

DATA MINING AND DIAGNOSING IC FAILS

FRONTIERS IN ELECTRONIC TESTING

Consulting Editor
Vishwani D. Agrawal

Books in the series:

Embedded Processor-Based Self-Test
D. Gizopoulos
ISBN; 1-4020-2785-0

Testing Static Random Access Memories
S. Hamdioui
ISBN: 1-4020-7752-1

Verification by Error Modeling
K. Rad^ka and Zilic
ISBN: 1-4020-7652-5

Elements of STIL: Principles and Applications of IEEE Std. 1450
G. Maston, T. Taylor, J. ViUar
ISBN: 1-4020-7637-1

Fault Injection Techniques and Tools for Embedded systems Reliability
Evaluation

A. Benso, P. Prinetto
ISBN: 1-4020-7589-8

High Performance Memory Memory Testing
R. Dean Adams
ISBN: 1-4020-7255-4

SOC (System-on-a-Chip) Testing for Plug and Play Test Automation
K, Chakrabarty
ISBN: 1-4020-7205-8

Test Resource Partitioning for System-on-a-Chip
K. Chakrabarty, Iyengar & Chandra
ISBN: 1-4020-7119-1

A Designers* Guide to Bmlt-in Self-Test
C. Stroud
ISBN: 1-4020-7050-0

Boundary-Scan Interconnect Diagnosis
J. de Sousa, P.Cheung
ISBN: 0-7923-7314-6

Essentials of Electroiiic Testing for Digital, Memory, and Mixed Signal VLSI Circuits
M,L. Bushnell, V.D. Agrawal
ISBN: 0-7923-7991-8

Analog and Mixed-Signal Boundary-Scan: A Guide to the IEEE 1149.4
Test Standard

A. Osseiran
ISBN: 0-7923-8686-8

Design for At-Speed Test, Diagnosis and Measurement
B. Naoeau-Dosti
ISBN: 0-79-8669-8

Delay Fault Testing for VLSI Circuits
A. Krstic, K-T. Cheng
ISBN: 0-7923-8295-1

Research Perspectives and Case Studies in System Test and Diagnosis
J.W. Sheppard, W.R. Simpson
ISBN: 0-7923-8263-3

Formal Equivalence Checking and Design Debugging
S.-Y. Huang, K.-T. Oieng
ISBN:0-7923-8184-X

Defect Oriented Testing for CMOS Analog and Digital Circuits
M. Sachdev
ISBN: 0-7923-8083-5

DATA MINING AND DIAGNOSING IC FAILS

LEENDERT M. HUISMAN
IBM Systems and Technology Group

Springer

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

ISBN-10: 0-387-24993-1 ISBN-10: 0-387-26351-9 (e-book)

ISBN-13: 9780387249933 ISBN-13: 9780387263519

Printed on acid-free paper.

© 2005 Springer Science+Business Media, hic.
All rights reserved. This work may not be translated or copied m whole or in part without
the written permission of the publisher (Springer Science+Business Media, hic, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11379102

springeronline.com

To Ans and Niels

Contents

List of Figures xiii

List of Tables xv

Preface xvii

Acknowledgements xix

1. INTRODUCTION 21

2. STATISTICS 29

1 Statistical distributions 29
1.1 Binomial and multinomial distributions 29
1.2 Poisson and compound Poisson distributions 31
1.3 Negative binomial distribution 32

2 Likelihood 33
2.1 Maximum likelihood 34
2.2 Likelihood ratio 35

3 Bootstrapping 37

3. YIELD STATISTICS 39

1 Yield and Defect Level 40
1.1 Final yield 40
1.2 Defect Level 40

2 Example: experimental wafer yields 42

3 Test fallout 44
3.1 First fail probabilities 44
3.2 Statistical distribution of fails 46

4 Measuring First fail probabilities 47

viii IC Fails

4.1 Fallout histories 47
4.2 Maximum likelihood estimation 48

5 Comparing wafers 50

4. AREA DEPENDENCE OF THE YIELD 55

1 General Model 58
1.1 Primitive Polluters 5 8
1.2 Yield and Moments 60
1.3 Examples 62
1.4 General Properties 62

2 Center-Satellite Model 65
2.1 Center-Satellite Yield 66
2.2 Center-Satellite Moments 67
2.3 Numerical results 68

3 Estimating the Area Dependence 71
3.1 Comparing different products 72
3.2 Quadrat method 74

3.2.1 Problems with the quadrat method 74
3.2.2 Numerical technique 75
3.2.3 Numerical results 77

5. STATISTICS OF EMBEDDED OBJECT FAILS 83

1 General definitions 85

2 Correlations and clustering 86

3 Example of embedded object fails 87

4 Object and cell fail probabilities 87
4.1 Estimating cell fail probabilities 88
4.2 Comparing different models 91
4.3 Small fail probabilities 91
4.4 Example of cell fail probabilities 92

5 Partial data collection 93

6 Sampling defective devices 95

7 Fail probabilities of object components 98
7.1 Component fail estimates 99
7.2 Special cases 99

6. FAIL COMMONALITIES 101

1 Commonality measures 102

Contents ix

1.1 Pairwise commonality 103
1.2 Commonality of sets of signatures 105

2 Embedded objects 105
3 Logic fails 106

3.1 Signatures based on fail data only 107
3.2 Signatures based on backtracing 109
3.3 Signatures based on cells 112
3.4 Signatures based on diagnosis 112

4 Clustering 113
5 Examples 113

7. SPATIAL PATTERNS 117
1 Non-random patterns 118

1.1 Clustering parameter 119
1.2 Geometric properties of the pattern 119

1.2.1 Geometric centers 119
1.2.2 SLOR 121

2 Classifying patterns 123
2.1 Marginal probabilities 124
2.2 Experimental results 125
2.3 Clustering patterns 130

8. TEST COVERAGE AND TEST FALLOUT 133
1 Yield and coverage 133

1.1 Defect model 134
1.1.1 Poisson and negative binomial models 135
1.1.2 Compound model 135
1.1.3 Independent defect model 136

1.2 Coverage and yield 137
1.3 Properties of the yield curve 140

2 Observed yield curve 143

9. LOGIC DIAGNOSIS 145
1 Defect model 147
2 Fault selection 149
3 Alternatives to simulation 151

4 Scoring matches 152
5 Experimental results 155

IC Fails

10.

11.

6
7

Resolution of logic diagnosis
Using passing patterns

SLAT BASED DIAGNOSIS
1

2

3

4

5

6

7

D̂

1
2

3

nd:

1

Introduction
Logic defect model
2.1 Physical justification
2.2 Logic defects
2.3 SLAT patterns
SLAT based diagnosis
3.1 Initial Diagnosis
3.2 Comparison with stuck-at fault diagnosis
3.3 Potential accuracy risks
3.4 Non SLAT patterns
Multiplet analysis and splats
4.1 Splat structure

4.1.1 Completely separated splats
4.1.2 General case
4.1.3 Complete set of multiplets
4.1.4 Risks

4.2 M incomplete
Greedy search for splats

Interpretation

Experimental Resuhs
7.1 Comparison with stuck-at fault diagnosis
7.2 Specific diagnoses

\TA COLLECTION REQUIREMENTS

Design requirements

Test requirements
Data collection requirements

ixA. Distribution of IC Fails

General Definition
1.1 Fallout fluctuations
1.2 Defect Level

158
161

165

165
167
167
168
170
171
172
175
176
177
179
180
181
181
185
186
187

188

190

191
192
195

197

197
201

202

205

205
207
208

Appendix B. General Yield Model 209

Contents xi

Appendix C. Simplified Center-Satellite Model 213

Appendix D. Quadrat Analysis 217

1 Estimation 217

2 General equation for the cluster coefficient 221

Appendix E. Cell Fail Probabilities 223

Appendix F. Characterization Group 229

1 Likelihood equations 229

2 Heterogeneous model 231

3 Homogeneous model 233

4 VaUdity of the likelihood estimates 234

Appendix G. Component Fail Probabilities 237

1 Maximum Likelihood estimation 237

2 Location of the maxima of the likelihood fiinction 239

Appendix H. Yield and Coverage 243

1 Average yield 244

2 Variance of the yield 246

Appendix I. Estimating First Fail Probabilities from the Fallout 251

Appendix!. Identity of M and S. 253

References 255

Symbols and Abbreviations 261

Index 267

List of Figures

Figure 1 Schematic diagnostic flow 27
Figure 2 Distribution of individual wafer yields for several ASIC lots 43
Figure 3 Distribution of test sorts by wafer 50

Figure 4 Yield distributions of wafer clusters 52
Figure 5 Individual wafer yields grouped by cluster 53

Figure 6 Sort compositions of the wafers clusters 54
Figure 7 Logarithm of the yield as a function of area 63
Figure 8 Logarithm of the yield divided by the area 64

Figure 9 Logarithm of the yield divided by the area
in the center-satellite model 69

Figure 10 Inverse of the cluster coefficient 70
Figure 11 g(A) for CM0S2 chips 73
Figure 12 m and g for random defects 78
Figure 13 m and g for wafers with yield between 0.6 and 0.7 79
Figure 14 m and g for all wafers 80
Figure 15 m and yield for all wafers 81
Figure 16 Ranges of g values 82
Figure 17 Ranges of yS values 82
Figure 18 Fail probabilities of embedded SRAMs,

as a function of SRAM size 88
Figure 19 Cell fail probabilities of embedded SRAMs

as a function of SRAM size 89
Figure 20 Tracing through backcones 110

xiv IC Fails

Figure 21 Clustering algorithm 114

Figure 22 Repeater based cluster 115
Figure 23 Defect based cluster 116

Figure 24 Geometric centers 120
Figure 25 Correlation between SLOR and g

Poisson defect distribution 123
Figure 26 Correlation between SLOR and g; Real wafer 124
Figure 27 First wafer pattern analysis flow 126
Figure 28 Correlation between SLOR and g

labeled by the wafer pass/fail pattern 128
Figure 29 Several examples of pass/fail wafer patterns 129
Figure 3 0 Cluster fail maps 132
Figure 31 Basic logic diagnostic flow 146
Figure 32 Relation between nets and pins 147
Figure 33 Distribution of high diagnostic scores 156
Figure 34 Distribution of the number of high scoring equivalence classes

158
Figure 35 Example of a diagnosis with multiple equivalence classes 159

Figure 36 Distribution of the number of equivalence classes,
with the use of passing patterns 162

Figure 37 Example of a diagnosis with multiple equivalence classes
and passing patterns 163

Figure 38 SLAT diagnostic flow 173
Figure 39 Initial SLAT output 174
Figure 40 Example stuck-at fault 175
Figure 41 Final SLAT output 182
Figure 42 Greedy splat search 189
Figure 43 Distribution of fractions of SLAT patterns 192
Figure 44 Distribution of multiplet sizes 193
Figure 45 Correlation between vanilla diagnostic scores and SLAT sizes

194

Figure 46 Root cause analysis of a bridge 196

List of Tables

Table 1. Wafer by wafer test histories 48
Table 2. Deterministic Test Results 106
Table 3. Signature Based on Failing Patterns 107
Table 4. Signature Based on Unique Fails 108
Table 5. Signature Based on Marginals 109
Table 6. Comparison of Compount, Poisson and Negative Binomial

models 142
Table 7. Example explain fails table 174
Table 8. Initial SLAT diagnostic results 180
Table 9. Splat structure of multiplet pins 180
Table 10. Non-completely separated splats 182
Table 11. Commonality matrix for Table 10. 184
Table 12. Example of hidden splat pins 186
Table 13. Example of an abnormal multiplet 187
Table 14. Non-complete M 188
Table 15. Summary of Data collection requirements 198

Preface

This book grew out of an attempt to describe a variety of tools that were
developed over a period of years in IBM to analyze Integrated Circuit fail
data. The selection presented in this book focuses on those tools that have a
significant statistical or datamining component. The danger of describing sta
tistical analysis methods is the amount of non-trivial mathematics that is
involved and that tends to obscure the usually straigthforward analysis ideas.
This book is, therefore, divided into two roughly equal parts. The first part
contains the description of the various analysis techniques and focuses on
ideas and experimental results. The second part contains all the mathematical
details that are necessary to prove the validity of the analysis techniques, the
existence of solutions to the problems that those techniques engender, and the
correctness of several properties that were assumed in the first part. Those
who are interested only in using the analysis techniques themselves can skip
the second part, but that part is important, if only to understand what is being
done.

Several of the analysis techniques presented here were described previ
ously in journal and conference articles: SLAT was described in [6]̂ and
[30]\ Embedded Object Analysis and Commonality Analysis were presented
briefly in [8]^ and [31]\ respectively, and the relationship between coverage
and yield was explored in [28]^ and [29]. The treatment in this book adds
many details, and corrects some errors in the previous publications. The work
presented here was not the work of its author alone, as is clear from the list of
contributors in the Acknowledgements. The details of the mathematical anal
ysis and of the analysis of the experimental data, however, are. Consequently,
any errors are his responsibility.

LEENDERT HUISMAN
IBM Systems and Technology Group

1.©2004 IEEE

Acknowledgements

This book was written over a period of years, and has benefitted from
many discussions with my colleagues. The chapter on Commonality analysis
is based on a collaboration with Maroun Kassab and Leah Pastel, and the
chapter on Instance Analysis on one with Greg Bazan, Francis Gravel, Anne
Pardee, Leah Pastel and Ken Rowe. The chapter on SLAT arose from several
discussions with Tom Bartenstein, Doug Heaberlin, David Sliwinski and
Kevin Stanley. The explanation of why the stuck-at fault model is so succes-
ful is the result of many lunch-time discussions with Peter Wohl.

Chapter 1

Introduction

Diagnosis is the extraction of information from fail data. In this book, the
things that fail are Integrated Circuits (ICs), and the failures are those that
occur during manufacturing test; more precisely, during the application of
specially designed series of electrical stimuli to the integrated circuits on fin
ished wafers or in separate modules. The information that is extracted
concerns the causes of the failures. It can vary from the simplest, like the
average number of distinct defects on an IC, to the most detailed, for example,
the exact location and nature of the anomalies that caused the failure. The
information that can be extracted depends on the tests during which the IC
failed, and on the amount of fail data collected.

Extracting information from fail data can take many forms. For example,
the failure probabilities of identifiable units on the device, like embedded
memories or PLLs, can be estimated; different fail mechanisms may be identi
fied by comparing fails at different phases of the test, or by analyzing the
patterns of passes and fails on wafers; groups of chips may be identified that
seem to share an underlying fail mechanism that did not affect other chips; if
enough fail data has been collected, the location or the nature of the defect
that caused the fail may even be estimated.

All these forms of extracting diagnostic information help identify the
nature and the causes of the defects that occur on integrated circuits. Cluster
ing chips into groups that seem to have failed similarly provides a first
estimate of what defects occur, even though the identity of the defects is not
yet known. Estimating occurrence probabilities helps focusing on the most
prevalent failure mechanisms. And determining the location of the real defect
then makes it possible to study the actual defect mechanism: why they occur,
and how they affect the electronic circuit.

What is learned during such an analysis is fed back to the process or
design engineers, so design and/or manufacturing changes can be made to
prevent, or, at least, decrease the possibility of future occurrences of similar
defects. Such changes increase the yield, that is, lead to fewer failing ICs, but
may also increase the reliability of the finished products.

There are many types of fail data that can be used in diagnostic activities.
Not all of the data will unambiguously identify a cause. Some of the data can
only point in certain directions, like the probability that some defect, known
only through its effects, will occur, or the most likely location on the device
where this defect might be situated.

22 IC Fails

Thus defined, diagnosis covers a wide range of activities.This book will be
limited to only one of them, software based analysis of routinely collected fail
data during manufacturing testing. Fail data collected at the tester is usually
very limited, showing only which phase of the test exposed the defect, and
just enough to establish that the device indeed failed the test. The manufactur
ing tests are sometimes enhanced, however, with additional data collection to
support diagnosis. Such additional data collection can be done systematically
on a fraction of the (failing) devices, or can be done automatically in response
to certain types of fail events. This added information is still part of routine
data collection, and will of course also be considered here. In fact, one of the
purposes of this book is to determine what additional data collection gives the
most diagnostic benefit for the lowest added cost.

Other diagnostic techniques, like probing the failing IC or interactively
applying tests based on what has been learned already about the cause of the
fail will not be addressed. Such techniques are very important, and are almost
always required in the end for the final determination of the cause of the fail,
but they fall outside the scope of this book.

The process of diagnosis starts with applying tests to batches of chips. The
test sequence is usually the same for all devices, even though the data collec
tion strategy may not be, and is typically divided into a number of steps. The
first few steps are intended to verify that the tester probe has made good elec
trical contact with the chip, and that there are no gross defects that would
cause a large current to flow through the pins of the probe. The observations
in these initial steps, called the gross tests, consist of measurements of cur
rents and voltages. The results of the measurements are compared to
predefined ranges of allowed values, and a chip fails any of the gross tests if
the corresponding measurement is outside its accompanying range. If a failure
does occur, there is either no good contact between the tester and the internal
electronics of the device, or the current flowing through the probe and the
contacts on the chip is so large that it might damage the probe. In either case,
no further testing can be done.

If the chip does not fail the gross tests, more detailed tests are applied.
These are generally of two kinds. Tests of the first kind consists of further
measurements, for example of IDDq currents, flush delays, or ring oscillator
frequencies. Those of the second kind consists of patterns that exercise
selected portions of the chip electronics. A pattern consists of the application
of a series of electrical stimuli to the inputs of the chip, and the observation of
the electrical responses at its outputs. It is generally digital in nature, and
exercises some portion of the chip electronics directly, as in deterministic
(like LSSD) tests, or causes the chip electronics to generate internal patterns.

Chapter 1: Introduction 23

as in Built-in Self Test (BIST). The chip can fail any of the patterns applied to
it.

The tests can be enriched further by applying portions of the patterns and
measurements at different voltages and temperatures. The fails occurring at
one voltage or temperature should be distinguished from fails occurring at
other voltages or temperatures, because they may be caused by different
defect mechanisms. Also, the chip may fail some pattern at one voltage, but
pass the same test at some other voltage, and this pattern of comer specific
passes and fails provides more information about the defect.

The test sequence consists therefore of a large number of steps: the mea
surements in the initial phase, and subsequent patterns and more
measurements. A chip that fails any of these steps is defective, and should be
removed. The removal need not be immediate, however, unless the failing test
is one of the gross tests, as it might be desirable for diagnostic purposes to
obtain the response of a chip to other tests in the sequence.

The responses of the devices to the patterns and measurements are
recorded in the test history, which is the complete record of which chips failed
at which step. If the number of steps is large, as it typically is because of the
large number of patterns, they can be grouped together into more meaningful
major steps. Examples are all the deterministic patterns at a given voltage and
temperature, the measurements of the oscillator frequencies, and detailed
IDDq measurements. Each such major step is assigned a code, and the test
history is merely a listing of the codes for each chip, indicating which major
steps it failed. Each failing chip is also assigned an overall code, called the
sort code, which is the code of that major test step at which the chip failed for
the first time in the test sequence.

Various types of analysis can be performed on the accumulated fail data,
and four different types will be discussed in this book. The first type consists
of statistical analyses of the fail data of large numbers of devices that were all
tested with the same test sequence. Examples of such large groups of devices
are the chips on a single wafer, or on all the wafers in a lot. The second type is
that of the spatial patterns of passes and fails on wafers, and the subsequent
classification of those patterns into random ones and ones that are distinctly
non-random. The third analysis type is that of potential commonalities
between fails; that is, the attempt to identify common fail mechanisms by
comparing fail syndromes. The fourth and final analysis type to be discussed
in this book is using the fail syndrome of a particular device to identify the
location of the defect that caused that device to fail.

Statistical analysis fits very naturally in the IC test process, because much
data that is collected is statistical in nature. Examples are the fractions of good
devices on individual wafers, the number of devices that were exposed for the

24 IC Fails

first time by a certain pattern, and the number of times a given object on the
device, like an embedded memory, failed across all the devices on a wafer.
The statistical analysis is largely descriptive, and its purpose is, broadly
speaking, to establish the normal behavior of the ICs, that is, to describe how
the ICs, on average, respond to the manufacturing test.

Establishing a normal behavior of the real hardware has two benefits.
First, it makes it possible to compare that normal behavior to what is expected
based on our understanding of the manufacturing process and test. Such a
comparison can then either confirm our understanding, or point at limitations
thereof; for example, holes, or, even worse, completely erroneous ideas of
what goes on during manufacturing and test.

The second benefit is that, once the normal behavior has been established,
it is possible to estimate normal statistical fluctuations around the expected
normal values, and to separate those from the truly deviant ones. In other
words, it makes it possible to identify ICs that truly deviate from the normal
behavior, even when taking statistical fluctuations into account. Non-normal
fluctuations often point at systematic problems, and finding them is the first
step in identifying, and then removing the underlying cause.

This book uses a limited number of statistical distribution and techniques.
Their main features are briefly reviewed in Chapter 2.

The most immediate statistical analysis, taken up in Chapter 3, is that of
the distribution of the yields, that is, of the fractions of good devices on single
wafers. Using pass/fail information only is a poor use of the test history, how
ever, and a more detailed statistical analysis of the distribution of all the sort
codes will be taken up subsequently in the same chapter.

The device yield depends on the area of the device: the larger the area, the
lower the yield. It has been noted over the years that this area dependence is
more complex than a simple Arrhenius factor, and the cause of this complex
ity is usually assumed to be some clustering of the defects over the wafer.
Clustering of the defects is, of course, related to what causes the defects in the
first place, and this area dependence may, therefore, provide additional infor
mation about the defect mechanisms. It is discussed in some detail in Chapter
4.

Even more detailed yield information can be obtained when the device
contains identifiable embedded objects that are tested separately by specific
portions of the test sequence. Examples of such units are embedded memories
and scan chains. The former are tested using specific memory tests, applied
from the tester or generated on chip (memory BIST). The latter are tested with
specific scan tests before the beginning of scan based testing.

Such object oriented yield analysis is valuable for all the reasons men
tioned above regarding device yield analysis. There is a normal rate at which

Chapter 1: Introduction 25

such objects are expected to fail, and any significant deviations from the nor
mal rates point at systematic problems. In addition, however, these objects
often have a size associated with them, like the number of cells in an embed
ded memory, and this size makes it possible to compare the failure rates of the
objects not just to their counterparts on different chips, but also to different
ones on the same chip that are similar in nature but have different sizes. The
statistical analysis associated with embedded objects is the topic of Chapter 5.

In addition to rates, the fails of chips or objects on chips are distributed in
some fashion over the wafer. This distribution is, of course, limited by the
locations of the devices on the wafer, but, with enough such devices, distinct
patterns can still be recognized. The primary goal of analyzing fail patterns is
to identify those patterns that deviate significantly from a random one, and,
therefore, may indicate some systematic problem. In addition, many process
problems lead to distinct patterns of fails over the wafer that can be classified.
Fairly standard pattern recognition techniques can then be used to identify the
presence of such patterns, and, thereby, the potential occurrence of the associ
ated process problem. This type of analysis is treated in Chapter 7.

The goal of commonality analysis, the third type of analysis to be consid
ered in this book, is almost the opposite of statistical analysis: cluster the
devices with similar fail syndromes into separate groups. There is no expecta
tion of normality, or conformance to some model, but, instead, the fail data,
whatever they are, are taken as signs of the underlying defect, and used to
identify instances of the same or similar defects.

This clustering is important, because it attempts to catalogue the types of
defects that occur and to determine their occurrence rates. If the devices can
be divided into groups at least some of which are large and clearly separated,
the obvious conclusion can be drawn that those larger groups correspond to
unique fail mechanisms that need to be investigated further. Once such clus
ters have been identified, they can be selected for further, more detailed
analysis. Various forms of commonality analysis are discussed in Chapter 6,
with additional examples briefly mentioned in Chapter 3 and Chapter 5.

The most detailed analysis that can be done, and that is still statistical in
nature, occurs when there is a notion of coverage. Coverage is a number
between 0 and 1 that is attached to any initial section of the scan based pat
terns (that is, all patterns up to and including some selected one), and that is
equal to the fraction of defects that are exposed by the patterns in that initial
section. It exists, in particular, for that portion of the test that uses scan based
patterns, and for them coverage is in fact routinely calculated.

Coverage clearly is related to the fraction of devices that fail during the
application of the patterns in such an initial section. The form of that relation
ship depends on the nature of the defects, and, consequently, analyzing the

26 IC Fails

progressive fallout when scan based patterns are applied should give useful
information about the defects. Chapter 8 will address both the relationship
between coverage and fallout, and how to use this relationship to extract
defect specific information.

Chapter 9 is devoted to the fourth type of fail data analysis, that of using
the collected fail data to identify the location of the defect. This type of analy
sis is far more complex than the previous types, because it uses a detailed
logical model of the device, in addition to the fail data. Consequently, it is far
more time consuming, and places far more stringent requirements on the fail
data that need to be collected for it to be applicable. On the other hand, if suc
cessful, it can locate the defect exactly within the device, and is one of the
main enablers of a successful physical failure analysis.

The simplest form of logic diagnosis is that based on the single stuck-at
fault model. It gives good results surprisingly often, even though many realis
tic defects cannot be modeled by single stuck-at faults. Chapter 9 discusses
this approach in detail, even though more powerful logic diagnosis techniques
are available, because it is the classical form of logic diagnosis, and because
many of the issues that complicate more powerful techniques already occur
here.

SLAT is a far more powerful logic diagnosis technique that relies on two
assumptions. The first assumption is almost an observation, and states that
any defect behaves as some set of stuck-at faults under the application of any
particular pattern that detects it. The defect may, and often will behave as dif
ferent sets of stuck-at faults with different detecting patterns. The second
assumption is that there will be some detecting patterns that cause the defect
to behave as a single stuck-at fault. This assumption is the crucial one, for it
reduces logic diagnoses to the standard problem of stuck-at fault diagnosis
discussed in Chapter 9. It is more complicated than the latter one, though, for
each detecting pattern has to be diagnosed as if it is the only one available.
SLAT is the careful simultaneous analysis of all these single pattern diag
noses, and will be described in Chapter 10.

The discussion in this book is ordered roughly according to the amount of
detail and the computational effort used in the various analyses. This ordering
corresponds more or less to what a diagnostic engineer might do when faced
with a large volume of failing devices, and having to find the main causes of
the fails. The corresponding flow is shown in Figure 1.

Design data are needed to generate the test sequence and in some of the
diagnoses. Not all diagnostic techniques require design data, though. Yield
analysis, for example, does not need it at all. Most diagnostic techniques do,
however, and those that can be done in its absence may still increase their
effectiveness when design data is available. Its importance for the various

Chapter I: Introduction 27

jdl" ^^
test

sequence

i d]

test device

fail data

" ^

design
data

^

^-

^

^^

— ^

^
— " ^

^

- ^

yield
chapter 3

area
chapter 4

failing objects
chapter 5

commonality

chapter 6

wafer patterns
chapter 7

coverage
chapter 8

logic diagnosis
chapter 9, 10

fcur Tiii^
wafer fallout
comparisons

^~^iiil^ _ _ i ^

area dependency
of the yield

^cm "̂ ^̂ ^̂
object fail

probabilities

fcnn ^^^^
device clusters

fcm ^m^
randomness
known patterns

[d i3 r_^ nn^

defect distribution
parameters

defect locations

Figure 1 Schematic diagnostic flow

28 IC Fails

diagnostic analysis techniques is indicated roughly by the heaviness of the
arrows from the design data icon to the analysis icons. The results of the vari
ous analyses is indicated briefly in the data icons on the right.

The diagnostic techniques to be discussed in this book have certain data
collection requirements, and these requirements have repercussions for both
design and test. For test, because the required data needs to be collected and
made available to the diagnostic software; for design, because it has to be pos
sible to collect the test data, and because certain design data have to be
available during diagnosis. An example of the former is the latch contents
after the application of a test pattern, while an example of the latter is the posi
tions of those latches in the scan chains. It will become clear from the main
text what those requirements are, but they will be briefly summarized in
Chapter 11 for the sake of convenience.

Chapter 2

Statistics

In the present chapter, I will briefly review some statistical distributions
that are used often in this book. I will also discuss some statistical techniques
that are important in this book, but that may not be very well known. Good
introductions to practically all the statistical techniques used here can be
found in, for example, Lindgren [38], or Casella and Berger [10]. The group
of techniques that are used most often is centered on the likelihood function,
but in some instances bootstrapping will be used as well. They will be
described briefly.

Many chapters in this book rely strongly on the difference between ran
dom variables and model parameters. To accentuate this difference, the
general custom will be followed of labeling random variables with upper case
letters, and parameters with lower case ones.

1 STATISTICAL DISTRIBUTIONS

The number of distributions used in this book is small, basically the bino
mial and Poisson distributions, and some variations on them.

1.1 Binomial and multinomial distributions

The binomial distribution is that of the number of fails in a given number
of attempts, given the fail probability. To simplify notation, I will use Feller's
one [22] for the probability density function of the binomial distribution. The
probability that n fails will be observed in N tries if the fail probability is p is

b(n;N,p) = n p " (1 - p f - " . (2.1)
^n^

The expected value of n is Np, and its variance is Np(l - p).
When p is very close to 0 or 1, the relationship between the expected value

of n and its fluctuations becomes very simple. When p is very small, it can be
neglected with respect to 1. The standard deviation of n is then roughly equal
to the square root of its expected value. Likewise, when p is very close to 1,
the standard deviation of N - n is roughly equal to the square root of that num
ber. In other words, when p is either very small or very large, the typical size

30 IC Fails

of the variations in the number of the rarer events (failures with very low fail
probability, passes otherwise,) is roughly equal to the square root of the num
ber of those events, and does not depend on the number of the more common
events.

The binomial distribution can be generalized by compounding [12]. In that
case, the binomial parameter p is a random variable itself, with a probability
distribution h(p). The expected value of p will be indicated by

<p) == jh(p)pdp , (2.2)

2
and its variance by a (p).

The expected value of the number of fails in the compounded distribution
equals N<p>, and its variance is equal to

N (P) (1 - < P)) + N V (P) . (2.3)

The first term in this variance is the standard binomial one, the second one is
the contribution from the finite width of h(p). It has the important conse
quence that, when N becomes large, the ratio of the standard deviation of the
number of fails to its expected value does not go to 0, as in a pure binomial
distribution, but, instead, to the finite ratio a(p) / (p) . Even with large N,
therefore, the variability in the number of fails cannot be ignored, and can, in
fact, be substantial.

Another extension of the binomial distribution is the multinomial [22] one,
in which more than two outcomes are possible, each with their own probabil
ity of occurrence. There is no standard notation for this distribution. The one
that will be used here was inspired by that for the binomial distribution. If
there are k choices, with probabilities p, for i = 1, ..., K, the probability P(ni,

..., Uĵ) of Uj occurrences of choice i is given by the multinomial probability

m({ni};N,{Pi}) = ^ ^ r r p " \ (2.4)

IT^i'
where n! stands for the factorial of n, and all products are from i = 1 to k. The

sets {pi} and {Uj} obey the obvious sum rules V pj = 1, and V n̂ = N.

Chapter 2: Statistics 31

By summing over all iij except one, say nj, we find that the probability of

nj occurrences out of N trials equals b(n;N, p) Consequently, the expected

value of any Uj equals Npj.

1.2 Poisson and compound Poisson distributions

The Poisson distribution is that of the number of occurrences of some
event in a given space, given the probability of an occurrence in a unit amount
of space, and given that occurrences are independent. Typical examples are
the number of events in a given amount of time or the number of defects in a
given area. The latter example is the important one in this book.

The probability of an occurrence in a unit amount of space is also called
the strength of the Poisson distribution. When the strength is v, the probability
of n occurrences in a unit amount of space equals

n
V - V

- e . (2.5)

The expected value and variance of n are both equal to v. The probability of
- V

no occurrence is e .
A more general version of the Poisson distribution is the compound Pois

son distribution, in which the strength v is itself a random variable with some
distribution h(v) [12]. The probability of n occurrences is then equal to

n
j h (v) ^ e ~ ' ' dv. (2.6)

It is easy to show, by interchanging integration and summation, that the

expected value |i of n is now equal to (v) = |h(v)vdv, and that its variance

2 2
equals JLI + a (v) , in which a (v) is the variance of the Poisson strength v.
Compounding, therefore, always increases the variance of the observed
yields.

Another effect of compounding is to increase the probability of no occur
rences at all, at least when (v) , the expected number of occurrences stays the
same. This probability equals

Po = Jh(v) e""" dv . (2.7)

32 IC Fails

That compounding always increases po compared to its Poisson value can be

proven as follows. It is easy to see that e >e -{V-X)Q , because

-(v - X)e describes the tangent to e at v = A., and because e"^ curves
upwards. The constant X in the inequality can be any number, but is taken
here as the mean of v. In the compound model, we then find that

1.3 Negative binomial distribution

An important example of a compound Poisson distribution is the negative
binomial one. It emerges when the compounding fiinction is the gamma distri
bution. In other words, when

a - 1 -va/ja
h(v) = ^ 5 -, (2.8)

r(a)()Li/a)

in which a is a positive parameter, called the cluster coefficient, \i is the mean
of v, and r(x) is the gamma function of x. The negative binomial distribution
can be generated in other ways than by compounding a Poisson distribution
[12], but compounding is a very convenient one.

The probability of n occurrences in the negative binomial distribution
equals

2
The expected value of n is |i, and its variance is \i + \i / a . The probabil

ity of no occurrences equals

(1 +jLi /a)~^. (2.10)

The cluster coefficient functions as a sort of scale that separates the region
a » |i in which the negative binomial distribution is very similar to a Poisson
distribution, from that in which the two are very different.

The cluster coefficient is related to the distributional parameters of the
compounded Poisson distribution through

Chapter 2: Statistics 33

'- = ^ H ^ , (2.11)

which suggests a rough estimate of the inverse of the cluster coefficient from
actual data. Using the inverse of a rather than a itself is more meaningful, for
the former vanishes in the limit of a pure Poisson distribution. It will be indi
cated by y.

Equation (2.11) can also be seen as a generalized definition of a cluster
coefficient, one that goes beyond its definition in the gamma function. As
such, the estimate obtained from equation (2.11) need not be positive, even
though a is in Equation (2.8). There is in fact no reason why the generalized
cluster coefficient should always be positive, and we will find in Chapter 4
that it oftentimes is not.

Large values of y correspond to strong clustering, and small values to little
clustering. For example, when we calculate y for the compound binomial dis
tribution, it equals - 1 / N in the case of no compounding, but then increases
smoothly to positive values. It can become arbitrarily large when a (p) , the
width of the compounder, becomes large.

2 LIKELIHOOD

In many situations, the data that are collected have some known statistical
properties, except that some parameters of the underlying distribution are not
known. One of the goals of collecting the data is to estimate those parameters.
An example is the passes and fails of an embedded SRAM on the chips. It is
assumed to fail with a probability that may depend on the wafer column in
which the chip is located. The numbers of passing and failing SRAMs per col
umn have Binomial distributions, and one statistical analysis that can be done
is estimating the fail probabilities of those distributions, and determining
whether they are column dependent or not.

A standard way of constructing estimators for the parameters of a distribu
tion is the maximum likelihood method. It relies on the so called likelihood
function. This approach is described in some detail in the statistics books
mentioned previously [10, 38], and in more detail in the book by Edwards
[20].

The likelihood function is numerically proportional to the probability that
the observed data would have been obtained, given a specific set of distribu
tional parameters. By considering the likelihood function as a function of the
parameters, with the observed data as fixed values, the probability is trans-

34 IC Fails

formed into a function of the parameters. The likelihood function is
proportional to it, for factors that do not depend on the parameters turn out to
be irrelevant.

In the example given above, the probability that the given numbers of
passes and fails in the various columns would have been observed is equal to
the product of a number of binomial probabilities, one for each column, and
each one with its own fail probability. With the actual observations fixed, this
product is a function of the column fail probabilities. It will vary when the fail
probabilities are varied.

2.1 Maximum likelihood

The maximum likelihood method is based on the assumption that the best
estimate of the physical fail probabilities, the ones that govern the actual
passes and the fails on the physical wafers, is that set of probabilities that
maximizes the likelihood function. It obviously depends on the observed data,
because different sets of data will put the maximum of the likelihood function
in different places.

The likelihood function is generally indicated by L. If we continue the
example, L is function of the column fail probabilities pj. To make the depen
dence on the observed data explicit, they are sometimes added to L as a
condition:

L = L(pi, . . . ,p,^|data). (2.12)

Given the data, the first step in the analysis is estimating the fail probabili
ties. As mentioned above, this is done by maximizing L, and entails two steps.
First, the extrema of L have to be found, which can be done by solving

1 ^ - 0 (2.13)
5Pi

for each i (column in the example). Second, the maximum has to be found
among the extrema. A maximum corresponds to an extremum where the
matrix with elements

Chapter 2: Statistics 35

is negative definite. In most cases, Equations (2.13) have only one solution,
and that solution can trivially be shown to correspond to a maximum. In some
cases, however, multiple solutions may have to be considered, and the nega
tive definiteness of the matrix of second derivatives of L has to be established
using numerical methods.

Strictly speaking, the found maximum should also be compared to values
of L on the boundary of the range of the parameters of the distribution, for
maxima on those boundaries usually do not obey Equation (2.13). In most
cases encountered in this book, L trivially vanishes on this boundary, and is
positive in the interior region of the range, so the question of maxima on the
boundary does not occur.

There are in fact situations in which Equations (2.13) are so complex that
they cannot be solved even with moderate effort. If all else fails, the maxi
mum of L can always be found by reliable, but numerically more demanding
maximization routines [44].

The estimates of the parameters are random variables, for they depend
solely on the observations, and not on the parameters to the underlying distri
butions. These estimates, therefore, have a distribution, but that distribution is
usually not known. Fortunately, for large sample - that is, large wafers in the
example - the distribution of the estimates is approximately normal with a
covariance matrix equal to minus the inverse of the matrix of second deriva
tives. The latter matrix is therefore not only important for establishing
maximality of extrema, but also for gauging the accuracy of the estimates.

2.2 Likelihood ratio

The likelihood function is used not only for estimating parameters, but
also for deciding whether one particular statistical model is better suited to
explain the data than some other potential model. The manner in which that
will be done in this book can be demonstrated with the example that we have
been using in this section.

In the running example, there are two reasonable models. The first one,
called the heterogeneous model, is the one that we have been using: one fail
probability per column. The second one is called the homogeneous model,
and is a simplification of the first: one fail probability for all columns. The
heterogeneous model is always more accurate, for it has more adjustable
parameters. The homogeneous one is more parsimonious, and may be pre
ferred for that reason.

Even when the homogeneous model is correct, the numbers of fails on any
given column will not always be equal to the mean, but will fluctuate around
it. Small deviations of the numbers of fails around their respective means will
not necessarily invalidate this model, therefore; only large deviations can do

36 IC Fails

that. The question is, "how large should the deviations be before we should
discard the homogeneous model and assume the validity of the heterogeneous
one ?"

This question can be answered to some extent with the likelihood ratio

L(p data)
A = _ ' _ , , (2.15)

L(pp ...,pj^ data)

in which a carrot () over a variable indicates the maximum likelihood esti

mates of that variable, and p is the maximum likelihood estimate of the

single fail probability in the homogeneous model.
A will never exceed 1, for both numerator and denominator are maxi

mized, and the space of the p values is a subset of the space of the pj values.

Therefore, if L(p) were larger than L(pj , ...,pj^), the latter could be

increased by replacing the estimates of pj by the estimate of p, contrary to the

assumption that it is maximal.
A is a convenient measure of the extent to which the observed deviations

match the expected ones; in other words, it is a good indicator of column sim
ilarity. If the homogeneous model reflects the true state of affairs, it will be
close to 1, but not equal to it, because of statistical fluctuations. If this model
is not the correct one, A will be much smaller than 1.

How much A should differ from its maximum value before the homoge
neous model can be rejected depends of course on the size of the expected
statistical fluctuations, which depend on the numbers of columns and chips
per column through N^p, the number of degrees of freedom. This number

equals, in this case, V (m | - 1), in which the sum is over all the columns,

and mj is the number of chips in column i.

Under the null hypothesis that all columns have the same fail probability,

- 2 In A has approximately the chi-squared distribution with Nj)p degrees of

freedom [10]. Consequently, under the null hypothesis, the expected value of

-2 In A equals Nj)p, and its variance 2Np)p.

If the null hypothesis is correct, the actual value of-21nA is expected to be
within a few standard deviations of its mean. A more convenient measure of
column similarity, therefore, is the ratio

Chapter 2: Statistics 37

- 2 1 n A - N T 3 p
(2.16)

J^ DF

Any significant deviation of A from its mean leads to a large value of p, and
indicates that one or more columns differ significantly from the others. More
over, when the number of degrees of freedom is large, as it typically is, the
chi-square distribution can be replaced by a normal one with the same mean
and variance.

3 BOOTSTRAPPING

When estimating the values of distributional parameters or other distribu
tion related quantities, we often would like to the know the accuracy of those
estimates, in addition to the estimates themselves. When the statistical distri
bution of the estimator is known, the accuracy of the estimate can be obtained
from the variance of the estimator. Oftentimes, however, the distribution is
not known, or, if known, is valid only in the limit of very large samples. In
such cases, other means have to be employed to get a sense of the accuracy of
the estimators.

The variance of an estimator could also be estimated, and trivially so, if
many samples were available. For then we could estimate whatever quantity
we are interested in in each sample, and compare the results. Unfortunately,
there is only one sample. It is possible, however, to create artificial samples,
with many of the same statistical properties as real samples, and use these arti
ficial samples as substitutes for the latter. This technique is called
bootstrapping [41].

In bootstrapping, a large number of secondary samples are generated from
the original one, called the primary sample. The secondary samples have the
same size as the primary one, and are formed by randomly selecting the units
of the sample (embedded SRAMs in our running example) from the original
sample. The selection is done sequentially, and with replacement (so the same
unit can be selected multiple times.)

The bootstrap assumption is that the statistical properties of primary sam
ples are approximately the same as those of the secondary samples, based on a
single primary one. For example, a single fail probability for the embedded
SRAMs, valid for all columns, can be calculated for each secondary sample,
and the distribution of these fail probabilities is assumed to approximate that
of the maximum likelihood estimate of the fail probability in the primary
sample.

Chapter 3

Yield Statistics

Testing of electronic devices consists of applying a sequence of test opera
tions to those devices. Each test operation, or test for short, may cause one or
more devices to fail. As the device failures are caused by defects introduced
by, or at least during the manufacturing processes, the progressive increase in
chip fallout during testing may provide us with information about these
defects and about the processes that caused them.

Extracting such information is made difficult, however, by the inevitable
statistical fluctuations in the real fallout data. After all, whether a chip has the
defects that will make it fail at or before a certain test is a matter of chance: on
average, the same fraction of chips will fail, but the actual number will fluctu
ate around this average, depending on the particular batch of chips that
entered the test process. The size of these fluctuations will of course decrease
when the size of the batch of chips increases, but the batch has to become very
large for the yield fluctuations to become negligible.

The chapter will address several of these statistical issues, and is divided
into roughly three equal parts. In the first two sections, the statistical aspects
of the yield, and in particular of the defect level, are studied. The predictions
of the theory are compared with experimental data, and it turns out that the
distribution of wafer yields is much wider than can be explained by assuming
that the fail probability of the devices is the same on all wafers.

In Section 3, the statistical analysis is generalized to include the partial
yields at all the test steps, not just the overall yields. It will be shown that,
under very general assumptions, the statistical properties of the fallout data
are of a rather simple kind, and can easily be estimated from the observed
data. Any comparison between theory and practice can therefore be done
using standard statistical techniques.

The final sections are devoted to an analysis of the distributions of sort
codes for different wafers. This analysis is important in its own right, because
it focuses on which wafers have the same fallout behavior, and, presumably,
the same process histories, but it also provides more insight into the exces
sively wide wafer yield distributions.

40 IC Fails

1 YIELD AND DEFECT LEVEL

The simplest information that can be obtained from the results of applying
a test sequence to N chips is Np̂ ss? the number of chips that passed all tests.
The same information is often presented as the perceived yield Y, which
equals Np ŝs/N. This section will focus on Y and some of its statistical
properties

1.1 Final yield

Y is a random variable whose value depends on the particular batch of
chips that was submitted to test. Its expectation value will be indicated by y.
Because chips either pass or fail, y is also equal to the probability of a chip
passing the test. The variance of Y is y(l - y) / N . The distribution of Y is
assumed to be independent of the particular batch of chips being tested. Con
sequently, Y is likely to be in the range

y±Vy(l -y) /N, (3.1)

and, if the square root term is small compared to the yield, Y is a good esti
mate of Y, in the sense that y is in the range Y±yVY(l-Y)/N, where y is some
number that depends on the required confidence, and is typically equal to
three.

It is also often desirable to focus on a subset of M devices from the batch.
For example, this subset could be a single wafer from a lot of many wafers, in
which case M is the number of devices on the wafer, and N is the number of
devices in the lot. But the subset need not be as obvious as a wafer; it could be
smaller, like a region on a wafer, or larger, like a set of wafers that are known
to have been processed through the same tools. If N is large, Equation (3.1)
also implies that this subset should have a yield in the range of

Y ± V Y (1 - Y) / M . (3.2)

1.2 Defect Level

Y may not be the same as the fraction of chips that are truly defect free,
and usually isn't. This latter fraction will be indicated by YQ. YQ is a random
variable, in the sense that it depends on the batch that is being tested. It is
always unknown, however, and it may even be very hard to define. For exam
ple, consider a chip that is good in the sense that it would pass all tests that
anyone might want to apply, but that has a weak defect that will grow rapidly

Chapter 3: Yield Statistics 41

when the chip is being used and that will cause a failure after only a few hours
of use. Is this chip defect free and contributes to YQ, or not ? I will ignore
these subtleties and assume that YQ is well defined but unknown.

YQ is a random variable, just like Y. Its expectation value will be indicated
by yg. The existence of chips that pass all tests even though they have defects
means that, in fact, there are three kinds of chips: those that are shown to be
defective by the test, those that are defective but pass all tests, and those that
are defect free. The probabilities for these three categories are 1 - y, y - yg and
yo, respectively.

The difference between Y and YQ is the fraction of chips that have defects
but passed all tests. The goal of test, of course, is to make this fraction as
small as possible. A more standard measure of goodness of test is the ratio
DL = (Y-YQ)/Y,cal ledthe defect level.

The actual number of defective chips that pass all tests will be indicated by
N^ef. It is related to the usual defect level DL by

D L = - ^ = - i H . . (3.3)
pass

Even though DL is the standard measure for test escapes, it is easier to work
with N(jef than with DL. Its statistical properties can easily be determined
from the definition (see Appendix A)

The most interesting statistical properties of N̂ jgf are those with N and

Npass known. In that case, Np^ss chips passed all tests, but N ĵ̂ f of them are

still defective. It is shown in Appendix A that N^^f has the binomial distribu

tion with expected value

(3.4)

and variance

(N D e f) = N p a s s (l - y ^

<^'(Ndef) = (N , , f) ^ (3.5)

which is approximately equal to '^^Qf > when yo and y are close.

These results depend on the actual value of Np̂ gs? which varies from batch

to batch, and on yg. As the latter is generally unknown - in fact, all chips that

42 IC Fails

pass the test may be defective, in which case YQ vanishes - no reliable esti
mate can be made of the expected number of field failures without either
knowing how complete the test is, or assuming that the test is almost com
plete. The question of how to estimate DL when some measure of test
completeness is available will be taken up in Chapter 8.

Even when the test completeness is known, no good estimate can be
obtained if N^gf is small (as it should be,) because of the unavoidable statisti
cal fluctuations. For Equation (3.5) shows that the standard deviation of N ĵ̂ f
is approximately equal to the square root of its expectation value. The fluctua
tions are therefore not important if that expectation value is much larger than
1, and N(|ef is roughly equal to it. When the expectation value is of order 1,
however, a(N(igf) will be comparable to, if not larger than N̂ jgf, and the fluctu
ations will determine the value of the latter.

