usually stated
as a collection of modes (or use cases) that the SOC must support, and NOC con-
figuration therefore usually proceeds at the granularity of modes rather than
connections. Figure 2-8 shows an example of performance verification. Con-
nection 2 corresponds to the decoder.mc to mem.p2 connection of Figure 2-7.
For each connection the computed resource reservations (number of TDMA

slots), specified and available (minimum) bandwidth and (maximum) latency
are shown, as well as the specified and required buffer sizes in the NOC. NOC

generation, configuration, and verification for GT connections is performed on
the basis of analytical models. Hence, simulation is only required if BE con-
nections are used.

5. CONCLUSIONS
In this chapter we described and analysed the problem of performance verifi-

cation of SOCs. We identified four reasons why building SOCs with predictable
performance is difficult (Table 2-1): unpredictable resource usage, variable
resource performance, resource sharing, and interdependent resources. We in-
troduced the concept of a service, aiming to address these problems, and de-
scribed its advantages over “ad-hoc” approaches. Finally, we introduced the
ÆTHEREAL NOC as a concrete example of a communication resource that im-
plements multiple service levels.

58 Chapter 2

Figure 2-8. Performance verification output example.

ACKNOWLEDGEMENTS
The authors thank Liesbeth Steffens and Clara Otero Perez for their exten-´

sive and constructive feedback.

References

Audsley, N. C., Burns, A., Richardson, M. F. and Wellings, A. J., 1991, Hard
real-time scheduling: The deadline monotonic approach, in W. A. Halang
and K. Ramamritham (eds), Real-Time Programming, pp. 127–132.

Bekooij, M., Moreira, O., Poplavko, P., Mesman, B., Pastrnak, M. and van
Meerbergen, J., 2004, Predictable embedded multiprocessor system de-
sign, Proc. Int’l Workshop on Software and Compilers for Embedded Sys-
tems (SCOPES), LNCS 3199, Springer.

de Oliveira, J. A. and van Antwerpen, H., 2003, The Philips Nexperia digi-
tal video platform, in G. Martin and H. Chang (eds), Winning the SoC
Revolution, Kluwer Academic.

DTL, 2002, Device Transaction Level (DTL) Protocol Specification. Ver-
sion 2.2.

Gangwal, O. P., Radulescu, A., Goossens, K., Gonz˘ alez Pestana, S. and Ri-´
jpkema, E., 2005, Building predictable systems on chip: An analysis of
guaranteed communication in the æthereal network on chip, In this vol-
ume.

Goossens, K., Dielissen, J., Gangwal, O. P., Gonzalez Pestana, S., R´ adulescu,˘
A. and Rijpkema, E., 2005, A design flow for application-specific net-
works on chip with guaranteed performance to accelerate SOC design

REFERENCES 59

and verification, Proc. Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE).

Goossens, K., Dielissen, J., van Meerbergen, J., Poplavko, P., Radulescu, A.,˘
Rijpkema, E., Waterlander, E. and Wielage, P., 2003, Guaranteeing the
quality of services in networks on chip, in A. Jantsch and H. Tenhunen
(eds), Networks on Chip, Kluwer, chapter 4, pp. 61–82.

Goossens, K., Gangwal, O. P., Rover, J. and Niranjan, A. P., 2004, Interconnect¨
and memory organization in SOCs for advanced set-top boxes and TV
— Evolution, analysis, and trends, in J. Nurmi, H. Tenhunen, J. Isoaho
and A. Jantsch (eds), Interconnect-Centric Design for Advanced SoC and
NoC, Kluwer, chapter 15, pp. 399–423.

HAV, 2000, The HAVi Specification. Version 1.0.

Henzinger, T. A., Qadeer, S. and Rajamani, S. K., 2000, Decomposing refine-
ment proofs using assume-guarantee reasoning, Proc. of Int’l Conference
on Computer Aided Design (ICCAD), pp. 245–252.

Hu, J. and Marculescu, R., 2004, Energy-aware communication and task
scheduling for network-on-chip architectures under real-time constraints,
Proc. Design, Automation and Test in Europe Conference and Exhibition
(DATE).

Jin, 2001, Jini Architecture Specification, Version 1.2.

Keutzer, K., Malik, S., Newton, A. R., Rabaey, J. M. and Sangiovanni-
Vincentelli, A., 2000, System-level design: Orthogonalization of con-
cerns and platform-based design, IEEE Trans. on CAD of Integrated Cir-
cuits and Systems 19(12), 1523–1543.

Kumar, V. P., Lashman, T. V. and Stiliadis, D., 1998, Beyond best effort: Router
architectures for the differentiated services of tomorrow’s internet, IEEE
Communications Magazine pp. 152–164.

Lea, R., Gibbs, S., Dara-Abrams, A. and Eytchison, E., 2000, Networking
home entertainment devices with HAVi, IEEE Computer 33(9), 35–43.

Liang, J., Swaminathan, S. and Tessier, R., 2000, aSOC: A scalable, single-
chip communications architecture, Proc. Int’l Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT).

Meijer, M., Pessolano, F. and Pineda de Gyvez, J., 2004, Technology ex-
ploration for adaptive power and frequency scaling in 90nm CMOS,
Proc. Int’l Symposium on Low Power Electronics and Design (ISPLED),
pp. 14–19.

Millberg, M., Nilsson, E., Thid, R. and Jantsch, A., 2004, Guaranteed band-
width using looped containers in temporally disjoint networks within the
Nostrum network on chip, Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE).

60 Chapter 2

Otero Perez, C. M., Steffens, L., van der Stok, P., van Loo, S., Alonso, A., Ru´ ı́z,
J. F., Bril, R. J. and Valls, G., 2003, QoS-based resource management
for ambient intelligence, in T. Basten, M. Geilen and H. de Groot (eds),
Ambient Intelligence: Impact on Embedded System Design, Kluwer,
pp. 159–182.

Otero Perez, C., Rutten, M., van Eijndhoven, J., Steffens, L. and Stravers, P.,´
2005, Resource reservations in shared-memory multiprocessor SOCs, In
this volume.

Rexford, J., 1999, Tailoring Router Architectures to Performance Require-
ments in Cut-Through Networks, PhD thesis, University of Michigan, de-
partment of Computer Science and Engineering.

Richter, K., Jersak, M. and Ernst, R., 2003, A formal approach to MpSoC
performance verification, IEEE Computer 36(4), 60–67.

Rijpkema, E., Goossens, K., A. Radulescu, J. D., van Meerbergen, J., Wielage,˘
P. and Waterlander, E., 2003, Trade offs in the design of a router with
both guaranteed and best-effort services for networks on chip, IEE Pro-
ceedings: Computers and Digital Technique 150(5), 294–302.

Rose, M. T., 1990, The Open Book: A Practical Perspective on OSI, Prentice
Hall.

Radulescu, A. and Goossens, K., 2004, Communication services for networks˘
on chip, in S. S. Bhattacharyya, E. F. Deprettere and J. Teich (eds),
Domain-Specific Processors: Systems, Architectures, Modeling, and Sim-
ulation, Marcel Dekker, pp. 193–213.

Sgroi, M., Sheets, M., Mihal, A., Keutzer, K., Malik, S., Rabaey, J. and
Sangiovanni-Vincentelli, A., 2001, Addressing the system-on-a-chip in-
terconnect woes through communication-based design, Proc. Design Au-
tomation Conference (DAC), pp. 667–672.

Sha, L. and Sathaye, S. S., 1993, A systematic approach to designing dis-
tributed real-time systems, Computer 26(9), 68–78.

Simunic, T., Boyd, S. P. and Glynn, P., 2004, Managing power consumption in
networks on chips, IEEE Transactions on VLSI Systems 12(1), 96–107.

Zhang, H., 1995, Service disciplines for guaranteed performance service in
packet-switching networks, Proceedings of the IEEE 83(10), 1374–96.

Chapter 3

CACHE-COHERENT HETEROGENEOUS

MULTIPROCESSING AS BASIS FOR

STREAMING APPLICATIONS

Jos van Eijndhoven, Jan Hoogerbrugge, Jayram M.N., Paul Stravers, and

Andrei Terechko
Philips Research Laboratories, Eindhoven, The Netherlands

Abstract: Systems-on-Chip (SoC) of the new generation will be extremely complex

devices, composed from complex subsystems, relying on abstraction from

implementation details. These chips will support the execution of a mix of

concurrent applications that are not known in detail at chip design time. These

SoCs require a significant degree of programmability to configure both the set

of functions that must execute as well as the structure of the dataflow between

these functions. To ease the programming effort multiprocessor computers

have employed cache coherent share memory for decades, abstracting the

average programmer from system complexity issues such as multiple

processors and memory hierarchies. Memory coherency in multiprocessor

computers has a history of decades, and has proven to be an indispensable

abstraction from system complexity towards the application programmer. This

chapter describes a next generation SoC for the consumer electronics domain

(e.g. audio/video, vision, robotics). It features heterogeneous multiprocessor

subsystems with a snooping cache coherence protocol, combined in a system

with distributed memory employing a directory coherency protocol. It is

explained why and how the coherent memory model is indispensable for

implementing both data transport and synchronization for multi-tasking

streaming applications in distributed memory systems.

Key words: System-on-Chip, multi-processor, cache coherency, streaming, memory

hierarchy

61
P. van der Stok (ed.),
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 61-80.
© 2005 Springer. Printed in the Netherlands.

62 Chapter 3

1. INTRODUCTION

The semiconductor industry is facing enormous challenges with the

creation and marketing of every new generation of System-on-Chip (SoC) in

the consumer electronics market segment. These consumers want trendy

products loaded with modern features, matched to their personal taste.

However the creation of such systems today with hundreds of millions of

transistors in hardware and tens of megabytes of embedded software is a task

of daunting complexity. The design process goes through stages of

specification, implementation and verification both for the hardware itself as

for the embedded software, with contributions of multiple design groups

spread over the world and over multiple companies. These processes take

several tens to a few hundred man-years of effort, stretched over a few years

of elapsed time for major new products. This trend is shown for instance in a

2003 analysis of IBS (Int. Business Strategies inc.), see Figure 3-1.

Figure 3-1. Soc development cost

In view of the fast changing and cost sensitive consumer market, such

SoC products require a huge investment and carry high risk. This chapter

describes the SoC architecture being created in the Philips Research

‘Computer Architecture for Killing Experience (CAKE)’ project (Stravers,

2001). The project targets the consumer electronics media processing

domain, aiming to address the hardware and software SoC challenges

mentioned above. The first implementation of this architecture is now in the

design phase. The following paragraphs describe a set of top-level design

considerations that together form the key aspects of the CAKE architecture.

3. CACHE-COHERENT HETEROGENEOUS MULTIPROCESSING 63

Programmability: Programmability is a key property that allows late

changes in the product functionality, as well as adaptations to local market

needs. Similarly, programmability can be regarded as an insurance cost to

reduce the investment risk of creating a silicon product with features that

mismatch with new demands at the time the product reaches the market.

Programmability also allows the re-use of the same silicon across different

products, maybe created by different companies. This is an important aspect,

as for domain-specific SoCs the silicon design cost will not be negligible in

comparison with the production cost. If the chip supports an industry-

standard programming model, functions can be created by re-use of standard

software, which will give a tremendous reduction on system development

cost and time. The main factor that opposes programmability is power

consumption, leading to more specialized engines (or coprocessors) for some

functions.

Parallel processing: The employment of multiple small processors to

match the large computation workload as represented by today’s streaming

media processing, will be beneficial both for the silicon area as well as for

the power consumption. The micro-architecture of current high-end

microprocessors shows a clear problem of diminishing returns (Hennesy and

Patterson, 2003; Diefendorff and Duquesne, 2002). Our targeted products

will typically have a system load consisting of a mixture of concurrently

active tasks to occupy multiple CPU’s in parallel. Furthermore, according to

our experience, the audio and video processing algorithms easily allow an

additional (lower) layer of thread-level parallelism by operating on multiple

blocks of data in parallel, if this were needed to obtain sufficient spreading

of CPU load. The use of multi-threading applications is becoming more-and-

more accepted as generic programming model, as the trend towards chip-

multiprocessing and CPU’s with multi-thread facilities is picked up by all

major processor developers (Halfhill, 2004). To support re-use of industry-

standard software, the CAKE architecture creates a global uniform and

coherent memory view towards its processors, in accordance with the

general-purpose computing world.

Tiling: Tiling creates an extra hierarchy layer in the system hardware

architecture. The top-level architecture view shows a regular structure of

homogeneous tiles (subsystems) connected through (for instance) a two-

dimensional torus network (see Figure 3-2). For background information see

the section on ‘Static Networks’ in Flynn (1995), or see Dally and Towless

(2001). A tiled architecture allows a trivial instantiation of both large

(expensive) and small (cheap) products with scalable compute performance

for little silicon design effort. Tiles can simply be replicated in layout,

without the need for extensive verification per product instantiation.

64 Chapter 3

Figure 3-2. Tiling with a torus network

Torus structures are trivially mapped on silicon without long wires,

creating predictable and scalable performance. If torus links are made

available off-chip, then current chips can serve to create a prototype for next-

generation silicon, to perform prototype software mapping and performance

analysis. Inside a tile, a subsystem is created with a heterogeneous set of

processors and an embedded memory, in complexity comparable with

today’s large SoCs. Heterogeneous processors allow a choice of processors

for different types of tasks, thereby improving the computational efficiency

(energy required to execute the task). The embedded memory is needed to

ensure that most memory accesses of the processors can be served by tile-

local memory, which avoids the access latency induced by the inter-tile

network or off-chip access. The network latency would otherwise kill

processor performance. Furthermore, having most data locally in the tile

reduces power consumption for data transport, and saves precious bandwidth

to off-chip bulk memory. With the growth of on-chip aggregate processor

performance, it is almost inevitable that total on-chip memory needs to grow

in capacity, taking an increasing percentage of chip area (Nair, 2002). Proper

use of streaming programming models for our media processing target

domain, and support for tile-local stream-buffer allocation and stream-

management over the inter-tile network, will help to fight-back the growing

on-chip memory needs and thereby have more effective compute resources

on given silicon area. Automatic prefetching of streaming data into the cache

will help to hide the latency of the memory hierarchy with little effort for the

application programmer (van de Waerdt et al., 2005).

Redundancy and self-test: With SoC complexities now in few hundred

millions of transistors, breaking the one billion transistor mark soon, it

becomes unrealistic to expect that after fabrication every individual

transistor will indeed work correctly as expected. Aiming for perfect

products would result in an uneconomical loss after fabrication and test. The

CAKE architecture advocates multiple identical processors and memory

blocks in every tile, and multiple identical tiles on chip. Clearly, if one

3. CACHE-COHERENT HETEROGENEOUS MULTIPROCESSING 65

processor out of ten (or a hundred) would be defect, the chip can still serve a

quite useful computational load. Also if a one-megabit memory instance is

faulty (after trying to exploit its built-in redundancy), the remaining memory

blocks could still support useful program execution. Similarly, at the top-

level architecture, an entire faulty tile might not block overall use. Only a

very small percentage of the chip area is really unique and indispensable, so

there is only an extremely small chance that the chip will be really dead. A

chip that is loaded with identical programmable compute facilities will have

the intelligence and processing power to perform self-test at every cold boot-

up of the system, and can configure itself to avoid the use of its faulty parts.

This allows the semiconductor vendor to sell perfect products for a premium

price, and sell the other products for price-sensitive applications with hardly

any production loss. The consumer could observe a small degradation of its

appliance over time, and buy new equipment before a total break down

occurs. In that sense, consumer electronic devices would ‘wear out’, and

could be treated with an attitude similar as clothes, furniture, and cars.

Creating chip multi-processors (CMPs) is a rapidly growing trend in

industry: the trends as sketched above have broad applicability. Both old and

modern examples are too numerous to list here (Halfill, 2004). A few nice

examples that target the embedded market are the 4-core ARM module with

L1-cache snooping (Krewell, 2004), a 4-core PowerPC embedded in an

FPGA (Kowalczyk, 2003), a 4-core MIPS with shared L2 cache and off-chip

links for PCB-level tiling (Wong, 2002), and of course the Sony/IBM Cell

architecture that also advocates tiling for scalability (Pham et al., 2005;

Suzuoki and Yamazaki, 2002).

The first test-chip that is currently designed according to the CAKE

architecture, will contain a single tile only. Off-chip links allow the creation

of a multi-tile system at PCB (printed circuit board) level. The on-chip (tile)

memory is currently designed as a shared level-2 cache, which allows

flexible use through software configuration. For processors, a recent version

of Philips’ TriMedia processor is used (van de Waerdt, 2005). The TriMedia

processor is optimized for audio and video media processing, and features aff

high computational density and power efficiency in its application domain.

Section 2 will provide more information on the CAKE architecture, in

particular regarding the tile-local network and its cache coherency. Section 3

will describe approaches towards parallel programming, and shows some

benchmarking results. Section 4 summarizes the current state of the project.

66 Chapter 3

2. CAKE TILE ARCHITECTURE

The CAKE tile architecture comprises of multiple CPUs, various IP

blocks, a shared L2 cache, and the interconnect network, see Figure 3-3

below. IP blocks may be simple coprocessors (e.g. image enhancements,

video scalars, MPEG decoders, etc.), programmable processors, or complete

subsystems with multiple processing units and local memory.

CAKE SoC

DRAM

memory

…
CPU1

L1 caches

hour-glass

switch matrix

multi-banked

L2 cache

IP1

co
h

er
en

t

in
te

rc
o

n
n

ec
t

n
et

w
o
rk

CPUn

L1 caches

inter-tile

directory

…

DRAM

controller

merge

tunnels

IPn

…

I/O

snoops

xmemory

xlogic

Legend

bandwidth

monitor

bud get

viola tion

interrupt

Figure 3-3. CAKE Tile architecture

CAKE’s tile-local coherent interconnect network is capable of servingk

multiple concurrent transactions from the attached L1 caches and

coprocessors. These transactions follow Philip’s ‘MTL’ or ARM’s ‘AXI’

protocols for memory requests, typically transferring a sequence of data-

words per request. The tile network supports multiple outstanding requests

per port, with out-of-order completion. The block-transfers are supported

with ‘critical word first’ delivery to reduce the CPU stall time (cache miss

3. CACHE-COHERENT HETEROGENEOUS MULTIPROCESSING 67

penalty). The interconnect network is created by a set of ‘hour glass’1

structures between the various groups of components. The ‘hour glass’

structures provide sufficient parallel data transfers to sustain processor

performance, without unnecessary overhead of a fully-connected switch

matrix. These ‘groups of components’ are (a) components that connect to the

network:

– The various CPUs and Intellectual Property (IP) modules (co-

processors).

– DMA engines that create data transport through inter-tile links.

– Different ports of the DRAM controller.

and (b) components internal in the network:

– Multiple L2 cache banks, selected through address interleaving.

– Merge tunnels, used for direct (demand driven) inter-processor

communication.

The main objective of this network is to provide a low-latency access from

processors to their requested data. The Register Transfer Level (RTL) code

for this interconnect network is generated from a set of parameters, to create

different CAKE instances from the same code base. The chip that is

currently in design will probably connect 9 TriMedias, one ARM or MIPS

processor, 4 function-specific (video-) coprocessors, 4 PCI-Express

interfaces, and 8 L2 cache banks, through 64-bit data paths. All processors

and the tile-network are targeted to run at a 350MHz to 450MHz clock rate

in the CMOS 65-nm process chosen for this test-chip. (The achievable clock

rate is strongly influenced by the SRAM performance, which is -at the time

of writing- not accurately known for the targeted 65-nm process.)

To maintain sustained throughput, the interconnect and L2 control

implement hit-under-miss. According to this policy the system does not

block on an L2 miss. In fact, the interconnect keeps serving subsequent

transaction(s) from other CPUs, in parallel with handling L2 refills.

Furthermore, if the L2 miss is not caused by a demand load (but, for

instance, a prefetch), the corresponding CPU does not get blocked either. To

enable seamless integration of diverse CPUs running at various clock

frequencies in respective islands of synchronicity, the interconnect network

talks to the CPUs and IPs via asynchronous clock domain bridges. To avoid

clock skew problems during back-end design, source-synchronous

communication channels are employed to connect CPUs and IPs that are

located further away from the central coherency controller and L2 banks.

CAKE SoC interconnect network scales well to about 20 or 30 CPUs/IPs:

beyond that the routing area and cache snooping traffic becomes harder to

1 An ‘hour glass’ network provides connections between two sets of ports, through two switch

matrices and intermediate set of ‘n’ ports. This allows to dynamically configure paths

between any of the two sets of ports, up to a maximum of ‘n’ simultaneous paths.

68 Chapter 3

manage. To enable further scalability we employ tiling with distributed g

shared memory (DSM) across multiple tiles (See for instance the section on

“Scalable Multiprocessors” in Flynn, 1995). Inter-tile communication is

controlled by a directory-based coherence protocol with some support from

firmware to handle remote misses. Each tile maintains a directory table.

Each entry of the table specifies where the corresponding memory block

resides (locally or remotely). By employing a cache snooping protocol inside

a tile, and supporting a directory-based protocol between tiles, we believe

the system is scalable to support beyond a hundred processors for the

applications in our targeted audio and video-processing domain (which in

general have little data dependency). In case of an L2 miss on a memory

block from another tile, the hardware calls a firmware routine that

orchestrates the inter-tile transfer. Such a transfer is typically carried out as

message passing via DMA links and requires a few hundred cycles in our

simulation model. The first CAKE chip will implement the inter-tile links as

off-chip point-to-point PCI-Express channels. Using the global inter-tile

coherent memory view is functionally transparent for the application

programmer.

Compared to many prior-art embedded SoC designs (de Oliveira and van

Antwerpen, 2003; Paver et al., 2004) the CAKE SoC relies on its shared L2

cache, to achieve several advantages. First, it saves on off-chip DRAM

bandwidth and associated power dissipation by serving many data accesses

from L1 caches and coprocessors and keeping communication on-chip.

Second, the L2 cache decreases the penalty of L1 misses to a few dozens of

cycles, thus increasing processor performance. Third, the L2 cache

efficiently transfers data on and off the chip automatically in chunk sizes

appropriate for the off-chip DDR, independent of smaller request sizes of the

individual CPU’s and coprocessors. This allows efficient use of DDR

bandwidth, while re-using older (co-)processor designs that still employ

smaller block sizes.

A SoC has multiple on-chip memories and CPUs with caches. Hence, the

inevitable cache coherence problem (Hennessy and Patterson, 2003). For

example:

a) If a process in CPU ‘A’ stores a value to a memory address, this updated

value might remain inside A’s cache for a while. If later a process on

CPU ‘B’ wants to read the value in this address, it might miss in its cache

and fetch an out-dated value from main memory.

b) A process in CPU ‘A’ has stored a new value to a memory address, and

also (after a while) copied this data back to main memory. If a process on

CPU ‘B’ wants to read this value, it might find a hit in its local cache and

still use an out-dated value.

Note that this cache coherency problem even persists with a single process

(or thread) without any inter-process communication: An SMP process

3. CACHE-COHERENT HETEROGENEOUS MULTIPROCESSING 69

scheduler might stop a process and later re-schedule it on a different CPU

causing similar cache coherency problems.

The CAKE SoC architecture provides hardware cache coherence,

exposing a simple shared memory model to the programmer, functionally

equivalent to a single-CPU design. Our cache coherency is implemented

using snooping in the tile interconnect, according to the standard MSIg

protocol outlined in Figure 3-4 below. Each L1 cache line can be found in

one of the three states: Invalid, Shared or Modified. The state changes are

caused by activities of the attached CPU (shown in solid lines) and by snoop

requests that arrive from the other CPUs (shown in dashed lines). The cache

coherence protocol ensures only a single exclusive copy of the cache line

being modified. There can, however, be multiple copies of a cache line in the

Shared state. (For more information, see the section “Memory Coherence in

Shared Memory Multiprocessors” in Flynn, 1995.)

s
to

re
 m

is
s

lo
ad

m
is

s

snoop

store miss

LRU eviction

loadload

s
to

re
 m

is
s

lo
ad

m
is

s

L
R

U
 e

v
ic

ti
o
n

L
R

U
 e

v
ic

ti
o
n

sst
oto
rere

loadload

loadload

SharedInvalid

Modi-

fied
CPU

snoop

store miss

s
to

re
s
to

re

Legend

storestore

Figure 3-4. MSI protocol state transitions

The tile network broadcasts a snoop request upon receiving a transaction

request from a CPU or an IP. Then the coherent CPUs reply to the requests

with the status of the cache line in question. Our design can sustain a new

snoop request every clock cycle. To have a snoop-answer within a few clock

cycles, without disturbing the normal processing of the snooped CPU’s, the

L1 cache tags are duplicated into ‘shadow tag’ structures that are stored in

the clock domain of the network (as opposed to the clock domains of the

respective CPUs). Adding the copied shadow tags and snoop logic creates

70 Chapter 3

about 3% area overhead relative to a TriMedia CPU. For this small overhead

the SoC obtains an industry-standard programming model, and time-

consuming programmer effort is saved by avoiding complex SW porting

issues and intriguing (non-reproducible) software bugs.

Snooped CPUs might need to start a snoop action, according to the MSI

protocol, shown as dashed arrows in Figure 3-4. For example, if the snoop

request asks the exclusive rights for a cache line and the line is found dirty in

another CPU, then that other CPU performs the snoop action of write-back

and invalidate of that line. Note that non-coherent CPUs and IPs also benefit

from the coherent network, when they stream in data produced by the

coherent CPU cluster. The inter-CPU communication (such as streaming

data) is naturally realized by accessing the shared memory. First, the

producer CPU creates data in its local L1 cache. Then, the consumer CPU

asks for this data from the interconnect, which finds it in the L1 of the

producer CPU through snooping. Finally, the interconnect network streams

the data to the consumer CPU via a ‘merge tunnel’ (see Figure 3-3). The

merge tunnel can combine several cache lines from different sources (L1,

L2, DRAM), depending on the requested block size. The programmer does

not have to explicitly program the data transport.

The L2 cache is currently targeted to have a capacity of 2 MByte,

requiring about 16mm2 of high-density SRAM. For high-definition video

applications, embedded DRAM is an attractive option, allowing significantly

larger capacity in the same silicon area. Unfortunately, availability of

embedded DRAM is -at the moment of this writing- uncertain at our targeted

tape-out date, but can be reconsidered for a later product. The L2

implementation furthermore requires tag storage of 0.25mm2 and negligible

cache control logic. These area figures are to be considered relative to the

CPU area, which is roughly 3mm2 for each TriMedia or ARM processor,

depending on instantiated CPU variation and its L1 cache parameters.

Task synchronization heavily relies on coherency too. The coherent

CPUs may rely on two well-known operations LL (Load Linked) and SC

(Store Conditional) to perform synchronization without stalling the memory

subsystem (Hennesy and Patterson, 2003). In particular, these operations

allow to easily create memory-mapped semaphores. The implementation of

the LL/SC operations relies on cache coherency, which provides the LL

operation with the freshest data without interfering with other CPUs. SC in

turn consults the L1 cache line status and reuses the snooping mechanism to

complete the atomic LL/SC pair. These two operations have been added to

the TriMedia instruction set, to support efficient inter-thread synchronization

and easy porting of external software that relies on memory-mapped

semaphores.

CAKE SoC enables a predictable compositional system design throughl

advanced resource management. The resource management ensures that

3. CACHE-COHERENT HETEROGENEOUS MULTIPROCESSING 71

integration and use of many software and hardware components that share

resources (caches, DRAM bandwidth, CPU cycles) does not affect the

expected performance of the individual components, or at least protects the

performance of critical components by proper management. The resource

management in CAKE includes DRAM bandwidth and L2 cache footprint

management by explicit partitioning of the cache space (Perez, 2005;t

Molnos, 2005). All data transfers from the CPUs are accompanied by a task

descriptor, which selects a way-mask for the L2 cache. This way-mask

protects a subset of the ways for victim assignment upon a cache miss. In

other words, a L2 cache refill on behalf of one task can be prevented to evict

a cache line of another critical task. Hence, task interference in the L2 cache

is minimized. Note that cache hit detection uses all ways, thus enabling

inter-task communication.

way0way0 way1way1

(shared)(shared)

way2 way3 way4 way5 …way2 way3 way4 way5 …3 4 5

quantquant idctidct OSOS

Figure 3-5. Way partitioning among the tasks

Task descriptors also identify the bandwidth domain the task belongs to.

CAKE SoC provides bandwidth monitor registers keeping track of the

DRAM bandwidth utilization per domain. When a domain has exhausted its

allocated bandwidth budget, this is signaled to the (software) Quality of

Service manager. The Quality of Service manager can decide to scale down

the service of the violating domain if other system components are

negatively affected. Task sharing of the DRAM bandwidth is limited by the

respective bandwidth budgets controlled by dedicated bandwidth monitor

registers. The hardware facilities to allow bandwidth and cache space control

are now in detailed design, the management methods are clear (Perez, 2005),

but actual verification of the overall system behavior and its tuning is yet to

be performed.

3. PROGRAMMING METHODOLOGY

Application programming models are a highly evolving area of research

(Lee, 2002), and each type of programming model is tailor-made to exploit

72 Chapter 3

certain properties, which are essential for a particular class of applications

and the targeted hardware. The multiprocessor features in CAKE can be

exploited by parallellizing single application or running many applications

concurrently and using the underlying cache coherent network for

communication. Various types of programming models have been proposed

which can be broadly classified into streaming models (detailed reference to

various models are found in van der Wolf et al. (2004)) and non-streaming

models like series-parallel graph, and Finite State Machine (FSM).

Kahn Process Network (KPN) and its variants are one class of programming

models appropriate for modeling streaming multimedia and signal

processing applications (van der Wolf et al., 2004). KPN based models have

simple and well defined interfaces for high-level abstract specification of the

application and thus are suitable for running on heterogeneous systems. The

simple interface provided by KPN based models facilitates reuse of the

streaming component for different applications. Unfortunately, KPN based

models might have unpredictable execution time, deadlocks, or overuse of

resources like memory. Another method of expressing concurrency is

POSIX thread or Pthread (Nichols et al., 1998). Pthread provides a number

of low-level, low-overhead primitives supporting multithreading and flexible

synchronization between threads. Pthreads assume that all threads share a

uniform address space for inter-thread communication and the underlying

architecture should support this shared memory concept. Pthreads support

highly dynamic thread creation by the application and is a widely used

industry standard for shared memory machines. But Pthreads have a low

level of abstraction, allowing programming bugs that are hard to trace. Yet

another model called SDF (Synchronous Data Flow graph) [Sri2000] is

popular within DSP community because of the useful property that deadlock

and resource requirements are decidable or determinable. But not every class

of applications can be efficiently expressed by means of SDF with

reasonable effort.

Consequently we see that a platform such as CAKE to be widely usable

across a range of application domains, should efficiently run a wide variety

of programming models. Currently the CAKE architecture can support

parallel models like Trimedia Streaming Software Architecture (TSSA) (de

Oliviera and van Antwerpen, 2003), C-heap, Y-chart Application

Programming Interface (YAPI), and Task Transaction Level (TTL) (van der

Wolf et al., 2004) and Pthreads. Restricting an architecture or platform to run

only one kind of programming model like SDF seriously hinders broad

acceptance of the platform, because other models will run inefficiently. Also,

complex applications need the support of mixed programming models

3. CACHE-COHERENT HETEROGENEOUS MULTIPROCESSING 73

because different parts of the application might be expressed more naturally

by different programming models (Lee, 2002). These application modeling

issues prompted the CAKE architecture to support a shared-memory concept

both inside and over the tile, as well as explicit streaming for more efficient

inter-tile communication. Also, the cache-coherency eases the burden on

programmer to bother about the location of the latest data in the system.

The application design trajectory or flow shown in Figure 3-7 starts by

explicitly capturing the parallelism or expressing the parallelism possible in

the application. The CAKE architecture uses the Trimedia compiler that does

very well in extracting the Instruction Level Parallelism (ILP), but extracting

higher levels of parallelism is either manual or semi-automatic. Once the

parallelism possible in the application is analyzed it can be captured using

some of the programming models like KPN, Pthreads etc. mentioned in the

previous paragraph.

It is widely known that parallelism can be extracted by functional-, data-

or mixed partitioning. In a functional partitioned model (such as KPN) each

task (thread) performs a distinct function in a pipelined fashion and

communication between tasks is made explicit (see Figure 3-7). A functional

partitioned model

– Facilitates easy reuse of the functional modules for other similar

applications.

– Intuitively fits with the streaming application description.

– Is an appropriate model for systems where some tasks are implemented

on function-specific coprocessors.

The main disadvantages are:

– Possibility for load imbalanced partitioning where a single task limits the

speedup.

– Inter-task communication might consume high bandwidth, since

streaming data needs to travel between processors.

– Large human effort is required for conversion of a monolithic sequential

application into a functional parallel application because all

communication between the functional modules need to be made explicit.

This effort in practice limits the amount of obtainable parallelism.

74 Chapter 3

Figure 3-6. Functional versus Data Partitioning

Alternatively, data partitioned application models process different input

data simultaneously by different threads executing the same function (see

Figure 3-6). A data partitioned model has various advantages

– Good scalability: When the available number of processors changes then

only the data distribution needs to change without changing the function

implementation. Often, no code changes are needed at all, as the number

of threads might be dynamically determined.

– Efficient usage of cache resources: The size of the data partition can be

selected to maximize data cache hit ratio, reducing system

communication.

– Allows natural load balancing depending upon the workload.

But also data parallelism extraction needs thorough study of each

application and is algorithm specific. The exact scheme by which the data is

partitioned and distributed to different tasks determines the performance.

Still a major part of the data parallel models can be reused across various

applications if within each data partitioned model some kind of modularity

exists with a clean interface and encapsulation. So from our experiments we

found out that data parallel models scale well for increasing or decreasing

resources and also varying input streams resulting in natural load balancing

and resource utilization. In practice a combination of functional and data

parallelism will be applied. We foresee functional parallelism at coarse

granularity, such as a video codec, an audio codec, or an image improvement

3. CACHE-COHERENT HETEROGENEOUS MULTIPROCESSING 75

algorithm. Inside those functions, multi-threaded data-level parallelism can

be exploited if needed to achieve real-time throughput.

Figure 3-7. Application development trajectory

Once the parallel model of the application is developed, a mapping or

binding process is carried out. Earlier the CAKE architecture was running a

dedicated distributed, light-weight operating system kernel called the TRT

(Tile RunTime) (Stravers and Hoogerbrugge, 2001), that supported fine-

grain synchronization and fast context switching, but lacked real-time

support. Recently we ported the SMP (Symmetric Multi Processing) version

of the open-source, embedded real-time, operating system eCos (Massa,

2002). Currently, the CAKE software implements static task partitioning

across the tiles and dynamic task scheduling inside the tiles. But other kinds

of scheduling like static or quasi-static (Sriram and Bhattacharyya, 2000) can

also be implemented, since the thread-scheduler is a well-separated

functionality of the eCos system. To many applications where real-time

constraints are not involved, dynamic scheduling offers the best usage of

76 Chapter 3

available CPU resources with quickest possible design integration. Other

applications, where real-time deadlines and throughput constraints are more

difficult to meet, applications need to be tuned for reserving shared resources

(CPU cycles, DDR memory bandwidth, L2 cache footprint), for improving

the ILP (Instruction Level Parallelism) by source-code optimizations, and for

modifying the data or function thread-level parallelism. Even with a fully

programmable SMP, sufficient real-time guarantees could still be achieved

by means of efficient resource management (see Perez et al., 2005).

We mapped various applications like an MPEG-2 decoder (Stravers and

Hoogerbrugge, 2001), an MPEG-2 encoder, 3D-TV rendering algorithms, an

Open-GL 3D-GFX library, an H.264 decoder (van der Tol et al., 2003) and

the SPLASH-2 benchmark (Woo et al., 1995), and found good scalability

and performance on the CAKE architecture. Furthermore, the ‘Archtest’

program (Collier, 1992) was mapped to thoroughly verify our memory

consistency.

High-definition MPEG-2 decoding was easily parallellized by forking a

new thread for the decoding of every slice. MPEG-2 ensures that slices can

be decoded in parallel, and that slices span at most 16 video lines. As result,

an HD image (1920x1080 pixels) can be processed with 68 threads in a data-

parallel mode with very minor code changes.

Figure 3-8 shows the performance of the CAKE architecture for the

SPLASH-2 benchmark suite. The simulations were performed with different

numbers of TriMedia processors, which share an 8-bank 12MB L2 cache.

The individual processors were configured with 16KB of L1 data cache with

128-byte line size. The benchmark code was run straight out-of-the-box,

without any adaptation. We can see from the Figure 3-8 that even without

any optimization the benchmark scales well. Further study is still needed to

evaluate the details of these results.

3. CACHE-COHERENT HETEROGENEOUS MULTIPROCESSING 77

Figure 3-8. Out-of-the-box SPLASH-2 benchmark results

Clearly, many possible systems can be created by mixing HW

architectural features with programming paradigms. In our view however,

two particular combinations seem to fit naturally together:

a) Homogeneous multi-processors, in a shared-memory architecture,

employing data-parallelism, and relying on dynamic task-to-CPU

mapping.

b) Heterogeneous multi-processors, in a message-passing architecture,

employing function-level parallelism, using static task mapping.

Philips’ SoCs for the embedded consumer-electronics (CE) domain have

traditionally used the latter (b) style, mainly because of the high efficiency of

function-specific processors. The (a) style has become prominent in general-

purpose computing because of its flexibility and ease of programming. With

the growing transistor-count per die, and the growing amounts of embedded

software, we foresee a growing trend towards (a) also for the embedded CE

market.

78 Chapter 3

4. STATUS AND CONLUSIONS

The CAKE project has a tool suite up and running, partially consisting of

standard tools, partially newly created software. The complete suite operates

in a Linux environment and contains:

– A TriMedia compiler chain, a MIPS compiler, and a shared-object linker.

– Embedded software for a low-level boot-up of the chip, and the eCos

embedded OS with our own HAL (hardware abstraction layer) for

support of timers, interrupt controllers, and other device drivers.

– Application software to be executed by the embedded processors for:

a) Testing correct behavior of the hardware. Besides basic CPU tests,

multi-processors data exchange test are used, such as the generic

‘Archtest’ program (Collier, 1992).

b) Media processing application software that is used for performance

measurements.

