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Preface 

This book grew out of an attempt to describe a variety of tools that were 
developed over a period of years in IBM to analyze Integrated Circuit fail 
data. The selection presented in this book focuses on those tools that have a 
significant statistical or datamining component. The danger of describing sta
tistical analysis methods is the amount of non-trivial mathematics that is 
involved and that tends to obscure the usually straigthforward analysis ideas. 
This book is, therefore, divided into two roughly equal parts. The first part 
contains the description of the various analysis techniques and focuses on 
ideas and experimental results. The second part contains all the mathematical 
details that are necessary to prove the validity of the analysis techniques, the 
existence of solutions to the problems that those techniques engender, and the 
correctness of several properties that were assumed in the first part. Those 
who are interested only in using the analysis techniques themselves can skip 
the second part, but that part is important, if only to understand what is being 
done. 

Several of the analysis techniques presented here were described previ
ously in journal and conference articles: SLAT was described in [6]̂  and 
[30]\ Embedded Object Analysis and Commonality Analysis were presented 
briefly in [8]^ and [31]\ respectively, and the relationship between coverage 
and yield was explored in [28]^ and [29]. The treatment in this book adds 
many details, and corrects some errors in the previous publications. The work 
presented here was not the work of its author alone, as is clear from the list of 
contributors in the Acknowledgements. The details of the mathematical anal
ysis and of the analysis of the experimental data, however, are. Consequently, 
any errors are his responsibility. 

LEENDERT HUISMAN 
IBM Systems and Technology Group 

1.©2004 IEEE 
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Chapter 1 

Introduction 

Diagnosis is the extraction of information from fail data. In this book, the 
things that fail are Integrated Circuits (ICs), and the failures are those that 
occur during manufacturing test; more precisely, during the application of 
specially designed series of electrical stimuli to the integrated circuits on fin
ished wafers or in separate modules. The information that is extracted 
concerns the causes of the failures. It can vary from the simplest, like the 
average number of distinct defects on an IC, to the most detailed, for example, 
the exact location and nature of the anomalies that caused the failure. The 
information that can be extracted depends on the tests during which the IC 
failed, and on the amount of fail data collected. 

Extracting information from fail data can take many forms. For example, 
the failure probabilities of identifiable units on the device, like embedded 
memories or PLLs, can be estimated; different fail mechanisms may be identi
fied by comparing fails at different phases of the test, or by analyzing the 
patterns of passes and fails on wafers; groups of chips may be identified that 
seem to share an underlying fail mechanism that did not affect other chips; if 
enough fail data has been collected, the location or the nature of the defect 
that caused the fail may even be estimated. 

All these forms of extracting diagnostic information help identify the 
nature and the causes of the defects that occur on integrated circuits. Cluster
ing chips into groups that seem to have failed similarly provides a first 
estimate of what defects occur, even though the identity of the defects is not 
yet known. Estimating occurrence probabilities helps focusing on the most 
prevalent failure mechanisms. And determining the location of the real defect 
then makes it possible to study the actual defect mechanism: why they occur, 
and how they affect the electronic circuit. 

What is learned during such an analysis is fed back to the process or 
design engineers, so design and/or manufacturing changes can be made to 
prevent, or, at least, decrease the possibility of future occurrences of similar 
defects. Such changes increase the yield, that is, lead to fewer failing ICs, but 
may also increase the reliability of the finished products. 

There are many types of fail data that can be used in diagnostic activities. 
Not all of the data will unambiguously identify a cause. Some of the data can 
only point in certain directions, like the probability that some defect, known 
only through its effects, will occur, or the most likely location on the device 
where this defect might be situated. 
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Thus defined, diagnosis covers a wide range of activities.This book will be 
limited to only one of them, software based analysis of routinely collected fail 
data during manufacturing testing. Fail data collected at the tester is usually 
very limited, showing only which phase of the test exposed the defect, and 
just enough to establish that the device indeed failed the test. The manufactur
ing tests are sometimes enhanced, however, with additional data collection to 
support diagnosis. Such additional data collection can be done systematically 
on a fraction of the (failing) devices, or can be done automatically in response 
to certain types of fail events. This added information is still part of routine 
data collection, and will of course also be considered here. In fact, one of the 
purposes of this book is to determine what additional data collection gives the 
most diagnostic benefit for the lowest added cost. 

Other diagnostic techniques, like probing the failing IC or interactively 
applying tests based on what has been learned already about the cause of the 
fail will not be addressed. Such techniques are very important, and are almost 
always required in the end for the final determination of the cause of the fail, 
but they fall outside the scope of this book. 

The process of diagnosis starts with applying tests to batches of chips. The 
test sequence is usually the same for all devices, even though the data collec
tion strategy may not be, and is typically divided into a number of steps. The 
first few steps are intended to verify that the tester probe has made good elec
trical contact with the chip, and that there are no gross defects that would 
cause a large current to flow through the pins of the probe. The observations 
in these initial steps, called the gross tests, consist of measurements of cur
rents and voltages. The results of the measurements are compared to 
predefined ranges of allowed values, and a chip fails any of the gross tests if 
the corresponding measurement is outside its accompanying range. If a failure 
does occur, there is either no good contact between the tester and the internal 
electronics of the device, or the current flowing through the probe and the 
contacts on the chip is so large that it might damage the probe. In either case, 
no further testing can be done. 

If the chip does not fail the gross tests, more detailed tests are applied. 
These are generally of two kinds. Tests of the first kind consists of further 
measurements, for example of IDDq currents, flush delays, or ring oscillator 
frequencies. Those of the second kind consists of patterns that exercise 
selected portions of the chip electronics. A pattern consists of the application 
of a series of electrical stimuli to the inputs of the chip, and the observation of 
the electrical responses at its outputs. It is generally digital in nature, and 
exercises some portion of the chip electronics directly, as in deterministic 
(like LSSD) tests, or causes the chip electronics to generate internal patterns. 
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as in Built-in Self Test (BIST). The chip can fail any of the patterns applied to 
it. 

The tests can be enriched further by applying portions of the patterns and 
measurements at different voltages and temperatures. The fails occurring at 
one voltage or temperature should be distinguished from fails occurring at 
other voltages or temperatures, because they may be caused by different 
defect mechanisms. Also, the chip may fail some pattern at one voltage, but 
pass the same test at some other voltage, and this pattern of comer specific 
passes and fails provides more information about the defect. 

The test sequence consists therefore of a large number of steps: the mea
surements in the initial phase, and subsequent patterns and more 
measurements. A chip that fails any of these steps is defective, and should be 
removed. The removal need not be immediate, however, unless the failing test 
is one of the gross tests, as it might be desirable for diagnostic purposes to 
obtain the response of a chip to other tests in the sequence. 

The responses of the devices to the patterns and measurements are 
recorded in the test history, which is the complete record of which chips failed 
at which step. If the number of steps is large, as it typically is because of the 
large number of patterns, they can be grouped together into more meaningful 
major steps. Examples are all the deterministic patterns at a given voltage and 
temperature, the measurements of the oscillator frequencies, and detailed 
IDDq measurements. Each such major step is assigned a code, and the test 
history is merely a listing of the codes for each chip, indicating which major 
steps it failed. Each failing chip is also assigned an overall code, called the 
sort code, which is the code of that major test step at which the chip failed for 
the first time in the test sequence. 

Various types of analysis can be performed on the accumulated fail data, 
and four different types will be discussed in this book. The first type consists 
of statistical analyses of the fail data of large numbers of devices that were all 
tested with the same test sequence. Examples of such large groups of devices 
are the chips on a single wafer, or on all the wafers in a lot. The second type is 
that of the spatial patterns of passes and fails on wafers, and the subsequent 
classification of those patterns into random ones and ones that are distinctly 
non-random. The third analysis type is that of potential commonalities 
between fails; that is, the attempt to identify common fail mechanisms by 
comparing fail syndromes. The fourth and final analysis type to be discussed 
in this book is using the fail syndrome of a particular device to identify the 
location of the defect that caused that device to fail. 

Statistical analysis fits very naturally in the IC test process, because much 
data that is collected is statistical in nature. Examples are the fractions of good 
devices on individual wafers, the number of devices that were exposed for the 
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first time by a certain pattern, and the number of times a given object on the 
device, like an embedded memory, failed across all the devices on a wafer. 
The statistical analysis is largely descriptive, and its purpose is, broadly 
speaking, to establish the normal behavior of the ICs, that is, to describe how 
the ICs, on average, respond to the manufacturing test. 

Establishing a normal behavior of the real hardware has two benefits. 
First, it makes it possible to compare that normal behavior to what is expected 
based on our understanding of the manufacturing process and test. Such a 
comparison can then either confirm our understanding, or point at limitations 
thereof; for example, holes, or, even worse, completely erroneous ideas of 
what goes on during manufacturing and test. 

The second benefit is that, once the normal behavior has been established, 
it is possible to estimate normal statistical fluctuations around the expected 
normal values, and to separate those from the truly deviant ones. In other 
words, it makes it possible to identify ICs that truly deviate from the normal 
behavior, even when taking statistical fluctuations into account. Non-normal 
fluctuations often point at systematic problems, and finding them is the first 
step in identifying, and then removing the underlying cause. 

This book uses a limited number of statistical distribution and techniques. 
Their main features are briefly reviewed in Chapter 2. 

The most immediate statistical analysis, taken up in Chapter 3, is that of 
the distribution of the yields, that is, of the fractions of good devices on single 
wafers. Using pass/fail information only is a poor use of the test history, how
ever, and a more detailed statistical analysis of the distribution of all the sort 
codes will be taken up subsequently in the same chapter. 

The device yield depends on the area of the device: the larger the area, the 
lower the yield. It has been noted over the years that this area dependence is 
more complex than a simple Arrhenius factor, and the cause of this complex
ity is usually assumed to be some clustering of the defects over the wafer. 
Clustering of the defects is, of course, related to what causes the defects in the 
first place, and this area dependence may, therefore, provide additional infor
mation about the defect mechanisms. It is discussed in some detail in Chapter 
4. 

Even more detailed yield information can be obtained when the device 
contains identifiable embedded objects that are tested separately by specific 
portions of the test sequence. Examples of such units are embedded memories 
and scan chains. The former are tested using specific memory tests, applied 
from the tester or generated on chip (memory BIST). The latter are tested with 
specific scan tests before the beginning of scan based testing. 

Such object oriented yield analysis is valuable for all the reasons men
tioned above regarding device yield analysis. There is a normal rate at which 
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such objects are expected to fail, and any significant deviations from the nor
mal rates point at systematic problems. In addition, however, these objects 
often have a size associated with them, like the number of cells in an embed
ded memory, and this size makes it possible to compare the failure rates of the 
objects not just to their counterparts on different chips, but also to different 
ones on the same chip that are similar in nature but have different sizes. The 
statistical analysis associated with embedded objects is the topic of Chapter 5. 

In addition to rates, the fails of chips or objects on chips are distributed in 
some fashion over the wafer. This distribution is, of course, limited by the 
locations of the devices on the wafer, but, with enough such devices, distinct 
patterns can still be recognized. The primary goal of analyzing fail patterns is 
to identify those patterns that deviate significantly from a random one, and, 
therefore, may indicate some systematic problem. In addition, many process 
problems lead to distinct patterns of fails over the wafer that can be classified. 
Fairly standard pattern recognition techniques can then be used to identify the 
presence of such patterns, and, thereby, the potential occurrence of the associ
ated process problem. This type of analysis is treated in Chapter 7. 

The goal of commonality analysis, the third type of analysis to be consid
ered in this book, is almost the opposite of statistical analysis: cluster the 
devices with similar fail syndromes into separate groups. There is no expecta
tion of normality, or conformance to some model, but, instead, the fail data, 
whatever they are, are taken as signs of the underlying defect, and used to 
identify instances of the same or similar defects. 

This clustering is important, because it attempts to catalogue the types of 
defects that occur and to determine their occurrence rates. If the devices can 
be divided into groups at least some of which are large and clearly separated, 
the obvious conclusion can be drawn that those larger groups correspond to 
unique fail mechanisms that need to be investigated further. Once such clus
ters have been identified, they can be selected for further, more detailed 
analysis. Various forms of commonality analysis are discussed in Chapter 6, 
with additional examples briefly mentioned in Chapter 3 and Chapter 5. 

The most detailed analysis that can be done, and that is still statistical in 
nature, occurs when there is a notion of coverage. Coverage is a number 
between 0 and 1 that is attached to any initial section of the scan based pat
terns (that is, all patterns up to and including some selected one), and that is 
equal to the fraction of defects that are exposed by the patterns in that initial 
section. It exists, in particular, for that portion of the test that uses scan based 
patterns, and for them coverage is in fact routinely calculated. 

Coverage clearly is related to the fraction of devices that fail during the 
application of the patterns in such an initial section. The form of that relation
ship depends on the nature of the defects, and, consequently, analyzing the 
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progressive fallout when scan based patterns are applied should give useful 
information about the defects. Chapter 8 will address both the relationship 
between coverage and fallout, and how to use this relationship to extract 
defect specific information. 

Chapter 9 is devoted to the fourth type of fail data analysis, that of using 
the collected fail data to identify the location of the defect. This type of analy
sis is far more complex than the previous types, because it uses a detailed 
logical model of the device, in addition to the fail data. Consequently, it is far 
more time consuming, and places far more stringent requirements on the fail 
data that need to be collected for it to be applicable. On the other hand, if suc
cessful, it can locate the defect exactly within the device, and is one of the 
main enablers of a successful physical failure analysis. 

The simplest form of logic diagnosis is that based on the single stuck-at 
fault model. It gives good results surprisingly often, even though many realis
tic defects cannot be modeled by single stuck-at faults. Chapter 9 discusses 
this approach in detail, even though more powerful logic diagnosis techniques 
are available, because it is the classical form of logic diagnosis, and because 
many of the issues that complicate more powerful techniques already occur 
here. 

SLAT is a far more powerful logic diagnosis technique that relies on two 
assumptions. The first assumption is almost an observation, and states that 
any defect behaves as some set of stuck-at faults under the application of any 
particular pattern that detects it. The defect may, and often will behave as dif
ferent sets of stuck-at faults with different detecting patterns. The second 
assumption is that there will be some detecting patterns that cause the defect 
to behave as a single stuck-at fault. This assumption is the crucial one, for it 
reduces logic diagnoses to the standard problem of stuck-at fault diagnosis 
discussed in Chapter 9. It is more complicated than the latter one, though, for 
each detecting pattern has to be diagnosed as if it is the only one available. 
SLAT is the careful simultaneous analysis of all these single pattern diag
noses, and will be described in Chapter 10. 

The discussion in this book is ordered roughly according to the amount of 
detail and the computational effort used in the various analyses. This ordering 
corresponds more or less to what a diagnostic engineer might do when faced 
with a large volume of failing devices, and having to find the main causes of 
the fails. The corresponding flow is shown in Figure 1. 

Design data are needed to generate the test sequence and in some of the 
diagnoses. Not all diagnostic techniques require design data, though. Yield 
analysis, for example, does not need it at all. Most diagnostic techniques do, 
however, and those that can be done in its absence may still increase their 
effectiveness when design data is available. Its importance for the various 
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diagnostic analysis techniques is indicated roughly by the heaviness of the 
arrows from the design data icon to the analysis icons. The results of the vari
ous analyses is indicated briefly in the data icons on the right. 

The diagnostic techniques to be discussed in this book have certain data 
collection requirements, and these requirements have repercussions for both 
design and test. For test, because the required data needs to be collected and 
made available to the diagnostic software; for design, because it has to be pos
sible to collect the test data, and because certain design data have to be 
available during diagnosis. An example of the former is the latch contents 
after the application of a test pattern, while an example of the latter is the posi
tions of those latches in the scan chains. It will become clear from the main 
text what those requirements are, but they will be briefly summarized in 
Chapter 11 for the sake of convenience. 



Chapter 2 

Statistics 

In the present chapter, I will briefly review some statistical distributions 
that are used often in this book. I will also discuss some statistical techniques 
that are important in this book, but that may not be very well known. Good 
introductions to practically all the statistical techniques used here can be 
found in, for example, Lindgren [38], or Casella and Berger [10]. The group 
of techniques that are used most often is centered on the likelihood function, 
but in some instances bootstrapping will be used as well. They will be 
described briefly. 

Many chapters in this book rely strongly on the difference between ran
dom variables and model parameters. To accentuate this difference, the 
general custom will be followed of labeling random variables with upper case 
letters, and parameters with lower case ones. 

1 STATISTICAL DISTRIBUTIONS 

The number of distributions used in this book is small, basically the bino
mial and Poisson distributions, and some variations on them. 

1.1 Binomial and multinomial distributions 

The binomial distribution is that of the number of fails in a given number 
of attempts, given the fail probability. To simplify notation, I will use Feller's 
one [22] for the probability density function of the binomial distribution. The 
probability that n fails will be observed in N tries if the fail probability is p is 

b(n;N,p) = n p " ( 1 - p f - " . (2.1) 
^n^ 

The expected value of n is Np, and its variance is Np(l - p). 
When p is very close to 0 or 1, the relationship between the expected value 

of n and its fluctuations becomes very simple. When p is very small, it can be 
neglected with respect to 1. The standard deviation of n is then roughly equal 
to the square root of its expected value. Likewise, when p is very close to 1, 
the standard deviation of N - n is roughly equal to the square root of that num
ber. In other words, when p is either very small or very large, the typical size 
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of the variations in the number of the rarer events (failures with very low fail 
probability, passes otherwise,) is roughly equal to the square root of the num
ber of those events, and does not depend on the number of the more common 
events. 

The binomial distribution can be generalized by compounding [12]. In that 
case, the binomial parameter p is a random variable itself, with a probability 
distribution h(p). The expected value of p will be indicated by 

<p) == jh(p)pdp , (2.2) 

2 
and its variance by a (p). 

The expected value of the number of fails in the compounded distribution 
equals N<p>, and its variance is equal to 

N ( P ) ( 1 - < P ) ) + N V ( P ) . (2.3) 

The first term in this variance is the standard binomial one, the second one is 
the contribution from the finite width of h(p). It has the important conse
quence that, when N becomes large, the ratio of the standard deviation of the 
number of fails to its expected value does not go to 0, as in a pure binomial 
distribution, but, instead, to the finite ratio a(p) / (p) . Even with large N, 
therefore, the variability in the number of fails cannot be ignored, and can, in 
fact, be substantial. 

Another extension of the binomial distribution is the multinomial [22] one, 
in which more than two outcomes are possible, each with their own probabil
ity of occurrence. There is no standard notation for this distribution. The one 
that will be used here was inspired by that for the binomial distribution. If 
there are k choices, with probabilities p, for i = 1, ..., K, the probability P(ni, 

..., Uĵ ) of Uj occurrences of choice i is given by the multinomial probability 

m({ni};N,{Pi}) = ^ ^ r r p " \ (2.4) 

IT^i' 
where n! stands for the factorial of n, and all products are from i = 1 to k. The 

sets {pi} and {Uj} obey the obvious sum rules V pj = 1, and V n̂  = N. 
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By summing over all iij except one, say nj, we find that the probability of 

nj occurrences out of N trials equals b(n;N, p ) Consequently, the expected 

value of any Uj equals Npj. 

1.2 Poisson and compound Poisson distributions 

The Poisson distribution is that of the number of occurrences of some 
event in a given space, given the probability of an occurrence in a unit amount 
of space, and given that occurrences are independent. Typical examples are 
the number of events in a given amount of time or the number of defects in a 
given area. The latter example is the important one in this book. 

The probability of an occurrence in a unit amount of space is also called 
the strength of the Poisson distribution. When the strength is v, the probability 
of n occurrences in a unit amount of space equals 

n 
V - V 

- e . (2.5) 

The expected value and variance of n are both equal to v. The probability of 
- V 

no occurrence is e . 
A more general version of the Poisson distribution is the compound Pois

son distribution, in which the strength v is itself a random variable with some 
distribution h(v) [12]. The probability of n occurrences is then equal to 

n 
j h ( v ) ^ e ~ ' ' dv. (2.6) 

It is easy to show, by interchanging integration and summation, that the 

expected value |i of n is now equal to (v) = |h(v)vdv, and that its variance 

2 2 
equals JLI + a (v) , in which a (v) is the variance of the Poisson strength v. 
Compounding, therefore, always increases the variance of the observed 
yields. 

Another effect of compounding is to increase the probability of no occur
rences at all, at least when (v) , the expected number of occurrences stays the 
same. This probability equals 

Po = Jh(v) e""" dv . (2.7) 
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That compounding always increases po compared to its Poisson value can be 

proven as follows. It is easy to see that e >e -{V-X)Q , because 

-(v - X)e describes the tangent to e at v = A., and because e"^ curves 
upwards. The constant X in the inequality can be any number, but is taken 
here as the mean of v. In the compound model, we then find that 

1.3 Negative binomial distribution 

An important example of a compound Poisson distribution is the negative 
binomial one. It emerges when the compounding fiinction is the gamma distri
bution. In other words, when 

a - 1 -va/ja 
h(v) = ^ 5 -, (2.8) 

r(a)()Li/a) 

in which a is a positive parameter, called the cluster coefficient, \i is the mean 
of v, and r(x) is the gamma function of x. The negative binomial distribution 
can be generated in other ways than by compounding a Poisson distribution 
[12], but compounding is a very convenient one. 

The probability of n occurrences in the negative binomial distribution 
equals 

2 
The expected value of n is |i, and its variance is \i + \i / a . The probabil

ity of no occurrences equals 

(1 +jLi /a)~^. (2.10) 

The cluster coefficient functions as a sort of scale that separates the region 
a » |i in which the negative binomial distribution is very similar to a Poisson 
distribution, from that in which the two are very different. 

The cluster coefficient is related to the distributional parameters of the 
compounded Poisson distribution through 
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'- = ^ H ^ , (2.11) 

which suggests a rough estimate of the inverse of the cluster coefficient from 
actual data. Using the inverse of a rather than a itself is more meaningful, for 
the former vanishes in the limit of a pure Poisson distribution. It will be indi
cated by y. 

Equation (2.11) can also be seen as a generalized definition of a cluster 
coefficient, one that goes beyond its definition in the gamma function. As 
such, the estimate obtained from equation (2.11) need not be positive, even 
though a is in Equation (2.8). There is in fact no reason why the generalized 
cluster coefficient should always be positive, and we will find in Chapter 4 
that it oftentimes is not. 

Large values of y correspond to strong clustering, and small values to little 
clustering. For example, when we calculate y for the compound binomial dis
tribution, it equals - 1 / N in the case of no compounding, but then increases 
smoothly to positive values. It can become arbitrarily large when a ( p ) , the 
width of the compounder, becomes large. 

2 LIKELIHOOD 

In many situations, the data that are collected have some known statistical 
properties, except that some parameters of the underlying distribution are not 
known. One of the goals of collecting the data is to estimate those parameters. 
An example is the passes and fails of an embedded SRAM on the chips. It is 
assumed to fail with a probability that may depend on the wafer column in 
which the chip is located. The numbers of passing and failing SRAMs per col
umn have Binomial distributions, and one statistical analysis that can be done 
is estimating the fail probabilities of those distributions, and determining 
whether they are column dependent or not. 

A standard way of constructing estimators for the parameters of a distribu
tion is the maximum likelihood method. It relies on the so called likelihood 
function. This approach is described in some detail in the statistics books 
mentioned previously [10, 38], and in more detail in the book by Edwards 
[20]. 

The likelihood function is numerically proportional to the probability that 
the observed data would have been obtained, given a specific set of distribu
tional parameters. By considering the likelihood function as a function of the 
parameters, with the observed data as fixed values, the probability is trans-
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formed into a function of the parameters. The likelihood function is 
proportional to it, for factors that do not depend on the parameters turn out to 
be irrelevant. 

In the example given above, the probability that the given numbers of 
passes and fails in the various columns would have been observed is equal to 
the product of a number of binomial probabilities, one for each column, and 
each one with its own fail probability. With the actual observations fixed, this 
product is a function of the column fail probabilities. It will vary when the fail 
probabilities are varied. 

2.1 Maximum likelihood 

The maximum likelihood method is based on the assumption that the best 
estimate of the physical fail probabilities, the ones that govern the actual 
passes and the fails on the physical wafers, is that set of probabilities that 
maximizes the likelihood function. It obviously depends on the observed data, 
because different sets of data will put the maximum of the likelihood function 
in different places. 

The likelihood function is generally indicated by L. If we continue the 
example, L is function of the column fail probabilities pj. To make the depen
dence on the observed data explicit, they are sometimes added to L as a 
condition: 

L = L(pi, . . . ,p,^|data). (2.12) 

Given the data, the first step in the analysis is estimating the fail probabili
ties. As mentioned above, this is done by maximizing L, and entails two steps. 
First, the extrema of L have to be found, which can be done by solving 

1 ^ - 0 (2.13) 
5Pi 

for each i (column in the example). Second, the maximum has to be found 
among the extrema. A maximum corresponds to an extremum where the 
matrix with elements 
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is negative definite. In most cases, Equations (2.13) have only one solution, 
and that solution can trivially be shown to correspond to a maximum. In some 
cases, however, multiple solutions may have to be considered, and the nega
tive definiteness of the matrix of second derivatives of L has to be established 
using numerical methods. 

Strictly speaking, the found maximum should also be compared to values 
of L on the boundary of the range of the parameters of the distribution, for 
maxima on those boundaries usually do not obey Equation (2.13). In most 
cases encountered in this book, L trivially vanishes on this boundary, and is 
positive in the interior region of the range, so the question of maxima on the 
boundary does not occur. 

There are in fact situations in which Equations (2.13) are so complex that 
they cannot be solved even with moderate effort. If all else fails, the maxi
mum of L can always be found by reliable, but numerically more demanding 
maximization routines [44]. 

The estimates of the parameters are random variables, for they depend 
solely on the observations, and not on the parameters to the underlying distri
butions. These estimates, therefore, have a distribution, but that distribution is 
usually not known. Fortunately, for large sample - that is, large wafers in the 
example - the distribution of the estimates is approximately normal with a 
covariance matrix equal to minus the inverse of the matrix of second deriva
tives. The latter matrix is therefore not only important for establishing 
maximality of extrema, but also for gauging the accuracy of the estimates. 

2.2 Likelihood ratio 

The likelihood function is used not only for estimating parameters, but 
also for deciding whether one particular statistical model is better suited to 
explain the data than some other potential model. The manner in which that 
will be done in this book can be demonstrated with the example that we have 
been using in this section. 

In the running example, there are two reasonable models. The first one, 
called the heterogeneous model, is the one that we have been using: one fail 
probability per column. The second one is called the homogeneous model, 
and is a simplification of the first: one fail probability for all columns. The 
heterogeneous model is always more accurate, for it has more adjustable 
parameters. The homogeneous one is more parsimonious, and may be pre
ferred for that reason. 

Even when the homogeneous model is correct, the numbers of fails on any 
given column will not always be equal to the mean, but will fluctuate around 
it. Small deviations of the numbers of fails around their respective means will 
not necessarily invalidate this model, therefore; only large deviations can do 
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that. The question is, "how large should the deviations be before we should 
discard the homogeneous model and assume the validity of the heterogeneous 
one ?" 

This question can be answered to some extent with the likelihood ratio 

L( p data) 
A = _ ' _ , , (2.15) 

L(pp ...,pj^ data) 

in which a carrot ( ) over a variable indicates the maximum likelihood esti

mates of that variable, and p is the maximum likelihood estimate of the 

single fail probability in the homogeneous model. 
A will never exceed 1, for both numerator and denominator are maxi

mized, and the space of the p values is a subset of the space of the pj values. 

Therefore, if L( p ) were larger than L(pj , ...,pj^), the latter could be 

increased by replacing the estimates of pj by the estimate of p, contrary to the 

assumption that it is maximal. 
A is a convenient measure of the extent to which the observed deviations 

match the expected ones; in other words, it is a good indicator of column sim
ilarity. If the homogeneous model reflects the true state of affairs, it will be 
close to 1, but not equal to it, because of statistical fluctuations. If this model 
is not the correct one, A will be much smaller than 1. 

How much A should differ from its maximum value before the homoge
neous model can be rejected depends of course on the size of the expected 
statistical fluctuations, which depend on the numbers of columns and chips 
per column through N^p, the number of degrees of freedom. This number 

equals, in this case, V ( m | - 1), in which the sum is over all the columns, 

and mj is the number of chips in column i. 

Under the null hypothesis that all columns have the same fail probability, 

- 2 In A has approximately the chi-squared distribution with Nj)p degrees of 

freedom [10]. Consequently, under the null hypothesis, the expected value of 

-2 In A equals Nj)p, and its variance 2Np)p. 

If the null hypothesis is correct, the actual value of-21nA is expected to be 
within a few standard deviations of its mean. A more convenient measure of 
column similarity, therefore, is the ratio 
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- 2 1 n A - N T 3 p 
(2.16) 

J^ DF 

Any significant deviation of A from its mean leads to a large value of p, and 
indicates that one or more columns differ significantly from the others. More
over, when the number of degrees of freedom is large, as it typically is, the 
chi-square distribution can be replaced by a normal one with the same mean 
and variance. 

3 BOOTSTRAPPING 

When estimating the values of distributional parameters or other distribu
tion related quantities, we often would like to the know the accuracy of those 
estimates, in addition to the estimates themselves. When the statistical distri
bution of the estimator is known, the accuracy of the estimate can be obtained 
from the variance of the estimator. Oftentimes, however, the distribution is 
not known, or, if known, is valid only in the limit of very large samples. In 
such cases, other means have to be employed to get a sense of the accuracy of 
the estimators. 

The variance of an estimator could also be estimated, and trivially so, if 
many samples were available. For then we could estimate whatever quantity 
we are interested in in each sample, and compare the results. Unfortunately, 
there is only one sample. It is possible, however, to create artificial samples, 
with many of the same statistical properties as real samples, and use these arti
ficial samples as substitutes for the latter. This technique is called 
bootstrapping [41]. 

In bootstrapping, a large number of secondary samples are generated from 
the original one, called the primary sample. The secondary samples have the 
same size as the primary one, and are formed by randomly selecting the units 
of the sample (embedded SRAMs in our running example) from the original 
sample. The selection is done sequentially, and with replacement (so the same 
unit can be selected multiple times.) 

The bootstrap assumption is that the statistical properties of primary sam
ples are approximately the same as those of the secondary samples, based on a 
single primary one. For example, a single fail probability for the embedded 
SRAMs, valid for all columns, can be calculated for each secondary sample, 
and the distribution of these fail probabilities is assumed to approximate that 
of the maximum likelihood estimate of the fail probability in the primary 
sample. 



Chapter 3 

Yield Statistics 

Testing of electronic devices consists of applying a sequence of test opera
tions to those devices. Each test operation, or test for short, may cause one or 
more devices to fail. As the device failures are caused by defects introduced 
by, or at least during the manufacturing processes, the progressive increase in 
chip fallout during testing may provide us with information about these 
defects and about the processes that caused them. 

Extracting such information is made difficult, however, by the inevitable 
statistical fluctuations in the real fallout data. After all, whether a chip has the 
defects that will make it fail at or before a certain test is a matter of chance: on 
average, the same fraction of chips will fail, but the actual number will fluctu
ate around this average, depending on the particular batch of chips that 
entered the test process. The size of these fluctuations will of course decrease 
when the size of the batch of chips increases, but the batch has to become very 
large for the yield fluctuations to become negligible. 

The chapter will address several of these statistical issues, and is divided 
into roughly three equal parts. In the first two sections, the statistical aspects 
of the yield, and in particular of the defect level, are studied. The predictions 
of the theory are compared with experimental data, and it turns out that the 
distribution of wafer yields is much wider than can be explained by assuming 
that the fail probability of the devices is the same on all wafers. 

In Section 3, the statistical analysis is generalized to include the partial 
yields at all the test steps, not just the overall yields. It will be shown that, 
under very general assumptions, the statistical properties of the fallout data 
are of a rather simple kind, and can easily be estimated from the observed 
data. Any comparison between theory and practice can therefore be done 
using standard statistical techniques. 

The final sections are devoted to an analysis of the distributions of sort 
codes for different wafers. This analysis is important in its own right, because 
it focuses on which wafers have the same fallout behavior, and, presumably, 
the same process histories, but it also provides more insight into the exces
sively wide wafer yield distributions. 
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1 YIELD AND DEFECT LEVEL 

The simplest information that can be obtained from the results of applying 
a test sequence to N chips is Np̂ ss? the number of chips that passed all tests. 
The same information is often presented as the perceived yield Y, which 
equals Np ŝs/N. This section will focus on Y and some of its statistical 
properties 

1.1 Final yield 

Y is a random variable whose value depends on the particular batch of 
chips that was submitted to test. Its expectation value will be indicated by y. 
Because chips either pass or fail, y is also equal to the probability of a chip 
passing the test. The variance of Y is y(l - y ) / N . The distribution of Y is 
assumed to be independent of the particular batch of chips being tested. Con
sequently, Y is likely to be in the range 

y±Vy(l -y) /N, (3.1) 

and, if the square root term is small compared to the yield, Y is a good esti
mate of Y, in the sense that y is in the range Y±yVY(l-Y)/N, where y is some 
number that depends on the required confidence, and is typically equal to 
three. 

It is also often desirable to focus on a subset of M devices from the batch. 
For example, this subset could be a single wafer from a lot of many wafers, in 
which case M is the number of devices on the wafer, and N is the number of 
devices in the lot. But the subset need not be as obvious as a wafer; it could be 
smaller, like a region on a wafer, or larger, like a set of wafers that are known 
to have been processed through the same tools. If N is large, Equation (3.1) 
also implies that this subset should have a yield in the range of 

Y ± V Y ( 1 - Y ) / M . (3.2) 

1.2 Defect Level 

Y may not be the same as the fraction of chips that are truly defect free, 
and usually isn't. This latter fraction will be indicated by YQ. YQ is a random 
variable, in the sense that it depends on the batch that is being tested. It is 
always unknown, however, and it may even be very hard to define. For exam
ple, consider a chip that is good in the sense that it would pass all tests that 
anyone might want to apply, but that has a weak defect that will grow rapidly 
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when the chip is being used and that will cause a failure after only a few hours 
of use. Is this chip defect free and contributes to YQ, or not ? I will ignore 
these subtleties and assume that YQ is well defined but unknown. 

YQ is a random variable, just like Y. Its expectation value will be indicated 
by yg. The existence of chips that pass all tests even though they have defects 
means that, in fact, there are three kinds of chips: those that are shown to be 
defective by the test, those that are defective but pass all tests, and those that 
are defect free. The probabilities for these three categories are 1 - y, y - yg and 
yo, respectively. 

The difference between Y and YQ is the fraction of chips that have defects 
but passed all tests. The goal of test, of course, is to make this fraction as 
small as possible. A more standard measure of goodness of test is the ratio 
DL = (Y-YQ)/Y,cal ledthe defect level. 

The actual number of defective chips that pass all tests will be indicated by 
N^ef. It is related to the usual defect level DL by 

D L = - ^ = - i H . . (3.3) 
pass 

Even though DL is the standard measure for test escapes, it is easier to work 
with N(jef than with DL. Its statistical properties can easily be determined 
from the definition (see Appendix A) 

The most interesting statistical properties of N̂ jgf are those with N and 

Npass known. In that case, Np^ss chips passed all tests, but N ĵ̂ f of them are 

still defective. It is shown in Appendix A that N^^f has the binomial distribu

tion with expected value 

(3.4) 

and variance 

( N D e f ) = N p a s s ( l - y ^ 

<^'(Ndef) = ( N , , f ) ^ (3.5) 

which is approximately equal to '^^Qf > when yo and y are close. 

These results depend on the actual value of Np̂ gs? which varies from batch 

to batch, and on yg. As the latter is generally unknown - in fact, all chips that 
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pass the test may be defective, in which case YQ vanishes - no reliable esti
mate can be made of the expected number of field failures without either 
knowing how complete the test is, or assuming that the test is almost com
plete. The question of how to estimate DL when some measure of test 
completeness is available will be taken up in Chapter 8. 

Even when the test completeness is known, no good estimate can be 
obtained if N^gf is small (as it should be,) because of the unavoidable statisti
cal fluctuations. For Equation (3.5) shows that the standard deviation of N ĵ̂ f 
is approximately equal to the square root of its expectation value. The fluctua
tions are therefore not important if that expectation value is much larger than 
1, and N(|ef is roughly equal to it. When the expectation value is of order 1, 
however, a(N(igf) will be comparable to, if not larger than N̂ jgf, and the fluctu
ations will determine the value of the latter. 

2 EXAMPLE: EXPERIMENTAL WAFER YIELDS 

In a recent experiment, one ASICs part was tested extensively. The goal of 
this experiment was to gauge various test methods, according to their effec
tiveness in detecting defects, as well as to gauge the availability, efficiency 
and accuracy of existing diagnostic methods in determining the locations of 
the defects that caused ICs to fail. More detailed information about this exper
iment is given in Chapter 9.5. Here, only the wafer yields will be considered. 

Each wafer contained 329 devices. The experiment looked at 147 wafers, 
divided over nine lots, with varying numbers of wafers per lot. The yield 
results are shown in Figure 2 using box charts. 

The box charts summarize the yield distributions within a lot, shown on 
the X-axis. Lot_6 and Lot_7 consisted of a single wafer each, and no boxes 
are shown for them, only a a single + mark, indicating the yield of the single 
wafer. The widths of the boxes indicate the number of wafers in the lot. The 
tops and bottoms of the boxes correspond to the 25th and 75th percentiles of 
the yield distributions, respectively, and the lines dividing the boxes show the 
positions of the medians. The average yields are indicated by the '+' symbols. 
The thin lines extending from the tops and bottoms of the boxes are called 
whiskers, and show the ranges of the yields, but they are restricted in length to 
one and half times the height of the associated boxes. Wafers with yields out
side this range are considered to be outliers, and are indicated by the black 
dots. Lot_9, for example, has four outliers with excessively low yields. 
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Figure 2 Distribution of individual wafer yields for several ASIC lots 

The figure shows a reasonably stable distribution of lot yields, in that the 
yields of the different lots are more or less equal (with the exception of the 
singular Lot_7, which consisted of a single, low yield wafer.) 

The observed distributions of the lot yields are much wider than expected, 
however. If the distributions were purely binomial, the height of the boxes, 
called the interquartile range, would be roughly 1.35 standard deviations in 
the normal approximation [15], which is considerably less than observed. 

One possible explanation for such a larger than expected variation is that 
the probability y of a device passing all tests is not a constant, but is itself a 
random variable with some distribution. This may occur if, for example, dif
ferent wafers were operated upon by different tools, each one of which 
performs the same function, but with different tolerances and characteristics. 
Slight tool differences may lead to slightly different values of y, resulting in a 
yield distribution that is wider than when y is the same for all wafers. Other 
causes are discussed in, for example, [47]. 

The distribution of y values is often called a compounding distribution 
(see Chapter 2), because an individual wafer yield is the compound result of 
random statistical variations around y, and the random variations of y due to 
the random choice of tools used to perform required process operations. That 
compounding widens the yield distribution was proven in Chapter 2, where it 
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was shown that a non-trivial yield distribution increases the variance of the 
number of failing devices by the variance of that yield distribution. 