2 EXAMPLE: EXPERIMENTAL WAFER YIELDS

In a recent experiment, one ASICs part was tested extensively. The goal of
this experiment was to gauge various test methods, according to their effec
tiveness in detecting defects, as well as to gauge the availability, efficiency
and accuracy of existing diagnostic methods in determining the locations of
the defects that caused ICs to fail. More detailed information about this exper
iment is given in Chapter 9.5. Here, only the wafer yields will be considered.

Each wafer contained 329 devices. The experiment looked at 147 wafers,
divided over nine lots, with varying numbers of wafers per lot. The yield
results are shown in Figure 2 using box charts.

The box charts summarize the yield distributions within a lot, shown on
the X-axis. Lot_6 and Lot_7 consisted of a single wafer each, and no boxes
are shown for them, only a a single + mark, indicating the yield of the single
wafer. The widths of the boxes indicate the number of wafers in the lot. The
tops and bottoms of the boxes correspond to the 25th and 75th percentiles of
the yield distributions, respectively, and the lines dividing the boxes show the
positions of the medians. The average yields are indicated by the '+' symbols.
The thin lines extending from the tops and bottoms of the boxes are called
whiskers, and show the ranges of the yields, but they are restricted in length to
one and half times the height of the associated boxes. Wafers with yields out
side this range are considered to be outliers, and are indicated by the black
dots. Lot_9, for example, has four outliers with excessively low yields.

Chapters: Yield Statistics 43

n 1 T T J
H Q U •

•

- ^ f — 1 — f — f — 1

L

1

1

1

1 1 1 1 1

L

J

\

1

lot

Figure 2 Distribution of individual wafer yields for several ASIC lots

The figure shows a reasonably stable distribution of lot yields, in that the
yields of the different lots are more or less equal (with the exception of the
singular Lot_7, which consisted of a single, low yield wafer.)

The observed distributions of the lot yields are much wider than expected,
however. If the distributions were purely binomial, the height of the boxes,
called the interquartile range, would be roughly 1.35 standard deviations in
the normal approximation [15], which is considerably less than observed.

One possible explanation for such a larger than expected variation is that
the probability y of a device passing all tests is not a constant, but is itself a
random variable with some distribution. This may occur if, for example, dif
ferent wafers were operated upon by different tools, each one of which
performs the same function, but with different tolerances and characteristics.
Slight tool differences may lead to slightly different values of y, resulting in a
yield distribution that is wider than when y is the same for all wafers. Other
causes are discussed in, for example, [47].

The distribution of y values is often called a compounding distribution
(see Chapter 2), because an individual wafer yield is the compound result of
random statistical variations around y, and the random variations of y due to
the random choice of tools used to perform required process operations. That
compounding widens the yield distribution was proven in Chapter 2, where it

44 IC Fails

was shown that a non-trivial yield distribution increases the variance of the
number of failing devices by the variance of that yield distribution.

Even though compounding explains the wide yield distribution, it is not an
attractive approach to yield analysis, for any yield distribution can be
explained by choosing a suitable compounder. Unless the compounding func
tion can be related to the tool characteristics, no useful information can be
obtained by finding one that merely reproduces the observed yield distribu
tion. A different, and more productive approach will be developed, among
other things, in the next sections.

3 TEST FALLOUT

The experimental results in the previous section show that individual
wafer yields can differ substantially from the overall lot yield. This excessive
yield variation indicates that not all wafers were subject to the same defect
producing mechanisms. To locate the source of these differences, a more
detailed analysis has to be made of the fallout history, the record of how many
chips failed for the first time during the various steps in the test sequence.

3.1 First fail probabilities

The overall test sequence was described in some detail in Chapter 1. It
consists of a, potentially large number of steps, many of which can be com
bined in useful major steps, like IDDq, 10 leakage, and deterministic tests at
nominal voltage and temperature. Every chip is assigned a sort code, indicat
ing in which major step it failed first during the application of the test
sequence. In its crudest form, the fallout history is merely the record of the
sort codes.

There is no need, however, to restrict ourselves to the major test steps.
Many major steps can be subdivided into smaller steps, maybe as small as the
application of a single test pattern. Usually, no standard sort codes are avail
able for such smaller steps, but it is clear that a fallout record can still be
maintained. This section will focus on the statistical aspects of the fallout his
tory, regardless of the step size. The test steps will be labeled by an index k,
running from 1 through kf. kf will be large if the test steps are chosen to be
very small.

To perform a statistical analysis of the fallout data, each chip needs to be
assigned to one of many, mutually exclusive test result buckets. In the previ
ous section, there were only two buckets, one for chips that passed all the
tests, and one for the ones that did not. A far more sophisticated choice of

Chapter 3: Yield Statistics 45

buckets is the complete set of test steps that showed the chip to be defective. It
is rarely known at what test steps a given device fails, however, for the cost of
applying the complete test to every chip is prohibitive. A better choice is to
label each failing chip with the test step at which it failed first, that is, by the
sort code, if such a code exists. There are then kf + 1 different buckets, instead
of only two as in the previous section.

The probability of a chip failing for the first time at a particular test step
depends on the manufacturing process and on the test sequence, but is
assumed to be stable (that is, time invariant.) It is therefore well defined, and
will be indicated by dĵ , with k being an index that labels the test steps 1
through kf. d^ is the probability of a rather complex event, namely that of fail
ing in test k and passing all preceding test steps, dĵ ^ ^ is the probability that

the device will not fail at all.
There is, therefore, a set {dĵ } of first failure probabilities associated with

the manufacturing process that produced the chips. As a chip does not fail at
all, or, if it does, does so for the first time at some test step.

kf+1

" k = 1
E _ k̂ = i- (3.6)

First failures of different chips are independent events, and, if the process is
stable and all devices have the same process histories, all chips are subject to
identical sets of such first fail probabilities.

d]̂ is obviously related to the yield yĵ at the completion of the k test.
Because the latter is the probability that the chip does not fail any of the first k
tests in the test sequence,

k

- 1
^k- 1 - S . _ î- "̂̂

The yield at the completion of all the tests has, until now, been indicated by y.

It is, of course, the same as ŷ ^ , but I will continue to use the y symbol for the

final yield, rather than the technically more correct ŷ ^ . Combining Equations

(3.6) and (3.7), or its definition, shows that dĵ ^ ^ equals y.

46 IC Fails

3.2 Statistical distribution of fails

The fate of a chip will take one of kf + 1 forms: either it fails one of the kf
tests, or it passes all tests. Consequently, the joint distribution of the numbers
of chips first failing in any of the kf tests is multinomial (Chapter 2.1.1,) with
parameters dĵ , k = 1,..., kf, and y. This observation forms the basis of the sta
tistical treatment of the yield curve. Of immediate interest are some special
cases, the mathematical details of which can be found in Appendix A.

The number of chips failing for the first time at the k* test has the bino
mial distribution with average Nd|̂ and variance Nd]^(l - d|̂). A related special
case is that of all tests from test 1 to k grouped into one test. This case is of
great interest for it is related to the yield curve as it is usually shown. The frac
tion Y]̂ of chips that pass all tests through the k* one is the perceived yield

after the k* test. With the probability y|̂ of passing these tests as given in
Equation (3.7), the number of chips passing all of them has the binomial dis
tribution with expected value Nyĵ .

These results are of course entirely expected, but they ignore - or average
out - what happens in the tests preceding any particular test step. The number
of chips that first fail a specific test does depend on the outcome of the previ
ous tests, however. After all, when the tests preceding the k̂ ^ one find all
chips to be defective, the number of chips failing first at test k is zero with
probability one.

It is easy to show that what happens at test k depends on the previous tests
only through the number of chips that passed all the preceding tests. Let K be
the number of devices that did not fail any of the tests preceding test k. It is
another random variable, and has the binomial distribution with expected
value Nyj^_ 2. The number of chips failing test k is Nĵ , and has again the
binomial distribution, but, when K is given, with expected value Kdj^/y^.j.

The statistical properties of N^ depend on \ , Y k - 1 ' ^^^ ^- ^^^^ ^^ ^^^~

ward if we need to compare results from different batches with different

values of K, even if yk_ i is known to be the same in all batches: the differ

ences in N]̂ could be caused by differences in d ,̂ which is interesting, or by

differences in K, which is trivial. K will vary because of normal statistical

fluctuations, but those variations can be ignored if their effect on Nĵ is small

compared to the normal statistical fluctuations in N]̂ with a fixed K. It is

shown in Appendix B that the fluctuations in K can be ignored when y^ is not

too small compared to yj^_ ̂ It is therefore usually legitimate to ignore the

Chapter 3: Yield Statistics 47

dependencies between different tests, and to approximate the distribution of
N]̂ by Equation (A.6), using the observed, the averaged, or the expected value
ofK.

4 MEASURING FIRST FAIL PROBABILITIES

In the previous section, all wafers or lots share the same process histories,
and their {dĵ } sets should be the same. On the other hand, if these first fail
probabilities differ significantly, then it can safely be assumed that the process
histories of the batches are not the same either.

This question was alluded to in Section 2, where it was noted that different
wafers in the same lot can have very different yields. Clearly, when the yields
of two wafers are very different, the wafers must have had different process
histories, and this was modeled in Section 2 by giving y, the probability that a
device on a wafer will pass all tests, a non-trivial probability distribution. On
the other hand, giving y a probability distribution does not provide any more
insight than what was already available from the yield distribution.

The multinomial machinery is a different approach to the same problem. It
makes it possible to study differences between wafers at a much more detailed
level than the overall yield, and even when the final yields are similar. In par
ticular, it can identify those specific test steps where the differences are most
pronounced. Knowing the identity of those test steps can then provide infor
mation about the possible defects that gave rise to the differences, because
different test steps are typically sensitive to different defect types.

In this section, a statistical method will be described that uses the fallout
history to estimate the first fail probabilities for any batch of devices, and that
can gauge the extent to which the histories of different wafers differ.

4.1 Fallout histories

The wafer by wafer fallout histories can be presented as a matrix, in which
the rows correspond to wafers, and the columns to the different steps in the
test sequence (see Table 1.). The number of rows in the matrix is I, the num
ber of wafers, while the number of columns equals k^ + 1, corresponding to
the number of outcomes of the test sequence. The final column has the virtual
test step index k^ + 1, and contains the data for the devices that passed all

tests.
The row/column entries njj surrounded by the heavy line in Table 1. are

the number of chips on wafer i failing test step j , while not failing any of the

48 IC Fails

wafer 1

wafer2

wafer 1

Total

step 1

Uii

1̂ 21

Uu

Ni

step 2

ni2

1122

ni2

N2

step kf

i^lkf

^akf

"ikf

Nk,

pass

M-E.n i j |

M-Z."2j

M-Z."ij

N- I ,N j

7aZ?/6 7. Wafer by wafer test histories

test steps preceding j . The final column, with matrix elements n̂ /ĵ ^ ^x, indi

cates the number of chips on wafer i that did not fail any of the tests. The

column totals Nj correspond to the test history used in Section 3, and Nĵ .̂ ^

equals N - V N- The row totals equal M, the number of chips on a wafer,
J

but are not indicated in the table for they are typically all the same (except
when there are test or data integrity problems). The total number of chips on
all the wafers equals N, as before.

The Ujj are usually not the same for all wafers i, but they are similar when
all chips on all wafers are subject to the same defect mechanisms, that is,
when they all have the same multinomial parameters {dĵ }. In matrix terminol
ogy, this means that a constant d]̂ is associated with each column. This case
will be referred to as the homogenous model. The alternative is the heteroge
neous model, in which different wafers may have been subject to different
defect mechanisms. The homogeneous model has been assumed so far, but
the wide yield distributions displayed in Figure 2 may force us to consider the
heterogeneous one.

4.2 Maximum likelihood estimation
In the homogeneous model, the multinomial parameters are the same for

the same test step, and the different wafers can be viewed as different, inde-

Chapter 3: Yield Statistics 49

pendent random samples from the same population. The resulting distribution
of the njj values is the product over all wafers of identical multinomial distri
butions. The d̂ parameters can then be estimated from the fallout data using
the maximum likehhood method (see Chapter 2.2.1).

In this case, the likelihood function is indicated by L(d]̂), and is the prod
uct of identical multinomial distributions, with the random variables replaced
by their measured values. Estimates for d|̂ are obtained by finding those val
ues of the parameters for which L(d]̂) is maximum. The result of the

estimation is indicated by A^, and

dj; = I N ^ . (3.8)

If different wafers are subject to different defect mechanisms - the hetero
geneous model - their first fail probabilities will differ, but the distribution of
the Ujj is still a product of multinomial distributions, be it with different multi
nomial parameters. The parameter set for wafer i will be indicated by the set
{djĵ }, and can still be estimated from the fail data using the maximum likeli
hood method. The likelihood function for this scenario will be indicated by
L(dj]̂). Maximizing it leads to the estimates

The problem is to recognize when to use identical multinomial parameters,
and when to use different ones. This can be done using the likelihood ratio
(see also Chapter 2.2.2.) This ratio will be indicated by A, and equals L(d]̂)/
L(dik), with the multinomial parameters evaluated at their respective maxi
mum likelihood estimates:

(3.9)
'N,M n,n

A is a good indicator of wafer similarity. Under the null hypothesis that all
wafers have the same multinomial parameters, -2 In A approximately has the
chi-squared distribution with kf degrees of freedom. A more convenient mea
sure of wafer similarity, therefore, is the ratio p, defined in the same chapter.

50 IC Fails

Any significant deviation of A from its mean leads to a large value of p, and
indicates that one or more wafers differ significantly from the others.

COMPARING WAFERS

Figure 3 shows the distributions of the sort codes for each wafer in one
Wafer 125
Wafer"l26
WafeM27
Wafefias
Wafer"129
WafeflSO
WafeMSI
Wafer"l32
Wafer"l33
WafeM34

- Wafer"l35
"5 Wafer 136
^ WafefW

Wafer"l38
Wafer"l39
Waferj40
Wafer 141
Wafer"l42
Wafer"l43
WafefW
Wafer"l45
Wafer"l46
Wafer"l47

FREQUENCY

^ ^ sort 01
^ S sort_os
S Z Z i Sort_09

^Soit"tt

^ m Sort_02
EMM sort_oe
E Z S Sort_10
^ S 3 Sort" IS

^^B Sort 03
Wm sort07
EZZ3 Sort. 11

i Sort" 17

^ ^ S c r t _ 0 4
^^M Scrt_OB
i3 :JScr t_ l3
SS3S0f t " l5

Figure 3 Distribution of test sorts by wafer

particular lot - Lot_9 - of the design introduced in Section 2. The bars refer to
different wafers, and the different patterns correspond to the different sort
codes. The sizes of the patterned sections in each bar constitute in fact the fall
out history of the associated wafer. It is not relevant what tests the various
codes refer to, but, as an example, some refer to different environmental
stresses applied when the LSSD test patterns were applied.

The information contained in such fallout histories is quite extensive. The
fallout history is dominated by the Sort_l and Sort_2 categories, although
there are some exceptions like Wafer_128, and Wafer_147. The outliers men
tioned in Section 2, are easily visible in the chart. It is also obvious from the

Chapter 3: Yield Statistics 51

chart that one of them, the last one, is abnormal, because of its excessively
large number of Sort_2 fails.

This figure demonstrates clearly that the homogeneous model is not realis
tic: different wafers can have very different mixes of sort codes, and,
therefore, must have had very different process histories. To progress, how
ever, it is more productive to identify those wafers that share similar fallout
histories; in other words, to group the set of wafers into clusters, each cluster
containing those wafers that seem to have failed more or less similarly.

A general clustering algorithm will be discussed in Chapter 6.4. What is
required for this algorithm is a measure for the degree of commonality
between two clusters. A natural choice for such a commonality measure is the
ratio p, defined in Chapter 2.2.2, for the union of the two clusters, with a small
value of p indicating a high degree of commonality.

When the clustering process with this commonality measure is applied to
the experimental test results from Section 2 with a threshold of three, the set
of 147 wafers breaks up into twenty seven clusters. The largest cluster has
thirty eight members, while the smallest ones consist of a single wafer each.
Clustering goes across lots, as is shown in Figure 5, which shows the yields of
the individual wafers, grouped by cluster. Whatever causes the process differ
ences, therefore, is active in different lots, even though there is some tendency
for wafers from the same lot to be in the same cluster.

Clustering groups wafers together that seem to suffer from similar defect
mechanisms. Therefore, the fail probability y of a device is likely to be much
more constant within one cluster than across all the lots, and, consequently.
Equation (3.2) is likely to be a much better description of reality. In other
words, we expect the yield distribution to adhere much more closely to our
binomial expectations than in Figure 2. The yield distributions within each
cluster are shown in Figure 4. Within each cluster, the yield distributions are
obviously much more narrow than the overall yield distribution.

It is also of obvious interest to know what makes a cluster a cluster; in
other words, what sort combinations define the various clusters. After all, the
point of clustering is to group together those wafers that seem to have failed
similarly, and differences between clusters, therefore, reflect essential differ
ences in process history. The sort compositions of the twenty seven clusters
are shown in Figure 6. Because the Sort_l and Sort_2 sorts dominate the fall
out, and because their contributions seem to be more or less stable between
wafers, and, therefore, are not very indicative of cluster differences, the figure
shows only the contributions of the other sorts. There are clearly large differ
ences between the clusters, and they can now be used to further unravel the
exact differences in process histories.

52 IC Fails

1 1 1 1 1 1 1 1 1

6 8 1 1 1 1 1 2 2
0 2 ^ 6 8 0 2

dud)er

Figure 4 Yield distributions of wafer clusters

1

2
A

1

2
6

— r
2
8

Such additional analyses will not be discussed here since they go beyond
what can be done with tester fail data. Clustering has identified common sets
of wafers. Actual manufacturing histories now need to be consulted to deter
mine why and how different clusters differ.

Chapter 3: Yield Statistics 53

<KI

XO 0

tttiOtt

0 0 -OO

^ ^<
GD<*10

<i^ "km ^

O ^ S B D G ^

8

Oh

oh

o
<M

h P

—r—1—I—I—I—I—n—I—I—I—I—n—|—i—i—i—i—j-ni—i—i—i—|—rn—i—i—|—i—i—n—|—i—i—i—r—f J- o

o

0 0

88
O 1^
CM P

N N

% 3g

< t

Pi
D •
D *
D i

O CD
«8

0 f
0 •*

Figure 5 Individual wafer yields grouped by cluster

54 IC Fails

HS?

100 200 300 400 500 600 TOO 800 900 1000 1100 1200 1300

FREQUENCY

^ ^ SortloF
E Z S Soit_11

i Sort_04
1 2 3 Sort OB
E22:2Sort_12
SS5S Sort 16

I sort_os
^SZZZ sort 09
E Z Z i sort t3
^ ^ S o r l t ?

I Sort_06
1 sort_«

C : i 3 Scrt~tt
C ^ S o r t IB

Figure 6 Sort compositions of the wafers clusters

Chapter 4

Area Dependence of the Yield

In Chapter 3, the observed yield Y and the real yield YQ were discussed. In
this chapter, I will focus on the latter and on its area dependence. Understand
ing this area dependence is important for many reasons. First, it determines
how large a chip can be fabricated, and, therefore, how much function can be
put on a single chip. Putting additional function on a chip rather than on sepa
rate chips does away with the chip to chip delays and, therefore, improves the
speed with which this function can be performed. It also obviates the need for
having to package those additional chips and put them on the second level
package, typically a board or a MCM.

Increasing the area of the chip, however, inevitably reduces its yield.
Given a known (we hope) process quality, one might want to increase the size
of chips until the yield drops below some economic threshold. To predict,
however, at what chip size this threshold will be crossed requires a detailed
understanding of how the yield depends on the process quality and the area.

The area dependence determines also how testable the chip can be made.
Adding test features reduces the number of defective chips that are sent to the
customer, but at the cost of lowering the yield and lowering the number of
chips that can be put on a single wafer. Reducing the number of shipped
defective chips reduces the cost associated with returned products. Increasing
the area, however, increases the manufacturing cost per sold chip. At what
point adding further test features becomes uneconomical depends of course
on the various costs involved. One of the main components of the economic
analysis, however, is, again, the area increase incurred by adding such fea
tures and its associated drop in the yield.

Similar economic considerations apply to adding redundant features to an
integrated circuit [34, 51]. When adding redundant logic, other considerations
than the yield become important, however. Typically, redundancy is added
only when the probability of finding no defects is too low to be economically
acceptable.

Second, it has been known for a long time [42] that the area dependence of
the yield depends strongly on the average number of defects per chip and, to a
lesser extent, on the variance. This is best described in term of Pĵ , the proba
bility of finding exactly n defects on the chip. The overall shape of the set
{P }̂ is captured succinctly by

I nP„, (4.1)

56 IC Fails

the expected number of defects on the chip, and the variance

a\n) = Y^{n-Mf^^ (4.2)

of this number.
When the defects are uniformly distributed, the number of defects on a

chip has the Poisson distribution, a^(n) equals \i, and the logarithm of the
yield is a linear function of the area with slope -jix. In reality, the logarithm of
YQ is not a linear function of the area, but curves slightly upwards. This devi
ation from a straight line behavior can be attributed to the distribution of the
defects not being uniform.

Analyzing the area dependence of the yield can, therefore, give us impor
tant information about {Pĵ }. It will allow us to estimate, for example, ju and

a (n). Fallout during testing is caused by defects, and it can, therefore, give
information about {P^} as well. A generally valid relation between fallout and
defect coverage will be obtained in Chapter 8.1.2. Using that approach to
obtain information about {P^} requires, however, that one knows the defect
coverage, and is suitable only when the test sequence covers most of the
defects of interest. In fact, the estimates based on area dependence could be
used to predict the cumulative fallout, given a known defect coverage.

Many models have been proposed in the past (see, for example, [42, 55])
to reproduce the observed area dependence. One group of models assumes
that the defects are uniformly distributed over the chip, but with a density that
may vary from chip to chip. The resulting defect distributions are generically
known as compounded Poisson distributions discussed in Chapter 2.1.2.

All compounded Poisson models have several drawbacks, however. First
of all, their physical background is rather obscure. Their only justification is
that they seem to reproduce qualitatively the observed area dependence of the
yield, and that defect densities do vary from wafer to wafer, and even from
chip to chip on the same wafer. This justification obviously does not explain
the physical cause of any particular compounding fiinction: some merely
work better than others. A physical explanation of the negative binomial
model to describe wafer to wafer variations has been given in [54], but has not
been extended to chip to chip variations (see also [23]).

Another problem with compounded Poisson distributions is that they
depend on a very small number of parameters that are independent of the area
and occur in a fixed relationship. The negative binomial model, for example,
has only two parameters, which makes it, therefore, somewhat rigid. In fact,
to explain the area dependence quantitatively, one has to assume that at least

Chapter 4: Area Dependence of the Yield 57

one of these parameters has an area dependence of its own: an area depen
dence that is merely observed and not explained.

An alternative approach is to start from some assumed local distribution of
defects and then to deduce the consequences of this distribution for the yield
[27, 24, 39]. This approach is able to handle localized clusters of defects, even
clusters whose size is comparable to that of the chip, and that may partially
overlap the chip. The most developed one of these models is the center-satel
lite model [51, 39]. The disadvantage of these models are the resulting
mathematical complexities. They can in principle describe the whole range of
cluster sizes, from negligibly small to very large, but only limited results have
been obtained so far.

In this chapter, I will analyze the area dependence of the yield, starting
from as general a defect distribution as possible. The main questions to be
answered are, first, what is the overall shape of Inyg when plotted as a func
tion of the area, and, second, how are ju and a^(n) related to the quantitative
aspects of this shape ?

These questions will be answered independently of the details of the distri
bution of defects. The basic physical starting point of the analysis is that the
defect producers, whatever they are, may have a wide variety of spatial char
acteristics and strengths, but the defects they produce almost never interact
physically. This observation will form the basis of the approach followed in
this chapter: defects may be correlated, but only if they have the same cause.
Once produced, they can be treated independently of all other defects.

In the first section, a general model will be described of how defects are
distributed between chips and inside a chip. This model is based on the lack of
physical interaction between chips. Despite the generality of the model, fairly
detailed results can be derived that connect the behavior of the yield as a func
tion of the area of the chip with the moments of the defect distribution. The
main conclusions reached in this section is that, under very general assump
tions, the logarithm of the yield divided by the area is an non-decreasing
function of the area.

To get a better feel for how clustering can affect the yield, a restricted ver
sion of this model will be analyzed in detail in the second section. This
specialization is in fact a simplified center-satellite model. Some additional
approximations are made that do not affect the basic physics of the defect dis
tribution, but that do make it possible to derive closed form expressions for
the yield and for the first two moments of the defect distribution. Numerical
evaluation of these expressions then gives a quantitative picture of the behav
ior of the yield. This model also allows the explicit calculation of the area

dependence of)LI and a^(n), and of the cluster coefficient.

58 IC Fails

The main problem in applying the general results to real designs is how to
get yield data at different areas. Barring the production of special test chips,
only yield data on actual production chips are available. Fortunately, this
includes wafer maps that describe which chips on each wafer were free of
defects and which were not. These wafer maps can be used to simulated chips
of different size. The method employed is that of quadrats [53, 17, 12]. In the
final section, an systematic formulation of the quadrat method will be pre
sented. This method will be applied to a large data set of over a thousand
wafers.

1 GENERAL MODEL

Defects can be produced in a large variety of ways, and different defect
production mechanisms will have very different spatial characteristics and
strengths. The defects that they produce, however, almost never interact phys
ically. They may be correlated, but only if they have the same cause. Once
produced, they can be treated independently of all other defects.

In this section, a general model will be developed of how defects are dis
tributed between chips and inside a chip that is based on the approximation
that the defects themselves do not interact. The main purpose of this model is
to allow the derivation of general expressions for the yield and for the first
few moments of {Pnl- Despite the generality of the model, fairly detailed
results can be derived that connect the behavior of the yield as a function of
the area of the chip with the moments of the defect distribution.

1.1 Primitive Polluters

The defect production mechanisms that affect integrated circuits are
approximated here by more simple defect producers that, for lack of a better
name, will be called primitive polluters. Each primitive polluter is character
ized by a strength, and by a region on the chip that it affects. The strength of a
primitive polluter is a measure of how many defects it produces on average in
its associated region. Regions can have arbitrary shapes and sizes. The
regions of different primitive polluters can overlap and one can even be com
pletely included in another.

The defects produced by a specific primitive polluter are randomly distrib
uted over its associated area. Consequently, if the size of this area is C, and
the strength of the primitive polluter is v, then the number of defects it pro
duces has the Poisson distribution [15] with mean value vC. The assumption
that defects are produced randomly is admittedly an over-simplification: mis-

Chapter 4: Area Dependence of the Yield 59

registration of a mask for example will introduce all kinds of defects on the
chip that are very definitely not random. We don't expect such defects to
occur in a stable production environment, however, and we can, therefore,
safely ignore such highly non-random defects.

Different primitive polluters can be arbitrarily correlated, in the sense that
both their strengths and their regions can be correlated. All defects, however,
whether they are produced by different primitive polluters or by the same one,
are independent. In other words, all apparent correlations between defects are
assumed to be caused by correlations between the primitive polluters, and not
by physical interactions between the actual defects. This is an idealization, as
the primitive polluters can produce arbitrarily shaped defects, including
defects that have a non-negligible size. When the strength is low, this ideali
zation is justified, but of course, when the strength increases, deviations may
occur.

Note that the model does not exclude any correlation between the primi
tive polluters, and, therefore, that more complex defect production
mechanisms can be approximated by a number of strongly correlated primi
tive polluters. For example, some defect producers affect a more or less
circular area, and introduce defects randomly within this area with an inten
sity that depends on the radial distance from the center of the circle. A
sophisticated approach to this type of defect producers is the center-satellite
model [39], but that model is not easily extended to arbitrarily shaped regions.
In the approach used here, this defect producer can be approximated by a
number of primitive polluters with ring-shaped regions that are concentric
with the circle, but whose strengths diminish with the distance from the center
of the circle. Within each concentric ring, defects are produced randomly with
constant strength. By adjusting the widths of the bands, the approximation can
be made arbitrarily accurate.

Next we assume that each defect, whatever its shape, has a definite loca
tion; in other words we can assign to the defect a point on the chip that

>
represents its location. I will generally indicate such a point by r, where the
arrow over r indicates that it represents a location in two dimensions. When
the defect has no spatial extent, r coincides with the physical location of the
defect. Even when the defect has a spatial extent, however, it is often possible
to describe a defect by a point location plus some other information. For
example, a circular spot defect is described by a center and a radius.

60 IC Fails

1.2 Yield and Moments
For a specific chip, we can, at least in principle, list the defect producers

that affected it. This list can then be transformed into a list of approximating
primitive polluters. Of course, different chips have different lists of primitive
polluters associated with them. Each small area on this given chip is affected
by a number of primitive polluters, each of which randomly produces defects
with a strength that depends on the specific primitive polluter. The number of
defects produced by a given primitive polluter i with strength Vj in the small

> >
area dr has the Poisson distribution with mean Vjdr.

As the defects introduced by different primitive polluters are independent,
even though their strengths and associated areas may not be, the number of all

defects introduced in the area dr, therefore, also has the Poisson distribution,
but now with mean

v(r)dr = y V|dr. (4.3)

In this equation, the sum is over all the primitive polluters that affect the area
>

dr.
Finally, the number of defects on the chip has the Poisson distribution,

c > >
with mean v(r)dr, with the sum over all the areas of the chip replaced by an

integral. Consequently, the probability that the chip is free of defects equals

-lv(r)dr
(4.4)

As mentioned above, different chips will have different sets of primitive
polluters affecting it. To obtain the probability that a randomly chosen chip is
free of defects, the average over all configurations of primitive polluters has
to be taken. In general, however, even the actual configuration of primitive
polluters for a single chip is unknown. Averaging over different configura
tions requires, in addition, a knowledge of the distributions of the areas and
strengths of the primitive polluters, and a knowledge of their statistical depen
dencies. Fortunately, we will not actually have to do the averaging in the
general case. We will assume, however, that, although unknown, it is well
defined.

The configuration average of any function will be indicated by <f>. The
expected yield yo of an integrated circuit is the probability that a randomly

Chapter 4: Area Dependence of the Yield 61

chosen manufactured chip is free of defects. It depends on the design and the
production technique of the product. Its value depends, among other things,
on the area A of the chip, and is obtained by taking the configuration average
of the probabiHty that a randomly chosen chip is free of defects

r f f

-lv(r)dr
y()(A) = <e) . (4.5)

The consequences of this equation will form the central part of this sec
tion. It has been proposed previously [27], and some of its properties are well
known. It has to be stressed, however, that it has been derived here making
only very weak assumptions: defects are produced by a large variety of mech
anisms, but are independent, even though the mechanisms themselves may not
be.

The moments of {P^} are most easily obtained from the generating func
tion of this distribution. This generating function is derived in Appendix B.
The expected value JLI of the number of defects on a chip is found to be

c > >
{ v(r)dr) , and the variance of n equals

^ n2p„ - ^2 = ^ + (J l̂ v('r) _ Hj^), (4.6)

2
where the second term on the right can be interpreted as a (v) , the variance

>
of v(r) (compare Chapter 2.1.2).

When v(r) is constant, say VQ, \X equals VQA and a (n) equals ju. The dif

ference a^(n) - jLi is, therefore, a measure of the degree of non-uniformity of

v(r) . In the literature, the cluster coefficient a (Equation (2.11)) is often used

to gauge the degree of non-uniformity of v(r) . In the present context, it

2 2
equals JLI / a (v) . For the same \x, the smaller a the wider the distribution of
the number of defects on the chip, and the more common large values of n. a
is clearly always positive in this model.

62 IC Fails

1.3 Examples

The simplest case is the Poisson model, in which v(r) is constant for all r

and all chips. The next simplest case is that of v(r) constant over a chip, but
not necessarily the same for all chips. This occurs when the area of the chip is

>
small compared with the scale over which v(r) changes, and will be called
the small area approximation. This case is of particular interest, because now
the configuration average is simply the average over different defect densities.
The defect strength on a randomly chosen chip is a random variable with
some probability density function, and we can rewrite Equation (4.5) as

yo(A) = Je~''^f(v)dv, (4.7)

which is the well studied compound distribution model, discussed in Chapter
2.1.2.

1.4 General Properties

Experimentally, it is known that the real yield exceeds the Poisson one,
and that the excess increases with increasing chip area (even though the yield
itself decreases with area.) That this is not a coincidence is shown in Appen
dix B. The main conclusions reached in that Appendix are illustrated in Figure
7.

This figure shows the yield as a function of area. The yield is plotted on a
logarithmic scale. The dashed line represents the yield in the case of the Pois
son model with |i equal to 0.3. Because of the logarithmic scale, it is a straight
line with slope -|i. The full line represents a general yield, although for the
purpose of generating the figure, a negative binomial yield was taken with vA
equal to 0.3 and a equal to 2.0. At very small values of the area A, it
approaches the yield of a Poisson distribution with the same value of vA, but
is everywhere larger than this Poisson yield, with the excess increasing with
area.

The dotted line in the figure is the tangent to the general yield curve, taken
at an area of 2.0, where the yield equals 0.625. The yield as well as the loga
rithm of the yield obviously always decrease with area. In addition, however,
the logarithm of the negative binomial yield is a convex function of the area,
which means that any tangent to it, taken at any area, never exceeds it. It is not
clear that a general yield, using some arbitrary distribution of primitive pollut
ers, will also have these properties: that its logarithm is a convex function of

Chapter 4: Area Dependence of the Yield 63

>-

1.0

0.8

0.6250

0.4

0.2

• ^

- > > ^
'"̂ ^̂ ^ Vs^^^^

N. ^^,.^^

"̂ "̂̂ "̂ --.̂ General
V ^ " ^ ^ ^

"^ ^'""•^w
S ^ " s , ^

N ^^^r^^
N -r^^..

• ^ " " ^ ' ^ " ^ - • ^

^ " " -̂ ""̂ ^̂ -̂ X • % ^ ^ ^ ^ ^ ^

^ " ^ V ^~~--\
•\ - s]

X • - .
N

\
Poisson^^^

X
V .

\ v.
V

\ \ 1 \

2 3
Area

Figure 7 Logarithm of the yield as a function of area

the area and that for very small areas it will become a linear function of the
area.

As is shown in Appendix B, the logarithm of the yield becomes a linear
function of the area in the limit of very small areas, and is always negative and
increasing at any area. Pictorially, a line tangent to InYo always slopes down
wards, for all yields and at all areas, but becomes more horizontal at larger
areas. The logarithm of the yield, therefore, is a convex function of the area,
no matter what the distribution of primitive polluters.

This convexity property is of great importance for a powerful way of ana
lyzing yield data. To show this, let us write f(A) for Inyo(A), and let us
indicate derivatives with respect to A by a '. f(A) is negative, except when A
vanishes, for then f(A) goes to zero. In addition, f (A) is negative, and for very
small A goes to the limit -vA.

Now, let us define

g(A) = A-Mnyo(A). (4,8)

Clearly, g(A) is negative and goes to -v when A goes to zero. In fact, for
the Poisson yield, g(A) is constant and equal to -v for all values of A. Devia
tions from the Poisson approximation will show up by g(A) not being

64 IC Fails

constant, and in fact by having a non-zero slope when A is small. g(A) is a
better tool for analyzing clustering than f(A), because, when there is cluster
ing, f(A) is not a straight line and g(A) has a non-zero slope. Non-zero slopes
are easier to spot, however, than non-zero curvatures, and, more importantly,
slopes are easier to measure than curvatures.

Figure 8. shows g(A) for the two yields discussed above. The Poisson

0.0

-0.1 h

-0.4 h

General

Poisson

0 1 2 3 4 5
Area

Figure 8 Logarithm of the yield divided by the area

yield is indicated by the dashed line. The general yield, exemplified by the
negative binomial yield in this case, is indicated by the fall line. It increases

s[(A)A
(becomes less negative) with area. Because yQ(A) = e , this figure

gives a visual proof of the well known fact that, for the same average number
of defects per chip, clustering improves the yield.

That g(A) is always non-decreasing follows from the definitions and the
convexity of f(A). Taking the derivative with respect to A, we find

g ' (A) - i (f (A) -g (A)) . (4.9)

As f(A) is linear in A for very small A, g(0) has some finite, negative value (-
\i in the case of the Poisson yield.) When we draw a line L through f(A) at A
equal to 0 and A equal to some area S, this line will be above f(A) at all areas
between 0 and S. Its slope is equal to g(S), for f(0) equals 0. On the other

Chapter 4: Area Dependence of the Yield 65

hand, this same Hne also cuts the tangent to f(A) at A equal to S. Because of
the convexity of f(A), the tangent is below the line L for areas smaller than S
and above L for areas larger than S, showing that the slope of L is more nega
tive than that of the tangent. Consequently, g(S) is more negative than f (S).
As S was arbitrary, g(A) is, therefore, more negative hat f (A) for all A, and
g'(A) is always positive.

As g(A) has a non-zero slope in the presence of clustering, this slope can
be used to estimate the degree of clustering. The relationship between this
slope and the degree of clustering is obtained by expanding the exponential

Equation (4.5) in powers of v(r)ndr. This gives

yo(A) = l - v A + i < (j v (r) d r) ^ + . . . , (4.10)

in which v is the mean value of or v. Taking the logarithm and simplifying,

Inyo(A) = - v A + i (a^ (n) - ju) + . . . , (4.11)

and

g(A) = - v + ^V^^A. (4.12)

v is obtained from the intercept of g(A) with the A = 0 axis, and a is

obtained from the slope of g(A) and v.

2 CENTER-SATELLITE MODEL

In the previous chapter, an example was given of a non-uniform defect
distribution. The non-uniformity was rather restricted though, in the sense that
the defect density could vary between chips but not over the area of a single
chip. The opposite of this example would be one in which the clusters were so
small that the probability that a cluster only partially overlapped a chip could
be ignored. In such a case, however, the clusters can just as well be treated as
single defects, with a small adjustment due to the fact that the cluster may not
produce a defect at all. At both ends of the size spectrum, therefore, we expect
an approximately Poisson like behavior, although with very different
strengths.

66 IC Fails

The transition from very large clusters to very small clusters is much more
difficult. It is important though to understand this transition, because many
defect producing mechanisms give rise to clusters that have a spatial extent
that is comparable to the area of a single chip. Quantities of interest are of
course the yield, but also the first few moments of {Pĵ }. In particular, the
expected value and the variance, or, equivalently, the cluster coefficient of
this distribution are of importance. They, after all, determine how many
defects can be expected to occur on a chip, and roughly the range of this
number.

To see the effects of defect distributions that do vary over the area of the
chip, a more complex model will have to be considered than the simple com
pounded one. A very convenient one for studying the effects of clustering is
the center-satellite model.

In this model there is a uniform background of defects with strength VQ.
Superimposed on this uniform background is a uniform distribution of circu
lar defect clusters. The strength of this distribution is X, meaning that there are
on average X cluster centers per unit area. The radii of these clusters is the

same for all clusters and equal to p. The area of the cluster, Tip ,̂ will be indi
cated by C. The defects produced by a cluster are distributed uniformly within
the area of the cluster, with distribution strength v. Each cluster, therefore,
produces on average n^ = vC defects per chip. Each cluster is in fact a

primitive polluter, as introduced in the previous chapter.
The effects of varying the chip size in comparison with the cluster size can

now be studied easily by putting a chip somewhere in the plane and varying
its size. To facilitate the calculations, I will approximate the shape of a chip
by a circle with radius R. This will introduce a small error in the results, due
to the difference in geometry between a real chip and a circle. The size of this
error will be small though, and can be ignored compared with the simplifica
tions that have been made in approximating the real defect distribution by a
single primitive polluter and a uniform background. By varying R, we can
then follow in detail what happens to the yield, the cluster coefficient, etc.

This model, with a square chip rather than a circular one, has been ana
lyzed in some detail by Meyer and Pradhan [39]. The essentials of their
analysis can be found in Appendix C.

1.1 Center-Satellite Yield

Using the results derived in the appendix, we find

-^S(l -Q(0)) -VoA
yQ - e , (4.13)

Chapter 4: Area Dependence of the Yield 61

with

Q(«) = \[-ncaA(r) >
e dr, (4.14)

S

and a^(r) the probability that a defect produced by a cluster centered at r

will fall within the area of the chip centered at the origin.
In the limit of a very small chip, we find

InyQ « - ^.An^ - VQA . (4.15)

In this limit, it looks, therefore, as if the defects produced by the clusters, XXIQ

per unit area, are smeared out uniformly, and are merely added to the already
existing background.

In the limit of very large chips, we find

l n y o « - ; i A (l - e '')-VQA' (4-16)

This result shows that in the limit of very large chips, the size of the clusters
can be ignored. Instead, a cluster acts as a single super-defect, the factor

1 - e being the probability that this super-defect actually produces a fault.
For very large chips, therefore, there seems to be a uniform background of

regular defects with strength VQ, and another uniform background of super-
defects with strength X. This is rather different from the negative binomial
yield, which is not linear in A at all for large areas. This difference between
the center-satellite model and the negative binomial model becomes even

more pronounced when considering g(A) = A"^lnyo(A). In the center-satellite

model, g(A) becomes constant when A becomes very large, while it goes to

zero as A'UnA in the negative binomial model.

2.2 Center-Satellite Moments

Moments of {P^} can be obtained from the generating function of {?^

[15]. This function is given in Appendix C. From it, we immediately obtain

68 IC Fails

jLi = >.SnQE(a^) + VQA

2 2 2 ' ('̂ •̂ '7)
a (n) = X,Sn^E(a^) + JLI

-1 r > > 2
where E (a^) is short for S a^(r)dr , and E(a^) is defined analo

g's
gously. As |Li is obviously also equal to XYVQA + VQA, we find

E (a^) = | . (4.18)

The cluster coefficient a describes the degree of non-uniformity of the
defect distribution. When VQ is zero, it equals

a = XS y - . (4.19)
E(a^)

E(aA) increases smoothly from its small chip limit R^/p^ to its large chip limit

1. Likewise, E{ap^) varies smoothly from R'̂ /p^ to 1. This shows that, when
the chips are small, the cluster coefficient goes to the non-zero constant XC.
When the chips are large, it is proportional to the area A of the chip, the pro
portionality constant being X. It will, therefore, go to infinity when the chip
size increases.

This does not mean, however, that the variance and expected value of n
will become equal in the limit of very large chip areas, for the cluster coeffi
cient becomes large too when the expected number of defects on the chip
becomes large. This is obvious from equation 32. In fact, when the area of the

chip becomes large, a^(n) / \i goes to 1 + n^.

2.3 Numerical results

The general behavior of the yield and the cluster coefficient can be
obtained by straightforward numerical integrations. Specific calculations
were done for a zero background density (VQ = 0,) a cluster with unit area (C =

1,) and a total defect density of 0.1 per unit area (Xn^ = 0.1.) g(A) = A"

^lnyo(A) is shown for several choices of ju in Figure 9. The general shape of

g(A) is the same as shown in figure 1.2: all g(A) converge on the same con-

Chapter 4: Area Dependence of the Yield 69

0 1

k^ relalve to Cluster Area

5 10 15
T

m - 3.2
-0«03

^0.05

» » • • • * • • • •
* • »

0.8 - -0.069

» * • < — u
* *
* *
0.2

» « V » # «

-0.082

-0.09]

Figure 9 Logarithm of the yield divided by the area
in the center-satellite model

stant -XviQ at small values of A, and they are all non-decreasing. Unlike the
negative binomial result, however, g(A) does not go to zero in the center-sat
ellite model when A becomes very large, but, instead, goes to the constant -

X{1 - e"^^), indicated on the right of the figure. These limits are drawn at their
proper positions on the vertical axis, and are, therefore, slightly above their
corresponding g(A) curves. When A is large compared with C, g(A) depends
only weakly on A, and using some Poisson approximation seems to be justi
fied. As mentioned above, this is not strictly correct, as will become clear
when we consider the cluster coefficient.

Near A = 0, the slopes of the g(A) shown in Figure 9 are inversely propor
tional to the cluster coefficients a. The g(A) curves, therefore, clearly indicate
that, when the product vA.C is constant, clustering increases when v increases.
This is also what one would expect intuitively, because X must decrease when
V increases to keep the average number of defects constant. When we increase
V, therefore, we create fewer clusters, but more defects per cluster; in other
words, stronger clustering.

This is also confirmed by calculating the cluster coefficients directly. They
are shown in Figure 10 for the same set of v values as in Figure 9. What is
plotted are in fact the inverses y of the cluster coefficients, so the large area

70 IC Fails

32.0 h

16.0 f-

8.1

4.0 b
2.0
0.0

oK
iP = : !

0 1 10
Area relative to Cluster Area

20

Figure 10 Inverse of the cluster coefficient

behavior of a can be followed as well, y starts at the high value of X which
in this case equals lOv, and decreases monotonically to zero. At large values
of the chip area A it in fact behaves as IIXA. Even when A is large compared
with C, however, y is still not small compared with 1, indicating that the dis
tribution of the number of defects per chip is far from Poisson, even though
the yield may safely be approximated by the Poisson result.

In the literature, the possibility of local minima in the cluster coefficient
have been discussed [55, 39, 57], but no such phenomenon is observed here.
That that is true in general for the simplified center-satellite model is obvious
from equation 34 and Figure 10. Equation (4.19) shows that a is equal to X
times a geometric factor that depends only on the sizes of the clusters and the
chip. Consequently, each a curve shown in Figure 10 is representative for all
possible a curves, and can be made equal to any one of them simply by rede
fining the unit of length and by multiplying it by the ratio of two X^. As none
of the as in Figure 10 shows a minimum, no a function will have a minimum
for any combination of X, v, p or R. A more likely explanation for the
observed minima is, therefore, normal statistical variations.

Chapter 4: Area Dependence of the Yield 71

3 ESTIMATING THE AREA DEPENDENCE

In normal circumstances, the distribution of defect producers is partially
known at best. The only way of estimating the area dependence of the yield is,
therefore, to measure it experimentally. Some possible approaches are count
ing defects on blank wafers [17, 55], or putting specific test structures on the
wafers and testing these structures for defects [13]. The drawback of both
these methods is that they are sensitive to only a limited set of defects, in par
ticular to the ones that occur naturally on wafers, and not necessarily to
defects that are introduced during the fabrication of the actual chip. They have
the additional disadvantage of requiring separate processing steps that are not
part of normal chip production.

A different way to measure the distribution of defect producers is using the
results of testing real chips, in particular the distribution of passes and fails on
the wafer. This approach assumes that the quality of the test is high, and that
we can trust that the chips that fail the test are bad, and that the chips that pass
the test are good. In this section, techniques will be discussed for using the
test results to estimate the area dependence of the yield.

I will follow the general practice [23, 64] of simplifying the analysis by
dividing the defects into two classes. One class consists of gross defects that
are so pervasive, and so detrimental to the operation of the chip that not only
will they make a chip fail, but they will make every portion of the chip fail as
well. The defects in this class are assumed to contaminate some portion of the
wafer, and to kill every chip in the affected region regardless of the size of the
chip. Consequently, the yield due to these defects is area independent. It will
be indicated by y^. The second class consists of defects whose distribution, if
not Poisson, is still relatively simple.

In other words, the yield is modeled as the product y^yCA), in which A is

the area of the chip and yQ is the gross yield; that is, the yield due to the gross
defects. All the area dependence of the yield is concentrated in the factor
y(A), which, in this chapter, will be taken to have the negative binomial
form. It could easily have some other form, but the negative binomial one is
the usual choice. The goal of the spatial clustering analysis is then to estimate

the three parameters y^, a (or y = 1 / a)and v (or |i = vA)^

The area independence of y^ followed from the assumed severity of the
gross defects: they kill every part of the chip. The converse is true too: an area
independent yield factor implies that there are gross defects that make every
portion of the chip inoperative. This can be seen by analyzing what it means
• And I suspect that part of the reason for including the area independent factor is to increase the number

of free parameters from two to three, and, thereby, increase the accuracy of the fit.

72 IC Fails

for a yield factor to be independent of area. Chips that are killed by whatever
gives rise to yg are colloquially called wipe outs.