– The parameterized simulator with an almost cycle-accurate system

model, built on top of the SystemC simulation kernel.

– Several (interactive graphical) tools for evaluating the simulated system

performance based on off-line visualization of generated trace files.

Currently RTL (Verilog) code is being made for a research test-chip that

implements a single tile of the CAKE architecture concepts. Individual

Verilog modules are tested through co-simulation, embedded in the overall

SystemC system model. Tape-out is expected in a CMOS 65-nm technology

by the end of 2005. Creating this chip and its initial applications is done as a

cooperative effort between Philips Research, Philips Semiconductors and

Philips Consumer Electronics.

Parallel benchmarks like SPLASH-2 and Archtest did run on the CAKE

platform without any modification. eCos itself was ported, including its

optional libraries such as the Posix layer, with full multi-processing and real-

time support, requiring only little effort for its platform-specific HAL. This

proves that the project created a platform with industry-standard

programmability, of which cache-coherency is an indispensable ingredient.

As such, this platform paves the way for the software re-use as demanded by

future embedded systems. The concepts and the architecture realized in this

project will establish a strong basis for evolutionary product growth well into

the next decade, reaching billions of transistors and hundreds of processors

on a single die, in an economically sound way.

3. CACHE-COHERENT HETEROGENEOUS MULTIPROCESSING 79

REFERENCES

Collier, W.W., 1992, Reasoning about parallel architectures, Prentice-Hall, 1992 (See also

http://www.mpdiag.com/)

Dally, W.J., and Towless, B., 2001, “Route Packets, Not Wires: On-chip Interconnection

Networks”, proc. DAC2001 38th Design Automation Conf , pp. 684-689, Las Vegas, USA, ff

Jun. 2001

Diefendorff, K., and Duquesne, Y.,, 2002, “Complex SoCs require new architectures”,

EEdesign, Sep. 2002

Flynn, M.J., 1995, Computer Architecture: Pipelined and Parallel processor design, Jones

and Bartlett Publ., 1995

Halfhill, T.R., 2004, “Deluge of Multicore Processors for PC’s, Servers, Embedded Systems”,

Microprocessor report, Vol. 18, pp. 16-20, Sept. 2004

Hennessy, J.L., and Patterson, D.A., 2003, Computer Architecture: A Quantitative Approach

(3rd ed.)d , Morgan Kaufmann Publ., 2003

Paver, N.C., Khan, M.H., Aldrich, B.C., 2004, “Accelerating Mobile Multimedia with the

Intel PXA27x Processor Family”, in: Workshop on Media and Signal Processors for

Embedded Systems and SoCs (MASES), in conj. w. CASES 2004, Washington DC, USA,

Sept. 22-25, 2004

Keutzer, K., Malik, S., Newton, R. and Sangiovanni-Vincentelli, A., 2000, “System-level

design: Orthogonalization of concerns and platform-based design,” IEEE Trans. On CAD

of Integrated Circuits and Systems, Vol. 19, No. 12, pp. 1523-1543, Dec. 2000

Kowalczyk, J., 2003, “Multiprocessor systems”, White paper: Virtex-II Series, Xilinx WP162,

Apr. 2003

Krewell, K., 2004, “ARM Opens Up to SMP”, Microprocessor Report, Vol. 18, pp. 1 and 5-

7, May 2004

Lee, E.A., 2002, “Embedded Software”, Advances in Computers, Vol. 56, Academic Press,

London, 2002

Massa, A.J., 2002, Embedded Software Development with eCOS, Prentice Hall, 2002 (see

also: http://ecos.sourceware.org/)

Molnos, A., Heijligers, M., Cotofana, S.D., van Eijndhoven, J.T.J., 2005, “Compositional

memory systems for multimedia communication tasks”, accepted for publ. in: proc.

Design Automation and Test in Europe (DATE), Munich, Germany, Mar. 2005

Nair, R., 2002, “Effect of increasing chip density on the evolution of computer architectures”,

IBM J. on Research and Develop., Vol. 46, No. 2/3, pp. 223-234, March/May 2002

Nichols, B., et al., 1998, Pthreads Programming, O’Reilly Publishers, 1998

de Oliveira, J.A., and van Antwerpen, H., 2003, "The Philips Nexperia Digital Video

Platform," in Winning the SoC Revolution, G. Martin and H. Chang, Eds., pp. 67-96.

Kluwer Academic, 2003.

Perez, C.O., et al. , 2005, “Resource reservations in shared-memory multiprocessor SoCs”,

chapter 5 in this book

Pham D. et al., 2005, “The Design and Implementation of a First-Generation CELL

Processor”, accepted for publ. in: 2005 IEEE Int. Solid State Circuit Conf. (ISSCC), Feb.

6-10, San Francisco, USA

Sriram, S and Bhattacharyya, S.S., 2000, Embedded Multiprocessors: Scheduling and

synchronization, Marcel Dekker Inc.

Stravers, P., Hoogerbrugge, J., 2001, “Homogeneous multiprocessing and the future of silicon

design paradigms”, Proc. Of International symposium on VLSI Tech. Systems and

applications, 2001

80 Chapter 3

Suzuoki. M., and Yamazaki, T., 2002, “Computer Architecture and Software Cells for

Broadband networks”, US Pat. Appl. 2002/0138637A1, Sep. 2002

Van der Tol, E.B.,, et. al, 2002, “Mapping of H.264 decoding on a multiprocessor

architecture”, Proc. of SPIE conf. on Image and Video Communication, Vol. 5022, Jan.

2003

van de Waerdt, J.W. et al, 2005, “Motion Estimation Performance of the TM3270”, accepted

for publication in: proc. 20th ACM Symp. on Applied Computing (SAC2005), Santa Fe,

New Mexico, Mar. 14-17, 2005

van der Wolf, P. et al., 2004, “Design and programming of embedded multiprocessors: An

interface-centric approach”, proc. CODES+ISSS’04, Stockholm, Sweden, pp. 206-217,

Sept. 2004

Wong, W., 2002, “Quad 64-bit Multiprocessors targets comm. applications”, Electronic

Design, Oct. 2002. (See also Broadcom ‘BCM1480’ product brief, Sep. 2004)

Woo S.C., et al., 1995, “The SPLASH-2 Programs: Characterization and Methodological

Considerations”, In: Proc. of the 22nd Int. Symp. on Computer Architecture, pp. 24-36,

Santa Margherita Ligure, Italy, June 1995

(see also http://www-flash.stanford.edu/apps/SPLASH/)

Yang, P., et al, 2002, “Managing Dynamic Concurrent Tasks in embedded real-time

multimedia systems”, proc. 15th Int. Symp. On System Synthesis (ISSS’02), Kyoto, Japan,n

pp. 112-119, ACM Press, 2002

Chapter 4

DATAFLOW ANALYSIS FOR REAL-TIME
EMBEDDED MULTIPROCESSOR SYSTEM
DESIGN

Marco Bekooij1, Rob Hoes2, Orlando Moreira1, Peter Poplavko2, Milan
Pastrnak2, Bart Mesman1,2, Jan David Mol3, Sander Stuijk2, Valentin
Gheorghita2, and Jef van Meerbergen1,2

1 Philips Research Laboratories, Eindhoven, The Netherlands
2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 Delft University of Technology, Delft, The Netherlands
Marco.Bekooij@philips.com

Abstract Dataflow analysis techniques are key to reduce the number of design iterations
and shorten the design time of real-time embedded network based multiproces-
sor systems that process data streams. WiWW th these analysis techniques the worst-
case end-to-end temporal behavior of hard real-time applications can be derived
from a dataflow model in which computation, communication and arbitration
is modeled. For soft real-time applications these static dataflow analysis tech-
niques are combined with simulation of the dataflow model to test statistical
assertions about their temporal behavior. The simulation results in combination
with properties of the dataflow model are used to derive the sensitivity of design
parameters and to estimate parameters like the capacity of data buffers.

Keywords: real-time, dataflow analysis, multiprocessor system, predictable design, system-
on-chip

1. INTRODUCTION
Consumers typically have high expectation about the quality delivered by

multimedia devices like DVD-players, audio, and television sets. These de-
vices process data streams and are often built using (weakly) programmable
embedded multiprocessor systems for performance, cost, and power-efficiency
reasons. The design and programming of these real-time multiprocessor sys-
tems should be such that the real-time constraints are met, and the desired

81
P. van der Stok (ed.),
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 81-108.
© 2005 Springer. Printed in the Netherlands.

82 Chapter 4

audio and video quality is delivered. These multiprocessor systems should be
suitable for the simultaneous execution of audio and channel decoders as well
as video decoders. The audio and channel decoders have hard real-time con-
straints because a miss of a deadline results in a click in the audio or loss of data
which is unacceptable for the end-user. The video decoders have soft real-time
constraints because if a deadline is missed then the video quality is reduced
which is not appreciated by the end user but is to some extent acceptable.

The current design practice is that timing constraints of hard real-time ap-
plications are guaranteed by making use of analytical techniques while the
(temporal) behavior of soft real-time applications is measured. As will be ex-
plained in the next paragraphs, these measurements do not make all the char-
acteristics of soft real-time applications explicit which are usefuff ll during the
design process. Therefore we are concerned in this chapter with the use of
dataflow models for the validation of the (temporal) behavior of applications
with soft real-time constraints. These dataflow models are also key to derive
a proper dimensioning of the multiprocessors system and to derive a proper
mapping of the application onto the multiprocessors system. We claim that
the use of these dataflow models reduces the number of design iterations and
shortens the design time. Also our network based embedded multiprocessor
system is presented. This system is suitable for the derivation of the temporal
behavior of the application with dataflow models.

The applications executed on our multiprocessor system consist of jobs (see
Figure 4-1). A job is an entity that processes a data stream. It is started and
stopped by the user. The hard real-time jobs are indicated in this figure by dot-
ted circles while the soft real-time jobs are indicated by dashed circles. A job is
described by a dataflow graph. Such a dataflow graph contains actors that rep-
resent software tasks, or computations performed by a hardware component.
Actors are started after sufficient input data and output space is available, such
that they can finish their execution without having to wait for additional input
data or output space. The edges denote communication of data between actors
via First-In-First-Out (FIFO) buffers.

For soft real-time jobs such as video decoders, a tradeoff is typically made
between the amount of resources that are made available and the deadline miss
rate. Less system resources result in less hardware and a reduction of the hard-
ware cost, but also result in a higher deadline miss rate and a reduced quality of
experience for the end user. It is therefore an objb ective of the system designer
to dimension and program the multiprocessor system in such a way that the
quality is minimally compromised for a given resource budget.

The current design practice of systems that execute soft real-time jobs can
be schematically depicted with a Y-chart (Kock, Essink, Smits, Wolf, Brunel,
Kruijtzer, Lieverse and ViVV ssers, 2000), as is shown in Figure 4-2. The dashed
arrows in this figure denote design iterations. During an iteration a multipro-

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 83

MPEG2 video decoder job

MPEG1 video decoder jjobob

actoractor

actor

actor

actor actor

output-stream
to speakers

output-stream
to display

input-
stream1

stream2
input-

application

actor

actor

mixer job

contrast job

audio-decoderder job

Figure 4-1. An application that consists of jobs. Jobs are started and stopped by the user.
Jobs consist of actors that communicate via FIFOs. Hard real-time jobs are indicated by dotted
circles while soft real-time jobs are indicated by dashed circles.

cessor instance is (re-)defined, programmed, and evaluated by means of sim-
ulating the target application in a cycle true simulator. From the simulation
results, the system designer tries to derive clues on how he can improve the
system or its programming such that all design constraints are satisfied, which
is indicated by the light bulbs in the Y-chart figure. The current design practice
is that the design constraints are verified after simulation but to a large extent
ignored during mapping.

fuff nction resources

implementation

application
definition

architecture
modeling

mapping

analysis

Figure 4-2. Y-chart programming paradigm.

Such a simulation based design process is cumbersome for modern appli-
cations and architectures due to the uncertainty in the amount of resources

84 Chapter 4

demanded by the application at run-time and the uncertainty in the amount of
resources supplied by the hardware. The resource demand fluctuates during
execution because the amount of computation and communication performed
by the application often depends on the content of the input stream. For exam-
ple, the execution time of the actors depends usually on the values of the input
data. This can also be the case for the amount of data communicated between
the actors. Also, the amount of resources supplied by the hardware fluctuates
due to arbitration of shared resources in the system. The term arb itration” is
used in this chapter for the local scheduling of actors on processors, as well as
for the policy used to resolve at run-time simultaneous requests for a shared
resource, such as for example a communication bus or a memory port.

Another reason why this simulation based design process has become cum-
bersome is that the complexity of system-on-chip designs has grown much
faster than the increase in speed of the simulators. This has resulted in slow
design iterations in which usually only a small fraction of the system can be
evaluated. It should also be noted that it can be very difficult to find perfor-
mance critical corner cases in the design and generate the proper input stimuli
to observe the system’s behavior for these cases.

Another disadvantage of a simulation based design process is that it can
be difficult to draw conclusions from the simulation results how to adapt the
multiprocessor system’s hardware or its programming. It can be difficult to
draw conclusions because these multiprocessor systems can exhibit a highly
non-linear behavior.

Finally, we would like to mention that it is difficult to reproduce the same
temporal behavior with such a simulation based design process. The reason
is that the initial state of the arbiters (e.g. TiTT me Division Multiple Access
(TDMA) arbiters) in the system is unknown at the moment that the job is
started. Therefore, the order in which access to a shared resource will be
granted by an arbiter is not known at compile time. A different order in which
requests are granted can result in a completely different temporal behavior of a
job in the case that the same job is started at a different point in time. This will
make it for example impossible to reproduce the same temporal behavior with
an (Field Programmable Gate Array (FPGA)) prototype of the system, which
is currently often used to speed up the performance evaluation and debugging
process.

In this chapter, we propose a multiprocessor system in which the uncertainty
in the resource supply is bounded by enforcing resource budgets. A resource
budget is for example a guaranteed amount of time to use a resource such as a
bus or processor during a predefined period. These enforced resource budgets
will make it possible to share resources, such as a port to background memory,
between hard real-time and soft real-time jobs. These budgets also drastically
reduce the effort to verify the temporal behavior of soft real-time jobs. The

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 85

reason is that given enforced resource budgets, the temporal behavior of one
job cannot affect the temporal behavior of another job. This gives a job the
illusion that it executes on its own private hardware, so it can be evaluated in
isolation.

Given that resource budgets are enforced and guaranteed, then dataflow
models and their corresponding analysis techniques can be applied to guar-
antee that hard real-time jobs will meet their deadlines. However these tech-
niques are not directly applicable for soft real-time jobs because they require
that a schedule can be derived offline. Such a schedule cannot be constructed
for soft real-time jobs because the amount of resources that is provided for soft
real-time applications is typically less than the worst-case amount of resources
that are needed to meet all deadlines.

In this chapter we advocate the use of a mix of simulation and model based
analysis techniques for the derivation of the temporal behavior of the soft real-
time jobs. We show that dataflow models can be applied by demonstrating that
if resource budgets are enforced that then the effect on the temporal behavior of
run-time arbitration can be modeled in a dataflow model. These dataflow mod-
els can be used for soft real-time jobs to derive conservarr tive arrival times of
the data in the system by simulation of this dataflow model. During simulation
the response times of the actors are used instead of the worst-case response
times. The response time of an actor depends on the value of the input data
of the actor. The arrival times of the data observed during simulation is con-
servarr tive because data will not arrive earlier in the simulator than in the real
system. There is no need to derive a schedule in advance because the execution
order of actors is determined at run-time by the local schedulers/arbiters. The
same dataflow models can be analyl zed at compile-time to derive estimates of
the effects on the throughput and latency of a job when a resource budget is
adapted by the designer at compile time. An example of a resource budget is
the capacity of a buffer.

2. RELATED WORK
In this work, dataflow models are used to derive the end-to-end temporal

behavior of jobs. The focus is on synchronous dataflow (SDF) models (Lee
and Messerschmitt, 1987), because it is currently the most popular and widely
studied dataflow model for streaming applications with well defined semantics.

A similarity between SDF models and Kahn process networks (Kahn, 1974)
is that they can be used to describe streaming applications. However SDF
models are suitable for static analysis while Kahn process networks are un-
suitable. Kahn process networks are unsuitable for static analysis because a
Kahn process network is TuTT ring complete. Therefore, questions of termination
and bounded buffering are undecidable. That is, no finite time algorithm can

86 Chapter 4

decide these questions for all Kahn process networks. This is illustrated with
the Kahn process network example in Figure 4-3. In this example we assume
that the behavior of process P1 depends on the values of the input data and is
therefore unknown at compile time. We assumed also that the values of the
input data are at run-time such that this process P1 will write one data word
in FIFO1 after it has written 11 data words in FIFO2. We also assume in this
example that process P2 reads first one data word from FIFO1 before it reads
data from FIFO2. Deadlock of this process network occurs because process
P1 cannot finish its writing of data in FIFO2 because the capacity of FIFO2 in
the implementation is only 10 data words. Therefore, processes P1 will never
be able to write data in FIFO1 such that process P2 can first read data farom
FIFO1 and then from FIFO2. It should be noted that FIFOs with a finite ca-
pacity should be represented in a Kahn process network as two FIFOs with an
infinite capacity. The data producing process stores tokens filled with data in
one FIFO while the data consuming process stores tokens which indicate space
in the other FIFO.

FIFO1

capacity 1 word

capacity 10 words
FIFO2

P1 P2

Figure 4-3. Example of Kahn process network which deadlocks due to insufficient FIFO
capacity.

Another reason why Kahn process networks are unsuitable for static analy-
sis is that a Kahn process blocks after it did a read attempt on an empty FIFO.
A Kahn process that blocks must be preempted such that other processes on
the same processor can continue their execution and produce the required in-
put data. The number of times that a process blocks, depends on the run-time
schedule and can strongly fluctuate. Therefore it is usually not possible to de-
rive a tight bound on the preemption overhead at compile time. However a
tight bound on the overhead due to preemption can be derived for SDF actors.
The reason is that an SDF actor does not start its execution before all input
data is present to finish its execution. Therefore SDF actors never block during
their execution.

The SDF graphs are used in this chapter as a short hand notation of event
graphs which are a special case of Petri nets (Petri, 1962). The temporal
behavior of event graphs can be derived with MaxPlus Linear System The-
ory (Bacelli, Cohen, Olsder and Quadrat, 1992). SDF models are in (Sriram
and Bhattacharyya, 2000) applied for hard real-time jobs that do not share re-
sources with other jobs. The execution order of actors on the same processor

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 87

is derived from an offline computed schedule. Similar techniques are applied
in (Poplavko, Basten, Bekooij, Meerbergen and Mesman, 2003) for soft real-
time jobs. Good results could only be obtained by taking measures to limit the
difference between the typical and the worst-case response times of the actors.
The reason for these good results is that if the difference in response time is
small, then the offline computed execution order is close to the optimal execu-
tion order. In this chapter we assume that the processors support preemption
and that the execution order of the actors is determined at run-time. This makes
it possible to cope with large variations in the execution time of the actors, and
will allow sharing of resources by actors of different jobs.

In this chapter we advocate the use of a mix of simulation and model based
analysis techniques for the derivation of the temporal behavior of the soft real-
time jobs. The analysis of the temporal behavior of soft real-time jobs is differ-
ent from the analysis of hard real-time jobs. The objb ective of the analysis for
hard real-time jobs is to derive the worst-case temporal behavior of the system,
while for soft real-time jobs the objb ective of the analysis is to derive the typ-
ical temporal behavior. The typical temporal behavior of jobs depends on the
values of the input data which are unknown at compile time. Therefore, purely
model based analysis techniques for hard real-time jobs, such as the techniques
in (Kopetz, 1997; Pop, Eles and Peng, 2002; Richter, Jersak and Ernst, 2003),
are not directly applicable for the analysis of soft real-time jobs. The reason
is that the actual values of the input data can be ignored during analysis of
hard real-time jobs because the objb ective is to derive the worst-case temporal
behavior for any possible input data stream. For soft real-time jobs the values
of the input data cannot be ignored during analysis because the objb ective is to
derive the typical temporal behavior for a representative input stimuli set. The
use of probabilistic models, such as Markovian and Poisson models, for the
derivation of the typical temporal behavior of soft real-time jobs is either too
simple to characterize the important properties of the source and the system,
or too complex for tractable analysis (Zhang, 1995; Sriram and Bhattacharyya,
2000). Therefore, simulation is used by us to estimate parameters such as the
execution times of the actors and to test statistical assertions about the tempo-
ral behavior of a job that is executed on the system, in a similar way as done
in (Hee, 1994).

The concept of reservation based resource allocation has been introduced
by the real-time community in order to eliminate interference between the
software tasks of soft real-time multimedia jobs that are executed on a single
processor system. The enforcement of resource budgets is a service provided
by the operating system kernel (Raja kumar, Juwa, Moleno and Oikawa, 1998).
The size of the resource budget is determined during a (re)negotiation phase
between the job and the operating system. In this work, we address multipro-
cessor systems in which the resource budgets enforcement is not centralized

88 Chapter 4

but distributed. Resource budgets are reserved to eliminate interference be-
tween jobs such that it is possible to share resources between hard real-time
and soft real-time jobs, as well as to obtain a so-called monotonic system (see
Section 4). An important property of a monotonic system is that an increase of
a resource budget of a job cannot result in a reduction of the throughput of this
job.

3. OUTLINE OF THIS CHAPTER
The organization of this chapter is as follows. The properties of the syn-

chronous dataflow (SDF) model are recapitulated in Section 4. Then in Sec-
tion 5 a multiprocessor architecture is presented that is suitable for the deriva-
tion of the temporal behavior of jobs with an SDF model. It is shown in Sec-
tion 6 that the effects on the temporal behavior of a job, due to TDMA arbi-
tration, can be expressed in the SDF model. By simulating this SDF model,
conservative and accurate arrival times of tokens can be derived. The same
SDF model is analyzed in Section 7 in order to derive at compile time the sen-
sitivity for variations in the execution time of actors on the throughput of the
system. We show that adaptation of the capacities of the FIFO buffers can re-
duce the sensitivity for fluctuations in the execution times of the actors on the
end-to-end temporal behavior of a job. To obtain tight bounds on the arrival
times of data it may be necessary to make the conditional execution of actors
explicit in the dataflow model. Section 8 introduces conditional constructs in
the dataflow model that guarantee mutual exclusive execution of actors. The
dataflow graph that is obtained is an analyzable version of a Boolean Data Flow
(BDF) graph (Buck, 1993). It is shown that these BDF graphs can be analyzed
with the SDF analysis discussed in Section 4. These conditional constructs are
applied in Section 9 to make explicit that different actors are executed during
I-frame and P-frame decoding in an H263 video decoder. Finally, we state the
conclusions in Section 10.

4. DATAFLOW ANALYSIS
In this section we define the SDF model and recapitulate its properties. This

SDF model is used in successive sections for the derivation of the temporal be-
havior of jobs that are executed on multiprocessor systems with similar char-
acteristics as the multiprocessor system that is presented in Section 5.

Before the properties of an SDF model are stated, we first define an SDF
graph as follows:

Definition 1 (Synchronous Data Flow Graph.) ThTT e tupleu
(V,E, d, P, O, I) defines a Synchronous Datatt Flow (SDF) grarr pa h, where

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 89

V is the set of nodes (actors),

E ⊆ V × V is the set of directed edgd es,

d : E → N is a funff ction describing the number of initial tokens on an
edgd e (u, v) ∈ E,

P : V → R
+ is a funff ction describing the worst-case response time of

actor v ∈ V ,

O : E → N is a funff ction describing the number of tokens produced on
edgd e (u, v) ∈ E by actor u for each execution,

I : E → N is a funff ction describing the number of tokens consumed from
edgd e (u, v) ∈ E by actor v for each execution.

An arbitrary SDF graph is depicted in Figure 4-4. The nodes in an SDF
graph are called actors. Actors have a well defined input/output behavior and
a worst-case response time. Actors produce and consume tokens. The edges
represent dependencies. A token is a container in which a fixed amount of
data can be stored and is depicted in Figure 4-4 as a black dot. If more than
one token is (initially) present on an edge then the number of tokens (d) is
specified next to the dot. The tokens are consumed in the same order as they are
produced. However random access of the data inside a token is allowed. Each
actor in Figure 4-4 is annotated with its worst-case response time. An actor is
enabled after a predefined number of tokens is available on every input of the
actor. An actor can fire (starts its execution) after it is enabled. The number
of tokens that must be available is specified next to the head of the data edges.
The specified number of tokens is consumed from the input edges of the actor
before the execution of an actor finishes, that is, within the response time of the
actor. The number at the tail of an edge denotes the number of tokens an actor
produces before the execution of the actor finishes. A self-edge of an actor
is used to model that the previous execution must be finished before the next
execution can start. This self edge is given one initial token such that the next
execution cannot start before the previous execution of the actor is finished.

An SDF graph can be transformed into a Homogeneous Synchronous Data
Flow (HSDF) graph (see Figure 4-5) on which we perform the analysis. An
algorithm that transforms any SDF graph into an HSDF graph is described
in (Sriram and Bhattacharyya, 2000). An HSDF graph is a special case of an
SDF graph, in which the execution of an actor results in the consumption of
one token from every incoming edge of the actor and the production of one
token on every outgoing edge of the actor.

90 Chapter 4

A1

6
A3

1ms

1ms 0.2ms 3ms
2 2 1 1

3

2

3
11

1
1

Figure 4-4. A Synchronous Data Flow (SDF) graph example.

A4’

A4’

1

1
1

A2’A1’

A2’A1’

1

1

11

1

1
1
1

1
1

1

1

1
1

1

1

1

1

1

1

1

1 1

1

1

A3’
1ms

0.2ms1ms

1ms 0.2ms1

1

1

1

3ms

3ms

Figure 4-5. The Homogenous Synchronous Data Flow (HSDF) graph obtained after transfor-
mation of the SDF in Figure 4-4.

An HSDF graph can be executed in a self-timed manner, which is defined
as a sequence of firings of HSDF actors in which the actors start immediately
when there is at least one token on each input of the actor. In the case that the
HSDF graph is a strongly connected graph and a FIFO ordering for the tokens
is maintained between executions of the actors, then the self-timed execution of
the HSDF graph has some important properties. A FIFO ordering is maintained
if the completion events of firings of a specific actor occurs in the same order
as the corresponding start-events. This is the case if an actor has a constant
response time or belongs to a cycle in the HSDF graph with only one token.
In (Bacelli et al., 1992) are the properties of the self-timed execution of such
HSDF graphs derived with MaxPlus algebra.

First of all, the most important property of the self-timed execution of an
HSDF graph is, that it is deadlock-free if there is on every cycle in the HSDF
graph at least one initial token. Secondly, the execution of the HSDF graph
(and also an SDF graph) is monotonic, i.e. decreasing actor response times re-
sult in non-increasing actor start times. The reason is that an earlier arrival time
of a token cannot result in a later start of the actor that consumes this token.

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 91

Third, an HSDF graph will always enter a periodic regime. More precisely, a
K ∈ N, an N ∈ N and a λ ∈ R, such that for all v ∈ V , k > K the start time
s(v, k + N) of actor v in iteration k + N is described by:

s(v, k + N) = s(v, k) + λ · N (4-1)

Equation 4-1 states that the execution enters a periodic regime after K ex-
ecutions of an actor in the HSDF graph. The time one period spans is λ · N .
The number of firings of an actor v in one period is denoted by N . Thus, λ is
equal to the inverse of the average throughput measured over one period.

The Maximum Cycle Mean (MCM) (Sriram and Bhattacharyya, 2000) of
an HSDF, which is equal to λ, is given by (4-2). The MCM of an HSDF graph
is also called in literature the maximal cost to time ratio (Lawler, 1976). The
Cycle Mean (CM) of a simple cycle c in the HSDF graph G is given by (4-3).
In this equation denotes d(c) the number of tokens on the edges in a cycle c.
The Worst Case Response TiTT me (WCRT) of actor v is denoted by WCRT(v).
The MCM of an HSDF graph can be derived with a pseudopolynomial al-
gorithm (Cochet-Terrasson, Cohen, Gaubert, McGettrick and Quadrat, 1998)
with complexity O(m|E|) with m the product of the out-degrees of all nodes.

MCM(G) = max
c∈CG

CM(c) (4-2)

CM(c) =
∑

v on c

WCRT(v)/d(c) (4-3)

The worst-case start-times of the actors during the transition state as well
as the steady state can be observed during self-timed execution of an SDF
graph in a simulator. During this simulation, all actors must have a response
time equal to their worst-case response time. The start-times observed during
this simulation are equal to the worst-case start times of the actors due to the
monotonicity of the SDF graph. From (4-1) it follows that a periodic regime
will be entered and therefore simulation can be stopped after the first period of
the periodic regime. The SDF will enter a periodic regime because the HSDF
graph that is obtained after transformation will enter a periodic regime. The
SDF enters a periodic regime because the i-th start of an actor A1 in the SDF
graph is as soon as all input tokens have arrived for this actor. All input tokens
have arrived as soon as there is one token on each input of an actor A1’ in the
HSDF such that an actor A1’ is started for the i-th time.

Actors in an SDF graph produce their output tokens exactly the WCRT af-
ter the actor is started. The input tokens are consumed and removed from the

92 Chapter 4

input exactly the WCRT after the actor is started. Code segments in the imple-
mentation can be represented by an SDF actor in the model. Code segments
produce the output tokens and consume the input tokens within the WCRT of
the actor. The arrival times of tokens during selftimed execution of the SDF
graph is not earlier then in the implementation due to the monotonic behavior
of a selftimed executed SDF graph. Therefore an upper bound on the arrival
time of tokens is observed during selftimed execution of the SDF graph.

We refer in this chapter to a code segment as an actor in the implementation.
The actors in the implementation have a response time as well as an Execution
TiTT me (ET). The ET of an actor in the implementation is defined as the interval
of time it takes to execute the corresponding code segment on a processor
without that its execution is preempted. The execution time depends often on
the values of the input data. The Worst Case Execution TiTT me (WCET) is an
upper bound on the execution time of an actor in the implementation and is
derived with static program analysis techniques (Li and Malik, 1999).

It should be noted that the token arrival times during selftimed execution
in the SDF simulator remain conservative if the Response TiTT mes (RTs) of the
actors are used instead of the worst-case response times of the actors. The
RT of an actor is an upperbound on the time interval between the point in
time that the actor is enabled and that the point in time that the actor finishes
its execution. The response time of an actor can depend on the values of the
input data that are consumed during that execution. The token arrival times
during selftimed execution in the SDF simulator are conservative because the
selftimed execution of the SDF graph is monotonic. The use of the RTs of
actors allows us to derive an upperbound on the token arrival times for soft
real-time jobs given a specific input stimuli set for that job.

In Section 7 we will use Predicted Response TiTT mes (PRTs) of the actors to
derive at compile time the resource budgets of soft real-time jobs. The PRT
of an actor is the measured average response time of this actor on a processor
given a specific input stimuli set for that actor. Given the PRT of an actor we
will predict the resource budget for a soft real-time job.

5. MULTIPROCESSOR SYSTEM TEMPLATE
This section describes a network based multiprocessor system. This multi-

processor system is defined in such a way that a tight bound on the temporal
behavior of jobs can be derived at compile time with dataflow analysis tech-
niques. These analysis techniques are described in the previous section and are
extended in Section 6.

Figure 4-6 shows the architecture template of this multiprocessor system.
The processors in this template are, together with their local data memory,
connected to the Network Interface (NI) of a packet switched Network on Chip

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 93

(NoC) (Rijpkema, Goossens, Radˇ ulescu, Dielissen, Meerbergen, WiWW elage and
Waterlander, 2003). The transfer of data between a local memory and a net-
work interface is performed by a Communication Assist (CA). A processor
together with its local instruction and data memory, communication assist, and
network interfaces is grouped into a leaf. The leafs are connected to the routers
of our network. Network links connect the routers in the desired network topol-
ogy.

FIFO
fiff lling

FIFO
fiff lling

leaf leaf

IM
E

M

IM
E

M

bu
s

bu
s

RR

stallstall

CA CA

DMEM

NINI

DMEM

network

processorprocessor

M
E

Figure 4-6. Multiprocessor template.

A processor in a leaf has a separate Instruction Memory (I-mem) and Data
Memory (D-mem), such that instruction fetches and data load and store op-
erations do not cause contention on the same memory port. An unbounded
range of memory access time variations due to contention on a memory port
is intolerable, as this would result in an unpredictable execution time of the
instructions of the processor. This is also the reason why we consider in this
paper only the case that the processors access only their local data memory.
Given a 1 cycle access time of a local memory there is no reason to introduce
caches.

Communication between actors on different processors takes place via a
virtual point to point connection of the NoC. The result of the producing actor
is written in a logical FIFO in the local memory of the processor. Such a
logical FIFO can be implemented with the C-HEAP (Gangwal, Nieuwland
and Lippens, 2001) communication protocol, without use of semaphores. The

94 Chapter 4

communication assist polls at regular intervals whether there is data in this
FIFO. As soon as the CA detects that there is data available, it copies the
data into a FIFO of the NI. There is one private FIFO per connection in the NI.
Subsequently the data is transported over the network to the NI of the receiving
processor. As soon as the data arrives in this NI, it is copied by the CA into
a logical FIFO in the memory of the processor that executes the consuming
actor. The data is read from this FIFO after the consuming actor has detected
that there is sufficient data in the FIFO. Flow control between the producing
and consuming actor is achieved by making sure that data is not written into a
FIFO before it is checked that there is space available in this FIFO.

Data is stored in the local memory of the processor before it is transferred
across the network. This is done for a number of reasons. First of all, the
bandwidth of a connection is set by configuring tables in the network for a
longer period of time. The bandwidth reserved for a connection will typically
be less than the peak data rate generated by the producing actor. Therefore a
buffer is needed between the processor and the network to average out the peak
data rate such that the bandwidth provided by the network is well utilized. Also
the memory in the leaf which receives the data can typically not accommodate
the peak bandwidth because another processor can access this memory at the
same time. Another reason is that without such a buffer the execution time
and the response time of the actors is dependent on the allocated bandwidth
in the network. This dependency will complicate the analysis of the temporal
behavior.

The size of the buffer in which data is stored before it is transferred across
the network is significant, given the assumption that the actors produce large
chunks of data at large intervals. On the other hand, the network will transfer
very small chunks of data (3 words of 32 bits) at very small intervals (∼2 ns).
Given that large memories are inherently slow, it is desirable to split the large
logical FIFO between the processor and the network, in a small (∼32 word)
dedicated FIFO per connection in the network interface, and a large logical
FIFO in the local memory of the processor. The task of the CA is to copy the
data between FIFOs in the NI and FIFOs in local memory of the processor.

The CA is also responsible for the arbitration of the data memory bus. The
applied arbitration scheme is such that a low worst-case latency of memory
store and load operations is obtained and that a minimal throughput and max-
imal latency per connection is guaranteed. A more detailed description can be
found in (Bekooij, Moreira, Poplavko, Mesman, Pastrnak and van Meerbergen,
2004).

In the proposed architecture, the communication between actors that run
on different processors has a guaranteed minimal throughput and a maximal
latency. Given these characteristics, the communication can be modeled as if it
takes place through completely independent virtual point-to-point connections.

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 95

These connections can be modeled together with the actors of a job in one SDF
graph (Poplavko et al., 2003). Given this SDF graph, the guaranteed minimal
throughput of a hard real-time job can be determined.

6. RESOURCE ARBITRATION
In this section, we show that the resource conflicts that are resolved at run-

time by TDMA arbiters, can be taken into account in an SDF model. Conser-
vative token arrival times are observed during self-timed execution of this SDF
model in a simulator. The same SDF model is analyzed in Section 7 to obtain
the sensitivity for fluctuations in the response times of actors on the temporal
behavior of a job.

Resource conflicts can occur if multiple actors execute on one processor.
These resource conflicts can be resolved at compile time or at run time. The
resource conflicts can be resolved at compile time by computing offline a valid
schedule for the SDF graph under consideration. In the static order scheduling
approach (Sriram and Bhattacharyya, 2000), the execution order of the actors
in this offline computed schedule is enforced at run time. If the static order
scheduling approach is applied, then a decrease in response time of actors can
only result in an earlier arrival of tokens and an increase in throughput of the
system. The reason is that there is a one to one correspondence between actors
in the system and the actors in the SDF model and that it is known that the
self-timed execution of the SDF model is monotonic (see Section 4).

An important disadvantage of the static order scheduling approach is that
it cannot be applied if the execution of actors is conditional, as is the case
in the H263 video decoder example in Section 9. The execution of actors is
conditional if a value of a token determines whether an actor will be executed
or not. In a static order schedule it can occur that if, for example, actor A is
not executed, then another actor B will wait forever for a token produced by
actor A. Other actors on the same processor as actor B will not be executed as
long as actor B waits for the token because the execution order of actors on the
same processor is predefined and fixed.

Resource conflicts can also be resolved at run time by an arbiter (local
scheduler). In the case that arbitration is performed at run time, the arrival
of tokens determines whether an actor will be executed or not, and what the
execution order of the actors on a processor will be. In the case that, for ex-
ample, TDMA arbitration is applied, then the effects of the TDMA arbitration
on the arrival time of the tokens can be taken into account in the response
times of the actors in the SDF model. A proof that TDMA arbitration can be
modeled implicitly in the response time of an actor is presented in the next
paragraphs. This proof demonstrates with mathematical induction that tokens
will not arrive later in the implementation than during selftimed execution of an

96 Chapter 4

HSDF model. It is sufficient to prove for one actor executed during a TDMA
time slice on a processor that the actor will not produce tokens later in the im-
plementation than in the HSDF model because the selftimed execution of an
HSDF model is monotonic.

In this proof, an abstract representation of a processor is used which exe-
cutes actor A1 during interval T1TT in a period T . This representation is shown
in Figure 4-9. Actor A1 starts its execution during interval T1TT , as soon as the
previous execution of actor A1 has finished and an input token has arrived.
If actor A1 did not finish its execution at the end of the interval T1TT then this
actor will be preempted and it will continue its execution in the next period.
The additional time due to context switches can be included in the (worst-case)
response time of an actor, because the maximum number of context switches
that can happen during the execution of an actor is known at compile time. The
time p(j) denotes the execution time of the j-th execution of actor A1 when it
executes on the processor without being preempted.