Even though compounding explains the wide yield distribution, it is not an 
attractive approach to yield analysis, for any yield distribution can be 
explained by choosing a suitable compounder. Unless the compounding func
tion can be related to the tool characteristics, no useful information can be 
obtained by finding one that merely reproduces the observed yield distribu
tion. A different, and more productive approach will be developed, among 
other things, in the next sections. 

3 TEST FALLOUT 

The experimental results in the previous section show that individual 
wafer yields can differ substantially from the overall lot yield. This excessive 
yield variation indicates that not all wafers were subject to the same defect 
producing mechanisms. To locate the source of these differences, a more 
detailed analysis has to be made of the fallout history, the record of how many 
chips failed for the first time during the various steps in the test sequence. 

3.1 First fail probabilities 

The overall test sequence was described in some detail in Chapter 1. It 
consists of a, potentially large number of steps, many of which can be com
bined in useful major steps, like IDDq, 10 leakage, and deterministic tests at 
nominal voltage and temperature. Every chip is assigned a sort code, indicat
ing in which major step it failed first during the application of the test 
sequence. In its crudest form, the fallout history is merely the record of the 
sort codes. 

There is no need, however, to restrict ourselves to the major test steps. 
Many major steps can be subdivided into smaller steps, maybe as small as the 
application of a single test pattern. Usually, no standard sort codes are avail
able for such smaller steps, but it is clear that a fallout record can still be 
maintained. This section will focus on the statistical aspects of the fallout his
tory, regardless of the step size. The test steps will be labeled by an index k, 
running from 1 through kf. kf will be large if the test steps are chosen to be 
very small. 

To perform a statistical analysis of the fallout data, each chip needs to be 
assigned to one of many, mutually exclusive test result buckets. In the previ
ous section, there were only two buckets, one for chips that passed all the 
tests, and one for the ones that did not. A far more sophisticated choice of 



Chapter 3: Yield Statistics 45 

buckets is the complete set of test steps that showed the chip to be defective. It 
is rarely known at what test steps a given device fails, however, for the cost of 
applying the complete test to every chip is prohibitive. A better choice is to 
label each failing chip with the test step at which it failed first, that is, by the 
sort code, if such a code exists. There are then kf + 1 different buckets, instead 
of only two as in the previous section. 

The probability of a chip failing for the first time at a particular test step 
depends on the manufacturing process and on the test sequence, but is 
assumed to be stable (that is, time invariant.) It is therefore well defined, and 
will be indicated by dĵ , with k being an index that labels the test steps 1 
through kf. d^ is the probability of a rather complex event, namely that of fail
ing in test k and passing all preceding test steps, dĵ  ^ ^ is the probability that 

the device will not fail at all. 
There is, therefore, a set {dĵ } of first failure probabilities associated with 

the manufacturing process that produced the chips. As a chip does not fail at 
all, or, if it does, does so for the first time at some test step. 

kf+1 

" k = 1 
E _ k̂ = i- (3.6) 

First failures of different chips are independent events, and, if the process is 
stable and all devices have the same process histories, all chips are subject to 
identical sets of such first fail probabilities. 

d]̂  is obviously related to the yield yĵ  at the completion of the k test. 
Because the latter is the probability that the chip does not fail any of the first k 
tests in the test sequence, 

k 

- 1 
^k- 1 - S . _ î- "̂̂  

The yield at the completion of all the tests has, until now, been indicated by y. 

It is, of course, the same as ŷ ^ , but I will continue to use the y symbol for the 

final yield, rather than the technically more correct ŷ ^ . Combining Equations 

(3.6) and (3.7), or its definition, shows that dĵ  ^ ^ equals y. 



46 IC Fails 

3.2 Statistical distribution of fails 

The fate of a chip will take one of kf + 1 forms: either it fails one of the kf 
tests, or it passes all tests. Consequently, the joint distribution of the numbers 
of chips first failing in any of the kf tests is multinomial (Chapter 2.1.1,) with 
parameters dĵ , k = 1,..., kf, and y. This observation forms the basis of the sta
tistical treatment of the yield curve. Of immediate interest are some special 
cases, the mathematical details of which can be found in Appendix A. 

The number of chips failing for the first time at the k* test has the bino
mial distribution with average Nd|̂  and variance Nd]^(l - d|̂ ). A related special 
case is that of all tests from test 1 to k grouped into one test. This case is of 
great interest for it is related to the yield curve as it is usually shown. The frac
tion Y]̂  of chips that pass all tests through the k* one is the perceived yield 

after the k* test. With the probability y|̂  of passing these tests as given in 
Equation (3.7), the number of chips passing all of them has the binomial dis
tribution with expected value Nyĵ . 

These results are of course entirely expected, but they ignore - or average 
out - what happens in the tests preceding any particular test step. The number 
of chips that first fail a specific test does depend on the outcome of the previ
ous tests, however. After all, when the tests preceding the k̂ ^ one find all 
chips to be defective, the number of chips failing first at test k is zero with 
probability one. 

It is easy to show that what happens at test k depends on the previous tests 
only through the number of chips that passed all the preceding tests. Let K be 
the number of devices that did not fail any of the tests preceding test k. It is 
another random variable, and has the binomial distribution with expected 
value Nyj^_ 2. The number of chips failing test k is Nĵ , and has again the 
binomial distribution, but, when K is given, with expected value Kdj^/y^.j. 

The statistical properties of N^ depend on \ , Y k - 1 ' ^^^ ^- ^^^^ ^^ ^^^~ 

ward if we need to compare results from different batches with different 

values of K, even if yk_ i is known to be the same in all batches: the differ

ences in N]̂  could be caused by differences in d ,̂ which is interesting, or by 

differences in K, which is trivial. K will vary because of normal statistical 

fluctuations, but those variations can be ignored if their effect on Nĵ  is small 

compared to the normal statistical fluctuations in N]̂  with a fixed K. It is 

shown in Appendix B that the fluctuations in K can be ignored when y^ is not 

too small compared to yj^_ ̂  It is therefore usually legitimate to ignore the 
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dependencies between different tests, and to approximate the distribution of 
N]̂  by Equation (A.6), using the observed, the averaged, or the expected value 
ofK. 

4 MEASURING FIRST FAIL PROBABILITIES 

In the previous section, all wafers or lots share the same process histories, 
and their {dĵ } sets should be the same. On the other hand, if these first fail 
probabilities differ significantly, then it can safely be assumed that the process 
histories of the batches are not the same either. 

This question was alluded to in Section 2, where it was noted that different 
wafers in the same lot can have very different yields. Clearly, when the yields 
of two wafers are very different, the wafers must have had different process 
histories, and this was modeled in Section 2 by giving y, the probability that a 
device on a wafer will pass all tests, a non-trivial probability distribution. On 
the other hand, giving y a probability distribution does not provide any more 
insight than what was already available from the yield distribution. 

The multinomial machinery is a different approach to the same problem. It 
makes it possible to study differences between wafers at a much more detailed 
level than the overall yield, and even when the final yields are similar. In par
ticular, it can identify those specific test steps where the differences are most 
pronounced. Knowing the identity of those test steps can then provide infor
mation about the possible defects that gave rise to the differences, because 
different test steps are typically sensitive to different defect types. 

In this section, a statistical method will be described that uses the fallout 
history to estimate the first fail probabilities for any batch of devices, and that 
can gauge the extent to which the histories of different wafers differ. 

4.1 Fallout histories 

The wafer by wafer fallout histories can be presented as a matrix, in which 
the rows correspond to wafers, and the columns to the different steps in the 
test sequence (see Table 1.). The number of rows in the matrix is I, the num
ber of wafers, while the number of columns equals k^ + 1, corresponding to 
the number of outcomes of the test sequence. The final column has the virtual 
test step index k^ + 1, and contains the data for the devices that passed all 

tests. 
The row/column entries njj surrounded by the heavy line in Table 1. are 

the number of chips on wafer i failing test step j , while not failing any of the 
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wafer 1 
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step 1 
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step 2 
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N2 
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i^lkf 

^akf 

"ikf 

Nk, 

pass 
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M-Z."ij 

N- I ,N j 

7aZ?/6 7. Wafer by wafer test histories 

test steps preceding j . The final column, with matrix elements n̂ /ĵ  ^ ^x, indi

cates the number of chips on wafer i that did not fail any of the tests. The 

column totals Nj correspond to the test history used in Section 3, and Nĵ  .̂ ^ 

equals N - V N- The row totals equal M, the number of chips on a wafer, 
J 

but are not indicated in the table for they are typically all the same (except 
when there are test or data integrity problems). The total number of chips on 
all the wafers equals N, as before. 

The Ujj are usually not the same for all wafers i, but they are similar when 
all chips on all wafers are subject to the same defect mechanisms, that is, 
when they all have the same multinomial parameters {dĵ }. In matrix terminol
ogy, this means that a constant d]̂  is associated with each column. This case 
will be referred to as the homogenous model. The alternative is the heteroge
neous model, in which different wafers may have been subject to different 
defect mechanisms. The homogeneous model has been assumed so far, but 
the wide yield distributions displayed in Figure 2 may force us to consider the 
heterogeneous one. 

4.2 Maximum likelihood estimation 
In the homogeneous model, the multinomial parameters are the same for 

the same test step, and the different wafers can be viewed as different, inde-
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pendent random samples from the same population. The resulting distribution 
of the njj values is the product over all wafers of identical multinomial distri
butions. The d̂  parameters can then be estimated from the fallout data using 
the maximum likehhood method (see Chapter 2.2.1). 

In this case, the likelihood function is indicated by L(d]̂ ), and is the prod
uct of identical multinomial distributions, with the random variables replaced 
by their measured values. Estimates for d|̂  are obtained by finding those val
ues of the parameters for which L(d]̂ ) is maximum. The result of the 

estimation is indicated by A^, and 

dj; = I N ^ . (3.8) 

If different wafers are subject to different defect mechanisms - the hetero
geneous model - their first fail probabilities will differ, but the distribution of 
the Ujj is still a product of multinomial distributions, be it with different multi
nomial parameters. The parameter set for wafer i will be indicated by the set 
{djĵ }, and can still be estimated from the fail data using the maximum likeli
hood method. The likelihood function for this scenario will be indicated by 
L(dj]̂ ). Maximizing it leads to the estimates 

The problem is to recognize when to use identical multinomial parameters, 
and when to use different ones. This can be done using the likelihood ratio 
(see also Chapter 2.2.2.) This ratio will be indicated by A, and equals L(d]̂ )/ 
L(dik), with the multinomial parameters evaluated at their respective maxi
mum likelihood estimates: 

(3.9) 
'N,M n,n 

A is a good indicator of wafer similarity. Under the null hypothesis that all 
wafers have the same multinomial parameters, -2 In A approximately has the 
chi-squared distribution with kf degrees of freedom. A more convenient mea
sure of wafer similarity, therefore, is the ratio p, defined in the same chapter. 
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Any significant deviation of A from its mean leads to a large value of p, and 
indicates that one or more wafers differ significantly from the others. 

COMPARING WAFERS 

Figure 3 shows the distributions of the sort codes for each wafer in one 
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Figure 3 Distribution of test sorts by wafer 

particular lot - Lot_9 - of the design introduced in Section 2. The bars refer to 
different wafers, and the different patterns correspond to the different sort 
codes. The sizes of the patterned sections in each bar constitute in fact the fall
out history of the associated wafer. It is not relevant what tests the various 
codes refer to, but, as an example, some refer to different environmental 
stresses applied when the LSSD test patterns were applied. 

The information contained in such fallout histories is quite extensive. The 
fallout history is dominated by the Sort_l and Sort_2 categories, although 
there are some exceptions like Wafer_128, and Wafer_147. The outliers men
tioned in Section 2, are easily visible in the chart. It is also obvious from the 
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chart that one of them, the last one, is abnormal, because of its excessively 
large number of Sort_2 fails. 

This figure demonstrates clearly that the homogeneous model is not realis
tic: different wafers can have very different mixes of sort codes, and, 
therefore, must have had very different process histories. To progress, how
ever, it is more productive to identify those wafers that share similar fallout 
histories; in other words, to group the set of wafers into clusters, each cluster 
containing those wafers that seem to have failed more or less similarly. 

A general clustering algorithm will be discussed in Chapter 6.4. What is 
required for this algorithm is a measure for the degree of commonality 
between two clusters. A natural choice for such a commonality measure is the 
ratio p, defined in Chapter 2.2.2, for the union of the two clusters, with a small 
value of p indicating a high degree of commonality. 

When the clustering process with this commonality measure is applied to 
the experimental test results from Section 2 with a threshold of three, the set 
of 147 wafers breaks up into twenty seven clusters. The largest cluster has 
thirty eight members, while the smallest ones consist of a single wafer each. 
Clustering goes across lots, as is shown in Figure 5, which shows the yields of 
the individual wafers, grouped by cluster. Whatever causes the process differ
ences, therefore, is active in different lots, even though there is some tendency 
for wafers from the same lot to be in the same cluster. 

Clustering groups wafers together that seem to suffer from similar defect 
mechanisms. Therefore, the fail probability y of a device is likely to be much 
more constant within one cluster than across all the lots, and, consequently. 
Equation (3.2) is likely to be a much better description of reality. In other 
words, we expect the yield distribution to adhere much more closely to our 
binomial expectations than in Figure 2. The yield distributions within each 
cluster are shown in Figure 4. Within each cluster, the yield distributions are 
obviously much more narrow than the overall yield distribution. 

It is also of obvious interest to know what makes a cluster a cluster; in 
other words, what sort combinations define the various clusters. After all, the 
point of clustering is to group together those wafers that seem to have failed 
similarly, and differences between clusters, therefore, reflect essential differ
ences in process history. The sort compositions of the twenty seven clusters 
are shown in Figure 6. Because the Sort_l and Sort_2 sorts dominate the fall
out, and because their contributions seem to be more or less stable between 
wafers, and, therefore, are not very indicative of cluster differences, the figure 
shows only the contributions of the other sorts. There are clearly large differ
ences between the clusters, and they can now be used to further unravel the 
exact differences in process histories. 
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Such additional analyses will not be discussed here since they go beyond 
what can be done with tester fail data. Clustering has identified common sets 
of wafers. Actual manufacturing histories now need to be consulted to deter
mine why and how different clusters differ. 
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Chapter 4 

Area Dependence of the Yield 

In Chapter 3, the observed yield Y and the real yield YQ were discussed. In 
this chapter, I will focus on the latter and on its area dependence. Understand
ing this area dependence is important for many reasons. First, it determines 
how large a chip can be fabricated, and, therefore, how much function can be 
put on a single chip. Putting additional function on a chip rather than on sepa
rate chips does away with the chip to chip delays and, therefore, improves the 
speed with which this function can be performed. It also obviates the need for 
having to package those additional chips and put them on the second level 
package, typically a board or a MCM. 

Increasing the area of the chip, however, inevitably reduces its yield. 
Given a known (we hope) process quality, one might want to increase the size 
of chips until the yield drops below some economic threshold. To predict, 
however, at what chip size this threshold will be crossed requires a detailed 
understanding of how the yield depends on the process quality and the area. 

The area dependence determines also how testable the chip can be made. 
Adding test features reduces the number of defective chips that are sent to the 
customer, but at the cost of lowering the yield and lowering the number of 
chips that can be put on a single wafer. Reducing the number of shipped 
defective chips reduces the cost associated with returned products. Increasing 
the area, however, increases the manufacturing cost per sold chip. At what 
point adding further test features becomes uneconomical depends of course 
on the various costs involved. One of the main components of the economic 
analysis, however, is, again, the area increase incurred by adding such fea
tures and its associated drop in the yield. 

Similar economic considerations apply to adding redundant features to an 
integrated circuit [34, 51]. When adding redundant logic, other considerations 
than the yield become important, however. Typically, redundancy is added 
only when the probability of finding no defects is too low to be economically 
acceptable. 

Second, it has been known for a long time [42] that the area dependence of 
the yield depends strongly on the average number of defects per chip and, to a 
lesser extent, on the variance. This is best described in term of Pĵ , the proba
bility of finding exactly n defects on the chip. The overall shape of the set 
{P }̂ is captured succinctly by 

I nP„, (4.1) 
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the expected number of defects on the chip, and the variance 

a\n) = Y^{n-Mf^^ (4.2) 

of this number. 
When the defects are uniformly distributed, the number of defects on a 

chip has the Poisson distribution, a^(n) equals \i, and the logarithm of the 
yield is a linear function of the area with slope -jix. In reality, the logarithm of 
YQ is not a linear function of the area, but curves slightly upwards. This devi
ation from a straight line behavior can be attributed to the distribution of the 
defects not being uniform. 

Analyzing the area dependence of the yield can, therefore, give us impor
tant information about {Pĵ }. It will allow us to estimate, for example, ju and 

a (n). Fallout during testing is caused by defects, and it can, therefore, give 
information about {P^} as well. A generally valid relation between fallout and 
defect coverage will be obtained in Chapter 8.1.2. Using that approach to 
obtain information about {P^} requires, however, that one knows the defect 
coverage, and is suitable only when the test sequence covers most of the 
defects of interest. In fact, the estimates based on area dependence could be 
used to predict the cumulative fallout, given a known defect coverage. 

Many models have been proposed in the past (see, for example, [42, 55]) 
to reproduce the observed area dependence. One group of models assumes 
that the defects are uniformly distributed over the chip, but with a density that 
may vary from chip to chip. The resulting defect distributions are generically 
known as compounded Poisson distributions discussed in Chapter 2.1.2. 

All compounded Poisson models have several drawbacks, however. First 
of all, their physical background is rather obscure. Their only justification is 
that they seem to reproduce qualitatively the observed area dependence of the 
yield, and that defect densities do vary from wafer to wafer, and even from 
chip to chip on the same wafer. This justification obviously does not explain 
the physical cause of any particular compounding fiinction: some merely 
work better than others. A physical explanation of the negative binomial 
model to describe wafer to wafer variations has been given in [54], but has not 
been extended to chip to chip variations (see also [23]). 

Another problem with compounded Poisson distributions is that they 
depend on a very small number of parameters that are independent of the area 
and occur in a fixed relationship. The negative binomial model, for example, 
has only two parameters, which makes it, therefore, somewhat rigid. In fact, 
to explain the area dependence quantitatively, one has to assume that at least 
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one of these parameters has an area dependence of its own: an area depen
dence that is merely observed and not explained. 

An alternative approach is to start from some assumed local distribution of 
defects and then to deduce the consequences of this distribution for the yield 
[27, 24, 39]. This approach is able to handle localized clusters of defects, even 
clusters whose size is comparable to that of the chip, and that may partially 
overlap the chip. The most developed one of these models is the center-satel
lite model [51, 39]. The disadvantage of these models are the resulting 
mathematical complexities. They can in principle describe the whole range of 
cluster sizes, from negligibly small to very large, but only limited results have 
been obtained so far. 

In this chapter, I will analyze the area dependence of the yield, starting 
from as general a defect distribution as possible. The main questions to be 
answered are, first, what is the overall shape of Inyg when plotted as a func
tion of the area, and, second, how are ju and a^(n) related to the quantitative 
aspects of this shape ? 

These questions will be answered independently of the details of the distri
bution of defects. The basic physical starting point of the analysis is that the 
defect producers, whatever they are, may have a wide variety of spatial char
acteristics and strengths, but the defects they produce almost never interact 
physically. This observation will form the basis of the approach followed in 
this chapter: defects may be correlated, but only if they have the same cause. 
Once produced, they can be treated independently of all other defects. 

In the first section, a general model will be described of how defects are 
distributed between chips and inside a chip. This model is based on the lack of 
physical interaction between chips. Despite the generality of the model, fairly 
detailed results can be derived that connect the behavior of the yield as a func
tion of the area of the chip with the moments of the defect distribution. The 
main conclusions reached in this section is that, under very general assump
tions, the logarithm of the yield divided by the area is an non-decreasing 
function of the area. 

To get a better feel for how clustering can affect the yield, a restricted ver
sion of this model will be analyzed in detail in the second section. This 
specialization is in fact a simplified center-satellite model. Some additional 
approximations are made that do not affect the basic physics of the defect dis
tribution, but that do make it possible to derive closed form expressions for 
the yield and for the first two moments of the defect distribution. Numerical 
evaluation of these expressions then gives a quantitative picture of the behav
ior of the yield. This model also allows the explicit calculation of the area 

dependence of )LI and a^(n), and of the cluster coefficient. 
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The main problem in applying the general results to real designs is how to 
get yield data at different areas. Barring the production of special test chips, 
only yield data on actual production chips are available. Fortunately, this 
includes wafer maps that describe which chips on each wafer were free of 
defects and which were not. These wafer maps can be used to simulated chips 
of different size. The method employed is that of quadrats [53, 17, 12]. In the 
final section, an systematic formulation of the quadrat method will be pre
sented. This method will be applied to a large data set of over a thousand 
wafers. 

1 GENERAL MODEL 

Defects can be produced in a large variety of ways, and different defect 
production mechanisms will have very different spatial characteristics and 
strengths. The defects that they produce, however, almost never interact phys
ically. They may be correlated, but only if they have the same cause. Once 
produced, they can be treated independently of all other defects. 

In this section, a general model will be developed of how defects are dis
tributed between chips and inside a chip that is based on the approximation 
that the defects themselves do not interact. The main purpose of this model is 
to allow the derivation of general expressions for the yield and for the first 
few moments of {Pnl- Despite the generality of the model, fairly detailed 
results can be derived that connect the behavior of the yield as a function of 
the area of the chip with the moments of the defect distribution. 

1.1 Primitive Polluters 

The defect production mechanisms that affect integrated circuits are 
approximated here by more simple defect producers that, for lack of a better 
name, will be called primitive polluters. Each primitive polluter is character
ized by a strength, and by a region on the chip that it affects. The strength of a 
primitive polluter is a measure of how many defects it produces on average in 
its associated region. Regions can have arbitrary shapes and sizes. The 
regions of different primitive polluters can overlap and one can even be com
pletely included in another. 

The defects produced by a specific primitive polluter are randomly distrib
uted over its associated area. Consequently, if the size of this area is C, and 
the strength of the primitive polluter is v, then the number of defects it pro
duces has the Poisson distribution [15] with mean value vC. The assumption 
that defects are produced randomly is admittedly an over-simplification: mis-
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registration of a mask for example will introduce all kinds of defects on the 
chip that are very definitely not random. We don't expect such defects to 
occur in a stable production environment, however, and we can, therefore, 
safely ignore such highly non-random defects. 

Different primitive polluters can be arbitrarily correlated, in the sense that 
both their strengths and their regions can be correlated. All defects, however, 
whether they are produced by different primitive polluters or by the same one, 
are independent. In other words, all apparent correlations between defects are 
assumed to be caused by correlations between the primitive polluters, and not 
by physical interactions between the actual defects. This is an idealization, as 
the primitive polluters can produce arbitrarily shaped defects, including 
defects that have a non-negligible size. When the strength is low, this ideali
zation is justified, but of course, when the strength increases, deviations may 
occur. 

Note that the model does not exclude any correlation between the primi
tive polluters, and, therefore, that more complex defect production 
mechanisms can be approximated by a number of strongly correlated primi
tive polluters. For example, some defect producers affect a more or less 
circular area, and introduce defects randomly within this area with an inten
sity that depends on the radial distance from the center of the circle. A 
sophisticated approach to this type of defect producers is the center-satellite 
model [39], but that model is not easily extended to arbitrarily shaped regions. 
In the approach used here, this defect producer can be approximated by a 
number of primitive polluters with ring-shaped regions that are concentric 
with the circle, but whose strengths diminish with the distance from the center 
of the circle. Within each concentric ring, defects are produced randomly with 
constant strength. By adjusting the widths of the bands, the approximation can 
be made arbitrarily accurate. 

Next we assume that each defect, whatever its shape, has a definite loca
tion; in other words we can assign to the defect a point on the chip that 

> 
represents its location. I will generally indicate such a point by r, where the 
arrow over r indicates that it represents a location in two dimensions. When 
the defect has no spatial extent, r coincides with the physical location of the 
defect. Even when the defect has a spatial extent, however, it is often possible 
to describe a defect by a point location plus some other information. For 
example, a circular spot defect is described by a center and a radius. 
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1.2 Yield and Moments 
For a specific chip, we can, at least in principle, list the defect producers 

that affected it. This list can then be transformed into a list of approximating 
primitive polluters. Of course, different chips have different lists of primitive 
polluters associated with them. Each small area on this given chip is affected 
by a number of primitive polluters, each of which randomly produces defects 
with a strength that depends on the specific primitive polluter. The number of 
defects produced by a given primitive polluter i with strength Vj in the small 

> > 
area dr has the Poisson distribution with mean Vjdr. 

As the defects introduced by different primitive polluters are independent, 
even though their strengths and associated areas may not be, the number of all 

defects introduced in the area dr, therefore, also has the Poisson distribution, 
but now with mean 

v(r)dr = y V|dr. (4.3) 

In this equation, the sum is over all the primitive polluters that affect the area 
> 

dr. 
Finally, the number of defects on the chip has the Poisson distribution, 

c > > 
with mean v(r)dr, with the sum over all the areas of the chip replaced by an 

integral. Consequently, the probability that the chip is free of defects equals 

-lv(r)dr 
(4.4) 

As mentioned above, different chips will have different sets of primitive 
polluters affecting it. To obtain the probability that a randomly chosen chip is 
free of defects, the average over all configurations of primitive polluters has 
to be taken. In general, however, even the actual configuration of primitive 
polluters for a single chip is unknown. Averaging over different configura
tions requires, in addition, a knowledge of the distributions of the areas and 
strengths of the primitive polluters, and a knowledge of their statistical depen
dencies. Fortunately, we will not actually have to do the averaging in the 
general case. We will assume, however, that, although unknown, it is well 
defined. 

The configuration average of any function will be indicated by <f>. The 
expected yield yo of an integrated circuit is the probability that a randomly 
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chosen manufactured chip is free of defects. It depends on the design and the 
production technique of the product. Its value depends, among other things, 
on the area A of the chip, and is obtained by taking the configuration average 
of the probabiHty that a randomly chosen chip is free of defects 

r f f 

-lv(r)dr 
y()(A) = <e ) . (4.5) 

The consequences of this equation will form the central part of this sec
tion. It has been proposed previously [27], and some of its properties are well 
known. It has to be stressed, however, that it has been derived here making 
only very weak assumptions: defects are produced by a large variety of mech
anisms, but are independent, even though the mechanisms themselves may not 
be. 

The moments of {P^} are most easily obtained from the generating func
tion of this distribution. This generating function is derived in Appendix B. 
The expected value JLI of the number of defects on a chip is found to be 

c > > 
{ v(r)dr) , and the variance of n equals 

^ n2p„ - ^2 = ^ + ( J l̂ v('r) _ Hj^), (4.6) 

2 
where the second term on the right can be interpreted as a (v) , the variance 

> 
of v(r) (compare Chapter 2.1.2). 

When v(r) is constant, say VQ, \X equals VQA and a (n) equals ju. The dif

ference a^(n) - jLi is, therefore, a measure of the degree of non-uniformity of 

v(r) . In the literature, the cluster coefficient a (Equation (2.11)) is often used 

to gauge the degree of non-uniformity of v(r) . In the present context, it 

2 2 
equals JLI / a (v) . For the same \x, the smaller a the wider the distribution of 
the number of defects on the chip, and the more common large values of n. a 
is clearly always positive in this model. 
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1.3 Examples 

The simplest case is the Poisson model, in which v(r) is constant for all r 

and all chips. The next simplest case is that of v(r) constant over a chip, but 
not necessarily the same for all chips. This occurs when the area of the chip is 

> 
small compared with the scale over which v(r) changes, and will be called 
the small area approximation. This case is of particular interest, because now 
the configuration average is simply the average over different defect densities. 
The defect strength on a randomly chosen chip is a random variable with 
some probability density function, and we can rewrite Equation (4.5) as 

yo(A) = Je~''^f(v)dv, (4.7) 

which is the well studied compound distribution model, discussed in Chapter 
2.1.2. 

1.4 General Properties 

Experimentally, it is known that the real yield exceeds the Poisson one, 
and that the excess increases with increasing chip area (even though the yield 
itself decreases with area.) That this is not a coincidence is shown in Appen
dix B. The main conclusions reached in that Appendix are illustrated in Figure 
7. 

This figure shows the yield as a function of area. The yield is plotted on a 
logarithmic scale. The dashed line represents the yield in the case of the Pois
son model with |i equal to 0.3. Because of the logarithmic scale, it is a straight 
line with slope -|i. The full line represents a general yield, although for the 
purpose of generating the figure, a negative binomial yield was taken with vA 
equal to 0.3 and a equal to 2.0. At very small values of the area A, it 
approaches the yield of a Poisson distribution with the same value of vA, but 
is everywhere larger than this Poisson yield, with the excess increasing with 
area. 

The dotted line in the figure is the tangent to the general yield curve, taken 
at an area of 2.0, where the yield equals 0.625. The yield as well as the loga
rithm of the yield obviously always decrease with area. In addition, however, 
the logarithm of the negative binomial yield is a convex function of the area, 
which means that any tangent to it, taken at any area, never exceeds it. It is not 
clear that a general yield, using some arbitrary distribution of primitive pollut
ers, will also have these properties: that its logarithm is a convex function of 
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Figure 7 Logarithm of the yield as a function of area 

the area and that for very small areas it will become a linear function of the 
area. 

As is shown in Appendix B, the logarithm of the yield becomes a linear 
function of the area in the limit of very small areas, and is always negative and 
increasing at any area. Pictorially, a line tangent to InYo always slopes down
wards, for all yields and at all areas, but becomes more horizontal at larger 
areas. The logarithm of the yield, therefore, is a convex function of the area, 
no matter what the distribution of primitive polluters. 

This convexity property is of great importance for a powerful way of ana
lyzing yield data. To show this, let us write f(A) for Inyo(A), and let us 
indicate derivatives with respect to A by a '. f(A) is negative, except when A 
vanishes, for then f(A) goes to zero. In addition, f (A) is negative, and for very 
small A goes to the limit -vA. 

Now, let us define 

g(A) = A-Mnyo(A). (4,8) 

Clearly, g(A) is negative and goes to -v when A goes to zero. In fact, for 
the Poisson yield, g(A) is constant and equal to -v for all values of A. Devia
tions from the Poisson approximation will show up by g(A) not being 
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constant, and in fact by having a non-zero slope when A is small. g(A) is a 
better tool for analyzing clustering than f(A), because, when there is cluster
ing, f(A) is not a straight line and g(A) has a non-zero slope. Non-zero slopes 
are easier to spot, however, than non-zero curvatures, and, more importantly, 
slopes are easier to measure than curvatures. 

Figure 8. shows g(A) for the two yields discussed above. The Poisson 

0.0 

-0.1 h 

-0.4 h 

General 

Poisson 

0 1 2 3 4 5 
Area 

Figure 8 Logarithm of the yield divided by the area 

yield is indicated by the dashed line. The general yield, exemplified by the 
negative binomial yield in this case, is indicated by the fall line. It increases 

s[(A)A 
(becomes less negative) with area. Because yQ(A) = e , this figure 

gives a visual proof of the well known fact that, for the same average number 
of defects per chip, clustering improves the yield. 

That g(A) is always non-decreasing follows from the definitions and the 
convexity of f(A). Taking the derivative with respect to A, we find 

g ' (A) - i ( f (A) -g (A) ) . (4.9) 

As f(A) is linear in A for very small A, g(0) has some finite, negative value (-
\i in the case of the Poisson yield.) When we draw a line L through f(A) at A 
equal to 0 and A equal to some area S, this line will be above f(A) at all areas 
between 0 and S. Its slope is equal to g(S), for f(0) equals 0. On the other 
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hand, this same Hne also cuts the tangent to f(A) at A equal to S. Because of 
the convexity of f(A), the tangent is below the line L for areas smaller than S 
and above L for areas larger than S, showing that the slope of L is more nega
tive than that of the tangent. Consequently, g(S) is more negative than f (S). 
As S was arbitrary, g(A) is, therefore, more negative hat f (A) for all A, and 
g'(A) is always positive. 

As g(A) has a non-zero slope in the presence of clustering, this slope can 
be used to estimate the degree of clustering. The relationship between this 
slope and the degree of clustering is obtained by expanding the exponential 

Equation (4.5) in powers of v(r)ndr. This gives 

yo(A) = l - v A + i < ( j v ( r ) d r ) ^ + . . . , (4.10) 

in which v is the mean value of or v. Taking the logarithm and simplifying, 

Inyo(A) = - v A + i ( a^ (n ) - ju ) + . . . , (4.11) 

and 

g(A) = - v + ^V^^A. (4.12) 

v is obtained from the intercept of g(A) with the A = 0 axis, and a is 

obtained from the slope of g(A) and v. 

2 CENTER-SATELLITE MODEL 

In the previous chapter, an example was given of a non-uniform defect 
distribution. The non-uniformity was rather restricted though, in the sense that 
the defect density could vary between chips but not over the area of a single 
chip. The opposite of this example would be one in which the clusters were so 
small that the probability that a cluster only partially overlapped a chip could 
be ignored. In such a case, however, the clusters can just as well be treated as 
single defects, with a small adjustment due to the fact that the cluster may not 
produce a defect at all. At both ends of the size spectrum, therefore, we expect 
an approximately Poisson like behavior, although with very different 
strengths. 
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The transition from very large clusters to very small clusters is much more 
difficult. It is important though to understand this transition, because many 
defect producing mechanisms give rise to clusters that have a spatial extent 
that is comparable to the area of a single chip. Quantities of interest are of 
course the yield, but also the first few moments of {Pĵ }. In particular, the 
expected value and the variance, or, equivalently, the cluster coefficient of 
this distribution are of importance. They, after all, determine how many 
defects can be expected to occur on a chip, and roughly the range of this 
number. 

To see the effects of defect distributions that do vary over the area of the 
chip, a more complex model will have to be considered than the simple com
pounded one. A very convenient one for studying the effects of clustering is 
the center-satellite model. 

In this model there is a uniform background of defects with strength VQ. 
Superimposed on this uniform background is a uniform distribution of circu
lar defect clusters. The strength of this distribution is X, meaning that there are 
on average X cluster centers per unit area. The radii of these clusters is the 

same for all clusters and equal to p. The area of the cluster, Tip ,̂ will be indi
cated by C. The defects produced by a cluster are distributed uniformly within 
the area of the cluster, with distribution strength v. Each cluster, therefore, 
produces on average n^ = vC defects per chip. Each cluster is in fact a 

primitive polluter, as introduced in the previous chapter. 
The effects of varying the chip size in comparison with the cluster size can 

now be studied easily by putting a chip somewhere in the plane and varying 
its size. To facilitate the calculations, I will approximate the shape of a chip 
by a circle with radius R. This will introduce a small error in the results, due 
to the difference in geometry between a real chip and a circle. The size of this 
error will be small though, and can be ignored compared with the simplifica
tions that have been made in approximating the real defect distribution by a 
single primitive polluter and a uniform background. By varying R, we can 
then follow in detail what happens to the yield, the cluster coefficient, etc. 

This model, with a square chip rather than a circular one, has been ana
lyzed in some detail by Meyer and Pradhan [39]. The essentials of their 
analysis can be found in Appendix C. 

1.1 Center-Satellite Yield 

Using the results derived in the appendix, we find 

-^S( l -Q(0) ) -VoA 
yQ - e , (4.13) 
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with 

Q(«) = \[ -ncaA(r) > 
e dr, (4.14) 

S 

and a^(r) the probability that a defect produced by a cluster centered at r 

will fall within the area of the chip centered at the origin. 
In the limit of a very small chip, we find 

InyQ « - ^.An^ - VQA . (4.15) 

In this limit, it looks, therefore, as if the defects produced by the clusters, XXIQ 

per unit area, are smeared out uniformly, and are merely added to the already 
existing background. 

In the limit of very large chips, we find 

l n y o « - ; i A ( l - e '')-VQA' (4-16) 

This result shows that in the limit of very large chips, the size of the clusters 
can be ignored. Instead, a cluster acts as a single super-defect, the factor 

1 - e being the probability that this super-defect actually produces a fault. 
For very large chips, therefore, there seems to be a uniform background of 

regular defects with strength VQ, and another uniform background of super-
defects with strength X. This is rather different from the negative binomial 
yield, which is not linear in A at all for large areas. This difference between 
the center-satellite model and the negative binomial model becomes even 

more pronounced when considering g(A) = A"^lnyo(A). In the center-satellite 

model, g(A) becomes constant when A becomes very large, while it goes to 

zero as A'UnA in the negative binomial model. 

2.2 Center-Satellite Moments 

Moments of {P^} can be obtained from the generating function of {?^ 

[15]. This function is given in Appendix C. From it, we immediately obtain 
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jLi = >.SnQE(a^) + VQA 

2 2 2 ' ('̂ •̂ '7) 
a (n) = X,Sn^E(a^) + JLI 

-1 r > > 2 
where E (a^ ) is short for S a^(r)dr , and E(a^ ) is defined analo

g's 
gously. As |Li is obviously also equal to XYVQA + VQA, we find 

E (a^ ) = | . (4.18) 

The cluster coefficient a describes the degree of non-uniformity of the 
defect distribution. When VQ is zero, it equals 

a = XS y - . (4.19) 
E(a^ ) 

E(aA) increases smoothly from its small chip limit R^/p^ to its large chip limit 

1. Likewise, E{ap^) varies smoothly from R'̂ /p^ to 1. This shows that, when 
the chips are small, the cluster coefficient goes to the non-zero constant XC. 
When the chips are large, it is proportional to the area A of the chip, the pro
portionality constant being X. It will, therefore, go to infinity when the chip 
size increases. 

This does not mean, however, that the variance and expected value of n 
will become equal in the limit of very large chip areas, for the cluster coeffi
cient becomes large too when the expected number of defects on the chip 
becomes large. This is obvious from equation 32. In fact, when the area of the 

chip becomes large, a^(n) / \i goes to 1 + n^. 

2.3 Numerical results 

The general behavior of the yield and the cluster coefficient can be 
obtained by straightforward numerical integrations. Specific calculations 
were done for a zero background density (VQ = 0,) a cluster with unit area (C = 

1,) and a total defect density of 0.1 per unit area (Xn^ = 0.1.) g(A) = A" 

^lnyo(A) is shown for several choices of ju in Figure 9. The general shape of 

g(A) is the same as shown in figure 1.2: all g(A) converge on the same con-
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Figure 9 Logarithm of the yield divided by the area 
in the center-satellite model 

stant -XviQ at small values of A, and they are all non-decreasing. Unlike the 
negative binomial result, however, g(A) does not go to zero in the center-sat
ellite model when A becomes very large, but, instead, goes to the constant -

X{1 - e"^^), indicated on the right of the figure. These limits are drawn at their 
proper positions on the vertical axis, and are, therefore, slightly above their 
corresponding g(A) curves. When A is large compared with C, g(A) depends 
only weakly on A, and using some Poisson approximation seems to be justi
fied. As mentioned above, this is not strictly correct, as will become clear 
when we consider the cluster coefficient. 