Assume that there are N chips on a wafer, and that a fraction 1 - y^ of the

chips are wipe outs. This fraction covers an area on the wafer equal to

(1 - ys)NA. Next, consider the same wafer, but much smaller chips. In fact,

assume that there are kN chips on the wafer, each with area A/k, obtained by
dividing each original chip into k smaller ones. If the same fraction of chips
are wipe outs, the smaller chips cover an area on the wafer equal to

(1 - y s) k N (A / k) = (1 - y s) N A . (4.20)

Consequently, the two regions containing the wipe outs must be the same
area on the wafer, for they are on the same wafer and are equal in size. We
conclude then that each small chip in a large wipe out is a wipe out, and no
small chip is a wipe out if it is not in a large wipe out. Another way of saying
the same is that each part of a subdivision of a wipe out is still a wipe out.

This addition of the concept of a gross, area independent yield is a simpli
fication, and is defensible only when there are manifestly multiple defect
sources: one that is more or less random, with, perhaps, some spatial cluster
ing, and another one that is systematic, in the sense that it affects some region
of the wafer, and, in that region, kills all the chips. A better way of handling
any obvious mixtures of multiple defect mechanisms, however, is first to
identify wafers with non-random fail patterns (see Chapter 7), and then to use
spatial clustering methods only on wafers that are not so identified.

3.1 Comparing different products

There are at least two ways for using the test results to estimate the area
dependence of the yield. Both techniques are simple to implement, but suffer
from the disadvantage that yields are compared for chips of very different
sizes. This is a problem, for, as we have seen in the previous section, the
degree of clustering is relative to the size of the chips. Using different sizes
means that we attempt to get one measure of clustering by looking at the
defect distribution at different levels of granularity.

The first technique is to merge yield data for different integrated circuits of
roughly the same complexity but of different areas [17]. These merged data
can then provide a composite yield versus area curve. This approach suffers
from having to define, and measure, complexity, and from having to compare
areas for different integrated circuits. The latter is more difficult than it may

Chapter 4: Area Dependence of the Yield 73

seem, because not all regions on the chip are equally used and allowances
have to be made for heavily used regions and sparsely used ones [25].

This technique was applied to a CM0S2 data set [43]. The results are pre
sented in Figure 11. The yield data were obtained for CM0S2 chips, ranging

Area (relative)
5 10 15 18.89

2

.+ •. \

111
t

Figure 11 g(A) for CM0S2 chips

in size by more than a factor 20. The yield for all these chips was very high;
for almost all of them over 90%. The test coverage was typically 99% or
higher, and the difference between the observed yield and the real one was
ignored. The areas were estimated using cell counts. They were divided by
that of one of the chips to get relative areas.

The figure shows both the actually observed ln(yQ(A))/A values and

their three sigma error ranges. The latter were obtained by estimating the stan

dard deviation of a yield Y as V(Y(1 - Y)) / N , where N is the number of

chips involved, and then adding and subtracting three times the resulting stan

dard deviation to or from Y.
The data point with g(A) equal to -0.067 seems to be anomalous. Ignoring

this data point, the results show a weak trend to become less negative when
the area increases, indicating a certain amount of clustering. If we believe the
data as they are, then g(A) goes up and down and up again at larger areas. As
this is not possible, these data can clearly not be trusted. The obvious weak

74 IC Fails

point is the area estimation. Wlien we cannot trust the area estimates, how
ever, then clearly any estimation of either ju or a cannot be trusted either.

3.2 Quadrat method

The second technique for estimating the area dependence of the yield
relies on the quadrat method [53, 12]. In this method, the wafer is divided into
sections of two by two chips, and into sections of two by one chips. Larger
sections, for example of two by three or three by three chips, can also be con
sidered, but are not necessary. Despite its name, therefore, a quadrat need not
consist of four chips; the name is used for all section sizes. By considering
each two by two section as a chip of size 4A, and each two by one section as
one of size 2A, yield data can be obtained for areas A, 2A and 4A. This tech
nique bypasses the problem of having to define complexity, or having to
measure area in a consistent fashion.

The data used in the calculations are subject to normal statistical fluctua
tions. A necessary part of the analysis is, therefore, the estimation of the
expected size of these fluctuations, and of their effect on our estimates of the
quantities of interest, like the cluster coefficient and the average number of
defects per chip. It is straightforward to enhance the quadrat analysis such that
these variations can be obtained from the same yield data that were used to
estimate the distribution parameters in the first place. Before the enhanced
quadrat analysis can be described, however, some difficulties with the tech
nique in general have to be mentioned.

3.2.1 Problems with the quadrat method

The main problem with the quadrat method is the choice of the quadrats.
The assumption underlying all calculations based on this method is that the
quadrats that are constructed on the wafers form a sample of randomly and
independently selected quadrats from the space of all possible quadrats. There
are a number of problems with this assumption.

First, the quadrats are not randomly placed on the wafer surface, but their
locations and orientations are dictated by the grid of chips on the wafer. Sec
ond, when there is clustering, quadrats on the wafer surface, in particular,
when they are right next to each other, or even overlap each other, can hardly
be considered to be independent, as the clustering impresses a landscape of
varying defect densities on the wafer that crosses chip and quadrat bound
aries. After all, fail probabilities of neighboring chips are independent only
when the defect distribution is Poisson.

Chapter 4: Area Dependence of the Yield 75

The assumption of an independent sample may introduce severe statistical
errors. The effects of such statistical errors can be gauged using bootstrap
ping, however.

The third problem with the quadrat method is more procedural than funda
mental. Given a wafer surface, there may be several ways to define quadrats,
but no clear way to define a best choice. For example, when two by one quad
rats are desired, we could choose horizontal ones, vertical ones, or some
mixture of both. Unfortunately, different selections of quadrats may lead to
different results.

One possible way to proceed is to ask for the average over all possible
ways to select quadrats. If we look at all those ways as a form of bootstrap
ping, the average values of the parameters can be approximated by choosing
all possible quadrats. We might still be interested in knowing how different
choices would affect the results, but that variability in the parameter estimates
can be estimated using standard bootstrapping techniques (see Chapter 2.3).

Finally, the quadrat method is inherently restricted to clustering whose
spatial scale is large compared to the dimensions of the largest quadrat, for
otherwise the parameters of the distribution would vary between quadrats of
different sizes, and, consequently, could not meaningfully be determined
using this method.

3.2.2 Numerical technique

Despite all the problems with the quadrat method, it is a popular way to
estimate the degree of clustering, and we now turn to the actual calculations.

Once the quadrats of various sizes have been selected, the parameters of
the negative binomial distribution can be estimated. The standard estimation
technique uses least squares regression of the yields on the areas (for example,
A, 2A and 4A). As the yields are non-linear functions of the areas, this leads
to a set of non-linear equations that have to be solved numerically.

This approach suffers from a minor methodological problem, namely that,
when quadrats of different sizes are employed, the smaller quadrats could be
selected from the comers and edges of the wafer where the large quadrats
would not fit. That problem could be solved by first selecting the largest quad
rats, and then selecting the smaller ones using the chips in those largest
quadrats. Once that restriction is made, however, there is little reason to pre
tend to use smaller quadrats, because all possible information should already
be contained in the largest ones.

In this chapter, I will use a different approach. The mathematical details of
the calculations are described in Appendix D. The calculations differ some
what from the usual ones, since only quadrats of size four are used. Given

76 IC Fails

quadrats of any size, say k, the relevant statistics are the numbers N-̂ of

quadrats of that size having i passing chips, with i running from 0 to k. For
any k, there are only k independent such numbers, for the sum over all the
numbers should be the total number of quadrats.

The distribution of these statistics is multinomial, and the probabilities of
them having particular values are functions of the parameters of the underly
ing defect distribution. The parameters can, therefore, be obtained from these
statistics using maximum likelihood. That method leads to very complex
equations, however, and it is doubtful that the benefit of getting accurate esti
mates is worth the cost of handling these complexities when the vahdity of the
quadrat method itself is already in question.

If need be, the parameters can be obtained numerically by maximizing the
likelihood function. In the remainder of this section, a simplified approach
will be developed that leads to much simpler equations without deviating too
much from statistical correctness

(k) When we divide N^ by the total number of quadrats, we obtain a ratio

(k) P| . The latter's expectation value is also of interest, and will be indicated

(k) by P| . As is shown in Appendix D, this expectation value can be written as

a linear combination of the expectation values p- , with i going from 1 to k.

Conversely, p[can be written as a linear combination of p-̂ , with i not

exceeding k,.

p • is also the expectation value of the yield of a quadrat of size i. If we

now use those same linear equations to obtain ratios p[from the ?[, we

obtain quantities that are analogous to the observed yields obtained for quad
rats of size i. I will refer to them as pseudo yields.

The calculations described in Appendix D use the ratios for k = 4 to esti
mate the distribution parameters. The distribution is assumed to be negative
binomial, and only three parameters will have to be estimated: a gross yield
yg, the cluster parameter a, and the defect density \x. The calculations are sim
plified in the sense that only three statistics are used, instead of the available
four. The advantage of that simplification is that no regression needs to be
done, for the three distribution parameters are uniquely determined by the
three chosen statisfics. Consequently, the calculations are considerably sim
pler than either regression or maximum likelihood.

Chapter 4: Area Dependence of the Yield 11

The disadvantage is that not all available information is used, which will
lead to a loss of accuracy. A further disadvantage is that different choices of
the three statistics will lead to different estimates.

The calculations stay close to the standard approach by using for the three

statistics the three pseudo yields P ̂ , P2 ^^^ ^4 • The resulting equations

still involve one non-linear one, which, however, depends on only one vari
able and can be solved using standard numerical techniques.

3.2.3 Numerical results

This approach was applied to a medium sized microprocessor. There are
580 devices per wafer and 1339 wafers were included in the analysis. The
pass/fail status for each chip on each wafer was determined, and y, JLI and yg

(2)
were determined as described above. Wafers for which P2 turned out to be

0 were removed, for reasons explained in Appendix D, after which 1336
wafers were left. In addition, three more wafers were removed because they
gave problems with bootstrapping (to be explained later). The final sample,
therefore, consisted of 1333 wafers.

There will be inevitable statistical fluctuations, and it may be difficult to
distinguish those from true non-Poisson behavior. To judge the size of these
fluctuations, a preliminary experiment was performed in which the same
wafer layout was used, with a yield of 65%, and with a strictly random distri
bution of the passes and fails. The resulting distribution of y and ju values is
shown in Figure 12. y is centered around 0 with a spread of (±0.2)w, and fi is
centered on 0.43.

Note that y can be as easily negative as positive, or, in other words, that the
cluster coefficient can be as easily negative as positive. This is purely the
effect of the finite sample size, as is, in fact, any y not equal to 0, and does not
indicate a violation of the assumptions made in Section 1. Both y and |LI are
centered on their expected values: y on 0.0 and |i on 0.43, the natural loga
rithm of 0.65.

The figure does not show the y^ values. In the experiment, y^ was distrib
uted more or less symmetrically around 1.0 with a standard deviation of 0.13.
This is unavoidable. Within the scope of the simplified calculations, there is
no natural way to force y^ not to exceed 1.0. If we would use maximum like
lihood, we could restrict all parameters to whatever ranges would be
appropriate, and, if necessary, look for a maximum on the boundaries of those
ranges. Because we have chosen not to use that method, however, this route is
not open to us.

78 IC Fails

E
E
cc

0.5 i

0.4

0.3 H

0,2^

0.1

-0.1 H

-0,2 i

-0.3 H

0 °_qoo^° 0°

' I I I I I I I I I I I I I I • I I I I ' I I I I I I I ' I • I I ' • '

0.3 0,35 0,4 0,45 0.5 0,55 0.6 0.65 0,7

mu

Figure 12 \x and y for random defects

The same yield parameters were calculated for the 1398 microprocessor
wafers. The results for those wafers that had a yield between 60% and 70%
will be discussed first.

The results for y and JLI are shown in Figure 13. ju is again in the 0.3 to 0.5
range, as in Figure 12. y, however, has a far wider distribution than in the
Poisson experiment. It is negative on many wafers, which may be the result of
the finite wafer size. It can also be much larger than in the comparable random
experiment, however, which can be explained only as a manifestation of true
clustering. As the data show no clear transition from random to clustered
behavior, a more detailed analysis will have to be done to separate true clus
tering from mere statistical fluctuations. This will be done in Chapter 7.

y and ju results for all yields are shown in Figure 14. The wafers were clas-
(4)

sified according to whether Y^ = P4 was zero (quadratrc = y4zero) or not

(quadratrc = regul4.) The arc of data points in the bottom of chart, between ju
values of 1 and 2, corresponds to y4zero wafers, for which yjii == -0.25 . The
\i in Figure 14 are now much more varied, in accord with the large variations

Chapter 4: Area Dependence of the Yield 79

£
£
CI

Q

0

no 0

0 <?
0 0 O Q Q ^ ^

0

0

6 ^ 0

B?

o<,i'To*%*'e'^'"^
-&^%-\^

0 D
Q
0

•n-r-i

Q25 0.3

11 i I 1 I [

Q4 0.35 0.45
' ' I ' '

Q5 Q55

Figure 13 [x and y for wafers with yield between 0.6 and 0.7

in yield that are seen in this sample of wafers. There is in fact good correlation
between JLI and yield, as shown in Figure 15. The range of y values is a little bit
larger than in Figure 13, but not by much, showing that clustering, if any, is
more or less common at all yields.

Comparing the results from real wafers with simulated ones on which the
defects are explicitly distributed with a Poisson distribution is one way to
judge the size of statistical fluctuations. We could also attempt to estimate the
variances of the estimates directly. This would be straightforward, although
not necessarily easy, if we had used the maximum likelihood approach, for

(4) the set of N- has the multinomial distribution. As we are not using this

method, however, the variances have to be determined differently. The distri
bution of the estimates is complex because of the non-linear equations that
need to be solved, and determining them even approximately is not feasible.
Consequently, the best we can do is using the bootstrap method.

The original wafer will be called the primary wafer, and the parameters,
estimated with the techniques described above, will be referred to as the pri
mary parameters. On each of the 1336 primary wafers, a bootstrap experiment

80 IC Fails

quBdretrc * * •* regul* » » » y4zero

Figure 14 \x and y for all wafers

was done in which 100 bootstrap samples were drawn from the set of avail
able quadrats. The results from the 100 sample wafers were then combined to
obtain a mean and a standard deviation for each primary wafer. The standard
deviation is used as an estimate of the standard deviation of the primary
parameter.

As pointed out in the appendix, several anomalies are possible when cal
culating negative binomial parameters from the data, be they primary or

(2)

bootstrap. Wafers with P2 = 0 were already removed, but problems associ
ated with the calculation of the gross yield y^ still have to be dealt with. Two
possible anomalies were pointed out. y^ could be complex, or it could be large
- larger than 2 in this experiment. No primary wafers were removed directly
because of this anomaly, but several bootstrap samples were. Primary wafers
are considered to be anomalous, however, if the number of bootstrap samples
on which yg is either complex or large exceeds 100. In this experiment, three
primary wafers were found to be anomalous, and were removed from further
consideration.

The results from the remaining 1333 wafers are shown in the next figures.
The results for y are shown in Figure 16. Each point in the figure correspond

Chapter 4: Area Dependence of the Yield

quBttrstrc * regutt

mu

9an y42erO

Figure 15 \x and yield for all wafers

to the bootstrap experiment for one primary wafer, and is labeled by the pri
mary y and the corresponding bootstrap standard deviation. The correlation
between y and the bootstrap mean is over 95%, indicating the general reliabil
ity of the bootstrap estimation. The data are seen to be fairly regular, with a
regression line of

ystdev = 0-09 + 0.12y„ (4.21)

The small cluster of data points at the bottom of the chart, near y = -0.3,
correspond to the y4zero wafers.

Unfortunately, the analogous spreads in \x or y^ are not nearly as compact.
The resulting standard deviations can be very large, as is shown clearly in Fig
ure 17 for yg. Most of the wafers seem to behave regularly, but there are some
exceptions in which the standard deviations are comparable to the primary
values. The yg standard deviations seem to be smallest near y^ = 1, as
expected, for that is the physically most meaningful value for the gross yield.

82 IC Fails

.Q

."5

Q28-

Q26-

Q24-

Q22-

0.2-

0.18 •

0.16 •

0.14-

0.12-

Q i

aos-

006-

Q04-

002-

0-1

-̂ ^ ^

i^^m
+ " * ^

•*« '*''

1 , , • • • 1 • 1 . . 1 ' ' ' ' 1 ' '

•1-

+ 4 +• -Fi- ^

• +

' ' 1 ' ' ' ' 1 ' ' ' ' 1 • '

+

4

' ' 1 '

+

4

' ' ' 1 ' ' ' ' 1

-04 - 0 2 0 02 04 0.6 0.8

gamma

quBdrBtrc +•+••• regutt »*'*»* y42ero

1.2 1.4

Figure 16 Ranges of y values

0.4. •:

a s s :

a3e:

a34. :

a 3 2 :

0 .3 :

a s s :

aas :

a a t :

aaa-i

0 . 2 :

a i 3 :

0L16:

att-i
ae-i

0 . 1 :

a o s :
aoe :

(X04:

aoe :

0 -

5
C\

t>
o

o

D

^
*=o°«P

O

^ O

Q
O

o o
D

o

° > ^^*S

o

o

f i

o

o

D

D

^ ^^
GO O Q

„ O

<3«^QS°S^ * ^

'"̂ Ĥ

o

a

o

D

<«°
'te

o °
o o

D
P

tJ

•
O

go
Q

fm
7 O

o

D

I ' ' ' I '
0 0.1 a2 0.3 0.4 as o.e 0.7 ae ag 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

yS

Figure 77 Ranges of yg values

Chapter 5

Statistics of Embedded Object Fails

Integrated circuits can contain many objects of a more or less similar
nature. Examples are embedded memories and scan chains. Some of the tests
in the test sequence are intended to verify that such objects are defect free.
When the objects are scan chains, these tests are the scan tests, and, if the
clock control of the chains has been designed appropriately, the flush test.
When the objects are embedded memories, the tests are specialized memory
tests. In the latter case, the test patterns are often generated on the chip itself
by a so-called ABIST (Array Built-in Self Test) engine. The memory test step
applied from the tester then consists of initializing the ABIST engine, and
providing the proper number of clock pulses.

The statistical properties of embedded object fails, such as the expected
values and variances of the fail probability of a single object, and the correla
tions between fails of different objects, provide another route to learning
about defects, and, in particular of course, about defects that are important for
the objects in question. In practice, most of the defect mechanisms that can
affect the electronic circuitry on the chip will also affect scan chains or
embedded memories, and oftentimes both. As the objects are simpler and
more regular than the logic circuitry, using them to learn about what causes
chips to fail is usually more expedient than attempting to diagnose fails
caused by defects in the logic itself

An additional consideration for being interested in object yields is that
there are usually many of them on today's integrated circuits. Because of their
relative diagnostic simplicity, they can conveniently be used as embedded,
and free, defect monitors.

In the total sequence of test steps, the tests that target similar objects often
occur together in one step. This step has some index, say k, as explained in
Chapter 3. The total population of integrated circuits that enter test can then
be divided into three groups. The first group consists of those devices that fail
tests preceding the object tests. No information about the objects is available
in this group, as the appropriate tests were never applied. This leaves NY|̂ _i
chips that were tested with the object tests.

The second group, called the fail group, consists of those devices that did
fail the object tests, and the third group of those that passed them. There are
Nî chips in the second group and NY]̂ in the third one.

In practice both first and third groups are not represented in the fail data,
although they can often be reconstructed with some effort. There is very little

84 IC Fails

one can do with the first group, because fails in that group typically are caused
by gross problems, like excessive 10 leakage or shorts between Vdd and
Ground. It is better to consider the second and third groups as constituting the
total population. The statistical properties mentioned above are, therefore,
related to the devices that were tested with the object tests.

The statistical analysis is simplest if all devices that were tested with the
object tests are available, whether they passed those tests or not. Detailed
information can then be extracted from the data. In particular, of course, the
fail probabilities of all the objects can be estimated, as well as the relation
ships of those probabilities to the sizes of the objects. In addition, suspected
correlations between the fails of different objects can be verified, and their
strengths determined.

Collecting such detailed fail information is costly, however, and various
strategies are employed to reduce this cost. Examples are terminating test
once one failing object has been found, and collecting complete fail data on
only a small sample of devices. All these test time reduction strategies dimin
ish the quality of the information extracted from the fail data, Fortunately,
they rarely make extracting meaningful information impossible.

In this chapter, the statistics of object fails will be discussed: the distribu
tion of the number of times an object fails, and the relationship of this
distribution to the sizes of the objects. In addition, some measures of correla
tion will be discussed between objects, based on their fail statistics. A related
problem, how to use the object fails to identify systematic defect mechanisms,
will be postponed to Chapter 6, where a general approach to commonality and
clustering will be developed.

If the objects are collections of the same basic cell, the fail probability of
such a cell can be estimated from the fail data, but the result depends on
whether cells in different objects can be treated as identical. In sections 4 and
4.4, two different models will be discussed, and cell fail probabilities will be
derived from experimental data using these two models.

In sections 5 and 6, the problem of reduced data collection is addressed. It
will be shown that meaningful estimates of the object fail and cell fail proba
bilities can still be obtained.

When the objects are more complex than a mere repetition of the same
basic cell, but still are constructed from a small number of different compo
nents, the fail probabilities of those components can be estimated. The
statistical analysis is considerably more complex than when the objects are
constructed from a single cell, however. It will be discussed in Section 7.

Chapter 5: Statistics of Embedded Object Fails 85

1 GENERAL DEFINITIONS

For simplicity, NYĵ .j, the number of devices that saw the objects tests,
will be indicated by K. K, of course, is a random variable, but only in the con
text of all devices being tested. In this chapter, I will focus on only those
devices that were tested with the object tests, and, therefore, in this chapter, K
can be treated as a constant.

The number of objects on a device will be indicated by I, and the objects
are labeled by an index i = 1, ..., I. The result of applying the object tests to
object i is a random variable Zj. Its value is 1, when object i failed one or more
of the object tests, and 0 otherwise. Zj has the Bernoulli distribution, with
some expectation value Uj, and variance u-(1 - Uj). Uj is also the fail probabil
ity of the object.

It is often more convenient to work with Ô = KZ^, the number of

devices on which object i failed the object tests. Oj has the binomial distribu

tion with expected value Kuj, and variance KU|(1 - u^). Random variables Zy

describe the events that both objects i and j fail simultaneously. The corre
sponding probabilities of these events are uy. Similarly, Oy is the number of
devices on which both objects i and j fail. Its expected value is Kuy.

The fail probabilities Uj are not completely arbitrary, because the objects
considered here typically have a size Sj, which indicates the number of cells in
the object. If the object is a RAM, the cells are real RAM cells; if it is a scan
chain, the cells are scan latches. When such a size exists, and if the cells fail
independently,

Uj = l - (l - t .) ' \ (5.1)

in which tj is the probability that a single object cell fails.
Considering cells rather than the objects themselves is helpfiil, if the

object can realistically be considered to be a set of identical cells, for it allows
us to focus on the size independent aspects of the fails, and, in particular, to
compare fail probabilities of objects with very different sizes.

If the objects are similar, for example if they are all SRAMs or all scan
chains, the fail probabilities of the cells are expected to be equal to some glo
bal cell fail probability. This global cell fail probability will be indicated by t.
Even if the cells are all of the same type, however, their fail probabilities may
still not be equal because of design or manufacturing differences. I will refer
to the homogeneous model as the one in which all cells have the same fail

86 IC Fails

probability, and to the heterogeneous model as the one in which the cells may
have different fail probabilities.

A more sophisticated model is the one in which the objects belong to one
of a number of groups of objects, such that all the cells within one group have
the same cell fail probability, while objects in different groups may have dif
ferent cell fail probabilities. This model makes the statistical analysis very
complex, in particular when the group compositions need to be determined
from the data. I will not address this model here.

It is of course possible to consider other, even more complex scenarios.
For example, the homogeneous model may be valid, but on a wafer by wafer
basis only. In other words, all the cells in the different objects are assumed to
have the same fail probability on any given wafer, but the fail probability may
vary from wafer to wafer. Or, the wafers may be clustered together into
groups, for example using the clustering technique outlined in Chapter 3.5,
and the single cell fail probability may be assumed to be the same for all
wafers within one group, but to vary between groups. All these more complex
scenarios can be treated with the same statistical technique that will be used
for the simple homogeneous and heterogeneous models, but will not be
addressed explicitly in this chapter.

2 CORRELATIONS AND CLUSTERING

In later sections in this chapter, it will often be necessary to assume that
objects fail independently. This assumption may be justified because of previ
ous observations, or because of our knowledge of the manufacturing process.
It is safer, however, to verify its validity whenever possible using the col
lected fail data.

Objects can be correlated, for example, because they fail or pass the same
tests together significantly more than they would if they had been indepen
dent. They can also seem to be correlated when they have cell fail
probabilities that are significantly larger than those of other objects. The first
type of correlation can be studied by estimating, for example, the classical
correlation coefficient between the pass and fail events of the objects, the sec
ond one by estimating individual cell fail probabilities.

The correlation coefficient p(i,j) between two objects i and j equals

Uy-UiUj
-^ , (5.2)

Chapter 5: Statistics of Embedded Object Fails 87

in which GJ equals ^U|(l -Uj) . p(i,j) can be estimated by

y -^ (5.3)
7 0 j (K - 0 j) 0 j (K - 0 j) '

Rather than estimate the correlation between two distinct objects, it is
often useful to analyze the correlation between two devices using the pattern
of passing and failing objects on both. Such commonality analysis will be
addressed in detail in Chapter 6.

3 EXAMPLE OF EMBEDDED OBJECT FAILS

SRAM fail data were collected for a large ASIC design. This design has
seventy three embedded SRAMs, ranging in size from about 7K to over IM
bits. The sample consisted of 101 devices on which at least one of the memo
ries failed at least one of the memory tests. The experimentally determined
fail probabilities are shown in Figure 18.

The fail probabilities clearly depend on the size of the objects, in this case
the number of bits in the SRAM. In addition, there is a substantial spread in
fail probabilities at any given size. The size dependence can be removed by
plotting cell fail probabilities, using Equation (5.1), and the result is shown in
Figure 19. Interestingly, the spread at high memory sizes has been replaced by
a large spread at very small memories. The latter spread can be explained as
resulting from statistical fluctuations (see Section 4.4.) Some spread at large
sizes is still present, though, and will be discussed in Section 4.4 as well.

Correlation analysis using Equation (5.3) shows that most of the RAMs
fail independently, although there are some that are perfectly correlated
(always fail together). The picture that emerges from this initial analysis,
therefore, is seventy three largely independent embedded memories of various
sizes that fail with a more or less constant cell fail probability. Further analy
sis of the fail data will be done in Section 4.4.

4 OBJECT AND CELL FAIL PROBABILITIES

The result of applying the object tests to a set of K devices is the set {Oj}
of numbers of devices on which the various objects were observed to fail. The
likelihood fiinction L is the probability that this particular outcome is
obtained, and, if the objects are independent, equals

IC Fails

n

B

+

=1= 4

+ 4

ru
'Ml-

U\^
++ t
I I Mil III •+

1
i
%

* t ^ t
=f + *

*
* +

*
*

•+f

+ -H--I- +

-i--lt- +

\

i

+
+

*
+

+
t +

t

t
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1
+

+

1 1 1 1 1 1 1 1 1 1 1 1

+

f

+
t

+

+

' 1 i'

0 aooooo 400000 eooooo eooooo loooooo laooooo

size

Figure 18 Fail probabilities of embedded SRAMs,
as a function of SRAM size

(5.4)

When the objects are independent, the fail probabiHties of the objects can
be estimated directly from the fail data using the maximum likelihood method
(see Chapter 2.2). This approach can also be used to verify the hypothesis that
the cells in all the objects fail with the same probability.

4.1 Estimating cell fail probabilities

The parameters in the statistical model are the fail probabilities Uj, which
should be estimated from the fail data. In fact, if the objects are constructed
from single cells and have a definite size, it would be even better to estimate
the cell fail probabilities, defined in Equation (5.1). I will assume here that
that is the case, and focus on the cells rather than the objects.

Chapter 5: Statistics of Embedded Object Fails 89

n

s
Q

200000 400000 600000

size

800000

• I • • ' I '

1000000 1200000

Figure 19 Cell fail probabilities of embedded SRAMs
as a function of SRAM size

A general approach to estimating the cell fail probabiHties is the maximum
likelihood method (see also Chapter 2.2,) which requires that L, as a function
of the fail probabilities, is maximized. In the heterogeneous model, L is a
fiinction of the set {tj}, and in the homogeneous model of the global fail prob
ability t. The results are estimates \{ and t, respectively, of the true cell fail

probabilities.
As is shown in Appendix E, the maximum likelihood equation has, as

expected, the solution

Ui = l - (l - t i) ' ' = 0 / K (5.5)

in the heterogeneous case, and

90 IC Fails

• l - (l - t)
(5.6)

in the homogeneous one.
The solutions of the maximum likelihood equations are random variables

with certain statistical distributions. When K is large, these distributions are
approximately normal. The means of these normal distributions are the true
values of the cell fail probabilities, and their covariance matrices are minus
the inverses of the matrices of second derivatives of ln(L).

The variances are calculated in Appendix E. The matrix of second deriva
tives turns out to be diagonal in the heterogeneous model, and the variance of

t, is

« i (l - U i)

K

^5u>
(5.7)

In the homogeneous model, the matrix is a scalar, for there is only one vari

able, and the variance of t equals

O;

i U; (l - U ;)

^5u^ 2\

(5.8)

The derivatives in these expressions are evaluated at the solutions of the max
imum likelihood equations.

The derivatives are functions of Sj and t{ (or t,) but Equations (5.7) and
(5.8) are written in their particular fonns to highlight their underlying simple

structures. For example, the factor Uj(l - u-)/K in Equation (5.7) is the

standard binomial variance, while the factor containing the derivative simply
changes the scale due to the change of variables from Uj to tj. Equation (5.8) is
of course more complicated, but the terms in the sum have the same structure,

for Oj/U| is approximately equal to K.

Chapter 5: Statistics of Embedded Object Fails 91

4.2 Comparing different models

The obvious question is, of course, which model is better: the heteroge
neous model or the homogeneous one ? The heterogeneous model has more
parameters than the homogeneous one, and is, therefore, more complex, but
always gives a better fit of the observed data. This question was addressed in
Chapter 2.2.2: the heterogeneous model never has worse agreement with
experiment than the homogeneous one, even when the latter one is correct,
because of statistical fluctuations. Of course, a certain amount of fluctuations
is always expected, so the real question is whether the fluctuations are exces
sive, or are more or less what they are expected to be statistically. If the
former, the heterogeneous model should be used, otherwise the homogeneous
one.

To determine whether the fluctuations are excessive, the likelihood ratio A
can be used. In Chapter 2.2.2, the indicator

-21nA-Nj)p

J^
(5.9)

DF

was suggested, in which Nj^p = I - 1 is the number of degrees of freedom.

The result was that, if p is large, the homogeneous model cannot explain all
the variability in the data, and needs to be rejected.

4.3 Small fail probabilities

Equations (5.5) through (5.9) become much simpler when the fail proba

bilities of the objects are small, for then U| « t̂ ŝ in the heterogeneous model,

and U|«ts- in the homogeneous one. The maximum likelihood estimators

become

1 ^i - 1 (O)
t i « i _ i and t « i l ! ^ f , (5.10)

K s . K <s)

respectively. In Equation (5.10), <0> and <s> are the averages of the Oj and

Sj, respectively. The corresponding variances are

l ^ i and i , i O > , , (5.U)
2 2 2 2

K Sj K I<s)

92 IC Fails

in which I is the number of embedded objects.

If we now abbreviate the standard deviation of t by 5, we find

Ô ^ (s) ti« — 6 / l - P = and t « bjij{0), (5.12)
Si V<0>

while the standard deviation of tj can be written as

V(0) s.
The importance of the last three equations is that the various quantities, in par

ticular ti and t, can be compared with each other and with the standard
deviations of the former without having to know K, because they are all K
independent multiples of 5.

For example, the likelihood ratio A can be written as

f nS('-e(f-'<°-)-^<°))) •
2

in which Cov (0,s) is the covariance of the O and s vectors, and a (O) is the
variance of the former. The covariance will be small if the objects have all
roughly the same size. If we also assume that the variance of the O vector is
small compared to K, A depends solely on ratios of s and O, and can easily be
computed without having to know K. Equation (5.9) can then be used to
gauge whether the homogeneous model is appropriate, or needs to be replaced
by the heterogeneous one.

4.4 Example of cell fail probabilities

The analyses described in the previous section were applied to the fail data
described in Section 3. As was pointed out in that section, the individual cell
fail probabilities are more or less the same for all seventy three embedded
SRAMs. The spread in the probabilities is large when the SRAMs are small,
as expected, considering the variance of the cell fail probability. Equations
(5.7) and (E.17), which show that the standard deviation is inversely propor
tional to the size of the memory. For example, several of the smaller
memories have a size of about 7K bits, and for these RAMs the standard devi
ation is about the same as the fail probabilities themselves. Hence the large
statistical fluctuations.

Chapter 5: Statistics of Embedded Object Fails 93

The homogeneous and heterogeneous models were compared using Equa
tion (5.9), with the result that p = 7. This is larger than the cutoff of three that
was mentioned in Section 4.2, so the homogeneous model should be rejected.
In fact, Figure 19 shows that the spread of the fail probabilities of the larger
memories, although much smaller than that of the smaller ones, is still sub
stantial. The likelihood ratio test merely confirms that not all the variability is
due to normal statistical fluctuations.

5 PARTIAL DATA COLLECTION

When testing embedded objects, it is often desirable to stop as soon as
some object has been shown to be defective. In the simplest case, the objects
are tested sequentially, in which case stopping on first fail is a natural way to
reduce test time. Often, however, may objects are tested in parallel, and the
pass/fail status of the various objects are observed more or less simulta
neously. For example, the embedded objects might be associated with pass/
fail latches, one latch per embedded object, whose values are set when the
embedded objects are tested. The status of the various objects are then deter
mined when the values in those pass/fail latches are scanned out.

Stopping when the first failing object is observed is universally called the
"Stop On First Error" protocol, or SOFE. Under SOFE, the status of objects
whose pass/fail status is observed after that of the failing one(s) are not
known. In this section, I will show that, despite the absence of complete infor
mation, reliable fail probabilities can still be obtained. We only need to
assume that the order in which the fails are observed is known and fixed for
all objects.

The pass/fail status of the embedded objects are observed in some order.
There are three possibilities for any pair of objects i and j :

1. i precedes j ; that is, it is observed before j .
2. i and j are simultaneous, meaning that they are observed at the same

time. Simultaneity occurs, for example, when associated pass/fail
latches are in different scan chains, but at the same relative location
with respect to the scanout sides of their chains.

3. i succeeds j ; that is, it is observed after j . Alternatively, one can say
thatj precedes i.

When a given IC is tested, the output syndrome A is the set of objects that
failed the tests. A may be empty, indicating that all objects passed their tests.

94 IC Fails

When A is not empty, all the objects in A should be mutually simultaneous
under SOFE.

If a more complex stopping protocol is followed, the contents of A should

be consistent with that protocol. For example, if the protocol is "stop on n̂ ^
error", there should be a subset of at most n objects among those in A that can
be linearly ordered according to observational precedence, and such that all
other objects in A are simultaneous with some object in the subset.

The probability P^ of a given syndrome A equals 0 when A is not consistent

with the stopping rule, and otherwise

^ J ^ i j < ^ -̂ I G 4

where]<A indicates that j does not succeed any of the objects in A.

The first product is over those objects that are not in A, but that are
observed before or at the same time as any of the objects in A, and that are,
therefore, known to have passed the tests. Note that there is factor 1 - u for
each such object. Likewise, there is a factor u for each object in the syndrome
A, that is, for each object that failed the test. When A is empty, the first product
is over all objects, while the second one equals 1.

The likelihood fiinction L of an observed set of syndromes, one for each
tested device, is the product of all such syndrome probabilities. Each object i

gives rise to a factor of the form (1 - u-) 'u^ ', with Uj the number of ICs on

which i is known to have passed the tests, and mj the number of times it was

observed to have failed. Consequently,

InL = y (n . l n (l - u -) + m-lnu.). (5.15)

The resulting maximum likelihood estimate of Uj is

-̂v m-
u- = , (5.16)

1 n + m ,

while the covariance matrix is diagonal, with diagonal elements

Chapter 5: Statistics of Embedded Object Fails 95

ri; + m.
(5.17)

This result is entirely what one would expect if the only available informa
tion is that there are nj ICs on which object i is known to have passed the tests,
and nij ICs on which it was observed to have failed.

Those objects that are observed rather late, and that are, therefore, often
obscured by fails of earlier objects, will tend to have small values of both n̂
and mj. The corresponding fail probability can still be estimated, but with a
severely reduced accuracy compared to when all objects are always observed
(in which case n̂ + m̂ in Equation (5.17) needs to be replaced by the number
of ICs.) The only exception is when both Uj and mj equal 0, which happens
only if there is some object that always fails, and that precedes i. In that case,
there truly is no information about i, but a lot of information about the always
failing one.

6 SAMPLING DEFECTIVE DEVICES

When testing is completed, it is of course known which devices failed the
object tests. It may not always be known, however, which particular objects
on a given failing device failed the tests, because collecting the detailed fail
information about all the embedded objects can be costly, and is not always
done on all devices.

In this section, I will consider the case that only a number of failing
devices is selected for complete fail data collection. This can be all failing
devices, if their number is small enough, a fixed fraction of failing devices, or
some predetermined maximum number of them. This group of devices will be
called the characterization group.

The fail information now consists of three categories. First, there is
detailed pass/fail information about all the embedded objects in the character
ization group. This group contains M devices, and is such that each device in
it failed the object tests. Second, there is the incomplete information for the
failing devices that are not in the characterization group. The total number of
devices in the characterization group and in this second group is known, and,
in conformance with earlier usage, will be indicated by N|̂ . Third, there is the
implicit information that all the objects passed the object tests in those devices
that did not fail the object tests. The problem at hand is how to estimate the
object fail probabilities from these disparate pieces of information.

96 IC Fails

The information contained in the detailed fail data from the set of M
devices in the characterization group may not allow us to estimate the fail
probabilities directly. What can always be obtained, however, are the proba
bilities Pi that an object i fails, given that the device belongs to the
characterization group. It can be approximated as

p . « 0 . / M , (5.18)

where Oj is the number of times object i fails in the characterization group.

The usefulness of pj lies in its relationship to Uj, which will now be derived.

Let R be the probability that a given device being tested by the object tests
fails those tests. If all the objects fail independently, R is a simple function of
the fail probabilities of the objects (see Equation (F.l)). Sometimes, however,
different objects are not independent, and R is some fixed but unknown quan
tity. It can be approximated by Nj^/K.

As the characterization group is a random selection of M devices from the
failing ones, the probability pj that object i on a given device in the character
ization group fails the object tests is the same as that in the group of all failing
devices. The probability that this object, say i, fails the object tests in all
devices, failing or not, equals Uj, and the probability that a device fails the
object tests equals R. Consequently,

p- = u / R . (5.19)

As in Section 3, we want to be able to assume that the objects fail indepen
dently. No correlation coefficient as in Equation (5.3) can be calculated
because no complete information is available. The approximate value of R
still allows us, however, to estimate the correlations between object fails.

Pij, the probability within the characterization group that i and j fail, equals

Ujj/R, similarly to Equation (5.19). If objects i and j fail independently, Ujj

equals the product UjUj, and, consequently, Py equals PiPjR. Clearly, indepen

dence between i and j does not imply that pjj equals pjPj. Equality holds only

when R equals 1.
Using Equation (5.18) and

P y « 0 - j / M . (5.20)

Equation (5.3) can now be rewritten as

Chapter 5: Statistics of Embedded Object Fails 97

MOii-OjOjR
^ -^ (5.21)

7 0 i (M - 0 i R) 0 j . (M - 0 j R) '

in which Oj and 0^ refer to the numbers of fails in the characterization group
only.

Note that Equation (5.21) requires knowledge of R. So far, the only esti

mate available for R is Nj^/K, and, therefore, this equation needs K. If K is

not known, for example because nothing is known about devices that did not
fail the object tests, correlations between the fails of different objects cannot
be estimated this way. In practice, one proceeds by assuming no correlation,
and verifies later that the assumption was justified.

If the correlation coefficients (5.21) show that the objects fail approxi
mately independently, or if one simply assumes that they do, pj can be
estimated using the maximum likelihood method, as shown in Appendix F. In

the heterogeneous model, P| = Oj/M, as expected, and in the homogeneous

model equation (5.6) is still valid, with K replaced by M, and u by p. Both R
and the desired probabilities Uj can then be estimated as well, as shown in the
same appendix.

In both models, R is between 0 and 1. It equals 0 only in the exceptional
circumstance that exactly one object fails on every chip in the characterization
group. This may seem self contradictory for a failing object ipse facto shows
that the chip can fail, and, therefore, that R is not 0. On the other hand, the cir
cumstance in which R is 0 seems to violate the assumption of independence
between the objects, and the result of any calculations based on this indepen
dence should not be taken too seriously. R equal to 1 is less questionable as a
result. In the heterogeneous model, it occurs when any object fails on all chips
in the characterization group, but in the homogeneous model only when all
embedded objects fail on all chips.

The choice between the two models can now be made as outlined in Sec
tion 4.2. With the estimated value of R, Equation (5.21) can be used to verify
that the objects did indeed fail independently. A large value of any element in
the correlation matrix indicates that the assumptions that underlie the calcula
tions may not be valid.

Some final comments. Using the characterization group only gives non-
trivial results when there is more than one object, as discussed in the appen
dix. On the other hand, if there is more than one object, not only the quantities
mentioned above can be estimated, but also K, the number of devices that

98 IC Fails

were tested with the object tests. For K is approximately equal to N^/R, where
N|̂ is the number of failing devices.

7 FAIL PROBABILITIES OF OBJECT
COMPONENTS

In many cases, embedded objects are not complex chunks of random digi
tal logic, but, instead, are simple collections of components from a small set
of component types. Examples are SRAMs, which are rectangular arrays of
one-bit cells, and scan chains, which are linear strings of flip-flops or master-
slave latch pairs. Embedded objects, however, need not be simple one or two
dimensional repetitions of the same components, but may contain many dif
ferent ones. Scan chains, in particular, can contain many latch types that may
differ in the number of data ports, output drive strength, noise immunity, etc.

In this section, I will address the problem of estimating the fail probabili
ties of these different component types, using, as input, only the passes and
fails of the embedded objects. Estimating the component fail probabilities, as
it turns out, is considerably more complex than estimating the fail probabili
ties of the embedded objects themselves.

The appropriate statistical model will be described in the next section. It
relates the probability Uj that object i passes all the object tests to the numbers
of components of each type there are in the object, and to the probabilities that
those component will pass the tests. The general equation is

In (l -Ui) = ^ PjHij, (5.22)

in which the independent variable njj is the numbers of components of type j

in the object, and pj is the logarithm of the expected yield of that type. This is

similar to the well-known logistic regression equation [10]

where ny has the same meaning as above, a and Sj are the logistic parameters
to be estimated, but are harder to interpret than Pj in Equation (5.22). The
mathematical techniques for estimating the parameters are the same in both
models.

Chapter 5: Statistics of Embedded Object Fails 99

7.1 Component fail estimates

Let us assume that there are k different types of components out of which

the objects are constructed. The probabiHty that a component of type j ,

j = 1, ..., k, is defect-free is qj, and we want to estimate these probabiUties.

The fail probabiHty of the component is, of course 1 - q^, but we rather use

the probability of passing the tests, as it is more convenient. In a more general
model, these probabilities depend on the objects in which the components are
located, but we will not use that more general model here.

Object i has njj units of type j . The object has a size, which, however, is

more general than the one discussed in Section 1, for it now is built from more

than one type of component. The size of the object is defined as s- = V n-..

The objects can pass or fail the object tests, but the number of devices for
which test results are known can be different for different objects. The actual
number of devices in which object i is tested is Mj, and there are Oj passes and
Mj - Oj fails.

Assuming that components fail independently, the probability that object i
fails the object tests is

-n .< i j " . p-̂ ")

which, after taking logarithms, becomes Equation (5.22). The outcome of an
experiment is the numbers of passes and fails of the various objects. The cor
responding likelihood function is

L = TT Uj (1 - u .) . (5.25)

Finding the maximum of L, and, thereby, the best values of the component
fail probabilities, is described in Appendix G. No clean, analytic expressions
are available for the estimates of the component yields. Here, we will only
discuss some special cases.

7.2 Special cases

One potentially anomalous case is that of some component having zero
probability of passing the tests. If some component always fails at least some
of the object tests, all objects that contain this component will also always

100 ICFails

fail. In other words, q- = 0 implies û = 0 for all objects for which n-- ̂ 0.

It, therefore, also implies that the corresponding Oj should be 0.
If we now invert these implications, it turns out that the probability that

some component will pass the test cannot be 0 if there are some objects that
contain that component and that sometimes pass the tests. In fact, if some
objects always fail the tests, and if there are one or more units that are con
tained in only those objects and not in any other objects, it is better to remove
those objects and those units from consideration, because some of the units
might have a zero probability of passing the object tests.

Another special case is when all objects have the same relative contents;
that is, when n-/s- is a constant Vj that depends only on j . In that case, we

can write the occupancy numbers as n-- = vs- , and Equation (5.24) becomes

U; = 1

J
I{.%1 ' ("̂ >

or, more meaningfully, u- = I -n \ with n the average component yield. L

is then a function of TT alone, and only n can be obtained from the test data.
Incidentally, Equation (5.26) is the same as Equation (5.1) in the homoge

neous model, with t equal to 1 - TT. The connection with the heterogeneous
model will be made below.

The derivation of Equation (5.26) shows that, to get information about the
individual component probabilities, different objects should have different
relative contents. Obviously, the more the contents of the various objects dif
fer, the more accurate those probabilities can be estimated. In the limit of each
object consisting of only one component type, the accuracy is maximized.

In this limit case, for each component type j , ny equals 0 for some objects
and Sj for all others. The maximum likelihood equations (G.3) then split up
into k different groups, one for each component type, and the equations for
different component types are independent. This is in fact the heterogeneous
model of Section 4, with the potential refinement that some objects are made
to have identical cell fail probabilities when the components out of which
those objects are constructed are the same.

The resulting equations are very much like those for designed experi
ments, if we consider each object as an experiment for a particular component
type. There may be multiple experiments per component, and the numbers of
experiments for different components may differ.

Chapter 6

Fail Commonalities

The focus of the discussions in the previous chapters were various types of
fail probabilities: first fail probabilities at the different steps in the test
sequence, or fail probabilities of embedded objects and of object cells. These
probabilities can be estimated using the fail data, if the latter were collected in
sufficient volume, and with sufficient detail.

Fail data can also be used in a less quantitative way, however. They can be
used as a signature, so to speak, of the underlying defect, the one that caused
the fail. Such signatures can be defined for each failing device using the raw
fail data or some kind of summarization of the fail data.

The importance of fail signatures is that they can be used to compare dif
ferent devices, or the same device under different test conditions, and to
determine whether the fails of those devices could have been caused by the
same defect mechanism. Once a way is found to reliably compare different
devices, the failing devices can be clustered into groups of devices that seem
to have failed because of the same or similar defects.

One reason for attempting such clustering is that, if all the devices in a sin
gle group did fail because of similar defects, information like occurrence
probabilities of such defects is available immediately. In addition, diagnosis
can then be targeted to the more frequent defects.

More importantly, clustering failing devices focuses on the presence of
systematic defects. The Null hypothesis of manufacturing is that there are no
systematic defects: all defect producers are assumed to act with equal
strengths on all wafers, and to produce defects randomly, and independently
of each other. If true, commonality analysis would find no clusters, at least not
any large ones. On the other hand, if large clusters are found, it shows evi
dence of some systematic defect. The goal of comparing fail signatures, and
of clustering failing devices on the basis of such comparisons, is to uncover
the presence of systematic defects, if any exist. Once identified, further diag
nosis can provide more information about them.