Two cases should be distinguished to determine the response time of an
actor. An actor can start at the begin of the interval T1TT or during the interval
T1TT . If the actor starts at the begin of an interval and p(j) = 2.5 T1TT then this
actor will be preempted twice, as is shown in Figure 4-7. Given that the actor
is preempted twice then the actor will finish its execution p(j) + 2(T − T1TT)
after it is started. In other words the Interruption time (I1) of the actor is in this
case according to (4-4).

t(s)T1TT

T

Figure 4-7. Stretch of the response time of an actor due to preemption in the case that the
actor starts at the begin of interval T1TT .

I1(j) = (T − T1TT)(
⌈

p(j)
T1TT

⌉
− 1) (4-4)

On the other hand, if the execution of an actor starts during the time slice
T1TT , as is shown in Figure 4-8 then this actor will be preempted 3 times. Given
that the actor is preempted 3 times, then the actor will finish its execution
p(j) + 3(T − T1TT) after it is started. In other words, the interruption time (I2)
of the actor is in this case according to (4-5).

I2(j) = (T − T1TT)(
⌈

p(j)
T1TT

⌉
) (4-5)

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 97

t(s)T1TT

T

Figure 4-8. Stretch of the response time of an actor due to preemption in the case that the
actor can start at any point in time during interval T1TT .

FIFO2FIFO1

a(j(() b(j(()

T1TT

T

Figure 4-9. Abstract representation of the time wheel of a TDMA arbiter. The time wheel
rotates every period T . Actor A1 can execute during slot 1 with duriation T1TT .

The arrival time of the j-th token in FIFO1 and FIFO2 is denoted in Fig-
ure 4-9 by a(j) and b(j) respectively. The moment in time that the j-th execu-
tion of actor A1 finishes, is denoted by f(j). During the j-th execution of actor
A1, the j-th token is consumed from FIFO1 and the j-th token is produced in
FIFO2. Therefore is a(j) ≤ f(j) and b(j) ≤ f(j). It will be proven for the
HSDF model in Figure 4-10 that if (4-6) holds that then also (4-7) holds, where
â(j) and b̂(j) denote the arrival time of tokens in the SDF model. The position
of the initial token at time t=0 is as shown in Figure 4-10. However the position
of the time-wheel in the implementation at time t=0 is unknown. Given this, it
will be proven with mathematical induction for j ≥ 0 that if (4-6) holds then
also (4-7) holds.

A1â(j(() b̂(j)

p(j) + I2(j)

Figure 4-10. SDF model of an actor executed during a time slice on a processor.

a(j) ≤ â(j) (4-6)

b(j) ≤ b̂(j) (4-7)

98 Chapter 4

Given that the position of the time-wheel of the implementation is unknown
and that initially actor A1 does not execute then f(0) is:

f(0) ≤ a(0) + p(0) + max(I1(0), I2(0)) ≤ a(0) + p(0) + I2(0) (4-8)

For the arrival time of the first output token in the HSDF model it holds that:

b̂(0) = â(0) + p(0) + I2 (4-9)

From (4-6), (4-9) and (4-8) it follows that:

f(0) ≤ b̂(0) (4-10)

Now we want to establish our inductive step by showing how the truth of
our induction hypothesis in (4-11) forces us to accept that f(j +1) ≤ b̂(j +1).

f(j) ≤ b̂(j) (4-11)

For the implementation and j ≥ 0 the following equations hold in which
the intermediate variables tx and ty are defined:

tx = a(j + 1) + p(j + 1) + max(T − T1TT + I1(j + 1), I2(j + 1)) (4-12)

ty = f(j) + p(j + 1) + max(T − T1TT + I1(j + 1), I2(j + 1)) (4-13)

f(j + 1) ≤ max(tx, ty) (4-14)

Equation 4-14 can be rewritten as:

f(j + 1) ≤ max(f(j), a(j + 1)) + p(j + 1) + I2(j + 1) (4-15)

Equation 4-14 holds because: if a(j+1) > f(j) then token j+1 has arrived
after the j-th execution of actor A1 has finished (see Figure 4-11). After arrival

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 99

of token j + 1 it will take maximally p(j + 1) + max(T − T1TT + I1(j +
1), I2(j + 1)) before the (j + 1)-th execution of actor A1 finishes. It takes
p(j +1)+T −T1TT + I1(j +1) before (j +1)-th execution of actor A1 finishes,
if the position of the time wheel is such that token j + 1 arrives during interval
T − T1, otherwise it takes p(j + 1) + I2(j + 1).

If a(j + 1) ≤ f(j) then token j + 1 has arrived in FIFO1 before the j-th
execution of actor A1 has finished (see Figure 4-12). After the j-th execution
of actor A1 has finished it takes maximally p(j + 1) + max(T − T1TT + I1(j +
1), I2(j +1)) before the (j +1)-th execution of actor A1 has finished. It takes
p(j + 1) + T − T1TT + I1(j + 1) before the (j + 1)-th execution of actor A1
finishes, if the position of the time wheel is such that the j-th execution of actor
A1 finishes at the end of interval T1TT otherwise it takes p(j + 1) + I2(j + 1).

f(j(()

p(j + 1) + I2

f(j((+1)a(j((+1)

Figure 4-11. Arrival of token j+1 in FIFO1 after the j-th execution of actor A1 has finished.

a(j((+1)

p(j + 1) + I2

f(j((+1)f(j(()

Figure 4-12. Arrival of token j+1 in FIFO1 before the j-th execution of actor A1 has finished.

For the SDF model and j ≥ 0 the following equations hold in which the
intermediate variables tp and tq are defined

b̂(j + 1) = max(tp, tq) (4-16)

with

tp = â(j + 1) + p(j + 1) + I2(j + 1) (4-17)

tq = b̂(j) + p(j + 1) + I2(j + 1) (4-18)

100 Chapter 4

It follows from (4-12), (4-17) and (4-6) that tx ≤ tp. From (4-13), (4-18),
and our induction hypothesis in (4-11) it follows that ty ≤ tq. This results in
the conclusion that f(j) ≤ b̂(j) for j ≥ 0 because:

tx ≤ tp ∧ ty ≤ tq ⇒ max(tx, ty) ≤ max(tp, tq) (4-19)

Given that b(j) ≤ f(j) we arrive at the conclusion that (4-7) holds for
j ≥ 0. �

In the proof an HSDF actor was considered with only one input and one output
and FIFO buffers with an infinite capacity were assumed. However the proof
also holds for an SDF actor with multiple inputs and outputs and buffers with a
finite capacity. The reason is that the event a(j) which denotes the arrival of a
token in FIFO1 in Figure 4-9 is equivalent to the event which denotes that suf-
ficient tokens are available on each input of an SDF actor. The proof also holds
for SDF actors with multiple outputs because all output tokens are produced
before the SDF actor finishes its execution. The availability of space in a finite
FIFO buffer can be modeled as the presence of a space token on an input of the
SDF actor.

The use of TDMA arbitration can be taken into account in the SDF model
of hard real-time jobs by setting the WCRT of the actor Ax according to (4-
20), in which P denotes the WCET of actor Ax if it would be executed on the
processor without being preempted.

WCRTAx(j) = P + (T − T1TT)
⌈

P

T1TT

⌉
(4-20)

Given these worst-case response times of actors, the worst-case arrival times
of the tokens in the system can be derived from a self-timed execution of the
SDF model. Also the minimal throughput of the system that will obtained
equals 1/MCM of this SDF model. This SDF model can also be used with
response times instead of worst-case response times. An upperbound on the
RT of the j-th execution of actor Ax in the SDF model is equal to:

RTAx(j) = p(j) + (T − T1TT)
⌈

p(j)
T1TT

⌉
(4-21)

Conservative token arrival times are then observed during self-timed execu-
tion of the SDF model due to monotonicity of the system. Conservative token
arrival times are observed because an earlier arrival of a token can only result
in an earlier start of an actor in the SDF model and an earlier production of a
result. Therefore conservative arrival times are observed if the i-th response
time of actor Ax in the SDF model is not shorter then the i-th response time of

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 101

actor Ax in the implementation. This is the case if response times according
to (4-21) are used in the SDF model. An important advantage of the use of
an SDF model instead of cycle true simulation model of the system is that the
arrival time of tokens during self-timed execution is conservative while this
is not the case for a cycle true simulation model. The reason is that the initial
position of the time wheels in the system at time t=0 is not known. Another ad-
vantage is that execution of the SDF model will be much faster than simulation
of a cycle true model because an SDF model is a more abstract model.

7. SENSITIVITY ANALYSIS & REDUCTION
This section describes dataflow analysis techniques that are used to deter-

mine the FIFOs of which the capacity should be increased, in order to reduce
the sensitivity of a soft real-time job, for fluctuations in the response times of
the actors. A lower sensitivity of a job will reduce the deadline miss rate which
enhances the quality of experience of the user.

For soft real-time jobs a predicted MCM can be calculated with (4-2) given
the resource budgets of a job and by using the predicted response times of the
actors instead of the WCRT of the actors. Here it is assumed that the PRT of
an actor is equal to the average response time of this actor on a processor with
TDMA arbitration and representative input data.

It is obvious that this predicted MCM is not smaller than the actual MCM
if the response times of the actors is smaller than the PRT of the actors. The
predicted MCM is also not smaller than the actual MCM if the cycle mean of
a cycle in the SDF graph, to which the actors belong that have an RT larger
than their PRT, does not exceed the predicted MCM. The Cycle Mean (CM) is
defined in (4-3). In other words the temporal behavior of a job is more sensitive
for deviations in the response times of actors which belong to cycles of which
the CM is likely to be larger than the predicted MCM. By increasing the FIFOs
capacity, the CM of these cycles can be decreased such that the job becomes
less sensitive.

That the sensitivity of a job can be reduced by increasing the FIFO capacities
can be seen as follows. Assume that the job is described by the SDF graph in
Figure 4-13. The PRT of actor A1 in this job is chosen to be equal to the
average response time measured over 3 successive executions of this actor. If
the desired MCM is 2T then the FIFO capacity should be at least 2 tokens
given the PRT of the actors. However, it is likely that the actual MCM is larger
than the desired MCM because the RT of actor A1 can be larger then its PRT
which results in a CM larger than the predicted MCM.

The actual MCM would not be larger than the desired MCM if a FIFO ca-
pacity of 6 instead of 2 tokens was applied. That this is the case can be in-
tuitively seen as follows. Assume the an actor A1’ in Figure 4-14 requires 3

102 Chapter 4

2

A0 A1
1

11 1

11

1

1
PRT=2T PRT=2T

Figure 4-13. SDF with a predicted MCM of 2T.

tokens instead of 1 token on its input before it fires and that after firing it exe-
cutes internally 3 times the same code segment. Actor A1’ would have in this
case a PRT equal to the maximum response time of 3 successive executions. In
Figure 4-14 we assumed that out of the 3 successive executions of actor A1, 2
executions have a response time smaller than T and one a response time smaller
than 4T. In this case is the PRT of actor A1’ equal to 6T. Given the PRT there is
a FIFO capacity needed of 6 tokens for a desired MCM of 2T. This MCM can
be obtained with (4-2) after the SDF in Figure 4-14 is transformed in an HSDF
with the algorithm described on page 40 in (Sriram and Bhattacharyya, 2000).
The longest path in this HSDF contains 3 times actor A0 and once actor A1’
and is 12 T long. Therefore, there must be 6 tokens on this path for an MCM
of 2T. Given these 6 tokens an MCM of 2T will be obtained if actor A1 in the
implementation fires as soon as there is one input token available. The reason
is that starting of the actor with only 1 instead of 3 tokens can only result in an
earlier production of tokens.

PRT=2T PRT=(T+T+4T)/3=2T

6

A0 A1’
1

11 3

11

1

3

Figure 4-14. SDF with a predicted MCM of 2T.

8. PREDICTABLE DYNAMIC DATA FLOW
In this section a so-called Predictable Dynamic Data-Flow (PDDF) graph is

introduced in which the conditional executions of actors can be expressed as
well as a variable but bounded number of executions of actors can be expressed.
An important property of a PDDF is that it can be analysed with the in Section 4
and Section 7 described analysis techniques.

An H263 video decoder is an example in which it depends on the values of
the input data which actors will be executed and which not. In this decoder
different actors are executed in the case that an I-frame or a P-frame is de-
coded. The conditional execution of actors cannot be made explicit in SDF

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 103

graphs but can be made explicit in Boolean Data-Flow (BDF) graphs (Buck,
1993). However, the use of a BDF graph is undesirable because the detection
of deadlock is undecidable for an arbitrary BDF graph. By restricting, with
construction rules, the type of BDF graphs that can be expressed so-called
well-behaved dataflow graphs (Gao, Govindaraja an and Panangaden, 1992) are
obtained. These well-behaved dataflow graphs are per construction deadlock
free. However, to derive a tight lower bound on the throughput of an applica-
tion with MCM analysis it is also necessary that the actors that are condition-
ally executed do not share resources or are executed mutual exclusive. Mutual
exclusive execution is typically desirable because sharing of resources reduces
the resource requirements. Mutual exclusive execution can be guaranteed by
extending the well-behaved dataflow graph with a so-called mode manager ac-
tor M, as is done in Figure 4-15. This mode manager actor provides N times a
control token with the same boolean value for the switch and select actor and
then waits till the select actor has been executed N times before it produces a
control token with possibly a different boolean value. It is required that the
select actor produces a token at the end of its execution. The construct in Fig-
ure 4-15 guarantees that there is no input token available for actor A0 and A1
at the same time and that therefore the execution of these actors is mutual ex-
clusive. That N times the same control token is produced by actor M is made
explicit in Figure 4-15 with the N[T/F] annotation. The name Predictable Dy-
namic Data-Flow (PDDF) graphs has been given to dataflow graphs in which
the construct in Figure 4-15 is used to express conditional execution of actors.

The minimal throughput of a PDDF graph can be determined by calculating
the MCM of the PDDF graph with (4-2) which is the same equation as is used
for the calculation of the MCM of an SDF graph. The same equation can be
used because the PDDF graph in Figure 4-15 has an equivalent worst-case tem-
poral behavior as the SDF graph in Figure 4-16. This is the case because the
PDDF graph in Figure 4-15 is per construction deadlock free. Also, the execu-
tion of the actors A0 and A1 is by construction mutually exclusive. Therefore,
it can be assumed during MCM analysis that the actors A0 and A1 are both
executed for each input token of the select actor but that each of these actors
is executed on its own private processor. If actors A0 and A1 are executed for
each input token then the switch and select actors should behave like ordinary
actors which consume tokens from all inputs and produce tokens on all their
outputs and have a zero WCRT. The value of the control token provided by the
mode manager actor M to the switch (SW) actor is ignored because the data
token must be duplicated by the switch actor to both outputs. The select (SE)
actor should consume a token produced by actor A0 as well as A1 and copy
one of these tokens to its output. Because the value of the control token is ir-
relevant for the worst-case temporal behavior there is no need to make explicit
that the same control token is sent to the switch as well as the select actor.

104 Chapter 4

N

T

F

T

F

M
1

N[T/F]

1 111

11

1

1 1
A1

1

N

select-actorswitch-actor

A0

1 11 1

Figure 4-15. Predictable Dynamic DataFlow (PDDF) graph with mutual exclusive execution
of actors in the True and False branch.

N

1
SE

1

1
SW

1

1
1

1
A0

A1
1 1

1 1

M

N N
N1

1 1

Figure 4-16. SDF graph with the same worst-case temporal behavior as the PDDF graph in
Figure 4-15.

A PDDF construct in which actor A2 is executed p times is shown in Fig-
ure 4-17. This construct executes in bounded memory because actor A1 in-
forms actor A3 about the number of tokens it must consume. Actor A1 informs
actor A3 by sending one token with value p to A3. This is indicated in Fig-
ure 4-17 with the notation 1[p]. During calculation of the PDDF graph’s MCM
the maximum value of p must be used because a larger value p will result in
more executions of actor A2 and a later start of actor A3.

1 p 1p 1 1 p
A1 A2 A3A2

1[n]1[p]

Figure 4-17. PDDF graph in which actor A2 is executed p times.

DATAFLOW ANALYSIS FOR SOFT REAL-TIME APPLICATIONS 105

9. DATAFLOW MODEL OF AN H263 VIDEO
DECODER

A dataflow model of an H263 video decoder is presented in this section
which illustrates the use of the modeling techniques that were introduced in the
previous sections. This H263 video decoder is a soft real-time job of which the
values of the input data determine whether some of the actors will be executed
or not. Also the number of tokens produced and consumed by the actors can be
data dependent. Despite the dynamic behavior of this job, it remains possible
to derive the minimal capacity of the FIFOs as well as conservative arrival
times of tokens with a dataflow model.

11

1

sink

MC
raster/

1

1 1

demux

1

1

1(T/F)

bitstream
encoded

mode

VLD

split split

1 12376

1
1 1

1

123761

IDCT
IQ/ IQ/

IDCT

111

to display

11
1 1

1

1

FT T F

T F

1

p

11

1

1

1 11

1

1

1

1

11

1

1

1

1

1

1

1

1

raster

1[p]

1[p]

1

p

Figure 4-18. Predicatable dynamic dataflow model of an H263 video decoder.

The predictable dynamic dataflow model of an H263 decoder is shown in
Figure 4-18. This decoder receives a bit stream which is split by the demul-
tiplexer (demux) actor in a token for the mode manager (mode) actor and a
token for variable length decoder (VLD) actor. The token for the mode actor

106 Chapter 4

indicates whether the next frame to decode is an Intra (I) or a Predicted (P)
frame. The token for the VLD actor contains one encoded frame.

The token produced by the VLD actor in case of an I-frame in CIF resolution
(352 × 288 pixels) is split in 2376 tokens of which each token contains an
encoded block. These 2376 tokens are processed by the combined Inverse
Quantization (IQ) and Inverse Discrete Cosine Transform (IDCT) actor and a
rasterization (raster) actor. The result of the rasterization actor is one decoded
frame which can be displayed. That a complete frame has been decoded and
that the next frame can be decoded is indicated by sending a token to the mode
manager.

The token produced by the VLD actor in case of a P-frame is split in p
tokens of which each token contains an encoded macro block. The split actor
also notifies the rasterization/Motion Compensation (raster/MC) actor that it
should consume p tokens. The tokens produced by the split actor are processed
by an IQ/IDCT actor and the raster/MC actor. The raster/MC actor receives
also a token which contains the previous frame.

The production of a variable number of tokens by the split actor is allowed
in this dataflow graph because a maximum number of tokens (p((≤ 2376) is
known at compile time. Given this maximum number of tokens, the minimum
FIFO capacity between the split actor and the IQ/IDCT actor can be derived,
as well as the minimum FIFO capacity between the IQ/IDCT actor and the
raster/MC actor. Another important property is that conceptually one actor
could be introduced, which is indicated in Figure 4-18 by the dashed box,
in which the production and consumption of a variable number of tokens is
hidden.

Conservative arrival times of tokens can be observed during simulation of
the dataflow model of the H263 decoder, given that the response times of the
actors are according to (4-21).

10. CONCLUSION
Embedded multiprocessor systems in consumer products execute a com-

bination of soft real-time and hard real-time jobs that process data streams.
Dataflow models in which computation, communication and arbitration is mod-
eled can be used to derive the minimal throughput of the hard real-time jobs,
using MCM analysis. For soft real-time jobs, simulation of these dataflow
models are used to test statistical assertions given representative input streams.
The simulation effort is reduced and the confidence of the simulation results is
improved by making only use of predictable arbitration policies (e.g. TDMA)
in the proposed network based multiprocessor system. The simulation effort
is reduced because the use of predictable arbitration policies eliminates the
interference between jobs, and guarantees that conservative arrival times of to-

REFERENCES 107

kens are observed during simulation of the dataflow model of a job. Dataflow
analysis techniques are used to estimate the resource budgets of soft real-time
jobs. WiWW th these analysis techniques the buffers are derived which should be
increased to reduce the sensitivity for fluctuations in the response time of actors
on the temporal behavior of a job. A predictable dynamic dataflow model of
an H263 video decoder job is presented in which conditional construct deter-
mine which actors are executed during the decoding of I-, and P-frames. The
temporal behavior of such a job can be analyzed with the presented analysis
and simulation techniques.

References

Bacelli, F., Cohen, G., Olsder, G. and Quadrat, J.-P., 1992, Synchronization and
Linearitytt , John WiWW ley & Sons, Inc.

Bekooij, M., Moreira, O., Poplavko, P., Mesman, B., Pastrnak, M. and van
Meerbergen, J., 2004, Predictable embedded multiprocessor system de-
sign, Proc. InII tl Wor kskk hop on Softwatt re and Compm ilers for EmEE bedded Sys-
tems (SCOPESEE), LNCS 3199, Springer.

Buck, J., 1993, Scheduling dynamidd c dadd tatt floa w grarr pa hs with bounded memoryrr
using the token flow model, PhD thesis, Univ. of California, Berkeley.

Cochet-Terrasson, J., Cohen, G., Gaubert, S., McGettrick, M. and Quadrat,
J.-P., 1998, Numerical computation of spectral elements in max-plus al-
gebra, Proc. IFAC Confnff on Syst. Structure and Control.

Gangwal, O., Nieuwland, A. and Lippens, P., 2001, A scalable and flexible data
synchronization scheme for embedded hw-sw shared-memory systems,
InII t’l Symposm ium on System Synthesis (ISSSII), ACM, pp. 1–6.

Gao, G., Govindaraja an, R. and Panangaden, P., 1992, Well-behaved dataflow
programs for DSP computation, InII ternarr tional Conferen nce of Acoustics,
SpeecS h and Signal processing.

Hee, K. v., 1994, InII forn marr tion System EnginEE eering, Cambridge University
Press.

Kahn, G., 1974, The semantics of a simple language for parallel programming,
Proceedings IFIPII Congress, pp. 471–475.

Kock, E., Essink, G., Smits, W.WW , Wolf, P. v. d., Brunel, J.-Y.YY, Kruijtzer, W.WW ,
Lieverse, P. and ViVV ssers, K., 2000, Yapi: Application modeling for signal
processing systems., In PII roceedings of 37th Design Automation Confer-n
ence (DAC00)DD , Los Angeles, pp. 402–405.

Kopetz, 1997, Real-TimTT e Systems: Design Principles fori Distributed EmEE bed-
ded Applications, Kluwer.

Lawler, E., 1976, Combinatorial optimization: Netwtt orkrr skk and MaMM troids, Holt,
Reinhart, and WiWW nston, New York, NY, USA.

108 Chapter 4

Lee, E. and Messerschmitt, D., 1987, Synchronous data flow, Proceedings of
the IEEE.

Li, Y.YY-T. S. and Malik, S., 1999, PerforPP manrr ce analyl sis of real-time embedded
softwatt re, ISBN 0-7923-8382-6, Kluwer academic publishers.

Petri, C., 1962, Kommunikation mit Automaten, PhD thesis, Institut füff r Instru-
mentelle Mathematik, Bonn, Germany.

Pop, T., Eles, P. and Peng, Z., 2002, Holistic scheduling of mixed time/event-
triggered distributed embedded systems, Proc. InII t’l Symposm ium on HaHH rd-
ware/S// oftwatt re Codesign (CODESEE), pp. 187–192.

Poplavko, P., Basten, T., Bekooij, M., Meerbergen, J. v. and Mesman, B., 2003,
Task-level timing models for guaranteed performance in multiprocessor
networks-on-chip, Proc. InII t’l Confnff on Compm ilers, Architectures and Syn-
thesis for EmEE bedded Systems (CASESS SEE), pp. 63–72.

Raja kumar, R., Juwa, K., Moleno, A. and Oikawa, S., 1998, Resource ker-
nels: A resource-centric approach to real-time and multimedia system,
SPIE/ACM CoPP nferen nce on Multimedia Compm uting and Netwtt orkingrr .

Richter, K., Jersak, M. and Ernst, R., 2003, A formal approach to MpSoC
performance verification, IEEE compm uter 36(4), 60–67.

Rijpkema, E., Goossens, K., Radˇ ulescu, A., Dielissen, J., Meerbergen, J. v.,
WiWW elage, P. and Waterlander, E., 2003, Trade offs in the design of a
router with both guaranteed and best-effort services for networks on chip,
Proc. Design, Automation and Test in Europe Conferen nce and Exhibition
(DATE)DD , pp. 350–355.

Sriram, S. and Bhattacharyya, S., 2000, EmEE bedded Multiprocessorsi : Schedul-
ing and Synchronization, Marcel Dekker, Inc.

Zhang, H., 1995, Service disciplines for guaranteed performance services in
packet-switching networks, Proceedings of the IEEE 83(10), 1374–96.

Chapter 5

RESOURCE RESERVATIONS IN SHARED-

MEMORY MULTIPROCESSOR SOCS

Clara Otero Pérez, Martijn Rutten1, Liesbeth Steffens, Jos van Eijndhoven,

and Paul Stravers
Philips Research Laboratories, Eindhoven, The Netherlands; 1 Philips Semiconductors,

Eindhoven, The Netherlands

Abstract: Consumer electronics vendors increasingly deploy shared-memory

multiprocessor Systems on Chip (SoC), such as Philips Nexperia, to balance

flexibility (late changes, software download, reuse) and cost (silicon area,

power consumption) requirements. With the convergence of storage, digital

television, and connectivity, these media-processing systems must support

numerous operational modes. Within a mode, the system concurrently

processes many streams, each imposing a potentially dynamic workload on the

scarce system resources. The dynamic sharing of scarce resources is known to

jeopardize robustness and predictability. Resource reservation is an accepted

approach to tackle this problem. This chapter applies the resource reservation

paradigm to interrelated SoC resources: processor cycles, cache space, and

memory access cycles. The presented virtual platform approach aims to

integrate the reservation mechanisms of each shared SoC resource as the first

step towards robust, yet flexible and cost-effective consumer products.

Key words: Virtual platform, multiprocessor system, shared resources, shared memory

1. INTRODUCTION

The convergence of consumer applications in the TV, PC, and storage

domains introduces new combinations of features and applications that

execute in parallel. In addition, consumer multimedia devices are becoming

increasingly flexible. Flexibility enables accommodating late changes in

standards or product scope during system design, and allows in the field

109
P. van der Stok (ed.),
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 109-137.
© 2005 Springer. Printed in the Netherlands.

110 Chapter 5

upgrades. To address the flexibility and concurrency requirements, consumer

electronics vendors increasingly deploy heterogeneous multiprocessors

systems.

The high production volume of consumer products sets severe

requirements on the product cost, leading to resource-constrained devices.

To achieve a cost effective solution, expensive resources, such as memory

and processor time, are shared among concurrent applications.

A typical multimedia application consists of independently developed

subsystems with strong internal cohesion. At the subsystem borders, the real-

time requirements are decoupled from the other subsystems. However,

resource sharing induces temporal interference among otherwise temporal

independent subsystems given the highly dynamic workload of the targeted

media applications, such as audio/video coding, image improvement, and

content analysis. Figure 5-1. depicts the load fluctuations (in time) of two

independent subsystems sharing a resource. At a given point in time, both

subsystems require more resources than the total available and one (or both)

of the subsystems will suffer.

Figure 5-1. Load fluctuations of independent subsystems.

The concurrent execution of dynamic applications on shared resources is

a potential source of interference, which leads to unpredictability and

jeopardizes overall system robustness. We aim to bound interference by

isolating and protecting independent subsystems from each other, while

preserving typical qualities of multimedia devices, such as robustness and

cost effectiveness.

Resource reservation is a well-known technique in operating system

research to improve robustness and predictability. It is based on four

components, admission control, scheduling, accounting, and enforcement.

When properly combined, they provide guaranteed resource reservations.

Resource reservations consist at least of two basic parameters: share and t

granularity. For example, a share of 5 milliseconds and a time granularity of

20 milliseconds determine a processing time reservation. Different resources

5. RESOURCE RESERVATIONS 111

have various types and degrees of share-ability. For example, a

programmable processor is shareable in time and fully preemptable. An

MPEG-2 (video coding) hardware accelerator may decode one high-

definition stream or decode two standard-definition streams in time-shared

fashion. Memory is shared in space.

To bound interference at system level, the multimedia device must

provide the subsystems with a reservation mechanism for each resource. By

configuring the resource reservations, we create an execution platform that is

tailored to the resource needs of the subsystem. We term this a virtual

platform. A virtual platform provides guaranteed resource availability, while

restricting resource usage to a configured maximum.

2. RELATED WORK

Multiprocessor systems on chip (SoC) are rapidly entering the high-

volume electronics market. Example SoC platforms are Philips Nexperia (de

Oliveira & van Antwerpen 2003), Texas Instruments OMAP(Cumming

2003), and STMicroelectronics StepNP (Paulin, Pilkington, & Bensoudane

2002). A mayor challenge for these multiprocessor systems is to effectively

use the available resources and maintain a high degree of robustness.

Currently, these systems do not explicitly address interference between

software modules that compete for shared system resources. The robustness

problems caused by interference are typically evaded by a high degree of

over provisioning.

Various research efforts address interference for specific resources

through processor resource reservations (Lipari & Bini 2003), (Eide et al.

2004), (Baruah & Lipari 2004), interconnection guarantees, Chapter 2 of this

book (Goossens & González Pestana 2004), and cache partitioning (Liedtke,

Haertig, & Hohmuth 1997),(Molnos et al. 2005). For instance, Ravi (Ravi

2004) presents various mechanisms for cache management based on priority

assignment and enforcement. Recent research aims for integrated approaches

that considers combination of resources such as processor and network

reservations(Rajkumar et al. 2001), (Nolte & Kwei-Jay 2002). We take one

step further and develop an integrated approach to bound interference for all

shared resources in upcoming multiprocessor systems. Our multi-resource

reservation is the base for defining an embedded virtual platform.l

Numerous systems have been designed which use virtualization to

subdivide the ample resources of a modern computer since IBM introduced

the 360 model 67, in 1967. In a traditional virtual machine (VM), the virtual

hardware exposed is functionally identical to the underlying machine

(Seawright & MacKinnon 1979). However, full virtualization is not always

112 Chapter 5

desired. Some of the disadvantages lead to a performance penalty that

current high volume electronics vendors are not willing to pay. One of the

goals of recent research on virtualization is to overcome these disadvantages.

Rather than attempting to emulate some existing hardware device, the Xen

VM research of Barham et al. (Barham et al. 2003) exposes specially

designed block (device and network) interface abstractions to host operating

systems, in what they call paravirtualization. Barham et al. assume full

resource availability. It is not clear whether or how their approach provides

guarantees and performs admission control. The severe cost requirements in

the consumer electronics domain oblige us to provide resource guarantees

for resource-constrained systems.

The remainder of this paper is organized as follows. Section 3 describes a

embedded system consisting of a multiprocessor SoC in which concurrent

media applications execute. The interference problem is explored in Section

4 and the concept of virtual platform as a solution to bound interference is

introduced in Section 5. Section 6 presents the different reservation

mechanism for the three main SoC resources (processor cycles, cache space

and memory access cycles) used to implement the virtual platform. Finally,

the conclusion is drawn in Section 7.

3. MULTIPROCESSOR SYSTEM

Multiprocessor SoCs are deployed to cope with the market demand for

high performance, flexibility, and low cost. Progressive IC technology steps

reduce the impact of programmable hardware on the total silicon area and

power budget. This permits SoC designers to shift more and more

functionality from dedicated hardware accelerators to software, in order to

increase flexibility and reduce hardware development cost. However, for at

least the coming decade, these multiprocessor SoCs still combine

flexibility—in the form of one or more programmable central processing

units (CPU) and digital signal processors (DSP)—with the performance

density of application-specific hardware accelerators. Figure 5-2 depicts

such a heterogeneous SoC architecture as presented in Chapter 3 of this book

(van Eijndhoven et al. 2005) and (Stravers & Hoogerbrugge 2001). In

providing a virtual platform for upcoming SoCs, we have to cope with the

interaction between processing in hardware and software.

5. RESOURCE RESERVATIONS 113

Figure 5-2. Heterogeneous SoC architecture with CPUs, DSPs, and accelerators

communicating through shared memory.

With progressive technology steps, processing power and memory sizes

increase, keeping the pace with the memory and processing capacity

requirements imposed by media applications. In contrast, memory

bandwidth scales slowly and memory latency remains almost the same.

Thus, memory bandwidth and latency are becoming the dominant system

bottleneck.

Figure 5-3 details the data path of a multiprocessor such as in Figure 5-2,

in which a number of DSPs, CPUs, and accelerators communicate through

shared memory. The architecture applies a two-level cache hierarchy to

reduce memory bandwidth and latency requirements. The cache hierarchy is

inclusive: a memory block can only be in a L1 cache if it also appears in the

L2 cache. When a processing unit produces new data and stores it in its L1

cache, the L2 copy of that memory block becomes stale; in such cases a

cache coherence protocol ensures that any consumer of the data always

receives the updated L1 copy of the data. Furthermore, such a coherent

communication network allows direct L1-to-L1 cache transfers, e.g. when a

consumer task on processing unit A reads data from a producer task on

processing unit B. At any moment in time, a modified data item resides only

in one L1 cache. This property is intended to facilitate the partitioning of

applications, consisting of multiple producer/consumer tasks, over multiple

processors.

114 Chapter 5

Figure 5-3. Data path for the memory hierarchy.

The applications we are dealing with are media applications (mainly audio

and video). Figure 5-4 depicts an example of a media application (Otero

Pérez et al. 2003). Such applications are also known as streaming

applications, because they process streams of data. A stream is a sequence of

data objects of a particular type (audio samples, video pictures, video lines,

or even pixels). For example, a video stream is a sequence of pictures, with a

given picture rate: the number of pictures to be displayed per second. A

stream is typically produced by one streaming task and consumed by some

other concurrent asynchronous streaming task. The part of the stream that

has been produced but not yet consumed, is temporarily stored in a buffer, or

is being transferred, from producer to buffer, or from buffer to consumer.

5. RESOURCE RESERVATIONS 115

Figure 5-4. Media application example.

Our execution model for streaming applications consists of a connected

graph in which the nodes represent either a task (an independent,

asynchronous, active component that uses processing and memory

resources) or a buffer (a passive component that uses memory resources).

The interconnections represent the data transfer (memory access). The

execution model is hierarchical. At higher levels of abstraction, a connected

graph can again be viewed as a subsystem in a connected graph. Figure 5-4

depicts four such subsystems: main, pip, disk, and user interface (UI). The

subsystems are denoted with the rounded rectangles.

4. INTERFERENCE AMONG SUBSYSTEMS

The pressure on time-to-market, the emergence of multi-site

development, and the ever-increasing size of software stacks are just some of

the factors that enforce a radical change in the development of modern

(multimedia) applications. In the past software systems were almost

completely written from scratch as fully self-contained systems, developed

under one roof. These days, systems are increasingly composed of

independently developed subsystems, originating from different locations

and in many cases from different companies. These subsystems are not

designed as a specific part of a whole, but are intended to be deployed in

many different systems, and serve different ranges of products.

116 Chapter 5

Ideally, each subsystem is evaluated and tested in isolation for a specific

system. The job of the system integrator is to mix and match the subsystems

to compose the final system. Unfortunately, current subsystems are not

compositional. The ad-hoc and implicit way in which the scarce SoC

resources are managed, and the unbounded interference caused by resource

sharing, introduces temporal interdependencies among these initially

independent subsystems. If not properly managed, these interdependencies

lead to unpredictable behavior for the integrated system.

Media-processing SoCs rely on priority scheduling in embedded real-

time operating systems, such as VxWorks and pSOS, to manage real-time

requirements. The current setting of priorities is an example of ad-hoc

management. Traditionally, priorities were used to manage resource

utilization in closed, real-time systems, where task activations and execution

time are deterministic. Under these conditions, well-known priority

assignment methods, such as rate monotonic assignment (Liu & Layland

1973), work fine. However, media-processing tasks tend to violate many of

these assumptions, e.g., by generating idle time, dynamically fluctuating

workloads, jitter, etc. The subsystem designers have to rely on trial and error

to obtain a working system. Moreover, at integration time, when all tasks in

all subsystems come together, the integrator has to start again from scratch.

The priority assignment of the subsystem tasks cannot be reused in the

integrated system, and the system integrator is faced with the difficult task of

evaluating different priority settings, while other factors such as importance

of the task or response time requirements influence the priority assignment.

A second example is the priority assigned to the various processors for

bus access. The processor’s bus priority is fixed and unrelated to the tasks

executed by the processors. Oftentimes, the priority setting is based on a

complex relation among the various tasks that might execute on that

processor.

The use of a cache introduces a third example of unpredictability, due to

the difficulty in predicting when certain data is available in the cache or still

has to be fetched from off-chip memory, causing the processor to stall.

Interrupts in combination with caches are a further cause of unbounded

interference. A typical system relies on interrupts to activate hardware

accelerator, to handle exceptions, to wake up software tasks, etc. An

interrupt causes a context switch, evicting the running task from the

processor and invalidating the task data present in the cache. When the

running task resumes execution, potentially all its data has to be fetched

again from memory. Therefore, it is very difficult to determine an upper

bound for the performance impact caused by interrupts in cache-based

systems.

5. RESOURCE RESERVATIONS 117

We conclude from the previous paragraphs that resource management

based on bounding interference constitutes the foundation for compositional

system design. We propose an integrated approach to resource management

based on guaranteed resource reservation for all shared SoC resources,

tailored to the needs of the resource consumers (subsystems). The concept of

a virtual platform—as outlined in the next section—summarizes our

approach towards such integration.

5. VIRTUAL PLATFORM

A virtual platform provides guaranteed resource availability, while

restricting resource usage to a configured maximum. Like the real platform,

a virtual platform provides a wide variety of resources: programmable

processors, function specific hardware, memory space, memory access

bandwidth, and interconnect bandwidth. In a SoC, a virtual platform can be

implemented in various ways. For example, a set of tasks can execute

concurrently on multiple slow processors or sequentially on a fast processor.

The implementation of a virtual platform is based on resource reservation

mechanisms that provide temporal and spatial isolation among subsystems.

The resource manager is responsible for providing virtual platforms by

ensuring that sufficient resources are reserved. For that, a resource

reservation mechanism, for each main SoC resource, guarantees the

availability of resources. As depicted in Figure 5-5, the resource manager

translates subsystem requirements and sets the parameters for the virtual

platform. This requires appropriate knowledge of the demands of the

individual subsystems in terms of the specific platform resources.