Near A = 0, the slopes of the g(A) shown in Figure 9 are inversely propor
tional to the cluster coefficients a. The g(A) curves, therefore, clearly indicate 
that, when the product vA.C is constant, clustering increases when v increases. 
This is also what one would expect intuitively, because X must decrease when 
V increases to keep the average number of defects constant. When we increase 
V, therefore, we create fewer clusters, but more defects per cluster; in other 
words, stronger clustering. 

This is also confirmed by calculating the cluster coefficients directly. They 
are shown in Figure 10 for the same set of v values as in Figure 9. What is 
plotted are in fact the inverses y of the cluster coefficients, so the large area 
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behavior of a can be followed as well, y starts at the high value of X which 
in this case equals lOv, and decreases monotonically to zero. At large values 
of the chip area A it in fact behaves as IIXA. Even when A is large compared 
with C, however, y is still not small compared with 1, indicating that the dis
tribution of the number of defects per chip is far from Poisson, even though 
the yield may safely be approximated by the Poisson result. 

In the literature, the possibility of local minima in the cluster coefficient 
have been discussed [55, 39, 57], but no such phenomenon is observed here. 
That that is true in general for the simplified center-satellite model is obvious 
from equation 34 and Figure 10. Equation (4.19) shows that a is equal to X 
times a geometric factor that depends only on the sizes of the clusters and the 
chip. Consequently, each a curve shown in Figure 10 is representative for all 
possible a curves, and can be made equal to any one of them simply by rede
fining the unit of length and by multiplying it by the ratio of two X^. As none 
of the as in Figure 10 shows a minimum, no a function will have a minimum 
for any combination of X, v, p or R. A more likely explanation for the 
observed minima is, therefore, normal statistical variations. 
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3 ESTIMATING THE AREA DEPENDENCE 

In normal circumstances, the distribution of defect producers is partially 
known at best. The only way of estimating the area dependence of the yield is, 
therefore, to measure it experimentally. Some possible approaches are count
ing defects on blank wafers [17, 55], or putting specific test structures on the 
wafers and testing these structures for defects [13]. The drawback of both 
these methods is that they are sensitive to only a limited set of defects, in par
ticular to the ones that occur naturally on wafers, and not necessarily to 
defects that are introduced during the fabrication of the actual chip. They have 
the additional disadvantage of requiring separate processing steps that are not 
part of normal chip production. 

A different way to measure the distribution of defect producers is using the 
results of testing real chips, in particular the distribution of passes and fails on 
the wafer. This approach assumes that the quality of the test is high, and that 
we can trust that the chips that fail the test are bad, and that the chips that pass 
the test are good. In this section, techniques will be discussed for using the 
test results to estimate the area dependence of the yield. 

I will follow the general practice [23, 64] of simplifying the analysis by 
dividing the defects into two classes. One class consists of gross defects that 
are so pervasive, and so detrimental to the operation of the chip that not only 
will they make a chip fail, but they will make every portion of the chip fail as 
well. The defects in this class are assumed to contaminate some portion of the 
wafer, and to kill every chip in the affected region regardless of the size of the 
chip. Consequently, the yield due to these defects is area independent. It will 
be indicated by y^. The second class consists of defects whose distribution, if 
not Poisson, is still relatively simple. 

In other words, the yield is modeled as the product y^yCA), in which A is 

the area of the chip and yQ is the gross yield; that is, the yield due to the gross 
defects. All the area dependence of the yield is concentrated in the factor 
y(A), which, in this chapter, will be taken to have the negative binomial 
form. It could easily have some other form, but the negative binomial one is 
the usual choice. The goal of the spatial clustering analysis is then to estimate 

the three parameters y^, a (or y = 1 / a )and v (or |i = vA )^ 

The area independence of y^ followed from the assumed severity of the 
gross defects: they kill every part of the chip. The converse is true too: an area 
independent yield factor implies that there are gross defects that make every 
portion of the chip inoperative. This can be seen by analyzing what it means 
• And I suspect that part of the reason for including the area independent factor is to increase the number 

of free parameters from two to three, and, thereby, increase the accuracy of the fit. 
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for a yield factor to be independent of area. Chips that are killed by whatever 
gives rise to yg are colloquially called wipe outs. 

Assume that there are N chips on a wafer, and that a fraction 1 - y^ of the 

chips are wipe outs. This fraction covers an area on the wafer equal to 

(1 - ys)NA. Next, consider the same wafer, but much smaller chips. In fact, 

assume that there are kN chips on the wafer, each with area A/k, obtained by 
dividing each original chip into k smaller ones. If the same fraction of chips 
are wipe outs, the smaller chips cover an area on the wafer equal to 

(1 - y s ) k N ( A / k ) = (1 - y s ) N A . (4.20) 

Consequently, the two regions containing the wipe outs must be the same 
area on the wafer, for they are on the same wafer and are equal in size. We 
conclude then that each small chip in a large wipe out is a wipe out, and no 
small chip is a wipe out if it is not in a large wipe out. Another way of saying 
the same is that each part of a subdivision of a wipe out is still a wipe out. 

This addition of the concept of a gross, area independent yield is a simpli
fication, and is defensible only when there are manifestly multiple defect 
sources: one that is more or less random, with, perhaps, some spatial cluster
ing, and another one that is systematic, in the sense that it affects some region 
of the wafer, and, in that region, kills all the chips. A better way of handling 
any obvious mixtures of multiple defect mechanisms, however, is first to 
identify wafers with non-random fail patterns (see Chapter 7), and then to use 
spatial clustering methods only on wafers that are not so identified. 

3.1 Comparing different products 

There are at least two ways for using the test results to estimate the area 
dependence of the yield. Both techniques are simple to implement, but suffer 
from the disadvantage that yields are compared for chips of very different 
sizes. This is a problem, for, as we have seen in the previous section, the 
degree of clustering is relative to the size of the chips. Using different sizes 
means that we attempt to get one measure of clustering by looking at the 
defect distribution at different levels of granularity. 

The first technique is to merge yield data for different integrated circuits of 
roughly the same complexity but of different areas [17]. These merged data 
can then provide a composite yield versus area curve. This approach suffers 
from having to define, and measure, complexity, and from having to compare 
areas for different integrated circuits. The latter is more difficult than it may 
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seem, because not all regions on the chip are equally used and allowances 
have to be made for heavily used regions and sparsely used ones [25]. 

This technique was applied to a CM0S2 data set [43]. The results are pre
sented in Figure 11. The yield data were obtained for CM0S2 chips, ranging 
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Figure 11 g(A) for CM0S2 chips 

in size by more than a factor 20. The yield for all these chips was very high; 
for almost all of them over 90%. The test coverage was typically 99% or 
higher, and the difference between the observed yield and the real one was 
ignored. The areas were estimated using cell counts. They were divided by 
that of one of the chips to get relative areas. 

The figure shows both the actually observed ln(yQ(A))/A values and 

their three sigma error ranges. The latter were obtained by estimating the stan

dard deviation of a yield Y as V(Y(1 - Y ) ) / N , where N is the number of 

chips involved, and then adding and subtracting three times the resulting stan

dard deviation to or from Y. 
The data point with g(A) equal to -0.067 seems to be anomalous. Ignoring 

this data point, the results show a weak trend to become less negative when 
the area increases, indicating a certain amount of clustering. If we believe the 
data as they are, then g(A) goes up and down and up again at larger areas. As 
this is not possible, these data can clearly not be trusted. The obvious weak 
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point is the area estimation. Wlien we cannot trust the area estimates, how
ever, then clearly any estimation of either ju or a cannot be trusted either. 

3.2 Quadrat method 

The second technique for estimating the area dependence of the yield 
relies on the quadrat method [53, 12]. In this method, the wafer is divided into 
sections of two by two chips, and into sections of two by one chips. Larger 
sections, for example of two by three or three by three chips, can also be con
sidered, but are not necessary. Despite its name, therefore, a quadrat need not 
consist of four chips; the name is used for all section sizes. By considering 
each two by two section as a chip of size 4A, and each two by one section as 
one of size 2A, yield data can be obtained for areas A, 2A and 4A. This tech
nique bypasses the problem of having to define complexity, or having to 
measure area in a consistent fashion. 

The data used in the calculations are subject to normal statistical fluctua
tions. A necessary part of the analysis is, therefore, the estimation of the 
expected size of these fluctuations, and of their effect on our estimates of the 
quantities of interest, like the cluster coefficient and the average number of 
defects per chip. It is straightforward to enhance the quadrat analysis such that 
these variations can be obtained from the same yield data that were used to 
estimate the distribution parameters in the first place. Before the enhanced 
quadrat analysis can be described, however, some difficulties with the tech
nique in general have to be mentioned. 

3.2.1 Problems with the quadrat method 

The main problem with the quadrat method is the choice of the quadrats. 
The assumption underlying all calculations based on this method is that the 
quadrats that are constructed on the wafers form a sample of randomly and 
independently selected quadrats from the space of all possible quadrats. There 
are a number of problems with this assumption. 

First, the quadrats are not randomly placed on the wafer surface, but their 
locations and orientations are dictated by the grid of chips on the wafer. Sec
ond, when there is clustering, quadrats on the wafer surface, in particular, 
when they are right next to each other, or even overlap each other, can hardly 
be considered to be independent, as the clustering impresses a landscape of 
varying defect densities on the wafer that crosses chip and quadrat bound
aries. After all, fail probabilities of neighboring chips are independent only 
when the defect distribution is Poisson. 
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The assumption of an independent sample may introduce severe statistical 
errors. The effects of such statistical errors can be gauged using bootstrap
ping, however. 

The third problem with the quadrat method is more procedural than funda
mental. Given a wafer surface, there may be several ways to define quadrats, 
but no clear way to define a best choice. For example, when two by one quad
rats are desired, we could choose horizontal ones, vertical ones, or some 
mixture of both. Unfortunately, different selections of quadrats may lead to 
different results. 

One possible way to proceed is to ask for the average over all possible 
ways to select quadrats. If we look at all those ways as a form of bootstrap
ping, the average values of the parameters can be approximated by choosing 
all possible quadrats. We might still be interested in knowing how different 
choices would affect the results, but that variability in the parameter estimates 
can be estimated using standard bootstrapping techniques (see Chapter 2.3). 

Finally, the quadrat method is inherently restricted to clustering whose 
spatial scale is large compared to the dimensions of the largest quadrat, for 
otherwise the parameters of the distribution would vary between quadrats of 
different sizes, and, consequently, could not meaningfully be determined 
using this method. 

3.2.2 Numerical technique 

Despite all the problems with the quadrat method, it is a popular way to 
estimate the degree of clustering, and we now turn to the actual calculations. 

Once the quadrats of various sizes have been selected, the parameters of 
the negative binomial distribution can be estimated. The standard estimation 
technique uses least squares regression of the yields on the areas (for example, 
A, 2A and 4A). As the yields are non-linear functions of the areas, this leads 
to a set of non-linear equations that have to be solved numerically. 

This approach suffers from a minor methodological problem, namely that, 
when quadrats of different sizes are employed, the smaller quadrats could be 
selected from the comers and edges of the wafer where the large quadrats 
would not fit. That problem could be solved by first selecting the largest quad
rats, and then selecting the smaller ones using the chips in those largest 
quadrats. Once that restriction is made, however, there is little reason to pre
tend to use smaller quadrats, because all possible information should already 
be contained in the largest ones. 

In this chapter, I will use a different approach. The mathematical details of 
the calculations are described in Appendix D. The calculations differ some
what from the usual ones, since only quadrats of size four are used. Given 
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quadrats of any size, say k, the relevant statistics are the numbers N-̂  of 

quadrats of that size having i passing chips, with i running from 0 to k. For 
any k, there are only k independent such numbers, for the sum over all the 
numbers should be the total number of quadrats. 

The distribution of these statistics is multinomial, and the probabilities of 
them having particular values are functions of the parameters of the underly
ing defect distribution. The parameters can, therefore, be obtained from these 
statistics using maximum likelihood. That method leads to very complex 
equations, however, and it is doubtful that the benefit of getting accurate esti
mates is worth the cost of handling these complexities when the vahdity of the 
quadrat method itself is already in question. 

If need be, the parameters can be obtained numerically by maximizing the 
likelihood function. In the remainder of this section, a simplified approach 
will be developed that leads to much simpler equations without deviating too 
much from statistical correctness 

(k) When we divide N^ by the total number of quadrats, we obtain a ratio 

(k) P| . The latter's expectation value is also of interest, and will be indicated 

(k) by P| . As is shown in Appendix D, this expectation value can be written as 

a linear combination of the expectation values p- , with i going from 1 to k. 

Conversely, p[ can be written as a linear combination of p-̂  , with i not 

exceeding k,. 

p • is also the expectation value of the yield of a quadrat of size i. If we 

now use those same linear equations to obtain ratios p[ from the ?[ , we 

obtain quantities that are analogous to the observed yields obtained for quad
rats of size i. I will refer to them as pseudo yields. 

The calculations described in Appendix D use the ratios for k = 4 to esti
mate the distribution parameters. The distribution is assumed to be negative 
binomial, and only three parameters will have to be estimated: a gross yield 
yg, the cluster parameter a, and the defect density \x. The calculations are sim
plified in the sense that only three statistics are used, instead of the available 
four. The advantage of that simplification is that no regression needs to be 
done, for the three distribution parameters are uniquely determined by the 
three chosen statisfics. Consequently, the calculations are considerably sim
pler than either regression or maximum likelihood. 
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The disadvantage is that not all available information is used, which will 
lead to a loss of accuracy. A further disadvantage is that different choices of 
the three statistics will lead to different estimates. 

The calculations stay close to the standard approach by using for the three 

statistics the three pseudo yields P ̂  , P2 ^^^ ^4 • The resulting equations 

still involve one non-linear one, which, however, depends on only one vari
able and can be solved using standard numerical techniques. 

3.2.3 Numerical results 

This approach was applied to a medium sized microprocessor. There are 
580 devices per wafer and 1339 wafers were included in the analysis. The 
pass/fail status for each chip on each wafer was determined, and y, JLI and yg 

(2) 
were determined as described above. Wafers for which P2 turned out to be 

0 were removed, for reasons explained in Appendix D, after which 1336 
wafers were left. In addition, three more wafers were removed because they 
gave problems with bootstrapping (to be explained later). The final sample, 
therefore, consisted of 1333 wafers. 

There will be inevitable statistical fluctuations, and it may be difficult to 
distinguish those from true non-Poisson behavior. To judge the size of these 
fluctuations, a preliminary experiment was performed in which the same 
wafer layout was used, with a yield of 65%, and with a strictly random distri
bution of the passes and fails. The resulting distribution of y and ju values is 
shown in Figure 12. y is centered around 0 with a spread of (±0.2)w, and fi is 
centered on 0.43. 

Note that y can be as easily negative as positive, or, in other words, that the 
cluster coefficient can be as easily negative as positive. This is purely the 
effect of the finite sample size, as is, in fact, any y not equal to 0, and does not 
indicate a violation of the assumptions made in Section 1. Both y and |LI are 
centered on their expected values: y on 0.0 and |i on 0.43, the natural loga
rithm of 0.65. 

The figure does not show the y^ values. In the experiment, y^ was distrib
uted more or less symmetrically around 1.0 with a standard deviation of 0.13. 
This is unavoidable. Within the scope of the simplified calculations, there is 
no natural way to force y^ not to exceed 1.0. If we would use maximum like
lihood, we could restrict all parameters to whatever ranges would be 
appropriate, and, if necessary, look for a maximum on the boundaries of those 
ranges. Because we have chosen not to use that method, however, this route is 
not open to us. 



78 IC Fails 

E 
E 
cc 

0.5 i 

0.4 

0.3 H 

0,2^ 

0.1 

-0.1 H 

-0,2 i 

-0.3 H 

0 °_qoo^° 0° 

' I I I I I I I I I I I I I I • I I I I ' I I I I I I I ' I • I I ' • ' 

0.3 0,35 0,4 0,45 0.5 0,55 0.6 0.65 0,7 

mu 

Figure 12 \x and y for random defects 

The same yield parameters were calculated for the 1398 microprocessor 
wafers. The results for those wafers that had a yield between 60% and 70% 
will be discussed first. 

The results for y and JLI are shown in Figure 13. ju is again in the 0.3 to 0.5 
range, as in Figure 12. y, however, has a far wider distribution than in the 
Poisson experiment. It is negative on many wafers, which may be the result of 
the finite wafer size. It can also be much larger than in the comparable random 
experiment, however, which can be explained only as a manifestation of true 
clustering. As the data show no clear transition from random to clustered 
behavior, a more detailed analysis will have to be done to separate true clus
tering from mere statistical fluctuations. This will be done in Chapter 7. 

y and ju results for all yields are shown in Figure 14. The wafers were clas-
(4) 

sified according to whether Y^ = P4 was zero (quadratrc = y4zero) or not 

(quadratrc = regul4.) The arc of data points in the bottom of chart, between ju 
values of 1 and 2, corresponds to y4zero wafers, for which yjii == -0.25 . The 
\i in Figure 14 are now much more varied, in accord with the large variations 
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in yield that are seen in this sample of wafers. There is in fact good correlation 
between JLI and yield, as shown in Figure 15. The range of y values is a little bit 
larger than in Figure 13, but not by much, showing that clustering, if any, is 
more or less common at all yields. 

Comparing the results from real wafers with simulated ones on which the 
defects are explicitly distributed with a Poisson distribution is one way to 
judge the size of statistical fluctuations. We could also attempt to estimate the 
variances of the estimates directly. This would be straightforward, although 
not necessarily easy, if we had used the maximum likelihood approach, for 

(4) the set of N- has the multinomial distribution. As we are not using this 

method, however, the variances have to be determined differently. The distri
bution of the estimates is complex because of the non-linear equations that 
need to be solved, and determining them even approximately is not feasible. 
Consequently, the best we can do is using the bootstrap method. 

The original wafer will be called the primary wafer, and the parameters, 
estimated with the techniques described above, will be referred to as the pri
mary parameters. On each of the 1336 primary wafers, a bootstrap experiment 
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was done in which 100 bootstrap samples were drawn from the set of avail
able quadrats. The results from the 100 sample wafers were then combined to 
obtain a mean and a standard deviation for each primary wafer. The standard 
deviation is used as an estimate of the standard deviation of the primary 
parameter. 

As pointed out in the appendix, several anomalies are possible when cal
culating negative binomial parameters from the data, be they primary or 

(2) 

bootstrap. Wafers with P2 = 0 were already removed, but problems associ
ated with the calculation of the gross yield y^ still have to be dealt with. Two 
possible anomalies were pointed out. y^ could be complex, or it could be large 
- larger than 2 in this experiment. No primary wafers were removed directly 
because of this anomaly, but several bootstrap samples were. Primary wafers 
are considered to be anomalous, however, if the number of bootstrap samples 
on which yg is either complex or large exceeds 100. In this experiment, three 
primary wafers were found to be anomalous, and were removed from further 
consideration. 

The results from the remaining 1333 wafers are shown in the next figures. 
The results for y are shown in Figure 16. Each point in the figure correspond 
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to the bootstrap experiment for one primary wafer, and is labeled by the pri
mary y and the corresponding bootstrap standard deviation. The correlation 
between y and the bootstrap mean is over 95%, indicating the general reliabil
ity of the bootstrap estimation. The data are seen to be fairly regular, with a 
regression line of 

ystdev = 0-09 + 0.12y„ (4.21) 

The small cluster of data points at the bottom of the chart, near y = -0.3, 
correspond to the y4zero wafers. 

Unfortunately, the analogous spreads in \x or y^ are not nearly as compact. 
The resulting standard deviations can be very large, as is shown clearly in Fig
ure 17 for yg. Most of the wafers seem to behave regularly, but there are some 
exceptions in which the standard deviations are comparable to the primary 
values. The yg standard deviations seem to be smallest near y^ = 1, as 
expected, for that is the physically most meaningful value for the gross yield. 



82 IC Fails 

.Q 

."5 

Q28-

Q26-

Q24-

Q22-

0.2-

0.18 • 

0.16 • 

0.14-

0.12-

Q i 

aos-

006-

Q04-

002-

0-1 

-̂  ^ ^ 

i^^m 
+ " * ^ 

•*« '*'' 

1 , , • • • 1 • 1 . . 1 ' ' ' ' 1 ' ' 

•1-

+ 4 +• -Fi- ^ 

# • + 

' ' 1 ' ' ' ' 1 ' ' ' ' 1 • ' 

+ 

4 

' ' 1 ' 

+ 

4 

' ' ' 1 ' ' ' ' 1 

-04 - 0 2 0 02 04 0.6 0.8 

gamma 

quBdrBtrc +•+••• regutt »*'*»* y42ero 

1.2 1.4 

Figure 16 Ranges of y values 

0.4. •: 

a s s : 

a3e: 

a34. : 

a 3 2 : 

0 .3 : 

a s s : 

aas : 

a a t : 

aaa-i 

0 . 2 : 

a i 3 : 

0L16: 

att-i 
ae-i 

0 . 1 : 

a o s : 
aoe : 

(X04: 

aoe : 

0 -

5 
C\ 

t> 
o 

o 

D 

^ 
*=o°«P 

O 

^ O 

Q 
O 

o o 
D 

o 

° > ^^*S 

o 

o 

f i 

o 

o 

D 

D 

^ ^^ 
GO O Q 

„ O 

<3«^QS°S^ * ^ 

'"̂ Ĥ 
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Chapter 5 

Statistics of Embedded Object Fails 

Integrated circuits can contain many objects of a more or less similar 
nature. Examples are embedded memories and scan chains. Some of the tests 
in the test sequence are intended to verify that such objects are defect free. 
When the objects are scan chains, these tests are the scan tests, and, if the 
clock control of the chains has been designed appropriately, the flush test. 
When the objects are embedded memories, the tests are specialized memory 
tests. In the latter case, the test patterns are often generated on the chip itself 
by a so-called ABIST (Array Built-in Self Test) engine. The memory test step 
applied from the tester then consists of initializing the ABIST engine, and 
providing the proper number of clock pulses. 

The statistical properties of embedded object fails, such as the expected 
values and variances of the fail probability of a single object, and the correla
tions between fails of different objects, provide another route to learning 
about defects, and, in particular of course, about defects that are important for 
the objects in question. In practice, most of the defect mechanisms that can 
affect the electronic circuitry on the chip will also affect scan chains or 
embedded memories, and oftentimes both. As the objects are simpler and 
more regular than the logic circuitry, using them to learn about what causes 
chips to fail is usually more expedient than attempting to diagnose fails 
caused by defects in the logic itself 

An additional consideration for being interested in object yields is that 
there are usually many of them on today's integrated circuits. Because of their 
relative diagnostic simplicity, they can conveniently be used as embedded, 
and free, defect monitors. 

In the total sequence of test steps, the tests that target similar objects often 
occur together in one step. This step has some index, say k, as explained in 
Chapter 3. The total population of integrated circuits that enter test can then 
be divided into three groups. The first group consists of those devices that fail 
tests preceding the object tests. No information about the objects is available 
in this group, as the appropriate tests were never applied. This leaves NY|̂ _i 
chips that were tested with the object tests. 

The second group, called the fail group, consists of those devices that did 
fail the object tests, and the third group of those that passed them. There are 
Nî  chips in the second group and NY]̂  in the third one. 

In practice both first and third groups are not represented in the fail data, 
although they can often be reconstructed with some effort. There is very little 
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one can do with the first group, because fails in that group typically are caused 
by gross problems, like excessive 10 leakage or shorts between Vdd and 
Ground. It is better to consider the second and third groups as constituting the 
total population. The statistical properties mentioned above are, therefore, 
related to the devices that were tested with the object tests. 

The statistical analysis is simplest if all devices that were tested with the 
object tests are available, whether they passed those tests or not. Detailed 
information can then be extracted from the data. In particular, of course, the 
fail probabilities of all the objects can be estimated, as well as the relation
ships of those probabilities to the sizes of the objects. In addition, suspected 
correlations between the fails of different objects can be verified, and their 
strengths determined. 

Collecting such detailed fail information is costly, however, and various 
strategies are employed to reduce this cost. Examples are terminating test 
once one failing object has been found, and collecting complete fail data on 
only a small sample of devices. All these test time reduction strategies dimin
ish the quality of the information extracted from the fail data, Fortunately, 
they rarely make extracting meaningful information impossible. 

In this chapter, the statistics of object fails will be discussed: the distribu
tion of the number of times an object fails, and the relationship of this 
distribution to the sizes of the objects. In addition, some measures of correla
tion will be discussed between objects, based on their fail statistics. A related 
problem, how to use the object fails to identify systematic defect mechanisms, 
will be postponed to Chapter 6, where a general approach to commonality and 
clustering will be developed. 

If the objects are collections of the same basic cell, the fail probability of 
such a cell can be estimated from the fail data, but the result depends on 
whether cells in different objects can be treated as identical. In sections 4 and 
4.4, two different models will be discussed, and cell fail probabilities will be 
derived from experimental data using these two models. 

In sections 5 and 6, the problem of reduced data collection is addressed. It 
will be shown that meaningful estimates of the object fail and cell fail proba
bilities can still be obtained. 

When the objects are more complex than a mere repetition of the same 
basic cell, but still are constructed from a small number of different compo
nents, the fail probabilities of those components can be estimated. The 
statistical analysis is considerably more complex than when the objects are 
constructed from a single cell, however. It will be discussed in Section 7. 
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1 GENERAL DEFINITIONS 

For simplicity, NYĵ .j, the number of devices that saw the objects tests, 
will be indicated by K. K, of course, is a random variable, but only in the con
text of all devices being tested. In this chapter, I will focus on only those 
devices that were tested with the object tests, and, therefore, in this chapter, K 
can be treated as a constant. 

The number of objects on a device will be indicated by I, and the objects 
are labeled by an index i = 1, ..., I. The result of applying the object tests to 
object i is a random variable Zj. Its value is 1, when object i failed one or more 
of the object tests, and 0 otherwise. Zj has the Bernoulli distribution, with 
some expectation value Uj, and variance u-( 1 - Uj). Uj is also the fail probabil
ity of the object. 

It is often more convenient to work with Ô  = KZ^, the number of 

devices on which object i failed the object tests. Oj has the binomial distribu

tion with expected value Kuj, and variance KU|( 1 - u^). Random variables Zy 

describe the events that both objects i and j fail simultaneously. The corre
sponding probabilities of these events are uy. Similarly, Oy is the number of 
devices on which both objects i and j fail. Its expected value is Kuy. 

The fail probabilities Uj are not completely arbitrary, because the objects 
considered here typically have a size Sj, which indicates the number of cells in 
the object. If the object is a RAM, the cells are real RAM cells; if it is a scan 
chain, the cells are scan latches. When such a size exists, and if the cells fail 
independently, 

Uj = l - ( l - t . ) ' \ (5.1) 

in which tj is the probability that a single object cell fails. 
Considering cells rather than the objects themselves is helpfiil, if the 

object can realistically be considered to be a set of identical cells, for it allows 
us to focus on the size independent aspects of the fails, and, in particular, to 
compare fail probabilities of objects with very different sizes. 

If the objects are similar, for example if they are all SRAMs or all scan 
chains, the fail probabilities of the cells are expected to be equal to some glo
bal cell fail probability. This global cell fail probability will be indicated by t. 
Even if the cells are all of the same type, however, their fail probabilities may 
still not be equal because of design or manufacturing differences. I will refer 
to the homogeneous model as the one in which all cells have the same fail 
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probability, and to the heterogeneous model as the one in which the cells may 
have different fail probabilities. 

A more sophisticated model is the one in which the objects belong to one 
of a number of groups of objects, such that all the cells within one group have 
the same cell fail probability, while objects in different groups may have dif
ferent cell fail probabilities. This model makes the statistical analysis very 
complex, in particular when the group compositions need to be determined 
from the data. I will not address this model here. 

It is of course possible to consider other, even more complex scenarios. 
For example, the homogeneous model may be valid, but on a wafer by wafer 
basis only. In other words, all the cells in the different objects are assumed to 
have the same fail probability on any given wafer, but the fail probability may 
vary from wafer to wafer. Or, the wafers may be clustered together into 
groups, for example using the clustering technique outlined in Chapter 3.5, 
and the single cell fail probability may be assumed to be the same for all 
wafers within one group, but to vary between groups. All these more complex 
scenarios can be treated with the same statistical technique that will be used 
for the simple homogeneous and heterogeneous models, but will not be 
addressed explicitly in this chapter. 

2 CORRELATIONS AND CLUSTERING 

In later sections in this chapter, it will often be necessary to assume that 
objects fail independently. This assumption may be justified because of previ
ous observations, or because of our knowledge of the manufacturing process. 
It is safer, however, to verify its validity whenever possible using the col
lected fail data. 

Objects can be correlated, for example, because they fail or pass the same 
tests together significantly more than they would if they had been indepen
dent. They can also seem to be correlated when they have cell fail 
probabilities that are significantly larger than those of other objects. The first 
type of correlation can be studied by estimating, for example, the classical 
correlation coefficient between the pass and fail events of the objects, the sec
ond one by estimating individual cell fail probabilities. 

The correlation coefficient p(i,j) between two objects i and j equals 

Uy-UiUj 
-^ , (5.2) 
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in which GJ equals ^U|(l -Uj) . p(i,j) can be estimated by 

y -^ (5.3) 
7 0 j ( K - 0 j ) 0 j ( K - 0 j ) ' 

Rather than estimate the correlation between two distinct objects, it is 
often useful to analyze the correlation between two devices using the pattern 
of passing and failing objects on both. Such commonality analysis will be 
addressed in detail in Chapter 6. 

3 EXAMPLE OF EMBEDDED OBJECT FAILS 

SRAM fail data were collected for a large ASIC design. This design has 
seventy three embedded SRAMs, ranging in size from about 7K to over IM 
bits. The sample consisted of 101 devices on which at least one of the memo
ries failed at least one of the memory tests. The experimentally determined 
fail probabilities are shown in Figure 18. 

The fail probabilities clearly depend on the size of the objects, in this case 
the number of bits in the SRAM. In addition, there is a substantial spread in 
fail probabilities at any given size. The size dependence can be removed by 
plotting cell fail probabilities, using Equation (5.1), and the result is shown in 
Figure 19. Interestingly, the spread at high memory sizes has been replaced by 
a large spread at very small memories. The latter spread can be explained as 
resulting from statistical fluctuations (see Section 4.4.) Some spread at large 
sizes is still present, though, and will be discussed in Section 4.4 as well. 

Correlation analysis using Equation (5.3) shows that most of the RAMs 
fail independently, although there are some that are perfectly correlated 
(always fail together). The picture that emerges from this initial analysis, 
therefore, is seventy three largely independent embedded memories of various 
sizes that fail with a more or less constant cell fail probability. Further analy
sis of the fail data will be done in Section 4.4. 

4 OBJECT AND CELL FAIL PROBABILITIES 

The result of applying the object tests to a set of K devices is the set {Oj} 
of numbers of devices on which the various objects were observed to fail. The 
likelihood fiinction L is the probability that this particular outcome is 
obtained, and, if the objects are independent, equals 
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Figure 18 Fail probabilities of embedded SRAMs, 
as a function of SRAM size 

(5.4) 

When the objects are independent, the fail probabiHties of the objects can 
be estimated directly from the fail data using the maximum likelihood method 
(see Chapter 2.2). This approach can also be used to verify the hypothesis that 
the cells in all the objects fail with the same probability. 

4.1 Estimating cell fail probabilities 

The parameters in the statistical model are the fail probabilities Uj, which 
should be estimated from the fail data. In fact, if the objects are constructed 
from single cells and have a definite size, it would be even better to estimate 
the cell fail probabilities, defined in Equation (5.1). I will assume here that 
that is the case, and focus on the cells rather than the objects. 
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Figure 19 Cell fail probabilities of embedded SRAMs 
as a function of SRAM size 

A general approach to estimating the cell fail probabiHties is the maximum 
likelihood method (see also Chapter 2.2,) which requires that L, as a function 
of the fail probabilities, is maximized. In the heterogeneous model, L is a 
fiinction of the set {tj}, and in the homogeneous model of the global fail prob
ability t. The results are estimates \{ and t, respectively, of the true cell fail 

probabilities. 
As is shown in Appendix E, the maximum likelihood equation has, as 

expected, the solution 

Ui = l - ( l - t i ) ' ' = 0 / K (5.5) 

in the heterogeneous case, and 
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• l - ( l - t ) 
(5.6) 

in the homogeneous one. 
The solutions of the maximum likelihood equations are random variables 

with certain statistical distributions. When K is large, these distributions are 
approximately normal. The means of these normal distributions are the true 
values of the cell fail probabilities, and their covariance matrices are minus 
the inverses of the matrices of second derivatives of ln(L). 

The variances are calculated in Appendix E. The matrix of second deriva
tives turns out to be diagonal in the heterogeneous model, and the variance of 

t, is 

« i ( l - U i ) 

K 

^5u> 
(5.7) 

In the homogeneous model, the matrix is a scalar, for there is only one vari

able, and the variance of t equals 

O; 

i U; ( l - U ; ) 

^5u^ 2\ 

(5.8) 

The derivatives in these expressions are evaluated at the solutions of the max
imum likelihood equations. 

The derivatives are functions of Sj and t{ (or t,) but Equations (5.7) and 
(5.8) are written in their particular fonns to highlight their underlying simple 

structures. For example, the factor Uj(l - u-)/K in Equation (5.7) is the 

standard binomial variance, while the factor containing the derivative simply 
changes the scale due to the change of variables from Uj to tj. Equation (5.8) is 
of course more complicated, but the terms in the sum have the same structure, 

for Oj/U| is approximately equal to K. 
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4.2 Comparing different models 

The obvious question is, of course, which model is better: the heteroge
neous model or the homogeneous one ? The heterogeneous model has more 
parameters than the homogeneous one, and is, therefore, more complex, but 
always gives a better fit of the observed data. This question was addressed in 
Chapter 2.2.2: the heterogeneous model never has worse agreement with 
experiment than the homogeneous one, even when the latter one is correct, 
because of statistical fluctuations. Of course, a certain amount of fluctuations 
is always expected, so the real question is whether the fluctuations are exces
sive, or are more or less what they are expected to be statistically. If the 
former, the heterogeneous model should be used, otherwise the homogeneous 
one. 

To determine whether the fluctuations are excessive, the likelihood ratio A 
can be used. In Chapter 2.2.2, the indicator 

-21nA-Nj )p 

J^ 
(5.9) 

DF 

was suggested, in which Nj^p = I - 1 is the number of degrees of freedom. 

The result was that, if p is large, the homogeneous model cannot explain all 
the variability in the data, and needs to be rejected. 

4.3 Small fail probabilities 

Equations (5.5) through (5.9) become much simpler when the fail proba

bilities of the objects are small, for then U| « t̂ ŝ  in the heterogeneous model, 

and U|«ts- in the homogeneous one. The maximum likelihood estimators 

become 

1 ^i - 1 (O) 
t i « i _ i and t « i l ! ^ f , (5.10) 

K s . K <s) 

respectively. In Equation (5.10), <0> and <s> are the averages of the Oj and 

Sj, respectively. The corresponding variances are 

l ^ i and i , i O > , , (5.U) 
2 2 2 2 

K Sj K I<s) 
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in which I is the number of embedded objects. 

If we now abbreviate the standard deviation of t by 5, we find 

Ô  ^ (s) ti« — 6 / l - P = and t « bjij{0), (5.12) 
Si V<0> 

while the standard deviation of tj can be written as 

V(0) s. 
The importance of the last three equations is that the various quantities, in par

ticular ti and t, can be compared with each other and with the standard 
deviations of the former without having to know K, because they are all K 
independent multiples of 5. 

For example, the likelihood ratio A can be written as 

f nS('-e(f-'<°-)-^<°))) • 
2 

in which Cov (0,s) is the covariance of the O and s vectors, and a (O) is the 
variance of the former. The covariance will be small if the objects have all 
roughly the same size. If we also assume that the variance of the O vector is 
small compared to K, A depends solely on ratios of s and O, and can easily be 
computed without having to know K. Equation (5.9) can then be used to 
gauge whether the homogeneous model is appropriate, or needs to be replaced 
by the heterogeneous one. 

4.4 Example of cell fail probabilities 

The analyses described in the previous section were applied to the fail data 
described in Section 3. As was pointed out in that section, the individual cell 
fail probabilities are more or less the same for all seventy three embedded 
SRAMs. The spread in the probabilities is large when the SRAMs are small, 
as expected, considering the variance of the cell fail probability. Equations 
(5.7) and (E.17), which show that the standard deviation is inversely propor
tional to the size of the memory. For example, several of the smaller 
memories have a size of about 7K bits, and for these RAMs the standard devi
ation is about the same as the fail probabilities themselves. Hence the large 
statistical fluctuations. 
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The homogeneous and heterogeneous models were compared using Equa
tion (5.9), with the result that p = 7. This is larger than the cutoff of three that 
was mentioned in Section 4.2, so the homogeneous model should be rejected. 
In fact, Figure 19 shows that the spread of the fail probabilities of the larger 
memories, although much smaller than that of the smaller ones, is still sub
stantial. The likelihood ratio test merely confirms that not all the variability is 
due to normal statistical fluctuations. 

5 PARTIAL DATA COLLECTION 

When testing embedded objects, it is often desirable to stop as soon as 
some object has been shown to be defective. In the simplest case, the objects 
are tested sequentially, in which case stopping on first fail is a natural way to 
reduce test time. Often, however, may objects are tested in parallel, and the 
pass/fail status of the various objects are observed more or less simulta
neously. For example, the embedded objects might be associated with pass/ 
fail latches, one latch per embedded object, whose values are set when the 
embedded objects are tested. The status of the various objects are then deter
mined when the values in those pass/fail latches are scanned out. 

Stopping when the first failing object is observed is universally called the 
"Stop On First Error" protocol, or SOFE. Under SOFE, the status of objects 
whose pass/fail status is observed after that of the failing one(s) are not 
known. In this section, I will show that, despite the absence of complete infor
mation, reliable fail probabilities can still be obtained. We only need to 
assume that the order in which the fails are observed is known and fixed for 
all objects. 

The pass/fail status of the embedded objects are observed in some order. 
There are three possibilities for any pair of objects i and j : 

1. i precedes j ; that is, it is observed before j . 
2. i and j are simultaneous, meaning that they are observed at the same 

time. Simultaneity occurs, for example, when associated pass/fail 
latches are in different scan chains, but at the same relative location 
with respect to the scanout sides of their chains. 

3. i succeeds j ; that is, it is observed after j . Alternatively, one can say 
thatj precedes i. 

When a given IC is tested, the output syndrome A is the set of objects that 
failed the tests. A may be empty, indicating that all objects passed their tests. 
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When A is not empty, all the objects in A should be mutually simultaneous 
under SOFE. 

If a more complex stopping protocol is followed, the contents of A should 

be consistent with that protocol. For example, if the protocol is "stop on n̂ ^ 
error", there should be a subset of at most n objects among those in A that can 
be linearly ordered according to observational precedence, and such that all 
other objects in A are simultaneous with some object in the subset. 