One type of commonality was discussed in Chapter 3.5. In that chapter,
commonality between wafers was studied on the basis of detailed fallout his
tories. In the present chapter, commonality between devices, whether on the
same wafer or in the same lot, will be treated. The fail data that will be
employed to define signatures are either the lists of failing embedded objects
on the devices, or the lists of failing latches. Because the latter lists may be

102 IC Fails

very large, various ways to summarize them without losing essential informa
tion will also be studied.

The basic steps to be taken are fairly straightforward. First, define a mea
sure of commonality between the fail data of two failing devices; second,
identify clusters based on the commonality measure. Commonality analysis
can be performed for all devices failing any of the deterministic tests, or can
be done on, for example, a comer by comer basis. Finally, develop suitable
cluster signatures to identify future occurrences of the same underlying
defects.

All the techniques described here, other than perhaps the actual common
ality measures, are standard data mining techniques [19]. A similar analysis
was for example applied to Iddq data in [32].

This type of analysis will be performed on large numbers of devices. Con
sequently, the analysis has to be fast. This requirement limits the amount of
work that can be performed on the fail data. It is the opposite of logic diagno
sis, in which accuracy of the result is the driving factor and performance can
be sacrificed to it.

This chapter is divided into three parts. First, abstract commonality mea
sures will be defined for pairs of devices, as well as groups of more than two
devices. Then, such measures will be described in detail for commonly col
lected fail data. Finally, a clustering technique will be presented, and results
of applying such clustering on some selected sets of fail data will be
discussed.

1 COMMONALITY MEASURES

In all cases considered in this chapter, the fail signatures that need to be
compared are collections of pairs (n, v), in which n refers to an identifiable
object, like an embedded array or a logic book, and v is a number, n can be an
actual string, but it can also be a number, like a net index, v is always a num
ber, but it can have arbitrary (non-negative) values, or it can be restricted to 0
and 1. Obviously, each signature has at most one (n, v) pair for any given n.
By convention, if a given signature does not have a (n, v) pair for some n, it
implicitly contains the pair (n, 0).

A simple example is the signature based on embedded objects. For any
given device, the signature contains explicitly pairs (n, 1) for those objects
that did fail on the device, with n being the name of the object, while it implic
itly contains pairs (n, 0) for those objects that did not fail. If the signature is
that for a wafer, the pairs would be of the form (n, v) (or, implicitly, (n, 0))

Chapter 6: Fail Commonalities 103

where n has the same meaning as above, and v is the number of times the
object n failed on the wafer.

1.1 Pairwise commonality

There are several ways to compare two signatures. The general approach
is to compare the (n,v) pairs in the two signatures one by one by comparing
the V values of pairs with corresponding n values. This comparison should end
with some number that, for the sake of convenience, will be between 0 and 1.

The two most relevant comparisons to this book are cos6jj and h(I,J),

where I and J are two different signatures. The first one is most suitable when
V can have arbitrary values. It starts from the notion of a vector V = {Vj}. The
vector is that of the v values with the n values in some arbitrary but definite
order that is the same for all the signatures. If n is a name, it could, for exam
ple, be their alphabetical order. \\ is then the v value of the 1 pair according
to that order.

Next, a cross product V ® V is defined between the vectors I and J by

V ^ ^ V ^ = ^ v W i , (6.1)

where v i is the i element of vector V . Using this cross product, a length

L = A/V ® V is assigned to each vector. Finally, the commonality
between two signatures is defined as

cosGy = (V ^ ® v V (L ^ L ^) . (6.2)

in which 6jj is the angle between the two vectors in k-dimensional signature

space, where the dimensions correspond to the various values n can have, and
k is the number of all such possible values.

It follows immediately from this definition that cosGjj is between 0 and 1.

When signatures I and J are strongly correlated, that is, when corresponding v

values are almost equal, cosOjj is close to 1. If I and J are uncorrelated,

cos9jj is expected to be small because corresponding v values will be very

dissimilar, and often one or the other will be zero

104 IC Fails

When the v values are restricted to 1 and 0, this commonaHty measure can
still be used, but in that situation it may be more natural to use h(I,J). The lat
ter is obtained by considering only pairs where the corresponding v values
differ. In other words,

^ v V l - v ^) + v ^ (l - v \)

h(I, J) = 1 i . . T-. (6-3)

Z , T J I J ,

(v i + V i - V iv i)

L -I J
iV i

^ . T J I J '
2^ (v i + v i - v iv i)

(6.4)

in which the sums are over all the n occurring in either I or J. h(I,J) is a num
ber between 0 and 1. It equals 1 when corresponding v values are the same.
When the signatures have little in common, it is expected to be small,
because, for each n, one or the other v value is likely to be zero.

This measure can be generalized to a weighted h(I, J) by

I J
V i S^i^i

y w-(v i +V i-V iv i)

in which the weights Wj are arbitrary. Such weights are sometimes useful if
some property of the objects make some objects more important than others in
gauging similarity. The definition (6.5) is such that h(I,J) still equals 1 when
the two signatures match exactly, regardless of the weights.

If signatures are random, their lack of commonality should be reflected in
the commonality measures being small. The average values of cosGjj and
h(I,J), however, can be calculated only in exceptional circumstances, and we
will essentially trust our intuition that both of them are small if the signatures
having little or nothing in common.

Chapter 6: Fail Commonalities 105

1.2 Commonality of sets of signatures

Next, the commonality measure needs to be extended to arbitrary sets of
signatures, not just pairs. This can be done in a number of ways [19], but in
this chapter I will use only one. Another one was discussed in Chapter 3.5.

Given a set of signatures, each pair of them will have a commonality mea

sure, be it COS0JJ or h(I,J). This measure will be indicated by the generic

form o(I, J). Let now {1} be the set of signatures. 0({I}), the commonality of
the signatures in the set {I}, is then defined as

0({I}) = min 0(1, J) . {6.6)

I , J e { I }

As a result, 0({I}) will be close to 1 if the signatures in the set are all mutu
ally highly correlated, while it will be close to zero if at least two signatures in
the set have low commonality.

It is often useful to have a measure for how little two different sets, say {1}
and {J}, have in common. The measure to be used in this book will be indi
cated by D({I}, {J}) and is the opposite of that in Equation (6.6):

D ({ I } , { J }) = Max 0(1, J) . (6.7)

I e { I } , J G { J }

Finally, as a warning, notice that 0({I}) and D({I}, {J}) depend on the
particular choice made for o(I, J). Most of the time the differences will be
minor, but there may be cases in which cos6jj is large and h(I,J) is small or

vice versa.

2 EMBEDDED OBJECTS

Fails of embedded objects were treated extensively in Chapter 5. The set
of objects that fail on some device provide a convenient signature for that
device. As the objects either fail or not, the natural commonality measure is
h(I,J). This measure, however, ignores the information contained in the sizes
of the objects. This size dependence can be accommodated by using the
weighted commonality measure, defined in Equation (6.5). The weights
should be such that larger objects have smaller weights than smaller objects.

106 IC Fails

Possible choices are 1 -O^/K, or 1/S|, where the various variables were

defined in Chapter 5.

3 LOGIC FAILS

The main test of the internal logic circuitry on a device is performed by the
deterministic tests. Arrays, scan chains, lOs, all are tested by other tests, but
defects that affect the functional operation of the logic on the chip can be
tested only with the deterministic test step. As such defects constitute one of
the main reasons of why ICs fail, good commonality measures that can iden
tify systematic problems will be of great value.

The result of the deterministic tests is symbolically shown in Table 2.. The

pattern 1

pattern 2

pattern m-2

pattern m-1

pattern m

patterns

distinct fail

latch
1

m

m

Pi

1

latch
2

m

P2

1

latch
n-2

[X]

m

m

Pn-2

1

latch
n-1

Pn-1

0

latch
n

m

Pn

1

latches

li

h

•m-2

'm-1

Im

N

pass
/fail

1

0

1

1

0

Table 2. Deterministic Test Results

rows in this table correspond to the patterns that were applied during the test,
and the columns to the latches whose values were inspected as part of the test
procedure. A latch that, after a given pattern was applied, was found to have
an incorrect value is marked by the symbol \E\ in the cell corresponding to
that pattern and that latch.

The table contains two auxiliary columns and two auxiliary rows. The col
umn labeled # latches contains, for each pattern, the number of latches that
were found to have incorrect values. This number being 0 indicates that the

Chapter 6: Fail Commonalities 107

pattern did not fail. The column labeled pass/fail merely shows whether the
value in the previous column is 0 or not.

The two auxiliary rows have similar functions. The one labeled # patterns
contain the number of patterns that caused a particular latch to have an incor
rect value, while the row labeled distinct fail shows whether this number of
failing patterns is 0 or not.

Finally, the total number of failing values that were observed in any of the
failing patterns is N, and is the column sum of the values in the # latches col
umn, and is also equal to the row sum of the values in the # patterns row.

The contents of Table 2. represent all the available fail data, without omis
sions, but in a way that is more suitable to discuss usable signatures. Various
types of signatures can now be defined using this table. The most obvious one
is to keep the complete table. This is of course the best possible signature, but
has the drawback of being rather voluminous.

Two approaches will be discussed in this book. One uses only information
in the table, the other one uses the table, and, in particular the distinct fails
row, as a starting point for further analysis. I will consider both in turn.

3.1 Signatures based on fail data only

A better choice than all the data in Table 2. is to summarize the fail data
using one or more of the auxiliary rows and columns. In fact, the column
labeled pass/fail (see Table 3.) is a well known summarization, used in dictio-

pattern 1

pattern 2

pattern m-2

pattern m-1

pattern m

patterns

distinct fail

latch
1

m

m

Pi

1

latch
2

m

P2

1

latch
n-2

[X]

m

s

Pn-2

1

latch
n-1

Pn-1

0

latch
n

m

Pn

1

latches

u
'2

lm-2

lm-1

Im

N

pass/
fail

1

0 •

... 1
^

1 1

0

Table 3. Signature Based on Failing Patterns

108 IC Fails

nary based diagnosis. The assumption in that type of diagnosis is that the
vector of values in that column can be used to nearly uniquely identify the
underlying defect. Upon further experimentation it has usually become clear
that this vector gives a very poor diagnostic resolution, and is not used in
practice. For the same reason, it is not a good signature to use in commonality
analysis.

A considerably better choice, as it turns out, is the vector of ones and zeros
in the distinct fail row (see Table 4.,) and this vector will be called the unique

pattern 1

pattern 2

pattern m-2

pattern m-1

pattern m

patterns

distinct fail

latch
1

m

m

Pi

1

latch
2

m

P2

1 i '''*

latch
n-2

m

m

m

Pn-2

1

latch
n-1

Pn-1

0

latch
n

[X]

Pn

1

latches

li

h

'm-2

'm-1

'm

N

pass/
fail

1

0

1

1

0

Table 4. Signature Based on Unique Fails

fails signature. A clearly even better signature is the vector of values in the #
patterns row, possibly augmented with the vector of values in the # latches
column (Table 5.) It cannot be worse than the unique fails signature, and it
requires only marginally more storage. This vector, or the combination of the
two vectors, will be called the marginals signature.

With these choices for signatures, choosing the appropriate commonality
measures is straightforward. The unique fails signature consists of ones and
zeros only, and its appropriate measure is h(I, J). On the other hand, the mar
ginals signature consists of arbitrary value and its appropriate commonality
measure is cos6jj. Note that, in all cases, patterns that did not fail and latches

that never contained fail data in either signature do not contribute to the com
monality measure. In other words, the commonality measures are based solely
on fails that occur in at least one of the two signatures.

Chapter 6: Fail Commonalities 109

pattern 1

pattern 2

pattern m-
2

pattern m-
1

pattern m

patterns

distinct fail

latch
1

m

m

Pi

1

latch
2

[x]

P2

1

**.

latch
n-2

m

m

m

Pn-2

1

latch
n-1

P M

0

latch
n

[x!

Pr>

1

latches

1 '̂ ^
1 '̂

...

^ W2

Wi

i m̂
N

pass/
fail

1

0

1

1

0

Table 5. Signature Based on Marginals

Further refinements can be made as appropriate. For example, it might be
desirable not to use all the failing patterns, but only a suitable chosen subset of
them. This can, of course, easily be accommodated by removing rows that
correspond to rejected failing patterns from the various tables, and by updat
ing the values in the # patterns row and in the distinct fails row.

3.2 Signatures based on backtracing

The unique fails signature works rather well in practice, in that a high
commonality value based on this signature often indicates a common defect
cause. The reason for this is probably that the defect that caused the fail is
likely to be close to the latches that contained the incorrect values, because
fault effects caused by the defect flow along signal wires that do not com
monly cross large distances over the chip. Consequently, when fault effects
propagate away from the location of the defect, they will usually not travel far
before they are stored into latches.

If a fault effect is stored in a latch, this latch will, upon inspection at the
end of the test pattern, contain an incorrect value. Such a latch is commonly
called a failing latch, although, usually, the latch as a logic circuit is defect
free.

If this is true, then it makes sense to follow the fault effects in the opposite
direction: start from the failing latches and trace through the logic backwards

110 IC Fails

until primary inputs, embedded memories, or other latches are encountered,
and store all the nodes that were encountered during the tracing in a list.

Backtracing through combinational logic is straightforward, because all
the logic elements are unidirectional, and the backtrace always arrives at the
output of a logic gate and needs to continue backwards from the inputs. It
stops at primary inputs.

Most test patterns are such that embedded memories provide a constant set
of logic values on their outputs, and no further tracing needs to be performed
through them when they are encountered during the backtrace. Latches, when
encountered however, require more consideration.

For example, in Figure 20, the tracing starts at failing latch A. The cone

Figure 20 Tracing through backcones

rooted at A contains combinational logic, and is bordered by several latches.
Tracing may have to be continued through these latches if they are clocked
with a clock pulse that precedes the one that clocks latch A. The figure shows
the case that latches B and C are clocked during the appHcation of the test pat
tern before A is clocked. Consequently, tracing continues through these
latches and through more combinational logic, as shown by the additional two
combinational cones.

Chapter 6: Fail Commonalities 111

When latches D or E are reached, a decision has to be made whether or not
to continue the tracing. At D this decision depends on whether its clock pulse,
if any, occurs before the one at B. At E, the choice is more complicated, and
the clock pulses at E, B and C all have to be taken into account. Tracing con
tinues at E if its clock pulse precedes either the one at B or the one at C, for
fault effects through E could continue through B or through C.

If a latch has multiple ports, as many do, then the tracing should continue
only from the port that was clocked. Furthermore, there is a choice between
tracing through the data input or through the clock input of a clocked port.
Tracing needs to follow only clock inputs when it is clear that the defect does
affect the clock lines. In the spirit of single fault diagnosis, the data lines need
not be traced in that case. Usually, however, it is not clear whether the defect
affects clock lines or not, and tracing has to continue from both clock inputs
and data inputs.

Each trace starts from a failing latch and defines a backcone to that latch.
This backcone is the sum of the combinational cones and latches encountered
during the tracing. Figure 20 shows a complex backcone consisting of three
distinct combinational logic cones. Note that backcones from the same latch
may be different for different patterns, because the sequences of clock pulses
in the patterns may differ. During the backtrace, all the encountered nodes are
stored in a list. The backtrace is repeated for each failing latch, and each time
a node is encountered the corresponding entry in the list of encountered nodes
is incremented by 1 (or by some other value depending perhaps on the back
cone or the number of failing latches.)

The resulting signature is a list of (node, v) pairs, in which v is the number
of times this node was encountered during the backtraces. A high v value
shows that the corresponding node is in the backcones of many failing latches.
The V values, therefore, form a rough estimation of the likelihood that the
defect is located on or near any of the nodes in any of the backcones.

It is useful to compare this signature with the result of a crude form of
diagnosis that is sometimes employed, called intersection. In intersection,
backcones are obtained as above, but instead of incrementing counters, the
backcones are kept as sets and the intersection is taken of all these sets. The
result is a set of nodes that are in all the backcones.

The theory behind this form of diagnosis is that only nodes in the intersec
tion can be the location of the defect, because otherwise fault effects from the
defect could not have propagated to all the failing latches. Unfortunately, not
all defects affect single nodes. Bridges, for example, affect at least two, and
the latches downstream from one leg of the bridge may not be the same as the
ones downstream from the other leg. Consequently, intersecting backcones
from the failing latches is likely to result in an empty set.

112 IC Fails

Using the backcones based signature, however, circumvents this problem.
It lists all the nodes ever encountered in any of the backtraces, but it ranks
them according to how often they were encountered. The group of nodes most
often encountered form then a generalization of the intersection, one that does
not suffer from the problem of potentially being empty.

As the V component in the (n, v) pairs is an arbitrary number, the most
appropriate commonality measure is cosBjj.

3.3 Signatures based on cells

Instead of keeping track of which nodes or blocks are encountered during
backtracing, one can also notice their functional properties. These can include
the logic function, drive strength, power level, and delay times. All these
details are encoded in the cell name of the block, which is a reference to a spe
cific book in the design library of which this block is an instance. All the
physical and layout details of the block can be found in the description of the
library book.

Monitoring cells rather than nodes during backtracing is sometimes useful
when the defect is not one that impacts a specific instance of a library book,
but, instead, one that impacts the library book itself; perhaps a defect prone
layout style, an underpowered driver, or any other design flaw that will affect
all instances of that book.

The resulting signature is very similar to the one discussed in the previous
section, except that now the n component of the (n, v) pairs is not the name of
a node or a book instance, but the name of the book itself Signatures that
have high counts of certain books hint at problems with that book, rather than
at some point defect somewhere on the device.

As with the previous signature, the most appropriate commonality mea
sure is cosGjj.

3.4 Signatures based on diagnosis

An even more complex analysis than backtracing is diagnosis. The details
of such an analysis will be presented later in this book, but the results are
rather simple: a set of nets or pins, generically called nodes, at least one of
which is affected by the defect. The signature is then this set of nodes, or,
more precisely, a set of (node, 1) pairs. As the v component of this signature
only has the values 0 and 1, the most appropriate commonality measure is h(I,
J) (Equation (6.4)).

Chapter 6: Fail Commonalities 113

4 CLUSTERING

Now that means have been defined to measure commonality between the
fails of different devices, we can turn our attention to clustering together those
devices that seem to share the same failing mechanisms. Intuitively, this is
easy: just put those devices in the same cluster that have high values of the
chosen commonality measure for each pair of devices. This, however, imme
diately runs into problems. Consider for examples. A, B and C. A and B have
a high commonality value, and so do A and C. B and C, however, have an
medium commonality value, and not enough to qualify them for membership
in the same cluster. Should the core cluster now be A and B, or A and C ?
Either choice would be arbitrary.

To handle such conundrums, an algorithm is needed that reduces the num
ber of arbitrary decisions to a minimum. The chosen algorithm is well known
in the literature as the furthest neighbor method [19]. A simplified program
that implements this algorithm in a brute force way is shown in Figure 21.

The algorithm starts with as many clusters as there are signatures. At each
step of the algorithm, the number of clusters is reduced by 1 by merging two
clusters. The selection of the clusters uses the cluster commonality measure
0({I}), defined above in Equation (6.6), where {1} is the set of signatures in
the cluster. The two clusters selected for merging are such that, after merging,
the commonality measure of the resulting cluster is larger than that of any
other pair of clusters. If there is a choice between several pairs of clusters,
each pair leading to the same commonality measure of the resulting cluster,
then an arbitrary choice needs to be made to pick one of the pairs. The process
of merging stops if there is no pair such that the commonality measure of the
result of the merger is larger than some threshold t, a number between 0 and 1.

The result of the algorithm is a set of clusters for each one of which 0({I})
is larger than t. The resulting clusters can be compared to how tight they are,
using the 0({I}) measure (see Equation (6.6)), or to how different they are
using the D({I}, {J}) measure (see Equation (6.7)).

5 EXAMPLES

The first example, Figure 22, is that of a repeater based cluster. The design
was a large ASIC with many embedded SRAMs. The commonality was cal
culated using the pass/fails of these memories (see Section 2.) The largest
cluster found using the commonality matrix is shown in Figure 22. This figure
is a composite over several wafers. The wafer locations of the devices in the
cluster are indicated by the shaded cells. The numbers in the cells, and the

114 IC Fails

IIS is set of clusters
s = ();

// put all signatures in S
for each I, put I in S;

// best_pair (S) finds pair of clusters in S tliat
// produce the highest combined commonality
// measure among all pairs in S.
// It returns a pair of clusters, or an empty set
// if no commonality measure exceeds the
// threshold t.

best_pair (S, t) {
best = t;
P = ();
for all (c1 in S) {
for all (c2 in S and c2 ne c1) {

if ((m = measure (merge (c1, c2))) > best) {
best = m;
P = (c1,c2);

}
}

}
return (P);
}

// merge (c1, c2) returns the union of the signatured
merge (c1, c2) {
return (cl uc2);

}

// Main routine
while (P = best_pair (S, t) not empty) {

C = merge (P);
remove (S, P); // remove clusters in P from S
add (S, C); // add merged cluster to S
}

exit;

Figure 21 Clustering algorithm

corresponding shade intensities, indicate the number of wafers that contribute
devices at this location to the cluster. The empty cells show those wafer loca-

Chapter 6: Fail Commonalities 115

.̂

1

1 2 1

P
4.

1

1

1

4

nr
An

1
1 2 1

1
^ 1 1

nn
.4 1

"in

B

1

1 :

B

B

1

2

1

1

2 1

2 j

2 1

4̂

z
2

2

B 2

i

^

2

2

B

1

1

1

1

2

'̂

n n
s

p

Figure 22 Repeater based cluster

tions that have failing devices on some wafers, none of which were in the
largest cluster.

The first sign of a repeater is the clear striping in the largest cluster found
using this commonality matrix. As the design is printed from a 1 by 2 reticle,
a repeater, probably due to a mask fail, was suspected. Further analysis of the
contents of this cluster revealed that one particular memory on all devices in
the cluster had failed, and that there was no other common fail among the
devices in the cluster. At the time of this writing, no failure analysis had been
performed yet to confirm the diagnosis, but the signature is so strong, that no
other explanation is likely.

The second example is that of a defect based cluster. The design was
another large ASIC. The reticle in this case had size 2 by 2, with three A chips
and one B chip (different versions of the same design.) Almost all A chips
failed. Commonality analysis using latches (see Table 4.,) used to cluster the
failing devices, and three medium sized clusters were found, one of which is
shown in Figure 23 Further diagnosis, indicated a unique failing location in
the design, which then, after failure analysis was traced back to a physical
design problem (misaligned via.)

116 IC Fails

1 1

1

—

1 1

u
1

1

1

1

1

1

1

u
1

1 1

1 1

1 hi
n^i

1 1 n
1 1

1 _

1
u

1

1

1

uu n
1 1

E
1 1

1 h
1 ^

1 1 n
1 h

1

1 1

1

U
1

1 1 1

1

1 1

Figure 23 Defect based cluster

Chapter 7

Spatial Patterns

Many defects are randomly distributed over the wafer surface, and cause
the die to fail at random locations. Some defects, however, have spatial distri
butions that can be used for their identification.

One example of such defects are particles left on the wafer after an incom
plete rinsing, but left preferentially downstream of the direction of the rinse.
Another example is bad or incomplete polishing caused by sagging or bowing
of the wafer, which causes the local plane of the wafer not to be parallel to the
plane of the polishing pad, and may cause the outer regions of the wafer to
yield less than the central one. A final example is a mask defect in one of the
die images in a reticle, which produce a clearly recognizable repetitive pattern
of fails of those sites that correspond to the defective die image in the mask.

Such defects can be recognized by the distribution of failing die over the
wafer not being random, but, instead, having some recognizable spatial pat
tern. The fact of a pattern of fails not being random may, of course, be
recognized without identifying an underlying defect. A repetitive pattern
whose pitch matches that of the reticle, for example, is a clear indication of a
mask defect, even though the defect itself has not yet been identified.

In this chapter, I will focus on the recognition of spatially non-random pat
terns of fails. Once recognized, those die that seem to be part of the pattern
can be subjected to other forms of diagnosis to identify the actual defect
mechanism. This second step, however, the actual defect identification, will
not be part of this chapter.

Before getting into the details of pattern recognition, two questions need to
be answered. First, what wafer maps will be analyzed ? Maps showing the
passing and failing die is one obvious example. Wafer maps need not be lim
ited to just final sort codes, however. It is often also useful to analyze maps of
passing and failing embedded objects, the ones described in Chapter 5. The
main reason for being interested in wafer maps of such objects is that they
show the die in much more detail than sort codes do, and that different objects
may have different sensitivities to those systematic defects that give rise to
spatial patterns. I will focus on wafer maps resulting from embedded object
tests, with the understanding that a similar analysis can easily be applied to
other types of wafer maps.

The second question is which passes and fails to use. For example, in the
case of instance fails, not all passes will be known in general, for the fail data
contain information only for those die on which at least one embedded object

118 IC Fails

failed. A die for which there are no fail data for any of a certain type of
embedded objects may either have passed all the relevant object tests, or have
failed some test preceding them. Consulting the final sort codes allows us to
distinguish these two cases, but the pass/fail status of the objects is inherently
unknown for those die to which the object tests were not applied.

Some information about unknown passes can often be retrieved from the
fail data, as a fail of an object of some type on some die shows that other
objects of the same type on the same die were tested with the object tests for
that type. Consequently, we can assume that those other objects passed the
tests if no fail data were collected for them. This assignment of a pass to those
other objects is made more complex when the objects are tested sequentially,
rather than in parallel, but passes can still be assigned in many cases following
the general strategy described in Chapter 5.5.

We will assume that pass information has been determined as far as is pos
sible from the available fail data, but that it can still be incomplete. That not
all pass information may be available need not be an impediment to spatial
pattern analysis. Some patterns will be missed, however. For example,
assume that the die that would fail the object tests, if applied, would have
some distinctive pattern, but that the die that were thus tested do not. The dis
tinctive pattern would be missed. This is a consequence of not always
applying the object tests, and cannot be mitigated by more sophisticated spa
tial analyses. On the other hand, the die that were not even tested with the
object tests may now have some recognizable spatial pattern on their own that
can be used for defect identification.

Once a - potentially partial - map of passes and fails is available, we can
proceed systematically to recognize and classify non-random patters. The rec
ognition phase comes first, and is intended to establish that a particular pattern
is non-random. This phase is useful, as the classification of a non-random pat
tern may be time consuming. The recognition phase functions as a quick and
inexpensive screen that removes wafer maps that do no seem to have any dis
tinguishable pattern. This phase will be discussed in the first two sections of
this chapter. The second phase will be discussed in the remaining sections,
and is the classification of non-random patterns.

1 NON-RANDOM PATTERNS

The first task at hand is to recognize wafers on which the pattern of fails is
not completely random. I will discuss several different approaches to this
problem. The method to be used in this book is based on the Spatial Log Odds

Chapter 7: Spatial Patterns 119

Ratio (SLOR [56, 14]). A detailed study of a related method is presented in
[26].

1.1 Clustering parameter

A sophisticated approach to identifying non-random patterns is to assume
that the pattern is governed by some underlying distribution that differs from
the Poisson one, and whose parameters can be estimated using standard statis
tical estimation techniques. This underlying distribution should be flexible
enough to contain the random one as a special case, in which case some mea
sure of statistical significance can be used to decide if the estimated
parameters are sufficiently distinct from the random ones to allow us to label
the pattern of fails non-random.

Such a measure was explored in detail in Chapter 4, where we studied the
behavior of y, the inverse of the cluster coefficient. This measure was
obtained for a large number of wafers, and we saw that it could differ signifi
cantly from the same measure obtained for a known Poisson distribution of
defects, y seems to be particularly attractive, for its defining equation, Equa
tion (D.7), was shown in Appendix D to be approximately valid for a large
range of distributions, not just the negative binomial one. On the other hand, y
does not exist when Y(2A) equals zero.

1.2 Geometric properties of the pattern

Another approach to identifying non-randomness is to use geometric
aspects of the pattern of passes and fails. Because any specific pattern of fails
can be produced by a random defect producer, and because any particular pat
tern is as likely as any other pattern, the pattern by itself cannot show itself to
be non-random. Instead, some geometric property of the pattern has to be
identified whose possible values have different probabilities, even when the
defects are produced at random. Non-random patterns are then indicated when
the likelihood of the selected property for the wafer pattern at hand is, in some
sense, low.

1.2.1 Geometric centers

The simplest property available for the die represented in the fail data is
their geometric center I j . This center is a point on the wafer whose coordi

nates are / l ^ . ^ i / ^ . l and ^ . y j / ^ . l , in which Xj and yj are the

coordinates of the i tested die, and the sums are taken over the tested die.
When the fail data contain information only for the die tested with some part

120 IC Fails

of the test sequence, and not for all die, I j may differ from I ^ , the geometric
center of the wafer. The latter is defined similarly to I j , but with its coordi
nates such that the sums are over all the die on the wafer, not just over all the
tested die.

The geometric center of the failing die is of separate interest, and is indi
cated by Ip. It is defined similarly to I j , but with the sums in the definitions
of the coordinates over all the failing die rather than over all the tested ones.

An example of an otherwise unremarkable pattern is shown in Figure 24,

Figure 24 Geometric centers

with the positions of %j and Ip indicated approximately, that is, after having
been rounded off to the closest die position. The row and column numbers are
shown on the left and at the bottom, respectively. The singly hashed sites cor
respond to die that failed, while the doubly hashed ones correspond to passing
die. I j is indicated by the black site, and Ip by the grey one. No attempt was
made to obtain %^^,

If the failing die are distributed randomly among the tested ones, Ip is
likely to be close to I^, while large differences indicate that the failing die are
not so distributed. Differences between these two can therefore be used to
gauge how non-random a particular pattern is.

Unfortunately, the statistical distribution of the center coordinates, be that
of Ip or of Ix, is too comphcated to be usefiil, and likelihoods can be calcu
lated only with great effort. The relative positions of Ip or of I j are also not
enough to discriminate many obvious non-random patterns from random
ones, and the ones that are recognized can also be identified as easily by other
means. The relative positions will therefore not be used, but the two geomet
ric centers will in other contexts.

Chapter 7: Spatial Patterns 121

1.2.2 SLOR

The measure that seems to be generally useful, and that has been studied
extensively in the literature [12], is based on the numbers of neighboring pass-
pass, pass-fail, and fail-fail pairs. This measure has been studied in detail in
[56, 14], where it is called SLOR. The rationale for this measure is that a non-
random pattern requires some correlation between different die on the same
wafer, and that this correlation changes the numbers of pass-pass, pass-fail
and fail-fail pairs. The actual form of the measure is then obtained by making
specific assumptions on what die can be correlated, and how.

Let us indicate the event of a pass or fail of die i by the random variable
Xj, with Xj being 1 when die i passes, and 0 otherwise. The event of die i and

j both passing is then XjXj, that of both die failing is (1 - X|)(1 - X) , and

that of one passing and the other one failing is (1-X-)X|+ X.(1-X-).
Assuming that the probability of a die passing is p, and that it is the same for

2
all die on the wafer, the expectation values of the latter three events are p ,

2
(1 - p) and 2p(1 - p), respectively, when the fates of two different die are
independent.

When there are dependencies, however, these expectation values may
change. In the simplified SLOR model, each die has a well defined neighbor
hood, and two die are correlated only when they are neighbors. In this chapter,
two die are neighbors when one is immediately to the north, to the east, to the
south or to the west of the other.

For two neighboring die, the expectation values become r|, 1 - 2p + r|,
and 2(p - r|), respectively, in which \\ is the expectation value of X-X-, and
i and j are neighboring die. When two die are neighbors, the odds of one par
ticular one passing, given that the other one has passed equals r | / (p - r |) ,
while the odds of that same die passing, given that the second one has failed
equals (p - r |)/(1 - 2p + r|). If the fates of the two die were not correlated,
the two odds would be equal. The ratio of the two odds, therefore, seems to be
a reasonable measure of randomness. It equals

Ti(l-2p + i l) ^ ^ ^ j l V _ ^̂ ^̂

(p- r |) (p- r |)

2
The second form shows that the ratio equals 1 when y\ equals p , that is,
when there is no correlation between the passes and fails of the two die.

122 IC Fails

This ratio, therefore, is some number between zero and infinity, and is
equal to one when there is no correlation. A more convenient measure is the
logarithm of the ratio, since that leads to a number between minus and plus
infinity, and equal to 0 in the absence of correlations. This logarithm is called
the Spatial Log Odds Ratio, or SLOR.

To estimate it, we simply count the numbers of neighboring pairs of differ
ent types. Let the number of pairs be J, the number of pairs with two passing
die J+4., the number of pairs with two failing die J„ and the number of pairs
with one failing and one passing die J+_. The expectation values of these num
bers are Jr|, J(l - 2p + r|), and 2J(p - r|), respectively. As in the quadrat
method (Chapter 4.3.2), there may be come uncertainty on which pairs to use.
As in that chapter, I use here all possible pairs.

The obvious estimator of the SLOR is then

/
In

J-f+J-

V(J^_/2)^^
(7.2)

There are some possible anomalies, for example when Ĵ _̂ = 0, or when

Ĵ _ = 0. Such anomalies can be handled easily by replacing the estimator by

a suitably chosen large positive or negative value.
In the case of a Poisson distribution of defects, the SLOR is expected to be

close to zero. This can be verified using the same set of Poisson wafers used
in Chapter 4. Figure 25 shows the correlation between y (see also Figure 12)
and the SLOR. The latter values are gratifyingly small, and there is an equally
gratifying correlation between them and the corresponding y values.

In Chapter 4, it was shown that y has a far larger spread in values on some
set of real wafers than one would expect if the defects on those wafers had
been randomly distributed. Those results are shown again in Figure 26, where
they are compared with the corresponding SLOR values. All data points with
anomalous SLOR values (values corresponding to plus or minus infinity)
were removed. These include all the wafers for with Y(2A) = 0, and several of
the wafers with Y(4A) = 0.

There is again a pleasing correlation between the two, and the SLOR val
ues have a much larger spread than in Figure 25, confirming the conclusions
that there is a fair amount of non-randomness. The group of data on the left of
the chart, at small values of y, and labeled separately, correspond to the case
that Y(4A) equals zero. The data in this chart will be analyzed in much more
detail later in this chapter.

Chapter 7: Spatial Patterns 123

0,5 •

0,4-

0 ,3 :

0,2-

0 , 1 :

0-

- 0 , 1 -

•0,2-

•0,3-

0

0

0 ^

o8>a

cP8c

c

0
0

0
0

0 \

00 0 0 0

0

0

0 0
0

0

0

0 ^ ^^

W%y
» > ^
S T C ^ ^ 0 0

0 0

-0,5 -0,4 - 0 3 -0,2 - 0 1 0 01 02 0,3 04

SLOR

Figure 25 Correlation between SLOR and y
Poisson defect distribution

CLASSIFYING PATTERNS

The measures discussed so far are intended to gauge the degree of non-
randomness of a given pattern. They give no information, however, on the
shape of a pattern found to be non-random. Recognizing such spatial patterns
has been the focus of a recent Sematech study [33]. In this book, I will discuss
two simplified approaches that are still reasonably effective in recognizing
and classifying non-random patterns.

One group of techniques that can identify various types of non-random
ness will be discussed in the present section. They all start from the set of fail
probabilities in suitably chosen partitions of the wafer. The particular parti
tions used here are columns and rows on the wafer, or circular segments
around I j , the center of the known die, and angular sectors emanating from
that center.

124 IC Fails

1.3:

1.2:

t l :

1 :

0.9:

0.5:

0.7 •:

0.6:

o.s-

0.4-

0.3:

0.2-

0 .1 :

0-

•0 .1-

0.2:

0.3:

0 .* -

n 0
ma

*^t^ xt

1 1 • ' '

o

0 Q , ^ ^

DK%kI2fiB

^ zSjBK
^s^^KK

0 O^^^Hi
0 p

o

o

O o O C>

fepo« ° "SK o o on
3 # ^ R e 0

nt^^f
^^#

I ' • • 1

•c

(̂

0

» tt

,
- 1 0 1

SLOR

quBdrrtrc °°° regutt "f » »* y4zero

Figure 26 Correlation between SLOR and y; Real wafer

2.1 Marginal probabilities

A wafer can be divided into several large areas, on the order often or so,
like the rows or columns of the wafer. There are many ways the wafer can be
divided into small regions. Each way will be generically called a partition.
The partitions considered here are rows, columns, circular segments and
angular sectors. There is very little flexibility in the regions when rows or col
umns are chosen, but more so in the case of circular and angular regions. I
will always use twelve angular sectors, corresponding to triangles with 30^
degree angles at their apices, and at most ten circular segments.

Let us indicate the regions of a given partition by the subscript i, and let
there be I such regions. In each region, some die will pass and some will fail.
The expected proportion of passing die is the expected yield, but will be
called yield for short. If the passes and fails were truly random, the yield
within any region would be more or less that of the wafer as a whole; if not,
each region might have its own yield.Let us indicate the yield specific to
region i by pj, and that for the wafer as a whole by p. Likewise, let the number
of die in region i be indicated by nj, and the number of failing die by Nj.

Chapter 7: Spatial Patterns 125

Finally let n and N be the numbers of die and of failing die on the wafer,
respectively.

The type of fail pattern can now be identified by determining for which
partition the regional yields differ most from the overall yield. A partition is
called implicated when it is thus identified. If no partition can be implicated,
we have an alternative indication that the pattern is random. Ideally, exactly
one type of region is implicated. Fail patterns that can thus be recognized
include rings, left half versus right half, horizontal or vertical stripes, and
repeaters. Multiple partitions may also be implicated, however. One often
occurring example is a partial ring where both angular sectors and circular
rings are implicated.

Distinguishing "more or less equal" from "clearly distinct" can be done
using the likelihood ratio, described in Chapter 2.2.2. The maximum likeli
hood estimators of pj is N-/n-, and the resulting value of the likelihood
function at its maximum equals

f j p i (1 - p i) (7.3)

Likewise, the maximum likelihood estimator of p is N /n , while the corre-

sponding likelihood is obtained by replacing all p i in Equation (7.3) by p .
The measure of randomness then becomes the likelihood ratio

A= N ^ ^ - N) ^

n.^i '(ni-Ni)'

A small value of A, or, alternatively, a large value of -In A can be used as an
indicator of non-randomness. To find the threshold separating random from
non-random patterns, we use the results presented in Chapter 2.2.2. A thresh
old of a small number of standard deviations beyond the expected value of
-InA, therefore, seems appropriate. In the present experiment, a value of 5
was used for p.

2.2 Experimental results

All the wafers used to generate Figure 26 were analyzed for specific pat
terns, using the flow diagram shown in Figure 27. First, a number of trivial
checks are performed on the data to make sure that they are usable. In particu-

126 IC Fails

any data ?

\
any fails ?

\
data not too sparse ?

t
1 calculate SLOR and y

•
data random ?

t
check rows and

columns

*
check segments and

sectors

i
determine pattern type

pattern is "no data"

pattern is "nofails"

pattern is Tewdata"

pattern is "random"

pattern is "pattemtype"

Figure 27 First wafer pattern analysis flow

lar, when not the lull wafer, but only some chips on the wafer are available,
there is a risk that the data is so sparse that no statistically meaningful analysis
can be done. Sparseness is a vague concept. The heuristic definition used here
is that the data is sparse when there are too few rows and columns having suf
ficiently many chips for which pass/fail information is available. Too few
rows and columns again is ill-defined, but is set to less than three in this
experiment. Likewise, sufficiently many chips means at least three chips.

After the data has been validated, the SLOR and y are calculated, as
described previously in this chapter and in Chapter 4.3.2.2. A wafer is then
labeled random when the absolute value of y is less then 2.5 and that of the
SLOR less then 0.7. Further pattern analysis is done only on wafers that are
not declared random. These threshold are somewhat arbitrary, and better
screens can easily be created. The purpose of this screen, however, is to

Chapter 7: Spatial Patterns 127

remove all patterns that seem to be unlikely to be anything else than random,
and the present, although crude screen meets that purpose.

The actual pattern analysis is, by necessity, complex, and will not be
described here in detail. It needs to be flexible, to be able to handle all kinds
of spatial patterns, and it will inevitably evolve in time, for new, meaningful
patterns that need to be recognized will occasionally be identified.

I will briefly describe one particular algorithm here. The analysis starts
with the statistical calculations outlined in Section 2.1 for various partitions.
Once individual fail probabilities for the regions of a particular partition have
been determined, they are compared with the overall yield of the wafer using
Equation (7.4). If the former differ significantly from the latter, the low yield
ing regions of are marked, and that partition is implicated. There are now
three different possibilities. All the marked regions bunch together in one
superregion, several disconnected marked regions can be identified, or the
marked regions occur at regular distances from each other. The latter possibil
ity is considered only when the regions are rows or columns, because it may
indicate a repeater, that is, a problem with the mask.

The loglikelihood ratios measure the degree to which the partitions show
the deviation of the pattern from a random one. It is of course possible that
none of the loglikelihood ratios shows a significant difference from a random
pattern, that is, that no partition is implicated. This may mean that the pattern
is not random after all, or that the algorithm is not looking at the pattern in the
right way. As there is no way of proceeding at this point, a verdict of
no_pattem is returned.

If at least one partition is implicated, the one with the largest loglikelihood
ratio is assumed to describe the pattern best. The results are shown in Figure
28. The square region corresponding to the random patterns is clearly visible.
Examples of each of the pattern types shown in Figure 28 are presented in
Figure 29, in which failing die are indicated by the black squares, and the
passing ones by the light grey ones.

Ring patterns are very common. These are patterns in which the center of
the wafer is relatively high yielding, while the yields in different circular
regions differ significantly from the overall wafer yield. If there is no signifi
cant angular effect in the yield, the ring is called complete; otherwise, it is
called partial or fragmented. Each fragment may consist of several, neighbor
ing sectors. A partial ring is a ring fragment with only one fragment.

If the angular sectors show the strongest deviation from randomness, the
pattern is supposed to have one or more bad sectors. If there is also a radial
effect, the pattern is classified as a partial or fragmented ring; otherwise as
one or many bad sectors.

128 IC Fails

DC

3
(f)

% £

.0.4=

•^ £ >. o

j > •-

. • 8
O
<P
(ft .

i I I I

Figure 28 Correlation between SLOR and y
labeled by the wafer pass/fail pattern

Chapter 7: Spatial Patterns 129

a: complete ring

m - i i " - i "^ J . - - I

1 2 3 4 5 6 7 8 9 o V l2 13 •» « is'l? IS 18 20 21 2S

b: partial ring

• • > . . • " • : 5 1
:>;J" - V' fc ,̂ :

Noteh

c: ring fragments

I I I

'U^i-

* • , • , — -

U l
I I I

r

b: multiple rings

] ^ a ^ ^ • • • • • • • • • • V
r V i.^i'^.-.-IBBi'll \ :

^••s-.'.i miwr lit.-

ifijT
c: bad sector d: many bad sectors

Figure 29 Several examples of pass/fail wafer patterns

130 IC Fails

A large group of patterns is classified as "no discernible pattern", which
corresponds to the no-pattern label introduced above. The classification algo
rithms used here is not strong enough to recognize such patterns. More
sophisticated algorithms could be devised to properly classify them, but a
more profitable approach will be described in the next section.

2.3 Clustering patterns

The pattern recognition strategy outlined in the previous section has the
advantage of being fairly straightforward, and able to recognize many com
mon patterns. Its disadvantage is that it is designed to recognize only a small
number of specific patterns. In other words, it may be blind towards impor
tant, but non-standard patterns that are now labeled as "no discernible
pattern". The only way to enrich the spectrum of patterns that can be recog
nized is by explicitly writing new algorithms for finding those additional
patterns. This limitation will obviously not be addressed by using large num
bers of training sets to a spatial pattern analyzers, ad was done in the
Sematech study [33].

The goal of recognizing spatial patterns, however, is to find important sys
tematic yield detractors, and those would manifest themselves on multiple
wafers, not just on a singe one. In other words, non-random patterns that are
caused by some systematic problem that occurs on only one wafer are inter
esting, but, within the context of yield learning, not important. If the goal is to
recognize non-random patterns that do not occur just once, but many times,
other strategies for identifying such patterns can be followed.

A very different strategy from the one described in the previous section is
cluster analysis. In such an analysis, all spatial patterns are compared, and
clustered into groups, such that all the wafers in a group show more or less the
same pattern of passes and fails. Large groups then indicate some systematic
problem, even though the spatial pattern may not have any particular, easily
recognizable features. This approach is the same as was followed in Chapter
6.

The signature of a wafer pattern is the vector of pass/fail statuses of the die
on the wafer, for example 1 for a pass and 0 for a fail. In the terminology of
Chapter 6, the label n is the xy coordinate of a given die, and the value v is the
pass/fail status of that die. The similarity measure is (see also Equation (6.4))

"1

^ V i V

S , T J I J '

(v i + v i - v iv i)

(7.5)

Chapter 7: Spatial Patterns 131

in which I and J refer to the signatures of the two wafers and v- is the pass/fail

status of die j in signature I. This measure equals 1 when the two signatures
are identical, and is less than 1 otherwise.

If the fail data is incomplete, and not all die on one wafer have a counter
part on the other wafer, there is no corresponding (n,v) pair in the signature of
the wafer. Such absentee pairs are treated different here than in Chapter 6,
because their absence indicates that the pass/fail status of the die is not
known, rather than that it is 0. The sum in Equation (7.5), therefore, is taken
over all die that have known pass/fail statuses on both wafers.

Once the similarity measures have been obtained for all pairs of wafer pat
terns, the latter can be clustered, using the algorithm described in Chapter 6.4.
Some results are shown in Figure 30. This figure shows two clusters, and the
fail patterns of some of the wafers that make up those clusters. The cluster
maps were produced by averaging over the fail maps of the individual wafers
in the cluster. A black square means that the chips at that position on the
wafers in the cluster were considerably more likely to fail than on average,
while the light grey squares indicate that the corresponding chips were con
siderably less so. There is a separate category for chip positions where fail
probability of the corresponding chips is more or less equal to the average fail
probability over all the wafers in the cluster, but neither of the cluster maps in
Figure 30 use that category.

All the individual wafer maps were classified as "no discernible pattern".
The power of clustering is that very clear patterns can emerge nevertheless.
The first cluster shows the spokes that were also seen in Figure 29, which is
the wafer in the cluster that was classified as "many bad sectors". The second
cluster in Figure 30 has a less obvious, but still clear pattern. The patterns
from two of the wafers in the cluster are shown in frames c and d. The last one
in particular is barely distinguishable from a random pattern, but turns out to
have a systematic problem anyhow.

132 IC Fails

a C9 s n s !3 » a El 8 « X a

(0

» b R 8 a a a f i 8 ! !

^B.3- i i]
iiiLSi as*

""̂ "Ll IH I I I I I I I ̂^̂ l i ̂ ̂̂^ ̂ 11*̂ '̂

a[--i

(0
^
^

i e s i S i ! 3 s i ! 3 a i B

iiiiili
7£?p«1|:<:;l|i|ljl"'|!

O

c i~B>^-'r"=
> .<« *x>'- \-«. i i '̂

BBB^B^s 4 -̂ '̂ ^ f î r 1"
O

CO

Figure 30 Cluster fail maps

Chapter 8

Test Coverage and Test Fallout

In Chapter 3, generally valid statistical properties of fallout and yield
were discussed. If we want to relate these quantities to physical defects, some
relation has to be found between defects and fallout.

Fallout information can be studied in more detail for tests that target the
internal logic of the Integrated Circuits, the logic gates and memory elements,
and their connections, because of the large number of patterns that make up
the tests. Examples of such tests are scan based tests, like LSSD and LBIST.
They will be referred to as structural tests.

The starting point of this chapter is the set of devices that passed all gross
tests, the ones preceding the structural tests. The fallout statistics during these
tests was discussed in Chapter 3, and in particular in its Appendix A. It is
related to the fallout statistics over all the tests through a simple rescaling of
the multinomial parameters by the yield at the completion of the gross tests. In
this chapter, the rescaled parameters will be indicated by dj, and the corre
sponding yields by yj, and we will assume that K devices have passed the tests
preceding the structural ones.

In this chapter, I will assume that the fallout has been recorded at some
level of granularity. The level of granularity is typically not that of individual
patterns, but more likely the level of groups of such patterns. Patterns in a sin
gle procedure all have the same clocking sequence, and their number is
typically on the order of 30.