Characterizing performance and behavior of the subsystems is a subject of

research, fundamental to the realization of a virtual platform.

118 Chapter 5

Figure 5-5. Subsystems and virtual platforms.

Furthermore, to actually deploy the virtual platform concept, the

following three issues must be resolved. Firstly, to provide a virtual

platform, the resource manager has to coordinate the resource reservations

for each resource. For that, the interdependencies among resources must be

modeled and analyzed. The effective CPU speed depends on the reservations

made in the memory architecture, such as cache and bus bandwidth. For

example, a memory controller that schedules processor requests to memory

guarantees a given average latency for a given processor. This latency is

used to calculate the execution time of a subsystem on this processor and

determines its processing budget.

Secondly, the reservation of a resource in the resource hierarchy may not

be based on the virtual platform using the resource, but on the actual

physical components using this resource. An example is memory bandwidth.

This bandwidth is allocated to the physical processors accessing the memory

independently from which virtual platform this processor is allocated to. As

a virtual platform is, in general, implemented by several physical processors,

a complex hierarchical set of interdependencies is created. Thesef

interdependencies are very difficult to understand and to analyze. Note that

this complexity is not introduced by the virtual platform concept itself, but is

inherently present in current SoC architectures and must be solved

independently of the virtual platform.

Finally, given the dynamic behavior of the software, absolute guarantees

are only possible when the reservations are based on worst-case load. For

cost effectiveness reasons, this is unfeasible even if the worst-case load

would be known (which is typically not the case). Structural load

fluctuations can (to a limited extent) be addressed in the virtual platforms by

reallocating unused reservations or dynamically adapt the reservations to

5. RESOURCE RESERVATIONS 119

increase/decrease the virtual platform capacity. However, high-volume

electronics products stress the platform resource utilization to the limit. At a

given point, the required load of the concurrently executing subsystem will

exceed the resource capacity and some subsystem will experience a resource

shortage. Resolving temporal overloads within a subsystem is specific to

each subsystem; it is therefore the responsibility of the subsystem to resolve

this.

Figure 5-6. Providing virtual platforms to subsystems.

The following section presents the first step towards implementing a

virtual platform: the resource reservation mechanisms for the three main

SoC resources: CPU cycles, cache space and memory access cycles. Figure

5-6 depicts the virtual platform vision, where the resource manager provides6

each subsystem with its own virtual platform, which are a share of the real

SoC.

6. RESOURCE RESERVATION MECHANISMS

Resource reservation is a well-known technique to implement temporal

and spatial isolation and to bound interference. A resource budget is a t

120 Chapter 5

guaranteed resource reservation. The resource reservation mechanism

consist of the following four components, identified in (Oikawa & Rajkumar

1998).

• The scheduling/arbitration/allocation algorithm determines the run time

execution. The scheduling algorithm is such that it matches the budget

requirements.

• Accounting keeps track of budget usage.

• Enforcement, denying resource availability when the budget is exhausted,

is required to provide guarantees.

• Admission control ensures that once a reservation has been accepted by

the system, the budget will be guaranteed.

Sections 6.1 through 6.3 detail these four components of the resource

reservation mechanism for the three main SoC resources: processing cycles,

cache space, and memory access cycles.

6.1 Processing cycles

Multiprocessor SoCs embed various providers of processing cycles, from

a dedicated, non-shareable MPEG-2 accelerator to a multitasking

programmable DSP. Managing resource reservations on a multitasking

resource—shared by many tasks with diverse real-time requirements—is

more challenging than managing access to a hardware accelerator that

typically can handle only one task. Therefore, we focus on multitasking

programmable processors.

There are different implementations of processor reservation mechanisms

(Lipari & Bini 2003), (Eide, Stack, Regehr, & Lepreau 2004),(Rajkumar,

Juwa, Molano, & Oikawa 2001). We present our approach to processing

cycles reservations in the following subsections.

Resource users

The users of processing cycles are the software subsystems, where the

subsystem is temporally independent from other subsystems. Typically,

subsystems consist of collections of connected tasks. We distinguish two

types of subsystems.

• Media processing. This type of subsystem processes media streams with

a highly regular pattern. A video decoder for example, produces a video

frame every 20 milliseconds. The behavior of a media processing task

can be described by a request period T, execution cycle requirement TT C,

and a deadline D, where D = T.TT

• Control: Control subsystems have an irregular activation pattern with a

minimum inter-arrival time, and their expected response time is short

5. RESOURCE RESERVATIONS 121

(compared with the inter-arrival time). They can be described by a

minimum inter-arrival time T, a processing-cycles requirement TT C, and a

deadline D, where D << T.TT

Budget definition

CPU-cycle budgets are provided to subsystems and must match the CPU

cycle requirements of the subsystems, as described in the previous

paragraph. Media processing subsystems typically require periodic budgets

with a budget value C (number of processing cycles), a granularityC T (period T

of activation), and a deadline D. A periodic budget is replenished at regular

intervals. Control subsystems typically require sporadic budgets which

provide a limited amount of computation budget, C, during a time interval

called the budget replenishment period, T. The sporadic budgets preserve

and limit a certain amount of CPU cycles for the control subsystems, while

guaranteeing the deadlines of all the other subsystems in the system, even

under burst conditions in the activation of control subsystems (i.e., large

number of requests in a short time interval). The sporadic budget is easily

incorporated into rate monotonic analysis (Klein 1993), because aperiodic

activations can be analyzed as if they were periodic.

Budgets can be strictly enforced, the subsystem receives only its

requested C per T, or weakly enforced, a subsystem may receive more than

requested if all other subsystems are out of budget. The advantage of strictly

enforced budget is predictability: the subsystems always receive the same

budget. The advantage of weak enforcement is high utilization.

Scheduling algorithms

The reservation algorithm for CPU cycles can be based on rate

monotonic scheduling (RMS) or earlier deadline first (EDF) scheduling.

These algorithms, (Liu & Layland 1973) were initially conceived for

independent executing task. In our case, individual tasks are not independent

whereas subsystems are. The same reasoning that used to apply to tasks

applies now to budgets.

• Rate monotonic scheduling. Given fixed-priority scheduling, the optimal

priority assignment for periodic budgets is the rate monotonic (RM)

priority assignment. Budgets are ordered by increasing period, ties

broken arbitrarily, i.e., i < j ⇔ TiTT ≤ TjTT . The budget scheduling mechanism

is built on top of a regular fixed priority scheduler. At the start of each

period, the priority of all tasks within the subsystem is raised to the

subsystem’s running priority. When the subsystem budget is depleted, the

subsystem’s priority is lowered to background priority.

122 Chapter 5

• Earliest deadline first scheduling. In earliest deadline first (EDF)

scheduling, budgets are dynamically ordered by increasing deadlines, ties

broken arbitrarily. At the start of each period, the deadline of the budget

is set. The selected budget is the one with the earliest deadline among the

non-zero budgets.

In the case of weak enforcement, when all budgets are exhausted, a slack

allocation mechanism is used to immediately allocate the otherwise wasted,

volatile, processor cycles. For example, in the case of fixed-priority

scheduling, a very simple slack-allocation algorithm consists of making all

budgets eligible for execution on a round-robin basis, by giving them the

same background priority.

Accounting

Accounting takes place in the CPU reservation module, which maintains

a subsystem descriptor per subsystem. This subsystem descriptor contains a

down counter that keeps track of the processing cycles used by the

subsystem. Every task context switch, the accounting system determines

which task (and which subsystem) has executed and for how long. The

corresponding amount is deducted from the budget counter. The processor

clock is used to keep track of the time.

Enforcement

The budget is enforced by using high precision (hardware) timers that are

fired when a budget is exhausted or when a budget has to be replenished.

Admission control

For a single processor system, we use an admission control algorithm that

corresponds to the scheduling algorithm being used. If the admission control

fails, the corresponding budgets cannot be guaranteed, therefore the

subsystem corresponding to the budgets that causes the failure is not allowed

to start (or to modify its resource requirements). When using RMS as

scheduling algorithm a simple equation (5-1) for response time calculation

from (Joseph & Pandya 1986) is used:

)

*i i j i

j hp i(

R C C D*i j ii j

R
C* j= Ci

iRiRiRi

jjTj

. (1)

5. RESOURCE RESERVATIONS 123

In this formula, index i identifies the budget,i TiTT is the period, CiCC is the

budget capacity, Ri is the response time, and hp(i) is the set of all budgets

with priority higher than i. When using EDF, an even simpler capacity check

(5-2) is used:

1i

all i i

Ci

Ti

≤ . (2)

Note that it does not make sense to provide budgets to individual tasks in

a single subsystem, because the temporal interdependencies among the tasks

invalidate these acceptance tests assumptions.

6.2 Cache space

Caches are divided into cache lines, also called blocks. Cache lines are

grouped into sets. A memory location is mapped to a cache set depending on

its address and it can occupy any line within that set. A cache with 1 line per

set is called direct-mapped, a cache with k lines per set is called k-way set-

associative, and a cache with only 1 set is called fully associative. When a

line is loaded into the cache, the address determines the set into which the

line is loaded. In a direct mapped cache, there is only one choice for

replacement, determined by the address. In a k-way set-associative cache,

there are k lines that can be victimized.

Figure 5-7. Generic cache architecture.

Figure 5-7 shows a generic k-way set-associative cache architecture. The7

address of a load or store operation is first translated into a set index that

124 Chapter 5

uniquely identifies the set where the data is cached (if it is cached at all).

Within each set there are k blocks. An associative search, tag matching, is

required to determine which block, if any, contains the data corresponding to

the specified address. If the addressed block is not found, one of the k blocks

in the set is victimized: dirty data is copied from the victim block to memory,

while the requested data is copied from memory to the victim block.

Figure 5-8. L2 cache addressing.

Figure 5-8 depicts how a cache block is addressed. Tag matching is used

to locate the place within the set where the data is placed. Since tag matching

is performed on the most significant bits, the data of e.g. one MPEG frame is

distributed over all sets. Thus, a linear memory access pattern results in a

uniform distribution of accesses over the cache.

A known issue with hardware-managed caches is the interference

between multiple independent software tasks that share the same cache.

Various approaches in the literature address this problem. See, for example

(Liedtke, Haertig, & Hohmuth 1997;Molnos, Heijligers, Cotofana, & van

Eijndhoven 2005;Ravi 2004).

In the SoC depicted in Figure 5-2, there are two types of caches: L1 and

L2. The L1 cache is shared when the corresponding CPU supports

multitasking. Upon a task context switch, new task data is loaded into the

cache, evicting the exiting-task data out from the cache. When the evicted

task is executed once again, its data has to be reloaded, causing an extra

performance penalty compared to the case when the task runs without

interruption. However, in a multiprocessor system, the CPUs are typically

dedicated to a small number of tasks: for example, one CPU takes care of

coprocessor management, another takes care of network traffic, etc. As a

result, the remaining CPUs can concentrate on running applications without

being interrupted by housekeeping jobs. Consequently, L1 cache

interference appears to be a less urgent problem in a multiprocessor than it is

in a single CPU system.

For the L2 cache, a different story applies. This single cache is shared

concurrently by the tasks in the system. For example, a Linux operating

system executing on one or more CPUs may suddenly require a lot of

memory when it starts an Internet browser with Java support. We want to

avoid that this action in the Linux domain evicts critical data and code

5. RESOURCE RESERVATIONS 125

sections in another domain, for example a real-time video codec running on

the DSPs sharing the same L2 cache. We define a domain as the collection of

tasks that share a determined cache space.

In this section, we focus on a cache management mechanism for the L2

cache. The following sections describe our approach to cache management

to bound interference among the various application domains that execute

concurrently on the multiprocessor.

Resource users

The users of the cache are the cache domains or collection of software

tasks. The software tasks request from the cache load (read) and store (write)

operations. This operation can result either on a hit (the requested data is

cached) or a miss (the requested data is not in cache). Upon a cache miss,

data has to be brought from main memory victimizing cached data.

Budget definition

Available cache partitioning methods (Liedtke, Haertig, & Hohmuth

1997;Molnos, Heijligers, Cotofana, & van Eijndhoven 2005) allocate parts

of the available cache sets exclusively to a subset of the executing tasks

(Figure 5-9((). The disadvantage of this approach is that it affects the memory

model as seen by the software programmer. For example, if task A writes to

memory location X, the data is cached in partition A. If task B reads from

memory location X at a later moment in time, it cannot find the data in cache

partition B and consequently the stale data is loaded from memory into

partition B. This is probably not what the programmer expected.

Figure 5-9. Traditional cache partitioning.

126 Chapter 5

In contrast to set partitioning, we chose to partition the cache by limiting

the number of ways a task can claim within each set in the cache. Figure 5-

10 depicts the resulting cache organization. Cache resource management is

performed by allocating cache space to a domain. During cache lookup, all

ways in the set are considered, including the ways associated with domains

other than the one performing the lookup, i.e., any task can read or write any kk

cache block with no restrictions. Consequently, the shared memory model

remains intact. The programmer does not notice any functional difference

between a traditional and a resource-managed cache.

Figure 5-10. Cache way partitioning.

A cache budget determines the maximum number of ways the domain

can claim, say N. If each way corresponds to a fixed number of bytes, sayNN M,MM

each budget corresponds to N*NN M bytes. The cache contains a bit vector for M

every domain, where each way in the cache is associated with one bit in

these vectors. By setting the bit vector in the cache, the system integrator can

choose explicitly which domains share which cache ways.

The task descriptor in the OS contains a field that identifies the domain

the task belongs to. On every context switch, the OS copies this field to a

hardware register. On a cache miss, the cache controller inspects this register

to determine which domain is causing the miss and the victim is selected

from the ways belonging to this domain.

There are two types of reservations. Cache reservations can overlap

(domains can share ways) or be disjoint (no ways are shared). When two

domains share a way, in the worst case, one of these domains can evict all

data of the other domain from the cache. If all domains reserve disjoint

ways, the reservation is not shared: tasks belonging to domain A cannot evict

data from domain B. Overlapping domains are useful when the worst case

cache requirement is far from the average. Each domain reserves disjoint

5. RESOURCE RESERVATIONS 127

space to be used during normal behavior and overlapping ways for the worst

case.

Replacement algorithm

The replacement algorithm, that selects which cache block is victimized,

is the equivalent of the scheduling algorithm for the CPU. The cache

employs a random replacement strategy. When a task belonging to domain

causes a refill, a victim block is selected from the corresponding domain,

such that the number of ways associated with the domain in the set does not

exceed the predetermined budget for the domain. The replacement algorithm

only applies during a cache refill, following a cache miss.

Accounting

Accounting has to keep track of the number of ways allocated to a

particular domain in a particular set of the cache.

Enforcement

If a bit is set in the vector of a selected domain, the domain can access

the cache blocks in the way corresponding to the bit position in the vector.

Admission control

The admission control for a cache reservation request is simple. The total

amount of requested space should not exceed the total cache size.

6.3 Memory access cycles

As presented in Section 3, data transfer to and from memory is becoming

the main system bottleneck. As an example, Figure 5-11. depicts the

structure of the memory path of the SoC. The memory controller has three

available ports. Two of these ports are used by the refill and victim engines

of the L2 cache. The third port is used by the hardware accelerators.

128 Chapter 5

Figure 5-11. Memory controller ports.

This section focuses on the memory access cycles: the cycles available

for data transfer from the memory controller ports to the off-chip memory.

Similar to processing cycles, memory access cycles constitute a volatile

resource: a memory access cycle that is not granted to a requester is lost

forever. However, the allocation granularity for memory access cycles is a

few orders of magnitude smaller than the allocation granularity for CPU

cycles.

The order in which requests are presented to the memory has a large

impact on the efficiency of the memory access. For example, if a write

transfer follows a read transfer, the transition overhead, which consists of the

cycles needed to invert the direction of the data channel, is similar to the cost

of the transfers. It is very difficult, if not impossible, to guarantee net

transfer cycles (excluding overhead cycles). Instead, gross transfer cycles

(including overhead cycles) rather than net transfer cycles are guaranteed,

and overhead cycles are attributed to the request that causes the overhead.

The reservation scheme for memory access cycles assumes a mix of low-

latency traffic and high-bandwidth traffic and tries to minimize the average

latency for the low-latency traffic while meeting the bandwidth requirements

for the high-bandwidth traffic. Typically, cache engines generate low-

latency traffic, whereas hardware accelerators generate high-bandwidth

traffic.

Resource users

On behalf of the tasks they execute, hardware blocks and cache engines

issue memory requests that consume memory access bandwidth. The arrival

and servicing of memory requests is described by two functions of the

number of memory-clock cycles (t): the request function R and the supply

function S. Both functions are taken from (Feng & Mok 2002), and are

depicted in Figure 5-12.

5. RESOURCE RESERVATIONS 129

Figure 5-12. Request and supply functions.

The request function R(t) represents the total number of cycles requested

in the interval (0, t), whereas the supply function S(t) represents the total

number of cycles supplied in the interval (0, t). R(t) is a simple staircase d

function, for which every step represents the arrival of one or more multi-

cycle requests. If the requests arriving at tRt have total gross size s(s ≥0), then

lim ()
Rt tR↓↓

= R(tRt) + s. (5-1)

In the S(t) function, supply intervals alternate with still intervals. Cycles t

are supplied in the supply intervals only:

S(SS t + ∆t∆∆)t = S(SS t) + ∆t∆∆ , when (t, t + ∆t∆∆) is a supply interval; (5-2) t

S(SS t + ∆t∆∆)t = S(SS t), when (t, t + ∆t∆∆) is a still interval. (5-3)t

The number of supplied cycles can never be larger than the number of

requested cycles. A request is characterized by size s, arrival time tRt , start

time tSt , completion time tC, and latency λ. From λ tRt to tSt , the request isS

pending; from tSt to S tC, the request is being serviced. (tSt , tC) is the service C

interval for the request.

S(SS t) ≤ R(t). (5-4)

tSt = maxS {t | S(SS t)t = R(tRt)}. (5-5)

tC = minC {t | S(SS t)t = R(tRt) + s}. (5-6)

λ = tC − tRt . (5-7)

130 Chapter 5

Different requesters will be identified by an index to the request and

supply functions. For requester i, the request and supply functions are

denoted Ri(t) and t SiS (t). Since every cycle can be supplied at most once,t

different requesters have disjoint supply intervals:

SiSS (t + ∆t∆∆) =t SiS (t) + t ∆t ∆∆ SiSS (t + ∆t∆∆) = t SjSS (t)t ∀ j ≠ i. (5-8)

Typically, there are two different types of hardware blocks, with different

request characteristics and different service requirements. High-bandwidth

requests, typically issued by hardware accelerators, tend to have a regular

request pattern, and require effective use of memory bandwidth. In media

systems, these requests represent the bulk of the traffic. High-bandwidth

traffic generally has latency requirements that are individually, but not

tightly, bounded. Low-latency requests have an irregular request pattern with

potentially large bursts, and require low average latencies. Individual request

do not have bounded latency requirements. Low-latency bursts can be

accommodated because of the relatively large latency bounds of the regular

traffic.

The descriptions in this section are restricted to a single low-latency

requester (LL(() and a single high bandwidth requester (HB((). This

simplification helps to focus on the quintessence of the reservation

mechanism. In this area, research is still in progress and details are not yet

available for publication.

Budget definition

The budget definition for the low-latency budget is given in two steps. In

the first step, we make a simplifying assumption: the budget boundaries are

assumed to be hard, i.e., out-of-budget cycles are not supplied, even if no

other requester is contending for them. With this assumption, the reservation

mechanism is non-bandwidth preserving (idle memory cycles while requests

are pending), but easy to explain. In the second step, this assumption is

dropped.

The low-latency budget (LL(() can be compared to a credit card, where the

customer borrows from the bank, and pays back later. LL goes through a

sequence of active and inactive intervals. During an active interval, LL is

either borrowing or paying its debt.

By definition, an active interval starts at t = 0. During each active t

interval, the low-latency budget is defined by two functions UBLL(t) and t

LBLL(t), the upper and lower bound, respectively. In the first step we assumet

that these functions bound the supply function SLLS (t) directly:t

5. RESOURCE RESERVATIONS 131

LBLL(t)t ≤ SLLS (t)t ≤ UBLL(t) (5-9) t

Figure 5-13 depicts one active interval of a low-latency budget. The gray

band represents the bounds that the budget imposes on SLLS (t). At this point int

time, LL is requesting, and SLLS (t) starts its first supply interval after the t

arrival of the pending request(s). At t = 0,t SLLS (t) starts its first supplyt

interval, and LL becomes active. At t = a, the upper bound is hit, no moret

credit is available, and the requester starts paying back. At t = b, there ist

sufficient credit again to resume supplying. At t = c, there are no moret

requests pending, and the requester starts paying back again. At t = d, a newt

burst of requests arrives. At t = e, supplying resumes. Finally, at t t = e, the t

complete debt has been paid back. If there is no request pending and there is

no remaining debt, the requester becomes inactive.

Figure 5-13. Low latency contract.

The lower bound corresponds to a function ρtρρ , where ρ is a fraction of ρ
the available cycles, with 0< ρ << 1. The vertical distance between the twoρ
bounds, σ, determines the burst size accommodated by the budget. The σ σ
and ρ parameters are taken from the sigma/rho (σ/σ ρ) abstraction, used for ρ
traffic characterization in network calculus (Cruz 1991). With these

parameters, the low-latency budget is given by

UBLL(t) =t ρtρρ +t σ, (5-10)

LBLL(t) =t ρtρρ . (5-11)

This completes the first step, in which we assumed that upper bound is

hard. This hard upper bound implies that out-of-budget supply is not

132 Chapter 5

allowed, even when HB is not requesting. This is a waste of bandwidth, and

has a negative impact on the average LL latency as well.

When the upper bound is not hard, equation (5-9) does not necessarily

hold. To define soft bounds, some additional terminology is needed. The

functions IBS(t), intra-budget supply, and t XBS(t, ∆t∆∆), extra-budget supply,t

are defined by the following equations:

S(SS t+tt ∆t) = S(t t)+t ∆t

IBS(t+tt ∆t) = min(t IBS(((t)+t ∆t, UB(t+tt ∆t)), (5-12)

S(SS t+tt ∆t) = S(t)t

IBS(t+tt ∆t) = max(t IBS(((t),t LB(t+tt ∆t)), (5-13)t

IBS(t’) = UB(t’) ∀t’∈(t, t+tt ∆t)

XBS(SS t, t+tt ∆t) = (t S(t+tt ∆t) – t S(SS t)) – (UB(t+tt ∆t) – UB(t)), (5-14) t

IBS(t’) < UB(t’) ∀t’∈(t, t+tt ∆t)t

XBS(SS t, t+tt ∆t) = 0, (5-15)t

IBSLLS (t) can take values between 0 and σLLσ . XBSLLS (tSt , tC) > 0, extra-budget

supply for an LL request with service interval (tSt , tC), is allowed only if HB is

not requesting at tSt .

Arbitration algorithm

The arbitration algorithm decides on how to allocate the cycles. It is priority-

based, and uses three priorities, two for LL (default and limit), and one for

HB. The LL default priority is higher than the HB priority; the LL limit

priority is lower than the HB priority. In the CPU domain, this dual priority

scheme is known from bandwidth-limiting servers(Burns & Wellings 1993).

In the following subsections it becomes clear when these priorities apply.

Arbitration is non-preemptive. Ongoing transfers are completed, even

when a higher-priority request arrives. This has to be the case, because

preemption is detrimental to the efficiency of the memory (causes many

overhead cycles). In the discussion of the enforcement mechanism, the

consequences of the choice are addressed in more detail.

The description of the implementation corresponds to a very elegant

solution, conceived by Hans van Antwerpen at Philips Semiconductors, used

in the arbiter of a double data rate (DDR) memory controller (de Oliveira &

van Antwerpen 2003).

5. RESOURCE RESERVATIONS 133

Accounting

The accounting mechanism is depicted in Figure 4-12. It uses a saturating

counter ACCOUNT, which saturates at 0 and CLIP. ACCOUNT is initially

0, and is increased or decreased every cycle. ACCOUNT keeps track of

IBSLLS (t). It is updated every cycle. If the cycle is allocated to the requester, t

ACCOUNT is increased with DEN − NUM, otherwise it is decreased with

NUM. NUM stands for Numerator, and DEN stands for Denominator.

NUM/DEN = ρLLρ . (5-16)

CLIP/NUM = σLLσ /(1−ρLLρ). (5-17)

ACCOUNT/NUM = IBSLLS (t). (5-18)t

In the budget definition, NUM, DEN and CLIP replace the original ρ and ρ
σ. One of these values can be freely chosen, the others then follow from (5-σ
16) and (5-17). Choosing a round value for NUM, which is somewhat

counter intuitive, the CLIP value becomes more intuitive.

Figure 5-14. Priorities, accounting, and enforcement.

Enforcement

Enforcement makes sure that the LL priorities are switched at the

appropriate times. The decision to raise or lower the LL priority is based on

134 Chapter 5

comparing ACCOUNT with a threshold LIMIT. If ACCOUNT < LIMIT,

then LL has default priority; otherwise, LL has limit priority. If max(sLL) is

the maximum gross LL request size, then

LIMIT = CLIP − max(sLL)*NUM. (5-19)

The threshold value LIMIT must be such that the boundary constraint of

the LL budget is satisfied. Extra-budget supply, XBSLLS (tSt , tC) > 0, requiresC

that IBSLLS (tSt) > S σLLσ − s, where s is the size of the request. Because of (5-16)

through (5-19), this implies ACCOUNT > LIMIT at tSt , which in turn implies

that LL has limit priority at tSt . If LL has limit priority, the request can only be

serviced if HB is not requesting. Hence, extra-budget supply is only possible

if HB is not requesting, which was the desired effect.

For implementation simplicity, LIMIT is currently implemented as a

programmable parameter. In order to minimize the number of stall cycles,

the DDR controller has a small queue of LL requests after arbitration. Hence,

in a real implementation, LIMIT/NUM has to be larger than max(sLL),

depending on the size of this queue.

Admission control

By definition, admission control decides if a certain combination of contracts

is feasible. Since there is only one contract, there is no admission control.

7. CONCLUSION

A major source of robustness problems in current generation systems is

the unpredictable behavior caused by interference among concurrently

executing applications that compete for access to shared system resources—

such as processor cycles, cache space, and memory access cycles.

Traditionally, these aversive effects of interference could be kept under

control by deploying a real-time OS in combination with a sufficient degree

of over provisioning.

For today's systems, this approach is no longer viable. The price erosion

in the consumer electronics market forces chip vendors to integrate more and

more functionality in an SoC, at the expense of system robustness. For

instance, while previous generation SoCs separated real-time audio/video

hardware from general-purpose hardware to handle user events, today's

multiprocessor SoCs deploy generic processor and interconnect hardware

that handle both.

5. RESOURCE RESERVATIONS 135

This chapter outlines an approach to bound interference among

independently developed subsystems. The system provides each subsystem

with an execution environment—called a virtual platform—that emulates the

environment in which the subsystem was developed and tested. A subsystem

reserves a share of each required system resource. This set of reservations

defines the virtual platform. All shared resources in the virtual platform must

provide guaranteed reservations to subsystems, or deny a reservation request

when the request exceeds the available capacity. The research challenge

towards such compositional systems is threefold.

• Define hooks in hardware and software with associated strategies to

provide and guarantee reservations for every shared system resource.

• Provide an overall resource management strategy that integrates the

individual reservation strategies of each shared resource.

• Define an approach to characterize subsystems in terms of execution

requirements that can be translated into the desired resource reservations.

This chapter takes on the first challenge and presents reservation

mechanisms for the key resources in a multiprocessor SoC: processor cycles

of a CPU, cache space in an L2 cache that is shared among multiple

processors, and memory cycles arbitrated by a DDR memory controller. The

described DDR controller is currently deployed in Philips Nexperia

solutions, while the processor reservations are proposed for integration in

embedded operating systems, such as CE Linux. The presented cache space

reservations are targeted for inclusion in the next generation Philips

Nexperia SoCs.

ACKNOWLEDGEMENT

The authors want to express their gratitude to Peter van der Stok, and

Kees Goossens for their review comments.

REFERENCES

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., &

Warfield, A. 2003, "Xen and the art of virtualization", Proceedings of the nineteenth ACM

symposium on Operating systems principles pp. 164-177.

Baruah, S. & Lipari, G. "A multiprocessor implementation of the total bandwidth server", in

Proceedings 18th International Parallel and Distributed Processing Symposium, pp. 40-

49.

136 Chapter 5

Burns, A. & Wellings, A. J. 1993, "Dual-priority Assignment: A practical method for

increasing processor utilization", in Proceedings of 5th Euromicro Workshop on Real-

Time Systems, Oulu, Finland, pp. 48-55.

Cruz, R. L. 1991, "A Calculus for network delay, part I: network elements in isolation", IEEE

Transactions an Information Theory, vol. 37, no. 1, pp. 114-131.

Cumming, P. 2003, "The TI OMAP™ Platform Approach to SoC," in™ Winning the SoC

Revolution, G. Martin & H. Chang, eds., Kluwer Academic, pp. 97-118.

de Oliveira, J. A. & van Antwerpen, H. 2003, "The Philips Nexperia™a Digital Video ™

Platform," in Winning the SoC Revolution, G. Martin & H. Chang, eds., Kluwer

Academic, pp. 67-96.

Eide, E., Stack, T., Regehr, J., & Lepreau, J. 2004, "Dynamic CPU management for real-time,

middleware-based systems", in Proceedings 10th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS) , pp. 286-295.

Feng, X. & Mok, A. 2002, "A Model of Hierarchical Real-Time Virtual Resources", in

Proceedings IEEE Real Time System Symposium, Austin, USA, pp. 26-35.

Goossens, K. & González Pestana, S. 2004, "Communication-Centric Design for Real-Time

Consumer-Electronics Systems on Chip," in Dynamic and robust streaming in and

between connected consumer-electronic devices, P. van der Stok, ed..

Joseph, M. & Pandya, P. 1986, "Finding response times in a real-time system", British

Computer Society Computer Journal, vol. 29, no. 5, pp. 390-395.

Klein, H. 1993, A Practitioner's Handbook for Real-Time Analysis Kluwer Academic

Publishers.

Liedtke, J., Haertig, H., & Hohmuth, M. 1997, "OS-Controlled Cache Predictability for Real-

Time Systems", in Proceedings of the 3rd IEEE Real-Time Technology and Applications

Symposium (RTAS), IEEE Computer Society, pp. 213-227.

Lipari, G. & Bini, E. 2003, "Resource partitioning among real-time applications", in

Proceedings 15th Euromicro Conference on Real-Time Systems , pp. 151-158.

Liu, C. & Layland, J. 1973, "Scheduling algorithms for multiprogramming in a hard real-time

environment", Journal of the ACM, vol. 20, no. 1, pp. 46-61. MM

Molnos, A., Heijligers, M. J. M., Cotofana, S. D., & van Eijndhoven, J. 2005, "Compositional

memory systems for multimedia communicating tasks", in Proceedings of Design

Automation and Test in Europe (DATE), Munich, Germany.

Nolte, T. & Kwei-Jay, L. 2002, "Distributed real-time system design using CBS-based end-to-

end scheduling", in Proceedings. Ninth International Conference on Parallel and

Distributed Systems, pp. 355-360.

Oikawa, S. & Rajkumar, R. 1998, "Linux/RK: A Portable Resource Kernel in Linux", in

Proceedings IEEE Real-Time Systems Symposium Work-In-Progress.

Otero Pérez, C. M., Steffens, E., Loo, G. v., Stok, P. v. d., Bril, R., Alonso, A., Garcia Valls,

M., & Ruiz, J. 2003, "QoS-based resource management for ambient intelligence," in

Ambient Intelligence: Impact on Embedded System Design, T. Basten, M. Geilen, & H. de

Groot, eds., Kluwer Academic Publishers, pp. 159-182.

Paulin, P., Pilkington, C., & Bensoudane, E. 2002, "StepNP: A System-Level Exploration

Platform for Network Processors", IEEE Design & Test of Computers, vol. 19, no. 6, pp.

17-26.

Rajkumar, R., Juwa, K., Molano, A., & Oikawa, S. 2001, "Resource kernels: A resource-

centric approach to real-time and multimedia system," in Readings in multimedia

computing and networking, Morgan Kaufmann Publishers Inc., pp. 476-490.

5. RESOURCE RESERVATIONS 137

Ravi, I. 2004, "CQoS: a framework for enabling QoS in shared caches of CMP platforms", in

Proceedings of the 18th annual international conference on Supercomputing, ACM Press,

pp. 257-266.

Seawright, L. & MacKinnon, R. 1979, "VM/370 -- a study of multiplicity and usefulness",

IBM Systems Journal, vol. 18, no. 1, pp. 4-17.

Stravers, P. & Hoogerbrugge, J. 2001, "Homogeneous multiprocessing and the future of

silicon design paradigms", Proceedings of the International Symposium on VLSI

Technology, Systems, and Applications(VLSI-TSA).

van Eijndhoven, J., Hoogerbrugge, J., Nageswaran, J., Stravers, P., & Terechko, A. 2005,

"Cache-Coherent Heterogeneous Multiprocessing as Basis for Streaming Applications," in

Dynamic and robust streaming in and between connected consumer-electronic devices, P.

van der Stok, ed..

Chapter 6

STREAMING IN CONSUMER PRODUCTS
Beyond processing data

Giel van Doren, and Bas Engel
Philips Research Laboratories, Eindhoven, The Netherlands

Abstract: The signal processing for TV is changing rapidly at this moment. The classical

analog broadcast is being replaced by digital broadcast, CRTs are being

replaced by Matrix displays, and the convergence between PC and CE

introduces PC standards and applications in the TV domain. Collectively,

these changes have a big impact on the signal processing architecture of a TV.

Signal processing has always been a field of competence for Philips. To keep a

leading position in this area, Philips has developed the Nexperia Home

Platform. This platform is a mix of both hardware (HW) and software (SW).

SW gives the flexibility needed for configuring such a platform for a range of

products. HW allows cost-effective implementations of compute intensive

signal processing. This chapter discusses the required SW streaming

infrastructure in such a platform. A SW streaming infrastructure is an enabler

to fulfill the streaming requirements, and to provide the required flexibility in

the platform to come to a cost-effective solution. We will explain requirements

on the streaming infrastructure in a platform by looking at Hardware/Software

(HW/SW) tradeoffs, real-time requirements constraints, and the complexity of

controlling signal processing. This chapter will take the examples from the TV

and Storage domain.

Key words: Streaming infrastructure, architecture, real-time streaming constraints,

streaming design tradeoffs, streaming platform, HW/SW co-design.

1. INTRODUCTION

Consumer products in the shop today have a similar appearance to the

ones from several years ago. A DVD recorder can be seen as an evolved

VCR and a classical color TV even looks like today’s color TV. Both still

have a remote control, that allows you to change channels, adjust volume,

start a recording, or simply turn the set on. Even the consumer price is

comparable.

139
P. van der Stok (ed.),
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 139-165.
© 2005 Springer. Printed in the Netherlands.

140 Chapter 6

However, in these devices much has changed over the last few years.

There is an enormous increase of processing power to, for example, improve

picture quality. Where we used to have dedicated hardware to do the tuning,

color decoding, de-interlacing, image enhancement, and scaling, we now

have a mix of dedicated hardware and flexible software processing. The

overall complexity of the processing has increased dramatically due to an

increase in the number of standards and formats that have to be supported. In

addition, the price erosion makes that high-end consumer products become

mainstream in a short time. Therefore, solutions are required that enable a

short lead-time to introduce new features. Consumer electronic vendors need

to be able to spread their investment over a range of products, which can

have different processing hardware depending on the market positioning.

This requires a different approach than years ago. Philips’ solution towards

this is the use of a SW streaming platform that provides a hardware

independent interface on top to allow independent evolution of the platform

and the middleware on top. The first half of this chapter will focus on the

trends, and the impact of the trends on the streaming platform. The second

half will discuss the streaming technology that should support tradeoffs

inside the platform to fulfill all imposed constraints.

1.1 Trends

There is a number of ongoing trends in the TV/Digital Versatile Disk

(DVD) domain, that Philips has to follow to stay a player in this market.

The first trend is the continuous improvement of picture quality. Both for

a DVD recorder compared to a VCR, and for today’s TV with one of years

ago, the picture quality has clearly been improved.

The second trend is digitalization, both in storage and in transmission.

The analogue tapes are almost completely replaced by digital media like

DVD, CD, and harddisk. At the input, consumer products are changing from

classical analog reception to digital reception. Until recently digital reception

was addressed solely by separate proprietary set-top boxes. The trend

towards the inclusion of digital reception in standard consumer products is

greatly accelerated by US legislation enforcing digital reception to be

incorporated in all television sets by 2007. Consumer products in the home

will deliver content from much more diverse sources than the classical

broadcast only. They incorporate digital interfaces (like Ethernet, IEEE

1394, USB and wireless) to connect to those sources.

The third trend is the transition to flat digital displays like LCD and

plasma.

The fourth trend is the increasing amount of software in television sets

(>200 person-years). The reasons for this are the addition of large interactive

6. STREAMING IN CONSUMER PRODUCTS 141

“digital” services like Multimedia Home Platform/ Open Cable Application

Platform (MHP)/OCAP and or Multimedia and Hypermedia Expert Group

MHEG and multimedia viewers in combination with the expanding set of

digital standards (e.g. MPEG4 promoted by the Moving Picture Experts

Group (MPEG), DivX) that are often realized in software (SW).

The last trend is the convergence of Consumer Electronics (CE) and PC

domains, which introduces a number of formats like MP3 and DivX and

applications like still picture viewing and content browsing from the PC

domain into the TV domain.

These trends impact the streaming platform in consumer products as we

will show in this chapter. This chapter will mainly describe the TV domain,

although many of presented concepts also apply to the DVD domain.

1.2 Signal Processing

In principle, a TV is nothing more than a signal processing device that is

able to capture an incoming signal, transform it into a basic stream of

information, do all sorts of enhancements to improve the picture quality, and

finally render it on a display as depicted in Figure 6-1. This sequence of

processing steps is called signal processing.