The probability P^ of a given syndrome A equals 0 when A is not consistent 

with the stopping rule, and otherwise 

^ J ^ i j < ^ -̂  I G 4 

where ]<A indicates that j does not succeed any of the objects in A. 

The first product is over those objects that are not in A, but that are 
observed before or at the same time as any of the objects in A, and that are, 
therefore, known to have passed the tests. Note that there is factor 1 - u for 
each such object. Likewise, there is a factor u for each object in the syndrome 
A, that is, for each object that failed the test. When A is empty, the first product 
is over all objects, while the second one equals 1. 

The likelihood fiinction L of an observed set of syndromes, one for each 
tested device, is the product of all such syndrome probabilities. Each object i 

gives rise to a factor of the form (1 - u-) 'u^ ', with Uj the number of ICs on 

which i is known to have passed the tests, and mj the number of times it was 

observed to have failed. Consequently, 

InL = y (n . l n ( l - u - ) + m-lnu.). (5.15) 

The resulting maximum likelihood estimate of Uj is 

-̂v m-
u- = , (5.16) 

1 n + m , 

while the covariance matrix is diagonal, with diagonal elements 
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ri; + m. 
(5.17) 

This result is entirely what one would expect if the only available informa
tion is that there are nj ICs on which object i is known to have passed the tests, 
and nij ICs on which it was observed to have failed. 

Those objects that are observed rather late, and that are, therefore, often 
obscured by fails of earlier objects, will tend to have small values of both n̂  
and mj. The corresponding fail probability can still be estimated, but with a 
severely reduced accuracy compared to when all objects are always observed 
(in which case n̂  + m̂  in Equation (5.17) needs to be replaced by the number 
of ICs.) The only exception is when both Uj and mj equal 0, which happens 
only if there is some object that always fails, and that precedes i. In that case, 
there truly is no information about i, but a lot of information about the always 
failing one. 

6 SAMPLING DEFECTIVE DEVICES 

When testing is completed, it is of course known which devices failed the 
object tests. It may not always be known, however, which particular objects 
on a given failing device failed the tests, because collecting the detailed fail 
information about all the embedded objects can be costly, and is not always 
done on all devices. 

In this section, I will consider the case that only a number of failing 
devices is selected for complete fail data collection. This can be all failing 
devices, if their number is small enough, a fixed fraction of failing devices, or 
some predetermined maximum number of them. This group of devices will be 
called the characterization group. 

The fail information now consists of three categories. First, there is 
detailed pass/fail information about all the embedded objects in the character
ization group. This group contains M devices, and is such that each device in 
it failed the object tests. Second, there is the incomplete information for the 
failing devices that are not in the characterization group. The total number of 
devices in the characterization group and in this second group is known, and, 
in conformance with earlier usage, will be indicated by N|̂ . Third, there is the 
implicit information that all the objects passed the object tests in those devices 
that did not fail the object tests. The problem at hand is how to estimate the 
object fail probabilities from these disparate pieces of information. 
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The information contained in the detailed fail data from the set of M 
devices in the characterization group may not allow us to estimate the fail 
probabilities directly. What can always be obtained, however, are the proba
bilities Pi that an object i fails, given that the device belongs to the 
characterization group. It can be approximated as 

p . « 0 . / M , (5.18) 

where Oj is the number of times object i fails in the characterization group. 

The usefulness of pj lies in its relationship to Uj, which will now be derived. 

Let R be the probability that a given device being tested by the object tests 
fails those tests. If all the objects fail independently, R is a simple function of 
the fail probabilities of the objects (see Equation (F.l)). Sometimes, however, 
different objects are not independent, and R is some fixed but unknown quan
tity. It can be approximated by Nj^/K. 

As the characterization group is a random selection of M devices from the 
failing ones, the probability pj that object i on a given device in the character
ization group fails the object tests is the same as that in the group of all failing 
devices. The probability that this object, say i, fails the object tests in all 
devices, failing or not, equals Uj, and the probability that a device fails the 
object tests equals R. Consequently, 

p- = u / R . (5.19) 

As in Section 3, we want to be able to assume that the objects fail indepen
dently. No correlation coefficient as in Equation (5.3) can be calculated 
because no complete information is available. The approximate value of R 
still allows us, however, to estimate the correlations between object fails. 

Pij, the probability within the characterization group that i and j fail, equals 

Ujj/R, similarly to Equation (5.19). If objects i and j fail independently, Ujj 

equals the product UjUj, and, consequently, Py equals PiPjR. Clearly, indepen

dence between i and j does not imply that pjj equals pjPj. Equality holds only 

when R equals 1. 
Using Equation (5.18) and 

P y « 0 - j / M . (5.20) 

Equation (5.3) can now be rewritten as 
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MOii-OjOjR 
^ -^ (5.21) 

7 0 i ( M - 0 i R ) 0 j . ( M - 0 j R ) ' 

in which Oj and 0^ refer to the numbers of fails in the characterization group 
only. 

Note that Equation (5.21) requires knowledge of R. So far, the only esti

mate available for R is Nj^/K, and, therefore, this equation needs K. If K is 

not known, for example because nothing is known about devices that did not 
fail the object tests, correlations between the fails of different objects cannot 
be estimated this way. In practice, one proceeds by assuming no correlation, 
and verifies later that the assumption was justified. 

If the correlation coefficients (5.21) show that the objects fail approxi
mately independently, or if one simply assumes that they do, pj can be 
estimated using the maximum likelihood method, as shown in Appendix F. In 

the heterogeneous model, P| = Oj/M, as expected, and in the homogeneous 

model equation (5.6) is still valid, with K replaced by M, and u by p. Both R 
and the desired probabilities Uj can then be estimated as well, as shown in the 
same appendix. 

In both models, R is between 0 and 1. It equals 0 only in the exceptional 
circumstance that exactly one object fails on every chip in the characterization 
group. This may seem self contradictory for a failing object ipse facto shows 
that the chip can fail, and, therefore, that R is not 0. On the other hand, the cir
cumstance in which R is 0 seems to violate the assumption of independence 
between the objects, and the result of any calculations based on this indepen
dence should not be taken too seriously. R equal to 1 is less questionable as a 
result. In the heterogeneous model, it occurs when any object fails on all chips 
in the characterization group, but in the homogeneous model only when all 
embedded objects fail on all chips. 

The choice between the two models can now be made as outlined in Sec
tion 4.2. With the estimated value of R, Equation (5.21) can be used to verify 
that the objects did indeed fail independently. A large value of any element in 
the correlation matrix indicates that the assumptions that underlie the calcula
tions may not be valid. 

Some final comments. Using the characterization group only gives non-
trivial results when there is more than one object, as discussed in the appen
dix. On the other hand, if there is more than one object, not only the quantities 
mentioned above can be estimated, but also K, the number of devices that 
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were tested with the object tests. For K is approximately equal to N^/R, where 
N|̂  is the number of failing devices. 

7 FAIL PROBABILITIES OF OBJECT 
COMPONENTS 

In many cases, embedded objects are not complex chunks of random digi
tal logic, but, instead, are simple collections of components from a small set 
of component types. Examples are SRAMs, which are rectangular arrays of 
one-bit cells, and scan chains, which are linear strings of flip-flops or master-
slave latch pairs. Embedded objects, however, need not be simple one or two 
dimensional repetitions of the same components, but may contain many dif
ferent ones. Scan chains, in particular, can contain many latch types that may 
differ in the number of data ports, output drive strength, noise immunity, etc. 

In this section, I will address the problem of estimating the fail probabili
ties of these different component types, using, as input, only the passes and 
fails of the embedded objects. Estimating the component fail probabilities, as 
it turns out, is considerably more complex than estimating the fail probabili
ties of the embedded objects themselves. 

The appropriate statistical model will be described in the next section. It 
relates the probability Uj that object i passes all the object tests to the numbers 
of components of each type there are in the object, and to the probabilities that 
those component will pass the tests. The general equation is 

In ( l -Ui ) = ^ PjHij, (5.22) 

in which the independent variable njj is the numbers of components of type j 

in the object, and pj is the logarithm of the expected yield of that type. This is 

similar to the well-known logistic regression equation [10] 

where ny has the same meaning as above, a and Sj are the logistic parameters 
to be estimated, but are harder to interpret than Pj in Equation (5.22). The 
mathematical techniques for estimating the parameters are the same in both 
models. 
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7.1 Component fail estimates 

Let us assume that there are k different types of components out of which 

the objects are constructed. The probabiHty that a component of type j , 

j = 1, ..., k, is defect-free is qj, and we want to estimate these probabiUties. 

The fail probabiHty of the component is, of course 1 - q^, but we rather use 

the probability of passing the tests, as it is more convenient. In a more general 
model, these probabilities depend on the objects in which the components are 
located, but we will not use that more general model here. 

Object i has njj units of type j . The object has a size, which, however, is 

more general than the one discussed in Section 1, for it now is built from more 

than one type of component. The size of the object is defined as s- = V n-.. 

The objects can pass or fail the object tests, but the number of devices for 
which test results are known can be different for different objects. The actual 
number of devices in which object i is tested is Mj, and there are Oj passes and 
Mj - Oj fails. 

Assuming that components fail independently, the probability that object i 
fails the object tests is 

-n .< i j " . p-̂ ") 

which, after taking logarithms, becomes Equation (5.22). The outcome of an 
experiment is the numbers of passes and fails of the various objects. The cor
responding likelihood function is 

L = TT Uj ( 1 - u . ) . (5.25) 

Finding the maximum of L, and, thereby, the best values of the component 
fail probabilities, is described in Appendix G. No clean, analytic expressions 
are available for the estimates of the component yields. Here, we will only 
discuss some special cases. 

7.2 Special cases 

One potentially anomalous case is that of some component having zero 
probability of passing the tests. If some component always fails at least some 
of the object tests, all objects that contain this component will also always 
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fail. In other words, q- = 0 implies û  = 0 for all objects for which n-- ̂  0. 

It, therefore, also implies that the corresponding Oj should be 0. 
If we now invert these implications, it turns out that the probability that 

some component will pass the test cannot be 0 if there are some objects that 
contain that component and that sometimes pass the tests. In fact, if some 
objects always fail the tests, and if there are one or more units that are con
tained in only those objects and not in any other objects, it is better to remove 
those objects and those units from consideration, because some of the units 
might have a zero probability of passing the object tests. 

Another special case is when all objects have the same relative contents; 
that is, when n-/s- is a constant Vj that depends only on j . In that case, we 

can write the occupancy numbers as n-- = vs- , and Equation (5.24) becomes 

U; = 1 

J 
I{.%1 ' ("̂ > 

or, more meaningfully, u- = I -n \ with n the average component yield. L 

is then a function of TT alone, and only n can be obtained from the test data. 
Incidentally, Equation (5.26) is the same as Equation (5.1) in the homoge

neous model, with t equal to 1 - TT. The connection with the heterogeneous 
model will be made below. 

The derivation of Equation (5.26) shows that, to get information about the 
individual component probabilities, different objects should have different 
relative contents. Obviously, the more the contents of the various objects dif
fer, the more accurate those probabilities can be estimated. In the limit of each 
object consisting of only one component type, the accuracy is maximized. 

In this limit case, for each component type j , ny equals 0 for some objects 
and Sj for all others. The maximum likelihood equations (G.3) then split up 
into k different groups, one for each component type, and the equations for 
different component types are independent. This is in fact the heterogeneous 
model of Section 4, with the potential refinement that some objects are made 
to have identical cell fail probabilities when the components out of which 
those objects are constructed are the same. 

The resulting equations are very much like those for designed experi
ments, if we consider each object as an experiment for a particular component 
type. There may be multiple experiments per component, and the numbers of 
experiments for different components may differ. 
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Fail Commonalities 

The focus of the discussions in the previous chapters were various types of 
fail probabilities: first fail probabilities at the different steps in the test 
sequence, or fail probabilities of embedded objects and of object cells. These 
probabilities can be estimated using the fail data, if the latter were collected in 
sufficient volume, and with sufficient detail. 

Fail data can also be used in a less quantitative way, however. They can be 
used as a signature, so to speak, of the underlying defect, the one that caused 
the fail. Such signatures can be defined for each failing device using the raw 
fail data or some kind of summarization of the fail data. 

The importance of fail signatures is that they can be used to compare dif
ferent devices, or the same device under different test conditions, and to 
determine whether the fails of those devices could have been caused by the 
same defect mechanism. Once a way is found to reliably compare different 
devices, the failing devices can be clustered into groups of devices that seem 
to have failed because of the same or similar defects. 

One reason for attempting such clustering is that, if all the devices in a sin
gle group did fail because of similar defects, information like occurrence 
probabilities of such defects is available immediately. In addition, diagnosis 
can then be targeted to the more frequent defects. 

More importantly, clustering failing devices focuses on the presence of 
systematic defects. The Null hypothesis of manufacturing is that there are no 
systematic defects: all defect producers are assumed to act with equal 
strengths on all wafers, and to produce defects randomly, and independently 
of each other. If true, commonality analysis would find no clusters, at least not 
any large ones. On the other hand, if large clusters are found, it shows evi
dence of some systematic defect. The goal of comparing fail signatures, and 
of clustering failing devices on the basis of such comparisons, is to uncover 
the presence of systematic defects, if any exist. Once identified, further diag
nosis can provide more information about them. 

One type of commonality was discussed in Chapter 3.5. In that chapter, 
commonality between wafers was studied on the basis of detailed fallout his
tories. In the present chapter, commonality between devices, whether on the 
same wafer or in the same lot, will be treated. The fail data that will be 
employed to define signatures are either the lists of failing embedded objects 
on the devices, or the lists of failing latches. Because the latter lists may be 
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very large, various ways to summarize them without losing essential informa
tion will also be studied. 

The basic steps to be taken are fairly straightforward. First, define a mea
sure of commonality between the fail data of two failing devices; second, 
identify clusters based on the commonality measure. Commonality analysis 
can be performed for all devices failing any of the deterministic tests, or can 
be done on, for example, a comer by comer basis. Finally, develop suitable 
cluster signatures to identify future occurrences of the same underlying 
defects. 

All the techniques described here, other than perhaps the actual common
ality measures, are standard data mining techniques [19]. A similar analysis 
was for example applied to Iddq data in [32]. 

This type of analysis will be performed on large numbers of devices. Con
sequently, the analysis has to be fast. This requirement limits the amount of 
work that can be performed on the fail data. It is the opposite of logic diagno
sis, in which accuracy of the result is the driving factor and performance can 
be sacrificed to it. 

This chapter is divided into three parts. First, abstract commonality mea
sures will be defined for pairs of devices, as well as groups of more than two 
devices. Then, such measures will be described in detail for commonly col
lected fail data. Finally, a clustering technique will be presented, and results 
of applying such clustering on some selected sets of fail data will be 
discussed. 

1 COMMONALITY MEASURES 

In all cases considered in this chapter, the fail signatures that need to be 
compared are collections of pairs (n, v), in which n refers to an identifiable 
object, like an embedded array or a logic book, and v is a number, n can be an 
actual string, but it can also be a number, like a net index, v is always a num
ber, but it can have arbitrary (non-negative) values, or it can be restricted to 0 
and 1. Obviously, each signature has at most one (n, v) pair for any given n. 
By convention, if a given signature does not have a (n, v) pair for some n, it 
implicitly contains the pair (n, 0). 

A simple example is the signature based on embedded objects. For any 
given device, the signature contains explicitly pairs (n, 1) for those objects 
that did fail on the device, with n being the name of the object, while it implic
itly contains pairs (n, 0) for those objects that did not fail. If the signature is 
that for a wafer, the pairs would be of the form (n, v) (or, implicitly, (n, 0)) 
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where n has the same meaning as above, and v is the number of times the 
object n failed on the wafer. 

1.1 Pairwise commonality 

There are several ways to compare two signatures. The general approach 
is to compare the (n,v) pairs in the two signatures one by one by comparing 
the V values of pairs with corresponding n values. This comparison should end 
with some number that, for the sake of convenience, will be between 0 and 1. 

The two most relevant comparisons to this book are cos6jj and h(I,J), 

where I and J are two different signatures. The first one is most suitable when 
V can have arbitrary values. It starts from the notion of a vector V = {Vj}. The 
vector is that of the v values with the n values in some arbitrary but definite 
order that is the same for all the signatures. If n is a name, it could, for exam
ple, be their alphabetical order. \\ is then the v value of the 1 pair according 
to that order. 

Next, a cross product V ® V is defined between the vectors I and J by 

V ^ ^ V ^ = ^ v W i , (6.1) 

where v i is the i element of vector V . Using this cross product, a length 

L = A/V ® V is assigned to each vector. Finally, the commonality 
between two signatures is defined as 

cosGy = ( V ^ ® v V ( L ^ L ^ ) . (6.2) 

in which 6jj is the angle between the two vectors in k-dimensional signature 

space, where the dimensions correspond to the various values n can have, and 
k is the number of all such possible values. 

It follows immediately from this definition that cosGjj is between 0 and 1. 

When signatures I and J are strongly correlated, that is, when corresponding v 

values are almost equal, cosOjj is close to 1. If I and J are uncorrelated, 

cos9jj is expected to be small because corresponding v values will be very 

dissimilar, and often one or the other will be zero 
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When the v values are restricted to 1 and 0, this commonaHty measure can 
still be used, but in that situation it may be more natural to use h(I,J). The lat
ter is obtained by considering only pairs where the corresponding v values 
differ. In other words, 

^ v V l - v ^ ) + v ^ ( l - v \ ) 

h(I, J) = 1 i . . T-. (6-3) 

Z , T J I J , 

( v i + V i - V iv i) 

L -I J 
iV i 

^ . T J I J ' 
2^ (v i + v i - v iv i) 

(6.4) 

in which the sums are over all the n occurring in either I or J. h(I,J) is a num
ber between 0 and 1. It equals 1 when corresponding v values are the same. 
When the signatures have little in common, it is expected to be small, 
because, for each n, one or the other v value is likely to be zero. 

This measure can be generalized to a weighted h(I, J) by 

I J 
V i S^i^i 

y w-(v i +V i-V iv i) 

in which the weights Wj are arbitrary. Such weights are sometimes useful if 
some property of the objects make some objects more important than others in 
gauging similarity. The definition (6.5) is such that h(I,J) still equals 1 when 
the two signatures match exactly, regardless of the weights. 

If signatures are random, their lack of commonality should be reflected in 
the commonality measures being small. The average values of cosGjj and 
h(I,J), however, can be calculated only in exceptional circumstances, and we 
will essentially trust our intuition that both of them are small if the signatures 
having little or nothing in common. 
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1.2 Commonality of sets of signatures 

Next, the commonality measure needs to be extended to arbitrary sets of 
signatures, not just pairs. This can be done in a number of ways [19], but in 
this chapter I will use only one. Another one was discussed in Chapter 3.5. 

Given a set of signatures, each pair of them will have a commonality mea

sure, be it COS0JJ or h(I,J). This measure will be indicated by the generic 

form o(I, J). Let now {1} be the set of signatures. 0({I}), the commonality of 
the signatures in the set {I}, is then defined as 

0({I}) = min 0(1, J ) . {6.6) 

I , J e { I } 

As a result, 0({I}) will be close to 1 if the signatures in the set are all mutu
ally highly correlated, while it will be close to zero if at least two signatures in 
the set have low commonality. 

It is often useful to have a measure for how little two different sets, say {1} 
and {J}, have in common. The measure to be used in this book will be indi
cated by D({I}, {J}) and is the opposite of that in Equation (6.6): 

D ( { I } , { J } ) = Max 0(1, J ) . (6.7) 

I e { I } , J G { J } 

Finally, as a warning, notice that 0({I}) and D({I}, {J}) depend on the 
particular choice made for o(I, J). Most of the time the differences will be 
minor, but there may be cases in which cos6jj is large and h(I,J) is small or 

vice versa. 

2 EMBEDDED OBJECTS 

Fails of embedded objects were treated extensively in Chapter 5. The set 
of objects that fail on some device provide a convenient signature for that 
device. As the objects either fail or not, the natural commonality measure is 
h(I,J). This measure, however, ignores the information contained in the sizes 
of the objects. This size dependence can be accommodated by using the 
weighted commonality measure, defined in Equation (6.5). The weights 
should be such that larger objects have smaller weights than smaller objects. 
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Possible choices are 1 -O^/K, or 1/S|, where the various variables were 

defined in Chapter 5. 

3 LOGIC FAILS 

The main test of the internal logic circuitry on a device is performed by the 
deterministic tests. Arrays, scan chains, lOs, all are tested by other tests, but 
defects that affect the functional operation of the logic on the chip can be 
tested only with the deterministic test step. As such defects constitute one of 
the main reasons of why ICs fail, good commonality measures that can iden
tify systematic problems will be of great value. 

The result of the deterministic tests is symbolically shown in Table 2.. The 
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Table 2. Deterministic Test Results 

rows in this table correspond to the patterns that were applied during the test, 
and the columns to the latches whose values were inspected as part of the test 
procedure. A latch that, after a given pattern was applied, was found to have 
an incorrect value is marked by the symbol \E\ in the cell corresponding to 
that pattern and that latch. 

The table contains two auxiliary columns and two auxiliary rows. The col
umn labeled # latches contains, for each pattern, the number of latches that 
were found to have incorrect values. This number being 0 indicates that the 
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pattern did not fail. The column labeled pass/fail merely shows whether the 
value in the previous column is 0 or not. 

The two auxiliary rows have similar functions. The one labeled # patterns 
contain the number of patterns that caused a particular latch to have an incor
rect value, while the row labeled distinct fail shows whether this number of 
failing patterns is 0 or not. 

Finally, the total number of failing values that were observed in any of the 
failing patterns is N, and is the column sum of the values in the # latches col
umn, and is also equal to the row sum of the values in the # patterns row. 

The contents of Table 2. represent all the available fail data, without omis
sions, but in a way that is more suitable to discuss usable signatures. Various 
types of signatures can now be defined using this table. The most obvious one 
is to keep the complete table. This is of course the best possible signature, but 
has the drawback of being rather voluminous. 

Two approaches will be discussed in this book. One uses only information 
in the table, the other one uses the table, and, in particular the distinct fails 
row, as a starting point for further analysis. I will consider both in turn. 

3.1 Signatures based on fail data only 

A better choice than all the data in Table 2. is to summarize the fail data 
using one or more of the auxiliary rows and columns. In fact, the column 
labeled pass/fail (see Table 3.) is a well known summarization, used in dictio-
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Table 3. Signature Based on Failing Patterns 
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nary based diagnosis. The assumption in that type of diagnosis is that the 
vector of values in that column can be used to nearly uniquely identify the 
underlying defect. Upon further experimentation it has usually become clear 
that this vector gives a very poor diagnostic resolution, and is not used in 
practice. For the same reason, it is not a good signature to use in commonality 
analysis. 

A considerably better choice, as it turns out, is the vector of ones and zeros 
in the distinct fail row (see Table 4.,) and this vector will be called the unique 
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Table 4. Signature Based on Unique Fails 

fails signature. A clearly even better signature is the vector of values in the # 
patterns row, possibly augmented with the vector of values in the # latches 
column (Table 5.) It cannot be worse than the unique fails signature, and it 
requires only marginally more storage. This vector, or the combination of the 
two vectors, will be called the marginals signature. 

With these choices for signatures, choosing the appropriate commonality 
measures is straightforward. The unique fails signature consists of ones and 
zeros only, and its appropriate measure is h(I, J). On the other hand, the mar
ginals signature consists of arbitrary value and its appropriate commonality 
measure is cos6jj. Note that, in all cases, patterns that did not fail and latches 

that never contained fail data in either signature do not contribute to the com
monality measure. In other words, the commonality measures are based solely 
on fails that occur in at least one of the two signatures. 
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Table 5. Signature Based on Marginals 

Further refinements can be made as appropriate. For example, it might be 
desirable not to use all the failing patterns, but only a suitable chosen subset of 
them. This can, of course, easily be accommodated by removing rows that 
correspond to rejected failing patterns from the various tables, and by updat
ing the values in the # patterns row and in the distinct fails row. 

3.2 Signatures based on backtracing 

The unique fails signature works rather well in practice, in that a high 
commonality value based on this signature often indicates a common defect 
cause. The reason for this is probably that the defect that caused the fail is 
likely to be close to the latches that contained the incorrect values, because 
fault effects caused by the defect flow along signal wires that do not com
monly cross large distances over the chip. Consequently, when fault effects 
propagate away from the location of the defect, they will usually not travel far 
before they are stored into latches. 

If a fault effect is stored in a latch, this latch will, upon inspection at the 
end of the test pattern, contain an incorrect value. Such a latch is commonly 
called a failing latch, although, usually, the latch as a logic circuit is defect 
free. 

If this is true, then it makes sense to follow the fault effects in the opposite 
direction: start from the failing latches and trace through the logic backwards 
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until primary inputs, embedded memories, or other latches are encountered, 
and store all the nodes that were encountered during the tracing in a list. 

Backtracing through combinational logic is straightforward, because all 
the logic elements are unidirectional, and the backtrace always arrives at the 
output of a logic gate and needs to continue backwards from the inputs. It 
stops at primary inputs. 

Most test patterns are such that embedded memories provide a constant set 
of logic values on their outputs, and no further tracing needs to be performed 
through them when they are encountered during the backtrace. Latches, when 
encountered however, require more consideration. 

For example, in Figure 20, the tracing starts at failing latch A. The cone 

Figure 20 Tracing through backcones 

rooted at A contains combinational logic, and is bordered by several latches. 
Tracing may have to be continued through these latches if they are clocked 
with a clock pulse that precedes the one that clocks latch A. The figure shows 
the case that latches B and C are clocked during the appHcation of the test pat
tern before A is clocked. Consequently, tracing continues through these 
latches and through more combinational logic, as shown by the additional two 
combinational cones. 
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When latches D or E are reached, a decision has to be made whether or not 
to continue the tracing. At D this decision depends on whether its clock pulse, 
if any, occurs before the one at B. At E, the choice is more complicated, and 
the clock pulses at E, B and C all have to be taken into account. Tracing con
tinues at E if its clock pulse precedes either the one at B or the one at C, for 
fault effects through E could continue through B or through C. 

If a latch has multiple ports, as many do, then the tracing should continue 
only from the port that was clocked. Furthermore, there is a choice between 
tracing through the data input or through the clock input of a clocked port. 
Tracing needs to follow only clock inputs when it is clear that the defect does 
affect the clock lines. In the spirit of single fault diagnosis, the data lines need 
not be traced in that case. Usually, however, it is not clear whether the defect 
affects clock lines or not, and tracing has to continue from both clock inputs 
and data inputs. 

Each trace starts from a failing latch and defines a backcone to that latch. 
This backcone is the sum of the combinational cones and latches encountered 
during the tracing. Figure 20 shows a complex backcone consisting of three 
distinct combinational logic cones. Note that backcones from the same latch 
may be different for different patterns, because the sequences of clock pulses 
in the patterns may differ. During the backtrace, all the encountered nodes are 
stored in a list. The backtrace is repeated for each failing latch, and each time 
a node is encountered the corresponding entry in the list of encountered nodes 
is incremented by 1 (or by some other value depending perhaps on the back
cone or the number of failing latches.) 

The resulting signature is a list of (node, v) pairs, in which v is the number 
of times this node was encountered during the backtraces. A high v value 
shows that the corresponding node is in the backcones of many failing latches. 
The V values, therefore, form a rough estimation of the likelihood that the 
defect is located on or near any of the nodes in any of the backcones. 

It is useful to compare this signature with the result of a crude form of 
diagnosis that is sometimes employed, called intersection. In intersection, 
backcones are obtained as above, but instead of incrementing counters, the 
backcones are kept as sets and the intersection is taken of all these sets. The 
result is a set of nodes that are in all the backcones. 

The theory behind this form of diagnosis is that only nodes in the intersec
tion can be the location of the defect, because otherwise fault effects from the 
defect could not have propagated to all the failing latches. Unfortunately, not 
all defects affect single nodes. Bridges, for example, affect at least two, and 
the latches downstream from one leg of the bridge may not be the same as the 
ones downstream from the other leg. Consequently, intersecting backcones 
from the failing latches is likely to result in an empty set. 
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Using the backcones based signature, however, circumvents this problem. 
It lists all the nodes ever encountered in any of the backtraces, but it ranks 
them according to how often they were encountered. The group of nodes most 
often encountered form then a generalization of the intersection, one that does 
not suffer from the problem of potentially being empty. 

As the V component in the (n, v) pairs is an arbitrary number, the most 
appropriate commonality measure is cosBjj. 

3.3 Signatures based on cells 

Instead of keeping track of which nodes or blocks are encountered during 
backtracing, one can also notice their functional properties. These can include 
the logic function, drive strength, power level, and delay times. All these 
details are encoded in the cell name of the block, which is a reference to a spe
cific book in the design library of which this block is an instance. All the 
physical and layout details of the block can be found in the description of the 
library book. 

Monitoring cells rather than nodes during backtracing is sometimes useful 
when the defect is not one that impacts a specific instance of a library book, 
but, instead, one that impacts the library book itself; perhaps a defect prone 
layout style, an underpowered driver, or any other design flaw that will affect 
all instances of that book. 

The resulting signature is very similar to the one discussed in the previous 
section, except that now the n component of the (n, v) pairs is not the name of 
a node or a book instance, but the name of the book itself Signatures that 
have high counts of certain books hint at problems with that book, rather than 
at some point defect somewhere on the device. 

As with the previous signature, the most appropriate commonality mea
sure is cosGjj. 

3.4 Signatures based on diagnosis 

An even more complex analysis than backtracing is diagnosis. The details 
of such an analysis will be presented later in this book, but the results are 
rather simple: a set of nets or pins, generically called nodes, at least one of 
which is affected by the defect. The signature is then this set of nodes, or, 
more precisely, a set of (node, 1) pairs. As the v component of this signature 
only has the values 0 and 1, the most appropriate commonality measure is h(I, 
J) (Equation (6.4)). 
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4 CLUSTERING 

Now that means have been defined to measure commonality between the 
fails of different devices, we can turn our attention to clustering together those 
devices that seem to share the same failing mechanisms. Intuitively, this is 
easy: just put those devices in the same cluster that have high values of the 
chosen commonality measure for each pair of devices. This, however, imme
diately runs into problems. Consider for examples. A, B and C. A and B have 
a high commonality value, and so do A and C. B and C, however, have an 
medium commonality value, and not enough to qualify them for membership 
in the same cluster. Should the core cluster now be A and B, or A and C ? 
Either choice would be arbitrary. 

To handle such conundrums, an algorithm is needed that reduces the num
ber of arbitrary decisions to a minimum. The chosen algorithm is well known 
in the literature as the furthest neighbor method [19]. A simplified program 
that implements this algorithm in a brute force way is shown in Figure 21. 

The algorithm starts with as many clusters as there are signatures. At each 
step of the algorithm, the number of clusters is reduced by 1 by merging two 
clusters. The selection of the clusters uses the cluster commonality measure 
0({I}), defined above in Equation (6.6), where {1} is the set of signatures in 
the cluster. The two clusters selected for merging are such that, after merging, 
the commonality measure of the resulting cluster is larger than that of any 
other pair of clusters. If there is a choice between several pairs of clusters, 
each pair leading to the same commonality measure of the resulting cluster, 
then an arbitrary choice needs to be made to pick one of the pairs. The process 
of merging stops if there is no pair such that the commonality measure of the 
result of the merger is larger than some threshold t, a number between 0 and 1. 

The result of the algorithm is a set of clusters for each one of which 0({I}) 
is larger than t. The resulting clusters can be compared to how tight they are, 
using the 0({I}) measure (see Equation (6.6)), or to how different they are 
using the D({I}, {J}) measure (see Equation (6.7)). 

5 EXAMPLES 

The first example, Figure 22, is that of a repeater based cluster. The design 
was a large ASIC with many embedded SRAMs. The commonality was cal
culated using the pass/fails of these memories (see Section 2.) The largest 
cluster found using the commonality matrix is shown in Figure 22. This figure 
is a composite over several wafers. The wafer locations of the devices in the 
cluster are indicated by the shaded cells. The numbers in the cells, and the 
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IIS is set of clusters 
s = (); 

// put all signatures in S 
for each I, put I in S; 

// best_pair (S) finds pair of clusters in S tliat 
// produce the highest combined commonality 
// measure among all pairs in S. 
// It returns a pair of clusters, or an empty set 
// if no commonality measure exceeds the 
// threshold t. 

best_pair (S, t) { 
best = t; 
P = (); 
for all (c1 in S) { 
for all (c2 in S and c2 ne c1) { 

if ((m = measure (merge (c1, c2))) > best) { 
best = m; 
P = (c1,c2); 

} 
} 

} 
return (P); 
} 

// merge (c1, c2) returns the union of the signatured 
merge (c1, c2) { 
return (cl uc2); 

} 

// Main routine 
while (P = best_pair (S, t) not empty) { 

C = merge (P); 
remove (S, P); // remove clusters in P from S 
add (S, C); // add merged cluster to S 
} 

exit; 

Figure 21 Clustering algorithm 

corresponding shade intensities, indicate the number of wafers that contribute 
devices at this location to the cluster. The empty cells show those wafer loca-
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Figure 22 Repeater based cluster 

tions that have failing devices on some wafers, none of which were in the 
largest cluster. 

The first sign of a repeater is the clear striping in the largest cluster found 
using this commonality matrix. As the design is printed from a 1 by 2 reticle, 
a repeater, probably due to a mask fail, was suspected. Further analysis of the 
contents of this cluster revealed that one particular memory on all devices in 
the cluster had failed, and that there was no other common fail among the 
devices in the cluster. At the time of this writing, no failure analysis had been 
performed yet to confirm the diagnosis, but the signature is so strong, that no 
other explanation is likely. 

The second example is that of a defect based cluster. The design was 
another large ASIC. The reticle in this case had size 2 by 2, with three A chips 
and one B chip (different versions of the same design.) Almost all A chips 
failed. Commonality analysis using latches (see Table 4.,) used to cluster the 
failing devices, and three medium sized clusters were found, one of which is 
shown in Figure 23 Further diagnosis, indicated a unique failing location in 
the design, which then, after failure analysis was traced back to a physical 
design problem (misaligned via.) 
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Chapter 7 

Spatial Patterns 

Many defects are randomly distributed over the wafer surface, and cause 
the die to fail at random locations. Some defects, however, have spatial distri
butions that can be used for their identification. 

One example of such defects are particles left on the wafer after an incom
plete rinsing, but left preferentially downstream of the direction of the rinse. 
Another example is bad or incomplete polishing caused by sagging or bowing 
of the wafer, which causes the local plane of the wafer not to be parallel to the 
plane of the polishing pad, and may cause the outer regions of the wafer to 
yield less than the central one. A final example is a mask defect in one of the 
die images in a reticle, which produce a clearly recognizable repetitive pattern 
of fails of those sites that correspond to the defective die image in the mask. 

Such defects can be recognized by the distribution of failing die over the 
wafer not being random, but, instead, having some recognizable spatial pat
tern. The fact of a pattern of fails not being random may, of course, be 
recognized without identifying an underlying defect. A repetitive pattern 
whose pitch matches that of the reticle, for example, is a clear indication of a 
mask defect, even though the defect itself has not yet been identified. 

In this chapter, I will focus on the recognition of spatially non-random pat
terns of fails. Once recognized, those die that seem to be part of the pattern 
can be subjected to other forms of diagnosis to identify the actual defect 
mechanism. This second step, however, the actual defect identification, will 
not be part of this chapter. 

Before getting into the details of pattern recognition, two questions need to 
be answered. First, what wafer maps will be analyzed ? Maps showing the 
passing and failing die is one obvious example. Wafer maps need not be lim
ited to just final sort codes, however. It is often also useful to analyze maps of 
passing and failing embedded objects, the ones described in Chapter 5. The 
main reason for being interested in wafer maps of such objects is that they 
show the die in much more detail than sort codes do, and that different objects 
may have different sensitivities to those systematic defects that give rise to 
spatial patterns. I will focus on wafer maps resulting from embedded object 
tests, with the understanding that a similar analysis can easily be applied to 
other types of wafer maps. 

The second question is which passes and fails to use. For example, in the 
case of instance fails, not all passes will be known in general, for the fail data 
contain information only for those die on which at least one embedded object 
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failed. A die for which there are no fail data for any of a certain type of 
embedded objects may either have passed all the relevant object tests, or have 
failed some test preceding them. Consulting the final sort codes allows us to 
distinguish these two cases, but the pass/fail status of the objects is inherently 
unknown for those die to which the object tests were not applied. 

Some information about unknown passes can often be retrieved from the 
fail data, as a fail of an object of some type on some die shows that other 
objects of the same type on the same die were tested with the object tests for 
that type. Consequently, we can assume that those other objects passed the 
tests if no fail data were collected for them. This assignment of a pass to those 
other objects is made more complex when the objects are tested sequentially, 
rather than in parallel, but passes can still be assigned in many cases following 
the general strategy described in Chapter 5.5. 

We will assume that pass information has been determined as far as is pos
sible from the available fail data, but that it can still be incomplete. That not 
all pass information may be available need not be an impediment to spatial 
pattern analysis. Some patterns will be missed, however. For example, 
assume that the die that would fail the object tests, if applied, would have 
some distinctive pattern, but that the die that were thus tested do not. The dis
tinctive pattern would be missed. This is a consequence of not always 
applying the object tests, and cannot be mitigated by more sophisticated spa
tial analyses. On the other hand, the die that were not even tested with the 
object tests may now have some recognizable spatial pattern on their own that 
can be used for defect identification. 

Once a - potentially partial - map of passes and fails is available, we can 
proceed systematically to recognize and classify non-random patters. The rec
ognition phase comes first, and is intended to establish that a particular pattern 
is non-random. This phase is useful, as the classification of a non-random pat
tern may be time consuming. The recognition phase functions as a quick and 
inexpensive screen that removes wafer maps that do no seem to have any dis
tinguishable pattern. This phase will be discussed in the first two sections of 
this chapter. The second phase will be discussed in the remaining sections, 
and is the classification of non-random patterns. 

1 NON-RANDOM PATTERNS 

The first task at hand is to recognize wafers on which the pattern of fails is 
not completely random. I will discuss several different approaches to this 
problem. The method to be used in this book is based on the Spatial Log Odds 
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Ratio (SLOR [56, 14]). A detailed study of a related method is presented in 
[26]. 

1.1 Clustering parameter 

A sophisticated approach to identifying non-random patterns is to assume 
that the pattern is governed by some underlying distribution that differs from 
the Poisson one, and whose parameters can be estimated using standard statis
tical estimation techniques. This underlying distribution should be flexible 
enough to contain the random one as a special case, in which case some mea
sure of statistical significance can be used to decide if the estimated 
parameters are sufficiently distinct from the random ones to allow us to label 
the pattern of fails non-random. 

Such a measure was explored in detail in Chapter 4, where we studied the 
behavior of y, the inverse of the cluster coefficient. This measure was 
obtained for a large number of wafers, and we saw that it could differ signifi
cantly from the same measure obtained for a known Poisson distribution of 
defects, y seems to be particularly attractive, for its defining equation, Equa
tion (D.7), was shown in Appendix D to be approximately valid for a large 
range of distributions, not just the negative binomial one. On the other hand, y 
does not exist when Y(2A) equals zero. 