For structural tests there is a notion of coverage, and this coverage can be
related to the fallout. In this chapter, a general relationship between yield and
defect coverage will be derived. This relationship will then be used to obtain
information about the distribution of the number of defects on the devices.

1 YIELD AND COVERAGE

The first step in the detailed fallout analysis is to develop a model of the
relationship between defect coverage and fallout. It requires a better under
standing of the distribution of the number of defects on a device, and how the
presence of multiple defects affect the yield.

134 IC Fails

1.1 Defect model

The defect model to be used here has F defects that can be present on a
chip, with F very large. Each chip has either no defects, or contains a subset of
them. This subset is generally small and will be indicated by S. S is different
for different chips, and indicates the complete set of defects on a given chip. It
can be empty, indicating a good chip, it can have one member, or it can have
several members. In the latter case, we say that the chip has a multi-defect. |S|
is the number of single defects in S, and indicates its size.

Before the start of diagnosis, nothing is known about the defects. I will
assume, however, that there are well defined probabilities pg that a randomly
chosen chip will have (multi-)defect S. When the single defects are indepen
dent, ps is the product of the occurrence probabilities of its members. As the
defects in general are not independent, however, I will not assume that pg has
that form when S has more than one member.

It is reasonable to assume that such pg exist for a mature process, that is,
once the manufacturing process parameters have become stable. The pg are
unknown, and, as it turns out, it is far more convenient to use certain combina
tions of them instead. These combinations are the probabilities

that a randomly chosen chip will have a defect of size n. These are therefore
also the only quantities pertaining to the defect distribution that can be
obtained from the yield data.

The Pĵ depend on the defect model and on the distribution of defects over

the chips. Because they are probabilities, P^ - ^ ' ^^^ y^^n "̂ ^ * ^^^ aver

age number of defects per chip will be indicated by

\i = J^^^n^ (8.2)

and the variance in the number of defects per chip by

a^(n) = ^ n \ - M ^ (8.3)

n = 0

Chapter 8: Test Coverage and Test Fallout 135

Finally, as the maximum reachable yield is equal to the probability that no
defects are present, yQ equals PQ.

Using such an arbitrary set of P^ makes it possible to handle arbitrary
degrees of spatial clustering, and arbitrary dependencies between defects. It
provides for the most detailed analysis of the spatial distribution of defects
available, one that completely includes all clustering effects. It needs to be
noted, however, that spatial clustering is not the only way to get a distribution
of numbers of defects per chip that differs from the standard Poisson one. One
example is given in Section 1.1.3.

1.1.1 Poisson and negative binomial models

The general model includes many used in the literature. For example, in
the negative binomial distribution discussed in Chapter 2.1.3,

The case of no spatial clustering, that is, of independent defects, corresponds
to a going to infinity. In that case.

In the case of no clustering, \i = a (n). The difference between the first and
second moments of the Pĵ , as estimated from the yield data, therefore gives an
indication of the actual degree of clustering. To be consistent with the litera
ture [17], it is better to estimate (a^(n) - |LI)/|I^, which equals 1/a in the
negative binomial distribution.

1.1.2 Compound model

A more general way of incorporating clustering is to assume that on a sin
gle device the number of defects is distributed according to Equation (8.5),
but with a parameter v that varies from chip to chip. Such a compound model
suffers from the same problems as the one in Chapter 3.2: it merely repro
duces observed P^ values. It can be made useful if the compounding
distribution of v can be related to device process histories.

The compound Poisson model was described in Chapter 2.1.2. Com
pounding always increases the variance of the observed yields, in the same
way that compounding did in Chapter 3. The clustering is called weak when

136 IC Fails

2
the cluster parameter is large, which occurs when a (v) is small, that is,
when the compounding function is concentrated narrowly around its mean \x.
The Poisson factor in Equation (2.6) can then be expanded in a Taylor series
around \x = v, resulting in

n
~iL^-^l

^n*n! 2|Ll

(8.6)

Notice that, compared to the pure Poisson distribution, Pĵ is depressed when n
is roughly equal to |i, and elevated otherwise (to be precise, when

jLi+l/2± V M + 1 / 4) .

Another effect of compounding is to increase the probability of finding a
device with no defects at all, as was demonstrated in Chapter 2.1.2. This prob
ability was referred to as yo in Chapter 3, and equals

PQ = fh(v) e~^ dv. (8.7)

In the weak clustering limit,

PQ = e~^ ^l + i a \ v)) , (8.8)

which is clearly larger than the Poisson value e .

1.1.3 Independent defect model

A very different model from the previous one is obtained when the defects
are independent, but have different occurrence probabilities [52]. No simple
equations exist for the y(c), but this model is important anyhow, because it
shows that spatial clustering is not the only way to get deviations from the
simple Poisson model.

The probability of a complex defect S occurring is equal to the probability
of all the individual defects in S occurring and no others. In other words, in
the independent defect model,

J ^ b l € b 1Gb 1

Chapter 8: Test Coverage and Test Fallout 137

in which TIJ is the occurrence probability of defect i, and

PQ = TT (1-^ i) - (8-10)
-^-^l<i<F

Consequently,

7C:

^n ^ o X | s | . n H ^ s l - ^ i
(8.11)

which obviously can take on values that are very different from those in Equa
tion (8.5).

These results become particularly simple when all the occurrence proba
bilities are the same [62], because then

PQ ^ (1 - ^ / ' (8-12)

and

1.2 Coverage and yield

The equations presented above are very general. They assume only the
existence of some well defined defect model that contains all the defects that
can occur on the chips, and the existence of pg. The yield clearly depends on
Ps, but not exclusively so. It depends also on the tests that are being applied.

Rather than label the tests by some index k, it is customary to label them
by a more meaningful parameter, like the coverage c. In order to make c well
defined, we assume that each one of the F defects is definitely detected or def
initely not detected by the test sequence. Determining whether or not the
defect is detected may be extremely impractical, but we will assume that it
can be done.

The coverage c is then defined as the fraction of defects covered by the test
sequence. To be precise, Cĵ is the fraction of defects detected by at least one
test between 1 and k, and y(Ck) = y^ is the yield, now written as a function of

138 ICFails

The most general relationship between the yield, the test coverage and the
probability of having a particular size defect on the chip is

n = 0

where Q^k is the conditional probabiUty that the chip will pass tests 1 through
k, given that there is a defect of size n on the chip. The upper limit in this sum
is the total number of possible defects F. In practice, however, n is not very
large and certainly much smaller than F.

Equation (8.14) is so general as to be meaningless. All the details about
the test effectiveness are hidden in the conditional probabilities (^^.^. These
conditional probabilities depend on the coverage Cĵ , but in an as yet unknown
fashion. To determine this relationship, some assumptions have to be made.

The first assumption that is usually made, and one that will be made here
too, is that a multi-defect will be detected when any of its members is. What
this means is that defects do not mask each other or unmask each other. Mask
ing occurs when two defects are exposed by a pattern if they are present on a
chip by themselves, but are not exposed when they occur together. Unmask
ing is the opposite of masking. It occurs when two single defects are not
exposed by a given pattern but, when together, cooperate to produce a fault
effect. Both masking and unmasking can occur, but are rare, and this assump
tion does not seem to be a severe one (see however [1]).

Secondly, we assume that the defects are in some sense normal, meaning
that the yield is not determined by a small subset of very likely defects, but
instead by a large number (of order F) of them, none of them being very likely
by themselves. The specific criterion for normality is discussed in Appendix
H. This is not a very strong assumption, as it almost never happens that a few
defects dominate the yield. For if it did, redesign of either the logic or the
manufacturing process would almost certainly have eliminated those defects.

Finally, we will assume that the occurrence probabilities of the defects are
independent of whether or not they are detected. This assumption is neces
sary, because otherwise, for example, any large number of defects with zero
occurrence probability, and therefore without relevance to testing or yield,
could artificially raise the coverage if they were all tested by the test sequence
(or, likewise, lower the coverage if none of them were tested). The indepen
dence assumption consists of two parts, as explained in Appendix H.

Another way of phrasing this assumption is that there is no correlation
between the occurrence probability of a defect and its detection probability.
For a particular test sequence, this assumption may not be valid, as a defect is
detected or not, and the correlation coefficient has some value, usually differ-

Chapter 8: Test Coverage and Test Fallout 139

ent from zero. The detection probability, however, is the probability that a
randomly chosen test generation procedure generates a test pattern that
exposes the defect. It is this probability that is assumed to be uncorrelated to
the occurrence probability of the defect.

A randomly chosen test generation procedure is admittedly a somewhat
vague concept, but can usually be defined in practice. For example when the
test sequence is obtained using a standard Automatic Test Pattern Generation
(ATPG) package, target defects for test generation could be picked at random
from the defect list. A randomly selected sequence of defects then constitutes
an randomly chosen test generation process.

As another example, when the test generation process consists of fault
simulating random patterns until the defect coverage is c, then different
sequences of random patterns constitute different runs of the test generation
process. Defects that have very large detection probabilities will almost
always be detected, while random pattern resistant defects will almost never
be detected. These random pattern detection probabilities are then assumed
not to be correlated with the occurrence probabilities.

Using these assumptions, it is shown in Appendix H that all test sequences
with the same defect coverage have roughly the same yield. Different test
sequences may have slightly different yields, but these differences are of

order 1 / j¥, and can, therefore, be ignored for very large designs.
To be precise, Q ĵk is related to C]̂ by

Q„;k = (l - C k) " . (815)

plus terms of order 1/JF, and [50]

y(c,)«j; (l-Ck)"P„. (8.16)
n = 0

From now on, yield is understood to be the average yield over all test
sequences with the same coverage. The benefit of this averaging is that it sim
plifies the relationship between coverage and yield, while introducing only
negligible errors.

Equations (8.15) and (8.16) are more surprising than it may seem. At the
least, one would expect that Q^.]^ depends on the test generation method used
to obtain the test sequence. As it turns out, however, it is independent of how
the test sequence was obtained, as long as the coverage is Cĵ : the relationship
between defects, coverage and yield is the same, whether we use random pat-

140 IC Fails

terns, minimized sets of deterministically generated patterns or sequences of
functional code to test the chip.

Equation (8.16) also has another practical use, as it relates the yield y(c) to

the characteristic function 0(t) of P^. 0(t) is the expected value of ê ^̂ , and

y(c) = 0 (- i l n (l - c)) . (8.17)

Consequently, if the distribution of the number of defects on a chip is known,
calculating y(c) is reduced to looking up the corresponding characteristic
function in a table. In particular, for the negative binomial distribution,

y(c) = (1 + c ^) , (8.18)
V ay

and for the Poisson distribution

y(c) = e ^^. (8.19)

1.3 Properties of the yield curve

Let us now consider some of the information that can be obtained from
Equation (8.16). First of all, y(c) is a smoothly varying function of c. Its first
derivative is negative, at least for c between 0 and 1. This is obvious, for y(c)
is the perceived yield and, per definition, cannot increase as the test
progresses. Less obviously, the second derivative is everywhere positive. This
indicates that y(c), even though it continues to decrease, will do so less and
less rapidly.

Obviously, y(0) equals 1 because there is no fallout if no testing is done.
Also, y(l) equals po, the probability of finding a chip with no defects on it.
Various derivatives of y(c) with respect to c are related to other properties of
the defect distribution. In particular,

^ y (c = 0) = - ^

^ y ^ ^ = ^) = -Pl (8.20)

,2
_ ^ y (c = 0) = a >) - M l - M)

Chapter 8: Test Coverage and Test Fallout 141

The first and third relations in Equation (8.20) make it possible to use the
yield data to estimate the average number of defects per chip and the variance
of that number. Those two data are particularly important for, in the Poisson

model, a^(n) equals \x. Therefore, if the defects are independently distributed,
we should find that

- ^ y (c = 0) » (^ y (c = 0)) \ (8.21)

Any significant deviation from this relationship then indicates a breakdown in
the independent defect model.

The second relationship,—y(c = 1) = - P p is important because it is

related to the defect level DL (see also Chapter 3.3.) Let Cf be the coverage

after the last test has been applied, and consider the case that it is close to 1.

From Equations (3.3) and (3.4), (DL) = 1 - yg/yf • If Cf is close to 1, Taylor

series expansion of yf around c = 1 gives

from which we find

<DL)« ^—^. (8.23)
yo

To estimate the defect level and its variance, we can attempt to find the
ratio Pi/yo by fitting a equation with a small number of free parameters to the
yield data (for example [18].) An alternative method is to approximate yo by
Yf, which can be done when the defect level is small, and then esfimate Pj
directly using an independent defect analysis. A third method will be
described in Section 2. All methods, however, will be influenced by statistical
variations in the yield data, and no estimation method will succeed when the
expected number of field failures is of order 1 or less, as explained at the end
of Chapter 3.

Because of the importance of the negative binomial and Poisson distribu
tions, it is usefiil to summarize the results of the previous section for these two
cases, which is done in Table 6. This table also contains the compound model

142 IC Fails

s
"5 CO
Li.
••-»

0

"o
c CD

0

•C5

—

• D

c
3
o

o
o

c
CO

c/>
'o
CL

"co
"E
o
c
CQ
CD

CD

0
Z

tT
te
1

C"
CJ

^
1
0

.̂ H'̂

1
0

c |~ .
d c

c

«
1

T̂̂
+

c

®
+ s

c
CL

-§
>

0

.^

o
1 <D

a

=Lld

+

2

^

III

n.

=L

I L

c

0
Q

0
Q.
X
0
II

CO
0

E

>

+

=L

+

.̂-̂ c

b

$
CO

CO

>

/"-^ >
CM

b

8

b

3
" 0
E
2
CO
Q .

_ 0

to
3

o

1

IJH

VI

VI

C"

..-̂ ^
S" -̂-̂ CM

b
r-H | < N

+

1

0

>
0

1
<D

a

in ! b

+

II
o

Q_
II

g

K"
tT
1

W
o

P H

^̂—
. 1

^ l(N

> CM

b
+

0

Q.
<

zL

-
J5

i l d

+

H

II

o

•>* 1 o

1
II

QT

tT 1

w"
o
1

>
CM

n
b l

1

d .

o
1

i j
Q. <

'c?
1

y-*

1

zLia

+

o
1

A^

2
^ V

CQ

i
I
o
O
O

§

I
O
U

Chapter 8: Test Coverage and Test Fallout 143

results for further comparison, as well as some relevant quantities from the
independent fault model.

2 OBSERVED YIELD CURVE

In addition to the information obtained using equations (8.20), all the fall
out distribution parameters can be obtained from the overall y(c) curve using
maximum likelihood estimation (see also Chapter 3.4.2 and [37].) Such esti
mation uses all the available fallout data, not just the ones near c = 0 or c = 1.
It will be developed in this section, assuming that the coverages are the Nega
tive Binomial ones, and both jii and a will be estimated. The Negative
Binomial model is taken as an example, because it is close to, but more gen
eral than the Poisson model, and because it is very popular. Once the
estimates are available, they can be used, in conjunction with the known final
coverage c, to estimate DL using

DL(c) = (l-c)jLl[l+ H^ . (8.24)

When K chips are tested with scan based tests 1 through f, some number,
say N|, will fail test i and Np̂ gg will not fail at all. The distribution of Np̂ ss
and the Nj is multinomial, as in Equation (A.4). The yield at the completion of

the i test is related to the multinomial parameters dj by

or, equivalently.

Yi-l-^ \ . (8.25)

di = Y i - l - y i - (8-26)

yj is a fimction of the coverage reached at the end of the test, and of the nega
tive binomial parameters JLI and a. Because of Equation (8.26), dj is function
of the coverage and these parameters as well.

As the yield is a function of \x and a, the latter two can be estimated from
the observed fallout data taken as a function of the coverage. Their are several
ways to obtain such estimates. One is the maximum likelihood method, and
another one is regression. More details for the maximum likelihood method
can be found in Appendix H. Both methods lead to multidimensional minimi-

144 IC Fails

zation (or maximization) problems, that have to be tackled with fairly
standard numerical optimization routines. These calculations will not be
addressed any further in this book.

Chapter 9

Logic Diagnosis

Logic diagnosis is the process of using fail data to deduce the location,
and, if possible, the logic nature of the defect that caused a fail. The fail data
used in logic diagnosis are collected when those tests are applied that most
directly exercise the internal logic of the Integrated Circuit (IC). Typically,
they are scan based tests (see, for example, [2], Chapter 9, [21], Chapter 1,
and [16], Chapter 3). They can be deterministic tests, but they can also be ran
domly generated by a Built-in Self Test Engine.

The logic nature of a defect is its behavior during the application of any of
those scan based tests. It is often usefiil to determine, or at least estimate this
logical behavior, but the true purpose of logic diagnosis is determining the
location of the defect. That information, after all, is needed by physical failure
analysis to find the defect on the integrated circuit, observe it, and determine
its physical nature.

In principal, logic diagnosis is straightforward (see Figure 31). The pro
cess starts from a logic design description of the Integrated Circuit. This is
usually the same as what was used when generating the scan based tests. A
more detailed description, like a transistor level model, would lead to a more
accurate diagnosis, at the cost, however, of greatly increasing the diagnostic
turn-around time.

The first step in diagnosis is to obtain a list of possible defects. These
defects are used, one at a time, to modify the logic model of the Integrated
Circuit. Each modification uses the original logic model and one selected
defect from the list, and builds a logic model of a defective IC, one that differs
from the defect free IC only by the presence of the defect on the device. Such
a modified logic model is called a fault machine, and there are as many fault
machines as there are defects in the defect list.

The second, main step in logic diagnosis is to simulate the scan based test
patterns on each one of these fault machines, and to collect simulated fail
data, i.e. miscompares at the scannable latches between the behavior of the
defect-free logical model and the fault machine.

Finally, the simulated fails are compared with the ones collected on the
tester, and some measure of agreement between the two sets of fail data,
called a score, is calculated. If the score is sufficiently high, the defect that
was used to construct the fault machine, as well as the simulated fails are
stored in a file for later use. The high scoring defects are the ones whose

146 IC Fails

faildata
compare simulated fails

with observed fails

store in
result log

Figure 31 Basic logic diagnostic flow

behavior seems to match best the behavior of the defective device, and they
will be the ones called by logic diagnosis as the best candidates for the defect.

This simplistic description of the diagnostic flow hides a multitude of
practical problems. What potential defects should be in the list, and how
should their logical behavior be determined and described ? The simulation
step will be very time consuming if the defect list is large. Is it possible to
decrease the turn-around time of this step, for example by selecting only those
defects for simulation that are likely to have high scores ? Finally, how should
matches between simulated and collected fail data be measured, and how
should the resulting scores be interpreted ?

These questions will be addressed in this and the next chapter. Here, we
will focus on a simplified diagnostic strategy that only uses defects that create
errors on single nets in the defective device. It is the standard diagnostic sup
port available in most commercial diagnostic packages. A more sophisticated
form of logic diagnosis, called SLAT, will be discussed in the next chapter.

Chapter 9: Logic Diagnosis 147

Many of the issues discussed here, however, will be relevant for SLAT as
well.

1 DEFECT MODEL

The defects to be employed in logic diagnosis need to fulfill a host of often
conflicting requirements. First and foremost, they should be able to mimic the
behavior of real defects on real devices. On the other hand, it should be possi
ble to describe their behavior logically, for, otherwise, it would not be
possible to construct fault machines, which are not more than logic models of
defective chips. Finally, the logic behavior of the defects should not be so
complicated, nor their number so large that the diagnostic turn-around time
becomes unacceptable.

The defects used in logic diagnosis are models of the real defects, and are
called faults. When activated, they produce errors on the nets or pins where
they are located, and we say that they affect those nets or pin. Errors are logi
cal deviations from the defect-free behavior of the design. They may produce
fault effects on nets and at pins in the cone of influence of the fault, and, even
tually, may cause fault effects in observable latches or at observable Primary
Outputs.

Before continuing, some explanation needs to be given of the usage of nets
and pins in the discussions. The difference between nets and pins is not as
large as it may seem. Figure 32 shows a simple logic diagram with some

A,
1 \

A

• B

{

C D

)

1 1

' \
"in

Figure 32 Relation between nets and pins

gates, drawn as boxes, some nets, and the pins A through E where the nets are
attached to the gates.

Pins can be identified with nets or portions of nets. For example, output
pin A can be identified with the net that attaches to it, or, at least, with the por
tion of the net between A and the first fanout point (B). If the net attached to
an output pin does not fan out, like DE, the output pin can be identified with

148 IC Fails

the full net. Likewise, an input pin like C can be identified with the portion of
the net that attaches to C, starting from the last fanout point (B), or, if absent,
with the full net (as in DE). Nets and pins can, therefore, be used interchange
ably, when this identification is kept in mind.

Choosing the proper defects to be put in the defect list is the same as
choosing the proper faults to be put in, what is now called, a fault list. A good
starting point is the fault model used in test generation. This is usually the sin
gle stuck-at fault model [2], in which faults are located on pins, and defects
are modeled by a single faults. The logic behavior of a stuck-at fault is such
that it forces the logic value on the pin to which it is attached to be either a
logic 1 or a logic 0.

For example, if a stuck-1 fault (s@l) is present on an input pin, the gate to
which the pin is attached experiences a logic 1 and not a logic 0, even when a
logic 0 is applied to the net attached to the input pin. Likewise, a net con
nected to an output pin that carries a s@0 fault experiences a logic 0, no
matter what logic value is produced by the gate on which the output pin
resides.

Stuck-at faults are easy to model logically, and the modifications required
to transform the defect-free model into a fault machine are straightforward.
This fault model has another, less obvious advantage. As its faults reside on
pins, their number is at most twice the number of pins in the design; in other
words, the size of the fault model grows linearly with the size of the design.

It is important, however, that the fault list contains faults on all the pins in
the design, for a defect that creates an error on some pin is modeled best by a
fault on that pin. Even more importantly, diagnostic precision would be lost in
the absence of such a fault, even if other faults could reproduce the behavior
of this defect in a reasonable way, because those other faults would indicate
the pins where they reside as the most likely candidates for the location of the
defect, rather than the defect's actual location.

For example, the s@0 faults on the input and output pins of an AND gate
are equivalent. Consequently, if the defect is such that it can be modeled accu
rately as a s@0 on an input pin, it can be modeled equally well by the s@0 on
the output pin. But, if the defect list does not contain the input s@0 faults, the
diagnosis will be misleading because, even though the list has a fault that
exactly reproduces the fail behavior observed on the tester, it points at the
wrong pin.

Various extensions of the stuck-at fault model are sometimes used, like
transition faults ([21], Chapter 13), or pattern faults. Transition faults attempt
to capture the effects of excessive delays when transitioning from one logic
value to another, and pattern faults have more complex activation conditions
than stuck-at faults but are otherwise like the latter in that they are static and

Chapter 9: Logic Diagnosis 149

produce errors on single nets only. Both fault types share many of the draw
backs of stuck-at faults.

The cost of the required simulations, however, rapidly becomes prohibi
tively expensive with increasing model complexity. In addition, such more
complex fault models may lose the linear relationship between the size of the
fault model and the size of the design, and consequently, for sufficiently large
designs, violate the requirement that the number of faults should not be too
large.

In practice, stuck-at faults are the ones used, with transition faults option
ally added when the defect is obviously timing sensitive. Stuck-at faults
internal to complex gates can be replaced by pattern faults to reduce simula
tion complexity.

Stuck-at faults, transition faults and pattern faults are easy to model, and
their number grows only linearly with the size of the circuit. The main prob
lem is that most defects do not behave as stuck-at faults, or even as transition
faults or pattern faults, and, therefore, that their ability to mimic realistic
defects is in doubt. A more sophisticated use of the fail data than the one
described in this chapter, however, circumvents this problem. This more
sophisticated form of logic diagnosis will be described in Chapter 10, in
which also further theoretical reasons will be given for why stuck-at faults
should be able to mimic realistic defects.

2 FAULT SELECTION

For very large design, the list of faults may be correspondingly large, and
may be too large for rapid diagnostic turn-around. It is therefore important to
reduce the size of this list as much as possible before fault simulation begins.

The size reduction that is usually done is based on the observation that
there has to be a functional path between the pins physically affected by the
defect and the latches that have incorrect logic values at the completion of the
test pattern (the failing latches.) The functional paths, however, may not be
restricted to combinational logic, but may cross one or more latch boundaries,
depending on the clock pulses issued during the application of the test pattern.

The strategy for reducing the fault list is to trace backwards from a failing
latch through combinational logic till a Primary Input, an embedded memory,
or another latch is encountered, and to store all the pins that were encountered
during the tracing in a list. Such a backwards trace was described in Chapter
6.3.2. The logic encountered in such a trace contains the functional path(s)
from the defect to the failing latch, if, in fact, this defect was responsible for
this latch having an incorrect logic value.

150 IC Fails

Each trace starts from a failing latch and defines a backcone to that latch.
When the tracing is done to reduce the fault list, the backcone consists of a set
of pins. The set of fauhs on the pins will be indicated by fijp, with 1 indicating
the failing latch, and p the pattern that caused this latch to have an incorrect
value.

The pin where the defect can produce errors has to be in one or more of
these backcones. If only a single pin can have an error, then the intersection of
all the backcones should contain this pin. The faults on the pins in the inter
section then form the intersection fault set

^intersection " 0 % ' ^^'^^

which is likely to be small.
On the other hand, real defects need not cause errors on a single pin, and

not all the pins affected by the defect may be in this intersection; in fact, they
may be in non-overlapping backcones. Defects residing in non-overlapping
backcones goes somewhat beyond the single fault assumption. It is a crude
attempt to correct for that assumption's shortcomings, but it has become such
a standard part of logic diagnosis that this extension will be discussed here
rather than in the next chapter. It leads to a number of less restrictive fault
selection strategies. The most liberal one is the union fault set

^union = Kjhr ('•')
1,P

which is obtained by taking the union of all the backcones. <?union is consider
ably larger than ^intersection' ^^^ almost always still much smaller than the
fixll fault list. It is the safest way of selecting faults, because there is no func
tional path from any pin outside the union of the backcones to any of the
failing latches.

An intermediate selection strategy is used in SLAT (see Chapter 10,) but it
can also be used here. It starts from the observation that explaining all the fails
collected during test should start with explaining the fails collected when any
particular test pattern was applied (say pattern p). If there is a single stuck-at
fault that can explain the fails collected when p was applied, then that fault
should be in the intersection

Chapter 9: Logic Diagnosis 151

1

in which the intersection is now taken over all the failing latches at the com
pletion of pattern p.

If cJp is empty, no single fault can explain the fails of p, and no single fault
diagnostic strategy will succeed, at least not for p. On the other hand, if some
single faults can explain all the fails of p, they should be among the ones in
the intersection Jp.

Taking the intersection of all the 3^ leads to ^^intersection' which may be

too restrictive. A more liberal approach is to take the union over all the S^,

which leads to the SLAT fault set

^SLAT = U ^ p - (9-4)
P

The characteristic of ^SL^X is that every one of its faults can explain all the
fails of at least one pattern, and, vice versa, any single fault that can explain
all the fails of any single test patterns will be contained in ̂ SLAT-

3 ALTERNATIVES TO SIMULATION

Even with the fault selection strategies described above, the simulation
required for the diagnosis may still be formidable, and may still lead to large
turn-around times. In addition to searching for techniques to increase the per
formance of the simulators - an ongoing effort - some other approaches have
been explored to reduce the turn-around time.

The most important one of these is the dictionary approach ([2], Chapter
12, [48]). In this approach all the faults and all the patterns are simulated
before any testing has started, and not when the faults are required during
diagnosis, using only those patterns that actually failed during test. Once the
dictionary has been built, diagnosis is reduced to a mere lookup in a, admit
tedly, large table.

This approach is obviously not suitable for products that will rarely be
diagnosed, because of the cost of building the dictionary. On the other hand, it
seems ideal for products that are likely to be manufactured in large quantities,
and that may even be used as line or reliability vehicles, for the effort to con-

152 ICFails

struct the table can be amortized over all the diagnoses that will be performed
during the lifetime of the product (and, therefore, of the dictionary.)

The main problem with the dictionary approach, however, is not the cost
of constructing the dictionary, but its size. Many designs have millions of
faults and require thousands of patterns to test. Each failing latch requires on
the order of thirty bits to be described: between ten and fifteen to name the
pattern, and the remainder to name the latch (of which there can be several
hundred thousand, even in medium sized designs.) Even if, on average, only a
few latches (say ten) fail when a pattern is applied, storing this fail informa
tion requires three hundred bits per fault per failing pattern. With ten million
faults and on average three hundred failing patterns per fault, this translates
into a table containing one trillion bits of information.

This size makes the dictionary approach in its crudest form rather imprac
tical. There have been several attempts to reduce the size of the table [11],
mostly by reducing the amount of fail information stored for each fault and
each pattern. Reducing this information also reduces the diagnostic resolu
tion, however, i.e. the number of faults that are called as likely candidates for
the real defect. No practical solution has been found yet that has both a practi
cal dictionary size and an acceptable resolution.

4 SCORING MATCHES

The score is a measure of the agreement between the fails produced by a
simulated fault, and the ones collected on the tester. This score is traditionally
some number between 0 and 100, with 100 indicating perfect agreement. Of
course, the score depends not only on the agreement between the defect and
the fault, but also on the patterns that are used to gauge this agreement. When
only some failing patterns are used, more faults may produce the same fault
effects as the defect than when all failing patterns, or even all patterns, failing
or not, are taken into account.

Gauging agreement between the fault model and the actual defect is very
similar to measuring commonality between two different devices, and the
scoring methods that are used for the former, as a result, are very similar to
the commonality measured discussed in Chapter 6. As an example, I will
briefly describe the scoring method used in Encounter Test.

What is known, after a set of patterns have been simulated on the fault
machine, is the list of failing latches. This list needs to be compared with a
similar list collected on the tester when the same patterns were applied to the
real device. A failing latch is an (1, p) pair, in which the latch 1 contained an
incorrect value after the pattern p was applied to the device or the fault

Chapter 9: Logic Diagnosis 153

machine. The Usts of faiUng latches are lists of such (1, p) pairs, and they can
be compared one pair at a time. The section of the matrix in Table 2. bordered
by the heavy line is one such list.

To compare two such lists quantitatively, a number of counts are defined:

• Tester Pass, Simulator Pass.
Number of (1, p) pairs where the latch had the correct value after p
was applied to both the fault machine and the device.

• Tester Pass, Simulator Fail.
Number of (1, p) pairs where the latch had the correct value in the
physical device but the incorrect value in the fault machine.

• Tester Fail, Simulator Pass.
Number of (1, p) pairs where the latch had the incorrect value in the
device but the correct value in the fault machine.

• Tester Fail, Simulator Fail.
Number of (1, p) pairs where both device and fault machine had incor
rect values after p was applied.

Clearly, the score should be an increasing fiinction of TFSF, and a
decreasing one of TFSP and TPSF, for TFSF measures how often both device
and fault machine agreed on observable fault effects, while TFSP and TPSF
measure how often they disagree. The score based on the commonality mea
sure in Equation (6.4) is

TFSF
^^^TFSP +TPSF + TFSF' ^̂ '̂ ^

and has the desired features. It does not contain TPSP, which is correct as it is
very easy to get arbitrarily high TPSP counts, for example by applying pat
terns that do not exercise either the fault in the fault machine or the defect in
the device.

Encounter Test uses a somewhat modified form

100 ^^^ , (9.6)
TFSP + aTPSF + TFSF' ^ ^

with a equal to 0.1. The purpose of this alteration is to reduce the relative
importance of latches that fail during the simulation but not on the tester. Such
latches are considered less important, because, for example, the fail data col
lection on the tester might have been incomplete, and it is actually not known
whether this latch failed or not.

154 IC Fails

IF TFSF equals 0, the score is 0 regardless of TFSP and TPSF. On the
other hand, if TFSF is not 0 and TFSP and TPSF are, the score is 100, and that
is the only scenario in which the score can be 100. In other words, a 100 score
indicates perfect agreement between the fault machine and the device for both
the failing and the passing patterns. Notice however, that this agreement has
only been established for the patterns that were used in the diagnosis, not for
all possible patterns.

If the score is 0, TFSF is 0 and the simulated fault did not reproduce any of
the failing latches observed on the device. Such faults cannot explain any of
the fail behavior, and many of them are in fact already removed by the fault
selection techniques described in Section 2. Any score between the two
extremes indicates a fault that explains some of the observed fails, but not all.

It often happens that this form of diagnosis does not find a fault with a 100
score. The obvious reason for this is that the defect does not behave as a single
stuck-at fault. The fault(s) with the highest score may still be useful, however,
even though they are not perfect models of the defect, because they seem to
capture some aspects of the defect.

The following discussion goes beyond the single stuck-at fault assump
tion, but is relevant here for it shows how scores are being used
advantageously in logic diagnosis.

One of the causes of a score not being either 100 or 0 is that the defect cre
ates errors on multiple pins in the design, and that the selected fault happens
to model one of those manifestations of the defect. An example of this phe
nomenon is a bridging fault ([2], Chapter 7), in which the defect can alter the
logical behavior on two nets (the two legs of the bridge), but only one at a
time. The faults on the two legs then reproduce some, but not all of the
observed fault behavior.

A wired-AND bridge, for example, behaves as two s@0 faults, with the
added condition that neither fault is activated if both legs of the bridge have
the same logical value. Both faults will be found by the present diagnostic
strategy, if enough failing patterns are observed. All observed fails will be
explained by a combination of the simulated fails of both faults [9], and the
match is perfect when only failing patterns are used during diagnosis. The two
faults will, however, make some patterns fail during simulation that do not
fail on the tester (passing patterns.)

The defect may also create an error on a single pin, but with different
polarities during different patterns. The best example of this type of defect is a
dominant bridge, in which there is a short between two nets, but with the driv
ing strength on one (the dominant net) being much larger than the driving
strength on the other (the victim net.) Fault effects will emanate only from the
victim net, but with the polarity depending on the logical value on the domi-

Chapter 9: Logic Diagnosis 155

nant net. The diagnostic strategy developed here will find the two stuck-at
faults on the victim net, both with intermediate scores, but such that their
combination explains all the observed fails perfectly.

Finding such pairs can be done by analyzing the results of the diagnosis,
and in particular of the complete (1, p) lists. Such a post-diagnosis analysis of
the diagnostic results is often done, and can complete the diagnosis not only
of the two examples mentioned above, but of several others as well, depend
ing on the inventiveness of the diagnostic engineer. The diagnostic strategy to
be described in the next chapter, however, implicitly does all these analyses,
making further discussion of non-100 scores unnecessary.

5 EXPERIMENTAL RESULTS

The main measures of success of software based diagnosis are efficiency,
resolution and accuracy. The first one is essentially the fraction of failing
devices for which a high confidence diagnosis could be made. The second one
is the number of faults with that high score, and the third one describes how
well the location of the defect, predicted by the diagnosis, agrees with the
actual location of the defect. In this section some experimental efficiency and
resolution results will be presented. Accuracy cannot be measured as easily
because of the cost of doing physical failure analysis, and will not be
addressed here.

In 1998, an experiment was conducted in which one ASIC part was tested
extensively. The goal of this experiment was to gauge various test methods,
according to their effectiveness in detecting defects, as well as to gauge the
availability, efficiency and accuracy of existing diagnostic methods in deter
mining the locations of the defects that caused ICs to fail.

The vehicle chosen for this experiment was a SA12 ASIC part. It contains
five levels of metal, 17 scan chains, the longest one being 1392 latches long,
15624 SRLs, including the latches in the LPRAs, and 4 SRAMs. The logic
contains about 300K blocks. The fault list contains about 900K fault equiva
lence classes.

For each failing device, not more than 256 failing cycles were collected.
Failing cycles is a technical term, and indicates the number of scan out clock
events at which a failing bit was observed. During scan out, the latch contents
become successively available at the scan out pins. Each time the latch con
tent miscompares with the expected value, a record is made in a tester fail
buffer. In this experiment not more than 256 such records were made.
Because 17 failing bits could be logged at each scan-out event into that many
different fail buffers, however, 3840 miscomparing bits could be collected.

156 IC Fails

although that maximum was never reached. On the other hand, the total num
ber of failing bits can be substantially smaller than 256, if the defect is such
that only few patterns will observe it. The lot that will be reported on here had
1062 failing devices. Only stuck-at and pattern faults, and only failing pat
terns were used during diagnosis.

The results of this experiment were also used in Chapter 3, Sections 2 and
5. In that chapter, the relative yields of all the lots in the experiment were dis
cussed. Here, more detailed results for Lot_2 will be presented.

For each device, the highest score was determined, indicating roughly the
success of the diagnosis. The distribution of the resulting highest scores is
shown in Figure 33. In this histogram the scores have been grouped into vari-

100

1

1
1 •
^^^^^^^^^^^^^^^.

1 t-KCU.

66

m

52

m

71

^
127

124

4^

3

t3

tt

^
209

21S

297

303

434

SOS

629

7S3

501

a[l4

S17

531

5S3

1092

KUI.

9.21

W.03

7.72

9.21

9.99

9.40

11.99

11.95

4.S2

0.25

1.22

1.32

2.07

19.95

KUI.

&21

20.24

27.97

34.15

40.57

47.27

S9.23

70.90

7S.42

76171

76.93

75.2S

50.32

IDO.OO

100 200

FREQUENCY

300

Figure 33 Distribution of high diagnostic scores

ous buckets. The buckets are labeled by their midpoints. For example, the
bucket labeled 90 contains all the scores between 88 and 92, inclusively. The
bucket labeled 30 contains all score up to and including 34

This lot was typical for the score distribution. About 50% have a score
over 80, and, consequently, about 50% have a score below 80. A somewhat
large group of 20 % has the highest score possible (100).

Chapter 9: Logic Diagnosis 157

As the meaning of non-100 scores is not well defined, it is not clear at
what score there is a separation between usable and non-usable diagnoses, and
there may not even be such a separation. In practice, therefore, the scores are
used to guide the diagnostic engineer towards those faults that seem to be
most closely related to the actual defect, regardless of the actual value of the
score.

To measure efficiency, we can arbitrarily set the separation at 90, in which
case the efficiency for this design is about 30%.

Unfortunately, not only the highest score is important, but also the number
of faults that have that score, or a score not substantially different from it.
That there may be several faults with a 100 score is partially due to fault
equivalence, and is unavoidable. Logic diagnosis cannot be more precise than
an equivalence class. Faults that are not equivalent, but still have identical
scores also occur, and lower the diagnostic resolution. This phenomenon will
be addressed in more detail in the next section. Here, only some experimental
results will be displayed.

To measure resolution, it is not useful to consider diagnoses with low
scores. We therefore concentrate on those devices with efficient diagnoses,
that is, with scores at least 90. As diagnostic resolution is limited to equiva
lence classes, only equivalence classes will be used in the next discussion.
High scoring equivalence classes are of most interest, and they are defined as
equivalence classes the faults of which have a score of at least 90.

Figure 34 shows the distribution of the number of high scoring equiva
lence classes among the efficient diagnoses, with the different scores
differentiated by the hashing patterns. The bulk of efficient diagnoses has a
resolution of at most 5, meaning that the number of high scoring equivalence
classes is not more than 5. Note, however, that this can still translate into a
large number of faults (or pins). Also note that about 10% of the efficient
diagnoses has a resolution with more than 5 high scoring equivalence classes,
and, in some case, over 50 of such classes. Such diagnoses should be consid
ered failures, even though the scores were high. In fact, having a score of 100
is no guarantee that the diagnosis will have high resolution, as is shown in the
figure by the number of diagnoses with a score of 100 that still have a large
number of high scoring equivalence classes.

That the diagnostic approach often does not distinguish between different
equivalence classes is a result of using only failing patterns. Section 6 will
discuss this point in detail, while Section 7 will address the use of passing pat
terns to alleviate the problem.

158 IC Fails

1

2

3

4

5

10

15

ao
25

30

m
50

r̂
fes^
R<<v><j

^>s
r

ES^2vx.i~:;-i-v3
iS

1

1

1 1 1 1 1 1 1 1

'1

1 ^ ^ ^

FREQ.

3S

40

139

3S

6e

ao

10

3

0

3

2

1

CUM.

FREQ.

5S

125

2U

302

363

353

303

401

401

404

4oe

407

PCI

2033

as3

34. IS

as*

1622

4.91

246

074

OOO

Q74

046

025

CUM.

PCT.

20.33

30.71

64.36

74.20

90.42

95.33

97.79

9B.S3

93.53

99.26

99.75

100.00

20 40 60 80 100

FREQUENCY

120 140

90 ^ ^ ^ 91 ^ ^ ^ 92 K S 93 KKM 94 UZZH 95
96 tZZH 97 S S 95 EZU 99 E S 3 100

Figure 34 Distribution of the number of high scoring equivalence classes

RESOLUTION OF LOGIC DIAGNOSIS

For a diagnosis to be called successful, a number of conditions have to be
met. There should be at least one fault that got a very high score, one that is
close to, if not equal to 100, and the number of faults with high scores should
not be large. Of course, there is no way to distinguish between faults of the
same equivalence class, so, in reality, all we can demand is that the number of
high scoring equivalence classes is not large. Preferably, it should be 1, but in
some cases a low number of equivalence classes, like two or three is still
acceptable.

It is very easy to end up with several distinct equivalence classes when
only failing patterns are used. This is best illustrated with a realistic example.
Figure 35 shows the result of a diagnosis on one of the devices of the experi
mental design. This schematic shows only that portion of the design where
faults were found with a 100 score. The up- and down-arrows show the loca
tions and polarities of those faults, an up-arrow meaning a s@l fault and a

Chapter 9: Logic Diagnosis 159

Figure 35 Example of a diagnosis with multiple equivalence classes

160 IC Fails

down-arrow a s@0 fault. The dashed lines between gate C and gates D and E
indicate logic paths on which no faults were found. These two paths fanout
from the output of the XNOR gate, but then completely reconverge at gate F.
There are also fanouts after gates B, F and L, that were not explored any
fiirther.

The total number of faults with 100 scores is fourteen. There are five
equivalence classes: four consisting of the input and output faults on gates B,
F, I and L, and one on the output of the XNOR gate C. The equivalence
groups are indicated by the doubly arrowed lines below the respective gates.

Such a low resolution diagnosis can easily arise when only failing patterns
are used. For example, assume that the real defect is the s@l fault on the out
put of B. As this fault is equivalent to the s@0 faults on the inputs of B, the
latter ones will necessarily be found by the diagnosis as well.

Furthermore, failing patterns are, by definition, those patterns during
which the defect was observed. Consequently, fault effects from the defect
site had to have propagated to some observable output through one of the
branches of the fanout after gate B. It seems, however, that all branches
except the one through the XNOR gate were blocked, at least with the failing
patterns used in the diagnosis. In addition, all the input values to the lower
input of the XNOR gate were at logic 1 when the failing patterns were applied
As a result, the s@l fault on the output of C would have produced the same
fault effects further downstream as the actual defect, and, consequently, was
also found to have a 100 score.

The remainder of the faults with 100 scores follows now easily from
equivalence and dominance [2]. A fault p dominates another fault q if all the
patterns that test q also test p. For example, all the test patterns for a s@l fault
on the input of a OR gate are also test patterns for the s@l fault on the output
of that gate. It is then clear that the s@l faults on the outputs of gates D, G
and J dominate the s@l faults on their respective inputs, and diagnosis will
give them a 100 score as well, at least if only failing patterns are used. The
dominance relationships are indicated in the figure by the single-arrowed
lines below the OR gates.

The fanout after gate F does not change the flow of equivalences and dom
inances, presumably because fault effects propagating along the other
branches of this fanout are blocked further downstream from F. That not more
faults are found further downstream from L is due to the presence of the
fanout after L. From there on, fault effects propagate into two different direc
tions, and no fault on either branch can explain the fails observed at the
latches at the end of the other branch.

This explanation of why there are so many faults with 100 scores uses the
accidental facts that all the failing patterns used in the diagnosis put a logic 1

Chapter 9: Logic Diagnosis 161

on the lower input of the XNOR gate, and that all those patterns also block
fault effect propagation down the other branches of the fanout after gate B.

More complicated accidents are required if, for example, the real defect is
a s@l on the top input of F. Fault equivalence and dominance will guarantee
that diagnosis will also give a 100 score to all the faults downstream from the
defect, up to gate L. That diagnosis also gives a 100 score to the top input of
D, however, can be explained only by assuming that the failing patterns put a
logic 1 on the bottom input of that gate. Likewise, a constant 1 on the bottom
input of C will make diagnosis find the s@l fault on the top input of that gate,
which is equivalent to the s@l faults on the inputs of B.

The existence of these accidents indicate that it might be possible to
increase resolution by finding more failing patterns. In fact, these accidents
open up the possibility of exploiting them and generating special diagnostic
patterns that intentionally put "wrong" values on the various pins [5].

For example, in the first scenario, having faiHng patterns with different
logic values on the bottom input of C would remove all the faults downstream
from C from the 100 list. Likewise, in the second scenario, all the faults
upstream from the s@l on the top input of F would get lower than 100 scores
if at least one failing patterns would put a logic 0 on the bottom input of D.

The negative effect of dominance on the diagnostic resolution cannot be
conquered, however, by using more failing patterns. Only passing ones will
be able to distinguish between a defect and the faults that dominate the defect.

7 USING PASSING PATTERNS

The benefit of using passing patterns was studied by rediagnosing all
devices with a highest score of at least 90, but now with many passing pat
terns added. The test patterns are divided into groups of around thirty patterns,
and the selection of passing patterns was such that all the patterns in a group
were used, failing or passing, if there was at least one failing pattern in that
group.

The results are summarized in Figure 36. The effect of using passing pat
terns is the reduction of the scores of those faults that cause fails during the
simulation of such patterns. It could, for example, lower the scores of faults
that dominate the real defect without being equivalent to it, but only when the
right passing patterns are applied.

The expected effect is a lowering of the number of high scoring equiva
lence classes. That this does occur is clearly shown in the figure, which shows
the distribution of high scoring equivalence classes after diagnosis with pass
ing patterns. Compared to the results in Figure 34, the average number of

162 IC Fails

FREQ.

111

ffi

32

1CS

24

0

3

2

1

CUM.

FREQ.

I l l

iri

£03

308

332

332

33S

337

33B

PCT

3254

17.7S

a 47

3107

7.10

OOO

059

as9

030

CUM.

PCT.

32.84

SD.S9

eo.oe

9112

95.22

05.22

9911

99.70

100.00

0 20 40 60 90 100 120

FREQUENCY

90 ^m 91 ^m 92
96 fzm 97 rm m

93
E Z l 99

WXl 94 WM 95
S S ^ 100

Figure 36 Distribution of the number of equivalence classes,
with the use of passing patterns

equivalence classes per diagnosis has clearly decreased. The 50% point,
which was around three, is now below two. Likewise, the 90% point moved
from five down to four.

It is also interesting to see what passing patterns do to the diagnostic result
shown in Figure 35. The diagnostic result with passing patterns is shown in
Figure 37. The numbers above the faults indicate the scores that were
obtained. Faults without score indicators have scores below 70.

Surprisingly, there is no 100 score. None of the candidates found previ
ously, with failing patterns only, turned out to be perfect models of the real
defect. The best candidate is the one with score 94, on the input to gate G.
Note also that, with the use of passing pattern, dominance lowers the score,
while equivalence keeps them the same.

Chapter 9: Logic Diagnosis 163

Figure 37 Example of a diagnosis with multiple equivalence classes
and passing patterns

Chapter 10

SLAT based Diagnosis

1 INTRODUCTION

Even though the diagnostic approach outlined in the previous chapter has
been fairly successful, there are several problems that are rapidly becoming
more apparent with decreasing feature sizes, and with increasingly aggressive
design styles that deviate more and more from the robustly digital behavior
assumed by logic simulators. The most serious of those problems is that only
single stuck-at faults are used.

Stuck-at faults are very restrictive as models of defects, because they
allow the defect to influence only one net, force the defect to be active all the
time, and assume that the defect behaves in one specific way. Using combina
tions of stuck-at faults removes the first of these drawbacks, but does little to
alleviate the others: bridging and intermittent defects, for example, cannot be
modeled by any combination of stuck-at faults.