Source

Selection
Decoding

Picture

Improvement

Display

Rendering

Figure 6-1. Signal processing steps in a TV

The first processing step is source selection. A TV is not a single-input

device as it used to be. Nowadays, a TV can handle a diverse set of input

signals, ranging from antenna and DVD to IEEE 1394, Ethernet, and

memory stick. These input signals do not only differ in transportation

medium, but also in size and encoding. All these inputs can require different

processing steps to get a picture on the screen. Scaling, transcoding, and

format conversions towards desired physical video formats (e.g. YUV 4:2:2)

are part of the signal processing.

The second step is decoding. This is the process of transforming

information from an encoded form to its ‘natural’ form. For the traditional

analog TVs, decoding demodulates the chrominance signal to yield two

142 Chapter 6

color (sub)signals and one luminance signal according to analog standards

like NTSC or PAL. Digital TV’s are based on digital broadcast standards

like ATSC. These standards are based on MPEG transport streams that

contain multiplexed digital audio/video information and require

demultiplexing to do the actual audio/video decoding.

The most processing intensive step is the picture improvement

processing. Today, it is the most important step with regard to the selling

features of a TV. Picture improvement algorithms vary from relatively

simple, like noise reduction, to extremely complex and processing intensive,

like natural motion to smoothen frame transitions when reducing flickering

and Pixel Plus to increase the resolution of the picture.

Finally, the display renderer actually puts the created frame on the

screen.

1.3 Paper outline

Section 2 will explain the role of a streaming platform in a CE device. It

will give an overview of the overall architecture of consumer products to

position the streaming platform and to understand the influences and the

requirements that are imposed on it. After this, we will zoom into the

streaming platform itself. Section 3 takes a look at the concept of streaming

in consumer products. Sections 4 and 5 will show that a streaming

infrastructure is essential in a streaming platform, but that there is much

more needed than only an infrastructure. Section 4 discusses the mixture

between software and hardware processing and the advantages and

disadvantages of both of them. Section 5 discusses the impact of various

timing requirements on the execution behavior of the streaming platform.

Finally, Section 6 will end our discussion of the streaming platform by

discussing both the control of the processing algorithm and the management

of the complete processing chain.

2. CONSUMER PRODUCTS

The discussed trends involve a significant increase in effort and have

impact on the architecture of today’s consumer products. This section will

discuss how the consumer product architecture addresses these trends. We

will do this mainly from a streaming platform point of view. We will also

take a look at the main differentiation points in the streaming platform

before starting the detailed technical discussion on streaming in the

remainder of this chapter.

6. STREAMING IN CONSUMER PRODUCTS 143

2.1 Consumer Product Architecture

The global architecture of a consumer product can be represented as a

layered structure depicted as follows:

Hardware

In
fra

s
tru

c
tu

re

Streaming layer

Middleware layer

TV

services
EPG

Content

Browser
TxT UI

Application layer

Streaming platform

API

Figure 6-2. Position of the streaming platform in a consumer product architecture

The application layer combines services of the middleware layer into a

coherent application together with a user interface. This forms the

functionality as offered to the end user and translates user requests to the

services offered by the middleware.

The middleware layer takes care of basic TV-services such as

installation, program control, user interface rendering, Electronic Program

Guide (EPG) and conditional access handling. Furthermore, it implements

software to support the factory-required functionality.

The infrastructure layer provides a standard operating system (e.g. Linux,

VxWorks), and drivers for all basic peripherals (UART, I2C, GPIO, etc).

The streaming platform layer offers basic functionality to abstract and

control the TV’s hardware (tuners, decoders, inputs, outputs). The platform

provides interface methods that allow the service layer to set-up audio and

video processing path’s from a source (cable, terrestrial, IEEE 1394 etc) to

one of the destinations (display, headphones, Video Cassette Recorder

(VCR), IEEE 1394 etc), and offers control interfaces to manipulate the

processing in between.

144 Chapter 6

2.2 Industry Dilemma

Until recently most of the software in consumer products was built by the

CE manufactures themselves. Nowadays, to build such a consumer product

requires millions of lines of code and hundreds of man-years to build the

product. Moreover, with the trends we discussed a significant increase is

inevitable for tomorrow’s products.

100000

1

10

100

1000

10000

100000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2009

Year of Market Introduction

K
b

y
te

s

323

64

2562

100000100000100000

111

101010

100100100

1000010001000000

1000010000100000

1000001000001000000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 20091978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 20091978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2009

Year of Market IntroductionYear of Market IntroductionYear of Market Introduction

K
b

y
te

s
K

b
y

te
s

K
b

y
te

s

Figure 6-3. Code size evolution of high-end TV software.

Typically, a large part of this software concerns common services that

any consumer product should have (EPG, Teletext (TXT), Content Browser,

Media Application, Internet Connectivity, etc). This means that it requires

huge investments to make it, maintain it, and improve it, while there is no

differentiating advantage compared to competitors.

Although the infrastructure in term of Operating System (OS) becomes

more and more standard (e.g. Linux), the expected behavior of the signal-

processing graph can be very different. This is the case for different

Hardware (HW) platforms of one vendor, as well as in between HW

platforms of different vendors.

 Philips Semiconductors has recently introduced its Nexperia Home

Strategy in which all of its (digital) consumer device platforms for TV,

DVD+RW, and Settop boxes will export the same interface, the Universal

Home Application Programming Interface (UHAPI). This API will make

porting of middleware between UHAPI compliant platforms easier. With the

increasing overlap and exchange of functionality between these consumer

6. STREAMING IN CONSUMER PRODUCTS 145

devices in the connected home this standardization increases the reuse.

Moreover, such open standardized API will allow Independent Software

Vendors (ISVs) to write software for a broad range of consumer devices

more easily. It will help CE companies; they can buy the non-differentiating

software.

2.3 Streaming platform

A streaming platform, like the Nexperia Home Platform, supports a range

of products. The reason for introducing a streaming platform is to reuse such

a platform for a family of products. A platform should provide an interface

for a range of products to setup and control the streaming in a product. To

increase the reuse of the middleware on top of the platform, such an

interface should be stable. A stable interface should abstract sufficiently

from the HW to allow independent HW evolutions.

One part of the streaming platform is a streaming infrastructure. Such an

infrastructure provides a standard for connecting processing steps. A

sequence of connected processing steps is called a streaming graph, where

each node is a processing step and an edge represents the communication

between two processing steps. Having a standard for connecting processing

steps increases the modularity of the processing steps within the platform.

A streaming platform is a mix of hardware and software. It should

provide the flexibility to make tradeoffs between HW and SW realizations of

certain processing steps. In addition, the platform API must provide a

sufficient abstraction that these kinds of tradeoffs can be made without

impacting the middleware on top. Due to the diversity between products and

the large number of different streaming graphs that have to be supported

within a product, the total number of supported graphs in a platform is large.

A graph has to be controlled. With control we mean the ability to manage

the flow of data through the signal processing chain. Examples of this are

scalar settings, tuner frequencies, contrast settings, etc. Control also includes

the default behavior of the platform in case there is a signal drop, a preset

change, or a change in input resolution. Controlling a large number of

streaming graphs, transitions in between, and streaming graphs running at

the same time is even more complex. Within the platform reuse of software

is essential when the platform evolves, both for the signal processing code

and for the control code in the platform.

Although there is a standardized API, the platform itself should not be a

monolithic block but flexible and configurable. Domain and product

knowledge is essential to determine what flexibility is required in a platform.

CE-manufacturers want to configure a streaming platform to derive their

actual products from. Depending on their capabilities and market position

146 Chapter 6

they might choose to add their own components to the basic HW/SW

platform or use it as is.

Another example of required flexibility is to support a wide variety of

standards. For most of the standards originating from the PC domain, SW

implementations are available. That’s why more and more of the

encoding/decoding is (initially) realized in software or have a significant

software part.

Software is essential in achieving the required flexibility in the platform.

Software enables the implementation of new codecs and standards on an

already existing HW platform. It provides a way to realize late-time

requirements, enabling you to be agile with respect of the latest market

trends. The downside of SW for signal processing is that it typically costs

significant CPU cycles and memory.

2.4 Differentiation points

Differentiation points of a product form the competitive advantage. For a

TV sold to end-customers, features like 100 Hz and natural motion are

differentiation points. A streaming platform should allow realizing these

differentiation points by providing sufficient flexibility.

A streaming platform, like the Nexperia Home platform, is also a product

that is sold to CE companies. One can distinguish 3 main differentiation

points for a streaming platform. First differentiation is by means of picture

quality, especially for flat screen displays. Second differentiation is the ease

of use of configuring the streaming platform, which is increasing in

importance. This includes the possibility to integrate proprietary algorithms

of CE companies in the platform. Third differentiation is to provide low-

power solutions. There is a growing awareness that low-power solutions will

be a differentiating feature. The most important differentiation point is the

ability to do all 3 of them cost effectively.

Differentiation points will change over time. Stereo output on a TV is a

good example. It was introduced in high-end TVs that where substantially

more expensive than mono TVs. After some time, the stereo feature has

become a commodity and was introduced in the lower-end products. More

recently, 100 Hz is becoming a commodity feature.

To cope with innovation of features and degradation of them over time,

one needs to have a family of products that are closely related, but differ

sufficiently to position them in different price segments. A streaming

platform should provide sufficient flexibility to create a high volume low-

cost solution and a more expensive solution with a sufficiently large margin

to drive the required innovation.

6. STREAMING IN CONSUMER PRODUCTS 147

As TV changes over time, the amount of differentiating features is not

growing much, while the set of standard features is significantly increasing.

Features of today, might become commodity tomorrow, and new features

will pop-up. A platform should support this type of evolution.

3. STREAMING INFRASTRUCTURE

This section will explain the concept of a streaming infrastructure used in

the Nexperia Home platform. It starts with a simple streaming model that

assumes memory-based communication. Memory-based communication

means that the data that needs to be processed is communicated between 2

entities via memory. We start with a model of a single CPU that implements

the required signal processing as depicted in Figure 6-1. We extend this step

by step until we reach a realistic model that resembles the reality in current

Nexperia Home platforms.

3.1 Simple streaming model

As mentioned, the streaming in a digital TV consists of a number of

processing steps. These steps are represented as streaming components that

can be connected as nodes in a graph, see Figure 6-4. A streaming

component contains an algorithm that performs the processing step and a

non-specific part to support the in/output of data to/from the algorithm and

to support the control of the component, like start and stop.

Streaming

Component

Algorithm

Streaming

Component

Algorithm

B

Streaming

Component

Figure 6-4. A graph of streaming components

A streaming component has input and/or output pins which represent the

possible input and output data streams. Via these pins, components

communicate the data to connected components.

A packet represents the unit of data communication in a memory based

streaming model. A packet points to a piece of memory which is used to

store the data that has to be transported from the producing component to the

consuming component.

In the streaming model, two streaming components that are running on

separate OS-tasks are connected via a queue that buffers data packets as

148 Chapter 6

depicted in Figure 6-5. The producer puts the packets in the queue, and the

consumer takes the packets out of the queue.

Component

Algorithm

Streaming

Component

Algorithm
queue

Producer Consumer

6-5. Two components connected via a queue

It is important to realize that the memory is the scarce resource, not the

queue. The queue only contains packets that refer to the memory. In other

words, the maximum size of the queue is not essential. Instead, the total

number of packets representing the memory determines the maximum

amount of buffering.

A packet pool creates the packets and allocates the required memory

once during initialization of such a pool. At that moment, the number of

packets in this pool and the size of the memory blocks they represent have to

be specified. The memory blocks represented by packets in a pool are

equally sized. This restriction prevents fragmentation within the packet pool

and that is also the main reason why a packet pool is preferred above generic

malloc/free functions. Such a pool is assigned to an output pin of a

streaming components that uses packets of that pool as depicted in Figure 6-

6.

Component

Algorithm

Streaming

Component

Algorithm

Memory

queue

packet pool

Figure 6-6. Packets are created by a packet pool and represent a block of memory.

The flow of a data packet is now complete as depicted in Figure 6-7.

When the receiving component has consumed the data from a packet, the

6. STREAMING IN CONSUMER PRODUCTS 149

packet is returned. One can see that the packet flow is a cycle through the

queue and pool, i.e. the packets are reused. Essential in this cycle is the

synchronization between the producing and consuming component. When a

consumer tries to get a packet out of an empty queue, the consumer will

block. As soon as the producer puts a packet in the queue, the consumer will

be notified so that it can get the packet. This synchronization is based on the

availability of packets in the queue (containing data) and on the availability

of packets in the packet pool (empty).

Component

Algorithm

Streaming

Component

Algorithm
queue

packet pool

Figure 6-7. Packet flow through components, queue, and pool

An example of a streaming component is a video scaler. In Figure 6-8 the

scaling algorithm is represented as a while loop that runs on a CPU as an

OS-task. This component (1) receives packets representing video frames via

its input pin, (2) gets an empty packet from the assigned packet pool to put

the scaled video frame in, (3) scales the input to the output, (4) puts the new

packet with the scaled video frame via the output pin to the next component,

(5) and returns the input packet to the packet pool. This sequence will be

repeated infinitely.

while (1)
{
 GetFullPacket(input,&inVideoPacket);(1)

 GetEmptyPacket(output,&outVideoPacket); (2)

 Scale(inVideoPacket,outVideoPacket); (3)

 ReturnPacket(inVideoPacket); (4)

 PutFullPacket(output,outVideoPacket); (5)

}

Figure 6-8. Scaling algorithm realized as an infinite loop.

150 Chapter 6

3.2 Processing in HW

So far, the algorithm was running on a CPU. Some algorithms can run

more efficiently on a specific HW, like an Application-Specific Integrated

Circuit (ASIC), Field programmable Gate Array (FPGA), or Digital Signal

Processor (DSP). A scaler is an example of an algorithm that can be realized

much more efficiently on dedicated hardware due to the regularity of the

algorithm. To incorporate HW processing, the streaming model is extended

as depicted in Figure 6-9. The function (e.g. scaling) is divided into the SW

streaming component and the dedicated hardware that executes the scaling

algorithm.

CPU

HW co-processorr

Component

Streaming

Component

Algorithm
queue

packet pool

Scaling

Algorithm

Scaler step

device driver

Figure 6-9. A scaler for which the processing is performed in HW

The SW streaming component is still responsible for synchronization, i.e.

getting, putting and returning the packets. Instead of executing the algorithm

itself (Scale() function in Figure 6-8), the software instructs the hardware

to do the processing by setting registers of the HW. Information put in the

registers is the physical location of the input and output data in memory, the

physical format that is used to represent the frames, and the size of the input

and output frames. After the scaler has been started, it directly reads the data

from memory, processes it, and directly writes the data again to the specified

location. Thus, the data transport (reading and writing) is directly to memory

without the software (CPU) in between. Only the synchronization, i.e.

passing packets, is handled by the software. The SW streaming component

will block until the HW finishes. A common solution is that the HW triggers

6. STREAMING IN CONSUMER PRODUCTS 151

an interrupt as soon as it is finished. The Interupt Service Routine (ISR) that

handles the interrupt will unblock the SW streaming component. The SW

streaming component then returns the input packet and forwards the output

packet, as depicted in Figure 6-8.

By keeping the synchronization in software, the flexible packet

management implemented in SW can be used and HW and SW processing

components can be arbitrarily connected.

The physical representation of the data in memory depends on the HW

co-processor. It can vary from one fixed place in memory, a fifo in memory

with a start/end address and a wrap around, to a scatter-gather DMA that

allows the data to be scattered in physical memory. The data representation

in memory has impact on the queue and packet pool concept. In the

Nexperia Home platform an input or output packet is typically a contiguous

piece of memory.

3.3 HW synchronization

One can reduce the latency of a chain of streaming components by

reducing the buffering in between components, which can be realized by

decreasing the communication granularity. For example, an interlaced video

frame can be communicated as 2 field packets or even as stripes. However, it

increases the synchronization rate, which might be a problem if the

synchronization is done on a CPU based on interrupts.

When two subsequent processing algorithms are realized in HW, as

described above, the synchronization in between can be done by the CPU or

directly by the HW. If the CPU does the synchronization, then the

synchronization interrupts the execution (of other algorithms) on the CPU

and generates overhead, especially since it pollutes the cache. To be able to

reduce the latency and still effectively use the resources, both the

synchronization and memory management for the data transport should be

offloaded from the CPU. We will present two possibilities in the next

paragraphs.

3.3.1 Memory based streaming

For memory based streaming in between two HW processors, memory is

still used as intermediate storage in between the components. There are

several options to realize the synchronization and management of the

memory in HW: HW logic that knows the location of the queue

administration in memory, to determine where the data has to be

put/obtained, and that can determine whether there is space/data available. In

Figure 6-10, such a logical fifo is depicted, which may use the C-heap

152 Chapter 6

protocol, see Gangwal (2001). Another option is to use a small separate CPU

for synchronization purposes only. The reasoning about what to choose is

beyond the scope of this section.

A memory based HW processor has the advantage that it can still be

connected to a SW streaming component, assuming that the synchronization

and memory management logic is still accessible from software.

CPU

HW co-processorr

Streaming

Component

Algorithm

device driver

HW co-processorr

Streaming

Component

Algorithm

device driver

HW fifo

HW synchronisation

Figure 6-10. HW synchronization between two components

3.3.2 Direct streaming

Instead of using memory as intermediate storage for data transport, HW

components can be directly connected via copper wire. This means that the

HW components are very tightly coupled and that they have to execute

synchronously. The streaming of an analogue TV, or the reception unit of a

DVD recorder is done via copper wire connections, possible with some HW

switches in between. In these cases, the tuner is (via an input-selection

switch) directly connected to the PAL decoder (audio/video) using copper

wires. More advanced peer to peer streaming is streaming via networks on

chip, see Goossens(2003). Networks on chip use again memory for

buffering, and as a consequence are less tightly coupled than the copper wire

connected components.

6. STREAMING IN CONSUMER PRODUCTS 153

4. DESIGN TRADEOFFS

In this section, we will discuss design tradeoffs for consumer products

that impact the streaming processing architecture. To understand the

tradeoffs, a number of forces that influence them are introduced.

The first force is power consumption of consumer devices, which is one

of the differentiating points, as mentioned in Section 2. A reason is that a

consumer does not like a PC-like blower in his TV making a lot of noise.

A second force is the amount of external memory in use, which should be

as minimal as possible. The reason is that more memory increase the Bill Of

Materials (BOM) costs. However, there are exceptions on this rule. For

example, requiring 61 MB instead of 58 MB makes no difference, since 64

MB is a standard available memory sizes. So optimizing memory usage is

important if the required amount of memory reaches a standard memory

size. Another exception exists for small memories that fall outside the

mainstream PC memories. These can be more expensive than larger PC

memories.

The third force is the bottleneck in both memory bandwidth and latency.

The trend of higher processing clock speeds makes this bottleneck even

higher. External memory accesses are also power consuming. For these

reasons, limiting the external bus traffic is therefore a clear force.

The fourth force is the continuous tendency to keep the chip area as small

as possible to reduce the BOM as opposed to adding HW to reduce the

software effort. HW support for certain features can directly be translated

into chip area, and thus in costs and in the BOM. Not having HW support

saves on the BOM, but may introduce additional software complexity. The

additional software costs are less clear and much harder to predict.

The presented trade-offs made in a consumer device are discussed in

more detail in the next sections. On different places in the platform, the

tradeoffs are different, resulting in different choices. A streaming framework

should facilitate this process by both providing enough flexibility and the

right abstractions. It should allow different tradeoffs on different places in

the graph, while still enabling the cooperation between the parts.

The flexibility versus the complexity of the streaming framework in itself

is the final tradeoff.

4.1 Off-chip vs. on-chip memory

Memory used for transporting data in case of memory based streaming

can be on-chip, or off-chip. The main force that drives the usage of on-chip

memory is the access bottleneck of off chip memory. Due to the increasing

154 Chapter 6

gap between high chip clocks and the external memory access

times/bandwidths this force will only become stronger. The increase in

bandwidth requirements for HD TV picture improvement algorithms makes

this force even stronger.

On-chip memory has a number of advantages compared to off-chip

memory. The bandwidth to memory on-chip is much higher, and the access

latency to that memory is much smaller. In addition, it is more power

efficient.

The disadvantage is that on-chip memory is relatively expensive. To

make the expensive on-chip memory cost-effective, it has to be used

efficiently. An additional disadvantage is the limited flexibility of on-chip

memory, because the amount of it is fixed quite early in the design process.

One way to use the on-chip memory efficiently is to use time-sharing, which

means that a part of the memory is used by different streaming components

over time. An example of course grain time-sharing is that one streaming

component uses a piece of memory until the end-user switches to another

mode of operation by means of a remote. A fine grain time-sharing example

is that two streaming components use the same piece of memory after each

other to process one frame. A disadvantage of time-sharing is that

dependencies are created between parts that share the same memory.

Another way to use on-chip memory cost-effectively is to keep the buffer in

between two streaming components small. It is currently not cost-effective to

buffer complete video frames on-chip (e.g. SD equals 800 KB, HD up to 4

MB). Little buffering means that two streaming components are tightly

coupled, and that the communication granularity is small (e.g. stripes in

stead of video frames).

The minimum amount of buffering between two components depends on

the algorithms that are connected. As depicted in Figure 6-11, the smallest

communication grain between a noise reduction algorithm and a scaler that

go both from top to bottom through a video frame on line basis is a line. For

an MPEG decoder producing macro-blocks, connected to a scaler consuming

(complete) lines, the buffer has to be at least a stripe (row of macro-blocks).

The required amount of buffering for this last example is even worse if I, P,

and B frames are decoded since a MPEG decoder decodes these frames out

of order.

6. STREAMING IN CONSUMER PRODUCTS 155

Producing line n+1 Consuming line n

Streaming

Component

Noise

Reduction

Streaming

Component

Scaler

Frame

Producing macro-block

n+1
Consuming line 1

Streaming

Component

MPEG

decoder

Streaming

Component

Scaler

Frame

n+1

n1

Figure 6-11. Minimum amount of buffering depends on producing/consuming behavior of

connected streaming components.

In addition, for temporal algorithms that use older frames as reference

(e.g. temporal noise reduction, MPEG decoder, natural motion), it is not

cost-effective to keep the reference frames on-chip. The time between the

generation of the reference frame and the accesses when used as reference is

typically the period of producing a frame (e.g. 40 ms). It is too expensive to

keep a complete frame on-chip for that long. Smaller grain communication

requires higher synchronization rates that cannot always be realized in

software efficiently.

To be able to make the trade-off between off-chip and on-chip, a

streaming framework should be able to support both on- and off-chip

buffering.

4.2 SW vs. HW processing

Processing algorithms can be implemented both in hardware and in

software. Possibilities range from ASICs, FPGA, to weakly programmable

HW, DSPs, and General CPUs. There is an ongoing trend towards (partly)

implementing algorithms in software on a general CPU. There are different

forces that cause this trend.

SW algorithms are in principle less hardware specific and can be ported

from one platform to another. In practice, a substantial amount of effort is

required for porting it to another HW platform. It is often underestimated

how much effort is required to optimize the performance. However, the

software flexibility allows changes/optimizations in a stage where the HW is

already fixed. For example, when a standard is not yet completely fixed, a

156 Chapter 6

SW implementation allows for making adaptations that are required to

follow the latest trends, or for late time changes in the standard. Such an

approach is valid in case the time-to-market is essential, typically for high-

end products.

An additional advantage of software is that standards are often given as

executable specifications that can run on a general CPU. Software allows for

the transformation of an executable specification into an efficient

implementation in a number of iterations.

Algorithms implemented in more dedicated HW are less flexible, but are

much more efficient in processing regular and thus potentially parallel

algorithms. Examples of such regular algorithms are line- or pixel-based

algorithms, like a scaler, or peak filter. Coding standards, like H.264 or

DivX, become more and more irregular to get maximum coding efficiency.

Due to the irregularity, the possible parallelism of the algorithm reduces,

which makes it less attractive to realize it in HW. As a result, the overall

algorithm may be implemented in software, while some computing intensive

parts can be offloaded to special hardware.

In the lifetime of an algorithm, one often sees transitions. For example an

MPEG decoder was initially realized in HW since it was not yet feasible in

software. Then, due to Moore’s law that led to an increasing computation

power, it could be realized in software. However, when the standard is

matured and MPEG decoding becomes a default processing step, a HW

decoder is preferred for efficiency reasons as the SW solution costs many

processing cycles, which can be better spent for new, emerging standards.

For a digital TV that supports dual screen, the MPEG decoding for the

second half may still be realized in software due to the fact that only in a

limited set of the use-cases it is required to have two decoders.

The HW/SW processing tradeoff requires a streaming framework that

can abstract from whether an algorithm is implemented in hardware,

software, or a mixture of both. To enable seamless HW/SW transitions, a

streaming component should be connectable to both a HW and SW

component, while the actual control from client perspective of the processing

step should not see any difference.

4.3 HW/SW co-design

To give insight in the problem space of adding hardware to save software

cost, we will use the example of HW support for virtual memory as an

example to solve fragmentation due to dynamic use-case switches.

As explained in Section 3, a packet pool prevents fragmentation over

time for a static graph where the pool parameters are fixed. When switching

between use-cases, the packet pools have to be resized, e.g. the number of

6. STREAMING IN CONSUMER PRODUCTS 157

packets changes and/or the sizes of the packets change. In case the amount

of memory claimed for the pool is not based on the worst-case use-case, it is

possible that a larger piece of memory has to be allocated. The holes that

appear during this process might not be of sufficient size to capture the new

data, while the total amount of free space is sufficient. Obvious solutions for

this are the addition of extra memory or the use of defragmentation

algorithms. However, as the consumer industry is highly cost driven and

extra memory is not considered a end user benefit, the first solution is

usually not applied in contrast to the PC industry. The latter one is also not

an option since it requires additional copying of data, or it requires a certain

time by slowly moving the non-used parts of the queues in memory without

copying. These options are often not applicable due to timing constraints of

use-case switches in consumer products. Product specific solutions exist.

These solutions are not isolated and exploit system wide knowledge of a

product. As a consequence, these solutions have to be revalidated and

changed for every new product again.

A feasible solution is the use of virtual memory. For this, standard

solutions exist that prevent that physical memory is wasted beyond page size

boundaries. This adds to the BOM but enables a generic solution to support

packet pools with no fragmentation when they are resized.

In the trajectory of HW/SW co-design, domain knowledge is essential to

make the right choices in this large design space. In our example, it might be

sufficient to have virtual memory only for video frames, as they impose the

largest fragmentation. Video frames are very large in size, meaning that the

pages of the virtual memory can be large and still effectively used, which in

turn reduces the size of the lookup table to realize the virtual memory. In

total, it reduces the cost of the additional BOM, making the virtual memory

support a more attractive alternative.

5. REAL-TIME IMPACT

A graph of streaming components that receives real-time input data, and

produces real-time audio and video on the output has strict real-time

requirements. If these requirements are not met, distortions of the audio and

video will be the result. In this section, we will show that real-time

requirements make the streaming architecture more complex.

A large class of processing algorithms is data dependent, e.g. MPEG

encoders and decoders. This results in fluctuations in load. In case an

algorithm is implemented in software, it is typically too expensive to reserve

the worst-case amount of CPU cycles. The maximum load for decoding one

MPEG frame can be 2 times the average, hence the required reservation

158 Chapter 6

would be 100% on top on the average required. One of the reasons is that the

load for decoding I, P, and B frames differs. A standard approach is to

spread load peaks by introducing additional buffering. For example, a typical

requirement for Mpeg decoding is that one frame has to be decoded in 40

milliseconds (ms). By introducing additional buffering of 2 frames, the

requirement reduces to 3 frames in 120 ms. The maximum load for decoding

3 MPEG frames might be in the order of 1.5 times the average since it is a

mixture of I, B, and P frames. Now the required reservation is reduced to

50% on top of the required average.

Increasing the buffering in a chain increases the end-to-end latency.

There are a number of reasons why end-to-end latency is important. The first

one is that it influences the response-time on user events like zapping. As

soon as the user zaps, the tuner is changed. The end-to-end latency

determines the minimum response time before the new channel is shown on

the display. However, zapping response times of 500 ms are acceptable and

that is not that restrictive on the end-to-end latency on the streaming graph.

Another, much more stringent, constraint on the latency is imposed by lip-

sync requirements. The end-to-end latency of the audio should be about

equal to that one of the video. In case the audio rendering is done by the

same device as the video, like in a set-top box, the audio can simply be

delayed. However, in case that the audio of a DVD player goes directly to an

amplifier and the video via a TV, the end-to-end latency of the video

processing in the TV must be at most 35 ms. Let’s calculate what it means to

have a video capturer, 3 processing steps (noise reduction, de-interlacing,

up-conversion), and a video renderer in case the communication granularity

equals video frames. For simplicity, we assume that each process step takes

only 10 ms. It takes 40 ms before a complete frame has entered the system.

That cannot be improved; the bits of a frame are evenly distributed in 40 ms

(25 frames/s). It will result in a 70 ms latency, as depicted in figure 6-12(a).

In the latency calculation, we do not have to include the completion of the

rendering for the whole frame. A pixel that enters the system at time 0, will

leave the system at time 70 (first pixel of the frame will be rendered first).

In this example a processing step is only performed in 10 out of 40 ms,

i.e. 25% of the time. If for each step special HW is used, it is only 25%

effectively used.

6. STREAMING IN CONSUMER PRODUCTS 159

Video capturing

Noise reduction

Deinterlacing

Upconversion

Video rendering

70 ms latency

0 ms 40 ms 80 ms 120 ms 160 ms

Video capturing

Noise reduction

Deinterlacing

Upconversion

Video rendering

40 ms

latency

0 ms 40 ms 80 ms 120 ms 160 ms

(A)

(B)

Figure 6-12. End-to-end latency calculations

One way to decrease the latency is to shorten the processing time of the

three steps. It is clear in this example that we will never achieve a 40 ms

end-to-end latency by increasing the processor power. Furthermore, the

effectiveness of dedicated HW will decrease even further.

Another way to reduce the latency is to decrease the communication

granularity. Lets assume we can reduce the granularity to ¼ frame and

assume that processing of each ¼ frame takes 10 ms. The resulting end-to-

end latency reduces to 40 ms, as depicted in Figure 6-12(b). Note that by

assuming 10 ms per ¼ frame, the resources for each processing step are

100% used and cannot run on a shared resource.

Let’s look at the limitations of the fine grain communication approach:

• As mentioned in Section 3, the possibility of reducing the

communication granularity depends on the algorithm. For example

the de-interlacing has an intrinsic delay of half a frame. The

progressive frame can only be computed when receiving the second

field. As a consequence, in the ¼ frame approach, the end-to-end

delay will increase with 20 ms.

• The expected latency reduction to 40 ms as shown in Figure 6-12(b)

will typically not be achieved. One cannot deduce that processing of

¼ frame is finished in 10 ms for each processing step from the

knowledge that 1 frame is finished in 40 ms. When load variations

160 Chapter 6

occur, the worst-case time for processing ¼ frame will take more than

¼ of processing a whole frame. These variations can be dealt by

introducing additional processing power to finish within 10 ms, or by

introducing additional buffering meaning that the latency will

increase. So without increasing the processing power, the total latency

will be more than 40 ms.

• Reducing the communication granularity even further, e.g. to 1/8

frame, reduces the latency again but increases communication

overhead, inherent limitations of algorithms, and strict timing

requirements become more and more dominant.

The tight coupling of processing steps and strict timing requirements

restrict the possibility to spread out peaks in CPU load and busload. It will

result in a more bursty behavior. The composition of parallel processing

steps that have bursty behavior on shared system resources (e.g. bus) will

start interfering. This interference will result in unpredictable behavior,

especially when the load of the shared resources is high.

The BOM for consumer products drives that HW resources are used as

effectively as possible. What we have shown in this section is that real-time

constraints complicate the streaming architecture and negatively impact the

compositionality of the system. Compositionality is essential to efficiently

make a range of different products. Without a composable architecture it

costs too much effort to create the products. It is a balance between being

able to make a product at all and being able to sell it for a reasonable price.

Real-time constraints do not make the streaming infrastructure more

complex. However, they do make tradeoffs in the streaming architecture

more complex, like choosing HW/SW synchronization and the right

communication granularity. Most-important, real-time constraints make the

tradeoff between cost-effectiveness and the compositionality of the

streaming platform much more complex. Both are essential in a consumer

product.

6. CONTROLLING THE STREAMING GRAPH

A streaming component has to be controlled. The first half of this section

will explain what streaming control is about. The second half will show the

importance of being able to compose the streaming control, and show

different approaches for structuring streaming control.

6. STREAMING IN CONSUMER PRODUCTS 161

6.1 Streaming control

Besides starting, stopping, pausing, and connecting components,

streaming control is the configuration and management of streaming

components in a graph. Streaming control is an essential part of the

streaming software architecture. The part in the streaming platform that is

responsible for controlling the streaming components is denoted as manager,

see Figure 6-13.

Streaming

Component

Algorithm

Streaming

Component

Algorithm

Streaming

Component

Streaming

Component

Algorithm

Control manager

Figure 6-13.Control manager: controlling all entities of the streaming graph

Typically, the execution of the algorithm is decoupled from the streaming

control. In case the algorithm is implemented in software, it runs on another

OS-task. In case it is implemented in hardware, it runs in parallel on

different HW. When a control command is given to the component, e.g. a

new size for the scaler, it is stored in the streaming component (or in a

register of the HW implementation). The implementation of the algorithm

decides when to take this into account. There are some limitations when a

control command can be taken into account by an algorithm:

• Often parameters of an algorithm cannot be changed halfway through

the execution, e.g. it is no use to change the size when the scaler has

already scaled half of the frame in the old size. This means that the

response time of new setting is either dependent on when the setting

is given or it should be given at a specific point in time.

• Being able to force parameters upon the algorithm means that the

execution of the algorithm becomes dependent on the behavior of the

streaming control. As a consequence, the real-time requirements of

the streaming task are imposed on the streaming control tasks. Such

dependencies make the execution architecture of the whole much

more complex and should be prevented.

162 Chapter 6

In addition to the control initiated from the control manager, the

components themselves also give feedback towards the manager. These are

typically callbacks or events on which the streaming control can subscribe,

e.g. progress events and error events. The handling of these events should be

done on other tasks than the streaming component tasks to prevent that real-

time requirements of the streaming components are forced upon the

manager.

6.2 Control compositionality

In a streaming platform, the separate streaming components have to be

combined to a properly cooperating graph of components. Besides the data

streaming in the platform, the control of the streaming components is

required to get a streaming platform.

The control of a streaming graph includes connecting, configuring, and

starting/stopping components, which is relatively simple. It is more complex

to react on external changes, like a signal drop, Standard Definition (SD) to

High Definition (HD) changes of the signal, or resolution changes in the

input signal. These changes are detected by one of the streaming

components, and should result in new configurations of streaming

components, replacement of streaming components, re-assignment of

resources, etc.

Which components are affected by an external change depends on the

state of the system. The state of the system is the combination of the type of

input, the states of the streaming components, and how they are connected.

Examples of component states are: running, paused, muted, and resolution of

a component. States may be relevant from functional point of view, or from

resource usage point of view. Examples of connection states are: is an input

going to the main screen, picture in picture, or SCART output, is a natural

motion component used for the main picture or for the sub-picture. Due to

the large different number of input types, streaming graphs and streaming

components there is a large number of relevant states. It already requires

substantial effort to build such a manager and this will only increase due to

the increasing number of streaming components and combinations thereof.

Besides reducing the effort of building a control manager once, it is also

essential to reduce the effort needed when a control manager evolves with

the platform. This effort strongly depends on how the control manager is

structured. We present three approaches to structure the control manager.

6. STREAMING IN CONSUMER PRODUCTS 163

Distributed
control

(C)

Control

Algorithm

Distributed
Control

Algorithm

Algorithm

Algorithm

Hierarchical control

(A)

Algorithm

Algorithm

Algorithm

Algorithm

Centralized

control

Hierarchical controlHierarchical control

Subsystem Subsystem

Figure 6-14. Centralized (A) vs. Hierarchical (B) vs. Distributed (C) streaming control

One approach is to centralize the realization of the control manager, see

Figure 6-14(a). This spider ‘knows’ the state of the system, and has rules for

164 Chapter 6

how to react on an event in each state. Such a manager will be large due to

the large number of states. More important, it is dependent on the

components in the platform since these determine the possible states in the

system, and thus the states in this centralized control.

A second approach is that the control manager is hierarchically

decomposed in subsystems, as depicted in Figure 6-14(b). Within a

subsystem the required control is handled as much as possible. Only when

interaction is required with another subsystem, it is handled via the central

manager. The advantage is that the control of a subsystem will not change

when components in another subsystem change. Also the central manager

will only change when changes inside a subsystem cannot be dealt with

within that subsystem.

A third approach is to distribute the control manager, see Figure 6-14(c).

This approach is also known as horizontal communication, see Ommering

(2003). Most of the knowledge on how to react on external events is

captured in local rules, i.e. local to a streaming component. In addition to

those local rules, mechanisms are required to distribute information over the

graph. Typically, this information exchange is done via the connections.

The major benefit of the distributed realization is that the centralized

streaming control has become minimal or disappears completely. This is

optimal in terms of evolution of the control together with the evolution of the

streaming components themselves. When a streaming component changes,

also the local streaming control changes.

7. SUMMARY

A streaming platform is introduced in consumer products to enable

independent middleware development on top of a standardized API. The

realization of such a platform must be sufficiently flexible to incorporate

customization and to allow for new requirements to support external

influences like the realization of emerging new decoding standards,

evolution of the platform over time, and applicability for a range of products.

The Nexperia Home Platform is the streaming platform of Philips.

A streaming infrastructure is an essential part of a streaming platform.

However, it is only a small part in terms of effort. In fact, the actual passing

of the data and the required synchronization are the least concerns of the

platform supplier.

The challenge of a streaming platform is to balance between a small

BOM, a configurable streaming platform, and to allow evolution:

• To reduce the BOM, much effort is put in making HW/SW tradeoffs and

in optimizing of SW processing algorithms. Both hardware and software

6. STREAMING IN CONSUMER PRODUCTS 165

are essential in a streaming platform and are applied for different reasons

at different places. The platform API should be such that these tradeoffs

can be made without impact on the middleware. Philips has defined such

a HW independent standard, called Universal Home API. The streaming

infrastructure must give the flexibility to make such choices.

• Configuring a streaming platform still requires substantial effort.

Configuring varies from setting some parameters to composing a

platform from the building blocks, like streaming components.