1.2 Geometric properties of the pattern 

Another approach to identifying non-randomness is to use geometric 
aspects of the pattern of passes and fails. Because any specific pattern of fails 
can be produced by a random defect producer, and because any particular pat
tern is as likely as any other pattern, the pattern by itself cannot show itself to 
be non-random. Instead, some geometric property of the pattern has to be 
identified whose possible values have different probabilities, even when the 
defects are produced at random. Non-random patterns are then indicated when 
the likelihood of the selected property for the wafer pattern at hand is, in some 
sense, low. 

1.2.1 Geometric centers 

The simplest property available for the die represented in the fail data is 
their geometric center I j . This center is a point on the wafer whose coordi

nates are / l ^ . ^ i / ^ . l and ^ . y j / ^ . l , in which Xj and yj are the 

coordinates of the i tested die, and the sums are taken over the tested die. 
When the fail data contain information only for the die tested with some part 
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of the test sequence, and not for all die, I j may differ from I ^ , the geometric 
center of the wafer. The latter is defined similarly to I j , but with its coordi
nates such that the sums are over all the die on the wafer, not just over all the 
tested die. 

The geometric center of the failing die is of separate interest, and is indi
cated by Ip. It is defined similarly to I j , but with the sums in the definitions 
of the coordinates over all the failing die rather than over all the tested ones. 

An example of an otherwise unremarkable pattern is shown in Figure 24, 

Figure 24 Geometric centers 

with the positions of %j and Ip indicated approximately, that is, after having 
been rounded off to the closest die position. The row and column numbers are 
shown on the left and at the bottom, respectively. The singly hashed sites cor
respond to die that failed, while the doubly hashed ones correspond to passing 
die. I j is indicated by the black site, and Ip by the grey one. No attempt was 
made to obtain %^^, 

If the failing die are distributed randomly among the tested ones, Ip is 
likely to be close to I^, while large differences indicate that the failing die are 
not so distributed. Differences between these two can therefore be used to 
gauge how non-random a particular pattern is. 

Unfortunately, the statistical distribution of the center coordinates, be that 
of Ip or of Ix, is too comphcated to be usefiil, and likelihoods can be calcu
lated only with great effort. The relative positions of Ip or of I j are also not 
enough to discriminate many obvious non-random patterns from random 
ones, and the ones that are recognized can also be identified as easily by other 
means. The relative positions will therefore not be used, but the two geomet
ric centers will in other contexts. 
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1.2.2 SLOR 

The measure that seems to be generally useful, and that has been studied 
extensively in the literature [12], is based on the numbers of neighboring pass-
pass, pass-fail, and fail-fail pairs. This measure has been studied in detail in 
[56, 14], where it is called SLOR. The rationale for this measure is that a non-
random pattern requires some correlation between different die on the same 
wafer, and that this correlation changes the numbers of pass-pass, pass-fail 
and fail-fail pairs. The actual form of the measure is then obtained by making 
specific assumptions on what die can be correlated, and how. 

Let us indicate the event of a pass or fail of die i by the random variable 
Xj, with Xj being 1 when die i passes, and 0 otherwise. The event of die i and 

j both passing is then XjXj, that of both die failing is (1 - X|)( 1 - X ) , and 

that of one passing and the other one failing is (1-X-)X|+ X.(1-X-). 
Assuming that the probability of a die passing is p, and that it is the same for 

2 
all die on the wafer, the expectation values of the latter three events are p , 

2 
(1 - p) and 2p( 1 - p), respectively, when the fates of two different die are 
independent. 

When there are dependencies, however, these expectation values may 
change. In the simplified SLOR model, each die has a well defined neighbor
hood, and two die are correlated only when they are neighbors. In this chapter, 
two die are neighbors when one is immediately to the north, to the east, to the 
south or to the west of the other. 

For two neighboring die, the expectation values become r|, 1 - 2p + r|, 
and 2(p - r|), respectively, in which \\ is the expectation value of X-X-, and 
i and j are neighboring die. When two die are neighbors, the odds of one par
ticular one passing, given that the other one has passed equals r | / ( p - r | ) , 
while the odds of that same die passing, given that the second one has failed 
equals (p - r |)/( 1 - 2p + r|). If the fates of the two die were not correlated, 
the two odds would be equal. The ratio of the two odds, therefore, seems to be 
a reasonable measure of randomness. It equals 

Ti(l-2p + i l ) ^ ^ ^ j l V _ ^̂ ^̂  

(p- r | ) (p- r | ) 

2 
The second form shows that the ratio equals 1 when y\ equals p , that is, 
when there is no correlation between the passes and fails of the two die. 
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This ratio, therefore, is some number between zero and infinity, and is 
equal to one when there is no correlation. A more convenient measure is the 
logarithm of the ratio, since that leads to a number between minus and plus 
infinity, and equal to 0 in the absence of correlations. This logarithm is called 
the Spatial Log Odds Ratio, or SLOR. 

To estimate it, we simply count the numbers of neighboring pairs of differ
ent types. Let the number of pairs be J, the number of pairs with two passing 
die J+4., the number of pairs with two failing die J„ and the number of pairs 
with one failing and one passing die J+_. The expectation values of these num
bers are Jr|, J(l - 2p + r|), and 2J(p - r|), respectively. As in the quadrat 
method (Chapter 4.3.2), there may be come uncertainty on which pairs to use. 
As in that chapter, I use here all possible pairs. 

The obvious estimator of the SLOR is then 

/ 
In 

J-f+J-

V(J^_/2)^^ 
(7.2) 

There are some possible anomalies, for example when Ĵ _̂  = 0, or when 

Ĵ _ = 0. Such anomalies can be handled easily by replacing the estimator by 

a suitably chosen large positive or negative value. 
In the case of a Poisson distribution of defects, the SLOR is expected to be 

close to zero. This can be verified using the same set of Poisson wafers used 
in Chapter 4. Figure 25 shows the correlation between y (see also Figure 12) 
and the SLOR. The latter values are gratifyingly small, and there is an equally 
gratifying correlation between them and the corresponding y values. 

In Chapter 4, it was shown that y has a far larger spread in values on some 
set of real wafers than one would expect if the defects on those wafers had 
been randomly distributed. Those results are shown again in Figure 26, where 
they are compared with the corresponding SLOR values. All data points with 
anomalous SLOR values (values corresponding to plus or minus infinity) 
were removed. These include all the wafers for with Y(2A) = 0, and several of 
the wafers with Y(4A) = 0. 

There is again a pleasing correlation between the two, and the SLOR val
ues have a much larger spread than in Figure 25, confirming the conclusions 
that there is a fair amount of non-randomness. The group of data on the left of 
the chart, at small values of y, and labeled separately, correspond to the case 
that Y(4A) equals zero. The data in this chart will be analyzed in much more 
detail later in this chapter. 
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CLASSIFYING PATTERNS 

The measures discussed so far are intended to gauge the degree of non-
randomness of a given pattern. They give no information, however, on the 
shape of a pattern found to be non-random. Recognizing such spatial patterns 
has been the focus of a recent Sematech study [33]. In this book, I will discuss 
two simplified approaches that are still reasonably effective in recognizing 
and classifying non-random patterns. 

One group of techniques that can identify various types of non-random
ness will be discussed in the present section. They all start from the set of fail 
probabilities in suitably chosen partitions of the wafer. The particular parti
tions used here are columns and rows on the wafer, or circular segments 
around I j , the center of the known die, and angular sectors emanating from 
that center. 
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2.1 Marginal probabilities 

A wafer can be divided into several large areas, on the order often or so, 
like the rows or columns of the wafer. There are many ways the wafer can be 
divided into small regions. Each way will be generically called a partition. 
The partitions considered here are rows, columns, circular segments and 
angular sectors. There is very little flexibility in the regions when rows or col
umns are chosen, but more so in the case of circular and angular regions. I 
will always use twelve angular sectors, corresponding to triangles with 30^ 
degree angles at their apices, and at most ten circular segments. 

Let us indicate the regions of a given partition by the subscript i, and let 
there be I such regions. In each region, some die will pass and some will fail. 
The expected proportion of passing die is the expected yield, but will be 
called yield for short. If the passes and fails were truly random, the yield 
within any region would be more or less that of the wafer as a whole; if not, 
each region might have its own yield.Let us indicate the yield specific to 
region i by pj, and that for the wafer as a whole by p. Likewise, let the number 
of die in region i be indicated by nj, and the number of failing die by Nj. 
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Finally let n and N be the numbers of die and of failing die on the wafer, 
respectively. 

The type of fail pattern can now be identified by determining for which 
partition the regional yields differ most from the overall yield. A partition is 
called implicated when it is thus identified. If no partition can be implicated, 
we have an alternative indication that the pattern is random. Ideally, exactly 
one type of region is implicated. Fail patterns that can thus be recognized 
include rings, left half versus right half, horizontal or vertical stripes, and 
repeaters. Multiple partitions may also be implicated, however. One often 
occurring example is a partial ring where both angular sectors and circular 
rings are implicated. 

Distinguishing "more or less equal" from "clearly distinct" can be done 
using the likelihood ratio, described in Chapter 2.2.2. The maximum likeli
hood estimators of pj is N-/n-, and the resulting value of the likelihood 
function at its maximum equals 

f j p i ( 1 - p i ) (7.3) 

Likewise, the maximum likelihood estimator of p is N /n , while the corre-

sponding likelihood is obtained by replacing all p i in Equation (7.3) by p . 
The measure of randomness then becomes the likelihood ratio 

A= N ^ ^ - N ) ^ 

n.^i '(ni-Ni)' 

A small value of A, or, alternatively, a large value of -In A can be used as an 
indicator of non-randomness. To find the threshold separating random from 
non-random patterns, we use the results presented in Chapter 2.2.2. A thresh
old of a small number of standard deviations beyond the expected value of 
-InA, therefore, seems appropriate. In the present experiment, a value of 5 
was used for p. 

2.2 Experimental results 

All the wafers used to generate Figure 26 were analyzed for specific pat
terns, using the flow diagram shown in Figure 27. First, a number of trivial 
checks are performed on the data to make sure that they are usable. In particu-
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lar, when not the lull wafer, but only some chips on the wafer are available, 
there is a risk that the data is so sparse that no statistically meaningful analysis 
can be done. Sparseness is a vague concept. The heuristic definition used here 
is that the data is sparse when there are too few rows and columns having suf
ficiently many chips for which pass/fail information is available. Too few 
rows and columns again is ill-defined, but is set to less than three in this 
experiment. Likewise, sufficiently many chips means at least three chips. 

After the data has been validated, the SLOR and y are calculated, as 
described previously in this chapter and in Chapter 4.3.2.2. A wafer is then 
labeled random when the absolute value of y is less then 2.5 and that of the 
SLOR less then 0.7. Further pattern analysis is done only on wafers that are 
not declared random. These threshold are somewhat arbitrary, and better 
screens can easily be created. The purpose of this screen, however, is to 
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remove all patterns that seem to be unlikely to be anything else than random, 
and the present, although crude screen meets that purpose. 

The actual pattern analysis is, by necessity, complex, and will not be 
described here in detail. It needs to be flexible, to be able to handle all kinds 
of spatial patterns, and it will inevitably evolve in time, for new, meaningful 
patterns that need to be recognized will occasionally be identified. 

I will briefly describe one particular algorithm here. The analysis starts 
with the statistical calculations outlined in Section 2.1 for various partitions. 
Once individual fail probabilities for the regions of a particular partition have 
been determined, they are compared with the overall yield of the wafer using 
Equation (7.4). If the former differ significantly from the latter, the low yield
ing regions of are marked, and that partition is implicated. There are now 
three different possibilities. All the marked regions bunch together in one 
superregion, several disconnected marked regions can be identified, or the 
marked regions occur at regular distances from each other. The latter possibil
ity is considered only when the regions are rows or columns, because it may 
indicate a repeater, that is, a problem with the mask. 

The loglikelihood ratios measure the degree to which the partitions show 
the deviation of the pattern from a random one. It is of course possible that 
none of the loglikelihood ratios shows a significant difference from a random 
pattern, that is, that no partition is implicated. This may mean that the pattern 
is not random after all, or that the algorithm is not looking at the pattern in the 
right way. As there is no way of proceeding at this point, a verdict of 
no_pattem is returned. 

If at least one partition is implicated, the one with the largest loglikelihood 
ratio is assumed to describe the pattern best. The results are shown in Figure 
28. The square region corresponding to the random patterns is clearly visible. 
Examples of each of the pattern types shown in Figure 28 are presented in 
Figure 29, in which failing die are indicated by the black squares, and the 
passing ones by the light grey ones. 

Ring patterns are very common. These are patterns in which the center of 
the wafer is relatively high yielding, while the yields in different circular 
regions differ significantly from the overall wafer yield. If there is no signifi
cant angular effect in the yield, the ring is called complete; otherwise, it is 
called partial or fragmented. Each fragment may consist of several, neighbor
ing sectors. A partial ring is a ring fragment with only one fragment. 

If the angular sectors show the strongest deviation from randomness, the 
pattern is supposed to have one or more bad sectors. If there is also a radial 
effect, the pattern is classified as a partial or fragmented ring; otherwise as 
one or many bad sectors. 
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A large group of patterns is classified as "no discernible pattern", which 
corresponds to the no-pattern label introduced above. The classification algo
rithms used here is not strong enough to recognize such patterns. More 
sophisticated algorithms could be devised to properly classify them, but a 
more profitable approach will be described in the next section. 

2.3 Clustering patterns 

The pattern recognition strategy outlined in the previous section has the 
advantage of being fairly straightforward, and able to recognize many com
mon patterns. Its disadvantage is that it is designed to recognize only a small 
number of specific patterns. In other words, it may be blind towards impor
tant, but non-standard patterns that are now labeled as "no discernible 
pattern". The only way to enrich the spectrum of patterns that can be recog
nized is by explicitly writing new algorithms for finding those additional 
patterns. This limitation will obviously not be addressed by using large num
bers of training sets to a spatial pattern analyzers, ad was done in the 
Sematech study [33]. 

The goal of recognizing spatial patterns, however, is to find important sys
tematic yield detractors, and those would manifest themselves on multiple 
wafers, not just on a singe one. In other words, non-random patterns that are 
caused by some systematic problem that occurs on only one wafer are inter
esting, but, within the context of yield learning, not important. If the goal is to 
recognize non-random patterns that do not occur just once, but many times, 
other strategies for identifying such patterns can be followed. 

A very different strategy from the one described in the previous section is 
cluster analysis. In such an analysis, all spatial patterns are compared, and 
clustered into groups, such that all the wafers in a group show more or less the 
same pattern of passes and fails. Large groups then indicate some systematic 
problem, even though the spatial pattern may not have any particular, easily 
recognizable features. This approach is the same as was followed in Chapter 
6. 

The signature of a wafer pattern is the vector of pass/fail statuses of the die 
on the wafer, for example 1 for a pass and 0 for a fail. In the terminology of 
Chapter 6, the label n is the xy coordinate of a given die, and the value v is the 
pass/fail status of that die. The similarity measure is (see also Equation (6.4)) 

"1 

^ V i V 

S , T J I J ' 

(v i + v i - v iv i) 

(7.5) 
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in which I and J refer to the signatures of the two wafers and v- is the pass/fail 

status of die j in signature I. This measure equals 1 when the two signatures 
are identical, and is less than 1 otherwise. 

If the fail data is incomplete, and not all die on one wafer have a counter
part on the other wafer, there is no corresponding (n,v) pair in the signature of 
the wafer. Such absentee pairs are treated different here than in Chapter 6, 
because their absence indicates that the pass/fail status of the die is not 
known, rather than that it is 0. The sum in Equation (7.5), therefore, is taken 
over all die that have known pass/fail statuses on both wafers. 

Once the similarity measures have been obtained for all pairs of wafer pat
terns, the latter can be clustered, using the algorithm described in Chapter 6.4. 
Some results are shown in Figure 30. This figure shows two clusters, and the 
fail patterns of some of the wafers that make up those clusters. The cluster 
maps were produced by averaging over the fail maps of the individual wafers 
in the cluster. A black square means that the chips at that position on the 
wafers in the cluster were considerably more likely to fail than on average, 
while the light grey squares indicate that the corresponding chips were con
siderably less so. There is a separate category for chip positions where fail 
probability of the corresponding chips is more or less equal to the average fail 
probability over all the wafers in the cluster, but neither of the cluster maps in 
Figure 30 use that category. 

All the individual wafer maps were classified as "no discernible pattern". 
The power of clustering is that very clear patterns can emerge nevertheless. 
The first cluster shows the spokes that were also seen in Figure 29, which is 
the wafer in the cluster that was classified as "many bad sectors". The second 
cluster in Figure 30 has a less obvious, but still clear pattern. The patterns 
from two of the wafers in the cluster are shown in frames c and d. The last one 
in particular is barely distinguishable from a random pattern, but turns out to 
have a systematic problem anyhow. 
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Chapter 8 

Test Coverage and Test Fallout 

In Chapter 3, generally valid statistical properties of fallout and yield 
were discussed. If we want to relate these quantities to physical defects, some 
relation has to be found between defects and fallout. 

Fallout information can be studied in more detail for tests that target the 
internal logic of the Integrated Circuits, the logic gates and memory elements, 
and their connections, because of the large number of patterns that make up 
the tests. Examples of such tests are scan based tests, like LSSD and LBIST. 
They will be referred to as structural tests. 

The starting point of this chapter is the set of devices that passed all gross 
tests, the ones preceding the structural tests. The fallout statistics during these 
tests was discussed in Chapter 3, and in particular in its Appendix A. It is 
related to the fallout statistics over all the tests through a simple rescaling of 
the multinomial parameters by the yield at the completion of the gross tests. In 
this chapter, the rescaled parameters will be indicated by dj, and the corre
sponding yields by yj, and we will assume that K devices have passed the tests 
preceding the structural ones. 

In this chapter, I will assume that the fallout has been recorded at some 
level of granularity. The level of granularity is typically not that of individual 
patterns, but more likely the level of groups of such patterns. Patterns in a sin
gle procedure all have the same clocking sequence, and their number is 
typically on the order of 30. 

For structural tests there is a notion of coverage, and this coverage can be 
related to the fallout. In this chapter, a general relationship between yield and 
defect coverage will be derived. This relationship will then be used to obtain 
information about the distribution of the number of defects on the devices. 

1 YIELD AND COVERAGE 

The first step in the detailed fallout analysis is to develop a model of the 
relationship between defect coverage and fallout. It requires a better under
standing of the distribution of the number of defects on a device, and how the 
presence of multiple defects affect the yield. 
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1.1 Defect model 

The defect model to be used here has F defects that can be present on a 
chip, with F very large. Each chip has either no defects, or contains a subset of 
them. This subset is generally small and will be indicated by S. S is different 
for different chips, and indicates the complete set of defects on a given chip. It 
can be empty, indicating a good chip, it can have one member, or it can have 
several members. In the latter case, we say that the chip has a multi-defect. |S| 
is the number of single defects in S, and indicates its size. 

Before the start of diagnosis, nothing is known about the defects. I will 
assume, however, that there are well defined probabilities pg that a randomly 
chosen chip will have (multi-)defect S. When the single defects are indepen
dent, ps is the product of the occurrence probabilities of its members. As the 
defects in general are not independent, however, I will not assume that pg has 
that form when S has more than one member. 

It is reasonable to assume that such pg exist for a mature process, that is, 
once the manufacturing process parameters have become stable. The pg are 
unknown, and, as it turns out, it is far more convenient to use certain combina
tions of them instead. These combinations are the probabilities 

that a randomly chosen chip will have a defect of size n. These are therefore 
also the only quantities pertaining to the defect distribution that can be 
obtained from the yield data. 

The Pĵ  depend on the defect model and on the distribution of defects over 

the chips. Because they are probabilities, P^ - ^ ' ^^^ y^^n "̂  ^ * ^^^ aver

age number of defects per chip will be indicated by 

\i = J^^^n^ (8.2) 

and the variance in the number of defects per chip by 

a^(n) = ^ n \ - M ^ (8.3) 

n = 0 
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Finally, as the maximum reachable yield is equal to the probability that no 
defects are present, yQ equals PQ. 

Using such an arbitrary set of P^ makes it possible to handle arbitrary 
degrees of spatial clustering, and arbitrary dependencies between defects. It 
provides for the most detailed analysis of the spatial distribution of defects 
available, one that completely includes all clustering effects. It needs to be 
noted, however, that spatial clustering is not the only way to get a distribution 
of numbers of defects per chip that differs from the standard Poisson one. One 
example is given in Section 1.1.3. 

1.1.1 Poisson and negative binomial models 

The general model includes many used in the literature. For example, in 
the negative binomial distribution discussed in Chapter 2.1.3, 

The case of no spatial clustering, that is, of independent defects, corresponds 
to a going to infinity. In that case. 

In the case of no clustering, \i = a (n). The difference between the first and 
second moments of the Pĵ , as estimated from the yield data, therefore gives an 
indication of the actual degree of clustering. To be consistent with the litera
ture [17], it is better to estimate (a^(n) - |LI)/|I^, which equals 1/a in the 
negative binomial distribution. 

1.1.2 Compound model 

A more general way of incorporating clustering is to assume that on a sin
gle device the number of defects is distributed according to Equation (8.5), 
but with a parameter v that varies from chip to chip. Such a compound model 
suffers from the same problems as the one in Chapter 3.2: it merely repro
duces observed P^ values. It can be made useful if the compounding 
distribution of v can be related to device process histories. 

The compound Poisson model was described in Chapter 2.1.2. Com
pounding always increases the variance of the observed yields, in the same 
way that compounding did in Chapter 3. The clustering is called weak when 
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2 
the cluster parameter is large, which occurs when a (v) is small, that is, 
when the compounding function is concentrated narrowly around its mean \x. 
The Poisson factor in Equation (2.6) can then be expanded in a Taylor series 
around \x = v, resulting in 

n 
~iL^-^l 

^n*n! 2|Ll 

(8.6) 

Notice that, compared to the pure Poisson distribution, Pĵ  is depressed when n 
is roughly equal to |i, and elevated otherwise (to be precise, when 

jLi+l/2± V M + 1 / 4 ) . 

Another effect of compounding is to increase the probability of finding a 
device with no defects at all, as was demonstrated in Chapter 2.1.2. This prob
ability was referred to as yo in Chapter 3, and equals 

PQ = fh(v) e~^ dv. (8.7) 

In the weak clustering limit, 

PQ = e~^ ^l + i a \ v ) ) , (8.8) 

which is clearly larger than the Poisson value e . 

1.1.3 Independent defect model 

A very different model from the previous one is obtained when the defects 
are independent, but have different occurrence probabilities [52]. No simple 
equations exist for the y(c), but this model is important anyhow, because it 
shows that spatial clustering is not the only way to get deviations from the 
simple Poisson model. 

The probability of a complex defect S occurring is equal to the probability 
of all the individual defects in S occurring and no others. In other words, in 
the independent defect model, 

J ^ b l € b 1Gb 1 
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in which TIJ is the occurrence probability of defect i, and 

PQ = TT (1-^ i ) - (8-10) 
-^-^l<i<F 

Consequently, 

7C: 

^n ^ o X | s | . n H ^ s l - ^ i 
(8.11) 

which obviously can take on values that are very different from those in Equa
tion (8.5). 

These results become particularly simple when all the occurrence proba
bilities are the same [62], because then 

PQ ^ ( 1 - ^ / ' (8-12) 

and 

1.2 Coverage and yield 

The equations presented above are very general. They assume only the 
existence of some well defined defect model that contains all the defects that 
can occur on the chips, and the existence of pg. The yield clearly depends on 
Ps, but not exclusively so. It depends also on the tests that are being applied. 

Rather than label the tests by some index k, it is customary to label them 
by a more meaningful parameter, like the coverage c. In order to make c well 
defined, we assume that each one of the F defects is definitely detected or def
initely not detected by the test sequence. Determining whether or not the 
defect is detected may be extremely impractical, but we will assume that it 
can be done. 

The coverage c is then defined as the fraction of defects covered by the test 
sequence. To be precise, Cĵ  is the fraction of defects detected by at least one 
test between 1 and k, and y(Ck) = y^ is the yield, now written as a function of 
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The most general relationship between the yield, the test coverage and the 
probability of having a particular size defect on the chip is 

n = 0 

where Q^k is the conditional probabiUty that the chip will pass tests 1 through 
k, given that there is a defect of size n on the chip. The upper limit in this sum 
is the total number of possible defects F. In practice, however, n is not very 
large and certainly much smaller than F. 

Equation (8.14) is so general as to be meaningless. All the details about 
the test effectiveness are hidden in the conditional probabilities (^^.^. These 
conditional probabilities depend on the coverage Cĵ , but in an as yet unknown 
fashion. To determine this relationship, some assumptions have to be made. 

The first assumption that is usually made, and one that will be made here 
too, is that a multi-defect will be detected when any of its members is. What 
this means is that defects do not mask each other or unmask each other. Mask
ing occurs when two defects are exposed by a pattern if they are present on a 
chip by themselves, but are not exposed when they occur together. Unmask
ing is the opposite of masking. It occurs when two single defects are not 
exposed by a given pattern but, when together, cooperate to produce a fault 
effect. Both masking and unmasking can occur, but are rare, and this assump
tion does not seem to be a severe one (see however [1]). 

Secondly, we assume that the defects are in some sense normal, meaning 
that the yield is not determined by a small subset of very likely defects, but 
instead by a large number (of order F) of them, none of them being very likely 
by themselves. The specific criterion for normality is discussed in Appendix 
H. This is not a very strong assumption, as it almost never happens that a few 
defects dominate the yield. For if it did, redesign of either the logic or the 
manufacturing process would almost certainly have eliminated those defects. 

Finally, we will assume that the occurrence probabilities of the defects are 
independent of whether or not they are detected. This assumption is neces
sary, because otherwise, for example, any large number of defects with zero 
occurrence probability, and therefore without relevance to testing or yield, 
could artificially raise the coverage if they were all tested by the test sequence 
(or, likewise, lower the coverage if none of them were tested). The indepen
dence assumption consists of two parts, as explained in Appendix H. 

Another way of phrasing this assumption is that there is no correlation 
between the occurrence probability of a defect and its detection probability. 
For a particular test sequence, this assumption may not be valid, as a defect is 
detected or not, and the correlation coefficient has some value, usually differ-
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ent from zero. The detection probability, however, is the probability that a 
randomly chosen test generation procedure generates a test pattern that 
exposes the defect. It is this probability that is assumed to be uncorrelated to 
the occurrence probability of the defect. 

A randomly chosen test generation procedure is admittedly a somewhat 
vague concept, but can usually be defined in practice. For example when the 
test sequence is obtained using a standard Automatic Test Pattern Generation 
(ATPG) package, target defects for test generation could be picked at random 
from the defect list. A randomly selected sequence of defects then constitutes 
an randomly chosen test generation process. 

As another example, when the test generation process consists of fault 
simulating random patterns until the defect coverage is c, then different 
sequences of random patterns constitute different runs of the test generation 
process. Defects that have very large detection probabilities will almost 
always be detected, while random pattern resistant defects will almost never 
be detected. These random pattern detection probabilities are then assumed 
not to be correlated with the occurrence probabilities. 

Using these assumptions, it is shown in Appendix H that all test sequences 
with the same defect coverage have roughly the same yield. Different test 
sequences may have slightly different yields, but these differences are of 

order 1 / j¥, and can, therefore, be ignored for very large designs. 
To be precise, Q ĵk is related to C]̂  by 

Q„;k = ( l - C k ) " . (815) 

plus terms of order 1/JF, and [50] 

y(c,)«j; (l-Ck)"P„. (8.16) 
n = 0 

From now on, yield is understood to be the average yield over all test 
sequences with the same coverage. The benefit of this averaging is that it sim
plifies the relationship between coverage and yield, while introducing only 
negligible errors. 

Equations (8.15) and (8.16) are more surprising than it may seem. At the 
least, one would expect that Q^.]^ depends on the test generation method used 
to obtain the test sequence. As it turns out, however, it is independent of how 
the test sequence was obtained, as long as the coverage is Cĵ : the relationship 
between defects, coverage and yield is the same, whether we use random pat-
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terns, minimized sets of deterministically generated patterns or sequences of 
functional code to test the chip. 

Equation (8.16) also has another practical use, as it relates the yield y(c) to 

the characteristic function 0(t) of P^. 0(t) is the expected value of ê ^̂ , and 

y(c) = 0 ( - i l n ( l - c ) ) . (8.17) 

Consequently, if the distribution of the number of defects on a chip is known, 
calculating y(c) is reduced to looking up the corresponding characteristic 
function in a table. In particular, for the negative binomial distribution, 

y(c) = ( 1 + c ^ ) , (8.18) 
V ay 

and for the Poisson distribution 

y(c) = e ^^. (8.19) 

1.3 Properties of the yield curve 

Let us now consider some of the information that can be obtained from 
Equation (8.16). First of all, y(c) is a smoothly varying function of c. Its first 
derivative is negative, at least for c between 0 and 1. This is obvious, for y(c) 
is the perceived yield and, per definition, cannot increase as the test 
progresses. Less obviously, the second derivative is everywhere positive. This 
indicates that y(c), even though it continues to decrease, will do so less and 
less rapidly. 

Obviously, y(0) equals 1 because there is no fallout if no testing is done. 
Also, y(l) equals po, the probability of finding a chip with no defects on it. 
Various derivatives of y(c) with respect to c are related to other properties of 
the defect distribution. In particular, 

^ y ( c = 0) = - ^ 

^ y ^ ^ = ^ ) = -Pl (8.20) 

,2 
_ ^ y ( c = 0) = a > ) - M l - M ) 
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The first and third relations in Equation (8.20) make it possible to use the 
yield data to estimate the average number of defects per chip and the variance 
of that number. Those two data are particularly important for, in the Poisson 

model, a^(n) equals \x. Therefore, if the defects are independently distributed, 
we should find that 

- ^ y ( c = 0 ) » ( ^ y ( c = 0 ) ) \ (8.21) 

Any significant deviation from this relationship then indicates a breakdown in 
the independent defect model. 

The second relationship,—y(c = 1) = - P p is important because it is 

related to the defect level DL (see also Chapter 3.3.) Let Cf be the coverage 

after the last test has been applied, and consider the case that it is close to 1. 

From Equations (3.3) and (3.4), (DL) = 1 - yg/yf • If Cf is close to 1, Taylor 

series expansion of yf around c = 1 gives 

from which we find 

<DL)« ^—^. (8.23) 
yo 

To estimate the defect level and its variance, we can attempt to find the 
ratio Pi/yo by fitting a equation with a small number of free parameters to the 
yield data (for example [18].) An alternative method is to approximate yo by 
Yf, which can be done when the defect level is small, and then esfimate Pj 
directly using an independent defect analysis. A third method will be 
described in Section 2. All methods, however, will be influenced by statistical 
variations in the yield data, and no estimation method will succeed when the 
expected number of field failures is of order 1 or less, as explained at the end 
of Chapter 3. 

Because of the importance of the negative binomial and Poisson distribu
tions, it is usefiil to summarize the results of the previous section for these two 
cases, which is done in Table 6. This table also contains the compound model 
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results for further comparison, as well as some relevant quantities from the 
independent fault model. 

2 OBSERVED YIELD CURVE 

In addition to the information obtained using equations (8.20), all the fall
out distribution parameters can be obtained from the overall y(c) curve using 
maximum likelihood estimation (see also Chapter 3.4.2 and [37].) Such esti
mation uses all the available fallout data, not just the ones near c = 0 or c = 1. 
It will be developed in this section, assuming that the coverages are the Nega
tive Binomial ones, and both jii and a will be estimated. The Negative 
Binomial model is taken as an example, because it is close to, but more gen
eral than the Poisson model, and because it is very popular. Once the 
estimates are available, they can be used, in conjunction with the known final 
coverage c, to estimate DL using 

DL(c) = (l-c)jLl[l+ H^ . (8.24) 

When K chips are tested with scan based tests 1 through f, some number, 
say N|, will fail test i and Np̂ gg will not fail at all. The distribution of Np̂ ss 
and the Nj is multinomial, as in Equation (A.4). The yield at the completion of 

the i test is related to the multinomial parameters dj by 

or, equivalently. 

Yi-l-^ \ . (8.25) 

di = Y i - l - y i - (8-26) 

yj is a fimction of the coverage reached at the end of the test, and of the nega
tive binomial parameters JLI and a. Because of Equation (8.26), dj is function 
of the coverage and these parameters as well. 

As the yield is a function of \x and a, the latter two can be estimated from 
the observed fallout data taken as a function of the coverage. Their are several 
ways to obtain such estimates. One is the maximum likelihood method, and 
another one is regression. More details for the maximum likelihood method 
can be found in Appendix H. Both methods lead to multidimensional minimi-
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zation (or maximization) problems, that have to be tackled with fairly 
standard numerical optimization routines. These calculations will not be 
addressed any further in this book. 



Chapter 9 

Logic Diagnosis 

Logic diagnosis is the process of using fail data to deduce the location, 
and, if possible, the logic nature of the defect that caused a fail. The fail data 
used in logic diagnosis are collected when those tests are applied that most 
directly exercise the internal logic of the Integrated Circuit (IC). Typically, 
they are scan based tests (see, for example, [2], Chapter 9, [21], Chapter 1, 
and [16], Chapter 3). They can be deterministic tests, but they can also be ran
domly generated by a Built-in Self Test Engine. 

The logic nature of a defect is its behavior during the application of any of 
those scan based tests. It is often usefiil to determine, or at least estimate this 
logical behavior, but the true purpose of logic diagnosis is determining the 
location of the defect. That information, after all, is needed by physical failure 
analysis to find the defect on the integrated circuit, observe it, and determine 
its physical nature. 

In principal, logic diagnosis is straightforward (see Figure 31). The pro
cess starts from a logic design description of the Integrated Circuit. This is 
usually the same as what was used when generating the scan based tests. A 
more detailed description, like a transistor level model, would lead to a more 
accurate diagnosis, at the cost, however, of greatly increasing the diagnostic 
turn-around time. 

The first step in diagnosis is to obtain a list of possible defects. These 
defects are used, one at a time, to modify the logic model of the Integrated 
Circuit. Each modification uses the original logic model and one selected 
defect from the list, and builds a logic model of a defective IC, one that differs 
from the defect free IC only by the presence of the defect on the device. Such 
a modified logic model is called a fault machine, and there are as many fault 
machines as there are defects in the defect list. 

The second, main step in logic diagnosis is to simulate the scan based test 
patterns on each one of these fault machines, and to collect simulated fail 
data, i.e. miscompares at the scannable latches between the behavior of the 
defect-free logical model and the fault machine. 

Finally, the simulated fails are compared with the ones collected on the 
tester, and some measure of agreement between the two sets of fail data, 
called a score, is calculated. If the score is sufficiently high, the defect that 
was used to construct the fault machine, as well as the simulated fails are 
stored in a file for later use. The high scoring defects are the ones whose 
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faildata 
compare simulated fails 

with observed fails 

store in 
result log 

Figure 31 Basic logic diagnostic flow 

behavior seems to match best the behavior of the defective device, and they 
will be the ones called by logic diagnosis as the best candidates for the defect. 

This simplistic description of the diagnostic flow hides a multitude of 
practical problems. What potential defects should be in the list, and how 
should their logical behavior be determined and described ? The simulation 
step will be very time consuming if the defect list is large. Is it possible to 
decrease the turn-around time of this step, for example by selecting only those 
defects for simulation that are likely to have high scores ? Finally, how should 
matches between simulated and collected fail data be measured, and how 
should the resulting scores be interpreted ? 

These questions will be addressed in this and the next chapter. Here, we 
will focus on a simplified diagnostic strategy that only uses defects that create 
errors on single nets in the defective device. It is the standard diagnostic sup
port available in most commercial diagnostic packages. A more sophisticated 
form of logic diagnosis, called SLAT, will be discussed in the next chapter. 
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Many of the issues discussed here, however, will be relevant for SLAT as 
well. 

1 DEFECT MODEL 

The defects to be employed in logic diagnosis need to fulfill a host of often 
conflicting requirements. First and foremost, they should be able to mimic the 
behavior of real defects on real devices. On the other hand, it should be possi
ble to describe their behavior logically, for, otherwise, it would not be 
possible to construct fault machines, which are not more than logic models of 
defective chips. Finally, the logic behavior of the defects should not be so 
complicated, nor their number so large that the diagnostic turn-around time 
becomes unacceptable. 

The defects used in logic diagnosis are models of the real defects, and are 
called faults. When activated, they produce errors on the nets or pins where 
they are located, and we say that they affect those nets or pin. Errors are logi
cal deviations from the defect-free behavior of the design. They may produce 
fault effects on nets and at pins in the cone of influence of the fault, and, even
tually, may cause fault effects in observable latches or at observable Primary 
Outputs. 

Before continuing, some explanation needs to be given of the usage of nets 
and pins in the discussions. The difference between nets and pins is not as 
large as it may seem. Figure 32 shows a simple logic diagram with some 
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Figure 32 Relation between nets and pins 

gates, drawn as boxes, some nets, and the pins A through E where the nets are 
attached to the gates. 

Pins can be identified with nets or portions of nets. For example, output 
pin A can be identified with the net that attaches to it, or, at least, with the por
tion of the net between A and the first fanout point (B). If the net attached to 
an output pin does not fan out, like DE, the output pin can be identified with 
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the full net. Likewise, an input pin like C can be identified with the portion of 
the net that attaches to C, starting from the last fanout point (B), or, if absent, 
with the full net (as in DE). Nets and pins can, therefore, be used interchange
ably, when this identification is kept in mind. 

Choosing the proper defects to be put in the defect list is the same as 
choosing the proper faults to be put in, what is now called, a fault list. A good 
starting point is the fault model used in test generation. This is usually the sin
gle stuck-at fault model [2], in which faults are located on pins, and defects 
are modeled by a single faults. The logic behavior of a stuck-at fault is such 
that it forces the logic value on the pin to which it is attached to be either a 
logic 1 or a logic 0. 

For example, if a stuck-1 fault (s@l) is present on an input pin, the gate to 
which the pin is attached experiences a logic 1 and not a logic 0, even when a 
logic 0 is applied to the net attached to the input pin. Likewise, a net con
nected to an output pin that carries a s@0 fault experiences a logic 0, no 
matter what logic value is produced by the gate on which the output pin 
resides. 

Stuck-at faults are easy to model logically, and the modifications required 
to transform the defect-free model into a fault machine are straightforward. 
This fault model has another, less obvious advantage. As its faults reside on 
pins, their number is at most twice the number of pins in the design; in other 
words, the size of the fault model grows linearly with the size of the design. 

It is important, however, that the fault list contains faults on all the pins in 
the design, for a defect that creates an error on some pin is modeled best by a 
fault on that pin. Even more importantly, diagnostic precision would be lost in 
the absence of such a fault, even if other faults could reproduce the behavior 
of this defect in a reasonable way, because those other faults would indicate 
the pins where they reside as the most likely candidates for the location of the 
defect, rather than the defect's actual location. 