The advocated solution to the inadequacy of stuck-at faults for diagnostic
purposes has always been more complex faults (see, for example, [2] and
[49].) One group of such approaches centers around the notion of composite
signatures [40, 35, 36, 58]. The signature of a single stuck-at fault is the set of
failing patterns, possibly augmented with, for each such pattern, the set of
latches that contain incorrect data after the application of that pattern. A com
posite signature is the union of a suitable set of single stuck-at fault
signatures. What particular set of stuck-at faults is chosen depends, of course,
on the defect that the composite signature is intended to model. For simple
bridging faults, they are the stuck-at 1 and stuck-0 faults on the two legs of the
bridge.

The solution of more complex fault models, however, has problems of its
own. First of all, the cost of the required simulations rapidly becomes prohib
itively high with increasing model complexity. In addition, such more
complex fault models may loose the linear relation ship between the size of
the fault model and the size of the design, and consequently, for sufficiently
large designs, violate the requirement that the number of faults should not be
too large.

Secondly, no matter how sophisticated the arsenal of logic faults that is at
the disposal of the diagnostic software, there will always be defects that do
not correspond to any one of them. For example, typical bridging faults that
are available with some simulators are of the wired AND or wired OR variety

166 IC Fails

([2], Chapter 7). There are, however, also dominant bridging faults of various
flavors [36, 49], and the activation conditions of any bridging fault may be
more complex than that the two legs of the bridge have opposite logic values
[35].

These problems with the use of more complex fault models also highlight
the second general problem with the previous chapter's diagnostic technique.
A physical defect has two components. The first one is its location, or loca
tions if the defect is a compound one. The second component is its logic
behavior when test or functional patterns are applied. All of today's diagnos
tic approaches attempt to address these two components simultaneously. This,
however, leads either to overly simplistic fault models, like the stuck-at one,
or to a gross inadequacy of more complex fault models, like the bridging
faults mentioned above.

The central problem in logic diagnosis is to model realistic defects by
logic abstractions that faithfully mimic the logic behavior of the defect, but
that can also be simulated efficiently by logic simulators. In this chapter, a
solution to this diagnostic problem will be offered that approaches it in a dras-
fically different way from the standard technique of the previous chapter. The
main idea is not to model the logic behavior of the defect, but, instead, to
focus on its location. Determining the location is much simpler, and can be
done in a piecemeal fashion by analyzing failing patterns and building up a
composite picture of the defect's whereabouts.

This diagnostic technique is called SLAT [6, 30], which stands for Single
Location At a Time, because it uses only those patterns during which the
defect affected only a single location, be that a pin or a net. In the first section
of this chapter, modeling realistic defects will be revisited. It will be shown
that defects can still be modeled by stuck-at faults, but in a decidedly non
standard way. Some of the ideas in this and subsequent sections, in particular
the idea of using only those patterns during the application of which the defect
affected only a single net, were anticipated more than fifteen years ago [60],
but not pushed as far as here.

In the first section of this chapter, modeling realistic defects will be revis
ited. I will show that defects can still be modeled by stuck-at faults, but in a
decidedly non-standard way. The remaining sections will describe how this
new defect model can be used to perform sophisticated and powerful logic
diagnoses. The detailed approach to logic diagnosis will be outlined in Sec
tion 3. The basic output of such a diagnosis will be discussed in Section 4,
where more insightful interpretations of the diagnostic results will be devel
oped. A faster, but approximate greedy version of SLAT will be presented in
Section 5. Some final comments regarding the SLAT output will be made in
Section 6, and results obtained on real ICs will be presented in Section 7.

Chapter 10: SLA T based Diagnosis 167

2 LOGIC DEFECT MODEL

The defect model that underlies SLAT will be discussed in this section.
SLAT does not assume that the defects are stuck-at faults, even though it
employs them to obtain information about the defects. A more accurate
description of a SLAT defect is that it is a set of locations. This section will
define the SLAT defects in detail, and show why stuck-at faults can be used to
obtain information about them.

2.1 Physical justification

Empirically, we know that the stuck-at fault model is very efficient in
driving test generation towards tests that can give a high assurance of a low
defect level. Likewise, standard logic diagnosis, as described in the Introduc
tion, has shown that even the single stuck-at fault model can be very effective
in diagnosing defective ICs. What is not clear is why stuck-at faults are so
successful.

The real surprise, however, is not that stuck-at faults are effective, but,
instead, that the logic model itself can be used even in the presence of defects;
i.e., that the logic model of a defective IC can be obtained by making small
modifications to the logic model of the defect-free device. This is surprising,
for the function of the defect-free logic model is to represent the device in the
absence of defects, and there are no requirements on how it should behave in
their presence.

What allows the logic model to function, even in the presence of defects,
seems to be the strong digital behavior of integrated circuits. Because ICs
have to emulate logic designs, as supposed to analog designs, they have to be
immune against small disturbances like electrical noise and temperature fluc
tuations. Likewise, even stronger disturbances that are caused by real defects
are quickly brought back to digital behavior, be it sometimes incorrect digital
behavior.

Consider for example the voltage at the input of a logic gate. When it is
sufficiently close to Vdd or GND, its logic value is well defined. In other
words, there is a region B between Vdd and GND outside of which the voltage
clearly defines a logic value. Logic gates have to be designed such that, in
normal circumstances, and in the presence of normal fluctuations, all voltages
stay away from this uncertainty region J5. This is accomplished by having the
gate produce an output voltage that is far away from =5, even when some of the
input voltages are close to B.

A minor extension of this property can then be defined that, it seems, is
present in today's technologies, and, if not, should be present in future ones.

168 IC Fails

For a logic gate to produce an output voltage in J5, one or more of the input
voltages have to be in an even smaller range L i is completely included in J5,
and smaller, because otherwise the gate would not have the correcting prop
erty mentioned above. A logic design now has strong digital behavior when i
« S. In other words, a design has strong digital behavior when the logic gates
almost always produce output voltages outside J?, even when the input volt
ages suffer strong disturbances that pull them within the region 3.

Of course, the logic gate may not redigitize the input disturbances cor
rectly, and, if not, a logical error results. The important point, however, is that
the logic model remains valid, and that the disturbance can be represented by
some logic fault. We can go even further, though. As the physical disturbance
gets redigitized at the first logic gate it encounters, it can be represented by a
set of stuck-at faults on all the input nets that were affected by the disturbance.
This set of nets, and the polarities of the stuck-at faults, may be different for
different test patterns. The number of nets in the set, however, will be small,
because physical defects can affect only a small number of nets, and most nets
have small fanouts.

2.2 Logic defects

The starting point of the present diagnostic strategy, therefore, is the real
ization that, during the application of any test pattern, any defect behaves as a
set of stuck-at faults on some set of nets. It need not behave as the same set of
stuck-at faults on every pattern. During different patterns, the defect may
behave as different sets of stuck-at faults, or even as in the defect-free device.
For example, a defect that creates an error on a single pin can behave as a
stuck-at 0 (s@0) on some patterns, a stuck-at 1 (s@l) on others, and even not
have any faulty behavior at all on yet other patterns.

This leads to a new concept of a logic defect, one that lies at the root of
SLAT. A logic defect is a model of a physical defect that is suitable for logic
simulators and test generators. Logic defects mimic the behavior of the physi
cal ones, but need not duplicate the details of the latter. They typically cannot
model the detailed electrical behavior of physical defects, and may not be able
to represent faithfully their spatial properties either.

For example, it may happen that a physical defect creates an error on some
net, while the logical consequences of that influence can be described prop
erly only some distance away from the defect because of electrical reasons.
The most obvious example is the Byzantine bridges studied in [35], when the
stem of a fanout tree is bridged to some other net, but the strengths of the var
ious upstream and downstream transistors are such that some leafs of the
fanout tree seem not to be affected by the bridge, while some others are. The

Chapter 10: SLA T based Diagnosis 169

logic defect that describes such a bridge has as its basic components those leaf
nets that can be influenced by the bridge, but not the other leaf nets, and
ignores the stem of the tree.

A logic defect, then, is merely a set of nets that can be affected by the
defect. Of course, this set of nets should be as parsimonious as possible in its
explanation of the defect, but need not consist solely of the nets touched by
the physical defect. The goal of SLAT diagnosis is the identification of this set
of nets. A logic defect does have a logic behavior, but this logic behavior is
not the primary target of the diagnostic efforts. It will become important when
further refinements of the diagnostic calls are required, but plays no role in the
initial phase of the diagnosis.

One important assumption regarding the logic behavior has to be made,
however, to make it possible to build a diagnostic strategy around logic
defects. It concerns the use of multi-clock test patterns. The application of a
test pattern can be described as a multi-phase process. During the first phase,
the circuit is brought into an appropriate state, typically using some form of
scan-in. During each subsequent phase, the logical evaluations resulting from
the preceding phase are clocked into various memory elements, and a new cir
cuit state is generated. In the final phase, the values in the memory elements
are observed at the tester, for example using scan-out.

If the application of the test pattern is a three phase process, as it is in sim
ple scan designs, the logic evaluations are performed only in the second
phase. In that case, the defect behaves as a set of stuck-at faults in the circuit
state resulting from the application of the first phase of that particular pattern.

If the test pattern is more complex, and the circuit cycles through different
states during the application of the pattern, we have to assume that the defect
behaves the same way in all the states occurring during that pattem. This is a
very strong assumption, and suggests that SLAT is not easily applicable to
sequential tests.

The latter assumption can be weakened considerably, however, for the
purpose of the assumption is to guarantee that all errors produced by the
defect are caused at the same time, and not at different times, when the defect
might behave in different ways. But the unique evaluation is guaranteed, and
the purpose of the assumption satisfied, when the logic evaluations at any net
are performed only once during the application of the pattem, even when the
values in different observable latches and at different POs are set in different
phases of the pattem. In fact, all that is necessary is that, regardless of how
many times the logic value on some net is reevaluated during the application
of the test pattem, only one evaluation of the logic value on that net can con
tribute to the logic values in observable latches and POs, which leaves room
for a considerably amount of sequentiality in the pattem.

170 IC Fails

2.3 SLAT patterns

A second assumption needs to be made to make the present diagnostic
strategy efficient. It deals with the problems stemming from complex defects
that can affect multiple nets.

If a defect can produce errors on multiple nets during some failing pat
terns, it can do so during the application of all failing patterns, and this, as will
become clear later, would make the defect undiagnosable. The second
assumption that underlies SLAT is that there will be circuit states in which
only a single net is affected (or, at most, only one net is affected from which
fault effects propagate to some observable output.)

The patterns whose circuit states are such that only a single net is affected
will be called SLAT patterns. In practice, a slightly different definition of
SLAT patterns needs to be used, because it is of course not known for any
particular pattern whether an error was produced on a single net or not. In par
ticular, SLAT patterns that produce no fails can never be recognized as such.

For this more procedural definition, it is useful first to define the SLAT
property. This is a property that is attached to failing patterns, and indicates
that all the observed fails for that pattern can be explained exactly by at least
one stuck-at fault, or more generally, by at least one single fault that, regard
less of its activation conditions, can affect only a single pin. More
descriptively, these are patterns during which the defect seems to have been

activated in such a way that only one fault effect (a D or a D) was generated
at some pin, and during which this fault effect was propagated to one or more
observable outputs. The SLAT property is similar to vectorwise intersection
([59]), except that the latter applies to all kinds of faults, and not just to stuck-
at ones.

From now on, SLAT patterns are defined as failing patterns with the
SLAT property. This may not always agree with the original definition of
SLAT patterns, because it is conceivable that some pattern causes the defect
to produce errors on several pins, propagating those errors to observable out
puts in such a way that the observed fails can be explained by some single
stuck-at fault. This is an unavoidable problem in all forms of diagnosis: that a
complex problem manifests itself with the symptoms of a simpler one, and is
confused with it. The risk of it happening seems slight, and I will assume that
the procedural and the original definition of SLAT patterns are equivalent.

The restriction to SLAT patterns of course reduces the information that is
available about the defect. The most serious risk is that no failing pattern has
the SLAT property. In that case, SLAT diagnosis fails. Usually, however,
there are enough patterns with the SLAT property. Obvious examples of
defects for which all failing patterns have this property are stuck-at faults,

Chapter 10: SLA T based Diagnosis 111

node faults like opens, and regular bridging faults like the wired AND and
dominant ones.

The importance of the second assumption, and of its validity for large
classes of defects, cannot be overestimated (and has been recognized before
[3].) It makes it possible to apply all our accumulated knowledge of stuck-at
faults to a much wider and much more realistic class of defects, and to treat
those defects with even higher diagnostic accuracy and success than what we
are accustomed to with regular stuck-at faults. If valid, standard stuck-at
faults will suffice for logic diagnosis, be it in a rather nonstandard manner.

3 SLAT BASED DIAGNOSIS

The basic strategy that will be used to diagnose failing ICs is derived from
the observations made in the previous sections. It is called Single Location At
a Time (SLAT) to emphasize its reliance on the assumption that there are
some failing patterns that produce errors on a single pin only.

Failing patterns with the SLAT property are called SLAT patterns. It is not
required that all failing patterns have this property, nor that the defect is
always active. SLAT will work equally well with intermittent faults as with
hard faults (although it does rely on the availability of a sufficient supply of
SLAT patterns, which may be hard to come by for intermittent faults.)

The result of the diagnosis will be logic defects, which are sets of pins, and
a list of those failing patterns during the application of which the defect
caused an error on one of those pins. All patterns whose failing latches are
reproduced exactly by some fault on some pin will be said to be explained by
that pin.

All logic defects consist of input and output pins on logic blocks, like
ANDs and Buffers, as well as chip inputs and outputs. Standard logic diagno
sis uses the concept of fault equivalence, which is tied to the polarity of the
fault. As SLAT does not use those polarities, fault equivalence has no mean
ing, and all pins have to be identified that can explain the failing pattern, not
just the ones that are the locations of the representatives of fault equivalence
classes.

It is important that all the pins in the design are used as potential fault
locations, for a defect that creates an error on some pin is modeled best by a
fault on that pin. Even more importantly, diagnostic precision would be lost in
the absence of that pin, even if faults on other pins could reproduce the behav
ior of this defect in a reasonable way, because those other faults would
indicate the pins where they reside as the most likely candidates for the loca
tion of the defect, rather than the defect's actual location.

172 IC Fails

For example, the s@0 faults on the input and output pins of an AND gate
are equivalent. Consequently, if the defect is such that it can be modeled accu
rately as a s@0 on an input pin, it can be modeled equally well by the s@0 on
the output pin. But, if the defect list does not contain the input pins, the diag
nosis will be misleading, for it points at the wrong pin, even though the list
has a fault that exactly reproduces the fail behavior observed on the tester.

SLAT diagnosis recognizes three types of patterns: those that have the
SLAT property, called SLAT patterns, failing patterns that do not have the
SLAT property, and non failing patterns. The latter two groups will be dis
cussed briefly once all the available information has been extracted from the
first one. The starting point of the diagnosis is the set of SLAT patterns.
SLAT assumes that there will be enough of such patterns to do a meaningful
diagnosis.

3.1 Initial Diagnosis

SLAT diagnosis proceeds in three phases. In the first phase, shown in Fig
ure 38, SLAT patterns are identified and pertinent information is stored in a
table. It consists of a double loop, the outer one over all the failing patterns,
the inner one over all the faults in the fault list (or, at least, over other faults
than those that can be easily excluded, for example after tracing through the
logic model, because they cannot possibly explain all the fails observed in the
present failing pattern). Standard stuck-at fault diagnosis is performed on each
failing pattern separately, using the diagnostic technique described in the
Introduction.

The diagnostic step identifies the SLAT patterns, because they are the
ones for which there is at least one stuck-at fault that completely explains all
the fails collected for that pattern. It also identifies all the faults that can
explain all the observed fails for each such pattern. For each fault, it notes the
pin where that fault is located.

All pin-pattern pairs that are found in the diagnostic step are stored in a
table, called the explain fails table, a small example of which is shown in
Table 7.. The pins that explain failing patterns are indicated by the IE] symbol.
Additional information, like the fault id and fault polarity, are stored as well,
but will not be used immediately. The polarity in particular is useful to store,
even though it is not used in this phase of SLAT, as it may help refine the
SLAT diagnosis after the present phase has finished.

Once the explain fails table has been created, the second phase of SLAT is
entered, in which small sets of pins are identified such that each SLAT pattern
is explained by at least one pin in each set. This search can be restricted to
pins in the table, for other pins do not explain any failing pattern at all. The
search is done simply by first checking whether any single pin can explain all

Chapter 10: SLAT based Diagnosis 173

Figure 38 SLAT diagnostic flow

the fails, then if any pair of pins can explain all the fails, etc., until a suitably
sized multiplet is found. A multiplet is a set of pins, and its size is the number
of pins it contains. A detailed pseudo program for identifying multiplets can
be found in [6]. Each multiplet is said to explain all the SLAT patterns, since
each SLAT pattern can be explained by at least one pin in the set.

Once a multiplet is found that can explain all the fails, all multiplets of the
same size that can also explain all the fails are identified, and no multiplets of
larger size are considered. Consequently, only sets of the same, minimal size
are found by SLAT, and no multiplet of smaller size can explain all the fails.

Usually, there is more than one multiplet. In the example shown in Table
7., suitable multiplets are (1,3), (1,4), (1,9), (7,3), (7,4) and (7,9). There are
undoubtedly larger multiplets that can also explain all the fails, but they are

174 IC Fails

pattern 1

pattern 2

pattern 3

pattern 4

pin 1

m

m

pin 2

m

pin 3

m

m

pin 4

m

m

pin 5

m

pin 6

m

pin 7

m

m

pin 8

m

pin 9

m

m
Table 7. Example explain fails table

ignored. This introduces a small risk of missing important information, and
will be discussed further in Section 3.3

A different and more complex example of an initial SLAT output is shown
in Figure 39. It contains a list of multiplets, as well as, for each multiplet, a

19 patterns failed but were not SLAT patterns.

37 SLAT patterns were found.

The returned multiplet size is 3.

40 multiplets were found.

Multiplet 1:
pin index 1.

pattern 1 fault 1 ISA1
Pattern 2 fault 1 ISA1

pin index 3.
pattern 10 fault2 0SA1
pattern 11 fault2 0SA1

pin index 7.
pattern 80 fault 3 ISA1
pattern 81 fault 3 ISA1

Multiplet 2:

Figure 39 Initial SLAT output

description of how each SLAT pattern was explained (which pin in the mul
tiplet and which particular fault.) It is not the final SLAT output, but
represents an intermediate state of the diagnosis. The figure shows, in order,
the number of failing patterns that did not have the SLAT property, the num-

Chapter 10: SLA T based Diagnosis 175

ber of those that did, the size of the multiplets, the number of multiplets, and a
complete list of all multiplets (only one of which, multiplet (1,3,7), is shown.)
Each multiplet is listed as a pin followed by a list of the SLAT patterns that
are explained by that pin (only some of which are shown.) The explanation
has the form of SLAT pattern, fault index, fault polarity, with the latter two
referring to the fault that explained that pattern perfectly. ISA stands for Input
Stuck At and OSA stands for Output Stuck At.

The figure shows only the minimal amount of information necessary to
explain the initial diagnostic output of SLAT. In practice, other information
can be added, like the net and the gate where the pin resides, the function of
the gate, or the stuck-at faults that were employed to locate the pin.

The defect indicated by SLAT has size three, which means that it affects at
least three pins. There is no indication here, nor will there be after a more
detailed analysis, whether this means a single physical defect that affects three
pins (or nets feeding those pins,) or three distinct physical defects. It may be
possible to guess the nature of the defect from the SLAT diagnosis, and have
this guess be verified using the passing patterns or the failing ones that do not
have the SLAT property, but the accuracy of the guess is not guaranteed.

3.2 Comparison with stuck-at fault diagnosis

SLAT is clearly more powerful than single stuck-at fault diagnosis,
because it can diagnose all defects that have at least some SLAT patterns,
while single stuck-at fault diagnosis requires defects to behave as single
stuck-at faults all the time. Also, whenever the latter is able to explain all the
observed fails perfectly with single stuck-at faults, SLAT will find multiplets
of size 1, and all the faults found by stuck-at fault diagnosis will be among the
multiplets.

SLAT, however, pays a price for this increased diagnostic power, in that it
may incur some loss of resolution compared to stuck-at fault diagnosis when
ever the defect really is a stuck-at fault. An example is shown in Figure 40.

Figure 40 Example stuck-at fault

The XNOR gate shown in the figure has a s@l fault on its top input.
Stuck-at fault diagnosis will of course find this fault, as will SLAT. If both
inputs have constant logic values in all the failing patterns, stuck-at fault diag
nosis will also put a fault on the bottom pin on the list of candidate faults, and

176 IC Fails

SLAT will find a multiplet consisting of that pin. SLAT, however, will always
have a multiplet with the bottom pin, regardless of the logic values on that
pin, for either a s@l or a s@0 on that pin can explain all the fails on any fail
ing pattern.

This extra multiplet may be considered a disadvantage, but is unavoidable
in SLAT. It is only a disadvantage if the defect is a stuck-at fault, however,
something that is not known at the start of the diagnosis. If the defect were a
bridge on the bottom pin, for example, stuck-at fault diagnosis might not find
it at all.

Moreover, in the scenario sketched here, SLAT would find one pin, the
top one, that has a defect with the same polarity, and another pin, the bottom
one, that has a defect with varying polarity. This information can be used
with, for example, physical design details to further reduce the list of possible
defects. Such more detailed analysis falls outside the scope of SLAT, how
ever (and also outside the scope of stuck-at fault diagnosis.)

3.3 Potential accuracy risks

In principle, SLAT should be able to diagnose most defects, the only obvi
ous exception being those defects for which no failing pattern can be
explained by a single stuck-at fault. The procedures outlined in this chapter,
however, may lead us in some cases to an incorrect diagnostic call. These
risks all entail accepting a simpler, but incorrect explanation of a fail over the
correct but more complex one. This is a problem that all diagnostic strategies
face: the correct diagnosis may be more complex that the simplest one, but the
simplest one is the one we go with if we want to make any diagnostic call at
all. There is nothing wrong with listing potential alternate diagnoses, and
sometimes personal experience may lead us to focus on one of them rather
than on the simplest one, but, with no other information, the simplest diagno
sis should be selected.

The procedural problems have been mentioned before. The first one is
caused by the decision to call a failing pattern a SLAT pattern when all the
fails observed with that pattern can be explained by a single stuck-at fault (or,
more generally, by a single pin fault.) As was pointed out at the time (see Sec
tion II-2.3), this may identify some failing patterns as SLAT patterns, even
though multiple errors were produced and more than one of them caused fails
at observable outputs.

The core of the problem is of course that a simple but incorrect explana
tion is available for the fails observed with that particular pattern, and that we
are bound to accept that explanation. The risk may be reduced by using many
failing patterns. For, if there are many true SLAT patterns, there is a good
chance that the one pattern that was labeled a SLAT pattern but isn't will

Chapter 10: SLA T based Diagnosis 111

stand out by its explanations being incompatible with the ones found for the
other failing patterns.

The second procedural problem springs from our decision to look for min
imal multiplets only. An example of how this may lead to an incorrect
diagnosis is provided by an XNOR gate in Figure 40 (see also [2]). Assume
that the defect is a bridge between the inputs of the gate, instead of a stuck-at
fault. Such a bridge will manifest itself as a s@l on the output of the gate, and
SLAT will find it, since it requires a single pin to explain all the fails, rather
than the real defect which requires two pins. Again, this problem is hard to
avoid, because there is a simple explanation of the fails that hides the more
complex correct one.

It is possible to modify SLAT, and have it look also for multiplets that
have only a few more pins than the minimal ones. This would greatly increase
the complexity of the SLAT output, and seriously decrease its accuracy, even
though it might catch the occasional hidden defect. Even with this more com
plex SLAT procedure, however, there is still no strategy for recognizing the
true defects. In the absence of additional information, simplicity is the only
guide we have, and minimal multiplets are the ones that will be selected.

3.4 Non SLAT patterns

Each multiplet can explain all the SLAT patterns, and is, in some sense, a
representation of the defect. Combined with the list of patterns that were
explained by each pin, as well as the polarity of the fault that was activated, it
gives a detailed description of how the defect behaved when the SLAT pat
terns were applied.

SLAT diagnosis, therefore, gives a picture of the defect in certain
restricted circumstances (only for SLAT patterns.) It is not necessarily a com
plete picture, however, and there is no guarantee that a consistent logic defect
can be found that will mimic the logic behavior of the defect in all circum
stances. In particular, it may not be possible to extrapolate the behavior found
for SLAT patterns to failing patterns that do not have the SLAT property, or
to passing patterns.

The non SLAT patterns are important, because they can sometimes be
used to obtain a more detailed picture of the defect. Failing patterns that do
not have the SLAT property are patterns where a single stuck-at fault does not
model the defect correctly. Instead, errors were caused by the defect at multi
ple locations, such that two or more of them gave rise to incorrect data at
observable outputs.

It is tempting to assume that those multiple locations can be found among
the pins in the multiplets that SLAT diagnosis produced initially, i.e. that
SLAT diagnosis has found all the locations (pins) where the defect can pro-

178 IC Fails

duce errors. This can be verified by simulating all combinations of all pins
found in any multiplet, and comparing the results against the fail data that
were collected at the tester. In the example shown in Figure 39, this amounts
to 320 simulations, easily within reach of today's simulators.

Passing patterns are very different. It may be that the defect was not acti
vated, or that it was activated but no fault effect managed to propagate to an
observable output. It is not possible to verify either scenario without a more
detailed model of the defect. Such a model will have to be extracted from the
immediate output of the SLAT diagnosis, augmented perhaps with an analysis
of the failing patterns without the SLAT property.

It is sometimes possible to extract such a realistic model from the initial
SLAT results [7]. For example, if all failing patterns are SLAT patterns, and if
the multiplets have size one, and if the polarities of the stuck-at faults that cor
respond to the multiplets are always the same, then a stuck-at fault as a model
for the real defect may seem to be appropriate. The confidence with which we
arrive at that conclusion depends on the number of failing patterns that were
employed in the diagnosis, and maybe on other factors, like known peculiari
ties of the manufacturing process, or details of the design near the multiplet
pins.

If we do trust this model extraction, then it can be used in fairly standard
ways to improve the accuracy of the diagnosis: follow the standard diagnostic
strategy, as outlined in the Introduction, using only the stuck-at faults of the
right polarities attached to the pins in the multiplets, and remove those stuck-
at faults, and corresponding multiplets, that caused fails during the simulation
of any passing pattern.

Like any extrapolation, however, this model extraction has an element of
risk, because it is based on a limited and imperfect amount of information. If,
in the example above, the real defect is not a stuck-at fault, but only appears to
be one based on the information available from the failing patterns, simulating
passing patterns in the presence of stuck-at faults is clearly inappropriate. The
best that can happen is that the simulation removes all candidate stuck-at
faults, thereby demonstrating the incorrectness of the extraction. On the other
hand, if some of the stuck-at faults are left by the simulation of the passing
patterns, the best a diagnostic engineer can do is to accept the model extrac
tion, for it explains in the most simple manner all the data collected during
test.

Chapter 10: SLA T based Diagnosis 179

4 MULTIPLEX ANALYSIS AND SPLATS

In general, diagnosis will find more than one multiplet, just as in the case
of stuck-at fault diagnosis there is usually more than one fault that can explain
all the fails. In its crudest form, the multiplets produced by SLAT are separate
and independent. Each one of them stands on its own as a representation of
the defect.

The pins in the multiplets are the ones that seem most directly related to
the defect that caused the fails. This set of pins will be referred to quite often,
and, for brevity's sake, will be indicated by M. The pins in Mare the SLAT
equivalent of faults in the standard diagnostic strategy that match the fails per
fectly. We expect some structure in M if the size of the multiplets is larger
than one, because the fails that are being diagnosed were caused by a possibly
complex defect, and this provenance of the fails will undoubtedly be reflected
in the diagnostic output. This additional structure will be explored in this
section.

The basis of the diagnosis is the set of SLAT patterns. This set could be
partitioned according to the single pins where the errors occur, if we knew for
each SLAT pattern on which pin the defect produced an error. The diagnosis
for the patterns in each subset would then basically be the same as in standard
logic diagnosis, except that the latter is fault oriented, while SLAT is pin ori
ented. A set of pins would be found, each one of which explains all the fails
collected for the patterns in that subset. Each pin in the set might or might not
explain patterns in other subsets.

This set of pins will be called a splat.The pin that is affected by the defect
is likely to be among the ones in the splat, but its identity cannot be estab
lished any more accurately than that. There can be as many splats as there are
pins that are affected by the defect, or fewer, if no error occurred on some of
those pins during the failing patterns used for diagnosis.

Finding splats is easy, once the SLAT patterns are partitioned according to
the pins where errors were produced. They are very valuable, because they
are the best estimates diagnosis can provide of the pins affected by the defect,
and, therefore, of the defect itself There is no obvious way, however, to parti
tion the SLAT patterns. To find an effective algorithm, a different definition
of a splat has to be used, one that makes the relationship to multiplets explicit.
The third phase of SLAT is concerned with finding and applying this
algorithm.

180 IC Fails

4.1 Splat structure
Partitioning SLAT patterns induces a partition of at least some of the pins

in M, the set of pins in the multiplets, as each pin in Mean be associated with
a particular subset of patterns if it explains all the fails observed with the pat
terns in the subset. Alternatively, it might be possible to start from M, and
search there for a splat structure.

An example of how this might be accomplished is shown in Table 8.. This

pattem 1

pattem 2

pattem 3

pattem 4

pin 1

~S

m

pin 2

H

pin 3

El

m

pin 4

m

m

pin 5

t/SJ

pin 6

B

pin?

m

m

plnS

El

pin 9

[X]

m\
Table 8. Initial SLAT diagnostic results

table is the same as Table 7., but with the pins not in Mindicated by the addi
tional shading. Pins 1 and 7 explain patterns 1 and 3, while pins 3, 4 and 9
explain the remaining patterns. Why pins 1 and 7 explain the same patterns is
of course not clear from this output. Perhaps, the fault on one pin dominates a
fault on the other pin.

This table shows six multiplets: (1,3), (1,4), (1,9), (7,3), (7,4), and (7,9).
On the other hand, the figure also suggests a partitioning into splats: (1,7) and
(3,4,9). This partitioning into splats becomes obvious once the rows and col
umns are reordered (see Table 9.), and only the multiplet pins are kept.

pattem 1

pattem 3

pattem 2

pattem 4

pin 1

[X]

m

pin 7

H

m

splat 1

pin 3

m
m

pin 4

m
m

pin 9

m
m

splat 2

Table 9. Splat structure of multiplet pins

Chapter 10: SLA T based Diagnosis 181

Reordering puts the matrix in block-diagonal form, with the splats corre
sponding to the different blocks. This observation forms the basis of the splat
analysis.

In the following discussion, italic capital letters like A and B will indicate
subsets of SLAT patterns, and S^ will indicate the pins in the splat corre
sponding to subset^. The set of all the pins in splats will be indicated by S.

4.1.1 Completely separated splats

Let us start from the simplest, but also the most common case, in which
the splats are completely separated, meaning that no pin in any splat explains
any of the failing patterns associated with another splat. In that case, S and M
are identical, as is shown in Appendix J. Multiplets and splats are then just
different ways of partitioning M {ox S). The number of splats is the same as
the size of the multiplets, because each multiplet must have a pin from each
splat, and no two multiplet pins can be in the same splat. Each multiplet can
be obtained from the splats by choosing one pin from each splat. Likewise,
splats can be obtained by putting the matrix formed from the SLAT patterns
and the multiplet pins into block-diagonal form, as in Table 9..

A more elaborate example of a diagnosis with completely separated splats
is shown in Figure 41, and refers in fact to the same device that was used in
Figure 39. This Figure shows a final SLAT output, minus some additional
information like the identity of the pin or the block on which it is located. The
multiplet shown in Figure 39 is constructed from the first pins in splats 1, 2
and 3, respectively. That SLAT diagnosis finds 40 multiplets is now seen to
be a consequence of the fact that there are splats of size 2, 4 and 5. How the
various pins explain the observed fails is not indicated in the figure. It pro
ceeds roughly in the same fashion as in Figure 39, except that the list of
patterns explained by each pin has to be given only once for that pin, rather
than repeated each time the pin occurs in a multiplet.

4.1.2 General case

The identity of S and M has been shown only for the case of completely
separated splats. This case may seen rather special, but is in fact very likely to
occur if the defect affects nets that are logically unrelated, because then a pin
that explains all the failing patterns in one subset is very unlikely to explain
also the patterns in another subset.

There is no guarantee, however, that splats will always be completely sep
arated. They need not be, as a pin in a splat S^ may accidentally explain one
or more patterns in subset 5. If this happens, as in Table 10., the matrix of pat
terns and multiplet pins cannot be brought into block-diagonal form anymore.

182 IC Fails

19 patterns were skipped.
37 good patterns were found.
The returned multiplet size is 3.
Found 40 multipiets.

The 2 pins in splat 1 are:
pin index 1
pin index 2

The 4 pins in splat 2 are:
pin index 3
pin index 4
pin index 5
pin index 6

The 5 pins in splat 3 are:
pin index 7
pin index 8
pin index 9
pin index 10
pin index 11

Figure 41 Final SLAT output

pattern 1

pattern 3

pattern 2

pattern 4

pin 1

m
m
•

pin 7

m
m

splat 1

pin 3

H

m

pin 4

•

m
m

pin 9

El

S

splat 2

Table 10. Non-completely separated splats

The • symbols in Table 10. indicate such additional, nuisance explains.
Despite their presence, the matrix is approximately block-diagonal; it is still
obvious how to partition the SLAT patterns, and, consequently, what the
splats are. The problem is how to transform this observation into a reUable
algorithm.

Chapter 10: SLA T based Diagnosis 183

The more general case can almost always be handled by generalizing some
of the properties of the completely separated case. This generalization leads to
the following rules for finding splats:

1. Only pins from Mean be used;

2. no two pins from the same multiplet are in the same splat;

3. the sets of SLAT patterns explained by pins in the same splat have a
non-zero intersection.

The first rule merely states the obvious: realistically speaking, all we know
is M, and we have no good way of including pins not in M. The second rule
describes thecentral relation between splats and multiplets, that multiplets are
sets of pins, one from each splat. Consequently, two pins in the same multiplet
cannot be in the same splat. The final rule defines the main property of splats,
that its pins all explain some core set of patterns, and, therefore, that each set
of patterns explained by any of those pins must at least contain that core set.

Returning now to how to find splats in M, the rules listed above are a
guide for how to group the pins in Minto splats. Finding splats is, therefore, a
form of clustering pins in M, with the criterion being the degree of matching
between the sets of patterns that the pins explain, and rule 2 providing an
additional, negative criterion.

Let us define the pin commonality

h(I,J) = - 1 , (10.1)

if the pins I and J occur together in some multiplet, and

I I J
V kv k

h(I, J) = (10.2)
^ . I ^ J I J .
> (v k + v k - v kv k)

k

otherwise. In this equation, the sums are over all SLAT patterns, and Y\
equals 1 if pin I explains pattern k, and 0 otherwise. h(I,J) is set to -1 rather
than to 0 when I and J occur in the same multiplet to distinguish between that
case and the case of two pins that don't have any failing patterns in common
(see rule 3.) In both cases, the pins should not be put in the same splat, but it is
convenient to label them differently. It has no consequences for the clustering

184 IC Fails

algorithm. In the completely separated case, h(I,J) equals 1 when I and J are in
the same splat, and -1 when they are not.

The technique for finding splats in the general case is then to use some
agglomerative clustering method ([19], Chapter 5), for example the one
described in Chapter 6.4, which proceeds by first putting each pin in its own
cluster, and then reducing the number of clusters by merging at each step
those clusters that have the greatest degree of commonality. Merging stops
when the number of clusters has been reduced to n, the size of the multiplets,
or when the only clusters that can still be merged have commonality 0 or -1.
Of course there is no need for clustering when the size of the multiplets is 1,
because then the looked-for splat is M

This approach will obviously work in the completely separated case, and
will work in more general cases as well. For example, for the SLAT results
shown in Table 10., the resulting commonality matrix is shown in Table 11..

pin 1

2/3

-1

-1

-1

pin 7

-1

-1

-1

pin 3

2/3

1

pin 4

2/3 pin 9

Table 11. Commonality matrix for Table 10.

Only the lower half of the matrix is shown, as h(I,J) is symmetric. The (1,7),
(3,4,9) splat structure indicated in Table 10. will clearly be retrieved from this
commonality matrix.

In almost all cases, the clustering that is found is unique, in which case the
clusters can safely be considered to be the looked-for splats. The criterion for
uniqueness is that the pins in the same cluster (now called a splat as well), are
closer to each other than they are to pins in other clusters. To be precise, clus
tering is unique, and the clusters can be interpreted as splats, if, for all S^ and
S ,̂ and for all pins I and J belonging to S ,̂ and all pins K belonging to S^

h(I,J)>h(I,K). (10.3)

One very important example of unique splats will be discussed in the next
section.

Chapter 10: SLA T based Diagnosis 185

4.1.3 Complete set of multiplets

Very often it is possible to group the pins in Mby mere inspection such
that each multiplet can be obtained by taking one pin from each group, and,
vice versa, each set formed by taking one pin from each group is a valid mul
tiplet. If the pins in M can be grouped in this fashion, M is called complete.
Table 10. shows an example of a complete, but not a completely separated M
Completeness is similar to complete separateness, but it does not require that
pins in one group do not explain any of the patterns associated with a different
group. It was used in [6] to find splats.

If such a grouping exists, it is unique, as follows almost immediately from
the definition of completeness. As the multiplets are formed by taking one pin
from each group, there are as many groups as there are pins in the multiplets.
This also implies that no two pins from the same multiplet can be in the same
group. Assume now the existence of two different groupings G and H, both
complete. As G and H are assumed to be different, there should be two pins
that are in the same group in G, and in different groups in H. Because they are
in different groups in H, they should occur together in some multiplet, by the
definition of completeness. As they are in the same group in G, on the other
hand, they cannot occur in the same multiplet. Consequently, G and H cannot
be different, and the grouping that demonstrates completeness is unique.

The groups have all the desired properties of splats. Rules 1 and 2 are triv
ially satisfied, and rule 3 is too, for, if there were two pins I and J in some
group that have no explained patterns in common, the patterns explained by I
would not be explained by J, and vice versa. Each multiplet m that contains J,
however, needs to explain the patterns explained by I, and, as J does not
explain them, they would have to be explained by pins in m other than J. Now
consider another multiplet m' that is equal to m, except that J is replaced by I.
The pins in m' other then I explain all the SLAT patterns, because they
explain all the patterns explained by I. m', therefore, does not need I, and
would not be minimal, contrary to what is done in the second phase of SLAT.
Consequently, I and J have to have some explained patterns in common, and
rule 3 is satisfied.

In addition. Equation (10.3) is satisfied, for each pair of pins from two dif
ferent groups occur together in some multiplet and have commonality - 1 .
The grouping, therefore, coincides with the unique splat partitioning found by
clustering.

Completeness has an alternate definition that is more usefiil when using
the general clustering technique. If the clustering succeeds in finding n splats,
with n the size of the multiplets, then each multiplet consists of one pin from
each splat. The reverse may not be true: not every combination of one pin
from each splat needs to be a valid multiplet. If the reverse is true. Mis com-

186 IC Fails

plete. Consequently, Mis complete if and only if clustering finds n splats, and
if the product of the sizes of the splats equals the number of multiplets. Using
this property of completeness, it is found that almost all SLAT diagnoses are
complete.

4.1.4 Risks
There are some potential risks with the clustering approach to finding

splats, similar to the risks mentioned in Section 3.3. In the first place, the
starting point is the set of multiplet pins, and the assumption that S and Mare
identical. This assumption may be invalid, for Mmay have pins that are not in
S when not all failing patterns that can be explained by single stuck-at faults
are true SLAT patterns. More importantly, not all pins in S need be in M,
because our restriction to minimal multiplets may hide the true defect. This is
further illustrated in Table 12., which shows a variant of Table 10., with pin 4

pattern 1

pattern 3

pattem 2

pattem 4

pin 1

[x]

m
•

pin 7

m
m

splat 1

pin 3

m
m

pin 4

•

•

m
m

pin 9

[X]

m
splat 2

Table 12. Example of hidden splat pins

having so many nuisance explains that it can explain all failing patterns.
SLAT'S multiplet search, for this table, would find pin 4, and stop, for all
SLAT patterns are explained by it. All other splat pins would, in fact, be hid
den by pin 4 and by the SLAT technique of only looking for minimal
multiplets.

The second rule, that no two pins from the same splat can occur in the
same multiplet, can also be violated, an example of which is shown
in Table 13.. This table shows an example of nuisance fails in which two pins,
pins 4 and 9, can together explain all the SLAT patterns, even though they
belong to the same splat. Such a multiplet will be called abnormal. SLAT
would find this abnormal multiplet, in addition to the usual ones, and rule 2
prevents it then from identifying the otherwise obvious splats.

These potential violations may decrease the confidence one has in SLAT
diagnosis, but it is not clear how to avoid them. The problem of hidden splat

Chapter 10: SLAT based Diagnosis 187

pattern 1

pattern 3

pattern 2

pattern 4

pin 1

m
m
•

pin 7

m
m

splat 1

pin 3

m
m

pin 4

•

m
m

pin 9

•

m
m

splat 2

Table 13. Example of an abnormal multiplet

pins is one that, in one form or another, all diagnostic approaches face, and
was discussed in Section 3.3. Abnormal splats are peculiar to SLAT, but can
be recognized when no more clusters can be merged without violating rule 2,
and clustering stops prematurely. The example shown in Table 13., in fact,
will force clustering to terminate when three clusters are found, rather than the
required two.

4.2 M incomplete
Even though most SLAT diagnoses have complete sets if multiplet pins,

there are exceptions. In this section, I will discuss some of the observed cases.
Several theoretical possibilities were indicated in the preceding sections

for non-complete Ms, among them abnormal multiplets and non-unique clus
terings. I have not yet found an example of non-unique clustering. Abnormal
multiplets and true non-complete Ms are not very common, but do occur. An
example of the latter is shown in Table 14.. The table is an explain fails table,
with the rows and columns interchanged compared to previous explain fails
tables. It is the result of a SLAT diagnosis of a medium sized ASIC, with
some of the rows and columns removed that merely duplicate other rows or
columns. The calculated splats are indicated by the alternate shading.

As this table, and its splat structure, were constructed from M, all multip
lets can be obtained by taking one pin from each splat. On the other hand, the
pin set (1, 2, 5) is not a multiplet, because it does not explain patterns d and e.
Clearly, each multiplet has to have either pin 3 from the second splat, or pin 4
from the third splat to explain pattern e. If pin 3 occurs in the multiplet, any
pin from the third splat will do; if pin 4, any pin from the second splat.

This example also shows how abnormal multiplets could happen. If pat
terns c and d had not been applied, for example, either pin 3 or pin 4 still
would have to be in any valid multiplet, but the multiplet consisting of pins 1,
4 and 5 would now also be able to explain all the failing patterns. On the other

188 IC Fails

pin

1

1 2

; 3 •

4

5

6

7

8

pattern

a

m

b

m
m
m
m
m

c

m
m

d

IS

m

m

e

H

[3

f

H

m

m

m
m

Table 14. Non-complete M

hand, this same example shows that abnormal multiplets might disappear if
enough failing patterns were collected.

GREEDY SEARCH FOR SPLATS

The fall SLAT process makes maximum use of the information available
in the fail data. Its result is a set of splats, which is the most accurate estimate
logic diagnosis can provide of the whereabouts of the defect that caused the
fails. Its cost is that of simulating all the failing patterns.

An alternate, and less costly way of finding splats is to bypass the con
struction of multiplets, and to organize single pattern fault simulation in a
greedy fashion. The flow is shown in Figure 42, and is an adaptation of a
comparable figure in [21]. The adaptation consists of replacing faults by pins,
because SLAT uses pins as the basic explanatory mechanism, not faults. A
second adaptation is that no use is made of reduction modes, as they are
unnecessary complications. No change was required, however, in the treat
ment of failing patterns that cannot be explained by single stuck-at faults, for
both the diagnostic strategy of [21] and SLAT ignore them.

The search proceeds by attempting to diagnose an as yet unexplained fail
ing pattern using single stuck-at faults. This step follows, and can benefit
from any performance improvements that have been developed for standard
logic diagnostic strategy. If successful, the pins that explain the fails for this

Chapter 10: SLAT based Diagnosis 189

select unexplained pattern

X
fault simulate pattern

No

identify pins on which faults reside

i
simulate all unexplained patterns

with faults on those pins

select pins that explain most patterns
and put them in a splat in the splat list

I
mark patterns explained

by selected pins

Figure 42 Greedy splat search

pattern are noted, and all not yet explained failing patterns are simulated with
stuck-at faults on these pins. The number of patterns that each pin explains is
calculated, and those pins are kept that explain the most patterns. Those pat
terns are marked as explained, and, if any unexplained pattern remains, the
process starts over. If the diagnosis of the selected pattern is not successful, a
non-SLAT pattern has been found, and, as in SLAT proper, it is not used fur
ther in the diagnosis.

190 IC Fails

Each set of pins kept at the end of a diagnostic phase corresponds to a
splat. If the splats are completely separated, the sets of pins produced by the
greedy algorithm are identical to the splats. In all other cases, there is the
potential for misdiagnosis. The most important one is that one pin has a sub
stantial number of nuisance explains, which add to the number of patterns
explained by that pin. The greedy algorithm will then choose that pin, but not
other pins in the splat with fewer nuisance explains. As a result, many of the
pins in the splat, including the pin that is actually affected by the defect, may
be missing. A second, related problem is when two pins explain many, but
differing sets of patterns. When that happens, an arbitrary decision has to be
made which one to keep, and which one to discard, with the obvious potential
of making the wrong choice.

The main advantage of the greedy algorithm is its speed. It needs to simu
late only few patterns with large sets of faults, most patterns being simulated
with the much smaller sets of those faults that reside on pins that are already
known to explain at least one pattern. The other advantage is that it is often
successful, for many defects have completely separated splats. For a rough
diagnosis, the greedy algorithm is the correct choice. In fact, no further work
is required if its result is a single splat, because SLAT will not improve it.

When more than one splat is found, and when a more secure diagnosis is
desired, however, for example, when the diagnostic call is to be used in phys
ical failure analysis, SLAT should be used, for it makes maximum use of the
information in the fail data.

6 INTERPRETATION

Using the notions of splats, we arrive at the following appealingly simple
picture of a SLAT diagnosis. In the simplest but very common case, there are
several splats, say n. We interpret this as a single defect that can affect n pins.
It may or may not affect those pins simultaneously, but, when SLAT patterns
are applied, only one of them is affected. The splat analysis of the diagnostic
output has produced a large simplification. For example, in the design used in
Figure 41, there are 40 multiplets, but only 1 defect if we consider pins
belonging to the same splat as coming from the same defect.

When all failing patterns have the SLAT property, it is tempting to
hypothesize that the pins in different splats are affected by the defect in a
mutually exclusive fashion, but that conclusion does not follow necessarily
from the SLAT diagnosis.

On the other hand, if there are failing patterns that do not have the SLAT
property, it is obvious that the defect can affect multiple pins simultaneously.

Chapter 10: SLA T based Diagnosis 191

Whether those pins are among the ones found by using SLAT patterns only
cannot be decided by the SLAT diagnosis alone, although it is probably a
good starting assumption.

The actual pins that can be affected by the defect are not known exactly,
but each one is localized within its particular splat. The size of a splat depends
on the structure of the logic around the failing pin. No further refinement in its
identification can be made without using non SLAT patterns. In order to do
that, however, a more detailed logical model of the defect is required (see
Section 3.4).

The splat structure also provides guidance for subsequent failure analysis.
As each splat is an estimate of one of the pins that can be affected by the real
defect, finding (part of) the real defect can be done by inspecting the pins, and
nets connected to those pins, of one splat only. This should of course be the
smallest splat.