• Evolution of a platform requires that parts of a platform can be removed,

added, or replaced. For a smooth evolution, the platform should also be

composable. One has to be careful not to make a platform too generic,

otherwise it will lead to a non cost-effective platform. One should choose

very carefully where to put the flexibility and where to fix the

functionality.

REFERENCES

Ommering, R. v., 2003, Horizontal communication: a style to compose control software,

Software- Practice & Experience Volume 33, issue 12

Gangwal, O. P., Nieuwland, A., and Lippens, P, 2001, A scalable and flexible data

syncrhonisation scheme for embedded HW-SW shared memory systems, Proceedings of

the International Symposium on System Synthesis, pp 1-6

Goossens, K., Dielissen, J., Meerbergen, J. van, Poplavko, P., R dulescu, A., Rijpkema, E.,

Waterlander, E., and Wielage, P., 2003, Guaranteeing The Quality of Services in Networks

on Chip, Networks on Chip, Kluwer, pp 61-82

Chapter 7

A ROBUST COMPONENT MODEL FOR

CONSUMER ELECTRONIC PRODUCTS

Hugh Maaskant
Philips Research Laboratories, Eindhoven, The Netherlands

Abstract: The Robocop project defines an open, component-based architecture for the

middleware layer in high-volume consumer electronic products. This

architecture supports component trading, dynamic upgrading and extension of

products in the field, and robust and reliable operation. The architecture

consists of a development framework, an execution framework and optional

download and resource management frameworks. The core of the architecture

is the component model, which is defined at two levels. At the development

level, a component is defined to be a collection of models and the relations

between these models. These models allow system builders to reason a-priori

about systems composed from the components. At the execution level a

binary component model has been defined, combining elements of Object

Management Group (OMG), Common Object Request Broker
Architecture (CORBA), Microsoft’s Component Object Model (COM), and

Philips’ Koala. Key elements of the executable component model are explicit

dependencies, dynamic third party binding, and a well-defined lifecycle that

includes explicit interaction points with the resource management framework.

Key words: architecture; software component; component-based development; software

product families; robustness; software download; resource management.

1. INTRODUCTION

In today’s consumer electronic products a large part of the functionality

is realized in software. This software typically includes both control and

media processing (a.k.a. streaming) functionality. As software is notoriously

difficult and expensive to develop, manufacturers constantly search for more

effective ways to construct the software for their products. One way is to

construct the software for a family of products rather than for a single

167
P. van der Stok (ed.),
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 167-192.
© 2005 Springer. Printed in the Netherlands.

168 Chapter 7

product. A promising approach to software product family engineering is to

compose (assemble) products from parameterized software components. A

software component is a unit of deployment that can be reused in multiplet

products (i.e. instances of the product family). The functional diversity in

the product family can be achieved by a combination of techniques, such as

composing different components, composing the components differently,

and assigning values to the parameters of the components during

composition.

One of the many challenges in component-based development (CBD) is

to ensure the robustness of the final products. Not only must the

independently developed components fit together functionally, they also

must fit with each other and the underlying platform in extra functional

properties such as timeliness and resource usage. In current practice, these

concerns do not align well with the primarily functional decomposition that

typically drives the specification for the components to be developed.

Two interrelated concepts help to meet these challenges: component

models and product line architectures. A component model defines what l

constitutes a component, including the interaction mechanisms between

components themselves and between components and their environment. A

product line architecture prescribes, among other things, how components

can be composed into products, how diversity is handled, and what major

design rules and interaction patterns the components must adhere to. Figure

7-1 illustrates that a product family architecture may include a component

model, and that it addresses more concerns while having a smaller scope of

applicability than a component model.

Scope

Component

Model

Product

Family

Architecture

C
o

n
c
e
rn

s
 a

d
d
re

s
s
e
d

Figure 7-1. The relation between Product Family Architecture and Component Model

7. A ROBUST COMPONENT MODEL 169

Thus a component model enables a product family architecture, mostly

by addressing the mechanical parts of what constitutes a component and by

providing facilities for diversity management.

Building a product as the composition of components that comply with

an open component model lowers the technical barriers to the use of 3rd party

components. Generic, i.e. non-discriminatory, software components can be

developed by, and purchased from, specialists that serve a larger market and

therefore can provide the components at a lower cost. However, compliance t

with the component model does not necessarily imply compliance with the

full product line architecture. Some adaptations are still likely to be

required, typically realized through glue code and wrapping. Depending on

the richness of the component model, this can e.g. include thread decoupling

in certain interfaces such as event call-backs. Adherence to the component

model does at least ensure compatibility on a basic level of operation.

Finally, if the components can be composed at run-time rather than at mm

design time, the appliance can be updated or upgraded in the field. This

enables new business models where parts of the software for embedded

devices can be sold separately.

1.1 The ITEA Robocop and Space4U Projects

The ITEA1 project Robocop (Robocop 2003) was a two-year,

multinational, multiple company research project with the aim to:

Define an open component-based framework2 for the middleware layer in

high-volume embedded devices that enables robust and reliable

operation, upgrading and extension, and component trading.

The systems targeted by Robocop are consumer products such as mobile

phones, set-top boxes, digital TVs and network gateways. The project ran

from July 2001 through June 2003 and was executed by a combination of

larger (Fagor, Nokia, Philips) and smaller (SAIA-Burgess, Visual Tools)

companies, research institutes (CSEM, ESI, Ikerlan) and technical

universities (Eindhoven, Madrid).

The core of the Robocop architecture is its component model. Other key

elements are the download and the resource management frameworks. A

reference implementation of the component model and the frameworks has

1 Information Technology for European Advancement, an eight-year strategic pan-European

programme for advanced pre-competitive research and development in embedded and

distributed software.
2 A framework is defined as a partial architecture. The word is also used to denote an

implementation of the partial architecture.

170 Chapter 7

been built on Linux. Furthermore, the component model and frameworks

have been ported to various architectures, some of which proprietary, for

company specific demonstrators.

The Robocop project did not address all relevant issues. Therefore at

follow-up project, Space4U (Space4U 2004), was defined to extend the

architecture with frameworks for fault management, power management,

and terminal management. Also, the component model was slightly

modified (mostly simplified) based on newer insights and the experiences in

building the demonstrators. At the time of this writing (mid 2004), the

Space4U project is halfway through its two-year timeline.

This chapter introduces the Robocop architecture in Section 2. It

presents a simplified view on the Space4U version of the component model f

in Section 3. Section 4 contains a very brief sketch of how the framework

and component model can be applied to a streaming system.

2. THE ROBOCOP ARCHITECTURE

The Robocop architecture can be considered to be an infrastructure to

design, build, trade and update middleware by means of components. The

architecture is defined as a number of interrelated frameworks, where each

framework addresses certain aspects.

The core frameworks are the development framework and the run-time

(a.k.a. execution) framework. The development framework defines a number k

of aspects relevant for the development and trading of components. The

run-time framework defines the execution envik ronment for these components

and defines certain aspects of their dynamic behavior.

The development and run-time frameworks are supplemented with the

optional download and resource management framework. The download

framework facilitates the controlled and secure downloading of componentsk

from a repository to a device. The resource management framework

provides mechanisms for applications and components to negotiate their

resource (CPU, bandwidth etc.) needs, and to obtain guaranteed budgets for

these. As may be expected, the parts of the download framework that exist

on the target device are themselves Robocop components. Apart from a few

small parts interacting with the operating system scheduler and the network

drivers, the resource management framework is also realized as a Robocop

component.

Robocop defines components at two levels, the development and the

executable level. These levels correspond directly with the development and

execution frameworks.

7. A ROBUST COMPONENT MODEL 171

At the development level, a component is a collection of models and the

relations between these models. Each of the models addresses certain

aspects of the component. Components are the unit of trading, whereas

models are the unit of deployment3.

One of these models is the executable component, which embodies the

component as it can be executed on a given platform. The executable

component model defines the concepts, protocols, and interfaces at an l

abstract level and specifies language and binary mappings for the supported

platforms. The executable component model closely resembles traditional

binary component models like Microsoft’s Component Object Model

(COM), and the Common Object Request Broker Architecture (CORBA) of the

Object Management Group (OMG).

The word component is strongly overloaded, not only in the literature but

also in Robocop. For briefness, an “executable component” is often referred

to as “component”, and the “executable component model” is often just

called “component model”. Sometimes the component at the development

level is called “component package” to make the intention explicit.

The component models are discussed in detail in Section 3, The Robocop

Component Model.

2.1 Development Framework

The development framework consists of a number of elements such as

the identification of the stakeholder roles (e.g. component vendor, system t

integrator) and their relations, the component model, and tooling, such as an

IDL compiler. For the purpose of this chapter, figure 7-2 illustrates the

development framework as a process flow.

Based on the domain requirements for the products targeted, components

are developed on host computer systems and published in one or more t

repositories. Components can be developed either internally or externally to

system developers, i.e. organizations that develop products. How

components are developed (methodology, tools, languages, etc.) is outside

the scope of Robocop.

Published components may be “generic” in the sense that they still need

to be tailored to run on a specific platform (defined as the combination of

device hardware and operating system), or they may need to be adapted for

any other technical or commercial reason. This may involve compilation

and linking for the specific platform or the removal of certain models.

Depending on business considerations, tailoring may be done by the original

3 Selecting a subset of the models (and/or relations) from a component yields a new

component. Therefore the component is merely a packaging for models.

172 Chapter 7

component developer, by the repository caretaker, by a trusted 3rd party, or

by the system developer.

Published

Component

Published

Component

Component

tailoring

Component

tailoring

Tailored

Component

Tailored

Component
Appliance

development

Component

development

Component

Certification

Development

integration

Execution

integration

Figure 7-2. Robocop development framework – process flow view

Optionally, a trusted third party may certify that components comply

with the Robocop architecture or any other standard. In principle, this cant

be done at any point in the development life cycle of a component.

The system developer assembles the product by integrating the tailored t

components with the platform and by adding applications; this process is

called development integration. The component models can be used to

support the integration process, e.g. by gaining better insight in the

functioning of a certain component or by predicting certain properties of the

composition by composing the relevant models as detailed in Section 3.1.1.

During the operational life of the product, components may be replaced

for improved functioning (upgrade) and new components may be added for

extra capabilities (extension). This is called execution time integration; it

will typically be preceded by downloading the component to the device.

2.2 Run-time Framework

The run-time framework defines a partial architecture for a further

unspecified, single device. The architecture is partial in the sense that it only

defines the component model for the middleware layer and the run-time

environment. It does not address any of the functional aspects of the

components. Figure 7-3 shows the scope of the run-time framework.

The devices, the applications running on these devices and the final

products are left unspecified. However, the devices are assumed to have

limited resources (CPU, memory, bandwidth, power, etc.), and the

applications are assumed to have real-time requirements. The product may

7. A ROBUST COMPONENT MODEL 173

be connected to the outside world through some form of network and can be

mobile or stationary.

Product

Middleware

Applications

Platform

RC-1

App 1 App 2

RC-2

Run-time Environment

Operating System

Device Hardware

. . .

App 3

External World

Other entities

Download FW

. . .

Figure 7-3. Runtime framework architecture

The product is modeled in three layers: the application layer, the

middleware layer and the platform layer. The application and platform

layers are outside the scope of Robocop. The application layer provides the r

end-user functionality of the product, which may include the user interface.

The middleware layer is loosely defined to be everything above the

operating system that is not an application. Typically, the middleware

presents a programmatic interface to the applications that is expressed in

terms of the product’s domain model. It extends the underlying platform

with domain functions and shields its idiosyncrasies. As can be seen in

figure 7-3, the middleware is composed of executable components and a

Robocop Run-time Environment (RRE), which is primarily the embodiment t

of the creational aspects of the executable component model4 on the

platform. The platform layer consists of the device hardware and an

operating system layer. Very few assumptions are made on the operating

system so that many different platforms can be supported.

4 The RRE may also include the optional Operating System Abstraction Layer (OSAL) to

facilitate portability of components and some other elements, but these are outside the

scope of this chapter.

174 Chapter 7

The terms application and middleware can be somewhat misleading as

they can be interpreted in multiple ways. Typically, these terms refer to the

“end-user functionality” and the “domain model” roles in the product’s

architecture. But in the Robocop definition, middleware consists of entities

that strictly conform to the component model (plus the RRE), while

applications are entities that, although they have all the rights that

components have, i.e. they can interact with components and the RRE, they

only have some of the responsibilities. In practice, and by design, these two

views map well with each other. Still, it is entirely feasible that an entity

fulfilling an application role is implemented as a Robocop component. It is

even possible, but strongly discouraged, that some piece of software

fulfilling a middleware role does not itself obey the component model.

2.3 The Download Framework

The download framework enables the dynamic upgrade and extension of

products by downloading new components onto the product. The framework

defines two entity types, repository and target, and three roles, initiator,

locator, and decider. The initiator, locator, and decider roles can each either

be implemented on the repository, on the target or on a separate host

computer; not all permutations are meaningful, however.

A repository stores components on a host computer for future download

to a target. A repository may also support searching or browsing operations;

this is not further detailed in Robocop. The download framework supports

multiple repositories. A target is a device to which the component will be t

downloaded. In the framework, each target device is individually

identifiable.

The initiator is responsible for recognizing the need for a download r

transfer and for the initiation of that transfer. Various conditions may trigger

a download; for example a digital TV service provider may update all digital

set-top boxes of its subscribers to correct a faulty component when a correct t

version becomes available. Likewise, a DVD player may initiate the

download of new components in order to be able to play a disk with a new

data format. The locator serves as the well-known entry point that all parties r

must know about and with which they must register. It maintains the

mapping between identities and network addresses of these parties, and is

capable of determining which repositories contain a given component and

which decider must be used for a given download. The decider performs a

feasibility analysis before the download can take place. In this analysis, any

combination of technical, resource, legal, and business criteria can be taken

into account.

7. A ROBUST COMPONENT MODEL 175

To determine the technical fit, both the target and the component are

characterized by a profile. The profile contains various execution

compatibility attributes, such as the instruction set architecture, available or

required resources, the operating system, etcetera. The profile also contains

attributes that are relevant for the transfer itself, such as the supported

transfer file formats and protocols. The framework enhances robustness by

not downloading a component unless it fits.

2.4 The Resource Management Framework

The goal of the resource management framework is to ensure that in an

overloaded device the most important jobs still receive sufficient resources

to allow them to perform their function with an acceptable quality of service.

When multiple applications using multiple components are concurrently

active, resource overloads may occur. This is especially true when different

parties, not aware of each other, develop the applications or components.

Note that in a dynamically upgradeable system, there may be no design time

validation of the total set of applications in the product. The resourcesf

currently managed by the framework are CPU cycles and network

bandwidth. Other resources can be added to the framework when desired.

The resource management framework manages the guaranteed

availability of resource shares for resource consuming entities, here called

consumers. A consumer is a set of threads that share a common applicationr

purpose. The concept of consumer is orthogonal to that of applications and

components. Note, however, that part of the logic associf ated with resource

management must be provided by the applications and components

themselves, as only they have the required knowledge. The other, generic,

part is implemented within the framework.

The framework recognizes two classes of consumers: non-resource-

aware and resource-aware. A resource-aware consumer knows its resourcer

needs for the various resources that are being managed. A non-resource-

aware consumer does not know its resource needs and hence cannot be r

given any guarantees.

A special case of a resource-aware consumer is a quality aware

consumer. Quality-aware consumers are resource-aware consumers that can

provide a number of quality levels, and that can change their level

dynamically. With each quality level a different resource need is associated.

Quality-aware consumers provide a higher level of flexibility than ordinary

resource-aware consumers because they have more options than simply ‘on’

or ‘off’. A software MPEG decoder component that can run in three modes

(I frame only, IB frame or IBP frame decoding) and knows its resource

needs at each level, is a good example of a quality aware component. Each

176 Chapter 7

successive decoding level requires more CPU cycles per unit time, but gives

a better image quality.

The resource management framework provides mechanisms through

which resource-aware consumers can register their resource needs with the

framework. The framework either admits the consumer, which implies

guaranteed availability of the required resources, or, if this is not possible, it

denies the request. Furthermore, the framework provides mechanisms for

quality-aware consumers to register their quality levels and the respective

resource needs. The framework optimizes the overall system quality by

selecting the maximum quality level for each consumer, so that the sum total

of all resource needs fit within the capabilities of the device. In this

determination the framework takes the relative importance of the consumers

into account. Changes in resource loads, e.g. due to mode changes that

involve starting or stopping consumers, may lead to a renegotiated quality

setting for the active quality-aware consumers. A system level configurable

slack budget is allocated for non-resource-aware consumers.

QoS Manager Resource Consumer

Resource

Manager

Quality

Manager

Quality

Chief

Functional

Part

CPU

Resource

Chief

Network

Resource

Chief

Figure 7-4. Resource Management Framework

The framework consists of a QoS manager, quality chiefs, and resource

chiefs (see figure 7-4). The QoS manager is the central piece of ther

framework. Internally it consists of a quality manager and a resourcef

manager. The quality manager communicates with the consumers tor

negotiate the quality level, and thus the resource usage. The resource

manager aggregates the various resource types and communicates with the r

resources to set the budgets. The quality chief is a mandatory part of allf

quality aware consumers. It ensures that the functional part operates

according to the negotiated quality level at any point in time. A resource

chief manages a given resource type, e.g. CPU cycles. It measures thef

resource consumption of all consumers and enforces adherence to their

budgets. The framework provides an implementation for the QoS manager

7. A ROBUST COMPONENT MODEL 177

as well as resource chiefs for CPU and network bandwidth. The quality

chiefs must be provided by the applications and components making up the

system.

The framework is compositional. Multiple quality aware consumers can

be combined into a higher-level quality aware consumer. This entails an

entity that on one hand acts as a quality chief to the quality manager and on

the other hand acts as the quality manager to the various quality aware

consumers being combined (see figure 7-5). It maps the various

combinations of the individual quality levels to a meaningful set of quality

levels to present to the QoS manager.

System Level

QoS

Manager

Quality

aware

Consumer A

CPU

Resource

Chief

Quality

aware

Consumer B

Quality Chief role

Compositional Quality Chief

Quality Manager role

Quality

aware

Consumer C

Figure 7-5. Compositional Quality Chief

For example, the software MPEG (Moving Picture Experts Group)

decoder component mentioned above may in the streaming graph be

followed by a quality aware image improvement component. Let’s assume

that the image improvement component can operate in three modes: off,

medium, and full. This gives a total of nine settings, not all of which will be

meaningful. A simple quality-aware application can provide a selection of

these nine combinations by aggregating the quality levels and associated

resource usage. In another example consider the same system with Picture

in Picture (PIP) capability. If both the main window and the PIP window are

generated by two independent instances of the streaming graph described

above, it makes no sense to fully optimize the PIP window (and not optimize

the main window). By placing this knowledge in an overarching application

that again manages the individual pipelines’ quality level, the pipelines

themselves are context free, i.e. they do not have to be aware of PIP at all.

This isolation is exactly what is needed to support software product families

using a compositional paradigm.

178 Chapter 7

2.5 Identification

In the Robocop architecture, virtually all artifacts are identified through a

Globally Unique Identifier, known as a GUID5. A GUID can be generated

with a virtual guarantee of being unique over space and time without relying

on a central authority and with a fixed and reasonable size.

3. THE ROBOCOP COMPONENT MODEL

3.1 The Development Component Model

In the development framework, a component is defined as a collection of

models and relations between these models (see figure 7-6). The set of

models is open; models can be formal or informal, human and/or machine-

readable. Anything that conveys some information about aspects of that

component is considered a model. One of the defined model types is thef

executable model, also known as the executable component. The executable

component is the binary representation of the component on the target

architecture. There may be multiple executable models in a component, e.g.

for different architectures: ARM or MIPS, or for different purposes: debug

or production. The Robocop IDL (interface definition language), which will

be explained in Section 3.2.4, is another model type. So far two types of

relations between models have been defined: complies and implements.

5 Also called UUID: Universally Unique Identifier.

7. A ROBUST COMPONENT MODEL 179

+guid

RobocopComponent

+guid

+id

+type

Model

1*

Idl

+from : Model

+to : Model

Relation

1 *

Resource

+arch

+cpu

Executable implements complies

«invariant»

{from.type == to.type}

«invariant»

{from != to}

«invariant»

{from.type != to.type}

Figure 7-6. Robocop development component model

When a model “A” complies with a model “B” this means that “A” and

“B” are of the same model type, e.g. both a resource model, and that all

properties derived from “B” also hold for “A”. Lets assume a particular type

of resource model that consists of a single number denoting the maximum

size (in bytes) of the data segment in an executable model of the component.

An initial, rough, estimate may be given for this “DataSize” model as, e.g.

2048. Later, based on a real implementation for e.g. a MIPS processor, this

may be refined to a new model “DataSize_MIPS” whose value is, say, 1536.

The latter, more specific, model complies with the first one.

The implements relation is defined between two models of different

types. Model “A” implements model ”B” means that model “A” meets all

properties specified by model “B”. Typically the implementing model will

be of the executable component type, and the implemented model type will

be some attribute. In the above example, the executable component

“Executable_MIPS” implements resource model “DataSize_MIPS”. Note

that by virtue of the complies relation between the resource models

“Executable_MIPS” also implements the “DataSize” resource model (see

figure 7-7). There is no need to explicitly specify this derived relation in the

component package.

180 Chapter 7

DataSize

<= 2056 Bytes

DataSize_MIPS

<= 1536 Bytes

DataSize_ARM

<= 1280 Bytes

Executable_MIPS Executable_ARM

implements

complies

implements

complies

derived

implements

Figure 7-7. Example model relations

To fully exploit the power of these and any other foreseeable relation

types, e.g. refines or replaces, further investigation is needed.

3.1.1 Use of Models

Specifying a component as a set of models is a key innovation in

Robocop. There are various usages for this concept, including trading,

composition support, and execution-time inspection of properties of

components.

The first major reason for defining a component as a collection of related mm

models was to support trading. During the conception and design of a

product or product family, many kinds of information are needed for make

or buy decisions of envisioned software blocks. Models allow vendors of

components to make this information available under various commercial

and licensing conditions. An example of this is that the functional

specification model is available free of charge and licenses, the resource

model is still free but requires a non-disclosure agreement, while the

executable model requires a license and a fee.

Another trading related usage is that the existence of certain modelsf

and/or their content can be used as search criteria when identifying

components that could meet the needs of a system integrator.

The second major reason for specifying a component as a set of related

models is to support the composition paradigm. When the behavior,

performance, resource usage etcetera of a composition of executable

components can be predicted using a composition of the relevant models,

this is a very powerful tool to support integration and to help alleviate the

mismatch between the functional and extra functional decomposition

7. A ROBUST COMPONENT MODEL 181

mentioned in the introduction to this chapter. While this is an area still

requiring significant research6, we deem it an important and distinguishing

feature of the architecture. A very simple example is that the total size of the

executable code segment of all components can easily be computed by

adding the sizes of the individual component’s executable code segments.

Here the model is a single number denoting the segment size in e.g. bytes,

and the composition operator is a simple addition. A more elaborate

example is that given a behavioral simulation model of a number of

executable components the behavior of the composition of these executable

components could be simulated.

Figure 7-8 depicts how tools could be used to create a model for the

composition of a number of components based on the individual models of

the components.

Component 1

Resource Model

Simulation Model

Functional Model

…

…

Component N

Resource Model

Simulation Model

Functional Model

…

Composition

Resource Model

Composition

Simulation Model

Composition

Functional Model

Figure 7-8. Composition of models

By assessing architecturally relevant aspects of the composition based on

models, the confidence in the correctness of particular composition can be

significantly increased. This is especially true in the case of models that can

be automatically derived from the code (or vice versa) and for models that

can be composed using some kind of automated tool.

One such aspect that we are currently investigating is that of threading

analysis. Using specialized static code analysis tools, it can be determined

whether a particular piece of code is thread-safe or not, and where threads

6 Not all types models lend themselves to composition yet; this is one area where additional

research is still needed.

182 Chapter 7

are created. This knowledge can be used to create a threading model of all

components. The composer tool can than check that non thread-safe

interfaces are not called from multiple threads. This is a very common kind

of fault, which is usually hard to find because it does not lead to reproducible

errors.

Another, related, example is that of stack size. It is fairly simple tomm

statically determine the sizes of the stack frames of functions. From there it

is possible, in the absence of recursion, to determine the worst case stack

segment needed by a component between all provided and all required

interfaces. In the composition we could now calculate the maximum

required stack segments of the product. A stack size that is specified too

small is another common fault leading to hard to debug errors in embedded

systems.

The third major use of models is found at execution time. Applications,

other components, and the RRE may inspect models at run time to determine

certain aspects of a component. Based upon this inspection different actions

may be taken. For instance, during the activation of an executable

component, the RRE may inspect the resource model(s) of the component to

determine whether the platform still has sufficient resources (RAM, CPU

cycles, etc.) to host the component.

Note that these models need to be accessible on the device, either as

target-loaded models or through a network connection to the host on which

they reside.

3.2 The Executable component model

3.2.1 Conceptual view

In Robocop all functionality is encapsulated in services that expose their

functionality through interfaces, called provided interfaces. Interfaces group

a number of semantically related named operations (a.k.a. procedure,

function, or method) that can be invoked by the user of the interface.

Interfaces are purely functional, i.e. they have no data members. Interfaces

are first class citizens, they are defined independently of the services; hence

multiple services can provide an implementation of the same interface

definition. Services, then, provide a coherent set of functionality. To

provide this functionality, services typically rely on access to other

functionality; this dependency is modeled through required interfaces.

Furthermore, each service has one special management interface, the service

interface. The service interface contains operations for obtaining provided

interfaces from the service, and for binding its required interfaces to the

7. A ROBUST COMPONENT MODEL 183

provided interfaces of other services. This is analogous to the CORBA

Home interface and allows 3rd party dynamic configuration of a network of

services.

In this architecture, the executable component primarily serves as a

container for one or more services (see figure 7-9).

Service 1

Service

interface

Provided

interface

Required

interface

Service 2

Component 1

Figure 7-9. Executable component - conceptual view

Robocop follows the common convention where the user of some

functionality is called the client and the provider is called thet server. For

product families it is important to minimize the coupling between clients and

the servers. Minimal coupling not only allows independent evolution of

clients and servers, it also supports product diversity by allowing clients and

servers to be reused in different configurations. The coupling between

clients and servers is minimized through a number of mechanisms, such as:

• Provided interfaces - the only7 way to interact with a service is through

its provided interfaces. Because interfaces are purely functional the

implementation details of the server are hidden from the clients: the

client cannot see -and therefore depend on- internal state variables etc.

Thus it is possible to safely replace a server implementation with a new

revision or even a totally different implementation without affecting the t

clients.

• Required interfaces and 3
rd

 party binding - explicitly modeling of

required functionality through interfaces that are dynamically bound to a

7 Services also have attributes; an attribute is a syntactical shortcut for an interface with get

and set value operations. Attributes are omitted from this discussion for briefness and

simplicity.

184 Chapter 7

provided interface by a 3rd party decouples clients from the instances of

the servers. Clients specify what they need but not who will provide it;

this is the responsibility of the 3rd party.

• Multiple interfaces - services support multiple interfaces, both for the

provided and for the required side. Architecturally this facilitates narrow,

well-defined interfaces. The operations in the service interface allow

run-time querying and adaptation.

3.2.2 Run-time view

Services are similar to the object-oriented concept of class: a service is a

template that must be dynamically instantiated. The instantiated services are

called service instances; they are analogous to objects in object-oriented

programming languages. Instantiation is the responsibility of the service

manager (a factory), which is an integral part of the executable component. r

For each service type in the component there is exactly one service manager.

The service manager can control how many service instances it will create.

For some services a singleton may make sense, while for others the number

of instances may be constrained by available resources.

3.2.3 The RRE and the Registry

The main responsibility of the RRE is to support the creation of service

instances by instantiating and providing access to service managers. This

functionality is made accessible to applications and services through an

Application Programming Interface called the client API. Because of II

bootstrap issues, this API will typically be available as a static or dynamic

library in the technology of the underlying platform.

The secondary responsibility of the RRE is to maintain the relations

between services and executable components on one hand, and between

executable components and their location in the underlying operating

system’s file system on the other hand. These relations determine which

component should be used for creating a specific service instance, and where

the executable file that contains that component can be located on the

platform. These relations are made persistent in the registry. The RRE

provides an optional API, the registration API, to update these relations. II

3.2.4 RIDL

In Robocop all interface definitions are specified in an Interface

Definition Language (IDL). The language is derived from CORBA IDL and

7. A ROBUST COMPONENT MODEL 185

is called Robocop IDL or RIDL for short. The major changes are the

omission of certain types that do not make sense in a resource constrained

consumer device (long long and long double) or that are unsafe and

thereby reduce robustness (any), and the addition of Robocop specific

constructs.

Using IDL, components, services, interfaces as well as data types and ff

constants can be specified8 in a programming language neutral way. A tool,

the RIDL compiler, reads the language and constructs programming

language specific source code skeletons for the various constructs at both thett

client and server side. These skeletons contain the boilerplate code for

creation and navigation of the component model artifacts; of course theset

still need to be manually edited to add the logic for the required

functionality.

3.2.5 Interfaces and Objects

The programming model is based on the use of interfaces to access

opaque objects. For this part, it faithfully follows the Microsoft COM model

(Box, 1998; Microsoft, 1995; Rogerson, 1997)

At runtime an interface is represented as an interface instance. An

interface instance refers to the implementation of the operations of the

associated interface definition and to the data upon which the operations act.

The interface definition specifies the operations and their signatures; it is the

interface type. The data are a private part of the object’s implementation and

maintain its state.

The interface instance is a private structure of the server object; it may

differ between different implementations (e.g. different services

implementing the same interface). Therefore the clients are not allowed to

know its structure; they only get a reference to the interface instance, aptly

named interface reference.

Multiple interface references may refer to the same interface instance, i.e.

multiple clients may access the object through that interface. Likewise,

multiple interface instances may refer to the same data, which means that the

object supports multiple interfaces. Figure 7-10 Shows a simple example of

a server object supporting two interface types, IntA and A IntB, accessed by

two clients, Client1 and Client2, where Client1 accesses both

interfaces and Client2 only accesses the IntB interface.

8 So actually IDL is a misnomer as higher-level constructs can also be specified. It is a

well-known acronym, however, which is the reason we use it. In Space4U RIDL will be

extended to an Architecture Description Language (ADL) which also specifies

compositions of services and their bindings.

186 Chapter 7

Client1

Interface

Reference

(type IntA)

Interface

Reference

(type IntB)

Client2

Interface

Reference

(type IntB)

Object

Interface

Instance

(type IntA)

Interface

Instance

(type IntB)

Interface

Implementation

(type IntA)

OperA1

OperA2

Instance

Data

x

y

Interface

Implementation

(type IntB)

OperB3

OperB1

OperB2

Figure 7-10. Interface Instances an References

Interface definitions are specified as a sequence of operations. Robocop

also supports the concept of interface inheritance. When interface

IDerived inherits from interface IBase, all operations of IBase are part of

IDerived and have the same semantics (when only taking IBase’s

operations into account). Interfaces can only inherit from a single other

interface, but the inheritance chain can be arbitrarily deep.

When an object can be accessed through multiple interface instances,

these instances must be of a different type. Clients can navigate from one

interface instance to another through the QueryInterface() operation,

which is part of the RcIUnknown9 interface. The QueryInterface()
operation takes an Interface ID (IID), which is a GUID for the interface type,

as parameter, and returns an interface reference to the object’s interface

instance. If the object does not support that interface type, it returns the

null reference. This is the equivalent of the dynamic cast operation in

object oriented programming languages. Multiple interfaces and interface

navigation are a very powerful mechanism to support product families in a

robust way. A client can safely and dynamically determine the server’s

capabilities, expressed through interfaces, and adapt its behavior. This

enables independent evolution of the client and server as well as different

compositions.

9 As a naming convention all Robocop specified global identifiers start with Rc to minimize

name clashes.

7. A ROBUST COMPONENT MODEL 187

Because multiple clients may use an object through multiple interfaces, it

is not feasible to have one client control the object’s lifetime (clients may be

unaware of each other). Therefore a distributed co-operative lifetime control

using reference counting is provided. Each interface supports the AddRef
and Release operations as part of the RcIUnknown interface. For each

additional interface reference that is created, AddRef() must be called.

Once a client is done using an interface reference, it must call Release() as

last operation through that reference. The object can maintain a running

count of the number of outstanding references. Once that count goes to zero,

there are no references and the object can destroy itself.

Every interface automatically inherits from RcIUnknown. Furthermore,

the Microsoft COM rules for the QueryInterface() operation also apply

to Robocop. Basically they are the identity rule where QueryInterface()
for RcIUnknown through any interface reference on an object must always

return the same interface reference value, and that QueryInterface() is

reflexive, symmetric, and transitive (Microsoft, 1995).

3.2.6 Binary standard

In the end, interface instances need to be called and implemented in a

programming language. Therefore the RIDL specification must be mapped

to -several- programming languages. For C and C++, a well-known

technique for mapping interfaces is v-tables: virtual function tables. For

each interface instance a table containing pointers to an implementation for

each of the operations is constructed. The object itself is a data structure that

has a pointer to such a table for each supported interface and holds data that

is private to the implementation. An interface reference is a pointer to the

v-table pointer in the object (see figure 7-11). Adopting this language

mapping automatically defines a binary standard10, allowing the client and

the server to be implemented in different programming languages.

10 Besides the v-table, some other elements must be specified. These include how to pass

exceptions, how to map in, out, and inout parameters, and the responsibilities for memory

(de-)allocation.

188 Chapter 7

IntRef IntA QueryInterface

AddRef

Release

OperB1

OperB2

OperB3

Interface

Reference

// implementation

result_t OperB1(int i)
{
 // code
}

result_t OperB2 ()
{
 // code
}

// etcetera

IntRef IntB

Object Interface

v-table

Interface

Implementation

 Server

IntA v-table

IntB v-table

y

x

Figure 7-11. V-table based binary interface standard (simplified)

3.2.7 Services

Services extend the fine-grained notion of objects to a higher level of

programming. The extensions include provided and required interface ports,

attributes, and a creation framework.

Nevertheless, service instances are also objects as described in the

previous section. A service must implement two management interfaces: the

generic RcIService service interface as well as an interface that is specific

for that service’s definition. This latter interface, often called the service

specific interface, extends the RcIService interface and can be used to

type-safely manage the service instance. The RIDL compiler automatically

generates the definition and the boilerplate implementation for this interface

from the service specification.

Because the service instance is an object, it may implement more

interfaces than just these two management interfaces. In fact, Robocop

defines a number of optional interfaces that a service may implement. One

such interface is e.g. RcIReflection, a generic interface for run-time

inspection of a service instance.

The provided and required interfaces introduced in the conceptual view

section are realized through ports, which are named interfaces on the service.

Ports are not identified by their interface type, but by a name. The scope of

the name is the service. This allows a service to provide and require

multiple interfaces of the same type, e.g. an SCar service might require four

IWheel interfaces on the LeftFront, RightFront, LeftRear, and

RightRear ports. The service specific interface defines type safe

operations to get a reference to a provided port as well as operations to bind

an interface reference to a required port. The names of these operations are

7. A ROBUST COMPONENT MODEL 189

derived from the port name. In the example of the wheels the SCar service

specific interface would contain the following operations11:

void bindToLeftFront(in IWheel wheel);
void bindToRightFront(in IWheel wheel);
void bindToLeftRear(in IWheel wheel);
void bindToRightRear(in IWheel wheel);

If the SCar service would also provide an ISteering interface on the

SteeringWheel port, the following operation would also be part of the

service specific interface:

ISteering getSteeringWheel();

Port operations can also be made available by the service through thea

optional RcIPorts interface.

iref getProvides(in string name);
void bindTo(in string name, in iref intf);

These latter operations are generic and can, for reasons of type safety,

only operate on the iref type, which is a reference to the RcIUnknown

interface. A third party can, in combination with the operations from

RcIReflection, use them to dynamically build a network without any

a-priori knowledge on the two parties being bound. An example of this is a

filter-graph manager that connects input and output ports of filters based on

their types.

3.2.8 Dynamic Behavior

Services need to be instantiated dynamically; this is the responsibility of

the RRE. The getServiceInstance() operation in the RcIClient
interface will, given a service ID in the form of a GUID, identify the

component that contains that service through the registry. The registry alsott

maintains the relation between the component ID and the ftt ile in the local fileff

system. Thus the RRE can, if necessary12, instantiate the executable

component in terms of the operating system. Depending on the operating

system this involves starting an executable, loading a DLL or some similar

operation.

The executable component must have one (static) interface

RcIComponent, the component interface, which the RRE can call. This

interface provides a.o. the initialize() operation, which gives the

11 RIDL syntax, and omitting the exception definitions for simplicity.
12 It may be that the executable component is already instantiated, e.g. as a shared library,

due to a previous call to getServiceInstance().

190 Chapter 7

component a chance to initialize any static data, acquire resources (files, HW

devices, etc) and do other run-ability checks.

After a successful call to initialize(), the RRE may call the other

operations in this interface. One of these operations is the

getServiceManager() operation which returns a reference to the service

manager interface RcIServiceManager. This interface has one operation,

getServiceInstance(), which returns a reference to the RcIService
interface of the created service instance.

This three-step approach, first instantiate and initialize the component,

then the service manager, and finally the service instance, allows for sanity

and resource checks with meaningful exceptions at every stage of the

creation process. If the optional resource management framework is

available on a device, the RRE can call it for additional checks, e.g. for CPU

resource usage, at well-defined points in the service creation process. This

increases robustness because at every step in the process the creator of an rr

entity and/or the entity itself are in full control. They have the option to

dynamically verify that all preconditions for their correct functioning are met

and, if they are not met, to fail in a prescribed and standardized way.

To facilitate the controlled tear-down of a component, the

RcIComponent interface also has operations to finalize and unload the

component. These operations are requests only as the component can not be

unloaded if there are outstanding references to any of its service instances.

The finalize() operation gives the component the option to ask its

clients to release these references. As the implementation of this is highly

component specific, there are no protocols or interfaces defined for how to

realize such behavior.