For example, the s@0 faults on the input and output pins of an AND gate 
are equivalent. Consequently, if the defect is such that it can be modeled accu
rately as a s@0 on an input pin, it can be modeled equally well by the s@0 on 
the output pin. But, if the defect list does not contain the input s@0 faults, the 
diagnosis will be misleading because, even though the list has a fault that 
exactly reproduces the fail behavior observed on the tester, it points at the 
wrong pin. 

Various extensions of the stuck-at fault model are sometimes used, like 
transition faults ([21], Chapter 13), or pattern faults. Transition faults attempt 
to capture the effects of excessive delays when transitioning from one logic 
value to another, and pattern faults have more complex activation conditions 
than stuck-at faults but are otherwise like the latter in that they are static and 
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produce errors on single nets only. Both fault types share many of the draw
backs of stuck-at faults. 

The cost of the required simulations, however, rapidly becomes prohibi
tively expensive with increasing model complexity. In addition, such more 
complex fault models may lose the linear relationship between the size of the 
fault model and the size of the design, and consequently, for sufficiently large 
designs, violate the requirement that the number of faults should not be too 
large. 

In practice, stuck-at faults are the ones used, with transition faults option
ally added when the defect is obviously timing sensitive. Stuck-at faults 
internal to complex gates can be replaced by pattern faults to reduce simula
tion complexity. 

Stuck-at faults, transition faults and pattern faults are easy to model, and 
their number grows only linearly with the size of the circuit. The main prob
lem is that most defects do not behave as stuck-at faults, or even as transition 
faults or pattern faults, and, therefore, that their ability to mimic realistic 
defects is in doubt. A more sophisticated use of the fail data than the one 
described in this chapter, however, circumvents this problem. This more 
sophisticated form of logic diagnosis will be described in Chapter 10, in 
which also further theoretical reasons will be given for why stuck-at faults 
should be able to mimic realistic defects. 

2 FAULT SELECTION 

For very large design, the list of faults may be correspondingly large, and 
may be too large for rapid diagnostic turn-around. It is therefore important to 
reduce the size of this list as much as possible before fault simulation begins. 

The size reduction that is usually done is based on the observation that 
there has to be a functional path between the pins physically affected by the 
defect and the latches that have incorrect logic values at the completion of the 
test pattern (the failing latches.) The functional paths, however, may not be 
restricted to combinational logic, but may cross one or more latch boundaries, 
depending on the clock pulses issued during the application of the test pattern. 

The strategy for reducing the fault list is to trace backwards from a failing 
latch through combinational logic till a Primary Input, an embedded memory, 
or another latch is encountered, and to store all the pins that were encountered 
during the tracing in a list. Such a backwards trace was described in Chapter 
6.3.2. The logic encountered in such a trace contains the functional path(s) 
from the defect to the failing latch, if, in fact, this defect was responsible for 
this latch having an incorrect logic value. 
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Each trace starts from a failing latch and defines a backcone to that latch. 
When the tracing is done to reduce the fault list, the backcone consists of a set 
of pins. The set of fauhs on the pins will be indicated by fijp, with 1 indicating 
the failing latch, and p the pattern that caused this latch to have an incorrect 
value. 

The pin where the defect can produce errors has to be in one or more of 
these backcones. If only a single pin can have an error, then the intersection of 
all the backcones should contain this pin. The faults on the pins in the inter
section then form the intersection fault set 

^intersection " 0 % ' ^^'^^ 

which is likely to be small. 
On the other hand, real defects need not cause errors on a single pin, and 

not all the pins affected by the defect may be in this intersection; in fact, they 
may be in non-overlapping backcones. Defects residing in non-overlapping 
backcones goes somewhat beyond the single fault assumption. It is a crude 
attempt to correct for that assumption's shortcomings, but it has become such 
a standard part of logic diagnosis that this extension will be discussed here 
rather than in the next chapter. It leads to a number of less restrictive fault 
selection strategies. The most liberal one is the union fault set 

^union = Kjhr ('•') 
1,P 

which is obtained by taking the union of all the backcones. <?union is consider
ably larger than ^intersection' ^^^ almost always still much smaller than the 
fixll fault list. It is the safest way of selecting faults, because there is no func
tional path from any pin outside the union of the backcones to any of the 
failing latches. 

An intermediate selection strategy is used in SLAT (see Chapter 10,) but it 
can also be used here. It starts from the observation that explaining all the fails 
collected during test should start with explaining the fails collected when any 
particular test pattern was applied (say pattern p). If there is a single stuck-at 
fault that can explain the fails collected when p was applied, then that fault 
should be in the intersection 
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1 

in which the intersection is now taken over all the failing latches at the com
pletion of pattern p. 

If cJp is empty, no single fault can explain the fails of p, and no single fault 
diagnostic strategy will succeed, at least not for p. On the other hand, if some 
single faults can explain all the fails of p, they should be among the ones in 
the intersection Jp. 

Taking the intersection of all the 3^ leads to ^^intersection' which may be 

too restrictive. A more liberal approach is to take the union over all the S^, 

which leads to the SLAT fault set 

^SLAT = U ^ p - (9-4) 
P 

The characteristic of ^SL^X is that every one of its faults can explain all the 
fails of at least one pattern, and, vice versa, any single fault that can explain 
all the fails of any single test patterns will be contained in ̂ SLAT-

3 ALTERNATIVES TO SIMULATION 

Even with the fault selection strategies described above, the simulation 
required for the diagnosis may still be formidable, and may still lead to large 
turn-around times. In addition to searching for techniques to increase the per
formance of the simulators - an ongoing effort - some other approaches have 
been explored to reduce the turn-around time. 

The most important one of these is the dictionary approach ([2], Chapter 
12, [48]). In this approach all the faults and all the patterns are simulated 
before any testing has started, and not when the faults are required during 
diagnosis, using only those patterns that actually failed during test. Once the 
dictionary has been built, diagnosis is reduced to a mere lookup in a, admit
tedly, large table. 

This approach is obviously not suitable for products that will rarely be 
diagnosed, because of the cost of building the dictionary. On the other hand, it 
seems ideal for products that are likely to be manufactured in large quantities, 
and that may even be used as line or reliability vehicles, for the effort to con-
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struct the table can be amortized over all the diagnoses that will be performed 
during the lifetime of the product (and, therefore, of the dictionary.) 

The main problem with the dictionary approach, however, is not the cost 
of constructing the dictionary, but its size. Many designs have millions of 
faults and require thousands of patterns to test. Each failing latch requires on 
the order of thirty bits to be described: between ten and fifteen to name the 
pattern, and the remainder to name the latch (of which there can be several 
hundred thousand, even in medium sized designs.) Even if, on average, only a 
few latches (say ten) fail when a pattern is applied, storing this fail informa
tion requires three hundred bits per fault per failing pattern. With ten million 
faults and on average three hundred failing patterns per fault, this translates 
into a table containing one trillion bits of information. 

This size makes the dictionary approach in its crudest form rather imprac
tical. There have been several attempts to reduce the size of the table [11], 
mostly by reducing the amount of fail information stored for each fault and 
each pattern. Reducing this information also reduces the diagnostic resolu
tion, however, i.e. the number of faults that are called as likely candidates for 
the real defect. No practical solution has been found yet that has both a practi
cal dictionary size and an acceptable resolution. 

4 SCORING MATCHES 

The score is a measure of the agreement between the fails produced by a 
simulated fault, and the ones collected on the tester. This score is traditionally 
some number between 0 and 100, with 100 indicating perfect agreement. Of 
course, the score depends not only on the agreement between the defect and 
the fault, but also on the patterns that are used to gauge this agreement. When 
only some failing patterns are used, more faults may produce the same fault 
effects as the defect than when all failing patterns, or even all patterns, failing 
or not, are taken into account. 

Gauging agreement between the fault model and the actual defect is very 
similar to measuring commonality between two different devices, and the 
scoring methods that are used for the former, as a result, are very similar to 
the commonality measured discussed in Chapter 6. As an example, I will 
briefly describe the scoring method used in Encounter Test. 

What is known, after a set of patterns have been simulated on the fault 
machine, is the list of failing latches. This list needs to be compared with a 
similar list collected on the tester when the same patterns were applied to the 
real device. A failing latch is an (1, p) pair, in which the latch 1 contained an 
incorrect value after the pattern p was applied to the device or the fault 
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machine. The Usts of faiUng latches are lists of such (1, p) pairs, and they can 
be compared one pair at a time. The section of the matrix in Table 2. bordered 
by the heavy line is one such list. 

To compare two such lists quantitatively, a number of counts are defined: 

• Tester Pass, Simulator Pass. 
Number of (1, p) pairs where the latch had the correct value after p 
was applied to both the fault machine and the device. 

• Tester Pass, Simulator Fail. 
Number of (1, p) pairs where the latch had the correct value in the 
physical device but the incorrect value in the fault machine. 

• Tester Fail, Simulator Pass. 
Number of (1, p) pairs where the latch had the incorrect value in the 
device but the correct value in the fault machine. 

• Tester Fail, Simulator Fail. 
Number of (1, p) pairs where both device and fault machine had incor
rect values after p was applied. 

Clearly, the score should be an increasing fiinction of TFSF, and a 
decreasing one of TFSP and TPSF, for TFSF measures how often both device 
and fault machine agreed on observable fault effects, while TFSP and TPSF 
measure how often they disagree. The score based on the commonality mea
sure in Equation (6.4) is 

TFSF 
^^^TFSP +TPSF + TFSF' ^̂ '̂ ^ 

and has the desired features. It does not contain TPSP, which is correct as it is 
very easy to get arbitrarily high TPSP counts, for example by applying pat
terns that do not exercise either the fault in the fault machine or the defect in 
the device. 

Encounter Test uses a somewhat modified form 

100 ^^^ , (9.6) 
TFSP + aTPSF + TFSF' ^ ^ 

with a equal to 0.1. The purpose of this alteration is to reduce the relative 
importance of latches that fail during the simulation but not on the tester. Such 
latches are considered less important, because, for example, the fail data col
lection on the tester might have been incomplete, and it is actually not known 
whether this latch failed or not. 
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IF TFSF equals 0, the score is 0 regardless of TFSP and TPSF. On the 
other hand, if TFSF is not 0 and TFSP and TPSF are, the score is 100, and that 
is the only scenario in which the score can be 100. In other words, a 100 score 
indicates perfect agreement between the fault machine and the device for both 
the failing and the passing patterns. Notice however, that this agreement has 
only been established for the patterns that were used in the diagnosis, not for 
all possible patterns. 

If the score is 0, TFSF is 0 and the simulated fault did not reproduce any of 
the failing latches observed on the device. Such faults cannot explain any of 
the fail behavior, and many of them are in fact already removed by the fault 
selection techniques described in Section 2. Any score between the two 
extremes indicates a fault that explains some of the observed fails, but not all. 

It often happens that this form of diagnosis does not find a fault with a 100 
score. The obvious reason for this is that the defect does not behave as a single 
stuck-at fault. The fault(s) with the highest score may still be useful, however, 
even though they are not perfect models of the defect, because they seem to 
capture some aspects of the defect. 

The following discussion goes beyond the single stuck-at fault assump
tion, but is relevant here for it shows how scores are being used 
advantageously in logic diagnosis. 

One of the causes of a score not being either 100 or 0 is that the defect cre
ates errors on multiple pins in the design, and that the selected fault happens 
to model one of those manifestations of the defect. An example of this phe
nomenon is a bridging fault ([2], Chapter 7), in which the defect can alter the 
logical behavior on two nets (the two legs of the bridge), but only one at a 
time. The faults on the two legs then reproduce some, but not all of the 
observed fault behavior. 

A wired-AND bridge, for example, behaves as two s@0 faults, with the 
added condition that neither fault is activated if both legs of the bridge have 
the same logical value. Both faults will be found by the present diagnostic 
strategy, if enough failing patterns are observed. All observed fails will be 
explained by a combination of the simulated fails of both faults [9], and the 
match is perfect when only failing patterns are used during diagnosis. The two 
faults will, however, make some patterns fail during simulation that do not 
fail on the tester (passing patterns.) 

The defect may also create an error on a single pin, but with different 
polarities during different patterns. The best example of this type of defect is a 
dominant bridge, in which there is a short between two nets, but with the driv
ing strength on one (the dominant net) being much larger than the driving 
strength on the other (the victim net.) Fault effects will emanate only from the 
victim net, but with the polarity depending on the logical value on the domi-
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nant net. The diagnostic strategy developed here will find the two stuck-at 
faults on the victim net, both with intermediate scores, but such that their 
combination explains all the observed fails perfectly. 

Finding such pairs can be done by analyzing the results of the diagnosis, 
and in particular of the complete (1, p) lists. Such a post-diagnosis analysis of 
the diagnostic results is often done, and can complete the diagnosis not only 
of the two examples mentioned above, but of several others as well, depend
ing on the inventiveness of the diagnostic engineer. The diagnostic strategy to 
be described in the next chapter, however, implicitly does all these analyses, 
making further discussion of non-100 scores unnecessary. 

5 EXPERIMENTAL RESULTS 

The main measures of success of software based diagnosis are efficiency, 
resolution and accuracy. The first one is essentially the fraction of failing 
devices for which a high confidence diagnosis could be made. The second one 
is the number of faults with that high score, and the third one describes how 
well the location of the defect, predicted by the diagnosis, agrees with the 
actual location of the defect. In this section some experimental efficiency and 
resolution results will be presented. Accuracy cannot be measured as easily 
because of the cost of doing physical failure analysis, and will not be 
addressed here. 

In 1998, an experiment was conducted in which one ASIC part was tested 
extensively. The goal of this experiment was to gauge various test methods, 
according to their effectiveness in detecting defects, as well as to gauge the 
availability, efficiency and accuracy of existing diagnostic methods in deter
mining the locations of the defects that caused ICs to fail. 

The vehicle chosen for this experiment was a SA12 ASIC part. It contains 
five levels of metal, 17 scan chains, the longest one being 1392 latches long, 
15624 SRLs, including the latches in the LPRAs, and 4 SRAMs. The logic 
contains about 300K blocks. The fault list contains about 900K fault equiva
lence classes. 

For each failing device, not more than 256 failing cycles were collected. 
Failing cycles is a technical term, and indicates the number of scan out clock 
events at which a failing bit was observed. During scan out, the latch contents 
become successively available at the scan out pins. Each time the latch con
tent miscompares with the expected value, a record is made in a tester fail 
buffer. In this experiment not more than 256 such records were made. 
Because 17 failing bits could be logged at each scan-out event into that many 
different fail buffers, however, 3840 miscomparing bits could be collected. 
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although that maximum was never reached. On the other hand, the total num
ber of failing bits can be substantially smaller than 256, if the defect is such 
that only few patterns will observe it. The lot that will be reported on here had 
1062 failing devices. Only stuck-at and pattern faults, and only failing pat
terns were used during diagnosis. 

The results of this experiment were also used in Chapter 3, Sections 2 and 
5. In that chapter, the relative yields of all the lots in the experiment were dis
cussed. Here, more detailed results for Lot_2 will be presented. 

For each device, the highest score was determined, indicating roughly the 
success of the diagnosis. The distribution of the resulting highest scores is 
shown in Figure 33. In this histogram the scores have been grouped into vari-
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ous buckets. The buckets are labeled by their midpoints. For example, the 
bucket labeled 90 contains all the scores between 88 and 92, inclusively. The 
bucket labeled 30 contains all score up to and including 34 

This lot was typical for the score distribution. About 50% have a score 
over 80, and, consequently, about 50% have a score below 80. A somewhat 
large group of 20 % has the highest score possible (100). 
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As the meaning of non-100 scores is not well defined, it is not clear at 
what score there is a separation between usable and non-usable diagnoses, and 
there may not even be such a separation. In practice, therefore, the scores are 
used to guide the diagnostic engineer towards those faults that seem to be 
most closely related to the actual defect, regardless of the actual value of the 
score. 

To measure efficiency, we can arbitrarily set the separation at 90, in which 
case the efficiency for this design is about 30%. 

Unfortunately, not only the highest score is important, but also the number 
of faults that have that score, or a score not substantially different from it. 
That there may be several faults with a 100 score is partially due to fault 
equivalence, and is unavoidable. Logic diagnosis cannot be more precise than 
an equivalence class. Faults that are not equivalent, but still have identical 
scores also occur, and lower the diagnostic resolution. This phenomenon will 
be addressed in more detail in the next section. Here, only some experimental 
results will be displayed. 

To measure resolution, it is not useful to consider diagnoses with low 
scores. We therefore concentrate on those devices with efficient diagnoses, 
that is, with scores at least 90. As diagnostic resolution is limited to equiva
lence classes, only equivalence classes will be used in the next discussion. 
High scoring equivalence classes are of most interest, and they are defined as 
equivalence classes the faults of which have a score of at least 90. 

Figure 34 shows the distribution of the number of high scoring equiva
lence classes among the efficient diagnoses, with the different scores 
differentiated by the hashing patterns. The bulk of efficient diagnoses has a 
resolution of at most 5, meaning that the number of high scoring equivalence 
classes is not more than 5. Note, however, that this can still translate into a 
large number of faults (or pins). Also note that about 10% of the efficient 
diagnoses has a resolution with more than 5 high scoring equivalence classes, 
and, in some case, over 50 of such classes. Such diagnoses should be consid
ered failures, even though the scores were high. In fact, having a score of 100 
is no guarantee that the diagnosis will have high resolution, as is shown in the 
figure by the number of diagnoses with a score of 100 that still have a large 
number of high scoring equivalence classes. 

That the diagnostic approach often does not distinguish between different 
equivalence classes is a result of using only failing patterns. Section 6 will 
discuss this point in detail, while Section 7 will address the use of passing pat
terns to alleviate the problem. 



158 IC Fails 

1 

2 

3 

4 

5 

10 

15 

ao 
25 

30 

m 
50 

r̂  
fes^ 
R<<v><j 

^>s 
r 

ES^2vx.i~:;-i-v3 
iS 

1 

1 

1 1 1 1 1 1 1 1 

'1 

1 ^ ^ ^ 

FREQ. 

3S 

40 

139 

3S 

6e 

ao 

10 

3 

0 

3 

2 

1 

CUM. 

FREQ. 

5S 

125 

2U 

302 

363 

353 

303 

401 

401 

404 

4oe 

407 

PCI 

2033 

as3 

34. IS 

as* 

1622 

4.91 

246 

074 

OOO 

Q74 

046 

025 

CUM. 

PCT. 

20.33 

30.71 

64.36 

74.20 

90.42 

95.33 

97.79 

9B.S3 

93.53 

99.26 

99.75 

100.00 

20 40 60 80 100 

FREQUENCY 

120 140 

90 ^ ^ ^ 91 ^ ^ ^ 92 K S 93 KKM 94 UZZH 95 
96 tZZH 97 S S 95 EZU 99 E S 3 100 
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RESOLUTION OF LOGIC DIAGNOSIS 

For a diagnosis to be called successful, a number of conditions have to be 
met. There should be at least one fault that got a very high score, one that is 
close to, if not equal to 100, and the number of faults with high scores should 
not be large. Of course, there is no way to distinguish between faults of the 
same equivalence class, so, in reality, all we can demand is that the number of 
high scoring equivalence classes is not large. Preferably, it should be 1, but in 
some cases a low number of equivalence classes, like two or three is still 
acceptable. 

It is very easy to end up with several distinct equivalence classes when 
only failing patterns are used. This is best illustrated with a realistic example. 
Figure 35 shows the result of a diagnosis on one of the devices of the experi
mental design. This schematic shows only that portion of the design where 
faults were found with a 100 score. The up- and down-arrows show the loca
tions and polarities of those faults, an up-arrow meaning a s@l fault and a 
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Figure 35 Example of a diagnosis with multiple equivalence classes 
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down-arrow a s@0 fault. The dashed lines between gate C and gates D and E 
indicate logic paths on which no faults were found. These two paths fanout 
from the output of the XNOR gate, but then completely reconverge at gate F. 
There are also fanouts after gates B, F and L, that were not explored any 
fiirther. 

The total number of faults with 100 scores is fourteen. There are five 
equivalence classes: four consisting of the input and output faults on gates B, 
F, I and L, and one on the output of the XNOR gate C. The equivalence 
groups are indicated by the doubly arrowed lines below the respective gates. 

Such a low resolution diagnosis can easily arise when only failing patterns 
are used. For example, assume that the real defect is the s@l fault on the out
put of B. As this fault is equivalent to the s@0 faults on the inputs of B, the 
latter ones will necessarily be found by the diagnosis as well. 

Furthermore, failing patterns are, by definition, those patterns during 
which the defect was observed. Consequently, fault effects from the defect 
site had to have propagated to some observable output through one of the 
branches of the fanout after gate B. It seems, however, that all branches 
except the one through the XNOR gate were blocked, at least with the failing 
patterns used in the diagnosis. In addition, all the input values to the lower 
input of the XNOR gate were at logic 1 when the failing patterns were applied 
As a result, the s@l fault on the output of C would have produced the same 
fault effects further downstream as the actual defect, and, consequently, was 
also found to have a 100 score. 

The remainder of the faults with 100 scores follows now easily from 
equivalence and dominance [2]. A fault p dominates another fault q if all the 
patterns that test q also test p. For example, all the test patterns for a s@l fault 
on the input of a OR gate are also test patterns for the s@l fault on the output 
of that gate. It is then clear that the s@l faults on the outputs of gates D, G 
and J dominate the s@l faults on their respective inputs, and diagnosis will 
give them a 100 score as well, at least if only failing patterns are used. The 
dominance relationships are indicated in the figure by the single-arrowed 
lines below the OR gates. 

The fanout after gate F does not change the flow of equivalences and dom
inances, presumably because fault effects propagating along the other 
branches of this fanout are blocked further downstream from F. That not more 
faults are found further downstream from L is due to the presence of the 
fanout after L. From there on, fault effects propagate into two different direc
tions, and no fault on either branch can explain the fails observed at the 
latches at the end of the other branch. 

This explanation of why there are so many faults with 100 scores uses the 
accidental facts that all the failing patterns used in the diagnosis put a logic 1 
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on the lower input of the XNOR gate, and that all those patterns also block 
fault effect propagation down the other branches of the fanout after gate B. 

More complicated accidents are required if, for example, the real defect is 
a s@l on the top input of F. Fault equivalence and dominance will guarantee 
that diagnosis will also give a 100 score to all the faults downstream from the 
defect, up to gate L. That diagnosis also gives a 100 score to the top input of 
D, however, can be explained only by assuming that the failing patterns put a 
logic 1 on the bottom input of that gate. Likewise, a constant 1 on the bottom 
input of C will make diagnosis find the s@l fault on the top input of that gate, 
which is equivalent to the s@l faults on the inputs of B. 

The existence of these accidents indicate that it might be possible to 
increase resolution by finding more failing patterns. In fact, these accidents 
open up the possibility of exploiting them and generating special diagnostic 
patterns that intentionally put "wrong" values on the various pins [5]. 

For example, in the first scenario, having faiHng patterns with different 
logic values on the bottom input of C would remove all the faults downstream 
from C from the 100 list. Likewise, in the second scenario, all the faults 
upstream from the s@l on the top input of F would get lower than 100 scores 
if at least one failing patterns would put a logic 0 on the bottom input of D. 

The negative effect of dominance on the diagnostic resolution cannot be 
conquered, however, by using more failing patterns. Only passing ones will 
be able to distinguish between a defect and the faults that dominate the defect. 

7 USING PASSING PATTERNS 

The benefit of using passing patterns was studied by rediagnosing all 
devices with a highest score of at least 90, but now with many passing pat
terns added. The test patterns are divided into groups of around thirty patterns, 
and the selection of passing patterns was such that all the patterns in a group 
were used, failing or passing, if there was at least one failing pattern in that 
group. 

The results are summarized in Figure 36. The effect of using passing pat
terns is the reduction of the scores of those faults that cause fails during the 
simulation of such patterns. It could, for example, lower the scores of faults 
that dominate the real defect without being equivalent to it, but only when the 
right passing patterns are applied. 

The expected effect is a lowering of the number of high scoring equiva
lence classes. That this does occur is clearly shown in the figure, which shows 
the distribution of high scoring equivalence classes after diagnosis with pass
ing patterns. Compared to the results in Figure 34, the average number of 
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Figure 36 Distribution of the number of equivalence classes, 
with the use of passing patterns 

equivalence classes per diagnosis has clearly decreased. The 50% point, 
which was around three, is now below two. Likewise, the 90% point moved 
from five down to four. 

It is also interesting to see what passing patterns do to the diagnostic result 
shown in Figure 35. The diagnostic result with passing patterns is shown in 
Figure 37. The numbers above the faults indicate the scores that were 
obtained. Faults without score indicators have scores below 70. 

Surprisingly, there is no 100 score. None of the candidates found previ
ously, with failing patterns only, turned out to be perfect models of the real 
defect. The best candidate is the one with score 94, on the input to gate G. 
Note also that, with the use of passing pattern, dominance lowers the score, 
while equivalence keeps them the same. 
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Figure 37 Example of a diagnosis with multiple equivalence classes 
and passing patterns 



Chapter 10 

SLAT based Diagnosis 

1 INTRODUCTION 

Even though the diagnostic approach outlined in the previous chapter has 
been fairly successful, there are several problems that are rapidly becoming 
more apparent with decreasing feature sizes, and with increasingly aggressive 
design styles that deviate more and more from the robustly digital behavior 
assumed by logic simulators. The most serious of those problems is that only 
single stuck-at faults are used. 

Stuck-at faults are very restrictive as models of defects, because they 
allow the defect to influence only one net, force the defect to be active all the 
time, and assume that the defect behaves in one specific way. Using combina
tions of stuck-at faults removes the first of these drawbacks, but does little to 
alleviate the others: bridging and intermittent defects, for example, cannot be 
modeled by any combination of stuck-at faults. 

The advocated solution to the inadequacy of stuck-at faults for diagnostic 
purposes has always been more complex faults (see, for example, [2] and 
[49].) One group of such approaches centers around the notion of composite 
signatures [40, 35, 36, 58]. The signature of a single stuck-at fault is the set of 
failing patterns, possibly augmented with, for each such pattern, the set of 
latches that contain incorrect data after the application of that pattern. A com
posite signature is the union of a suitable set of single stuck-at fault 
signatures. What particular set of stuck-at faults is chosen depends, of course, 
on the defect that the composite signature is intended to model. For simple 
bridging faults, they are the stuck-at 1 and stuck-0 faults on the two legs of the 
bridge. 

The solution of more complex fault models, however, has problems of its 
own. First of all, the cost of the required simulations rapidly becomes prohib
itively high with increasing model complexity. In addition, such more 
complex fault models may loose the linear relation ship between the size of 
the fault model and the size of the design, and consequently, for sufficiently 
large designs, violate the requirement that the number of faults should not be 
too large. 

Secondly, no matter how sophisticated the arsenal of logic faults that is at 
the disposal of the diagnostic software, there will always be defects that do 
not correspond to any one of them. For example, typical bridging faults that 
are available with some simulators are of the wired AND or wired OR variety 
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([2], Chapter 7). There are, however, also dominant bridging faults of various 
flavors [36, 49], and the activation conditions of any bridging fault may be 
more complex than that the two legs of the bridge have opposite logic values 
[35]. 

These problems with the use of more complex fault models also highlight 
the second general problem with the previous chapter's diagnostic technique. 
A physical defect has two components. The first one is its location, or loca
tions if the defect is a compound one. The second component is its logic 
behavior when test or functional patterns are applied. All of today's diagnos
tic approaches attempt to address these two components simultaneously. This, 
however, leads either to overly simplistic fault models, like the stuck-at one, 
or to a gross inadequacy of more complex fault models, like the bridging 
faults mentioned above. 

The central problem in logic diagnosis is to model realistic defects by 
logic abstractions that faithfully mimic the logic behavior of the defect, but 
that can also be simulated efficiently by logic simulators. In this chapter, a 
solution to this diagnostic problem will be offered that approaches it in a dras-
fically different way from the standard technique of the previous chapter. The 
main idea is not to model the logic behavior of the defect, but, instead, to 
focus on its location. Determining the location is much simpler, and can be 
done in a piecemeal fashion by analyzing failing patterns and building up a 
composite picture of the defect's whereabouts. 

This diagnostic technique is called SLAT [6, 30], which stands for Single 
Location At a Time, because it uses only those patterns during which the 
defect affected only a single location, be that a pin or a net. In the first section 
of this chapter, modeling realistic defects will be revisited. It will be shown 
that defects can still be modeled by stuck-at faults, but in a decidedly non
standard way. Some of the ideas in this and subsequent sections, in particular 
the idea of using only those patterns during the application of which the defect 
affected only a single net, were anticipated more than fifteen years ago [60], 
but not pushed as far as here. 

In the first section of this chapter, modeling realistic defects will be revis
ited. I will show that defects can still be modeled by stuck-at faults, but in a 
decidedly non-standard way. The remaining sections will describe how this 
new defect model can be used to perform sophisticated and powerful logic 
diagnoses. The detailed approach to logic diagnosis will be outlined in Sec
tion 3. The basic output of such a diagnosis will be discussed in Section 4, 
where more insightful interpretations of the diagnostic results will be devel
oped. A faster, but approximate greedy version of SLAT will be presented in 
Section 5. Some final comments regarding the SLAT output will be made in 
Section 6, and results obtained on real ICs will be presented in Section 7. 
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2 LOGIC DEFECT MODEL 

The defect model that underlies SLAT will be discussed in this section. 
SLAT does not assume that the defects are stuck-at faults, even though it 
employs them to obtain information about the defects. A more accurate 
description of a SLAT defect is that it is a set of locations. This section will 
define the SLAT defects in detail, and show why stuck-at faults can be used to 
obtain information about them. 

2.1 Physical justification 

Empirically, we know that the stuck-at fault model is very efficient in 
driving test generation towards tests that can give a high assurance of a low 
defect level. Likewise, standard logic diagnosis, as described in the Introduc
tion, has shown that even the single stuck-at fault model can be very effective 
in diagnosing defective ICs. What is not clear is why stuck-at faults are so 
successful. 

The real surprise, however, is not that stuck-at faults are effective, but, 
instead, that the logic model itself can be used even in the presence of defects; 
i.e., that the logic model of a defective IC can be obtained by making small 
modifications to the logic model of the defect-free device. This is surprising, 
for the function of the defect-free logic model is to represent the device in the 
absence of defects, and there are no requirements on how it should behave in 
their presence. 

What allows the logic model to function, even in the presence of defects, 
seems to be the strong digital behavior of integrated circuits. Because ICs 
have to emulate logic designs, as supposed to analog designs, they have to be 
immune against small disturbances like electrical noise and temperature fluc
tuations. Likewise, even stronger disturbances that are caused by real defects 
are quickly brought back to digital behavior, be it sometimes incorrect digital 
behavior. 

Consider for example the voltage at the input of a logic gate. When it is 
sufficiently close to Vdd or GND, its logic value is well defined. In other 
words, there is a region B between Vdd and GND outside of which the voltage 
clearly defines a logic value. Logic gates have to be designed such that, in 
normal circumstances, and in the presence of normal fluctuations, all voltages 
stay away from this uncertainty region J5. This is accomplished by having the 
gate produce an output voltage that is far away from =5, even when some of the 
input voltages are close to B. 

A minor extension of this property can then be defined that, it seems, is 
present in today's technologies, and, if not, should be present in future ones. 
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For a logic gate to produce an output voltage in J5, one or more of the input 
voltages have to be in an even smaller range L i is completely included in J5, 
and smaller, because otherwise the gate would not have the correcting prop
erty mentioned above. A logic design now has strong digital behavior when i 
« S. In other words, a design has strong digital behavior when the logic gates 
almost always produce output voltages outside J?, even when the input volt
ages suffer strong disturbances that pull them within the region 3. 

Of course, the logic gate may not redigitize the input disturbances cor
rectly, and, if not, a logical error results. The important point, however, is that 
the logic model remains valid, and that the disturbance can be represented by 
some logic fault. We can go even further, though. As the physical disturbance 
gets redigitized at the first logic gate it encounters, it can be represented by a 
set of stuck-at faults on all the input nets that were affected by the disturbance. 
This set of nets, and the polarities of the stuck-at faults, may be different for 
different test patterns. The number of nets in the set, however, will be small, 
because physical defects can affect only a small number of nets, and most nets 
have small fanouts. 

2.2 Logic defects 

The starting point of the present diagnostic strategy, therefore, is the real
ization that, during the application of any test pattern, any defect behaves as a 
set of stuck-at faults on some set of nets. It need not behave as the same set of 
stuck-at faults on every pattern. During different patterns, the defect may 
behave as different sets of stuck-at faults, or even as in the defect-free device. 
For example, a defect that creates an error on a single pin can behave as a 
stuck-at 0 (s@0) on some patterns, a stuck-at 1 (s@l) on others, and even not 
have any faulty behavior at all on yet other patterns. 

This leads to a new concept of a logic defect, one that lies at the root of 
SLAT. A logic defect is a model of a physical defect that is suitable for logic 
simulators and test generators. Logic defects mimic the behavior of the physi
cal ones, but need not duplicate the details of the latter. They typically cannot 
model the detailed electrical behavior of physical defects, and may not be able 
to represent faithfully their spatial properties either. 

For example, it may happen that a physical defect creates an error on some 
net, while the logical consequences of that influence can be described prop
erly only some distance away from the defect because of electrical reasons. 
The most obvious example is the Byzantine bridges studied in [35], when the 
stem of a fanout tree is bridged to some other net, but the strengths of the var
ious upstream and downstream transistors are such that some leafs of the 
fanout tree seem not to be affected by the bridge, while some others are. The 
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logic defect that describes such a bridge has as its basic components those leaf 
nets that can be influenced by the bridge, but not the other leaf nets, and 
ignores the stem of the tree. 

A logic defect, then, is merely a set of nets that can be affected by the 
defect. Of course, this set of nets should be as parsimonious as possible in its 
explanation of the defect, but need not consist solely of the nets touched by 
the physical defect. The goal of SLAT diagnosis is the identification of this set 
of nets. A logic defect does have a logic behavior, but this logic behavior is 
not the primary target of the diagnostic efforts. It will become important when 
further refinements of the diagnostic calls are required, but plays no role in the 
initial phase of the diagnosis. 

One important assumption regarding the logic behavior has to be made, 
however, to make it possible to build a diagnostic strategy around logic 
defects. It concerns the use of multi-clock test patterns. The application of a 
test pattern can be described as a multi-phase process. During the first phase, 
the circuit is brought into an appropriate state, typically using some form of 
scan-in. During each subsequent phase, the logical evaluations resulting from 
the preceding phase are clocked into various memory elements, and a new cir
cuit state is generated. In the final phase, the values in the memory elements 
are observed at the tester, for example using scan-out. 

If the application of the test pattern is a three phase process, as it is in sim
ple scan designs, the logic evaluations are performed only in the second 
phase. In that case, the defect behaves as a set of stuck-at faults in the circuit 
state resulting from the application of the first phase of that particular pattern. 

If the test pattern is more complex, and the circuit cycles through different 
states during the application of the pattern, we have to assume that the defect 
behaves the same way in all the states occurring during that pattem. This is a 
very strong assumption, and suggests that SLAT is not easily applicable to 
sequential tests. 

The latter assumption can be weakened considerably, however, for the 
purpose of the assumption is to guarantee that all errors produced by the 
defect are caused at the same time, and not at different times, when the defect 
might behave in different ways. But the unique evaluation is guaranteed, and 
the purpose of the assumption satisfied, when the logic evaluations at any net 
are performed only once during the application of the pattem, even when the 
values in different observable latches and at different POs are set in different 
phases of the pattem. In fact, all that is necessary is that, regardless of how 
many times the logic value on some net is reevaluated during the application 
of the test pattem, only one evaluation of the logic value on that net can con
tribute to the logic values in observable latches and POs, which leaves room 
for a considerably amount of sequentiality in the pattem. 
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2.3 SLAT patterns 

A second assumption needs to be made to make the present diagnostic 
strategy efficient. It deals with the problems stemming from complex defects 
that can affect multiple nets. 

If a defect can produce errors on multiple nets during some failing pat
terns, it can do so during the application of all failing patterns, and this, as will 
become clear later, would make the defect undiagnosable. The second 
assumption that underlies SLAT is that there will be circuit states in which 
only a single net is affected (or, at most, only one net is affected from which 
fault effects propagate to some observable output.) 

The patterns whose circuit states are such that only a single net is affected 
will be called SLAT patterns. In practice, a slightly different definition of 
SLAT patterns needs to be used, because it is of course not known for any 
particular pattern whether an error was produced on a single net or not. In par
ticular, SLAT patterns that produce no fails can never be recognized as such. 

For this more procedural definition, it is useful first to define the SLAT 
property. This is a property that is attached to failing patterns, and indicates 
that all the observed fails for that pattern can be explained exactly by at least 
one stuck-at fault, or more generally, by at least one single fault that, regard
less of its activation conditions, can affect only a single pin. More 
descriptively, these are patterns during which the defect seems to have been 

activated in such a way that only one fault effect (a D or a D) was generated 
at some pin, and during which this fault effect was propagated to one or more 
observable outputs. The SLAT property is similar to vectorwise intersection 
([59]), except that the latter applies to all kinds of faults, and not just to stuck-
at ones. 

From now on, SLAT patterns are defined as failing patterns with the 
SLAT property. This may not always agree with the original definition of 
SLAT patterns, because it is conceivable that some pattern causes the defect 
to produce errors on several pins, propagating those errors to observable out
puts in such a way that the observed fails can be explained by some single 
stuck-at fault. This is an unavoidable problem in all forms of diagnosis: that a 
complex problem manifests itself with the symptoms of a simpler one, and is 
confused with it. The risk of it happening seems slight, and I will assume that 
the procedural and the original definition of SLAT patterns are equivalent. 

The restriction to SLAT patterns of course reduces the information that is 
available about the defect. The most serious risk is that no failing pattern has 
the SLAT property. In that case, SLAT diagnosis fails. Usually, however, 
there are enough patterns with the SLAT property. Obvious examples of 
defects for which all failing patterns have this property are stuck-at faults, 
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node faults like opens, and regular bridging faults like the wired AND and 
dominant ones. 

The importance of the second assumption, and of its validity for large 
classes of defects, cannot be overestimated (and has been recognized before 
[3].) It makes it possible to apply all our accumulated knowledge of stuck-at 
faults to a much wider and much more realistic class of defects, and to treat 
those defects with even higher diagnostic accuracy and success than what we 
are accustomed to with regular stuck-at faults. If valid, standard stuck-at 
faults will suffice for logic diagnosis, be it in a rather nonstandard manner. 

3 SLAT BASED DIAGNOSIS 

The basic strategy that will be used to diagnose failing ICs is derived from 
the observations made in the previous sections. It is called Single Location At 
a Time (SLAT) to emphasize its reliance on the assumption that there are 
some failing patterns that produce errors on a single pin only. 