Once the defect has been located, one can verify that other nets affected by
the defect are indeed connected to pins listed in the other splats. There are
now three possibilities. First, all the affected nets are accounted for by the
splats identified during diagnosis. This is the preferred outcome.

Second, some affected nets are not accounted for by the splats. This means
only that the patterns that were applied were not enough to probe the defect in
all its manifestations. But, as the defect was found anyhow, the diagnosis can
still be called successful.

Finally, the affected nets cannot account for all the splats. This indicates
that there are other defects on the device than the one just found. Another
defect could be located by using one of the as yet unaccounted for splats, but
finding the first defect may have removed the others. In that case, failure anal
ysis is incomplete, even though the diagnosis is still a (partial) success.

7 EXPERIMENTAL RESULTS

The SLAT technique was compared previously [6] with the standard diag
nostic technique described in the introduction, and the essential results will be
reviewed briefly here. A recent publication [37] shows the results of applying
SLAT to a large variety of simulated defects, with near perfect success.

The purpose of this section is to compare the efficiency of SLAT with the
classical diagnosis based on stuck-at faults, and to demonstrate the success of
SLAT in diagnosing real-life complex defects.

192 IC Fails

7.1 Comparison with stuck-at fault diagnosis
The first set of experimental results compare the overall efficiency of

SLAT diagnosis with that of standard stuck-at fault based diagnosis. The
vehicle was an ASIC design, described in more detail in the previous chapter
and in Chapter 3. In this section, the results for Lot_3 will be used.

A total of 437 failing devices was used. SLAT diagnosis was also applied
to all failing devices. To reduce excessive run times, the size of the multiplets
was restricted to 7.

As SLAT does not use passing patterns, and not even those failing patterns
that do not have the SLAT property, it is important to know how many failing
patterns there were initially, and what fraction of those patterns had the SLAT
property.

Figure 43 shows the distribution of the ratios of SLAT patterns to all fail-

:Q.

16

22

9

B

S

7

10

22

IS

3*

B9

CUM.
FREQ.

16

38

47

SS

eo

67

77

99

114

14B

437

PCT.

3.ee

S.CB

203

1.B3

l i t

i.eo

2.2d

S.03

3.43

7.75

ee.t j

CUM.
PCT

3.66

S.70

10.76

e.S9

13.73

1S.33

17.62

22.es

2:6.09

33.37

100.00

100 200

FREQUENCY

300

Figure 43 Distribution of fractions of SLAT patterns

ing patterns observed among the 437 devices. Finding a high ratio does not
always indicate success. The diagnosis is only a borderline success when no
multiplet of size not exceeding 7 is found, or when the size of the multiplets
found by SLAT is the same as the number of SLAT patterns used to do the
diagnosis. When that happens, we cannot have great confidence in the diagno
sis, other than that SLAT found some SLAT patterns. Fortunately, in the
majority of the cases, SLAT finds multiplets with sizes substantially less than

Chapter 10: SLAT based Diagnosis 193

the number of SLAT patterns, with the excess SLAT patterns providing added
confirmation that SLAT indeed found the correct defect.

Figure 43 clearly shows that in the majority of cases most of the failing
patterns have the SLAT property. The figure does not show the absolute num
bers of SLAT patterns, but for almost all devices this number ranges from
well over ten to several hundred. It is also important to realize that even a
small ratio does not doom diagnosis, because SLAT only requires a sufficient
supply of SLAT patterns, not a large supply, or even that the majority of fail
ing patterns have the SLAT property.

The actual distribution of multiplet sizes is shown in Figure 44. This figure

1

2

3

4

6

>

t 1 1 1 1

FREQ.

113

m

33

IB

IS

12

11

SO

149

CUM.
FREQ.

113

132

£1S

233

24S

257

268

2BS

437

PCT.

2SIS6

1&79

7.SS

4.12

a7S

275

£S2

4.S5

34.10

CUM.
PCT.

as.se

4i.es

4d.20

S3.32

se.oe

SB.51

ei.33

es.90

100.00

40 60 80 100 120 140 160

FREQUENCY

Figure 44 Distribution of multiplet sizes

demonstrates the much larger efficiency of SLAT compared to regular diag
nosis. The symbols < and > indicate no SLAT patterns found and no multiplet
of size less than 7 found, respectively. The group of size 1 diagnoses is
divided into a group labeled @, indicating those devices for which vanilla
diagnosis obtained a 100 score, and a remainder, indicated by 1.

The number of failing devices for which SLAT diagnosis found at least
one multiplet is about 94% of the total number of failing devices, compared to
an efficiency of about 34% for regular diagnosis (this being the fraction of
devices for which regular diagnosis found at least one stuck-at faults that
explained all the observed fails).

More strikingly, the number of failing devices for which SLAT diagnosis
found multiplets of size 1 is about 60%) of the total. Part of this 60%) are the

194 IC Fails

devices for which regular diagnosis was successful as well, because a single
stuck-at fault that explains all failing patterns will obviously be found by
SLAT too. The remainder, about 26% of the total, are those devices in which
the defect did affect a single node, but not in a consistent manner.

The relationship between vanilla scores and SLAT results is shown in Fig-

1

60 80 100

FREQUENCY

12

120 140 160

EQ.
11

8

ta

21

40

47

44

33

12

17

13

3

4

7

5

149

CUM.

FREQ.
11

20

39

00

100

147

191

224

239

2S3

209

209

273

2S0

2SS

437

per
£52

£00

43S

4.B1

9. IS

1079

1007

7.SS

£7S

3B9

£97

0G8

092

190

153

34.13

CUM.

per.
2.$2

4.SS

5.92

13.73

22.55

33.04

43.71

51.29

S4.00

S7.B9

90.87

91.S9

92.47

64.07

95.90

100.00

1 " ^ 1 S

^ZH ; EZQd

Figure 45 Correlation between vanilla diagnostic scores and SLAT sizes

ure 45. The fraction of failing devices on which regular diagnosis was
successful is somewhat larger than the fraction of devices for which SLAT
found size 1, single polarity multiplets, since some of the devices for which
SLAT found other size 1 multiplets may have pins that need only a single
polarity stuck-at faults to explain all the SLAT patterns. Such devices would
be counted among those for which regular diagnosis found at least one stuck-
at fault, if all the failing pattern had the SLAT property. But regular diagnosis
would ignore other single pins that can also explain all the failing patterns, be
it with stuck-at faults of varying polarity.

The remaining 33% are devices in which the defect affected more than one
pin. It is likely that there is a large number of bridges among those defects, but
SLAT cannot show definitively that a two pin defect is in fact a bridge. There
is some hint of bridges in Figure 45 which shows a distinct peak when the
scores are around 50. This is expected to happen with bridges, because the

Chapter 10: SLA T based Diagnosis 195

faults on the two legs of the bridge are will each explain about half of the fail
ing patterns

As mentioned above, completeness is the norm. This is shown by the sim
ple statistic that of the 437 devices for which SLAT diagnosis was successful,
91% had complete diagnoses. Of all the incomplete cases, one was caused by
an abnormal multiplet, and the remainder had true incomplete multiplets.

7.2 Specific diagnoses

The diagnoses mentioned in the preceding section did not include actual
verification by failure analysis. It is a comparison with standard single stuck-
at fault diagnosis, and, to the extent that the latter leads to a successful root
cause analysis when it is successful, SLAT will too. The comparison, how
ever, does not show how well SLAT performs when the standard diagnosis is
not successful, for example when SLAT finds more than one splat and at least
of them small. Two examples of such SLAT diagnoses will be presented here.

The first one was done on a medium sized ASIC design, with about 1.2M
gates, over lOOK latches, and about 3M faults. SLAT found two splats, one
with 2 pins, and one with 16 pins. The diagnosis was trustworthy because all
failing patterns, 33 of them, were SLAT patterns. As there were two splats
and no non-SLAT patterns, a bridge was expected. Failure analysis indeed
found a bridge between two nets, one of the nets being connected to a pin in
one splat, and the other net to a pin in the second splat. The failure analysis
photograph is shown in Figure 46.

The second example was a small microprocessor, with about 1.5M gates,
76K latches and 1.9M faults. Ten failing patterns were available for diagnosis,
but only four of them were SLAT patterns. This lack of SLAT patterns does
not prevent diagnosis - after all, four SLAT patterns were still left - but indi
cates that the defect is a complex one. Based on these four, SLAT found a
single splat, consisting of four pins. The logical behavior at these pins was not
that of a stuck-at fault - some patterns needed a s@0 other a s@l - reinforcing
the observation that the defect is complex.

Failure analysis found that the defect affected three distinct nets, one of
them connected to one of the pins in the splat, the other two being immedi
ately upstream from those pins. No further logical analysis was done of the
failing patterns and the logical portion of the design involved in the defect and
the splat, but, given the small number of SLAT patterns, it is not surprising
that not all nets affected by the defect were found by SLAT. Given the gross-
ness of the defect, it is surprising that there were any SLAT patterns at all to
enable SLAT diagnosis.

196 IC Fails

Figure 46 Root cause analysis of a bridge

Chapter 11

Data Collection Requirements

In the preceding chapters, various ways were described of using fail data
to obtain information about the causes of the fails. The details of what data to
collect, or how to collect it, were left out. These details are important, how
ever, as the success of any analysis technique depends on the availability of
the appropriate data. Such details will be addressed in this chapter.

Because the details of data collection require the design and the test
sequence to have certain attributes, these requirements will be addressed first.
Table 15. presents in abbreviated form the main conclusions from this chap
ter. The columns cover design, test, and data collection requirements as
dictated by the various analysis techniques discussed in preceding chapters.
The final column shows the main results that can be obtained from each type
of analysis (compare with Figure 1). These results are the benefits that should
outweigh the cost incurred when meeting the requirements in the earlier
columns.

1 DESIGN REQUIREMENTS

The first diagnostic requirement on Integrated Circuits is that the state of
the design can be observed immediately after that state has changed due to the
application of some clock pulse. The design is assumed to be digital, so the
state of the design is equivalent to the contents of the memory elements, and
only clock pulses can alter that state. It is not required that the clock pulses
can always be controlled externally, but it is required that, once a clock pulse
has been issued, the state of the design can be frozen and observed before fur
ther clock pulses are applied. The easiest way to meet this requirement is to
make the clock pulses externally controllable, and to design the circuit such
that its state can be observed at any one time.

It is the responsibility of the designers to make sure that their designs sup
port this diagnostic observability, and to generate the necessary
observational test sequences (protocols). In the remainder of this section, I
will describe some techniques that will simplify the observation of the state of
a digital design.

In a digital design, the memory elements are generally of two kinds:
latches and true memory elements, like the cells in embedded RAMs. The
standard technique for making the latches observable is to connect them

198 IC Fails

Q

a

o
r e -ti o

5 ^ tio

"•S3

1 "s 1 ».

Mil
^ O '55 S
1 * *

O

>

O

1 - • - >

1 ^

1

^ >
o .s

2
1 '̂

1
- -

b ^^

<D (D O

^ S OH

X

o

1

S —< ^

•S ^ ^ S s
S V5 >< S ^
G (U UIJ 3^ T i

a -g § ^ 1
• •

1/3

^ o ^
^ (L> ^

O - t i r£3

^ ^ "Ẑ
^ 2 ?.
r^ bi ^

U PH ^3

• •

IZ3

o

1

si ^
C M C?J

• •

O

1
1/3 O

a3 bO

cti >

!r ^
ĉ 0

, 0 oj

'Si
lt

1/3

a
i
W3

bO 0
0 CM

k-1 0

1
^ V3

^ B

^ s

-£2

-S -5 ^
S -̂ Q

,0 -a cz)
^ cS K:I

S 0 2̂

^ ^ .S

^ g a

PM TJ B

>~» 0 j ^

2 22 ' ^
g c« rt
S <î ^

CO 1/3 C

^ ?a ^ > 4 H 0

a s ®

bO

>
0
0

0 3

CfH

P
<4-(

bO ^ S ^ 3 S
,g c2 -^ :̂j ^ 7; ^
r;3 fl > ĉ ^ 0 tg
^ 1 § o 5 ^ S
^ ^ ?? f=5 § =̂ ^

• • •

W CO

^ §
(u 0
1/3 , _ , S ® B W3

in S

S®
• •

1

C<3

'So

.H §
bO bp
0 2

H-1 H3

o

Chapter 11 .Data Collection Requirements 199

together into one or more scan chains [16, Chapter 3], and to make the inputs
of the chains externally controllable and the outputs observable. If there are
latches that are not in scan chains, provisions will have to be made to make
them observable in some other way.

Embedded memories can sometimes be tested and diagnosed by mapping
their inputs and outputs to chip Primary Inputs (Pis) and Primary Outputs
(POs), and then applying special memory tests directly to the memory. If such
is the case, there is no diagnostic problem. However, if there are many embed
ded memories, as there often are in today's designs, mapping the inputs and
outputs of all the arrays to Pis and POs becomes cumbersome because of the
added wiring and multiplexing. In that case, the memories need to be tested
by special test sequences that are generated on the device itself. The observ
ability requirements then imply that it has to be possible to interrupt testing
immediately after any write clock has been applied, and to observe the con
tents of the array, or, at least, the contents of the address to which data were
written last before any fiirther write clocks are applied.

The easiest way to observe the contents of a memory word is to read them
into scannable latches and then scan out their contents, but complex protocols
may be required to accomplish such read operations. If such a strategy is fol
lowed, the chains should be designed such that, on switching from memory
test mode to scan out mode, the contents of the relevant latches are guaranteed
not to be affected.

It should not only be possible to observe the state of a digital design, but
the time required to do so should not be excessive either, lest the collection of
diagnostic data, even if feasible, is impractical. Scanning out the latch data
can usually be done at a reasonable cost, since many testers are designed to
handle scan designs. Collecting embedded memory data, however, is far more
time consuming. The data collection time can be reduced if diagnostic data
collection is taken into account when designing the RAMs, the BIST engines
used to test the RAMs, and the manner in which they are imbedded in the sur
rounding logic.

Two important features have emerged in practice that greatly reduce the
complexity of observing RAM contents. Both assume that the memory tests
are generated by on-chip BIST engines.

1. When scanning out the contents of a RAM word, also scan out the
address of that word, and, if possible, the state of the BIST engine.
This additional information simplifies the interpretation of the data,
for otherwise both the address and the particulars of the ABIST test
sequence (forward or backward through address space, the type of

200 IC Fails

test, data or inverse data,...) have to be extracted from the number of
ABIST clock cycles that were applied since the beginning of the test.

2. Design the BIST engine such that the state of the engine is preserved
when data (and address) are scanned out. This makes it possible to
continue applying BIST patterns after scan out has completed, with
out having to restart the BIST engine.

Observing the state of the device is not the only activity that has strong
design implications. Making sense of the observed state adds additional
requirements on the design. In particular, as embedded memories and scan
chains can be treated as objects that can pass or fail appropriate tests, all the
theory presented in Chapter 5 can be used to extract, for example, cell fail
probabilities. To do so, however, one needs to be able to determine unambig
uously whether a given object passes or fails its associated tests.

For scan chains, this is usually not a problem if the outputs of the chains
can be observed from the tester. If, as may be the case in future designs [4,46,
63], these outputs feed on-chip compactors, like MISRs, alternative methods
will have to be found to determine whether any specific scan chain passes or
fails the chain tests. One potential method is a diagnostic test mode in which
the same chains are connected to POs rather than to compactor inputs. If there
are too many chains for the available number of POs, a sequence of test
modes may have to be defined such that each chain output is connected to
some PO in at least one of these test modes.

Embedded memories, on the other hand, are rarely made observable at
POs. Instead, their passes and fails are monitored by pass/fail bits stored in
latches. These pass/fail bits can be calculated by the BIST engine itself during
the application of the memory tests. When the memory contains redundant
rows, and sometime even columns, an additional bit indicates whether the
memory, even though defective, can be repaired. Clearly, to know which
memories passed the memory tests, the relation between the pass/fail bits and
the memories should be unambiguous. This means that each pass/fail bit
should be related to only one embedded memory. Likewise, the relation
between the so-called nofix bits and the memories with redundant elements,
should be unambiguous. It is the responsibility of the designers to report this
relation to the diagnostic engineers, but establishing the connection between
a pass/fail bit and its associated memory can be made easier by clearly label
ing that memory block in the logic model of the design.

The state of the design at various points in the test sequence is undoubt
edly the most important diagnostic quantity to be obtained during data
collection. Nevertheless, there are various design attributes that can also help
when interpreting the collected data. For example, for instance analysis it may

Chapter ILData Collection Requirements 201

be useful to know the sizes of the objects, and, if different cell designs are
used, to know what types of cells are used in the various objects. Furthermore,
different RAM architectural features, like the number of ports, may have a
noticeable impact on the yield, and should be known as well. All these design
level attributes should be available to the diagnostic engineer to make maxi
mum use of the available diagnostic data.

2 TEST REQUIREMENTS

First, the test program that was applied to any failing device should be
known to the diagnostic tools. It has to be known in detail, down to the precise
sequence of test patterns used in the deterministic portion of the test. This
requirement remains in force even if the patterns are generated on-chip by
some BIST engine, but is then easier to satisfy, because only the structure of
the pattern generator and the initial seed need to be known.

This knowledge is required as the diagnostic engineer needs to know
which parts of the tests did not uncover a defect, in addition to what parts did.
In logic diagnosis, for example, passing patterns can be used in some cases to
increase the accuracy of the diagnostic call (see Chapter 9). Another example
is commonaUty analysis, in which both passes and fails of particular tests may
be compared.

The collected fail data will tell us about non-fails, but only if the latter can
be deduced from the former by implication: a device did not fail a particular
test if the test sequence is followed exactly, and the device failed a test later in
the sequence. Changes in the test sequence are frequently made, however, for
example to reduce the test application time, and relying on implication is not a
safe practice. Instead, the test sequence that was actually applied should be
known explicitly. Alternatively, the notion of fail data can be enlarged to
include passing tests as well. In that case, fail data become test results, and
include for each part of the test sequence whether any genuine fail data were
collected for that part. A record of no fail data for any particular part of the
test then indicates a pass for that part of the test sequence.

Even though many of the analysis techniques described in this book do not
depend on the details of the tests, only on whether or not a device failed the
tests, coverage analysis (Chapter 8) and logic diagnosis (Chapter 9 and Chap
ter 10) engender additional requirements on how the tests were generated. To
explain these requirements, I will assume here that stuck-at faults were used
for test generation, as this is common practice. If other faults were used, simi
lar comments apply to them.

202 IC Fails

Underlying test generation is a description of the design, called the logic
model. This description is a logic abstraction of the design that mimics, as
faithfully as possible, the actual design details, like its wires and basic func
tional blocks. The faults, used in test generation and diagnosis, are objects in
this logic model, and need to be attached to other objects in the model. For
test and diagnosis to be effective, both s@0 and s@l faults should be attached
to all identifiable pins in the model, in which pins are the points where nets
are connected to logic blocks or lOs. If a net has a complex fanout structure,
the fanout points should be replaced by fanout boxes and the branches of the
net connected to either these fanout boxes or to the source and sinks of the
original net. Faults can then be attached to the pins on the fanout boxes or to
the pins on the source and sinks of the net. Of course, this only makes sense if
the actual fanout structure is known. If not, the best one can do is to attach
faults to the pins where the net is connected to its source and sinks.

For SLAT - Chapter 10 - only stuck-at faults are required. For test genera
tion, or regular logic diagnosis - Chapter 9 - other faults can be used, like
shorts. Requirements for shorts are much less clear-cut than for stuck-at
faults, but they should include at least those between nets that run parallel at
minimum distance for a distance that exceeds some predetermined threshold.

The final requirement on the test sequence is that the coverage be known
at as fine a granularity as possible; preferably for each test pattern separately.
Because the coverage of a sequence depends on what faults are not yet uncov
ered, given the other sequences that are applied prior to it, it should be
calculated for the detailed test sequence that was applied on the tester.

3 DATA COLLECTION REQUIREMENTS

The fail data collected for diagnostic purposes have to meet various
requirements. They should be appropriate for the task at hand, that is, they
should be adequate, in type and volume, for the desired form of analysis. To
do diagnosis of failing objects, for example, pass/fail information is required
for all the embedded objects, and that information has to be collected for a
large sample of failing devices to make statistical analysis of the fails mean
ingful. On the other hand, the results of a scan chain integrity test are not
appropriate for logic diagnosis.

The collected data should also be complete, meaning that all the data,
assumed by the diagnostic technique, is collected. In logic diagnosis, for
example, it means that all the failing latches for the patterns employed by the
diagnosis are known, not just the first n, where n is some number that is deter
mined in practice by tester limitations or by test time requirements. Of course.

Chapter ILData Collection Requirements 203

if the data is not complete for one type of analysis, it may still be complete for
another. Logic diagnosis can still be performed if the number of n were
known, be it with greatly reduced accuracy. For such a diluted form of diag
nosis, completeness has changed meaning, and indicates now that indeed all
the failing latches or n failing latches, whichever is smaller, are available.

Finally, the collected data should be predictable, or, in other words there
should be a clear, well understood protocol for collecting fail data, one that
meets some agreed upon appropriateness and completeness requirements, and
such that the analysts at the receiving end of the fail data collection can be
assured that the data they use is collected in accordance with the protocol.

Table 15. attempts to summarize the requirements on fail data collection
that are appropriate, complete and predictable. For example, pass/fail results
need to be collected for all embedded objects for the sake of completeness.
Likewise, failing latches should be completely collected for each pattern for
which fail data are collected; in other words, no partial scan-outs. Another
requirement is that the test step at which a device failed for the first time,
given the test sequence, be known for every device. For some devices, this
test step will be known only in a post-test disposition step; for example, when
the device failed no specific test, but when, instead, some combination of per
formance tests was outside a predetermined acceptance region.

Finally, for some fraction of devices, all the failing test steps need to be
known. In practice, no further testing can be performed if the device fails one
of the initial gross test steps, like contact, leakage or probe-melt, but the
response of the device to all subsequent tests can be known. Of course, there
should also be some indication in the fail data that tells whether, for a given
device, such extended test data collection was performed.

Appendix A

Distribution of IC Fails

1 GENERAL DEFINITION

The binomial and multinomial distributions were introduced in Chapter
2.1.1. Given the dy. for k = 1,..., kf, the probability P(Ni,..., Nĵ) of Nj chips

failing test i is given by the multinomial form

N ! f ,^-^ \Npass N,

N I T T N - !
pass Ĵ Ĵ 1

n^i ^ (A.1)

where n! stands for the factorial of n and all sums and products are from i = 1
to kf. By summing over all values Nj for all i except one, say j , we find that the
probability that test kj fails Nj chips out of a total of N chips equals
b(Nj;N,dj).

A related special case is that of all tests from test 1 to some test k grouped
into one test. The probability yĵ of passing all tests through the k one is

k

206 IC Fails

Therefore, K, the number of chips passing all tests 1 through k, as well as N-
K, the number of chips failing one of those tests, have the probability density
function

b(K;N, y^) = b (N - K ; N , 1-y,,) . (A.3)

The number of chips that fail at test k does depend on the outcome of the
previous tests. Consider the case that the tests 1 through j-1 found N-K chips
to be defective. There are therefore K chips left to be tested by tests j through
kf. Summing Equation (A.l) over all values of Nj, 1 <= i < j , with the condi
tion that the sum over all those Nj equals N-K, shows that the conditional

probability of Nj chips failing the î ^ test, for all j <= i <= kf and given that

exactly K chips passed the first j-1 tests, equals

K - V N i

K-J;N,J!]-[N,

where now all the sums and products are from i = j to kf, and the new detec

tion probabilities dj are related to the original dj by

This probability has again the multinomial form, and, consequently, Nj,
the number of chips failing test i for any particular i >= j , has again the bino
mial distribution with probability density function

Prob(Nj|K) = b(N-;K, dj) . (A.6)

Focusing on the fails starting with the j ^ ^ test and ignoring the preceding
ones, therefore amounts to nothing more than a rescaling of the first fail prob
abilities. The corresponding yields are rescaled as well according to

Yi = y / Y j - i - (A.7)

Appendix A: Distribution ofIC Fails 207

1.1 Fallout fluctuations

Nj can be written as the sum

diK + 5Ni(K) = di<K) + di5K + 5Ni(K), (A.8)

in which the three terms on the right represent, respectively, the expected

value of Nj averaged over all values of K, fluctuations in Nj due to fluctua

tions in K, and fluctuations in Nj around dj K. In other words, fluctuations in

the value of Nj have two causes: the center of the distribution, djK, fluctuates
because K fluctuates, and the actual value of Nj fluctuates around this center.

The latter fluctuations are usually much larger, however, than the former,
and the fluctuations in K can generally be ignored. This can be shown using
equations (A.3) and (A.6). The expected values of the two fluctuation terms

-2
are, of course, zero. Their variances are dj Ny^ _ ^ (1 - yj _ i) and

Nyj _ -| di(1 - dj), respectively. The fluctuations in K can then be ignored if

^ i (l - y i - i) « (l - d i) , or if d . (l - y - _ ^) « y . . The identity

dj = Yi - 1 ~ Yi ^^d some algebra reduce the inequality to

y i - i (i - y i - i)

^ - Y i - l

If yi_i is close to 0, this inequality becomes yj_ -j « 2y-, while near 1 it

becomes 1 - ŷ _ ^ « yj . The maximum of the left hand side of Equation (A.9)

occurs at y • ^ = 2 - A/2 , where yj should be much larger than

3 - 272 « 0.2 for inequality (A.9) to hold.
In general, the inequality will hold if ŷ is not too small compared to yj.].

How small is too small depends on yi_|. When yj.^ is near 1, yj can have
almost any value. For other values of yj.j, as long as it does not differ too
much from yj, fluctuations in K can be ignored.

208 IC Fails

1.2 Defect Level

The final issue to be considered in this Appendix is that of the distribution
of the defective chips that pass all tests. All chips fall into three buckets: the
chips that are defective but are caught by the tests, the chips that are defect
free, and the chips that have defects but pass the tests. The probability that a
defective chip will be caught equals 1 - y, where y is the expected yield from
the test. The probability d^ that a defective chip is not caught equals y - yg,
where yg is the probability of the chip being defect free.

Using Equation (A.6), we find that the probability P(N(ief|Npass) of not

catching N^^f defective chips, given Np^ss, equals b(Ndef;Npass'dn), with

^n ^ ^n^y' The expected value of N^gf is therefore

while its variance is given by:

^^(Ndef) = Npassd„(l -d„) , (A.ll)

which is approximately equal to <N(ief> when d̂^ is small.

Appendix B

General Yield Model

The easiest way to derive the properties of the general yield model is by
calculating first the generating function G(z). Let A be the area of the chip and
Pjj the probability that the chip contains n defects. G(z) is defined as the

expectation value of z , where the random variable N is the number of defects
on a chip. Or,

G(z) = ̂ z%. (B.l)
n

The actual value of N has two contributors: first, the distribution of primi
tive polluters, and, second, the number of defects produced by each polluter.
The generating function can, therefore, be written as

G(z) = < y z V N = n|{v(r)})), (B.2)
n

in which identity p is the probability that there are n defects, given the spe-

cific distribution of primitive polluters, indicated by v(r), and < ... > indicates
averaging over all those distributions. As the defects produced by the primi
tive polluters are independent and random, the expectation value of z^, given

>
v(r), equals

(z-l)fv(r)dr
e ^ . (B.3)

210 IC Fails

Taking the expectation value of this with respect to all distributions of primi
tive polluters leads to the central result that

(z-l)fv(r)dr
G (z) = (e J) . (B.4)

Moments of the distribution of N can be obtained by differentiating equa
tion (B.4) with respect to z at z = 1 [15]:

G(z) = l + ^ (z - l) + i (n (n - l)) (z - l) ^ + (B.5)

c > >
The expectation value of n is then found to be JLI = (v(r)dr), and the vari
ance of n equals

2 >
a %) = ^ + < | (v (r) - H) dr). (B.6)

Let us now derive some more detailed properties of YQ. AS it is obviously

equal to pQ, we find that

-Jv(r)dr
Yo = (e) . (B.7)

To simplify the equations, define

r > >
- v(r)dr

E(f) = ~ (e ' f) (B.8)
yo

for any expression f that depends on the actual distribution of primitive pollut
ers. Let us also define

s2(f) = E((f -E(f))2) . (B.9)

We study changes in the area by changing A by a small amount 8A. Two
important examples are first that 5A is a small narrow band of vanishing
width around the periphery of the chip. This example is important when we

Appendix B: General Yield Model 211

consider chips with slightly larger (positive 5A) or smaller (negative 5A)
areas. The second example is more specialized, but is important when analyz
ing the effect of non-uniform defect coverages. In that case, 5A is a small
area, like a circle or rectangle, of vanishing area, somewhere inside the chip.
It will turn out that different ways of changing the area of the chip will have
different consequences for the yield.

Let us now write the integral over the area of the chip as the sum of two
integrals: one over A and one over 5A. For convenience, we write

v

6A

and expand in powers of it:

p > >
5|i = J v(r)dr, (B.IO)

yo(A + 8A)-y() (A)E(e -^^)

- y o (A) l l - E (5 ^) + iE(5M^)+. . .
(B.ll)

From this, we easily obtain

lnyo(A + 8A) = lnyo(A)-E(5|Li) + ^ (8^1) + ... (B.12)

I f > >
Now, assume that 5A shrinks in some fashion, such that ^--- v(r)dr is

finite and well defined. Let us call this limit v^p^. Then, in the limit of small

8A, 5jLi« 8A • Vg^ , and lnyQ(A + 8A) equals

Inyo(A) - 8A . E(Vg^) + i(8A)^S^(Vg^) + ...) (B.13)

It is important to realize that vg^ depends on how 8A goes to zero. When it

is well defined, we find

ainy()(A)

212 IC Fails

and

d^lnyo(A) .2

where the ~ over the d indicate that the derivatives are meaningful only for
specific changes in the area.

From these equations one can immediately conclude that the logarithm of
the yield never increases, because its first derivative is negative, but that its
rate of decrease diminishes, because its second derivative is positive.

> >
For very small A, 5|LI « v(mer = 0)5A, and, setting A equal to 0,

lnyQ(5A) « - E(5|i) + 0(5|LI^) « -<v(0))5A, (B.16)

for yo(0) equals 1. This is the same as for a Poisson distribution with the same
average number of defects per chip. In general, therefore, the logarithm of the
yield starts out as a linear function of A, as in the Poisson case, but then starts
deviating from this linear function, such that it is larger than the Poisson
result, with the difference growing with A.

Appendix C

Simplified Center-Satellite Model

The center-satellite model has been treated in fairly great detail by Meyer
and Pradhan [39], and I will closely follow their technique for averaging over
all cluster configurations. Their more general dependencies on time t and
wafer quality w will be ignored, however. Their locations x, y will be indi-

>
cated by r.

The central quantity to be calculated is the generating function of the num
ber of defects on the chip, called G(z). The contribution to G(z) from the

clusters is called E[Z^A] by Meyer and Pradhan. E[f] in their notation indi
cates the expectation value off, and K^ is the number of defects in area A.

To calculate the generating function of K^, we first need to calculate the

probability that a defect produced by a cluster centered at r falls within the
area of the chip. This probability is

a^(r) = M Jl^CrOfoCr-rOdr-. (C.l)

I^ equals 1 when r' is within the area of the chip and equals 0 other-
>

wise.fj^dr' is the probability that a defect produced by a cluster whose center

is at r is found in dr'. In the simplified center-satellite model studied here, the
defects are distributed uniformly within the area of the cluster, and, therefore.

214 IC Fails

fj)(r'|r) = C I^Cr') as the area of the cluster is C. I^ equals 1 when r' is

within the area of the cluster and equals 0 otherwise. The essential simplifica
tion obtained by considering circular chips is that the integration required to

get a^(r) can now easily be done numerically, as there are no problems with

awkward shapes and equally awkward orientations.
1 >

Next, let D^(r) be the number of defects in A given a single defect pro-

> >
duced by a cluster at r . This number is either 0 or 1. Likewise, let D^(r) be
the number of defects in A caused by the same cluster. Meyer and Pradhan
then show that

Di(r)-
] = l + (z - l) a / r) , (C.2)

and

DA(r)-
- S FD(d|r)[E

"d = 0

Di(r)-
(C.3)

in which Fj)(d|r) is the probability that the cluster has d defects. Let us

assume that the defects are uniformly distributed within the area of the cluster,
and with strength v. Consequently,

FD(d|r) = P~ (C.4)

and

DAWI (z-l)nca AW
I - e E[Z^^«] (C.5)

As the cluster can be anywhere with equal probability, we should average

the cluster location over all space to get K^ , the number of defects in A

caused by a single cluster. The cluster, however, can clearly not influence the
chip when its center is more than p+R away from the center of the chip. We,

Appendix C: Simplified Center-Satellite Model 215

therefore, have to average only over an area S, which is a circle with the same
center as that of the chip, and with radius p+R. Consequently,

E
•Ki-
z

>
1 f (z-l)ncaA(r) >
g Je dr, {C.6)

S

which will be abbreviated to Q(z). As the clusters are uniformly distributed
within S with strength X, we finally get

Finally, G(z) is equal to

obtained by multiplying Equation (C.7) by the generating function for the uni
form background

The moments of {?^ are most easily obtained by expanding G(z) in pow
ers of (z- 1):

1 + ^ (z - 1) - i < n (n - l)) (z - 1)^ + (C.9)

>
Let E(f) for any function f of r be short for

E(f) = g jf(r)dr. (CIO)

Expanding Q(z) in powers of (z - 1) gives

1 + (z - l)ncE(a^) + i(z - \fn^E{a\) + (C.ll)

Using this expansion, we find for G(z)

1 + (z - 1)A + i (z - l)^(5iSnjE(a^) + A^)+ ..., (C.12)

with

216 IC Fails

A = ?^Sn^E(a^) + jUQA. (C.13)

For very small chips, we need a^(r) when R goes to zero. Clearly, when

the center of the cluster is at a distance of more than p+R from the center of
>

the chip, a^(r) equals 0. On the other hand, when this distance is less than p-

R, a^(r) equals R^/p^, the ratio of the size of the chip and the size of the

2 2
cluster. As the change from R / p to 0 occurs over a very small distance
range between p-R and p+R, we can ignore this smooth variation and, instead,

approximate a^(r) by a step function, with the step occurring at distance p.

Similarly, we can approximate the area of the region S by C.
For very large chips, a similar calculation can be made. Now, however, S

>
equals A and a^(r) equals 1 when the cluster is within distance R-p of the

chip. We again ignore the smooth variation between R-p and R+p and

approximate a^(r) by a unit step function.

Appendix D

Quadrat Analysis

Let us start the analysis by considering a contiguous group of k chips on
the wafer. Such groups are usually called quadrats, although they need not
consist of four chips. These groups can have any number of passing devices
between zero, when all devices fail the tests, and k, when all devices pass the
tests.

We will consider the general case of the gross yield y^ not equal to 1. We
need to assume that the distribution of defects over that portion of the wafer
that is not affected by gross defects can have some clustering, but that the
range over which this clustering happens is large compared with the size of
the groups. Consequently, the distribution of defects over the area of a group
is Poisson with some strength v, and the clustering can be modeled by com
pounding a Poisson distribution. This assumption on the one hand restricts the
range of applicability of the quadrat analysis, but, on the other hand, creates
many relations between the various quantities that can be observed, as will
become clear in the sequel.

1 ESTIMATION

The number of quadrats is M, and a quadrat has k chips, each having area
A. The probability that a chip in a given quadrat that is not a wipe out is good

-vA will be indicated by p = e , with v the strength of the Poisson distribution
in that quadrat. The dependence of p on the Poisson strength v will be
assumed.

218 IC Fails

The clustering parameters will be estimated using the observed fractions
(k) Pĵ , which are the ratios of the numbers of quadrats with n good chips and

(k) M. Their expectation values are p^ , and equal

ysQjh(v)p"(l -p) ' ' " "dv + (l-ys)5o„, (D.l)

with h(v) the compounder of the Poisson distribution, and b^^ the Kronecker

delta function. The first term in Equation (D.l) corresponds to the quadrats
that are not wipe outs, and the second term to those that are. The latter term

(k) only contributes to PQ , as explained in the main text. By expanding the 1-p

factor in Equation (D.l), the first term can be written as

ys _
J

Note that

Pj = yg fh(v)e~-̂ ^dv. (D.3)

Because P| is the yield of a quadrat of size j , it will also be indicated by
y(jA). Despite appearances to the contrary, y^ and h(v) appear in Equation
(D.l) only in combinations of the form yOA), with j larger than 0. In fact, as

p- for i not equal to k is a linear combination of p. for j = 1, ... k, it suf

fices to consider only the latter.
Conversely, we can easily deduce from Equation (D.2) that

(y(kA), ...yCA))"" = QCp^H . . .P^'^^, (D.4)

T ~
with (a, ..., b) the transpose of (a, ..., b), and Q the transformation matrix.
For example, for k = 4, Q equals

Appendix D: Quadrat Analysis 219

1 0
1 1/4
1 1/2

1 3/4

0 0
0 0

1/6 0

1/2 1/4

(D.5)

Note that all the entries in the matrix are positive, and that, for the same
column, they increase with row number. Consequently, when y^A) is

(k) obtained from the p- , it is guaranteed to be non-negative, and not to

increase with j .

We now use the same matrix to obtain statistics P,- from the observed

.(k)
^ ^ . These statistics are analogous to the observed yields of quadrats of size

j , and are referred to as pseudo yields. Like real yields, they will also be indi
cated by Y(jA). The expectation values of the pseudo yields are still y(jA).

In order to use these equations with experimental data, we have to make a
choice for the compounder. The Gamma function (Equation (2.8)) is the usual
one. For this compounder.

fh(v)e '̂̂ ''dv = 1 +
jvAV

a J
(D.6)

a is a more useful quantity to work with than a, and will be indicated by y.
It is also useful to replace the combination of variables vAy by p. This
change of variables will not cause problems, for the corresponding Jacobian
and its inverse are singular only at y = 0, oo and P = 0, oo, which can easily
be avoided.

The proper way to estimate the parameters of the distribution is to use
(4)

maximum likelihood on, for example the observed values P • , for j running

from 1 through 4. This, however, leads to complex non-linear equations, and
is not usually done. The simplified way of estimating the parameters is to
choose three of the four pseudo yields, and then calculate the parameters from
them. The traditional choice for these three yields is Y(A), Y(2A) and Y(4A).

The gross yield y^, the inverse cluster coefficient y and p can now be
obtained as follows. From Equations (D.3) and (D.6), and some simple alge
bra, we find that

220 IC Fails

y(4A) ^-3y(2A) ^ + 2y(A) ^ = 0. (D.7)

When we replace the yields y by the observed pseudo yields, Equation (D.7)
becomes an implicit equation for y. It has a trivial solution at y = 0, which can
not be used, however, for that is a singular point of the Jacobian. To find the
real solution, let us write the left hand side of Equation (D.7) as f(y), and let us
consider what happens if y goes to ±oo. Of the three quadrat yields, we expect
Y(4A) to be the smallest and Y(A) to be the largest. Consequently, when y
goes to 00, the contribution from Y(4A) will dominate, and, when y goes to
-00, the contribution from Y(A) will dominate. In both cases, f(y) will be pos
itive. At y = 0, however, f(y) changes sign. There must, therefore, be at least
one other solution to get f(y) back to the proper sign.

We can determine on which side of y = 0 this solution is situated by evalu
ating the derivative of f(y) at y = 0, where it equals

- InY(4A) + 3 InY(2A) - 2 InY(A). (D.8)

The value of this derivative can be determined easily. When negative, a
solution exists for positive y. Otherwise, a solution will have to be found for
negative y.

Given y, the gross yield yg can now be estimated with

ys = (2Y(A)"^-Y(2A)"V^^\ (D.9)

and p with

-(Y(A) ^-Y(2A) V s ^ . (D.IO)

The desired standard parameters are

a = y andvA = ap . (Dll)

Unless A is known, v cannot be determined separately.
As the pseudo yields are in general not equal to their expectation values, it

may not be possible to fit them with a negative binomial fimction, even
assuming that the corresponding expectation values can. Several anomalies
are possible. First, when Y(4A) is zero, there is a unique solution with
P = -0.25 , and

Appendix D: Quadrat Analysis 221

Y = ln(1.5) / ln(Y(2A)/Y(A)) , (D.12)

which is always negative. When Y(2A) is zero as well, however, there is in
general no solution. Wafers for which Y(2A) vanishes should, therefore, be
removed from consideration.

Anomalies with the calculation of y^ are harder to deal with. Clearly,

when Y(A) - Y(2A) is negative, no meaningful solution is possible. On
the other hand, there is no limit on how large y^ can become when

Y(A) - Y(2A) is positive. Because yg is a yield, it should not be larger
than 1.0. Due to the statistical fluctuations in the observed pseudo yields,
some level of violation should be allowed, but there is no natural threshold
that yg should not be allowed to exceed. In practice, I have set the threshold at
2.0.

Equation (D.IO) shows that, when yg is positive, p has the same sign as y.
This is exactly what is needed to make the ratio p/y positive in all circum
stances. Consequently, there are no anomalies associated with the calculation
of P that have not yet been addressed in the calculation of y^.

2 GENERAL EQUATION FOR THE CLUSTER
COEFFICIENT

That y is a solution of Equation (D.7) was derived for the negative bino
mial distribution, but happens to be approximately valid for a much wider
class of distributions. In particular, when the clustering is weak, solutions of

2 2
this equation correspond to the inverse of the cluster coefficient a (V) /VQ

discussed in Chapter 2.1.2 for compound Poisson distributions. This result
will be demonstrated in this appendix.

Let us assume the general equation

ay(4A)"^ + by(2A)~^ + cy(A)~^ = 0, (D.13)

and determine the coefficients a, b and c such that one solution of this equa
tion in y corresponds to the cluster coefficient. We start from the general
equation

y(JA) = ysjh(v)e~J*^'^dv, (D.14)

222 IC Fails

and use the assumption that clustering is weak, that is, that h(v) is narrowly

concentrated around its mean VQ. In fact, we assume that h(v) can be approxi

mated by a normal distribution with mean VQ and standard deviation a (v) ,

and that the latter is small. We then find

y (jA)«yse e"̂ ' ' . (D.15)

2
When the variance a (v) is zero, the compound distribution is the regular

Poisson one, and the only solution of Equation (D.13) should be y = 0. This

leads immediately to the requirement a + b + c = 0. The left hand side of the

equationwouldchangesign, however, if its derivative at y = 0 were not zero

too, which would force the existence of a second solution, similarly to what

was observed with Equation (D.7). Consequently, we also require

4a + 2b + c = 0. The solution to these two equations is b = -3a and

c = 2a. As global multiplicative constants do not matter, the simplest solu

tion is a == 1, b = - 3 and c = 2 , as in Equation (D.7).
When we now insert Equation (D.15) in Equation (D.13), with the coeffi

cients as established above, and expand the exponentials, we find

3AVvoy-cT^(v)) = 0, (D.16)

which leads to the desired conclusion that the non-trivial solution to Equation
(D.13) is

y = a^(v) /vQ^ (D.17)

that is, the inverse of the cluster coefficient. This result is independent of the
details of h(v) when the latter is narrowly concentrated around v = VQ.

Appendix E

Cell Fail Probabilities

The likelihood function L equals

(E.l)

and has to be minimized with respect to its parameters Uj, or with respect to
the cell fail probabilities, using Equation (5.1). In this appendix, the latter
strategy will be followed.

There are two possibilities. Each object has its own cell fail probability tj,
or all cell fail probabilities are equal to some global probability t. The maxi
mizing ti or t are found more easily by maximizing the logarithm of L rather
than L itself. The resulting equations are

(Vi) o, K-o;
V^i l-u= 5t;

(E.2)

and

u- 1 - u- ~di
(E.3)

respectively, tj or t can be obtained from these equations using equation
(5.1), which shows that

224 IC Fails

and a similar equation for tj. These first derivatives are always positive,
because the object fail probability increases when the corresponding cell fail
probability increases. Using these equalities, we easily find that the maximum
likelihood equation for different cell fail probabilities is

Ui = l - (l - t i / ' = 0 / K , (E.5)

while, for a single cell fail probability, it is

0;S,

i l - (l - t)

K ^ S ^ . (E.6)

The latter equation is an implicit equation in the global cell fail probability
. ^ ^ Si

t . It has always a solution, for 1 - (1 -1) is a monotonically increasing

fiinction of the global cell fail probability. The sum on the left hand side is

infinite when the latter is zero, and decreases monotonically to V O-s-,

when the cell fail probability equals 1. It will, therefore, be equal to the sum

on the right hand side for some value of t between 0 and 1.
For the solutions of these equations to be true estimates of the respective

cell fail probabilities, they have to correspond to maxima of the likelihood
function L. Maximality can be established by showing that the second deriva
tive of ln(L) is negative. This second derivative will be calculated explicitly,
because it is also related to the possible statistical variations in the maximum

likelihood estimates tj and t. The homogeneous case is the most difficult one,

and will be treated first.
Differentiating ln(L) twice, we find

,2
- \ l n (L) = A + B, (E.7)
di

in which

Appendix E.Cell Fail Probabilities 225

O, K - 0 ,
(E.8)

and

B
Oj K - 0 ; V U ;

V^i l - ^ i dt
2 •

(E.9)

B can be rewritten, using Equation (E.4) and

2
d U: 1 - U;
— • = - S i (S i - l) L

dt (1 - t)

S j - l ^ j

1 -t'dt '
(E.10)

as

-Zhi
ifO- K-O^du,

U- 1 - U; dt
(EM)

The final step in calculating the second derivative of ln(L) is to combine
the terms in A and B that are proportional to Oj, and the terms proportional to

K - O-. These combinations involve the factors

1 ^ i

U:'di 1 - t U, 1 - t 1 - t
(E.12)

and

I dn^ S | - l

1 - u J t 1 - t
1

1 - t
(E.13)

Using the results above, the second derivative of ln(L) is seen to be equal
to

226 IC Fails

O; S; chX

Hill-idi "̂ 1 - t X
O, K - 0 .

1-u 1 /

(E.14)

which is negative when t = t, because the first term on the right hand side is
negative, and the second term vanishes because of Equation (E.3).

The heterogeneous case is similar, but more straightforward, for ln(L) is a
sum of terms, each one of which depends on the cell fail probability of a sin
gle object only. Consequently,

dx,t.
ln(L) = 0 I'^J- (E.15)

Furthermore, when i = j , all equations for the homogeneous case, starting with
the definitions of A and B, remain valid after removing all sums over i, and
replacing t by tj, and all derivatives with respect to t by partial derivatives with
respect to tj. The second partial derivative of ln(L) equals

Oj S; SUj

+
^O; K-Oj^SUj

1-t; 1-u l y 5t '
(E.16)

which is negative when t = t, because the first term on the right is, while the
second term vanishes according to Equation (E.2).

At the solutions of the maximum likelihood equations, the second deriva
tives can also be written as

5tf
-ln(L) K

U i (I - U i)

SU;

V^tiy
(E.17)

in the heterogeneous model, and

«t i Uj (l - U j)
St

(E.18)

Appendix E: Cell Fail Probabilities 227

in the homogeneous one. The derivatives on the right in these equations are

given in Equation (E.4), and need to be evaluated at \{ and t, respectively.
When the sample size K is large, the variances of the maximum likelihood
estimators are roughly equal to minus the inverses of these second derivatives.
In the heterogeneous model, the variances actually form a covariance matrix,
which is the inverse of the matrix of second derivatives. The latter matrix is
diagonal, however, because of Equation (E.15), and inverting it amounts to
nothing more than inverting the individual diagonal terms.

Appendix F

Characterization Group

The characterization group contains M devices, and it is known of each
device in the characterization group whether it passed or failed the object
tests. The number of times object i failed among the devices in the character
ization group equals Oj, and it will be assumed that the objects fail
independently. R, the probability that a device fails one or more of the object
tests, is then given by

R = 1 -]^ (1 -Ui) (Rl)

Even if all the objects fail independently, this independence is lost within
the characterization group, for then the probability that at least one of the
objects fails is 1. To handle this dependency, all possible fail patterns need to
be considered explicitly.