4. ROBOCOP AND STREAMING

Within a device streaming is the process of continuously obtaining, g

processing, and rendering data, typically multi-media data such as digitized

audio and video. For consumer products the input is usually from a network,

be it broadcast or IP based, or from a medium, e.g. a DVD, source, while the

output is often rendered on a screen and speakers. In many systems the

processing is done in a combination of specialized hardware blocks, DSP co-

processors, and software. In all but the simplest cases, a graph of processing

nodes (decoders, filters, encoders) is dynamically built up. When the input

data format changes, e.g. when going from stereo to surround sound, the

graph may need to change. This is also true if another use-case is selected,

e.g. when starting a picture in picture on the TV.

7. A ROBUST COMPONENT MODEL 191

In the implementation of a streaming framework the Robocop component

model can be used to great advantage. Each input, filter, or output node in

the processing graph can be realized as a service. This means that the nodes

can be dynamically created. When they are not needed anymore, they may

destroy themselves, thereby freeing all their resources. Note that the service

can contain a full software processing implementation or be an abstraction

for some underlying hardware block. The services can have a standard

control interface, e.g. for the basic commands of start, stop, and pause.

Filters needing more specialized control interfaces can provide these through

interfaces that either derive from the standard control interface or are

provided by a different port. Transferring datt a can also be done through

interfaces for input and output “pins” that can be implemented using ports.

The service specific interface can be used to type safely connect output pins

of one filter to the input pins of another filter. A “connection manager” can

use this capability to dynamically configure different (sub)graphs.

Obviously filters may be made resource or quality aware and fit in the

resource management framework. The download framework may be used to

update the device with new filter types, e.g. when a new coding or

compression standard becomes available.

ACKNOWLEDGEMENTS

The Robocop architecture and component model are the results from an

intense collaboration of many companies and people. I would like to thank

the key contributors to the component model explicitly; you were worthy

discussion partners (you know what I mean). From CSEM, Switzerland,

Jean-Dominique Decotignie and Philippe Dallemagne; from Nokia, Finland,

Petri Laine and Ronan Mac Laverty; from Philips, The Netherlands,

Chritiene Aarts and Magnus Therning, and from the Technical University

Eindhoven, The Netherlands, Michel Chaudron.

Furthermore, I would like to extend a special thanks to Jean Gelissen and

Rob van Ommering, both at Philips Research. Jean deserves thanks because

he tirelessly organized and managed both the Robocop and Space ITEA

projects. Rob because he helped me with understanding software product

families and because he constantly challenges me in various ways through

his boundless creativity.

192 Chapter 7

REFERENCES

Box, D., 1998, Essential COM, Addison Wesley

ITEA, http://www.itea-office.org

Microsoft, 1995, COM Specification, http://www.microsoft.com/com/resources/comdocs.asp

Robocop public website, 2003, http://www.extra.research.philips.com/euprojects/robocop

Rogerson, D., 1997, Inside COM, Microsoft Press

Space4U public website, 2004, http://www.extra.research.philips.com/euprojects/space4u

Chapter 8

ROBUST VIDEO STREAMING OVER WIRELESS

IN-HOME NETWORKS

Jeffrey Kang, Harmke de Groot, Peter van der Stok, Dmitri Jarnikov, Iulian

Nitescu, and Felix Ogg
Philips Research Laboratories, Eindhoven, The Netherlands

Abstract: More and more consumer devices in future homes will be inter-connected via

wireless networks. However, due to their limited and fluctuating bandwidth

and susceptibility to interference, the transport of content with real-time

characteristics, such as video, is a problem. This paper presents a Quality-of-

Service (QoS) architecture framework to achieve smooth, undisturbed video

streaming over wireless networks, where still sufficient output quality is

achieved even when the network conditions deteriorate. Our solution combines

two techniques to address wireless video streaming issues, namely scalable

video coding and network adaptation. The feasibility of our framework is

proven by implementing receiving and decoding Signal-to-Noise Ratio (SNR)-

scalable video streams on a resource-constrained consumer terminal platform.

Extensive visual experiments and numerical measurements show that it is

possible to achieve smooth output video, even with heavy interference from

other electronic devices.

Key words: Wireless network, scalable video, streaming, Quality-of-Service, framework,

MPEG, packet scheduling

1. INTRODUCTION

The vision of the Connected Home, a broadband powered environment of

interconnected devices, experiences and services, is becoming more and

more prominent (Digital Living Network Alliance, 2004). The Connected

Home is typically characterized by a central broadband connection (e.g.

xDSL) to the outside world, and a closed network inside the home (typically

Ethernet based) with low-bandwidth communication. The realization of this

vision is facilitated by the rapid development of wireless networking

193
P. van der Stok (ed.),
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 193-212.
© 2005 Springer. Printed in the Netherlands.

194 Chapter 8

technology (e.g. IEEE 802.11, Bluetooth, Zigbee). Indeed, having a wireless

in-home network replaces dedicated connectors and wiring between different

devices (e.g. TVs, Digital Versatile Disk (DVD) players and Personal Digital

Assistants (PDA)), allowing them to interact with each other and exchange

information and content with each other, such as music and movies. Such

content is vital for offering Home Entertainment, an important function for

in-home networks. However, using a wireless network also introduces

potential problems, especially for applications which require real-time

delivery of content. The cause of such problems is twofold: 1) the network is

a shared medium with limited resources (e.g. bandwidth); if too many

applications are competing for the network, then the minimum bandwidth

required for a certain application can no longer be guaranteed; 2) the

wireless network is susceptible to interference from household appliances

(e.g. microwaves (Kamerman and Erkocevic, 1997) and DECT phones) and

other networking (e.g. Bluetooth) devices, leading to rapidly fluctuating

bandwidth, and a high data loss and corruption rate. In case of video, this

results in serious artifacts such as hick-ups and frozen or corrupted images,

which are unacceptable for the end user.

Scalable video coding (Van der Schaar and Radha, 2003) is a technique

that can be used to cope with the above problems. The video sequence is

encoded in a number of sub-streams, or layers, including a base layer (BL)r

containing acceptable quality video, and one or more enhancement layers

(ELs), which further enhance the quality of the base layer. We make sure

that the base layer can be independently decoded, then when the network

bandwidth drops and only the base layer has been received, the decoder can

still produce output images without interruptions and artifacts. Furthermore,

by controlling the number of layers to display, we can achieve graceful

degradation of the output quality, provided that the base layer is always

received. In addition to the bandwidth limitations, the number of layers

actually decoded and shown is also constrained by the available processing

power inside the consumer terminal. For achieving the optimal perceived

quality of service (QoS), a balance should be found between the terminal

QoS and the network QoS (Jarnikov, 2003).

In this chapter, we present an architecture to transmit scalable MPEG-2

(Motion Picture Experts Group) video over a wired or wireless network, and

decode the layers on the receiver side. Here we present the work on network

QoS, where the number of layers actually displayed may vary at run-time

depending on the arrival of the layers over the network. The feasibility of the

scalable video scheme in a consumer product is shown by implementing the

receiver on a resource-constrained consumer platform.

8. ROBUST VIDEO STREAMING 195

Section 2 gives an overview of related work in this area. Section 3

describes the basic concepts of scalable video and outlines different

approaches. Section 4 describes our experimental hardware set-up. The

architectures of our sender and receiver are described in Sections 5 and 6,

respectively. Experimental results are presented in Section 7. This paper

ends with conclusions and future work.

2. RELATED WORK

The concept of scalable video coding already exists for quite some time,

and numerous scalable video coding schemes have been proposed (e.g. Tan

and Zakhor, 1999, Wu, F. et al., 2001, McCanne et al., 1996, Domanski et

al., 2000). The type of coding scheme is not the focus of this paper, rather

we concentrate on the architecture to allow smooth wireless streaming and

decoding of scalable video. Scalability is part of the MPEG-4 standard

(Radha et al., 2001). This standard has a scalability scheme which is very

efficient in terms of bandwidth overhead. Our work makes use of the

MPEG-2 standard, because currently MPEG-4 is not yet a commodity, and

few off-the-shelf MPEG-4 encoders and decoders exist for consumer

platforms.

In Basso et al., 1999, an architecture for real-time delivery of MPEG-2

streams is described. Error concealment techniques are used to cope with

network packet losses. This architecture is targeted towards wired IP

networks and only handles non-scalable streams.

Two rate-based congestion control algorithms are evaluated by Mohsin

and Siddiqi (2002). Scalable video is used for flow control. Both schemes

rely on a feedback channel from the receiver to the sender, resulting in a

long delay in adapting to the network conditions. Moreover, in a congested

network even the feedback reports may get lost. Our approach to adapting to

fluctuating networking conditions does not require a return channel and

therefore is able to quickly adjust to the fast changing network conditions.

A jointly designed video coding, packetization and encryption technique

was presented by Wee and Apostolopoulos (2001) to address also security

issues over wireless networks.

Three techniques to address wireless video transmission issues are

discussed and combined in a high-level framework by Wu, D. et al. (2001),

i.e. scalable video, adaptive network services, and network-aware end

systems. The work described in this paper comprises the design and

implementation of the first two techniques and leaves the third one as future

work.

196 Chapter 8

3. SCALABLE VIDEO

Scalable video coding is the process of encoding video frames into a base

layer and one or more enhancement layers. There are different ways to

encode these layers. The basic ones are summarized below.

• Temporal scalability. In this encoding scheme, the base layer is encoded

without any bi-directionally predicted frames (B-frames). The B-frames

are put in the enhancement layer.

• SNR scalability. This scheme uses the errors introduced by quantizing

the DCT (Discrete Cosine Transform) coefficients in the base layer to

encode the enhancement layer. The enhancement layers enhance the

signal-to-noise ratio (SNR) of the video, hence the name.

• Spatial scalability. The base layer is encoded with a lower spatial

resolution. Displaying it on a display with a higher resolution requires

up-scaling the decoded images, the errors introduced during which are

corrected by the enhancement layers. The ELs also contain some

additional information. This technique can also be used to cope with

different display resolutions.

• Data partitioning. This approach is similar to SNR scalability. The

difference is that here the quantized DCT coefficients are split up into

two bit streams, one containing lower frequency (critical) coefficients

and the other containing the higher frequency coefficients.

The above scalability schemes are supported in MPEG-2, and there exist

also scalability schemes which combine different mechanisms, see e.g.

Domanski et al., 2000. A fairly recent form of scalability is Fine-Granular

Scalability (FGS), as proposed by Radha et al. (2001). This scheme uses a

single enhancement layer. The transmitter can decide to transmit portions of

the enhancement layer, depending on the available network bandwidth. FGS

scalability has been standardized in MPEG-4. We made a comparison

(Jarnikov, 2003) between the above scalability schemes in terms of

implementation complexity, error propagation risk, etc. We selected the

SNR-scalability approach as the implementation within our architecture.

Figure 8-1 shows a MPEG-2 compliant SNR-scalable video architecture for

encoding a reference video stream into a base layer and an enhancement

layer. The scalable stream produced by such an encoder is not very suitable

for wireless transmission. This is because the encoder uses information from

both the base layer and the enhancement layer (input to the IDCT block) for

motion estimation for encoding the base layer. This means that any error

occurred during transmission of the enhancement layer will also affect the

base layer in the decoding process, leading to visible artifacts (especially if

8. ROBUST VIDEO STREAMING 197

the error occurs in an I- or P-frame). Therefore we propose a slightly

modified scalable encoder architecture. The major differences with the

MPEG-2 compliant encoder are:

1. There is no dependency in the base layer on the enhancement layer,

making the base layer stream completely independent. Removing this

dependency prevents any errors in the enhancement layers from

propagating to the base layer.

2. Each individual layer is encoded as a separate, MPEG-2 compliant

stream. This allows us to treat and transmit each layer independently and

facilitates the implementation of the decoder, since standard off-the-shelf

MPEG-2 decoders can be used to decode the individual layers.

3. We encode only I-frames in the enhancement layers. This reduces the

impact of frame errors in the enhancement layers, otherwise an error in

an I-frame would propagate to later frames.

Our scalable encoder is shown for three layers in Figure 8-2. Contrary to

Figure 8-1, our approach has a lower coding efficiency, hence a higher

overall bit-rate is required for the same video quality (the overhead of our

coding approach can be seen in Table 8-1). The resulting scalable video

structure is depicted in Figure 8-3 (the arrows indicate inter-frame/layer

dependencies). After decoding, the frames of the layers can be added

together to reconstruct the high-quality images. Our scalable decoder

architecture is presented in Section 6.2.

DCT Q VLC

IDCT IQ

-

+

BL

+

Motion

Compensation

Frame

memory

Motion

estimation

Original

video

Motion

vectors

-

Q

IQ

VLC EL

Mux

MPEG-2 compliant SNR-scalable video encoder architecture.

198 Chapter 8

4. HARDWARE SET-UP

Our hardware set-up is shown in Figure 8-4. As the bulk of our work is

focused on the network video receiver and on proving that scalable video is

feasible on a CE terminal, the sender side in our set-up was still a PC for the

moment. We expect that a sender can be a powerful in-home server anyway,

storing all the media content in the home centrally. The scalable video

receiver is a resource-constrained consumer set-top-box based on the

DCT Q VLC

IDCT IQ

-

BL

+

Motion

Compensation

Frame

memory

Motion

estimation

Original

video

Motion

vectors

-

Q

IQ

VLC EL1

-

Q VLC EL2

Mux

Figure 8-2. Modified SNR-scalable video encoder architecture.

I B B P PB B

I I I I II I

I I I I II I

BL

EL1

EL2

Figure 8-3. SNR-scalable video frames.

8. ROBUST VIDEO STREAMING 199

Nexperia platform (PNX8525), the heart of which is formed by a MIPS and

a TriMedia processor. The STB is connected to a TV set for display. The

storage server PC is equipped with a Cisco wireless Ethernet card (IEEE

802.11b) for wireless transmission. The wireless communication was

achieved by using a Linksys wireless access point with built-in router, which

was connected via wired Ethernet to the STB. Even though the access point

is not shared with machines outside our set-up, there are other public

wireless access points spread throughout the building, which cause some

interference during 'normal' circumstances. In a typical in-home network

environment the interference would come from devices such as wireless

phones and Bluetooth devices. To really test the performance of our scalable

video approach with heavy disturbance from a realistic device in the home,

we also placed a microwave in the vicinity of the access point. The

experimental results are presented in Section 7.

5. SENDER ARCHITECTURE

The sender side of our wireless streaming architecture has two important

elements. First, the network protocol we use for transporting the video

streams is RTP (Real-time Transport Protocol), described by Schulzrinne et

al. (1996). This is an application-level protocol, which makes use of UDP

(User Datagram Protocol, described by Postel (1980)). RTP is preferred over

TCP (Transmission Control Protocol, described by Postel (1980)) because it

takes real-time delivery of packets into account and will not retransmit

packets. TCP provides reliable delivery by acknowledgments and packet

retransmission, however the number of transmissions may exceed the

wireless network capacity with as consequence that the deadlines of the

Sender (PC)
Access point

+ router

Scalable

MPEG-2

Microwave

Receiver (STB) TV

Figure 8-4. Hardware set-up.

200 Chapter 8

packets are not met anymore. The architecture of our RTP sender is

described in Section 5.1. Another important aspect is the use of an

appropriate network packet scheduling scheme, in order to achieve that the

base layer comes through as much as possible even when the network

bandwidth drops. This packet scheduler is discussed in Section 5.2.

5.1 RTP sender architecture

For sending MPEG-2 video elementary streams using RTP, the streams

have to be packetized in RTP packets in a special way, which has been

standardized in RFC 2250 (Hoffman et al., 1998). Figure 8-5 shows our

sender architecture for three layers (BL + 2 ELs). Each layer is stored in a

separate file, and the path from file to the network consists of the following

chain of processing steps: 1) a file source which reads from the file, 2) a

RFC2250 encoder which transforms the MPEG-2 video to an RFC 2250r

compliant format, 3) a RTP MPEG encoder which packetizes the video inr

RTP packets, and 4) a UDP sender which sends the RTP packets using ar

UDP socket. Such a chain can be instantiated multiple times depending on

the number of layers. Each chain is running as a separate thread, and a

timestamp-aware scheduling policy is used to make sure that the packets

with the same timestamps in all three layers are sent (roughly) at the same

time. A more detailed description of the network sender is given by Meijer

(2004).

5.2 Network packet scheduling

An important pre-condition of our scalable video approach is that even in

the case of a drop in bandwidth, the base layer will (almost) always be

received, to still produce some video output. Furthermore, we would like to

File

source

RTP
MPEG
encoder

RFC2250

encoder

UDP

sender

Network

BL Thread 1

File

source

RTP
MPEG
encoder

RFC2250

encoder

UDP

sender

Network

EL1 Thread 2

File

source

RTP
MPEG
encoder

RFC2250

encoder

UDP

sender

Network

EL2 Thread 3

Figure 8-5. RTP network sender architecture.

8. ROBUST VIDEO STREAMING 201

achieve that the base layer is received before the enhancement layers, since

they are only useful if the base layer is already there. We try to enforce this

as much as possible by incorporating a prioritized network packet

scheduling scheme on the sender side. By assigning a higher priority to the

base layer than the enhancement layers, it is assured that the frames in the

base layer are always sent before the corresponding frames in the

enhancement layers, in the case that they are buffered in the transmission

queues when the network bandwidth drops. Having this prioritized

scheduling scheme helps making sure that the video remains smooth in case

of decreased bandwidth, but there is one problem. Occasionally, the network

bandwidth may drop for a longer period of time. Such a temporary drop may

have many causes, for example when a Bluetooth device is turned on, or by

Rayleigh fading (caused by interference of the main signal by the same

signal arriving over different paths) when walking around with a wireless

device.

When this occurs, the transmitter queues for the enhancement layers will

get fuller since only the base layer is sent. Then, when the bandwidth

increases again, all the (out-of-date) packets in those queues have to be sent

out first, therefore it takes some time before the enhancement layers catch up

and high-quality video is displayed. Therefore, we present a new packet

scheduling scheme called FirmPrio. In addition to prioritized packet

scheduling, FirmPrio also takes delivery deadlines into account, and it will

drop packets that can never be received in time. This saves network

bandwidth, and also allows the video to recover faster because out-of-date

packets are dropped. Such network adaptation service makes it possible to

cope with fast varying network conditions without the need for a feedback

channel from the receiver. It is possible to assign different deadlines to the

layers. The relative importance of the base layer is also reflected here: the

base layer stream is assigned an infinite deadline such that it will never be

dropped; the assigned deadlines decrease for each higher enhancement layer.

FirmPrio is described in more detail in Ogg, 2002.

6. RECEIVER ARCHITECTURE

The functionality of the receiver is partitioned into two parts: 1) the

reception of the MPEG-2 scalable video streams, and 2) decoding the

individual streams and adding them together to produce the final output.

These parts were mapped onto the MIPS and TriMedia of the PNX8525,

respectively. They are described in Sections 6.1 and 6.2.

202 Chapter 8

6.1 RTP receiver architecture

Figure 8-6 shows the architecture on the MIPS side for receiving and

parsing three video layers encapsulated in RTP packets. From the RTP point

of view, the three layers are received in separate RTP sessions, each through

a different port. Each incoming stream undergoes a number of processing

steps before being fit to be passed to the MPEG-2 decoder:

1. RTP reception: the RTP packets are received via a UDP socket.

2. RTP depacketization: the RTP packets are split into the fixed RTP header

and the RTP payload.

3. Frame construction: this step collects the RTP packets that belong to the

same frame. It does so by examining the timestamps of the incoming

packets; the packets with the same timestamp belong to the same frame.

The frame constructor also checks for missing RTP packets by checking

the RTP sequence numbers. Reordered and duplicated packets are

discarded. If it is detected that one or more packets are missing, then the

frame constructor tries to find out to which frame they belong and will

discard the whole frame. This is the simplest error concealment

technique; more sophisticated techniques can also be implemented.

Discarding incomplete frames early also saves communication bandwidth

between the MIPS and the TriMedia. The output of the frame constructor

consists of the frames, frame sizes (in bytes), and the frame numbers

(derived from the RTP timestamps).

The above described steps are executed together as one sequential thread,

which is instantiated for each video layer. The output of each layer is stored

in a circular buffer for further processing by the layer synchronizer. This

component (running as one thread) reads from each of the input buffers (one

per layer), one frame at a time, and sends the frames to the decoder (Section

6.2). It does so in a blocking way for the base layer, and in a polling manner

RTP

depacketizer

RTP

receiver

Frame

constructor
BL

Thread 1

RTP

depacketizer

RTP

receiver

Frame

constructor
EL1

Thread 2

RTP

depacketizer

RTP

receiver

Frame

constructor
EL2

Thread 3

Layer

synchronizer

Thread 4

Circular bufferCircular buffer

Circular bufferCircular buffer

Circular bufferCircular buffer

Figure 8-6. RTP network receiver architecture.

8. ROBUST VIDEO STREAMING 203

for the enhancement layer buffers. If the enhancement layer buffer is empty

(because packets and hence frames were dropped earlier in the chain) then it

will be skipped and the next layer is read. Performing blocking reads for the

base layer assures reception of the base layer at all cost, otherwise no output

can be produced even if the enhancement layers have been received. The

layer synchronizer also makes sure that the frames of the layers arrive at the

decoder more or less in sync. Although the probability of one layer arriving

too far behind the others is extremely small due to our packet scheduling

scheme, the layer synchronizer provides a safety net to prevent that such a

situation occurs and the layers cannot be combined after decoding to achieve

sensible output.

6.2 Scalable decoder architecture

There are a number of possible implementations of the SNR-scalable

decoder. They are discussed in more detail in Jarnikov, 2003. The layers

produced by our encoder can each be decoded by a standard MPEG-2

decoder. For three layers, this means that three decoders have to be

instantiated. Our scalable video decoder architecture is shown in Figure 8-7.

Three MPEG-2 decoding chains can be identified, where the enhancement

layer decoders are simplified because we only encode I-frames in those

layers (Section 3). The addition of the layers works pixel-wise, and takes

place after the decoding. This architecture is not optimal in terms of memory

requirements, because the decoded frames of all layers must be temporarily

stored. In addition, if implemented in software, it consumes more processor

cycles because three separate IDCTs are required whereas only one is

enough if the addition takes place before the IDCT. However, we chose such

architecture for our implementation because our PNX8525 platform is

equipped with a hardware MPEG-2 decoder, which is capable of decoding

up to six streams at the same time. Therefore, the overhead of the extra

IDCTs is nihil. Note that despite the fact that the encoder and decoder are

not symmetrical in terms of the number of DCTs/IDCTs (one in the encoder

and three in the decoder), the decoded stream is still correct due to the

property that the DCT transformation of the sum of the functions is equal to

the sum of the DCT transformations of each function.

204 Chapter 8

The adder module works based on interrupts, which are raised by the

video output unit every 40 ms (corresponds to a frame rate of 25 frames per

second). During each interrupt, it tries to read from all three layers, perform

the summation, and send the result to the video output. It also keeps track of

an internal timer to judge whether the frames of the layers are in sync, and

that they are on time to be displayed. Late frames will be dropped. The adder

always blocks for the base layer frame, and polls for the other layers. This

approach is similar to the layer synchronizer on the network side (Section

6.1). The adder will add and show a frame of a particular layer only if: 1) it

is on time with respect to the internal timer, and 2) the base layer and all the

lower enhancement layers have arrived. For instance, if a frame that belongs

to EL2 has arrived and the corresponding frame in EL1 has not, it will still

be dropped. With FirmPrio we try to minimize the probability that this

happens by assigning lower priorities to higher layers, such that they will be

dropped more often than lower layers when the network bandwidth is not

sufficient. When the adder cannot produce any output, the previous frame is

repeated by the display.

7. EXPERIMENTAL RESULTS

We used a number of video test sequences to evaluate our scalable video

approach over a wireless network. The 'Matrix' sequence is characterized by

fast movements and lots of scene changes, while the 'Penguins' sequence has

slow movements and fewer scene changes. Several non-scalable reference

sequences had been generated, at different bit-rates. We then encoded the

Demux VLD IQ IDCT

VLD IQ IDCT

VLD IQ IDCT

BL

EL1

EL2

Frame

memory

Motion

compensation

Motion

vectors

+

+
Enhanced

video

Figure 8-7. Scalable decoder architecture.

8. ROBUST VIDEO STREAMING 205

scalable sequences, which were comparable with their reference counterparts

in terms of quality, but with a significantly higher overall bit-rate (due to our

coding scheme). All sequences had been encoded with a GOP size of 15 and

consist of 8100 frames (almost 5.5 minutes). The sequence headers are

repeated every 3 GOPs. This improves the robustness of the system because

the decoder is able to re-synchronize itself if the first frame (which usually

contains the sequence header) has been dropped or if no frames have been

received for a long period of time. The characteristics of the test sequences

are summarized in Table 8-1. The overhead of our scalable video coding

technique can be seen here. For instance, sequence ref1 has a bit-rate of 3.5

Mb/s, while that of its corresponding (i.e. with about the same quality)

scalable counterpart (scal1) is 4.5 Mb/s.

Figure 8-8 depicts the number of RTP packets which the different test

sequences are packetized into. The numbers given for the scalable sequences

are the sum of the number of packets of all three layers. Figure 8-9 depicts

the packet distribution among the different layers.

Table 8-1. Test sequences (‘Matrix’ and ‘Penguins’).

Bit-rate (Mb/s)
Sequences

Total BL EL1 EL2

Ref1 3.5 n.a. n.a. n.a.

Ref2 3.75 n.a. n.a. n.a.

Ref3 4 n.a. n.a. n.a.

Scal1 4.5 1.75 1.5 1.25

Scal2 5 2 1.5 1.5

Scal3 5.5 2 2 1.5

206 Chapter 8

Figure 8-10 shows the packet allocation over the different frames for one

of the reference sequences. One can see that different numbers of packets are

assigned to the I-, P- and B-frames, where the highest peaks in the figure

indicate the I-frames, followed by P-frames. The B-frames get the least

Figure 8-8. Number of packets per sequence.

Figure 8-9. Number of packets per layer.

8. ROBUST VIDEO STREAMING 207

number of packets. Figure 8-11 shows the packet allocation over frames for

the layers of one of the scalable sequences.

Figure 8-11. Packet allocation over frames for a scalable sequence.

Figure 8-10. Packet allocation over frames for a reference sequence.

208 Chapter 8

For the visual perception of the different sequences streamed over the

wireless network, several user tests have been conducted. They are reported

in Chapter 9 of this book. Here we present numerical measurements to back

up the visual experiences.

The measurements for each sequence were performed 15 times, spread

over different periods during the day, in order to reduce the effect of

temporarily high disturbances (e.g. due to busy traffic on other WLAN

equipment). Figure 8-12 shows the average percentage of lost packets and

the corresponding percentage of frames which have not completely been

received (i.e. of which at least one packet was lost) and hence have been

dropped for the reference sequences. Note that the percentage of missing

frames is much higher than the percentage of missing packets due to

discarding of incomplete frames. Furthermore, the perceived video quality

may be much lower than is suggested by the number of missing frames,

because one missing frame may lead to multiple distorted frames on the

display, since it may be used as a reference frame for the rest of the GOP

(I/P-frames). Figure 8-13 shows the results for the scalable sequences. As

can be seen, the number of packets lost and the resulting number of frames

lost in the base layer is nearly zero for all the sequences, resulting in video

output without distortions. Furthermore, as the total bit-rate of the video

stream is increased (from scal1 to scal3), EL2 is affected first, then EL1, and

the BL is not affected.

We also performed some experiments to evaluate the consequence of

interference from the microwave. To this end, a reference sequence was

streamed for three minutes, where after the first minute the microwave was

turned on to full power for a period of one minute. A plot of the amount of

completely received frames over time is shown in Figure 8-14. It can be seen

Figure 8-12. Measured average packet loss (left) and frame loss (right) for the reference

sequences.

8. ROBUST VIDEO STREAMING 209

that under normal circumstances most of the frames arrive at the receiver

side, but when the microwave was on the number of complete frames

dropped dramatically, and with heavy variations. This reveals the burstiness

of the microwave disturbance.

The same experiment was done for the scalable sequence, and the result

is shown in Figure 8-15. The effect of the disturbance can be clearly seen

here: the base layer is not affected at all, the enhancement layers are dropped

Figure 8-13. Received complete frames over time for a reference sequence, with microwave

interference.

Figure 8-14. Measured average packet loss (left) and frame loss (right) for the scalable

sequences.

210 Chapter 8

more on average, and with higher variations.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an architecture for achieving smooth,

high-quality video over wireless networks by making use of scalable video

coding. Both the sender and the receiver design have great impact on the

output quality. We have chosen an encoding scheme which, at the expense

of a lower coding efficiency, facilitates the decoder implementation and

minimizes error propagation in the enhancement layers, and allows different

layers to be treated separately during transmission. This allows us to apply a

prioritization scheme between the layers at the sender side, such that in case

of a drop in network bandwidth the base layer will be affected much less

than the enhancement layers, thereby achieving smooth wireless video. In

addition, being able to drop late packets allows for quickly reaching the

highest possible quality after recovering from a temporary drop in the

network bandwidth. At the decoder side, a mechanism to properly deal with

missing packets and frames and to synchronize the layers is needed.

Experiments showed that it is possible to achieve output video with nearly

no distortions even with heavy interference from the microwave. Our

Figure 8-15. Received complete frames over time for a scalable sequence, with microwave

interference.

8. ROBUST VIDEO STREAMING 211

solution is suitable for dealing with fast bandwidth changes (in the order of

tens of milliseconds), no matter what the cause is.

Future work involves adding feedback mechanisms from the receiver to

the sender, for instance to notify the sender about the number of layers

actually received over a period of time. This could allow the sender

application to adapt to the network conditions (Wu, D. et al., 2001) with a

larger time constant by changing the number of layers to transmit, or by

adjusting the sizes of the layers by transcoding. Also, it is possible to include

better error protection mechanisms for the base layer to reduce artifacts even

further, for instance by applying (real-time variants of) TCP (e.g. as

proposed by Liang (2003)) instead of RTP. Designing a controller which in

addition to the network QoS, also takes the terminal QoS into account, is

also subject of future work. Experiments with a portable wireless receiver

(instead of the stationary STB) showed that only the base layer was

displayed. This can be explained by the fact that in this setting, the video

travels along two wireless paths, namely first from the sender to the access

point, and then from the access point to the portable receiver. The

transmission between the sender and the access point is regulated by

FirmPrio, but the transmission between the access point and the receiver is

not. We also want to investigate how to install FirmPrio on the access point

in order to achieve high-quality video also on the portable receiver.

Furthermore, we want to investigate alternative coding methods to reduce

the scalable coding overhead.

ACKNOWLEDGEMENTS

We would like to thank Koen Vrielink and Leon van Stuivenberg for

helping us with the initial hardware set-up, Ralph Meijer for delivering the

RTP sender, Tim Everett for providing the STB platform streaming

framework and the MPEG-2 decoder implementation, and Michael van

Hartskamp for his initial work on wireless video streaming. Further thanks to

Michael van Hartskamp and Paul Stravers for their thorough review of this

paper.

REFERENCES

Basso, A., Cash, G.L., and Civanlar, M.R., 1999, Real-time MPEG-2 delivery based on RTP:

Implementation issues. In Signal Processing: Image Communications, vol. 15, Elsevier.

Digital Living Network Alliance, 2004. DLNA Overview and Vision White Paper.

Downloadable from http://www.dlna.org.

212 Chapter 8

Domanski, M., Luczak, A., and Mackowiak, S., 2000, Spatio-temporal scalability for MPEG

video coding. In IEEE Transactions on Circuits and Systems for Video Technology, vol.

10, pp. 1088-1093.

Hoffman, D., Fernando, G., Goyal, V., and Civanlar, M., 1998, RTP Payload Format for

MPEG1/MPEG2 Video. RFC 2250, Network Working Group.

Jarnikov, D., 2003, Towards Balancing Network and Terminal Resources to Improve Video

Quality. SAI Technical Report, Eindhoven University of Technology.

Kamerman, A., and Erkocevic, N., 1997, Microwave Oven Interference on Wireless LANs

Operating in the 2.4 GHz ISM Band. In Proceedings of IEEE PIMRC '97.

Liang, S., 2003, Unifying the Transport Layer of a Packet-Switched Internetwork. PhD thesis,

Stanford University.

McCanne, S., Jacobson, V., and Vetterli, M., 1996, Receiver-driven Layered Multi-cast. In

IEEE Transactions on JSAC, vol. 16, no. 6.

Meijer, R., 2004, Volund - a research vehicle for networked video streaming. MSc. Thesis,

Eindhoven University of Technology.

Mohsin, W., and Siddiqi, M., 2002, Scalable Video Transmission and Congestion Control

using RTP. EE384B Multimedia Networking and Communications, Department of

Electrical Engineering, Stanford University.

Ogg, F.H.G., 2002, Smoother Streaming over Wireless Networks - Real-time Scheduling the

IP Transport of Video Data. MSc. Thesis, Eindhoven University of Technology.

Philips Semiconductors Nexperia website,

http://www.semiconductors.philips.com/products/nexperia/digital_video/pnx8525.

Postel, J., 1980, User Datagram Protocol. RFC 768, Information Sciences Institute.

Postel, J., 1981, Transmission Control Protocol. RFC 793, Information Sciences Institute.

Radha, H., van der Schaar, M., and Chen, Y., 2001, The MPEG-4 Fine-Grained Scalable

Video Coding Method for Multimedia Streaming over IP. In IEEE Transactions on

Multimedia, vol. 3, no. 1.

Van der Schaar, M., and Radha, H., 2003, Scalable Video Coding - Principles, Algorithms

and Standards. Elsevier Science Ltd.

Schulzrinne, H., Fokus, G.M.D., Casner, S., Frederick, R., and Jacobson, V., 1996, RTP: A

Transport Protocol for Real-Time Applications. RFC 1889, Internet Engineering Task

Force, A/V Transport Working Group.

Tan, W., and Zakhor, A., 1999, Real-Time Internet Video Using Error Resilient Scalable

Compression and TCP-Friendly Transport Protocol. In IEEE Transactions on Multimedia,

vol. 1, no. 2. pp. 172-186.

Wee, S., and Apostolopoulos, J., 2001, Secure scalable video streaming for wireless networks.

In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing.

Wu, D., Hou, Y., and Zhang, Y.-Q., 2001, Scalable Video Coding and Transport over

Broadband Wireless Networks. In Proceedings of the IEEE, vol. 89, no. 1.

Wu, F., Li, S., and Zhang, Y.-Q., 2001, A Framework for Efficient Progressive Fine

Granularity Scalable Video Coding. In IEEE Transactions on Circuits and Systems for

Video Technology, vol. 11, no. 3.

Chapter 9

PERCEIVED QUALITY OF WIRELESSLY

TRANSPORTED VIDEOS

Reinder Haakma, Dmitri Jarnikov, and Peter van der Stok
Philips Research Laboratories, Eindhoven, The Netherlands

Abstract: Wireless networking technology will interconnect the consumer devices in the

future homes. The capacity of the wireless technology is just sufficient to

transport one or two high quality videos. When the wireless transmission is

perturbed by the switching on of a microwave or a Bluetooth telephone, many

artifacts appear on the screen during the display of the video. Two “scalable

video” techniques are proposed to remove the artifacts. These techniques have

a different effect on the quality of the video as perceived by the user. An

experiment is presented which evaluates the effects of the two techniques

dependent on their settings. Conclusions are drawn on the best setting

dependent on the operational transmission conditions and the transmitted

video.

Key words: Wireless network, packet loss, scalable video, robust video streaming, Quality-

of-Service, MPEG, perceived video quality.

1. INTRODUCTION

The vision of the ‘Connected Home’ is based on the presence of a home

network. This home network connects PCs, telephones, and consumer

electronic devices. It is expected that the larger part of the network will be

wireless to minimize the required amount of cabling. A disadvantage of the

wireless medium is its sensitivity to the transmission conditions, which lead

to possibly bursty data losses during communication. Wireless networks

loose data packets more often than their wired counterparts. In case video is

streamed over a wireless network, the data loss may well result in an

unacceptable video quality. Losses can be recuperated from by resending

213
P. van der Stok (ed.),
Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices, 213-239.
© 2005 Springer. Printed in the Netherlands.

214 Chapter 9

lost fragments. Under this common technique, the throughput of the network

may become less than the required throughput, also leading to an

unacceptable quality decrease.

One way of dealing with data losses is buffering. In the extreme, the

entire video is copied to a hard-disk drive of the destination device. After

arrival of the complete video, it can be played out without quality problems.

However, for life broadcasts this is not an appropriate solution. A less

extreme approach is to buffer part of the video, say half a minute to a few

minutes, to cater for the changing throughput. The disadvantage of this

solution are delays in life broadcasts, slow zapping from channel to channel

and, last but not least, a higher bill of material.

In this article, we explore solutions for devices that only buffer two to

three video frames in the local memory. In this situation, scalable video

coding algorithms are positioned to reduce artifacts manifest in the rendered

video due to packet loss. The scalable video code makes it possible to

control what part of the video is lost under adverse transmission conditions.

The various scaling techniques influence the rendered video on different

technical aspects, such as the image quality of individual video frames or the

video frame rate. This leads to different types of losses in video quality. In

this paper, we investigate the relation between these technical aspects and

the overall viewer-perceived video quality.

The results of this chapter represent the first step to the understanding

how different encoding techniques may affect the perceived quality. This

step investigates a steady state environment in which a video with a constant

bit-rate is streamed. The chapter investigates to what extent, within the given

steady-state, viewers perceive the effect of different loss-control techniques.

An experiment is presented that measures the quality perception of the users

as function of the chosen technique. This will be the base to investigate in a

later stage how perturbations in time affect the perceived quality of

wirelessly transported video.

The chapter starts with an explanation of the video coding and network

transport of the video as far as needed to understand the experiment. In

Section 3 the loss control techniques are explained in detail because they are

the motivation for the described experiment. The following Section 4 shows

the experimental results in graphical form. Section 5 concludes with a

discussion of the experimental conditions, the participants and an

interpretation of the statistical results.

9. PERCEIVED QUALITY 215

2. VIDEO TRANSPORT TECHNIQUES

Figure 9-1. Consequences of uncontrolled packet loss.

For streaming video over a network, the video has to be encoded,

transported and decoded. Together, transmission techniques and video

encoding techniques determine to what extent the video quality is affected

by network losses and perturbations (Kamerman and Erkocevic, 1997).

When no measures are taken, artifacts, as shown in Figure 9-1, may appear.