Failing patterns with the SLAT property are called SLAT patterns. It is not 
required that all failing patterns have this property, nor that the defect is 
always active. SLAT will work equally well with intermittent faults as with 
hard faults (although it does rely on the availability of a sufficient supply of 
SLAT patterns, which may be hard to come by for intermittent faults.) 

The result of the diagnosis will be logic defects, which are sets of pins, and 
a list of those failing patterns during the application of which the defect 
caused an error on one of those pins. All patterns whose failing latches are 
reproduced exactly by some fault on some pin will be said to be explained by 
that pin. 

All logic defects consist of input and output pins on logic blocks, like 
ANDs and Buffers, as well as chip inputs and outputs. Standard logic diagno
sis uses the concept of fault equivalence, which is tied to the polarity of the 
fault. As SLAT does not use those polarities, fault equivalence has no mean
ing, and all pins have to be identified that can explain the failing pattern, not 
just the ones that are the locations of the representatives of fault equivalence 
classes. 

It is important that all the pins in the design are used as potential fault 
locations, for a defect that creates an error on some pin is modeled best by a 
fault on that pin. Even more importantly, diagnostic precision would be lost in 
the absence of that pin, even if faults on other pins could reproduce the behav
ior of this defect in a reasonable way, because those other faults would 
indicate the pins where they reside as the most likely candidates for the loca
tion of the defect, rather than the defect's actual location. 
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For example, the s@0 faults on the input and output pins of an AND gate 
are equivalent. Consequently, if the defect is such that it can be modeled accu
rately as a s@0 on an input pin, it can be modeled equally well by the s@0 on 
the output pin. But, if the defect list does not contain the input pins, the diag
nosis will be misleading, for it points at the wrong pin, even though the list 
has a fault that exactly reproduces the fail behavior observed on the tester. 

SLAT diagnosis recognizes three types of patterns: those that have the 
SLAT property, called SLAT patterns, failing patterns that do not have the 
SLAT property, and non failing patterns. The latter two groups will be dis
cussed briefly once all the available information has been extracted from the 
first one. The starting point of the diagnosis is the set of SLAT patterns. 
SLAT assumes that there will be enough of such patterns to do a meaningful 
diagnosis. 

3.1 Initial Diagnosis 

SLAT diagnosis proceeds in three phases. In the first phase, shown in Fig
ure 38, SLAT patterns are identified and pertinent information is stored in a 
table. It consists of a double loop, the outer one over all the failing patterns, 
the inner one over all the faults in the fault list (or, at least, over other faults 
than those that can be easily excluded, for example after tracing through the 
logic model, because they cannot possibly explain all the fails observed in the 
present failing pattern). Standard stuck-at fault diagnosis is performed on each 
failing pattern separately, using the diagnostic technique described in the 
Introduction. 

The diagnostic step identifies the SLAT patterns, because they are the 
ones for which there is at least one stuck-at fault that completely explains all 
the fails collected for that pattern. It also identifies all the faults that can 
explain all the observed fails for each such pattern. For each fault, it notes the 
pin where that fault is located. 

All pin-pattern pairs that are found in the diagnostic step are stored in a 
table, called the explain fails table, a small example of which is shown in 
Table 7.. The pins that explain failing patterns are indicated by the IE] symbol. 
Additional information, like the fault id and fault polarity, are stored as well, 
but will not be used immediately. The polarity in particular is useful to store, 
even though it is not used in this phase of SLAT, as it may help refine the 
SLAT diagnosis after the present phase has finished. 

Once the explain fails table has been created, the second phase of SLAT is 
entered, in which small sets of pins are identified such that each SLAT pattern 
is explained by at least one pin in each set. This search can be restricted to 
pins in the table, for other pins do not explain any failing pattern at all. The 
search is done simply by first checking whether any single pin can explain all 
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Figure 38 SLAT diagnostic flow 

the fails, then if any pair of pins can explain all the fails, etc., until a suitably 
sized multiplet is found. A multiplet is a set of pins, and its size is the number 
of pins it contains. A detailed pseudo program for identifying multiplets can 
be found in [6]. Each multiplet is said to explain all the SLAT patterns, since 
each SLAT pattern can be explained by at least one pin in the set. 

Once a multiplet is found that can explain all the fails, all multiplets of the 
same size that can also explain all the fails are identified, and no multiplets of 
larger size are considered. Consequently, only sets of the same, minimal size 
are found by SLAT, and no multiplet of smaller size can explain all the fails. 

Usually, there is more than one multiplet. In the example shown in Table 
7., suitable multiplets are (1,3), (1,4), (1,9), (7,3), (7,4) and (7,9). There are 
undoubtedly larger multiplets that can also explain all the fails, but they are 
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Table 7. Example explain fails table 

ignored. This introduces a small risk of missing important information, and 
will be discussed further in Section 3.3 

A different and more complex example of an initial SLAT output is shown 
in Figure 39. It contains a list of multiplets, as well as, for each multiplet, a 

19 patterns failed but were not SLAT patterns. 

37 SLAT patterns were found. 

The returned multiplet size is 3. 

40 multiplets were found. 

Multiplet 1: 
pin index 1. 

pattern 1 fault 1 ISA1 
Pattern 2 fault 1 ISA1 

pin index 3. 
pattern 10 fault2 0SA1 
pattern 11 fault2 0SA1 

pin index 7. 
pattern 80 fault 3 ISA1 
pattern 81 fault 3 ISA1 

Multiplet 2: 

Figure 39 Initial SLAT output 

description of how each SLAT pattern was explained (which pin in the mul
tiplet and which particular fault.) It is not the final SLAT output, but 
represents an intermediate state of the diagnosis. The figure shows, in order, 
the number of failing patterns that did not have the SLAT property, the num-
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ber of those that did, the size of the multiplets, the number of multiplets, and a 
complete list of all multiplets (only one of which, multiplet (1,3,7), is shown.) 
Each multiplet is listed as a pin followed by a list of the SLAT patterns that 
are explained by that pin (only some of which are shown.) The explanation 
has the form of SLAT pattern, fault index, fault polarity, with the latter two 
referring to the fault that explained that pattern perfectly. ISA stands for Input 
Stuck At and OSA stands for Output Stuck At. 

The figure shows only the minimal amount of information necessary to 
explain the initial diagnostic output of SLAT. In practice, other information 
can be added, like the net and the gate where the pin resides, the function of 
the gate, or the stuck-at faults that were employed to locate the pin. 

The defect indicated by SLAT has size three, which means that it affects at 
least three pins. There is no indication here, nor will there be after a more 
detailed analysis, whether this means a single physical defect that affects three 
pins (or nets feeding those pins,) or three distinct physical defects. It may be 
possible to guess the nature of the defect from the SLAT diagnosis, and have 
this guess be verified using the passing patterns or the failing ones that do not 
have the SLAT property, but the accuracy of the guess is not guaranteed. 

3.2 Comparison with stuck-at fault diagnosis 

SLAT is clearly more powerful than single stuck-at fault diagnosis, 
because it can diagnose all defects that have at least some SLAT patterns, 
while single stuck-at fault diagnosis requires defects to behave as single 
stuck-at faults all the time. Also, whenever the latter is able to explain all the 
observed fails perfectly with single stuck-at faults, SLAT will find multiplets 
of size 1, and all the faults found by stuck-at fault diagnosis will be among the 
multiplets. 

SLAT, however, pays a price for this increased diagnostic power, in that it 
may incur some loss of resolution compared to stuck-at fault diagnosis when
ever the defect really is a stuck-at fault. An example is shown in Figure 40. 

Figure 40 Example stuck-at fault 

The XNOR gate shown in the figure has a s@l fault on its top input. 
Stuck-at fault diagnosis will of course find this fault, as will SLAT. If both 
inputs have constant logic values in all the failing patterns, stuck-at fault diag
nosis will also put a fault on the bottom pin on the list of candidate faults, and 
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SLAT will find a multiplet consisting of that pin. SLAT, however, will always 
have a multiplet with the bottom pin, regardless of the logic values on that 
pin, for either a s@l or a s@0 on that pin can explain all the fails on any fail
ing pattern. 

This extra multiplet may be considered a disadvantage, but is unavoidable 
in SLAT. It is only a disadvantage if the defect is a stuck-at fault, however, 
something that is not known at the start of the diagnosis. If the defect were a 
bridge on the bottom pin, for example, stuck-at fault diagnosis might not find 
it at all. 

Moreover, in the scenario sketched here, SLAT would find one pin, the 
top one, that has a defect with the same polarity, and another pin, the bottom 
one, that has a defect with varying polarity. This information can be used 
with, for example, physical design details to further reduce the list of possible 
defects. Such more detailed analysis falls outside the scope of SLAT, how
ever (and also outside the scope of stuck-at fault diagnosis.) 

3.3 Potential accuracy risks 

In principle, SLAT should be able to diagnose most defects, the only obvi
ous exception being those defects for which no failing pattern can be 
explained by a single stuck-at fault. The procedures outlined in this chapter, 
however, may lead us in some cases to an incorrect diagnostic call. These 
risks all entail accepting a simpler, but incorrect explanation of a fail over the 
correct but more complex one. This is a problem that all diagnostic strategies 
face: the correct diagnosis may be more complex that the simplest one, but the 
simplest one is the one we go with if we want to make any diagnostic call at 
all. There is nothing wrong with listing potential alternate diagnoses, and 
sometimes personal experience may lead us to focus on one of them rather 
than on the simplest one, but, with no other information, the simplest diagno
sis should be selected. 

The procedural problems have been mentioned before. The first one is 
caused by the decision to call a failing pattern a SLAT pattern when all the 
fails observed with that pattern can be explained by a single stuck-at fault (or, 
more generally, by a single pin fault.) As was pointed out at the time (see Sec
tion II-2.3), this may identify some failing patterns as SLAT patterns, even 
though multiple errors were produced and more than one of them caused fails 
at observable outputs. 

The core of the problem is of course that a simple but incorrect explana
tion is available for the fails observed with that particular pattern, and that we 
are bound to accept that explanation. The risk may be reduced by using many 
failing patterns. For, if there are many true SLAT patterns, there is a good 
chance that the one pattern that was labeled a SLAT pattern but isn't will 
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stand out by its explanations being incompatible with the ones found for the 
other failing patterns. 

The second procedural problem springs from our decision to look for min
imal multiplets only. An example of how this may lead to an incorrect 
diagnosis is provided by an XNOR gate in Figure 40 (see also [2]). Assume 
that the defect is a bridge between the inputs of the gate, instead of a stuck-at 
fault. Such a bridge will manifest itself as a s@l on the output of the gate, and 
SLAT will find it, since it requires a single pin to explain all the fails, rather 
than the real defect which requires two pins. Again, this problem is hard to 
avoid, because there is a simple explanation of the fails that hides the more 
complex correct one. 

It is possible to modify SLAT, and have it look also for multiplets that 
have only a few more pins than the minimal ones. This would greatly increase 
the complexity of the SLAT output, and seriously decrease its accuracy, even 
though it might catch the occasional hidden defect. Even with this more com
plex SLAT procedure, however, there is still no strategy for recognizing the 
true defects. In the absence of additional information, simplicity is the only 
guide we have, and minimal multiplets are the ones that will be selected. 

3.4 Non SLAT patterns 

Each multiplet can explain all the SLAT patterns, and is, in some sense, a 
representation of the defect. Combined with the list of patterns that were 
explained by each pin, as well as the polarity of the fault that was activated, it 
gives a detailed description of how the defect behaved when the SLAT pat
terns were applied. 

SLAT diagnosis, therefore, gives a picture of the defect in certain 
restricted circumstances (only for SLAT patterns.) It is not necessarily a com
plete picture, however, and there is no guarantee that a consistent logic defect 
can be found that will mimic the logic behavior of the defect in all circum
stances. In particular, it may not be possible to extrapolate the behavior found 
for SLAT patterns to failing patterns that do not have the SLAT property, or 
to passing patterns. 

The non SLAT patterns are important, because they can sometimes be 
used to obtain a more detailed picture of the defect. Failing patterns that do 
not have the SLAT property are patterns where a single stuck-at fault does not 
model the defect correctly. Instead, errors were caused by the defect at multi
ple locations, such that two or more of them gave rise to incorrect data at 
observable outputs. 

It is tempting to assume that those multiple locations can be found among 
the pins in the multiplets that SLAT diagnosis produced initially, i.e. that 
SLAT diagnosis has found all the locations (pins) where the defect can pro-
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duce errors. This can be verified by simulating all combinations of all pins 
found in any multiplet, and comparing the results against the fail data that 
were collected at the tester. In the example shown in Figure 39, this amounts 
to 320 simulations, easily within reach of today's simulators. 

Passing patterns are very different. It may be that the defect was not acti
vated, or that it was activated but no fault effect managed to propagate to an 
observable output. It is not possible to verify either scenario without a more 
detailed model of the defect. Such a model will have to be extracted from the 
immediate output of the SLAT diagnosis, augmented perhaps with an analysis 
of the failing patterns without the SLAT property. 

It is sometimes possible to extract such a realistic model from the initial 
SLAT results [7]. For example, if all failing patterns are SLAT patterns, and if 
the multiplets have size one, and if the polarities of the stuck-at faults that cor
respond to the multiplets are always the same, then a stuck-at fault as a model 
for the real defect may seem to be appropriate. The confidence with which we 
arrive at that conclusion depends on the number of failing patterns that were 
employed in the diagnosis, and maybe on other factors, like known peculiari
ties of the manufacturing process, or details of the design near the multiplet 
pins. 

If we do trust this model extraction, then it can be used in fairly standard 
ways to improve the accuracy of the diagnosis: follow the standard diagnostic 
strategy, as outlined in the Introduction, using only the stuck-at faults of the 
right polarities attached to the pins in the multiplets, and remove those stuck-
at faults, and corresponding multiplets, that caused fails during the simulation 
of any passing pattern. 

Like any extrapolation, however, this model extraction has an element of 
risk, because it is based on a limited and imperfect amount of information. If, 
in the example above, the real defect is not a stuck-at fault, but only appears to 
be one based on the information available from the failing patterns, simulating 
passing patterns in the presence of stuck-at faults is clearly inappropriate. The 
best that can happen is that the simulation removes all candidate stuck-at 
faults, thereby demonstrating the incorrectness of the extraction. On the other 
hand, if some of the stuck-at faults are left by the simulation of the passing 
patterns, the best a diagnostic engineer can do is to accept the model extrac
tion, for it explains in the most simple manner all the data collected during 
test. 
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4 MULTIPLEX ANALYSIS AND SPLATS 

In general, diagnosis will find more than one multiplet, just as in the case 
of stuck-at fault diagnosis there is usually more than one fault that can explain 
all the fails. In its crudest form, the multiplets produced by SLAT are separate 
and independent. Each one of them stands on its own as a representation of 
the defect. 

The pins in the multiplets are the ones that seem most directly related to 
the defect that caused the fails. This set of pins will be referred to quite often, 
and, for brevity's sake, will be indicated by M. The pins in Mare the SLAT 
equivalent of faults in the standard diagnostic strategy that match the fails per
fectly. We expect some structure in M if the size of the multiplets is larger 
than one, because the fails that are being diagnosed were caused by a possibly 
complex defect, and this provenance of the fails will undoubtedly be reflected 
in the diagnostic output. This additional structure will be explored in this 
section. 

The basis of the diagnosis is the set of SLAT patterns. This set could be 
partitioned according to the single pins where the errors occur, if we knew for 
each SLAT pattern on which pin the defect produced an error. The diagnosis 
for the patterns in each subset would then basically be the same as in standard 
logic diagnosis, except that the latter is fault oriented, while SLAT is pin ori
ented. A set of pins would be found, each one of which explains all the fails 
collected for the patterns in that subset. Each pin in the set might or might not 
explain patterns in other subsets. 

This set of pins will be called a splat.The pin that is affected by the defect 
is likely to be among the ones in the splat, but its identity cannot be estab
lished any more accurately than that. There can be as many splats as there are 
pins that are affected by the defect, or fewer, if no error occurred on some of 
those pins during the failing patterns used for diagnosis. 

Finding splats is easy, once the SLAT patterns are partitioned according to 
the pins where errors were produced. They are very valuable, because they 
are the best estimates diagnosis can provide of the pins affected by the defect, 
and, therefore, of the defect itself There is no obvious way, however, to parti
tion the SLAT patterns. To find an effective algorithm, a different definition 
of a splat has to be used, one that makes the relationship to multiplets explicit. 
The third phase of SLAT is concerned with finding and applying this 
algorithm. 
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4.1 Splat structure 
Partitioning SLAT patterns induces a partition of at least some of the pins 

in M, the set of pins in the multiplets, as each pin in Mean be associated with 
a particular subset of patterns if it explains all the fails observed with the pat
terns in the subset. Alternatively, it might be possible to start from M, and 
search there for a splat structure. 

An example of how this might be accomplished is shown in Table 8.. This 
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Table 8. Initial SLAT diagnostic results 

table is the same as Table 7., but with the pins not in Mindicated by the addi
tional shading. Pins 1 and 7 explain patterns 1 and 3, while pins 3, 4 and 9 
explain the remaining patterns. Why pins 1 and 7 explain the same patterns is 
of course not clear from this output. Perhaps, the fault on one pin dominates a 
fault on the other pin. 

This table shows six multiplets: (1,3), (1,4), (1,9), (7,3), (7,4), and (7,9). 
On the other hand, the figure also suggests a partitioning into splats: (1,7) and 
(3,4,9). This partitioning into splats becomes obvious once the rows and col
umns are reordered (see Table 9.), and only the multiplet pins are kept. 
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Table 9. Splat structure of multiplet pins 
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Reordering puts the matrix in block-diagonal form, with the splats corre
sponding to the different blocks. This observation forms the basis of the splat 
analysis. 

In the following discussion, italic capital letters like A and B will indicate 
subsets of SLAT patterns, and S^ will indicate the pins in the splat corre
sponding to subset^. The set of all the pins in splats will be indicated by S. 

4.1.1 Completely separated splats 

Let us start from the simplest, but also the most common case, in which 
the splats are completely separated, meaning that no pin in any splat explains 
any of the failing patterns associated with another splat. In that case, S and M 
are identical, as is shown in Appendix J. Multiplets and splats are then just 
different ways of partitioning M {ox S). The number of splats is the same as 
the size of the multiplets, because each multiplet must have a pin from each 
splat, and no two multiplet pins can be in the same splat. Each multiplet can 
be obtained from the splats by choosing one pin from each splat. Likewise, 
splats can be obtained by putting the matrix formed from the SLAT patterns 
and the multiplet pins into block-diagonal form, as in Table 9.. 

A more elaborate example of a diagnosis with completely separated splats 
is shown in Figure 41, and refers in fact to the same device that was used in 
Figure 39. This Figure shows a final SLAT output, minus some additional 
information like the identity of the pin or the block on which it is located. The 
multiplet shown in Figure 39 is constructed from the first pins in splats 1, 2 
and 3, respectively. That SLAT diagnosis finds 40 multiplets is now seen to 
be a consequence of the fact that there are splats of size 2, 4 and 5. How the 
various pins explain the observed fails is not indicated in the figure. It pro
ceeds roughly in the same fashion as in Figure 39, except that the list of 
patterns explained by each pin has to be given only once for that pin, rather 
than repeated each time the pin occurs in a multiplet. 

4.1.2 General case 

The identity of S and M has been shown only for the case of completely 
separated splats. This case may seen rather special, but is in fact very likely to 
occur if the defect affects nets that are logically unrelated, because then a pin 
that explains all the failing patterns in one subset is very unlikely to explain 
also the patterns in another subset. 

There is no guarantee, however, that splats will always be completely sep
arated. They need not be, as a pin in a splat S^ may accidentally explain one 
or more patterns in subset 5. If this happens, as in Table 10., the matrix of pat
terns and multiplet pins cannot be brought into block-diagonal form anymore. 
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19 patterns were skipped. 
37 good patterns were found. 
The returned multiplet size is 3. 
Found 40 multipiets. 

The 2 pins in splat 1 are: 
pin index 1 
pin index 2 

The 4 pins in splat 2 are: 
pin index 3 
pin index 4 
pin index 5 
pin index 6 

The 5 pins in splat 3 are: 
pin index 7 
pin index 8 
pin index 9 
pin index 10 
pin index 11 

Figure 41 Final SLAT output 
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Table 10. Non-completely separated splats 

The • symbols in Table 10. indicate such additional, nuisance explains. 
Despite their presence, the matrix is approximately block-diagonal; it is still 
obvious how to partition the SLAT patterns, and, consequently, what the 
splats are. The problem is how to transform this observation into a reUable 
algorithm. 
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The more general case can almost always be handled by generalizing some 
of the properties of the completely separated case. This generalization leads to 
the following rules for finding splats: 

1. Only pins from Mean be used; 

2. no two pins from the same multiplet are in the same splat; 

3. the sets of SLAT patterns explained by pins in the same splat have a 
non-zero intersection. 

The first rule merely states the obvious: realistically speaking, all we know 
is M, and we have no good way of including pins not in M. The second rule 
describes thecentral relation between splats and multiplets, that multiplets are 
sets of pins, one from each splat. Consequently, two pins in the same multiplet 
cannot be in the same splat. The final rule defines the main property of splats, 
that its pins all explain some core set of patterns, and, therefore, that each set 
of patterns explained by any of those pins must at least contain that core set. 

Returning now to how to find splats in M, the rules listed above are a 
guide for how to group the pins in Minto splats. Finding splats is, therefore, a 
form of clustering pins in M, with the criterion being the degree of matching 
between the sets of patterns that the pins explain, and rule 2 providing an 
additional, negative criterion. 

Let us define the pin commonality 

h(I,J) = - 1 , (10.1) 

if the pins I and J occur together in some multiplet, and 

I I J 
V kv k 

h(I, J) = (10.2) 
^ . I ^ J I J . 
> (v k + v k - v kv k) 

k 

otherwise. In this equation, the sums are over all SLAT patterns, and Y\ 
equals 1 if pin I explains pattern k, and 0 otherwise. h(I,J) is set to -1 rather 
than to 0 when I and J occur in the same multiplet to distinguish between that 
case and the case of two pins that don't have any failing patterns in common 
(see rule 3.) In both cases, the pins should not be put in the same splat, but it is 
convenient to label them differently. It has no consequences for the clustering 
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algorithm. In the completely separated case, h(I,J) equals 1 when I and J are in 
the same splat, and -1 when they are not. 

The technique for finding splats in the general case is then to use some 
agglomerative clustering method ([19], Chapter 5), for example the one 
described in Chapter 6.4, which proceeds by first putting each pin in its own 
cluster, and then reducing the number of clusters by merging at each step 
those clusters that have the greatest degree of commonality. Merging stops 
when the number of clusters has been reduced to n, the size of the multiplets, 
or when the only clusters that can still be merged have commonality 0 or -1. 
Of course there is no need for clustering when the size of the multiplets is 1, 
because then the looked-for splat is M 

This approach will obviously work in the completely separated case, and 
will work in more general cases as well. For example, for the SLAT results 
shown in Table 10., the resulting commonality matrix is shown in Table 11.. 

pin 1 

2/3 

-1 

-1 

-1 

pin 7 

-1 

-1 

-1 

pin 3 

2/3 

1 

pin 4 

2/3 pin 9 

Table 11. Commonality matrix for Table 10. 

Only the lower half of the matrix is shown, as h(I,J) is symmetric. The (1,7), 
(3,4,9) splat structure indicated in Table 10. will clearly be retrieved from this 
commonality matrix. 

In almost all cases, the clustering that is found is unique, in which case the 
clusters can safely be considered to be the looked-for splats. The criterion for 
uniqueness is that the pins in the same cluster (now called a splat as well), are 
closer to each other than they are to pins in other clusters. To be precise, clus
tering is unique, and the clusters can be interpreted as splats, if, for all S^ and 
S ,̂ and for all pins I and J belonging to S ,̂ and all pins K belonging to S^ 

h(I,J)>h(I,K). (10.3) 

One very important example of unique splats will be discussed in the next 
section. 
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4.1.3 Complete set of multiplets 

Very often it is possible to group the pins in Mby mere inspection such 
that each multiplet can be obtained by taking one pin from each group, and, 
vice versa, each set formed by taking one pin from each group is a valid mul
tiplet. If the pins in M can be grouped in this fashion, M is called complete. 
Table 10. shows an example of a complete, but not a completely separated M 
Completeness is similar to complete separateness, but it does not require that 
pins in one group do not explain any of the patterns associated with a different 
group. It was used in [6] to find splats. 

If such a grouping exists, it is unique, as follows almost immediately from 
the definition of completeness. As the multiplets are formed by taking one pin 
from each group, there are as many groups as there are pins in the multiplets. 
This also implies that no two pins from the same multiplet can be in the same 
group. Assume now the existence of two different groupings G and H, both 
complete. As G and H are assumed to be different, there should be two pins 
that are in the same group in G, and in different groups in H. Because they are 
in different groups in H, they should occur together in some multiplet, by the 
definition of completeness. As they are in the same group in G, on the other 
hand, they cannot occur in the same multiplet. Consequently, G and H cannot 
be different, and the grouping that demonstrates completeness is unique. 

The groups have all the desired properties of splats. Rules 1 and 2 are triv
ially satisfied, and rule 3 is too, for, if there were two pins I and J in some 
group that have no explained patterns in common, the patterns explained by I 
would not be explained by J, and vice versa. Each multiplet m that contains J, 
however, needs to explain the patterns explained by I, and, as J does not 
explain them, they would have to be explained by pins in m other than J. Now 
consider another multiplet m' that is equal to m, except that J is replaced by I. 
The pins in m' other then I explain all the SLAT patterns, because they 
explain all the patterns explained by I. m', therefore, does not need I, and 
would not be minimal, contrary to what is done in the second phase of SLAT. 
Consequently, I and J have to have some explained patterns in common, and 
rule 3 is satisfied. 

In addition. Equation (10.3) is satisfied, for each pair of pins from two dif
ferent groups occur together in some multiplet and have commonality - 1 . 
The grouping, therefore, coincides with the unique splat partitioning found by 
clustering. 

Completeness has an alternate definition that is more usefiil when using 
the general clustering technique. If the clustering succeeds in finding n splats, 
with n the size of the multiplets, then each multiplet consists of one pin from 
each splat. The reverse may not be true: not every combination of one pin 
from each splat needs to be a valid multiplet. If the reverse is true. Mis com-
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plete. Consequently, Mis complete if and only if clustering finds n splats, and 
if the product of the sizes of the splats equals the number of multiplets. Using 
this property of completeness, it is found that almost all SLAT diagnoses are 
complete. 

4.1.4 Risks 
There are some potential risks with the clustering approach to finding 

splats, similar to the risks mentioned in Section 3.3. In the first place, the 
starting point is the set of multiplet pins, and the assumption that S and Mare 
identical. This assumption may be invalid, for Mmay have pins that are not in 
S when not all failing patterns that can be explained by single stuck-at faults 
are true SLAT patterns. More importantly, not all pins in S need be in M, 
because our restriction to minimal multiplets may hide the true defect. This is 
further illustrated in Table 12., which shows a variant of Table 10., with pin 4 

pattern 1 

pattern 3 

pattem 2 

pattem 4 

pin 1 

[x] 

m 
• 

pin 7 

m 
m 

splat 1 

pin 3 

m 
m 

pin 4 

• 

• 

m 
m 

pin 9 

[X] 

m 
splat 2 

Table 12. Example of hidden splat pins 

having so many nuisance explains that it can explain all failing patterns. 
SLAT'S multiplet search, for this table, would find pin 4, and stop, for all 
SLAT patterns are explained by it. All other splat pins would, in fact, be hid
den by pin 4 and by the SLAT technique of only looking for minimal 
multiplets. 

The second rule, that no two pins from the same splat can occur in the 
same multiplet, can also be violated, an example of which is shown 
in Table 13.. This table shows an example of nuisance fails in which two pins, 
pins 4 and 9, can together explain all the SLAT patterns, even though they 
belong to the same splat. Such a multiplet will be called abnormal. SLAT 
would find this abnormal multiplet, in addition to the usual ones, and rule 2 
prevents it then from identifying the otherwise obvious splats. 

These potential violations may decrease the confidence one has in SLAT 
diagnosis, but it is not clear how to avoid them. The problem of hidden splat 
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pattern 1 

pattern 3 

pattern 2 

pattern 4 

pin 1 

m 
m 
• 

pin 7 

m 
m 

splat 1 

pin 3 

m 
m 

pin 4 

• 

m 
m 

pin 9 

• 

m 
m 

splat 2 

Table 13. Example of an abnormal multiplet 

pins is one that, in one form or another, all diagnostic approaches face, and 
was discussed in Section 3.3. Abnormal splats are peculiar to SLAT, but can 
be recognized when no more clusters can be merged without violating rule 2, 
and clustering stops prematurely. The example shown in Table 13., in fact, 
will force clustering to terminate when three clusters are found, rather than the 
required two. 

4.2 M incomplete 
Even though most SLAT diagnoses have complete sets if multiplet pins, 

there are exceptions. In this section, I will discuss some of the observed cases. 
Several theoretical possibilities were indicated in the preceding sections 

for non-complete Ms, among them abnormal multiplets and non-unique clus
terings. I have not yet found an example of non-unique clustering. Abnormal 
multiplets and true non-complete Ms are not very common, but do occur. An 
example of the latter is shown in Table 14.. The table is an explain fails table, 
with the rows and columns interchanged compared to previous explain fails 
tables. It is the result of a SLAT diagnosis of a medium sized ASIC, with 
some of the rows and columns removed that merely duplicate other rows or 
columns. The calculated splats are indicated by the alternate shading. 

As this table, and its splat structure, were constructed from M, all multip
lets can be obtained by taking one pin from each splat. On the other hand, the 
pin set (1, 2, 5) is not a multiplet, because it does not explain patterns d and e. 
Clearly, each multiplet has to have either pin 3 from the second splat, or pin 4 
from the third splat to explain pattern e. If pin 3 occurs in the multiplet, any 
pin from the third splat will do; if pin 4, any pin from the second splat. 

This example also shows how abnormal multiplets could happen. If pat
terns c and d had not been applied, for example, either pin 3 or pin 4 still 
would have to be in any valid multiplet, but the multiplet consisting of pins 1, 
4 and 5 would now also be able to explain all the failing patterns. On the other 
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pin 

1 

1 2 

; 3 • 

4 

5 

6 

7 

8 

pattern 

a 

m 

b 

m 
m 
m 
m 
m 

c 

m 
m 

d 

IS 

m 

m 

e 

H 

[3 

f 

H 

m 

m 

m 
m 

Table 14. Non-complete M 

hand, this same example shows that abnormal multiplets might disappear if 
enough failing patterns were collected. 

GREEDY SEARCH FOR SPLATS 

The fall SLAT process makes maximum use of the information available 
in the fail data. Its result is a set of splats, which is the most accurate estimate 
logic diagnosis can provide of the whereabouts of the defect that caused the 
fails. Its cost is that of simulating all the failing patterns. 

An alternate, and less costly way of finding splats is to bypass the con
struction of multiplets, and to organize single pattern fault simulation in a 
greedy fashion. The flow is shown in Figure 42, and is an adaptation of a 
comparable figure in [21]. The adaptation consists of replacing faults by pins, 
because SLAT uses pins as the basic explanatory mechanism, not faults. A 
second adaptation is that no use is made of reduction modes, as they are 
unnecessary complications. No change was required, however, in the treat
ment of failing patterns that cannot be explained by single stuck-at faults, for 
both the diagnostic strategy of [21] and SLAT ignore them. 

The search proceeds by attempting to diagnose an as yet unexplained fail
ing pattern using single stuck-at faults. This step follows, and can benefit 
from any performance improvements that have been developed for standard 
logic diagnostic strategy. If successful, the pins that explain the fails for this 
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select unexplained pattern 

X 
fault simulate pattern 

No 

identify pins on which faults reside 

i 
simulate all unexplained patterns 

with faults on those pins 

select pins that explain most patterns 
and put them in a splat in the splat list 

I 
mark patterns explained 

by selected pins 

Figure 42 Greedy splat search 

pattern are noted, and all not yet explained failing patterns are simulated with 
stuck-at faults on these pins. The number of patterns that each pin explains is 
calculated, and those pins are kept that explain the most patterns. Those pat
terns are marked as explained, and, if any unexplained pattern remains, the 
process starts over. If the diagnosis of the selected pattern is not successful, a 
non-SLAT pattern has been found, and, as in SLAT proper, it is not used fur
ther in the diagnosis. 
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Each set of pins kept at the end of a diagnostic phase corresponds to a 
splat. If the splats are completely separated, the sets of pins produced by the 
greedy algorithm are identical to the splats. In all other cases, there is the 
potential for misdiagnosis. The most important one is that one pin has a sub
stantial number of nuisance explains, which add to the number of patterns 
explained by that pin. The greedy algorithm will then choose that pin, but not 
other pins in the splat with fewer nuisance explains. As a result, many of the 
pins in the splat, including the pin that is actually affected by the defect, may 
be missing. A second, related problem is when two pins explain many, but 
differing sets of patterns. When that happens, an arbitrary decision has to be 
made which one to keep, and which one to discard, with the obvious potential 
of making the wrong choice. 

The main advantage of the greedy algorithm is its speed. It needs to simu
late only few patterns with large sets of faults, most patterns being simulated 
with the much smaller sets of those faults that reside on pins that are already 
known to explain at least one pattern. The other advantage is that it is often 
successful, for many defects have completely separated splats. For a rough 
diagnosis, the greedy algorithm is the correct choice. In fact, no further work 
is required if its result is a single splat, because SLAT will not improve it. 

When more than one splat is found, and when a more secure diagnosis is 
desired, however, for example, when the diagnostic call is to be used in phys
ical failure analysis, SLAT should be used, for it makes maximum use of the 
information in the fail data. 

6 INTERPRETATION 

Using the notions of splats, we arrive at the following appealingly simple 
picture of a SLAT diagnosis. In the simplest but very common case, there are 
several splats, say n. We interpret this as a single defect that can affect n pins. 
It may or may not affect those pins simultaneously, but, when SLAT patterns 
are applied, only one of them is affected. The splat analysis of the diagnostic 
output has produced a large simplification. For example, in the design used in 
Figure 41, there are 40 multiplets, but only 1 defect if we consider pins 
belonging to the same splat as coming from the same defect. 

When all failing patterns have the SLAT property, it is tempting to 
hypothesize that the pins in different splats are affected by the defect in a 
mutually exclusive fashion, but that conclusion does not follow necessarily 
from the SLAT diagnosis. 

On the other hand, if there are failing patterns that do not have the SLAT 
property, it is obvious that the defect can affect multiple pins simultaneously. 
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Whether those pins are among the ones found by using SLAT patterns only 
cannot be decided by the SLAT diagnosis alone, although it is probably a 
good starting assumption. 

The actual pins that can be affected by the defect are not known exactly, 
but each one is localized within its particular splat. The size of a splat depends 
on the structure of the logic around the failing pin. No further refinement in its 
identification can be made without using non SLAT patterns. In order to do 
that, however, a more detailed logical model of the defect is required (see 
Section 3.4). 

The splat structure also provides guidance for subsequent failure analysis. 
As each splat is an estimate of one of the pins that can be affected by the real 
defect, finding (part of) the real defect can be done by inspecting the pins, and 
nets connected to those pins, of one splat only. This should of course be the 
smallest splat. 

Once the defect has been located, one can verify that other nets affected by 
the defect are indeed connected to pins listed in the other splats. There are 
now three possibilities. First, all the affected nets are accounted for by the 
splats identified during diagnosis. This is the preferred outcome. 

Second, some affected nets are not accounted for by the splats. This means 
only that the patterns that were applied were not enough to probe the defect in 
all its manifestations. But, as the defect was found anyhow, the diagnosis can 
still be called successful. 

Finally, the affected nets cannot account for all the splats. This indicates 
that there are other defects on the device than the one just found. Another 
defect could be located by using one of the as yet unaccounted for splats, but 
finding the first defect may have removed the others. In that case, failure anal
ysis is incomplete, even though the diagnosis is still a (partial) success. 

7 EXPERIMENTAL RESULTS 

The SLAT technique was compared previously [6] with the standard diag
nostic technique described in the introduction, and the essential results will be 
reviewed briefly here. A recent publication [37] shows the results of applying 
SLAT to a large variety of simulated defects, with near perfect success. 

The purpose of this section is to compare the efficiency of SLAT with the 
classical diagnosis based on stuck-at faults, and to demonstrate the success of 
SLAT in diagnosing real-life complex defects. 
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7.1 Comparison with stuck-at fault diagnosis 
The first set of experimental results compare the overall efficiency of 

SLAT diagnosis with that of standard stuck-at fault based diagnosis. The 
vehicle was an ASIC design, described in more detail in the previous chapter 
and in Chapter 3. In this section, the results for Lot_3 will be used. 

A total of 437 failing devices was used. SLAT diagnosis was also applied 
to all failing devices. To reduce excessive run times, the size of the multiplets 
was restricted to 7. 

As SLAT does not use passing patterns, and not even those failing patterns 
that do not have the SLAT property, it is important to know how many failing 
patterns there were initially, and what fraction of those patterns had the SLAT 
property. 

Figure 43 shows the distribution of the ratios of SLAT patterns to all fail-
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ing patterns observed among the 437 devices. Finding a high ratio does not 
always indicate success. The diagnosis is only a borderline success when no 
multiplet of size not exceeding 7 is found, or when the size of the multiplets 
found by SLAT is the same as the number of SLAT patterns used to do the 
diagnosis. When that happens, we cannot have great confidence in the diagno
sis, other than that SLAT found some SLAT patterns. Fortunately, in the 
majority of the cases, SLAT finds multiplets with sizes substantially less than 
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the number of SLAT patterns, with the excess SLAT patterns providing added 
confirmation that SLAT indeed found the correct defect. 

Figure 43 clearly shows that in the majority of cases most of the failing 
patterns have the SLAT property. The figure does not show the absolute num
bers of SLAT patterns, but for almost all devices this number ranges from 
well over ten to several hundred. It is also important to realize that even a 
small ratio does not doom diagnosis, because SLAT only requires a sufficient 
supply of SLAT patterns, not a large supply, or even that the majority of fail
ing patterns have the SLAT property. 

The actual distribution of multiplet sizes is shown in Figure 44. This figure 
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demonstrates the much larger efficiency of SLAT compared to regular diag
nosis. The symbols < and > indicate no SLAT patterns found and no multiplet 
of size less than 7 found, respectively. The group of size 1 diagnoses is 
divided into a group labeled @, indicating those devices for which vanilla 
diagnosis obtained a 100 score, and a remainder, indicated by 1. 

The number of failing devices for which SLAT diagnosis found at least 
one multiplet is about 94% of the total number of failing devices, compared to 
an efficiency of about 34% for regular diagnosis (this being the fraction of 
devices for which regular diagnosis found at least one stuck-at faults that 
explained all the observed fails). 

More strikingly, the number of failing devices for which SLAT diagnosis 
found multiplets of size 1 is about 60%) of the total. Part of this 60%) are the 
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devices for which regular diagnosis was successful as well, because a single 
stuck-at fault that explains all failing patterns will obviously be found by 
SLAT too. The remainder, about 26% of the total, are those devices in which 
the defect did affect a single node, but not in a consistent manner. 