1 LIKELIHOOD EQUATIONS

Let H|̂ be a particular set of objects such that object i has failed if i e Sj^,

and passed if i ^ Sj^. Each set Sĵ is labeled by an integer k, running from 0 to

2^-1. k = 0 corresponds to the empty set. To simplify the notation, sums over

H|̂ , k > 1 will be indicated by sums over S, with the restriction to

k > 1 understood.

230 IC Fails

The probability p^ of a particular set equals 0 when S is the empty set,

and otherwise

similar to equation (5.18). Note that p^ is a probability with respect to the

characterization group. From equation (F.2),

^ ^ P H = 1' (F-3)

as it should, because every device in the characterization group has at least
one failing object, and because the set of Hĵ , k > 1, covers all possible combi
nations of passing and failing objects.

Equation (F.3) has an interesting consequence. The pj, introduced in Chap

ter 5.7, are related to the p̂ ^ through

Pi = y P" . (F.4)

Using Equations (F.4) and (F.3), we find

^ P i > l , (F.5)

for every p^ in the sum in Equation (F.3) occurs in at least one of the sums in

Equations (F.4).
The number of devices for which the set of failing objects is H, is M^ . By

definition of the characterization group, M^ equals 0, and, by definition of

M - , V M - = M. The resulting likelihood function L equals

Appendix F: Characterization Group 231

Note that, if there is only one object, M equals Oj, R equals uj, and L
equals the constant 1. This becomes obvious once we realize that, with only
one object, the characterization group is merely a random selection from the
failing devices, and no more statistical variability is possible within this
group. Only with more than one object can any non-trivial information be
obtained from the characterization group.

L has to be maximized with either individual tj or all tj equal to a global t.

In the former case, maximizing the logarithm of L with respect to the Uj will

work just as well. The likelihood equation is

O i _ M ^ M | R , „

U| 1 ~ ^i R ^^i

Using Equation (F.l), we find

5R 1 - R
9U| 1 ~ ^i

(F.8)

which leads to the maximum likelihood estimator u - / R = O^/M, and

shows that pj can be estimated by 0 | / M , despite the dependencies between

the object fails in the characterization group. Likewise, when a single cell fail

probability t is assumed, the p- obey the equation

O-s.

i Pi i

2 HETEROGENEOUS MODEL

In the heterogeneous case, pj is estimated by 0 - / M , but it is not immedi

ately obvious that the desired cell fail probabilities t- can be extracted from

p- . In the following discussion, the ^ mark over the random variables will be

left out, and all random variables will be understood to be maximum likeli
hood estimators.

232 IC Fails

Clearly, if the object fail probabilities û can be obtained, so can the cell

fail probabilities, and, as the former equal Rp., and as R is related to the

object fail probabilities through Equation (F.l), the latter can be obtained if
the equation

can be solved. With the definition

f(R) = 1 - R - J ^ (l - R p .) , (F.ll)

Equation (F.IO) is equivalent to f(R) = 0, and the question is whether f(R) has
zeros in [0, 1].

Equation (F. 11) always has the solution R = 0, but that is not an acceptable
solution, for the existence of failing objects shows that the probability of a
device failing the objects tests is not zero. It has the solution R = 1 if, and only
if, at least one p̂ equals 1. In all other cases, a solution between 0 and 1

should be found.
It is easy to see that f(0) is 0 and f(l) is negative. Also, the slope of f(R)

equals

- i + y P i T T (1-Rpj) (F-12)

It equals - 1 + Vp- at R = 0, and is non-negative there, according to Equa
tion (F.5). Furthermore, the slope is a continuous function of R, and is
monotonically decreasing when R goes to 1. In fact, at R equal to 1, the slope
is negative, as f(R) decreases between R = 0 and R = 1. The slope, therefore,
must have a single zero in [0, 1].

The behavior of f(R) on [0, 1] is now as follows. It starts out at 0 and
increases. It then has a maximum, after which it continuously decreases until
it reaches f(l), where its value is negative. It, therefore, has a unique zero on
[0, 1], in addition to the one at R = 0.

The exception to this qualitative behavior occurs when Vp^ = 1,

because then the two zeros coincide at R = 0. On the other hand, this anoma-

Appendix F: Characterization Group 233

lous case occurs only when each device has exactly one failing object. This
indicates a strong negative correlation between the object fails, and it is not
surprising then that Equation (F.l 1) fails to produce a meaningful result.

3 HOMOGENEOUS MODEL

Equation (F.9), like Equation (5.6), is a complex implicit equation in t. It
always has a solution, for the same reason that Equation (E.6) always has a
solution. The proof of the existence of a solution relies on the monotonic
increase of pj as a function oft

In the homogeneous model, pj is estimated using Equation (5.19), with Uj

and R being functions of the estimate t . pj is never equal to 0, even when
/—̂
t = 0, because then

Pi = . (F.13)

On the other hand, when t = 1, p̂ is equal to 1 too. That p̂ is an increas

ing function of t is intuitively obvious, and will now be demonstrated.

We use the abbreviation

Q = (1 - t) , (F.14)

and find . ^
P = - ^ , (0.1)

1-Q^
in which a = S/s . s is the size of the object in question and S is the sum
over the sizes of all the objects.

As Q is a decreasing function oft, p is an increasing function oft if it is a
decreasing function of Q. It equals 1 when Q is 0, and 1/a when Q is 1. Con
sequently, p is monotonically decreasing for Q G [0 , 1], if it has no
extremum in that range.

To show the absence of an extremum, we use

234 IC Fails

dp _ Q^'VQ(l-a) + a) - l

2 2
This derivative equals - (a - 1) / a when Q is 1. It has a zero when

Q^~\Q(l-a) + a) = 1. (F.16)

The left hand side of Equation (F.16) equals 0 when Q is 0, and equals 1 when
Q is 1. It has extrema at Q equal to 0 and 1, and, therefore, is equal to 1 only
when Q is 1. That, however, does not correspond to an extremum of p, and we
conclude that p has no extremum when Q € [0, 1] ; or, in other words, that p
is an increasing function oft.

In the homogeneous model, the primary estimate is that of t . This esti
mate, and, therefore, also the estimate of R, equals 1 only if all objects fail on
all devices in the characterization group. It equals 0 in the same situation in

which the heterogeneous estimate of R equals 0, namely when V O- = M.

4 VALIDITY OF THE LIKELIHOOD ESTIMATES

Even if a solution of the maximum likelihood equation is found, it is not
acceptable unless it corresponds to a maximum of L (or ln(L).) This issue will
now be investigated, but only for the heterogeneous model. The starting point
is the logarithm of the likelihood fiinction

^ 0 . 1 n U i + ^ (M - 0 .) l n (l - u -) - M l n R . (F.17)

The subsequent notation will be simplified by defining

^ 5u- 1 - u.

and

Appendix F: Characterization Group 235

R;; =
a aR

iJ Su.SUj T^^iRj(i-V' (F.19)

where 5^ equals 1 when i = j , and 0 otherwise. Uj and R, obey an important

inequality. Rj equals T~T(1 - ^j) ? ^^^ is the probability that all objects other

than i do not fail. Therefore, UjRj is the probability that object i fails, and no
other objects. Consequently, the sum over these terms is the probability that
exactly one object fails. R on the other hand is the probability that at least one
object fails, that is, exactly one, or more than one. This implies

Z^iRi^ R (F.20)

The maximality of the solution of Equation (F.7) can be established by
evaluating the second derivative of ln(L), which equals

O.. M - O:

Uj (l - U j) '
SiJ + P^i^J-fRiJ

(hX'^dxX'

'dt^'dt-
(F.21)

Unlike the situation in Appendix E, this matrix is not diagonal, since the fails
in the characterization group are correlated. At the solution of (F.7), the coef
ficient of the product of the derivatives of Uj and Uj equals

M
R

l-̂ . 1
8,

R.Rj ^

u. 1 -u / y R(l-R)^
(F.22)

For the solution of the maximum likelihood equations to be valid, its
matrix of second derivatives has to be negative definite. This translates into

the requirement that the matrix of the coefficients of —-- in equation (F.22)
R

needs to be positive definite. In other words,

1
S..«i-j i + ,

R;R; ^
5;: '-^

u- l-uJ 'J R (l - R)
(F.23)

236 IC Fails

has to be positive for all values of the coefficients a^.
(F.23) is now easily shown to be positive, as it can be written as

Z 2 1 1 I V^ V^i IS-

. ^ U i (l - U i) R (1 - R) ^ Z . . i ^ . V 1 1

(F.24)

The reason for writing the second term in this curious fashion is that we can
now use Cauchy's inequality to show that (F.23) is larger than

i R i Z z, 1 1 —!
R

(F.25)

which is positive, as all factors preceding the one in parentheses are positive,
and as that final factor is positive because of Equation (F.20).

Appendix G

Component Fail Probabilities

1 MAXIMUM LIKELIHOOD ESTIMATION

With

and

U; = 1 nV".

(G.l)

(G.2)

the maximum likelihood equations for the probabilities QJ that the compo

nents are defect free are

5qj
InL = 1,

^O; M; - O;

U; 1 u j a q j

,8n.
^ = 0, (G.3)

with

238 IC Fails

With the use of Equation (G.4), Equations (G.3) can be rewritten as

^ M; - oy
M i - - i -'

•V l-^iy
1

%• - 0, (G.5)

assuming that q: ^ 0. This set of equations has to be solved numerically.

Before continuing with these equations, we need to determine when a
solution corresponds to a maximum. Even though the likelihood function is
defined for all values of the component probabilities, we need to restrict solu
tions to the hypercube % defined by

(V j) (0 < q j < l) , (G.6)

for the solutions to be physically meaningful. It is shown in that there is a sin
gle solution of Equations (G.5) in a region that includes %, and that this
solution is a maximum. If the solution is outside K, the likelihood function has
to be maximized on its boundary, which is a much more complicated problem
than finding solutions to Equations (G.5), and will not be addressed here.

The remaining question is how to find the unique maximum of L. As L is a
non-linear function of many variables, and Equations (G.5) likewise are non
linear, no easy solution is available. The maximum, therefore, has to be found
with a laborious search algorithm (see [44] for example). It is useful, how
ever, to first make a rough estimate of where the solution will likely end up.

To be meaningful, the maximum has to be located within the hypercube K
(Equation (G.6).) In addition, we expect the objects to have reasonable yields,
which implies that the component yields should all be close to 1. This is
unfortunate for numerical reasons, for an estimate close to 1 may end up as 1
because of machine round off In other words, the computer used to do the
numerical calculations may not be able to express the difference between qj
and 1 if 1 - qj is small enough

This numerical problem can be solved by changing variables. Instead of
qj, we use r. = ln(q:). When qj is close to 1, rj is small, and when it goes to 0,

rj goes to -00. The hypercube K is mapped onto the hyperquadrant %\ defined

as

Appendix G: Component Fail Probabilities 239

(Vj)(rj<0). (G.7)

Uj equals e ^ , and is positive, except when any TJ goes to -oo, in wliich
case it goes to 0. The other interesting value for Uj is 1, which it attains, in %\

when V.n-r . = 0, that is when r- = 0 for each j for which n-- T̂ 0. L is Z^j iJ J J -̂ ij
positive in %\ except when some Uj equals 0, or some Uj equals 1.

All algorithms that attempt to find maxima need a good starting point, and
one convenient one is the maximum of L along r- = r for all j . The corre
sponding maximum likelihood equation is

O.-M.u.
y ^ - ^ S , = 0, (G.8)

s.r with u- = e . This equation is still non-linear, but now of only one variable.

Moreover, we only need a solution in the range r < 0, and standard techniques
are available for such a simplified problem. There obviously is a solution, for
the sum on the left hand side of Equation (G.8) is positive when r goes to -oo,
and is negative when r goes to 0.

2 LOCATION OF THE MAXIMA OF THE LIKELI
HOOD FUNCTION

The question of whether the solutions to the maximum likelihood equa
tions correspond to a maximum can be settled by determining whether the
matrix of second derivatives of ln(L) is negative definite at those solutions.
This matrix is described by the general element

240 IC Fails

d d
InL

E. =

n-n, i^ti 1
Z^if5:'--2^^^t

^r^t %

(l -U ;) '
• ^ (M i - O j)

M;
M; - O:

J 1 - u
J ^

(G.9)

At the solution of the maximum likelihood equations, F = 0, according to
Equation (G.5).

Consequently, for an arbitrary set of numbers {a^.},

^ a j . a ^ ^ „ InL

r,t
'Sq^eqt

(G.IO)

which is manifestly negative for all choices of {a^,}. The matrix of second

derivatives is, therefore, negative definite, and any solution of the maximum
likelihood equations corresponds to a maximum.

The remaining question is whether this solution exists within the hyper-
cube % defined in Equation (G.6), and whether this solution is unique. I will
show the existence and uniqueness of the solution within a region J that is
somewhat larger %.

L is a polynomial in the component probabilities qj, and is therefore
defined for all finite values of those probabilities. It vanishes whenever any of
these probabilities equals 0, and also whenever any of the object probabilities
Uj equals 1. The latter are also polynomials in the qj.

Let h be the region in which all q; are positive. In A, u, is a positive and

non-decreasing fiinction of the qj. We can easily find the region 61-^ ah in

which Uj is less than 1. As Uj is trivially less than ImK.KczSi^.

The extended region c5 is now defined as the intersection of all regions ffij

Each /£j contains at least K, and cJ, therefore, contains the hypercube as well. In

addition, L is positive inside cJ, and goes to 0 on its boundary. It defines an

extended region in which the likelihood fiinction has a single maximum, and

Appendix G: Component Fail Probabilities 241

no other extrema (because all extrema are maxima.) The position of the maxi
mum need not be in %, though.

Appendix H

Yield and Coverage

Assume that there are F defects. Let the fraction of tested single defects be
c, and let T be the set of defects not exposed by some arbitrary but fixed test
sequence. T depends on the test, but its size y = (l-c)F is independent of the
test.

let Xj be a random variable that equals 1 when defect i is tested by the test
sequence with defect coverage c, and 0 otherwise. The Xj are in general not
mutually independent. Because of its definition,

x^x. = X,
(H.l)

(1 -X.) (1-X.) = 1-X.

Each chip contains a set S of the defects. S can be empty, indicating a good
chip. The probability of finding a chip with this set of S defects will be indi
cated by ps. S is assumed to be tested when any of its members is. The

corresponding random variable Xg equals 1 - TT (1 - X:), which equals
-̂ -^j G S

1 when any of the members of S is tested and 0 otherwise.
It is more convenient to work with 1 - Xg than with Xg. 1 - Xg depends on

r , for it equals 1 when S c F , and is 0 otherwise. To make this dependency
explicit, it will be indicated by r|gp. Because the test sequences considered at

this point all have coverage c, rj^p obeys the useful sum rule

244 IC Fails

^ | S | = n ^ ^ ^ (| S | = „) , S c r ^n^

independent of the actual test sequence. The average over all test procedures
of rigp will be indicated by

(H.3)

(H.4)

and, because of

The average

^s

Equation (H.2),

y

°"(!

= (-Hsr)^

n

) ^ i s i =

D-

n
(H.5)

will also be needed. Equation (H.4) leads to the result that

3
^n= 7f^' (H.6)

When n > y, aĵ equals 0. SLQ equals 1, and aj equals 1 - c. Otherwise, when

F » n andn> 1,

(H.7)

1 AVERAGE YIELD

We are now ready to consider the yield Y. Clearly, Y corresponds to the
event that either the chip is not defective, or that any existing defects are not
detected by the test sequence; in other words, when the defect S is empty, or
when all the members of the defect S are in P.

Appendix H: Yield and Coverage 245

It is more convenient to consider y, the expected value of Y given the test
sequence. Even though y is an expected value, it still depends on the test
sequence, or, equivalently, on F. As we will study the dependence of y on F,
and as F depends on the randomly selected test sequence, y really should be
treated as a random variable. In this section, it will continue to be indicated by
a lower case y, but a subscript F will be added to make the dependence of y on
F clear.

The yield is given by

^-^n ^ S | = n

and the average over different test generations by

^^n ^^^ = n

Let us now use the all-important assumption that p^ and b^ are uncorre-
lated, at least for sets S of the same size. Or, in other words, that

y Aps(bs-a^) = 0 , (H.lO)

where Equation (8.1) was used as well as the abbreviation

APs=Ps-j4Pn- (H.11)

Equation (H.lO) leads to the equality

y Apobc. = 0 , (H.12)
^ |S |=n ' '

which will turn out to be useful later. It can also be rewritten in the more use
ful form

y , PS^S = P„a„- (H.13)

In other words, combining Equations (H.13) and (H.9),

246 IC Fails

<yr) = S Vn-SPnd-'^)"- (H-14)
n n

To get an impression of the difference between â and (1-c)^ on the aver
age yield, consider the independent defect case with all the occurrence
probabilities equal to n. In that case, ji, the mean number of defects per
device, equals TTF, and

The yield using Equation (H.6) is then equal to (1 -TT) = (1 -TI)
F while it equals (1 - CTI) when the approximate value of aĵ is used. Because

the approximate value of aĵ is valid only when F is very large, and because V^
decreases rapidly when n increases, these two results for the yield are in fact

both equal to e , which is the standard Poisson result.

2 VARIANCE OF THE YIELD

The actual value of yp depends on the test sequence, as indicated by the
subscript F, and will differ from <yr> by some amount. The typical size of
this difference will now be estimated. The conclusion will be that it is propor-

-1/2 tional to F , and therefore negligibly small for large designs.
Consider first the difference

yr-<yr) = y y Ps(^sr-bs) • (HI6)
^^n ^ S | = n

If Ps is a function only of n, but otherwise independent of S, Equations (H.2)

and (H.4) show that yp - (yp) vanishes, or, in other words, that yp is a con

stant, depending only on c and on the constants pg. This suggests that

yp - (yp) depends on the deviation of pg from its average value. And indeed.

Equation (H.16) can be rewritten with the help of Equations (H.2) and (H.4)
as

Appendix H: Yield and Coverage 247

yr-<yr) = Z Z . ^Ps(^sr-bs) • (H.17)

Unlike the left hand side of Equation (H.IO), the right hand side of Equation
(H.17) does not vanish, for it still depends on F, and T could be chosen such
that those sets S are favored that have, for example, especially large ps- On
the other hand, Equation (H.12) can be used to simplify Equation (H.17) even
further to

yr-<yr) ^ Z L . "^Ps^sr
n |S| = n

(H.18)

Note that the sum over n runs from n = 1 to n = y, because Apg equals 0 when

n = 0, and r|gp equals 0 when n is larger than y.

To estimate the size of yp - (yp), we use the inequality

|yr-<yr)|^Z Z . ^^s^sr
n| |S| = n '

(H.19)

and concentrate on the absolute value of the sum over |S| equal to n. In fact,
we will estimate the expected value of its square

y ApsAp^(rispri^p) .
^ | S | = n, |T| = n

(H.20)

The first step is an estimate of the typical size of lApgl, which we take to

be the standard deviation of pg . As there are f J different sets S of size n,

the variance of pg equals

1 V- n 2
' p V

D.
(H.21)

The Pg can have all kinds of values, but we will assume that its distribution is

not dominated by a very small number of very likely defects. I.e.:

248 IC Fails

P S ^ \ 7 ? N P „ ' (H.22)

with X^ a constant that is much smaller than f j and independent of F. The

standard deviation of Pg is then bounded by

fV\ nA/ n 1 . (H.23)

The next step is the actual estimation of the size of the double sum in

Equation (H.20). This double sum seems to be a sum of f J terms, each of

2 2 fV\ "̂
order ^^^n^l) ^̂ ('Hsr^Tr^ ^̂ ^̂ ^^^^ of order 1. kp - (yp)|, therefore,

seems to be of order V^^^n • '̂̂ ^ '̂ however, is not correct, for the Apg can
n

be both positive and negative, and a fair amount of cancellation is expected to
occur. In fact, I will show below that these cancellations lead to an effective
reduction in the number of terms, and that the actual number is of order

fV\^xv 1
I I - — . The final result is then that kp - (yp)| is of order - p V ^n^^n' ̂ •̂ •

n
-1 /2

that yp differs from its average by an amount proportional to F

What remains to be demonstrated is the reduction in the number of terms
in Equation (H.20). For any given S, the sum over T can be divided into sev
eral parts, depending on the degree of overlap of S and T. Symbolically:

y . - = 7 y . - . (H.24)
^ T | =n ^ ^ n < m < 2 n ^ | T | = n), (|S u T| = m)

where m indicates the size of the union of S and T.
I will now show that almost all terms in the sum on the left have the maxi

mal value of m. The number of terms in the second sum on the right equals

If J, for 2n - m is the number of elements in T n S, and

Appendix H: Yield and Coverage 249

2n
1 is the number of ways of selecting subsets of that size from S. Like

wise, m - n is the number of elements of T not in S, and f ~ 1 is the

number of ways one can select those elements from F. The number of terms

with m = 2n, therefore, equals f 1, while the total number of terms in

the sum on the left of Equation (H.24) equals f J. As the ratio between the

2
two is approximately 1 - n / F , we can conclude that the fraction of terms in

2
the sum with M not equal to 2n equals n / F , which is small for large F and n
not too large.

To be able to use this result, we will have to make one more assumption.
The terms with m equal to 2n contribute an amount

y Ap^<r|spri^p) (H.25)
^ (| T | = n),(|SuT| = 2n)

to (H.24). This sum can in general not be simplified, because (r|gpr|jp)

depends on T. Let us assume then that (r|gpr|yp) and Apj are uncorrected

for T that are completely outside S:

y Ap^((r | spr |^p)-a^s) = 0, (H.26)

in which the sum over T is assumed, and

M^^~^p-^|SuT|=2n

depends only on n and S. Equation (H.26) allows us to rewrite Equation
(H.25) as

yAp^(r igpr i^p) = a^^^y Ap^, (H.28)
^ ^ S u T | - 2 n

which, using the definition of Apy, becomes

250 IC Fails

^^ ^ S u T | < 2 n

The result of all these manipulations is that the right hand side of Equation
(H.20) can be rewritten as

2 n - l

|S| = n m = n |T| = n
| S u T | - m

in which the term with m = 2n is now absent. Consequently, the coefficient of

Apg in this complex sum has about f 1 n F terms, as was to be proven.

Appendix I

Estimating First Fail Probabilities from the Fallout

The coverage at the completion of the î ^ test is cj, and the corresponding
yield is yj. The coverage and the yield at the completion of scan based testing
are indicated by Cf and yf, respectively. For completeness, I also define
CQ = 0 and yo = 1- Note that in this appendix, and in this appendix only, yg is

the perceived yield at the beginning of scan based testing, and not the true
yield.

The multinomial parameters are related to the yield by dj = Yj _ i - Yj ?

and, vice versa.

f

1
Yf = 1 - ^ dp (LI)

The negative binomial parameters JLI and a are now estimated from the exper
imental fallout data by maximizing the multinomial distribution, taken as
functions of ju and a. Because of the form of the negative binomial yield
equation, it is convenient to take as its parameters the new variables v = |Li/a
and P = a. With these new parameters,

Yi = (l + C i V) ~ ^ (1.2)

The likelihood function L equals

252 IC Fails

N- N
n ^ i Yf ''''• (1-3)

This function can be maximized using standard optimization routines. L does
have a maximum, as I will now show.

The range of values for the parameters v and P is v > 0 and (P > 0) . It is

easy to see that L vanishes on the boundary of this range, for v = 0 or

p = 0 implies that d- = 0 is zero for every i, while v = oo or P = oo

implies that yf is zero. L, therefore, is a continuous, non-negative function of

V and p, and equals 0 on the boundaries of the range of v and p. Consequently,

it has a maximum in the interior of the range.

Appendix J

Identity of M and S.

If the splats are completely separated, each pin in each splat explains all
the patterns associated with that splat, and no other ones. Mis the set of pins
in the multiplets, S is the set of pins in the splats, and M equals S. This equal
ity will be proven in this appendix.

First, each pin in S^ has to be in M To see that this is true, consider the
hypothetical case that some pin in S ,̂ say p, is not in M Some pin in Ŝ has
to be in M, because otherwise the patterns associated with^ are not explained
by pins in M. Let this other pin be q. q can safely be replaced by p in each
multiplet in which it occurs, and still have the multiplet explain all SLAT pat
terns, since p and q explain the same patterns. This replacement would create
multiplets of the same size as the original ones, which would have been found
already if the process outlined in Chapter 10.3.1 is correct. The replacement,
therefore, does not create new multiplets, and p is in M.

Secondly, each pin in Mis in S. For consider the case that some pin p in M
explains some failing patterns in subset^, but not all. p, therefore, is not in S,
because it does not explain the patterns in subset A, by assumption, and can
not explain the patterns in any other subset as the splats are completely
separated. The other patterns in A still have to be explained by pins in the
multiplets in which p occurs. Because the splats are completely separated, the
patterns not explained by p can only be explained by some pin q in S .̂ q,
however, explains all the patterns in A, including the one explained by p.
Therefore, p is not necessary to explain all the SLAT patterns, and cannot
occur in M, since the multiplets are minimal.

Notice that the last argument also shows that the pins in the same multiplet
all have to come from different splats, and, therefore, that the number of splats

254 IC Fails

is not smaller than the number of pins in the multiplets. On the other hand,
each multiplet must have at least one pin from each splat, for the patterns in
some subset^ would not be explained by a multiplet if none of the pins in S^
were in that multiplet. Consequently, there are as many pins in the multiplets
as there are splats.

References

1 E. J. Aas and V. T. Minh, "Defect Level calculation: The importance of accu
rate models for Defect Distribution and Multiple Fault Coverage in low yield
situations," Proceedings ISCAS '89, pp. 939-944, 1989.

2 M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing
and Testable Design, Computer Science Press, 1990.

3 Y. Arzoumanian and J. Waicukauski, "Fault Diagnosis in an LSSD Environ
ment", Proceedings International Test Conference, 1981, pp. 86-88.

4 Carl Barnhart, Vanessa Brunkhorst, Frank Distler, Owen Farnsworth, Brion
Keller, and Bernd Koenemann, "OPMISR: the foundation for compressed
ATPG vectors". Proceedings International Test Conference, pp. 748 - 757,
2001.

5 Tom Bartenstein, "Fault distinguishing pattern generation". Proceedings
International Test Conference, pp. 820 - 828, 2000.

6 Thomas Bartenstein, Douglas Heaberlin, Leendert Huisman and David Sli-
winski, "Diagnosing Combinational Logic Designs Using the Single Locations
At-a-Time (SLAT) Paradigm", Proceedings International Test Conference,
2001, pp. 287-296.

7 T. Bartenstein and J. Bhawnami, "SLATPIus: Work in Progress, "2nd Interna
tional IEEE Workshop on Yield Optimization and Tesf, Nov. 1-2, 2001.

8 Greg Bazan, Francis Gravel, Leendert Huisman, Anne Pardee, Leah Pastel
and Ken Rowe, "Using Embedded Objects for Yield Monitoring", Proceedings
of the IEEE/SEMI Advanced Semiconductor Manufacturing Conference and
Workshop, pp. 124-128, 2004.

9 Vamsi Boppana and Masahiro Fujita, "Modeling the Unknown! Towards
Model-Independent Fault and Error Diagnosis, Proceedings International
Test Conference, pp. 1094-1101, 1998.

10 George Casella and Roger L. Berger, Statistical Inference, Duxbury, 2002.
11 Brian Chess and Tracy Larrabee, "Creating Small Fault Dictionaries", IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,
pp. 346-356, 1999.

256 IC Fails

12 A. D. Cliff and J. K. Ord, Spatial Processes Models & Applications, Pion Lim
ited, 1981.

13 Randall S. Collica, "The Effect of the Number of Defect Mechanisms on Fault
Clustering and its Detection Using Yield Model Parameters", IEEE Transac
tions on Semiconductor Manufacturing, vol 5. pp. 189-195, 1992.

14 Randall S. Collica, Jose G. Ramirez and Winsom Taam, "Process Monitoring
in Integrated Circuit Fabrication using both Yield and Spatial Statistics", Qual
ity and Reliability Engineering International, pp. 195-202, 1996.

15 Harald Cramer, Mathematical Methods of Statistics, section 15.6, Princeton
University Press, 1974.

16 Alfred L. Crouch, "Design-for-Test for Digital IC's and Embedded Core Sys
tems", Prentice Hall, New Jersey, 1999.

17 J. A. Cunningham, "The Use and Evaluation of Yield Models in Integrated Cir
cuit Manufacturing," IEEE Transactions on Semiconductor Manufacturing,
vol. 3, pp. 60-71, May 1990.

18 D. V. Das, S. C. Seth, P. T. Wagner, J. C. Anderson and V. D. Agrawal, "An
Experimental Study on Reject Ratio Prediction for VLSI Circuits: Kokomo
Revisited," Proceedings IEEE International Test Conference, pp. 712-720,
September 1990.

19 William R. Dillon and Matthew Goldstein, "Multivariate Analysis Methods and
Applications", John Wiley & Sons, 1984.

20 A. W. F. Edwards, Likelihood, The Johns Hopkins University Press, 1992.
21 Edward Eichelberger, Eric Lindbloom, John A. Waicukauski and Thomas W.

Williams, "Structured Logic Testing," Prentice Hall, New Jersey, 1991.
22 W. Feller, An Introduction to Probability Theory and Its Applications, John

Wiley & Sons, 1967.
23 Albert V. Ferris-Prabhu, "On the Assumptios Contained in Semiconductor

Yield Models", IEEE Transactions on Computer-Aided Design, vol 11. pp.
966-975.

24 Virginia Foard Flack, "Introducing Dependency into IC Yield Modesl", Solid
State Electronics, vol 28, pp. 555-559, 1985.

25 Sophie Gandemer, Bernard C. Tremintin and Jean-Jacques Chariot, "Critical
Area and Critical Levels Calculation in I. C. Yield Modeling", IEEE Transac
tion on Electron Devices, vol 35., pp. 158-166, 1988.

26 Mark H. Hansen, Vijayan N. Nair and David J. Friedman, "Monitoring Wafer
Map Data From Integrated Circuit Fabrication Processes for Spatially Clus-
terd Defects", Technometrics, vol. 39, pp. 241-253, 1997.

27 S. M. Hu, "Some Considerations in the Formulation of IC Yield Statistics",
Solid-state Electronics, vol 22., pp.205-211, 1979.

28 Leendert M. Huisman, " Fault Coverage and Yield Predictions: Do we need
more than 100 % Coverage ?", Proceedings European Test Conference, pp.
180-187, 1993.

29 Leendert M. Huisman, "Yield Fluctuations and Defect Models", Journal of
Electronic Testing: Theory and Applications, pp. 241-254, 1995.

References 257

30 Leendert M. Huisman, "Diagnosing Arbitrary Defects in Logic Designs Using
Single Location at a Time (SLAT)", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp 91-101, 2004.

31 Leendert M. Huisman, Maroun Kassab and Leah Pastel, "Data Mining Inte
grated Circuit Fails with Fail Commonalities", Proceedings International Test
Conference, pp. 661-668, 2004.

32 Sri Jandhyala, Harl Balachandran, Manidip Sengupta and Anura P. Jaya-
sumana, "Clustering Based Evaluation of IDDQ Measurements: Applications
in Testing and Classification of ICs", VLSI Test Symposium, pp. 444-449,
2000.

33 Thomas P. Karnowski, Kenneth W. Tobin, Shaun S. Gleason and Fred
Lakhani, "The Application of Spatial Signature Analysis to Electrical Test
Data: Validation Study", Proceedings ofSPIE, vol 3677, pp. 530-541, 1999.

34 Israel Keren and Dhiraj Pradhan, "Yield and Performance Enhancement
Through Redundancy In VLSI and WSI Multiprocessor Systems", Proceed
ings of the IEEE, vol 74, pp. 699-711, 1986.

35 David B. Lavo, Tracy Larrabee and Brian Chess, "Beyond the Byzantine Gen
erals: Unexpected Behavior and Bridging Fault Diagnosis," Proceedings
International Test Conference, 1996, pp. 611-619.

36 David B. Lavo, Brian Chess, Tracy Larrabee and F. Joel Ferguson, "Diagnos
ing Realistic Bridging Faults with Single Stuck-At Information," In IEEE Trans
actions on Computer-Aided Design of Integrated Circuits and Systems, vol.
17, no. 3, pp. 255-267, March 1998.

37 David B. Lavo, Ishmed Hartanto and Tracy Larrabee, "Multiplets, Models, and
the search for Meaning: Improving Per-Test Fault Diagnosis", Proceedings
International Test Conference, 2002, pp. 250-259.

38 B. W. Lindgren, Statistical Theory, MacMillan Publishing Co., Inc., 1976.
39 Fred J. Meyer and Dhiraj K. Pradhan, "Modeling Defect Spatial Distributions",

IEEE Transactions on Computers, vol. 38, pp. 538-546, 1989.
40 Steven D. Millman, Edward J.McCluskey and John M. Acken, "Diagnosing

CMOS bridging faults with stuck-at fault dictionaries," International Test Con
ference, 1990, pp. 860-870.

41 Christopher Z. Mooney and Robert D. Duval, Bootstrapping A Nonparametric
Approach to Statistical Inference, Sage Publications, 1993.

42 B. T. Murphy, "Cost-size Optima of monolithic integrated circuits". Proceed
ings IEEE, vol 52, pp. 1537-1545, 1964.

43 Jon Patrick, private conversation.
44 William H. Press, Brian P. Flannery, Saul A. Teukolsky and William T. Vetter-

ling, "Numerical Recipes in C", Cambridge University Press, 1988.
45 J. E. Price, "A New Look at Yield of Integrated Circuits," Proceedings of the

IEEE, vol. 58, pp. 1290-1291, August 1970.
46 Janusz Rajski and Jerzy Tyszer, "Test Data Compression and Compaction

for Embedded Test of Nanometer Technology Designs", Proceedings Inter
national Conference om Computer Design, 2003.

258 IC Fails

47 Jose G. Ramirez and Brenda Cantell, "An Analysis of a Semiconductor Eper-
iment Using Yield and Spatial Information", Quality and Reliability Engineer
ing International, pp.35-46, 1997.

48 J. Richman and K. R. Bowden, "The Modern Fault Dictionary", Proceedings
International Test Conference, pp. 696-702, 1985.

49 Jayashree Saxena, Kenneth M. Butler, Hari Balachandran, David B. Lavo,
Brian Chess, Tracy Larrabee and F. Joel Ferguson, "On Applying Non-Clas
sical Defect Models to Automated Diagnosis," Proceedings International Test
Conference, 1998, pp. 748-757.

50 S. C. Seth and V. D. Agrawal, "Characterizing the LSI Yield Equation from
Wafer Test Data," IEEE Transactions on Computer-Aided Design, vol. CAD-
3, pp. 123-126, April 1984.

51 Debendra Das Sharma, Fred J. Meyer and Dhiraj K. Pradhan, "Yield Optimi
zation of Modular and Redundant Multimegabit Rams: A Study of Effective
ness of Coding Versus Static Redundancy Using the Center-Satellite Model",
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol 1,
pp. 546-558, 1993.

52 J.J.T. Sousa and J.P. Teixeira, "Defect Level Estimation for Digital ICs", Pro
ceedings International Wprkshop on Defect and Fault Tolerance in VLSI Sys
tems, pp. 32-41, 1992.

53 C. H. Stapper, Jr., "On a Composite Model to the IC Yield Problem," IEEE
Journal of Solid-State Circuits, pp. 537-539, December 1975.

54 Charles H. Stapper, Frederick M. Armstrong and Kiyotaki Saji, "Integrated
Circuit Yield Statistics", Proceedings of the IEEE, vol 71, pp. 453-470, 1983.

55 C. H. Stapper, "On Yield, fault distributions, and clustering of particles", IBM
Journal of Research and Development, pp. 326-339 1986.

56 Winsom Taam and NMichael Hamada, "Detecting Spatial Effects From Fac
torial Experiments: An Application From Integrated Circuit Manufacturing",
Technometrics, pp. 149-160, 1993.

57 Aakash Tyagi and Magdy A. Bayoumi, "Defect Clustering Viewed Through
Generalized Poisson Distribution", IEEE Transactions on Semiconductor
Manufacturing, vol 5. pp. 196-206, 1992.

58 Srikanth Venkataraman, Scott B. Drummonds," A Technique for Logic Fault
Diagnosis of Interconnect Open Defects," Proceedings VLSI Test Sympo
sium, April 2000, pp. 313-318.

59 Srikanth Venkataraman, Scott B. Drummonds, "POIROT: A Logic Fault Diag
nosis Tool and Its Applications," International Test Conference, 2000, pp.
253-262.

60 J.A. Waicukauski and E. Lindbloom, "Failure diagnosis of structured VLSI", in
IEEE Design & Test of Computers. Volume 6, pp. 49-60, Aug. 1989.

61 Colin A. Warwick and Abbas Ourmazd, "Trends and Limits in Monolithic Inte
gration by Increasing the Die Area", IEEE Transactions on Semiconductor
Manufacturing, vol. 6, pp.284-289, 1993.

62 T. W. Williams and N. C. Brown, "Defect Level as a Function of Fault Cover
age," IEEE Transactions on Computers, vol. C-30, pp. 987-988, December
1981.

References 259

63 Peter Wohl, John A. Waicukauski, Sanjay Patel and Minesh B. Amin, "X-Tol-
erant Compression and Application of Scan-ATPG Patterns In a BIST Archi
tecture", Proceedings International Test Conference", pp 727-736, 2003.

64 Allan Y. Wong, "A Systematic Approach to Identify Critical Yield Sensitive
Parametric Parameters", 2"^ International Workshop on Statistical Metrology,
pp. 56-61,1997.

Symbols and Abbreviations

Area of chip

Set of objects on a device that were observed to have failed

Cluster parameter
>

. . Probability that a defect produced by a cluster centered at r will fall
^ within the area of the chip centered at the origin

>

A , B Partitions of SLAT patterns

BIST Built In Self Test

pj Logarithm of the expected yield of component of type j

b(K;N,p) Binomial distribution of K fails given N tries and failure probability p

(Eip Set of faults in the backcone defined by latch 1 and pattern p

bg Probability that a randomly generated test sequence detects S

c (Defect) coverage

C Area of cluster

cĵ (Defect) coverage after the completion of the k̂ ^ test

y Inverse cluster parameter

D Fault machine value is 0, good machine value is 1

D Fault machine value is 1, good machine value is 0.

ci Input voltage range that will produce an output in S

J^ Range of logically ambiguous voltages

dj]̂ Probability that a chip on wafer i will fail first on the k* test step

dĵ Probability that a chip will fail first on the k test step

262 IC Fails

DL

11

F

f(A)

g(A)

G(z)

%

h(ij)

I

J

I

1.
^ intersection

•̂ union

J+-

J..

k

K

K

kf

X

L

A

LLR

M

M

m({ni};N;{pi})

VYk-l

Fraction of chips that pass all tests, but are still defective;
equal to (Y-Yo)A^

Expectation value of X-X-, with i and j neighbors

Number of defects in the defect list

InYo(A)

A"'lnYo(A)

Generating function of Pĵ

(Vj) (0<qj .< l)

Measure of fail similarity between objects i and j

Number of wafers

Number of pairs of die on a wafer

Intersection of all regions Oi^

Intersection of faults in backcones

Intersection of faults in backcones corresponding to pattern p

SLAT based combination of faults in backcones

Union of faults in backcones

Number of pairs of die with both die passing

Number of pairs of die with one die passing and one failing

Number of pairs of die with both die failing

Test step label

Number of devices having passed some initial portion of the test sequence

Probability that a failing device is also in the characterization group

Label of final test step

Distribution strength of clusters

Likelihood ratio

Likelihood ratio

LogLikelihoodRatio; equal to -In A

Number of chips on a wafer

Set of multiplet pins

Multinomial distribution given N tries and nj fails with probability pj in
groupi

Symbols and Abbreviations 263

\x Average number of defects on a chip

|Li M e a n

m. Number of ICs on which object i is known to have failed the tests

Mj Number of devices on which object i was tested

M I S R Mult iple Input Shift Register

N Number of chips to be tested

V Distribution strength of defects in a cluster

Average number of defects in cluster

^ equals v C

N^ef N u m b e r of defective chips that pass all tests

N£)F N u m b e r of degrees of freedom

nj Number of ICs on which object i is known to have passed the tests

Vj Strength of primitive polluter i

n ĵ N u m b e r of units of type j in the obj ect i

ny N u m b e r of chips on wafer i failing test step j

Nj Number of chips failing the j * test step

Vj n^j/sj

VQ Distribution strength of defects in uniform background

Npass N u m b e r of chips passing all tests.

v(r) Aggregate strength of primitive polluters at r ; equal to V Vjdr

H Set of all of all failing objects on a device.

Oj Number of devices on which object i failed the object tests

Ojj Number of devices on which both objects i and j failed the object tests

Po Overall wafer yield

pj Yield in region i

PI Primary Input

TCj Occurrence probability of defect i

Pjj Probabili ty that a chip has a defect complex of size n.

P O Primary Output

Ps Probabili ty that chip has defect complex S

qj Probabili ty that component j is defect free

264 IC Fails

Qn

Q(z)

Probability that a chip with defect complex of size n will pass the first k
tests

Generating fiinction of the distribution of the number of defects on the
chip produced by a single cluster

r measure of deviation -21nA from its expected value
>
r point in two dimensional space, for example on a wafer

R Radius of circular chip

R Probability that at least one of the objects fails the object tests.

p Radius of cluster
-21nA-Nj)p

p Measure of commonality; equal to = = —
^2NDP

(R-^ Region in which Uj is less than 1

rj In(qj)

S Circle with radius R + p

S Defect complex on a chip

h Region in which all QJ are positive

S Set of splat pins

S^ Set of pins in splat corresponding to partition A.

s@l Stuck-at 1 fault.

s@0 Stuck-at 0 fault.

Sj S izeof object i.

SLAT Single Location At a Time

SLOR Spatial Log Odds Ratio

tj Probability that a single cell in object i will fail

TFSF Number of latches that fail on both the tester and the simulator

TFSP Number of latches that fail on the tester but pass on the simulator

TPSF Number of latches that fail on the tester and pass on the simulator

TPSP Number of latches that fail on both the tester and the simulator

Uj Probability that object i will fail the object tests

y Probability that a chip will pass all tests; equal to <Y>

Y Yield; equal to Np^ss/N

y(c) Probability that a chip will pass the tests having coverage c

y: Probability that a chip will not fail the first j test steps

Symbols and Abbreviations 265

Yj Yield after completion of the j * ^ test step

Yo Probability that a chip is defect free; equal to <Yo>

YQ Fraction of chips that are defect free

Ys Gross yield

a^(H) Variance of random variable H

<H> Expected value of random variable H

H Maximum likelihood estimate of random variable H

Index

accuracy 155,176
area dependence 72
Array BIST 83

B
backcone 111,150
BIST 23,145,199
bootstrap method 37, 79
bridge 111,195
bridge, dominant 154
bridge, wired-AND 154
Byzantine bridge 168

center-satellite model 65,213
characteristic function 140
characterization group 95
cluster analysis, spatial patterns 130
cluster coefficient 32, 61, 219,221
cluster coefficient, center-satellite 68
cluster coefficient, inverse 33, 69,219
cluster coefficient, negative

binomial 76
cluster coefficient, random 77
clustering algorithm 51
clustering, center-satellite 69
commonality 51,101,103,105,113,152
commonality analysis 25,101,115,201
commonality matrix 184
commonality measure 51,102,104,

105,108,112,153,183

configuration average 60
correlation coefficient 96
correlation coefficient, between

objects 86
correlation coefficient, inverse 126
coverage 25,202,251
coverage, test 137

D
data collection 28,197
defect coverage 56,133,243
defect distribution 56,134
defect distribution, center-satellite 66,

68
defect distribution, independent 136
defect distribution, Poisson 122
defect level 41,141,208
defect list 148
defect model 147,167
defect, gross 71
degrees of freedom 36,49,91
design data 26
design requirements 197
designed experiment 100
detection probability 139,206
deterministic test 22,23,44,106,145,

201
diagnosis 21
dictionary 151
digital behavior 167
distribution, Bernoulli 85
distribution, binomial 29,46,206

268 IC Fails

distribution, clii-squared 36
distribution, compound 135
distribution, connpound binomial 30
distribution, compound Polsson 31,56,

217
distribution, gamma 32
distribution, multinomial 30,46, 76,79,

205
distribution, negative binomial 32,75,

76, 135
distribution, Polsson 31,56
distribution, compound Polsson 135
dominant bridge 166

fault machine 145
fault selection 149
fault set, intersection 150
fault set, SLAT 151
fault set, union 150
fault, bridge 166
fault, bridging 154,165
fault, intermittent 165
fault, pattern 148
fault, stuck-at 148,165
fault, transition 148
flush delay 22
flush test 83

E
efficiency 155,192
embedded memory 83,199
embedded object 83,117
equivalence class 157,158,161
error 147
explain fails table 172

G
Gamma function 219
generating function, center-

satellite 67,213
generating function, number of

defects 61,209
geometric center 119
gross test 22

fail group 83
fail probability, cell 88,231
fail probability, component 98
fail probability, embedded object 88
fail probability, first 45,251
fail probability, global cell 85, 89,224
fail probability, heterogeneous

model 231,234
fail probability, homogeneous

model 233
fail probability, marginal 124
failing cycle 155
falling latch 152
failing pattern 160
failure 145
failure analysis 115,191,195
fallout 44,133,251
fallout fluctuations 207
fallout history 44,47
fallout, heterogeneous model 48
fallout, homogeneous model 48
fault 147
fault dominance 160
fault equivalence 148,157,160,171
fault list 148

H
heterogeneous model 86, 89, 97,226
homogeneous model 85, 89, 97,224
hypercube 238,240
hyperquadrant 238

I
IDDq 22,44

L
LBIST 133
likelihood function 34
likelihood function, cell fail

probabilities 223
likelihood function, characterization

group 230
likelihood function, component

fails 99,238, 239
likelihood function, embedded object

fails 87,94
likelihood function, first fail

probabilities 49
likelihood function, heterogeneous

model 234

Index 269

likelihood function, marginal
probability 125

likelihood function, yield curve 251
likelihood ratio 35
likelihood ratio, embedded object

fails 91
likelihood ratio, first fail probabilities 49
likelihood ratio, marginal

probability 125
logic behavior 145,147,166
logic defect 168,171
logic diagnosis 145
logic model 145,167
LSSD 22,133

M
masking 138
maximum likelihood estimate 36,223

pattern, ring 127
pin 147
pin commonality 183
primitive polluter 58,209

Q
quadrat 74,75,217
quadrat analysis 217
quadrat method 74,217
quadrat method, problems with

R
regression, least squares 75
regression, logistic 98
repeater 113,125,127
resolution 155,157,158,175

74

maximum likelihood method 34,76,89,
219

maximum likelihood method, yield
curve 143

memory BIST 24
moment, center-satellite 67,215
moment, number of defects 61,210
multi-defect 134
multiplet 173,177,179,193,253
multiplet analysis 179
multiplet, abnormal 186,195
multiplet, complete set of 185
multiplet, incomplete 195

N
net 147
non SLAT pattern 177
nuisance explain 182

o occurrence probability 101,134,137,
138,246

P
passing pattern 154,161,178
pattern, bad sector 127

s
scan chain 83,199
scannable latch 199
score 145,152,156
signature, composite 165
size, object 85
SLAT 26,150,165,202
SLAT pattern 170,171,192
SLAT property 170
SLOR 121,126
SOFE 93
sort code 23,44,117
spatial clustering 135
spatial distribution 117
splat 179,183,253
splat structure 180
splat, completely separated 181
stopping protocol 94
strength, Poisson distribution 31,217
strength, primitive polluter 58
structural test 133

T
test history 23
test pattern, multi-clock 169
test requirements 201
test sequence 22

pattern, fragmented ring 127
pattern, no discernible 130
pattern, partial ring 127

270 IC Fails

u
unmasking 138

w
wipe out 72,217

Y
yield 133
yield curve 46,140,143
yield, average 244
yield, center-satellite 66
yield, expected 40, 60,245
yield, expected true 41
yield, gross 72, 76, 80, 219,220
yield, perceived 40,46,140,251
yield, pseudo 76,219
yield, true 40,210
yield, variance of 246