2.1 Networking techniques

Figure 9-2 shows a typical video transmission set-up. In the example, the

video is transmitted from a DVD player source to a television screen. This

video material is encoded according to a Moving Pictures Expert Group

(MPEG) standard.

216 Chapter 9

link

layer

Ethernet

switch

80 Mbit/s 5-24 Mbit/s &

30% loss

transport

layer

video in

1.5-10 Mbit/s

80 Mbit/s

DVD

player

Access

Point

Television

screen

video out

Figure 9-2. Schematic overview of video transport.

At the transport level, video frames containing a complete picture, are

sent over. Video material of low quality digital Standard Definition

TeleVision (SDTV) are generated with a bit rate of approximately 1.5

Mbit/s, while high quality SDTV video yields about 10 Mbit/s 1. At the Link

layer the frames are decomposed into packets, the unit of transportation over

the link. In a first step, an Ethernet cable connects the DVD player to an

Ethernet switch. This switch adds the packet to a queue and passes it on via

another Ethernet cable to an Access Point (AP). In the AP, the packet is also

cached and after that sent on over the wireless link to the final destination,

the television screen. The capacity of a wired switched Ethernet link

typically is around 80 Mbit/s. The capacity of wireless links varies between

5 Mbit/s for IEEE 802.11b and 24 Mbit/s for IEEE 802.11g. Losses of up to

30% can occur in the wireless link. Excluding overload conditions, the other

losses in the chain are negligible in comparison.

The transport protocol of the Internet Engineering Task Force (IETF),

called Real-time Transport Protocol (RTP), is used to transport the video

stream from source to destination over the indicated path, (Shulzrinne et al.,

2003). RTP is an application-level protocol that, in its turn, uses the User

Datagram Protocol (UDP), (Postel, 1980). RTP uses timestamps to order

packets and removes packets that arrive too late.

1 Please, note that these numbers are indications. The actual numbers vary from video to video

and standard to standard.

9. PERCEIVED QUALITY 217

As a consequence, packets are lost in case of transmission problems

while the transmission of new packets continues. At frame level, this means

that correctly transmitted video frames are rendered at the right moment,

while incomplete video frames are skipped. Under bursty losses, the tt timing

of the video material relative to the start of the video will remain in tact, but

one or more frames may get lost before transmission is re-established.

2.2 Video encoding techniques

The networking techniques will guarantee the timing of the video, but

frames may get skipped due to packet loss. Packet loss may influence the

video quality in two ways: packet loss can reduce the image quality of the

individual frames and it can cause a loss of frames in the rendered video. We

rely on the robustness of the scalable video encoding techniques to reduce

the impact of packet loss on the rendered video.

To actually control the part of the video code that will be lost in case of

perturbations, the scalable video coding technique can be used (van der

Schaar and Rahda, 2004; Domanski et al.,200; Wee and Apostolopoulos,

2001; Wu, Hou, Zhang., 2001; Wu, Li, Zhang, 2001; Vetterli et al. 1997).

This technique allows video material to be encoded in multiple streams by

splitting the video in multiple layers and assigning one stream to one layer.

The Base Layer (BL) contains video of a basic quality level. Extra

Enhancement layers (ELs) may contain additional information for each

frame When BL and all ELs are correctly transmitted, the rendered picture is

of higher quality than when BL and a lower number of ELs are received,

which on its turn yields better quality video than when the base layer is

received only.

By splitting the video into different streams, the amount of data transmitted

can be adapted to the available transmission capacity: the communication

bandwidth. The base layer is transmitted with highest priority, while higher-

level enhancement layers are transmitted at lower priority than lower-level

enhancement layers. In case of transmission problems, the networking

protocols will drop packets containing video data from higher enhancement

layers (Ogg, 2002; Rahda et al., 2001). Due to a lower priority, these layers

have an increased chance of being transmitted late, and thus of being

skipped. This mechanism leads to graceful degradation under perturbations:

useful partial frame information that is received gives still recognizable

pictures, where without the layering entire frames are skipped because one

or more packets are lost (Hofmann et al., 1998).

218 Chapter 9

Next to this, the MPEG2 coding standard, standardized by MPEG, offers

facilities that can be used to better control frame skipping due to packet loss

(Basso et al. 1999). Frames can be encoded in three different ways: as an I-

frame, a P-frame or a B-frame. I-frames are self-contained. All information

needed for decoding an I-frame is available in the frame itself. To decode P-

frames, the information of the previous I-frame is needed. To decode B-

frames, the information of both the previous and the next I- or P-frame is

needed. Typically, B-frames account for about half of the bit-rate of the

video.

When losses occur on the wireless link, this can lead to packet and frame

loss. To get the highest possible video quality, it is best that B-frames are

skipped first. By removing B-frames, bandwidth fluctuations up to 50% can

already be taken care of, see Figure 9-3. If still necessary, P-frames can be

skipped after that, while I-frames should only be cancelled as a last resort.

Figure 9-3 provides an example of this approach. The upper part shows

the original video fragment to consist of an I-frame followed by three P-

frames with two B-frames between every two consecutive I- and P-frames.

The horizontal axis represents the time line, while the vertical axis represent

the number of bits in a frame. We see that with high regularity a frame, with

its identification written below, is displayed. The lower part of the 9-3 shows

the received video fragment after the majority of B-frames have been

skipped due to a drop in available bandwidth to about 60%. The figure also

shows that when no frame is received the formerly received frame is

displayed. For example frame B3 is displayed twice in succession, and frame

P1 is displayed four times in succession.

9. PERCEIVED QUALITY 219

The original video stream

B2 B3 B4 B5 B6 B7 B8 B9 B10 I2B9 B10B3 B4 B5 B6 B7 B8B1

B2 B3 B3 P1 P1 P2 P2 P3 P3 I2P3 P3B3 B3 P1 P1 P2 P2

The resulting video stream under partial B frames loss

Figure 9-3. An example of a controlled loss of B-frames.

Summarizing, to counter the effects of random losses due to network

perturbations, prioritization is introduced:

1. Stream prioritization makes that within multi-layer encoded video, first

frames in the highest enhancement layer are skipped while base-layer

frames are the last to be skipped. The effect is that variations in

bandwidth result in variation of the image quality of the frames in the

rendered video. This is called SNR scalability. Each individual layer

conforms to the MP@ML profile.

2. Frame prioritization makes sure that within a stream first B-frames, then

P-frames and only after that I-frames are skipped. The effect is that

variations in bandwidth result in variation of the number of frames in the

rendered video. This can be seen as a form of temporal scalability.

The two approaches can also be combined. This raises the question of how

the two techniques relate to each other with respect to the rendered video

quality as perceived by viewers.

3. PERCEIVED VIDEO QUALITY

– AN EXPERIMENT

The video coding techniques described above are expected to provide an

improved perceived video quality with respect to traditional video coding

techniques in situations where the video is delivered over unreliable

220 Chapter 9

communication channels, in particular wireless communication channels. As

already indicated in Section 2.1, a characteristic of wireless channels is that

packet loss typically happens in bursts. Therefore, the question of how these

video coding techniques influence the perceived video quality can be split

into two separate questions: What is their effect upon perceived video

quality under ideal circumstances, when a constant video bit-rate is

deployed, and what is the effect under highly varying bandwidth situations.

For the experiment, the video is encoded with a fixed number of bits per

second, called the constant video bit-rate. The variation results from the way

the bit-rate is distributed over the different frames or layers. The experiment

ascertains how for a fixed video bit-rate, the quality is affected by the

scalable video techniques.

3.1 Selected coding schemes

An experiment was conducted studying the impact of the coding schemes

upon the perceived video quality in the constant video bit-rate situation. In

particular, the study was conducted to provide insight in the trade-offs

between image quality, frame rate, and layer splitting. Within the

experiment, two coding schemes were put to the test. In the first coding

scheme, the video material is split into two layers, a base layer and an

enhancement layer. The second coding scheme used only a single layer.

Within the two-layer coding scheme, the impact of the division of the

video bit-rate over base-layer and enhancement layer upon the perceived

video quality is studied. In the experiment, the base-layer was allocated

either a third (33%), half (50%) or two thirds (67%) of the video bit-rate.

This is shown in Figure 9-4a where the horizontal axis represents the four

bit-rate distribution types and the vertical axis the video bit-rate in percents

of the reference video bit-rate.

In addition, the trade-off between image quality and frame rate was

studied for the enhancement layer: How is the perceived video quality

affected when, within the enhancement layer, the image quality is improved

at the cost of the frame rate. In the experiment, the enhancement layer was

either kept unchanged or it was allocated an extra one third (33%) of the

video bit-rate for increasing the SNR of the frames. Skipping enhancement-

layer frames compensated for this in such a way that the video bit-rate was

equal in both conditions. The latter is shown in Figures 9-4b-d for different

base-layer percentages, where the horizontal axis represents the time that a

frame is displayed. For example in Figure 9-4c, the base layer takes 50% of

the video bit-rate with value 50% on the vertical scale. The enhancement

layer takes 50% + 33% of the video bit-rate which is 88% on the vertical

9. PERCEIVED QUALITY 221

scale. By removing two out of five times the enhancement layer, the average

total video bit-rate remains 100%.

Figure 9-4. Bit size distribution over Base and Enhancement layers

The single-layer coding scheme is basically equivalent to the two-layer

coding scheme, except that the total video bit-rate is allocated to the base-

layer. Also within this coding scheme, the trade-off between image quality

and frame rate was studied: Each base-layer frame was either given an extra

one third, half or two-thirds of the bit-rate. This was compensated for by

skipping frames: 25%, 33% and 40% of the available frames were skipped

respectively, as shown in Figures 9-5a-c. In this figure an uncolored frame

represents a skipped frame. In this way, the total delivered bit-rate was equal

to 100% of the video bit-rate in all conditions.

222 Chapter 9

Figure 9-5. Base layer skipping

3.2 Experiment

The experiment was largely organized according to the double-stimulus

impairment scale (DSIS) method as described in Recommendation ITU-R

BT.500-11, see ITU-R (2002). Two groups of ten post-masters students from

the Technical University Eindhoven were asked to score the quality of 18

video clips. These clips showed the same 15 seconds video fragment

encoded in different ways. A video fragment was selected with considerable

movement. This type of video fragment was considered to give better rise to

perceivable quality differences than clips with little movement.

The students were sitting about three to four meters from a 107-

centimeter, wide-screen plasma television. They were asked to score the

video quality of the clips in comparison to a reference clip. For scoring each

clip, subjects were presented with (1) the reference clip, (2) the clip under

test, (3) the reference clip again and (4) the clip under test again, each one

separated by a 5 seconds long, gray screen. The reference is a video, which

consist of one layer without skipped frames. After showing these clips,

9. PERCEIVED QUALITY 223

subjects were given time to score the quality of the clip under test in

comparison to the reference clip. They could score the quality by marking a

position on a line. The line had tick-marks at equal distance labeled ‘-4’,

‘-3’, ‘-2’, ‘-1’ and ‘0’. The students were asked to indicate the level

degradation of the clip under test in comparison to the reference clip, with

the ‘0’ tick-mark indicating no observed difference in video quality between

the clip under test and the reference clip.

After the organization of the experiment was outlined, three test runs

were conducted to make the subjects acquainted with the experimental

procedure and the scoring of video quality. The three clips were selected to

illustrate the variety in perceived quality within the experiment: To convey

that at times quality difference would be small, the reference clip itself was

presented as the clip under test. So, effectively subjects scored the reference

clip against itself. In addition, subjects were asked to rate two clips that were

expected to receive low scores. One was encoded using a two-layer

encoding, for the other the single-layer encoding with frame skipping

scheme was used.

After the test run, subjects were asked to score the 18 clips. The first nine

clips showed the nine versions of the original video clip, encoded using the

coding methods described in the Section 3.1. The original video clip served

as a reference. The bit-rate of both the test clip and the reference clip was

limited to 3 Mb/s. The nine clips were shown in no particular order.

The other nine clips were encoded in the same way and also used the

original clip as a reference. The difference was that the bit-rate of both the

test clip and the reference clip was now limited to 6 Mb/s. The order of the

clips was the same as in previous sequence. This condition was added to the

experiment to study whether the influence of the video bit-rate upon the

difference in perceived video quality. The 3 Mb/s situation will be called the

low bit-rate condition, and the 6 Mb/s situation the high bit-rate condition.

Overall, the experiment has a within-subject design with the score for

each clip as the dependent variable. For the two-layer encoding scheme, the

controlled variables are:

• Bit-rate: the total video bit-rate;

• BL percentage: the percentage of the video bit-rate allocated to the base

layer;

• EL image quality: the increase of the image quality in the enhancement

layer as a percentage of the video bit-rate. This increase is compensated

for by skipping frames in the enhancement layer.

For the single-layer encoding scheme, the controlled variables are:

• Bit-rate: the total video bit-rate;

224 Chapter 9

• BL image quality: the increase of the image quality in the base layer as a

percentage of the total bit-rate. This increase compensated for by

skipping frames in the base layer.

The Tables 9-1 and 9-2 provide an overview of the experimental conditions.

Table 9-1 describes the 12 conditions for the two-layer encoding technique,

while Table 9-2 indicates the 6 conditions for the single-layer encoding

technique.

Table 9-1. The experimental conditions for the two-layer coding scheme.

Video

bit-rate
low Low low low low low high high high high high high

BL

percentage
33% 33% 50% 50% 67% 67% 33% 33% 50% 50% 67% 67%

EL image

quality
+0% +33% +0% +33% +0% +33% +0% +33% +0% +33% +0% +33%

Table 9-2. The experimental conditions for the single-layer coding scheme.

Video

Bit-rate low low low high high high

BL image

quality
+33% +50% +67% +33% +50% +67%

4. EXPERIMENTAL RESULTS

4.1 Results for the two-layer coding scheme

The 12 scores of each of the 20 subjects for the video clips using the first

coding scheme have been analyzed using a linear mixed-effects model. The

results are shown in a series of graphs with on the vertical axis the score and

on the horizontal axis the parameter under discussion. A high score (close to

zero) means a low degradation of the perceived quality relative to the

reference clip.

The analysis showed that overall the scores were differing from zero. The

intercept was significant [F(1,209)=198, p<.0001]. The analysis also showed

the main effects to be significant: bit-rate [F(1,209)=545, p<.0001], base-

layer percentage [F(1,209)=134, p<.0001] and enhancement layer image

quality [F(1, 209)=15.6, p=.0001]. On average, Figure 9-6 shows that the

scores for the high bit-rate clips are higher than for the low bit-rate clips.

Figure 9-7 shows that the scores decrease with a decreasing base-layer

percentage. In Figure 9-8, the increase in image quality in the enhancement

layer, accompanied by enhancement layer skipping (Figures 9-4b-d), gave a

small, but significant decrease in the scores.

9. PERCEIVED QUALITY 225

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

low high

Bandwidth

S
c

o
re

Figure 9-6. Average scores for low and high bit-rate.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

33% 50% 67%

Base-layer percentage

S
c

o
re

Figure 9-7. Average scores for each of the three base-layer percentage levels.

226 Chapter 9

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

+0% +33%

Enhancement-layer image quality

S
c

o
re

Figure 9-8. Average scores as a function of enhancement-layer increase.

The interactions between bit-rate and base-layer percentage

[F(2,209)=32.9, p<.0001] and between base-layer percentage and

enhancement-layer image quality [F(2,209)=5.85, p<.005] were also found

to be significant. The interaction between bit-rate and enhancement-layer

image quality and the three-way interaction between bit-rate, base-layer

percentage and enhancement-layer image quality proved not to be

significant.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

33% 50% 67%

Base-layer percentage

S
c

o
re high

low

Figure 9-9. : Average scores as a function of bit-rate and base-layer percentage.

Figure 9-9 indicates that the score increase with base-layer percentage is

governed by a ceiling effect in the high bit-rate situation: On average,

9. PERCEIVED QUALITY 227

increasing the base-layer percentage from 33% to 50% gives rise to an

increase in the scores, both in the low bit-rate as the high bit-rate situation.

Another increase of the base-layer percentage, from 50% to 67%, still gives

an increase in scores for the low bit-rate situation. However, in the high-bit-

rate situation, the scores remain about the same.

Figure 9-10 shows that the score increase with base layer percentage

depends partially on the enhancement-layer image quality: interaction

between enhancement layer percentage and enhancement layer image

quality. On average, the difference between the scores at the two levels of

the enhancement-layer image quality is larger when the base-layer

percentage is 33% than when the base-layer percentage is 50% or 67%. The

interaction shows when the lines are not parallel. Parallel lines indicate “no

interaction”.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

33% 50% 67%

Base-layer percentage

S
c

o
re +0%

+33%

Figure 9-10. Average scores as a function of base-layer percentage and enhancement-layer

image quality.

4.2 Results for the single-layer coding scheme

In this section the trade-off between image quality and frame rate is

analyzed (see Figure 9-5). An increase of the frame size is compensated by

the skipping of frames (base layer skipping). The 6 scores of each of the 20

subjects for the video clips using the single-layer coding scheme have been

analyzed using a linear mixed-effects model.

The analysis showed that none of the main effects and interactions was

significant. However, the intercept was significant [F(1,95)=68.6, p<.0001].

The scores are significantly lower than 0. Figure 9-11 shows that on average

228 Chapter 9

scores do not vary with bit-rate. Figure 9-12 shows also a flat curve for base

layer increase.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

low high

Bandwidth

S
c
o

re

Figure 9-11. Average scores as a function of bit-rate.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

+33% +50% +66%

Base-layer increase

S
c

o
re

Figure 9-12. Averages scores as a function of base-layer increase.

9. PERCEIVED QUALITY 229

5. DISCUSSION

5.1 About the experimental set-up

The experiment followed the double-stimulus impairment scale (DSIS)

method, variant II, as described in Recommendation ITU-R BT.500-11.

However, the rating was done differently because the DSIS labeling of score

points was considered to be inappropriate. It was expected that the clips

would not cover the entire quality range suggested by the standard labels and

consequently the subjects would use only scores 0 to 2. Therefore, a

continuous scale was used instead with a reference point for equal quality.

Subjects had to decide for themselves how positions on the scale related to

the perceived quality level.

It was expected that this would introduce an extra source of “between

subject variability”. Evidence that this is indeed the case can be found in

Figure 9-13. For each subject, it shows the mean score over all experimental

conditions together with an indication of the standard deviation (2). In

order to check whether this source of variance between subjects had an

influence on the outcomes of the experiment, the scores were normalized

and the statistical analysis repeated. The scores of each subject were

normalized by applying a linear transformation so that mean and variance of

the participant’s scores were equal to the mean and variance of the scores of

all participants, see Eq. (8.1). Repeating the statistical analysis on the

normalized scores revealed no differences in significant main effects and

interactions. This was according to expectation. The model used to analyze

the data comprised, next to the general error term for unexplained variance,

an error term for each subject to compensate for the difference between

within and between subject variability.

NormalizedScoreij = ((Scoreij – µjµ) * 2 / j
2) + µ (8-1)

where

NormalizedScoreij is the normalized score of subject j in condition i,

Scoreij is the score of subject j in condition i,

µjµ is the mean score of subject j over all conditions,

 j is the standard deviation of the scores of subject j over all conditions,

µ is the mean score over all conditions and subjects, and

is the standard deviation of the scores over all conditions and subjects.

230 Chapter 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Subject

-4

-3

-2

-1

0

S
c
o

re

Figure 9-13. The means and two times the standard deviation of the scores for each subject.

5.2 Findings around the two-layer coding scheme

This section describes the interpretation of the findings around the two-

layer coding scheme. An important first finding is that the intercept

significantly differs from zero. The overall average score is –1.41. This

means that overall subjects observe degradation in perceived video quality

when these techniques are applied compared to untreated video.

The experimental set-up may partially explain this finding. Participants

may have been biased toward quality degradation by the layout of the score

line. That line had tick-marks in for quality degradation, not for quality

improvements. There is some evidence for this effect. In the test set, subjects

were asked to rate the low bit-rate reference frame against itself. The average

score was -.45±.22, while an average score of zero was expected. This

means that the bias of subjects may partially explain the finding, but it does

not fully explain it. A full-scale point difference is still unaccounted for.

So next to this, the use of a two-layer encoding technique is likely to be

responsible for lowering the perceived video quality. This is in line with

expectations because the split of the video into two video streams, the base

layer and the enhancement layer, introduces overhead in the encoding of the

9. PERCEIVED QUALITY 231

video material. The bit-rate used by this overhead cannot be used for the

encoding of the actual video material, thus causing a decrease in perceived

video quality.

The experiment showed the average bit-rate (3 and 6 Mbit/s) to be

significant. On average, the degradation in video quality is less in case of

high bit-rate (6 Mb/s) than in the low bit-rate (3 Mb/s) situation. An obvious

explanation is that the perceived video quality of high bit-rate video clips as

shown on the screen used in the experiment, is high enough that the

degradation due to re-coding is less noticeable. The low bit-rate situation

turns out to be more critical in this respect.

An alternative explanation is that subjects did not rate the perceived quality

relative to the reference clip, but scored the video clips on an absolute scale

instead. The scores in the high bit-rate situation would be better because the

perceived quality of the video in the high bit-rate condition was better, not

because the degradation in perceived quality was less. We discard this

alternative explanation because subjects were explicitly asked to rate the

quality of the clips with respect to the reference clip. In addition, subjects

were constantly reminded of this. The reference clip was shown over and

over again: two times in every condition.

The experiment also showed the main effect ‘base-layer percentage’ to be

significant. The degradation in perceived video quality is less for higher

base-layer percentages. This is likely to be due to the difference in encoding

of base-layer frames and enhancement layer frames. Base-layer frames are

encoded more efficiently by using motion compensation: Encoding of base-

layer frames may use information from previous base-layer frames. In

contrast, enhancement-layer frames are encoded independently of each

other. This is done because of the increased probability that enhancement-

layer frames are skipped. If a video frame is skipped, all frames that rely on

information from this frame cannot be decoded, even when they are received

in good order. It could well be that choosing a video clip with considerable

movement has contributed to the effect size of the base-layer percentage

factor.

Finally, the experiment showed the main effect ‘enhancement-layer

image quality’ to be significant. On average, the degradation in perceived

video quality increases when the image quality of the enhancement-layer

frame is increased at the cost of the number of frames in the enhancement

layer2. The increase in image quality does not compensate for the loss in

2 Note that, as long as the base layer is transmitted reliably, skipping frames in the

enhancement layer does not result in a drop in frame rate of the rendered video. Skipping

frames in the enhancement layer leads to variations in sharpness of the frames in the

rendered video, not in the number of frames.

232 Chapter 9

frame rate. However, the impact of this effect on the perceived quality is

smaller than that of the other two factors.

This indicates that the perceived video quality is lowered when the average

bit-rate of the video stream exceeds, to a limited extent, the available

average bandwidth. In this situation, the base-layer information will be

transmitted in full, while only part of the enhancement-layer frames is

transferred. A practical consequence of this finding is that the video

encoding had best be tuned to the available bandwidth. Dropping

enhancement-layer frames causes a degradation of the perceived video

quality. However, we also see that the effect size is smaller than the effect

size of base-layer percentage. So, the load balancing between the base-layer

and enhancement layer is more important than tuning the overall load to

available bandwidth, as long as the base-layer can be reliably transmitted.

What happens when the base-layer can no longer be transmitted, will be

discussed in the next section.

In the experiment, we also found a significant interaction between bit-

rate and base-layer percentage. The differences in quality degradation

between a higher and a lower base-layer percentage are smaller in the high

bit-rate situation than in the low bit-rate situation. The data indicates a

ceiling effect in the high bit-rate situation.

An explanation for this finding is that in the high bit-rate situation, the

perceived video quality is so high that subjects find it harder to detect quality

degradation. When the bit-rate is high and the base-layer percentage is 50%

and 67%, the average scores of subjects are above -.45, the average score

when the low bit-rate reference frame is compared to itself.

An equivalent trend can be observed when studying the interaction

between bit-rate and enhancement-layer image quality, see Figure 9-14. Also

here, the difference between the scores in the high bit-rate condition is

smaller than in the low bit-rate condition. However, statistically the

interaction is not significant [F(1,209)=2.02, p=.16]; the hypothesis that this

trend is observed by chance can not be rejected.

9. PERCEIVED QUALITY 233

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

+0% +33%

Enhancement-layer image quality

S
c

o
re high

low

Figure 9-14. Average scores as a function of bit-rate and enhancement-layer image quality.

The other significant interaction was the interaction between base-layer

percentage and enhancement-layer image quality. The difference between

the average scores at the two levels of the enhancement-layer image quality

is larger when the base-layer percentage is 33% than when the base-layer

percentage is 50% or 67%. We have no explanation for this finding. The

practical consequence of this finding is that when a low base-layer

percentage is required, it is more critical to adjust the video bit-rate to the

available bandwidth.

5.3 Findings around the single-layer coding scheme

This experiment is about skipping base-layer frames. Only B frames are

skipped such that a maximum of 40% of the available capacity was

cancelled. When a base-layer B frame is skipped, the formerly well-received

frame is shown. This makes that the movements in the video appear less

smooth, more jerky. Participants could well observe this effect: The intercept

was significantly different from zero. Skipping base-layer frames causes a

drop in perceived video quality.

There was no significant effect of bit-rate upon the scores. It could have

been expected that, in the low bit-rate situation, the increased image quality

would compensate better for frame-skipping than in the high bit-rate

situation, assuming that the value of extra image quality is higher in the low

bit-rate situation than in the high bit-rate situation. The results do not show

this. Either the temporal effects are the dominant factor influencing the

degradation of the perceived quality or the experiment is not sensitive

enough to measure the effect.

234 Chapter 9

Also no significant effect of ‘base-layer increase’ was found. The number

of base-layer frames skipped has no influence upon the video quality

degradation. Also this is a counter-intuitive finding. The number of frames

skipped increases with base-layer image quality. If the temporal effects are

driving the perceived video quality, a negative correlation between the

scores and base-layer increase could be expected. The experiment provides

no evidence in that direction.

A possible explanation for this could be that the range of number of frames

skipped (25%, 33% and 40%) is too small to observe an effect. Another

explanation could be that the increased SNR compensates for the reduction

in frame rate. However, if this were the case, we would have expected the

bit-rate effect to be significant assuming that in the high bit-rate situation the

added value of the extra image quality would be less than in the low bit-rate

situation. Our working assumption is that the experiment is not sensitive

enough to measure such an effect.

In comparison to skipping enhancement-layer frames, skipping base-layer

frames has a stronger negative effect upon the perceived video quality.

Skipping a third of the enhancement-layer frames reduces the average scores

only with 0.3. The reason for this is that skipping enhancement-layer frames

does not introduce any jerky-ness in the movement in the video. Only the

base-layer frame is shown. So, the effect of skipping enhancement-layer

frames is a temporal variation in the image quality of the video frames. In

contrast, skipping base-layer frames cause a previous frame to be shown at

an ‘incorrect’ moment, but the image quality remains the same.

Although we are unable to provide an overall explanation for the findings

of this part of the experiment, the practical consequence is clear. Skipping

more than 25% of the base-layer frames lowers the perceived video quality

and should be avoided. An open question is how quickly the perceived video

quality degrades for smaller percentages. The answer to this question could

provide an indication of how much risk can be taken in raising the base-layer

percentage. A higher base-layer percentage increases the perceived quality,

but also increase the risk that a base-layer frame will not be transferred and

has to be skipped.

5.4 Related work

An experiment related to the single-layer coding part of our experiment

was conducted by Hauske et al. (2003). The experiment also studies the

influence of frame rate and image quality upon the perceived video quality.

The application area of their experiment is different: It is about showing

video on a mobile phone, instead of on a television screen. They used six

9. PERCEIVED QUALITY 235

different video sequences. Their experiment comprised six bit rate – frame

rate combinations with bit rates ranging from 30 kbit/s to 128 kbit/s and the

frame rates ranging between 5 and 15 frames per second. They asked

subjects to score four absolute criteria: total quality, smoothness of

movement, quality concerning blocking effects and information value.

One of their important findings is that total quality, quality concerning

blocking effects and information value could be taken together indicating the

quality of the individual frames. Smoothness of movement proved to be a

different quality criterion. This provides a possible explanation for our

finding that base-layer increase does not influence the score. For subjects,

the quality of the video may be more driven by image quality than frame

rate.

Just as we do, they also report the unexpected result that an increase in

frame rate while maintaining equal bit rate, does not lead to an increase of

total quality. They report a very small increase in total quality when

increasing the frame rate from 5 to 7 frames per second for a 50 kbit/s bit

rate, and a decrease in total quality when increasing the frame rate from 7 to

16 frames per second for a 64 kbit/s bit rate. Their finding that the

smoothness of movement positively correlates with frame rate, was in line

with expectations.

Masry and Hemami (2001) report an experiment that studies the

influence of frame rate and image quality upon the perceived video quality.

They used eight different video sequences with different levels of motion

shown on a television screen. In the experiment, they varied the bit rate

between 40 and 800 kbit/s and the frame rate between 10 and 30 frames per

second (fps). The experiment was performed using the Single-Stimulus

Continuous Quality evaluation (SS-CQE) method of ITU-R BT.500-8. They

report that ‘in general, the smoother motion at 30 fps did not offset the

corresponding decrease in frame quality over sequences coded at 10 and 15

fps at the same bitrate. Viewers preferred the lower frame rates, and slightly

favored encodings at 15 fps over those at 10 fps.’

McCarthy et al. (2004) found a similar result when studying the

acceptability of streamed video for smaller screens (CIF size video on a

desktop computer and QCIF size video on a handheld device). They

acquired acceptability metrics for soccer video material from soccer fans.

Their conclusion is that users prefer high-resolution images to high frame

rate. However, they did not try to keep the bandwidth/video bit rate constant.

Therefore, their study does not provide an immediately indication on how to

make the trade-off between image quality and frame rate. Evidence that the

acceptability of a lower frame rate may depend upon the content of the

video, is provided by Apteker et al. (1995).

236 Chapter 9

The paper that is closest to the multi-layer coding part of our experiment

is from Zink et al. (2003). They studied the impact of variations in the

amount of transmitted layers upon the perceived video quality. They used

the stimulus comparison method (SC) of the ITU-R BT.500.10. The

experiment comprised five different sequences. Only in two of the twelve

experimental conditions, the two encodings that were compared, had the

same average video bit rate. The number of layers varied from two to four.

The bit rate was fixed but different for each layer. Varying network

conditions were simulated by varying the number of layers rendered.

Changes in the number of layers used, were a few seconds apart. The authors

summarize the results of the experiment as follows:

• The frequency of variations should be kept as small as possible.

• If a variation cannot be avoided, the amplitude of the variations should be

kept as small as possible.

It is hard to compare our experiment with this one. Contrary to this

experiment, we kept the overall average bit rate constant. And our frequency

of variation was much larger because we conducted frame-skipping resulting

in repeated layer variations within groupings of three to five frames. In

addition, we did not vary the amplitude and frequency of the variations. We

only had two levels for EL image quality: +0% (no variation) and +33%.

The results of the two experiments agree in that variations can better be

avoided.

5.5 Future work

The experiment described above explores the effects of different video

encoding techniques that are robust to variations in video bit-rate, upon the

perceived video quality. The situation in which the encoding techniques

were tested, a fixed video bit-rate, was such that only the potential

disadvantages of the tested techniques were revealed. Future work has to

show what the advantages of the different encoding techniques are. This

means measuring the perceived video quality difference when using these

robust encoding techniques in comparison to traditional encoding techniques

under variable bandwidth conditions. In such experiments, the advantages in

robustness should outweigh the disadvantages that became manifest in the

current experiment.

The current experiment has provided us with some groundwork for such

experiments. Hypotheses could be formulated around the following

statements:

a) The percentage of the bit-rate that is allocated to the base layer, should be

as large as possible.

9. PERCEIVED QUALITY 237

b) The limiting factor in increasing the base-layer percentage is the

probability that base-layer frames are not transmitted due to variations in

available bandwidth. This probability should be kept small.

c) How small this probability should be, needs further investigation. The

perceived video quality is definitely reduced when more than 25% of the

frames of a 25 frames per second video fragment are skipped.

d) It is advisable to tune the amount of bit-rate allocated to the enhancement

layer to the total bit-rate.

e) However, the skipping of enhancement layer frames only has a relatively

small influence on the perceived video quality. Therefore, the risk of

loosing enhancement-layer frames does not have to be minimized.

f) The higher the total bit-rate used, the less the robust encoding will

deteriorate the perceived quality. However, saturation effects will limit

the effects at higher bit-rates.. The size and quality of the video display

will limit how useful it is to move to a coding scheme with a high bit-

rate.

6. CONCLUSIONS

This first experiment taught us a few very valuable lessons. Techniques

to compensate for losses during video transmission over a lossy wireless

medium lead to a perceived quality decrease. The frame skipping in the base

layer has a profound effect on the perceived quality for the steady state

experiments performed here. Frame skipping in the enhancement layer has a

smaller impact on the quality. This finding reinforces us in the conjecture

that scalable video can be used to reduce the effect of variable transmission

conditions. The most important lessons are:

• Using SNR layering, the perceived quality degradation is less

pronounced with a “high” bit-rate of 6 Mbit/s than with a “low” bit-rate

of 3 Mbit/s Using frame skipping no such bit rate dependent effect was

noticed.

• The base layer should be as large as possible for SNR scalable video.

These experiments are done under steady state conditions. A natural and

necessary continuation is to measure the perceived quality as function of the

communication channel’s degradation interval and degradation severity.

It should not be forgotten, though, that the transmission of video over a lossy

wireless medium leads to artifacts that are completely unacceptable to the

user. A good balance should be struck between the application of these

techniques and the probability that artifacts will appear.

238 Chapter 9

ACKNOWLEDGEMENTS

We would like to thank Maddy Janse and her students. The help of

Gerard Hollemans around the data analysis and the statistics was much

appreciated.

REFERENCES

Apteker, R.T., Fisher, J.A., Kisimov, V.S. & Neishlos, H., 1995, Video Acceptability and

Frame Rate. IEEE Multimedia, Vol. 3, Issue 3, 1995, pp. 32-40.

Basso, A., Cash, G.L., and Civanlar, M.R., 1999, Real-time MPEG-2 delivery based on RTP:

Implementation issues. In Signal Processing: Image Communications, vol. 15, No 1,

Elsevier, pp 165-178.

Domanski, M., Luczak, A., and Mackowiak, S., 2000, Spatio-temporal scalability for MPEG

video coding. In IEEE Transactions on Circuits and Systems for Video Technology, vol.

10, pp. 1088-1093.

Hauske, G., Stockhammer, T. and Hofmaier, R., 2003, Subjective Image Quality of Low-Rate

and Low-Resolution Video Sequences. In 8th International Workshop on Mobile

Multimedia Communications, October 5-8 2003 Munich, Germany, pp 37-42.

Hoffman, D., Fernando, G., Goyal, V., and Civanlar, M., 1998, RTP Payload Format for

MPEG1/MPEG2 Video. RFC 2250, Network Working Group.

ITU-R, 2002, Recommendation BT.500-11: Methodology for the subjective assessment of the

quality of television pictures." International Telecommunication Union, Geneva,

Switzerland, 2002.

Kamerman, A., and Erkocevic, N., 1997, Microwave Oven Interference on Wireless LANs

Operating in the 2.4 GHz ISM Band. In Proceedings of 8th IEEE PIMRC '97, pp 1221-

1227.

Masry, M.A., Hemami, S.S., 2001, An Analysis of Subjective Quality in Low Bit Rate Video.

In IEEE Intl. Conf. on Image Processing 2001, Thessaloniki, Greece, October 2001, pp

465-468.

McCarthy, J.D., Sasse, M.A. and Miras, D., 2004, Sharp or smooth?: comparing the effects of

quantization vs. frame rate for streamed video. In Proceedings of the 2004 conference on

Human factors in computing systems (CHI 2004), Vienna, Austria, pp. 535-542.

Ogg, F.H.G., 2002, Smoother Streaming over Wireless Networks - Real-time Scheduling the

IP Transport of Video Data. MSc. Thesis, Eindhoven University of Eindhoven.

Postel, J., 1980, User Datagram Protocol. RFC 768, .Internet Engineering Task Force.

Radha, H., van der Schaar, M., and Chen, Y., 2001, The MPEG-4 Fine-Grained Scalable

Video Coding Method for Multimedia Streaming over IP. In IEEE Transactions on

Multimedia, vol. 3, no. 1, pp 53-68.

Van der Schaar, M., and Radha, H., 2004, Scalable Video Coding - Principles, Algorithms

and Standards. Elsevier Science Ltd.

Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V., 2003, RTP: A Transport Protocol

for Real-Time Applications. Internet Engineering Task Force.

Vetterli, M., McCanne, S., and Jacobson, V., 1997, Low-complexity Video Coding for

receiver-Driven layered Multicast, IEEE JSAC, Aug. 1997, pp 983-1001.

9. PERCEIVED QUALITY 239

Wee, S., and Apostolopoulos, J., 2001, Secure scalable video streaming for wireless networks.

In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing.

Wu, D., Hou, Y., and Zhang, Y.-Q., 2001, Scalable Video Coding and Transport over

Broadband Wireless Networks. In Proceedings of the IEEE, vol. 89, Issue 1, pp 6-20, Jan.

2001.

Wu, F., Li, S., and Zhang, Y.-Q., 2001, A Framework for Efficient Progressive Fine

Granularity Scalable Video Coding. In IEEE Transactions on Circuits and Systems for

Video Technology, vol. 11, no. 3, pp 332-344.

Zink, M., Künzel, O., Schmitt, J. and Steinmetz, R., 2003, Subjective Impression of

Variations in Layer Encoded Videos. In Eleventh International Workshop on Quality of

Service (IWQoS 2003), Monterey, CA, USA. Springer Verlag, June 2003, pp. 137-154.

Philips Research Book Series

1. H.J. Bergveld, W.S. Kruijt and P.H.L. Notten: Battery Management Systems.
2002 ISBN 1-4020-0832-5

2. W. Verhaegh, E. Aarts and J. Korst (eds.): Algorithms in Ambient Intelligence.
2004 ISBN 1-4020-1757-X

3. P. van der Stok (ed.): Dynamic and Robust Streaming in and between Connected
Consumer-Electronic Devices. 2005 ISBN 1-4020-3453-9

springeronline.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