The relationship between vanilla scores and SLAT results is shown in Fig-
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ure 45. The fraction of failing devices on which regular diagnosis was 
successful is somewhat larger than the fraction of devices for which SLAT 
found size 1, single polarity multiplets, since some of the devices for which 
SLAT found other size 1 multiplets may have pins that need only a single 
polarity stuck-at faults to explain all the SLAT patterns. Such devices would 
be counted among those for which regular diagnosis found at least one stuck-
at fault, if all the failing pattern had the SLAT property. But regular diagnosis 
would ignore other single pins that can also explain all the failing patterns, be 
it with stuck-at faults of varying polarity. 

The remaining 33% are devices in which the defect affected more than one 
pin. It is likely that there is a large number of bridges among those defects, but 
SLAT cannot show definitively that a two pin defect is in fact a bridge. There 
is some hint of bridges in Figure 45 which shows a distinct peak when the 
scores are around 50. This is expected to happen with bridges, because the 
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faults on the two legs of the bridge are will each explain about half of the fail
ing patterns 

As mentioned above, completeness is the norm. This is shown by the sim
ple statistic that of the 437 devices for which SLAT diagnosis was successful, 
91% had complete diagnoses. Of all the incomplete cases, one was caused by 
an abnormal multiplet, and the remainder had true incomplete multiplets. 

7.2 Specific diagnoses 

The diagnoses mentioned in the preceding section did not include actual 
verification by failure analysis. It is a comparison with standard single stuck-
at fault diagnosis, and, to the extent that the latter leads to a successful root 
cause analysis when it is successful, SLAT will too. The comparison, how
ever, does not show how well SLAT performs when the standard diagnosis is 
not successful, for example when SLAT finds more than one splat and at least 
of them small. Two examples of such SLAT diagnoses will be presented here. 

The first one was done on a medium sized ASIC design, with about 1.2M 
gates, over lOOK latches, and about 3M faults. SLAT found two splats, one 
with 2 pins, and one with 16 pins. The diagnosis was trustworthy because all 
failing patterns, 33 of them, were SLAT patterns. As there were two splats 
and no non-SLAT patterns, a bridge was expected. Failure analysis indeed 
found a bridge between two nets, one of the nets being connected to a pin in 
one splat, and the other net to a pin in the second splat. The failure analysis 
photograph is shown in Figure 46. 

The second example was a small microprocessor, with about 1.5M gates, 
76K latches and 1.9M faults. Ten failing patterns were available for diagnosis, 
but only four of them were SLAT patterns. This lack of SLAT patterns does 
not prevent diagnosis - after all, four SLAT patterns were still left - but indi
cates that the defect is a complex one. Based on these four, SLAT found a 
single splat, consisting of four pins. The logical behavior at these pins was not 
that of a stuck-at fault - some patterns needed a s@0 other a s@l - reinforcing 
the observation that the defect is complex. 

Failure analysis found that the defect affected three distinct nets, one of 
them connected to one of the pins in the splat, the other two being immedi
ately upstream from those pins. No further logical analysis was done of the 
failing patterns and the logical portion of the design involved in the defect and 
the splat, but, given the small number of SLAT patterns, it is not surprising 
that not all nets affected by the defect were found by SLAT. Given the gross-
ness of the defect, it is surprising that there were any SLAT patterns at all to 
enable SLAT diagnosis. 
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Figure 46 Root cause analysis of a bridge 



Chapter 11 

Data Collection Requirements 

In the preceding chapters, various ways were described of using fail data 
to obtain information about the causes of the fails. The details of what data to 
collect, or how to collect it, were left out. These details are important, how
ever, as the success of any analysis technique depends on the availability of 
the appropriate data. Such details will be addressed in this chapter. 

Because the details of data collection require the design and the test 
sequence to have certain attributes, these requirements will be addressed first. 
Table 15. presents in abbreviated form the main conclusions from this chap
ter. The columns cover design, test, and data collection requirements as 
dictated by the various analysis techniques discussed in preceding chapters. 
The final column shows the main results that can be obtained from each type 
of analysis (compare with Figure 1). These results are the benefits that should 
outweigh the cost incurred when meeting the requirements in the earlier 
columns. 

1 DESIGN REQUIREMENTS 

The first diagnostic requirement on Integrated Circuits is that the state of 
the design can be observed immediately after that state has changed due to the 
application of some clock pulse. The design is assumed to be digital, so the 
state of the design is equivalent to the contents of the memory elements, and 
only clock pulses can alter that state. It is not required that the clock pulses 
can always be controlled externally, but it is required that, once a clock pulse 
has been issued, the state of the design can be frozen and observed before fur
ther clock pulses are applied. The easiest way to meet this requirement is to 
make the clock pulses externally controllable, and to design the circuit such 
that its state can be observed at any one time. 

It is the responsibility of the designers to make sure that their designs sup
port this diagnostic observability, and to generate the necessary 
observational test sequences (protocols). In the remainder of this section, I 
will describe some techniques that will simplify the observation of the state of 
a digital design. 

In a digital design, the memory elements are generally of two kinds: 
latches and true memory elements, like the cells in embedded RAMs. The 
standard technique for making the latches observable is to connect them 
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together into one or more scan chains [16, Chapter 3], and to make the inputs 
of the chains externally controllable and the outputs observable. If there are 
latches that are not in scan chains, provisions will have to be made to make 
them observable in some other way. 

Embedded memories can sometimes be tested and diagnosed by mapping 
their inputs and outputs to chip Primary Inputs (Pis) and Primary Outputs 
(POs), and then applying special memory tests directly to the memory. If such 
is the case, there is no diagnostic problem. However, if there are many embed
ded memories, as there often are in today's designs, mapping the inputs and 
outputs of all the arrays to Pis and POs becomes cumbersome because of the 
added wiring and multiplexing. In that case, the memories need to be tested 
by special test sequences that are generated on the device itself. The observ
ability requirements then imply that it has to be possible to interrupt testing 
immediately after any write clock has been applied, and to observe the con
tents of the array, or, at least, the contents of the address to which data were 
written last before any fiirther write clocks are applied. 

The easiest way to observe the contents of a memory word is to read them 
into scannable latches and then scan out their contents, but complex protocols 
may be required to accomplish such read operations. If such a strategy is fol
lowed, the chains should be designed such that, on switching from memory 
test mode to scan out mode, the contents of the relevant latches are guaranteed 
not to be affected. 

It should not only be possible to observe the state of a digital design, but 
the time required to do so should not be excessive either, lest the collection of 
diagnostic data, even if feasible, is impractical. Scanning out the latch data 
can usually be done at a reasonable cost, since many testers are designed to 
handle scan designs. Collecting embedded memory data, however, is far more 
time consuming. The data collection time can be reduced if diagnostic data 
collection is taken into account when designing the RAMs, the BIST engines 
used to test the RAMs, and the manner in which they are imbedded in the sur
rounding logic. 

Two important features have emerged in practice that greatly reduce the 
complexity of observing RAM contents. Both assume that the memory tests 
are generated by on-chip BIST engines. 

1. When scanning out the contents of a RAM word, also scan out the 
address of that word, and, if possible, the state of the BIST engine. 
This additional information simplifies the interpretation of the data, 
for otherwise both the address and the particulars of the ABIST test 
sequence (forward or backward through address space, the type of 
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test, data or inverse data,...) have to be extracted from the number of 
ABIST clock cycles that were applied since the beginning of the test. 

2. Design the BIST engine such that the state of the engine is preserved 
when data (and address) are scanned out. This makes it possible to 
continue applying BIST patterns after scan out has completed, with
out having to restart the BIST engine. 

Observing the state of the device is not the only activity that has strong 
design implications. Making sense of the observed state adds additional 
requirements on the design. In particular, as embedded memories and scan 
chains can be treated as objects that can pass or fail appropriate tests, all the 
theory presented in Chapter 5 can be used to extract, for example, cell fail 
probabilities. To do so, however, one needs to be able to determine unambig
uously whether a given object passes or fails its associated tests. 

For scan chains, this is usually not a problem if the outputs of the chains 
can be observed from the tester. If, as may be the case in future designs [4,46, 
63], these outputs feed on-chip compactors, like MISRs, alternative methods 
will have to be found to determine whether any specific scan chain passes or 
fails the chain tests. One potential method is a diagnostic test mode in which 
the same chains are connected to POs rather than to compactor inputs. If there 
are too many chains for the available number of POs, a sequence of test 
modes may have to be defined such that each chain output is connected to 
some PO in at least one of these test modes. 

Embedded memories, on the other hand, are rarely made observable at 
POs. Instead, their passes and fails are monitored by pass/fail bits stored in 
latches. These pass/fail bits can be calculated by the BIST engine itself during 
the application of the memory tests. When the memory contains redundant 
rows, and sometime even columns, an additional bit indicates whether the 
memory, even though defective, can be repaired. Clearly, to know which 
memories passed the memory tests, the relation between the pass/fail bits and 
the memories should be unambiguous. This means that each pass/fail bit 
should be related to only one embedded memory. Likewise, the relation 
between the so-called nofix bits and the memories with redundant elements, 
should be unambiguous. It is the responsibility of the designers to report this 
relation to the diagnostic engineers, but establishing the connection between 
a pass/fail bit and its associated memory can be made easier by clearly label
ing that memory block in the logic model of the design. 

The state of the design at various points in the test sequence is undoubt
edly the most important diagnostic quantity to be obtained during data 
collection. Nevertheless, there are various design attributes that can also help 
when interpreting the collected data. For example, for instance analysis it may 
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be useful to know the sizes of the objects, and, if different cell designs are 
used, to know what types of cells are used in the various objects. Furthermore, 
different RAM architectural features, like the number of ports, may have a 
noticeable impact on the yield, and should be known as well. All these design 
level attributes should be available to the diagnostic engineer to make maxi
mum use of the available diagnostic data. 

2 TEST REQUIREMENTS 

First, the test program that was applied to any failing device should be 
known to the diagnostic tools. It has to be known in detail, down to the precise 
sequence of test patterns used in the deterministic portion of the test. This 
requirement remains in force even if the patterns are generated on-chip by 
some BIST engine, but is then easier to satisfy, because only the structure of 
the pattern generator and the initial seed need to be known. 

This knowledge is required as the diagnostic engineer needs to know 
which parts of the tests did not uncover a defect, in addition to what parts did. 
In logic diagnosis, for example, passing patterns can be used in some cases to 
increase the accuracy of the diagnostic call (see Chapter 9). Another example 
is commonaUty analysis, in which both passes and fails of particular tests may 
be compared. 

The collected fail data will tell us about non-fails, but only if the latter can 
be deduced from the former by implication: a device did not fail a particular 
test if the test sequence is followed exactly, and the device failed a test later in 
the sequence. Changes in the test sequence are frequently made, however, for 
example to reduce the test application time, and relying on implication is not a 
safe practice. Instead, the test sequence that was actually applied should be 
known explicitly. Alternatively, the notion of fail data can be enlarged to 
include passing tests as well. In that case, fail data become test results, and 
include for each part of the test sequence whether any genuine fail data were 
collected for that part. A record of no fail data for any particular part of the 
test then indicates a pass for that part of the test sequence. 

Even though many of the analysis techniques described in this book do not 
depend on the details of the tests, only on whether or not a device failed the 
tests, coverage analysis (Chapter 8) and logic diagnosis (Chapter 9 and Chap
ter 10) engender additional requirements on how the tests were generated. To 
explain these requirements, I will assume here that stuck-at faults were used 
for test generation, as this is common practice. If other faults were used, simi
lar comments apply to them. 
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Underlying test generation is a description of the design, called the logic 
model. This description is a logic abstraction of the design that mimics, as 
faithfully as possible, the actual design details, like its wires and basic func
tional blocks. The faults, used in test generation and diagnosis, are objects in 
this logic model, and need to be attached to other objects in the model. For 
test and diagnosis to be effective, both s@0 and s@l faults should be attached 
to all identifiable pins in the model, in which pins are the points where nets 
are connected to logic blocks or lOs. If a net has a complex fanout structure, 
the fanout points should be replaced by fanout boxes and the branches of the 
net connected to either these fanout boxes or to the source and sinks of the 
original net. Faults can then be attached to the pins on the fanout boxes or to 
the pins on the source and sinks of the net. Of course, this only makes sense if 
the actual fanout structure is known. If not, the best one can do is to attach 
faults to the pins where the net is connected to its source and sinks. 

For SLAT - Chapter 10 - only stuck-at faults are required. For test genera
tion, or regular logic diagnosis - Chapter 9 - other faults can be used, like 
shorts. Requirements for shorts are much less clear-cut than for stuck-at 
faults, but they should include at least those between nets that run parallel at 
minimum distance for a distance that exceeds some predetermined threshold. 

The final requirement on the test sequence is that the coverage be known 
at as fine a granularity as possible; preferably for each test pattern separately. 
Because the coverage of a sequence depends on what faults are not yet uncov
ered, given the other sequences that are applied prior to it, it should be 
calculated for the detailed test sequence that was applied on the tester. 

3 DATA COLLECTION REQUIREMENTS 

The fail data collected for diagnostic purposes have to meet various 
requirements. They should be appropriate for the task at hand, that is, they 
should be adequate, in type and volume, for the desired form of analysis. To 
do diagnosis of failing objects, for example, pass/fail information is required 
for all the embedded objects, and that information has to be collected for a 
large sample of failing devices to make statistical analysis of the fails mean
ingful. On the other hand, the results of a scan chain integrity test are not 
appropriate for logic diagnosis. 

The collected data should also be complete, meaning that all the data, 
assumed by the diagnostic technique, is collected. In logic diagnosis, for 
example, it means that all the failing latches for the patterns employed by the 
diagnosis are known, not just the first n, where n is some number that is deter
mined in practice by tester limitations or by test time requirements. Of course. 
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if the data is not complete for one type of analysis, it may still be complete for 
another. Logic diagnosis can still be performed if the number of n were 
known, be it with greatly reduced accuracy. For such a diluted form of diag
nosis, completeness has changed meaning, and indicates now that indeed all 
the failing latches or n failing latches, whichever is smaller, are available. 

Finally, the collected data should be predictable, or, in other words there 
should be a clear, well understood protocol for collecting fail data, one that 
meets some agreed upon appropriateness and completeness requirements, and 
such that the analysts at the receiving end of the fail data collection can be 
assured that the data they use is collected in accordance with the protocol. 

Table 15. attempts to summarize the requirements on fail data collection 
that are appropriate, complete and predictable. For example, pass/fail results 
need to be collected for all embedded objects for the sake of completeness. 
Likewise, failing latches should be completely collected for each pattern for 
which fail data are collected; in other words, no partial scan-outs. Another 
requirement is that the test step at which a device failed for the first time, 
given the test sequence, be known for every device. For some devices, this 
test step will be known only in a post-test disposition step; for example, when 
the device failed no specific test, but when, instead, some combination of per
formance tests was outside a predetermined acceptance region. 

Finally, for some fraction of devices, all the failing test steps need to be 
known. In practice, no further testing can be performed if the device fails one 
of the initial gross test steps, like contact, leakage or probe-melt, but the 
response of the device to all subsequent tests can be known. Of course, there 
should also be some indication in the fail data that tells whether, for a given 
device, such extended test data collection was performed. 



Appendix A 

Distribution of IC Fails 

1 GENERAL DEFINITION 

The binomial and multinomial distributions were introduced in Chapter 
2.1.1. Given the dy. for k = 1,..., kf, the probability P(Ni,..., Nĵ  ) of Nj chips 

failing test i is given by the multinomial form 

N ! f ,^-^ \Npass N, 

N I T T N - ! 
pass Ĵ  Ĵ  1 

n^i ^ (A.1) 

where n! stands for the factorial of n and all sums and products are from i = 1 
to kf. By summing over all values Nj for all i except one, say j , we find that the 
probability that test kj fails Nj chips out of a total of N chips equals 
b(Nj;N,dj). 

A related special case is that of all tests from test 1 to some test k grouped 
into one test. The probability yĵ  of passing all tests through the k one is 

k 



206 IC Fails 

Therefore, K, the number of chips passing all tests 1 through k, as well as N-
K, the number of chips failing one of those tests, have the probability density 
function 

b(K;N, y^) = b ( N - K ; N , 1-y,,) . (A.3) 

The number of chips that fail at test k does depend on the outcome of the 
previous tests. Consider the case that the tests 1 through j-1 found N-K chips 
to be defective. There are therefore K chips left to be tested by tests j through 
kf. Summing Equation (A.l) over all values of Nj, 1 <= i < j , with the condi
tion that the sum over all those Nj equals N-K, shows that the conditional 

probability of Nj chips failing the î ^ test, for all j <= i <= kf and given that 

exactly K chips passed the first j-1 tests, equals 

K - V N i 

K-J;N,J!]-[N, 

where now all the sums and products are from i = j to kf, and the new detec

tion probabilities dj are related to the original dj by 

This probability has again the multinomial form, and, consequently, Nj, 
the number of chips failing test i for any particular i >= j , has again the bino
mial distribution with probability density function 

Prob(Nj|K) = b(N-;K, dj) . (A.6) 

Focusing on the fails starting with the j ^ ^ test and ignoring the preceding 
ones, therefore amounts to nothing more than a rescaling of the first fail prob
abilities. The corresponding yields are rescaled as well according to 

Yi = y / Y j - i - (A.7) 
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1.1 Fallout fluctuations 

Nj can be written as the sum 

diK + 5Ni(K) = di<K) + di5K + 5Ni(K), (A.8) 

in which the three terms on the right represent, respectively, the expected 

value of Nj averaged over all values of K, fluctuations in Nj due to fluctua

tions in K, and fluctuations in Nj around dj K. In other words, fluctuations in 

the value of Nj have two causes: the center of the distribution, djK, fluctuates 
because K fluctuates, and the actual value of Nj fluctuates around this center. 

The latter fluctuations are usually much larger, however, than the former, 
and the fluctuations in K can generally be ignored. This can be shown using 
equations (A.3) and (A.6). The expected values of the two fluctuation terms 

-2 
are, of course, zero. Their variances are dj Ny^ _ ^ (1 - yj _ i ) and 

Nyj _ -| di( 1 - dj), respectively. The fluctuations in K can then be ignored if 

^ i ( l - y i - i ) « ( l - d i ) , or if d . ( l - y - _ ^ ) « y . . The identity 

dj = Yi - 1 ~ Yi ^^d some algebra reduce the inequality to 

y i - i ( i - y i - i ) 

^ - Y i - l 

If yi_i is close to 0, this inequality becomes yj_ -j « 2y-, while near 1 it 

becomes 1 - ŷ  _ ^ « yj . The maximum of the left hand side of Equation (A.9) 

occurs at y • ^ = 2 - A/2 , where yj should be much larger than 

3 - 272 « 0.2 for inequality (A.9) to hold. 
In general, the inequality will hold if ŷ  is not too small compared to yj.]. 

How small is too small depends on yi_|. When yj.^ is near 1, yj can have 
almost any value. For other values of yj.j, as long as it does not differ too 
much from yj, fluctuations in K can be ignored. 
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1.2 Defect Level 

The final issue to be considered in this Appendix is that of the distribution 
of the defective chips that pass all tests. All chips fall into three buckets: the 
chips that are defective but are caught by the tests, the chips that are defect 
free, and the chips that have defects but pass the tests. The probability that a 
defective chip will be caught equals 1 - y, where y is the expected yield from 
the test. The probability d^ that a defective chip is not caught equals y - yg, 
where yg is the probability of the chip being defect free. 

Using Equation (A.6), we find that the probability P(N(ief|Npass) of not 

catching N^^f defective chips, given Np^ss, equals b(Ndef;Npass'dn), with 

^n ^ ^n^y' The expected value of N^gf is therefore 

while its variance is given by: 

^^(Ndef) = Npassd„( l -d„) , (A.ll) 

which is approximately equal to <N(ief> when d̂^ is small. 
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General Yield Model 

The easiest way to derive the properties of the general yield model is by 
calculating first the generating function G(z). Let A be the area of the chip and 
Pjj the probability that the chip contains n defects. G(z) is defined as the 

expectation value of z , where the random variable N is the number of defects 
on a chip. Or, 

G(z) = ̂  z%. (B.l) 
n 

The actual value of N has two contributors: first, the distribution of primi
tive polluters, and, second, the number of defects produced by each polluter. 
The generating function can, therefore, be written as 

G(z) = < y z V N = n|{v(r)})), (B.2) 
n 

in which identity p is the probability that there are n defects, given the spe-

cific distribution of primitive polluters, indicated by v(r), and < ... > indicates 
averaging over all those distributions. As the defects produced by the primi
tive polluters are independent and random, the expectation value of z^, given 

> 
v(r), equals 

(z-l)fv(r)dr 
e ^ . (B.3) 
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Taking the expectation value of this with respect to all distributions of primi
tive polluters leads to the central result that 

(z-l)fv(r)dr 
G ( z ) = ( e J ) . (B.4) 

Moments of the distribution of N can be obtained by differentiating equa
tion (B.4) with respect to z at z = 1 [15]: 

G(z) = l + ^ ( z - l ) + i ( n ( n - l ) ) ( z - l ) ^ + . . . . (B.5) 

c > > 
The expectation value of n is then found to be JLI = ( v(r)dr), and the vari
ance of n equals 

2 > 
a % ) = ^ + < | ( v ( r ) - H ) dr). (B.6) 

Let us now derive some more detailed properties of YQ. AS it is obviously 

equal to pQ, we find that 

-Jv(r)dr 
Yo = (e ) . (B.7) 

To simplify the equations, define 

r > > 
- v(r)dr 

E(f) = ~ ( e ' f) (B.8) 
yo 

for any expression f that depends on the actual distribution of primitive pollut
ers. Let us also define 

s2(f) = E( ( f -E(f) )2 ) . (B.9) 

We study changes in the area by changing A by a small amount 8A. Two 
important examples are first that 5A is a small narrow band of vanishing 
width around the periphery of the chip. This example is important when we 
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consider chips with slightly larger (positive 5A) or smaller (negative 5A) 
areas. The second example is more specialized, but is important when analyz
ing the effect of non-uniform defect coverages. In that case, 5A is a small 
area, like a circle or rectangle, of vanishing area, somewhere inside the chip. 
It will turn out that different ways of changing the area of the chip will have 
different consequences for the yield. 

Let us now write the integral over the area of the chip as the sum of two 
integrals: one over A and one over 5A. For convenience, we write 

v 

6A 

and expand in powers of it: 

p > > 
5|i = J v(r)dr, (B.IO) 

yo(A + 8A)-y( ) (A)E(e -^^) 

- y o ( A ) l l - E ( 5 ^ ) + iE(5M^)+. . . 
(B.ll) 

From this, we easily obtain 

lnyo(A + 8A) = lnyo(A)-E(5|Li) + ^ (8^1) + ... (B.12) 

I f > > 
Now, assume that 5A shrinks in some fashion, such that ^--- v(r)dr is 

finite and well defined. Let us call this limit v^p^. Then, in the limit of small 

8A, 5jLi« 8A • Vg^ , and lnyQ(A + 8A) equals 

Inyo(A) - 8A . E( Vg^) + i(8A)^S^( Vg^) + ...) (B.13) 

It is important to realize that vg^ depends on how 8A goes to zero. When it 

is well defined, we find 

ainy()(A) 
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and 

d^lnyo(A) .2 

where the ~ over the d indicate that the derivatives are meaningful only for 
specific changes in the area. 

From these equations one can immediately conclude that the logarithm of 
the yield never increases, because its first derivative is negative, but that its 
rate of decrease diminishes, because its second derivative is positive. 

> > 
For very small A, 5|LI « v(mer = 0)5A, and, setting A equal to 0, 

lnyQ(5A) « - E(5|i) + 0(5|LI^) « -<v(0))5A, (B.16) 

for yo(0) equals 1. This is the same as for a Poisson distribution with the same 
average number of defects per chip. In general, therefore, the logarithm of the 
yield starts out as a linear function of A, as in the Poisson case, but then starts 
deviating from this linear function, such that it is larger than the Poisson 
result, with the difference growing with A. 
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Simplified Center-Satellite Model 

The center-satellite model has been treated in fairly great detail by Meyer 
and Pradhan [39], and I will closely follow their technique for averaging over 
all cluster configurations. Their more general dependencies on time t and 
wafer quality w will be ignored, however. Their locations x, y will be indi-

> 
cated by r. 

The central quantity to be calculated is the generating function of the num
ber of defects on the chip, called G(z). The contribution to G(z) from the 

clusters is called E[Z^A] by Meyer and Pradhan. E[f] in their notation indi
cates the expectation value off, and K^ is the number of defects in area A. 

To calculate the generating function of K^, we first need to calculate the 

probability that a defect produced by a cluster centered at r falls within the 
area of the chip. This probability is 

a^(r) = M Jl^CrOfoCr-rOdr-. (C.l) 

I^ equals 1 when r' is within the area of the chip and equals 0 other-
> 

wise.fj^dr' is the probability that a defect produced by a cluster whose center 

is at r is found in dr'. In the simplified center-satellite model studied here, the 
defects are distributed uniformly within the area of the cluster, and, therefore. 
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fj)(r'|r) = C I^Cr') as the area of the cluster is C. I^ equals 1 when r' is 

within the area of the cluster and equals 0 otherwise. The essential simplifica
tion obtained by considering circular chips is that the integration required to 

get a^(r ) can now easily be done numerically, as there are no problems with 

awkward shapes and equally awkward orientations. 
1 > 

Next, let D^(r) be the number of defects in A given a single defect pro-

> > 
duced by a cluster at r . This number is either 0 or 1. Likewise, let D^(r) be 
the number of defects in A caused by the same cluster. Meyer and Pradhan 
then show that 

Di(r)-
] = l + ( z - l ) a / r ) , (C.2) 

and 

DA(r)-
- S FD(d|r)[E 

"d = 0 

Di(r)-
(C.3) 

in which Fj)(d|r) is the probability that the cluster has d defects. Let us 

assume that the defects are uniformly distributed within the area of the cluster, 
and with strength v. Consequently, 

FD(d|r) = P~ (C.4) 

and 

DAWI (z-l)nca AW 
I - e E[Z^^«] (C.5) 

As the cluster can be anywhere with equal probability, we should average 

the cluster location over all space to get K^ , the number of defects in A 

caused by a single cluster. The cluster, however, can clearly not influence the 
chip when its center is more than p+R away from the center of the chip. We, 
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therefore, have to average only over an area S, which is a circle with the same 
center as that of the chip, and with radius p+R. Consequently, 

E 
•Ki-
z 

> 
1 f (z-l)ncaA(r) > 
g Je dr, {C.6) 

S 

which will be abbreviated to Q(z). As the clusters are uniformly distributed 
within S with strength X, we finally get 

Finally, G(z) is equal to 

obtained by multiplying Equation (C.7) by the generating function for the uni
form background 

The moments of {?^ are most easily obtained by expanding G(z) in pow
ers of (z- 1): 

1 + ^ ( z - 1 ) - i < n ( n - l ) ) (z - 1)^ + .... (C.9) 

> 
Let E(f) for any function f of r be short for 

E(f) = g jf(r)dr. (CIO) 

Expanding Q(z) in powers of (z - 1) gives 

1 + ( z - l)ncE(a^) + i(z - \fn^E{a\) + .... (C.ll) 

Using this expansion, we find for G(z) 

1 + ( z - 1)A + i ( z - l)^(5iSnjE(a^) + A^)+ ..., (C.12) 

with 
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A = ?^Sn^E(a^) + jUQA. (C.13) 

For very small chips, we need a^(r) when R goes to zero. Clearly, when 

the center of the cluster is at a distance of more than p+R from the center of 
> 

the chip, a^(r ) equals 0. On the other hand, when this distance is less than p-

R, a^(r ) equals R^/p^, the ratio of the size of the chip and the size of the 

2 2 
cluster. As the change from R / p to 0 occurs over a very small distance 
range between p-R and p+R, we can ignore this smooth variation and, instead, 

approximate a^( r ) by a step function, with the step occurring at distance p. 

Similarly, we can approximate the area of the region S by C. 
For very large chips, a similar calculation can be made. Now, however, S 

> 
equals A and a^(r) equals 1 when the cluster is within distance R-p of the 

chip. We again ignore the smooth variation between R-p and R+p and 

approximate a^(r) by a unit step function. 
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Quadrat Analysis 

Let us start the analysis by considering a contiguous group of k chips on 
the wafer. Such groups are usually called quadrats, although they need not 
consist of four chips. These groups can have any number of passing devices 
between zero, when all devices fail the tests, and k, when all devices pass the 
tests. 

We will consider the general case of the gross yield y^ not equal to 1. We 
need to assume that the distribution of defects over that portion of the wafer 
that is not affected by gross defects can have some clustering, but that the 
range over which this clustering happens is large compared with the size of 
the groups. Consequently, the distribution of defects over the area of a group 
is Poisson with some strength v, and the clustering can be modeled by com
pounding a Poisson distribution. This assumption on the one hand restricts the 
range of applicability of the quadrat analysis, but, on the other hand, creates 
many relations between the various quantities that can be observed, as will 
become clear in the sequel. 

1 ESTIMATION 

The number of quadrats is M, and a quadrat has k chips, each having area 
A. The probability that a chip in a given quadrat that is not a wipe out is good 

-vA will be indicated by p = e , with v the strength of the Poisson distribution 
in that quadrat. The dependence of p on the Poisson strength v will be 
assumed. 
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The clustering parameters will be estimated using the observed fractions 
(k) Pĵ  , which are the ratios of the numbers of quadrats with n good chips and 

(k) M. Their expectation values are p^ , and equal 

ysQjh(v)p"( l -p ) ' ' " "dv + ( l-ys)5o„, (D.l) 

with h(v) the compounder of the Poisson distribution, and b^^ the Kronecker 

delta function. The first term in Equation (D.l) corresponds to the quadrats 
that are not wipe outs, and the second term to those that are. The latter term 

(k) only contributes to PQ , as explained in the main text. By expanding the 1-p 

factor in Equation (D.l), the first term can be written as 

ys _ 
J 

Note that 

Pj = yg fh(v)e~-̂  ^dv. (D.3) 

Because P| is the yield of a quadrat of size j , it will also be indicated by 
y(jA). Despite appearances to the contrary, y^ and h(v) appear in Equation 
(D.l) only in combinations of the form yOA), with j larger than 0. In fact, as 

p- for i not equal to k is a linear combination of p. for j = 1, ... k, it suf

fices to consider only the latter. 
Conversely, we can easily deduce from Equation (D.2) that 

(y(kA), ...yCA))"" = QCp^H . . .P^'^^, (D.4) 

T ~ 
with (a, ..., b) the transpose of (a, ..., b), and Q the transformation matrix. 
For example, for k = 4, Q equals 
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1 0 
1 1/4 
1 1/2 

1 3/4 

0 0 
0 0 

1/6 0 

1/2 1/4 

(D.5) 

Note that all the entries in the matrix are positive, and that, for the same 
column, they increase with row number. Consequently, when y^A) is 

(k) obtained from the p- , it is guaranteed to be non-negative, and not to 

increase with j . 

We now use the same matrix to obtain statistics P,- from the observed 

.(k) 
^ ^ . These statistics are analogous to the observed yields of quadrats of size 

j , and are referred to as pseudo yields. Like real yields, they will also be indi
cated by Y(jA). The expectation values of the pseudo yields are still y(jA). 

In order to use these equations with experimental data, we have to make a 
choice for the compounder. The Gamma function (Equation (2.8)) is the usual 
one. For this compounder. 

fh(v)e '̂̂ ''dv = 1 + 
jvAV 

a J 
(D.6) 

a is a more useful quantity to work with than a, and will be indicated by y. 
It is also useful to replace the combination of variables vAy by p. This 
change of variables will not cause problems, for the corresponding Jacobian 
and its inverse are singular only at y = 0, oo and P = 0, oo, which can easily 
be avoided. 

The proper way to estimate the parameters of the distribution is to use 
(4) 

maximum likelihood on, for example the observed values P • , for j running 

from 1 through 4. This, however, leads to complex non-linear equations, and 
is not usually done. The simplified way of estimating the parameters is to 
choose three of the four pseudo yields, and then calculate the parameters from 
them. The traditional choice for these three yields is Y(A), Y(2A) and Y(4A). 

The gross yield y^, the inverse cluster coefficient y and p can now be 
obtained as follows. From Equations (D.3) and (D.6), and some simple alge
bra, we find that 
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y(4A) ^-3y(2A) ^ + 2y(A) ^ = 0. (D.7) 

When we replace the yields y by the observed pseudo yields, Equation (D.7) 
becomes an implicit equation for y. It has a trivial solution at y = 0, which can
not be used, however, for that is a singular point of the Jacobian. To find the 
real solution, let us write the left hand side of Equation (D.7) as f(y), and let us 
consider what happens if y goes to ±oo. Of the three quadrat yields, we expect 
Y(4A) to be the smallest and Y(A) to be the largest. Consequently, when y 
goes to 00, the contribution from Y(4A) will dominate, and, when y goes to 
-00, the contribution from Y(A) will dominate. In both cases, f(y) will be pos
itive. At y = 0, however, f(y) changes sign. There must, therefore, be at least 
one other solution to get f(y) back to the proper sign. 

We can determine on which side of y = 0 this solution is situated by evalu
ating the derivative of f(y) at y = 0, where it equals 

- InY(4A) + 3 InY(2A) - 2 InY(A). (D.8) 

The value of this derivative can be determined easily. When negative, a 
solution exists for positive y. Otherwise, a solution will have to be found for 
negative y. 

Given y, the gross yield yg can now be estimated with 

ys = (2Y(A)"^-Y(2A)"V^^\ (D.9) 

and p with 

-(Y(A) ^-Y(2A) V s ^ . (D.IO) 

The desired standard parameters are 

a = y andvA = ap . (Dll) 

Unless A is known, v cannot be determined separately. 
As the pseudo yields are in general not equal to their expectation values, it 

may not be possible to fit them with a negative binomial fimction, even 
assuming that the corresponding expectation values can. Several anomalies 
are possible. First, when Y(4A) is zero, there is a unique solution with 
P = -0.25 , and 
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Y = ln(1.5) / ln(Y(2A)/Y(A)) , (D.12) 

which is always negative. When Y(2A) is zero as well, however, there is in 
general no solution. Wafers for which Y(2A) vanishes should, therefore, be 
removed from consideration. 

Anomalies with the calculation of y^ are harder to deal with. Clearly, 

when Y(A) - Y(2A) is negative, no meaningful solution is possible. On 
the other hand, there is no limit on how large y^ can become when 

Y(A) - Y(2A) is positive. Because yg is a yield, it should not be larger 
than 1.0. Due to the statistical fluctuations in the observed pseudo yields, 
some level of violation should be allowed, but there is no natural threshold 
that yg should not be allowed to exceed. In practice, I have set the threshold at 
2.0. 

Equation (D.IO) shows that, when yg is positive, p has the same sign as y. 
This is exactly what is needed to make the ratio p/y positive in all circum
stances. Consequently, there are no anomalies associated with the calculation 
of P that have not yet been addressed in the calculation of y^. 

2 GENERAL EQUATION FOR THE CLUSTER 
COEFFICIENT 

That y is a solution of Equation (D.7) was derived for the negative bino
mial distribution, but happens to be approximately valid for a much wider 
class of distributions. In particular, when the clustering is weak, solutions of 

2 2 
this equation correspond to the inverse of the cluster coefficient a (V) /VQ 

discussed in Chapter 2.1.2 for compound Poisson distributions. This result 
will be demonstrated in this appendix. 

Let us assume the general equation 

ay(4A)"^ + by(2A)~^ + cy(A)~^ = 0, (D.13) 

and determine the coefficients a, b and c such that one solution of this equa
tion in y corresponds to the cluster coefficient. We start from the general 
equation 

y(JA) = ysjh(v)e~J*^'^dv, (D.14) 
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and use the assumption that clustering is weak, that is, that h(v) is narrowly 

concentrated around its mean VQ. In fact, we assume that h(v) can be approxi

mated by a normal distribution with mean VQ and standard deviation a ( v ) , 

and that the latter is small. We then find 

y ( jA)«yse e"̂  ' ' . (D.15) 

2 
When the variance a (v) is zero, the compound distribution is the regular 

Poisson one, and the only solution of Equation (D.13) should be y = 0. This 

leads immediately to the requirement a + b + c = 0. The left hand side of the 

equationwouldchangesign, however, if its derivative at y = 0 were not zero 

too, which would force the existence of a second solution, similarly to what 

was observed with Equation (D.7). Consequently, we also require 

4a + 2b + c = 0. The solution to these two equations is b = -3a and 

c = 2a. As global multiplicative constants do not matter, the simplest solu

tion is a == 1, b = - 3 and c = 2 , as in Equation (D.7). 
When we now insert Equation (D.15) in Equation (D.13), with the coeffi

cients as established above, and expand the exponentials, we find 

3AVvoy-cT^(v)) = 0, (D.16) 

which leads to the desired conclusion that the non-trivial solution to Equation 
(D.13) is 

y = a^(v) /vQ^ (D.17) 

that is, the inverse of the cluster coefficient. This result is independent of the 
details of h(v) when the latter is narrowly concentrated around v = VQ. 
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Cell Fail Probabilities 

The likelihood function L equals 

(E.l) 

and has to be minimized with respect to its parameters Uj, or with respect to 
the cell fail probabilities, using Equation (5.1). In this appendix, the latter 
strategy will be followed. 

There are two possibilities. Each object has its own cell fail probability tj, 
or all cell fail probabilities are equal to some global probability t. The maxi
mizing ti or t are found more easily by maximizing the logarithm of L rather 
than L itself. The resulting equations are 

(Vi) o, K-o; 
V^i l-u= 5t; 

(E.2) 

and 

u- 1 - u- ~di 
(E.3) 

respectively, tj or t can be obtained from these equations using equation 
(5.1), which shows that 
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and a similar equation for tj. These first derivatives are always positive, 
because the object fail probability increases when the corresponding cell fail 
probability increases. Using these equalities, we easily find that the maximum 
likelihood equation for different cell fail probabilities is 

Ui = l - ( l - t i / ' = 0 / K , (E.5) 

while, for a single cell fail probability, it is 

0;S, 

i l - ( l - t ) 

K ^ S ^ . (E.6) 

The latter equation is an implicit equation in the global cell fail probability 
. ^ ^ Si 

t . It has always a solution, for 1 - (1 -1) is a monotonically increasing 

fiinction of the global cell fail probability. The sum on the left hand side is 

infinite when the latter is zero, and decreases monotonically to V O-s-, 

when the cell fail probability equals 1. It will, therefore, be equal to the sum 

on the right hand side for some value of t between 0 and 1. 
For the solutions of these equations to be true estimates of the respective 

cell fail probabilities, they have to correspond to maxima of the likelihood 
function L. Maximality can be established by showing that the second deriva
tive of ln(L) is negative. This second derivative will be calculated explicitly, 
because it is also related to the possible statistical variations in the maximum 

likelihood estimates tj and t. The homogeneous case is the most difficult one, 

and will be treated first. 
Differentiating ln(L) twice, we find 

,2 
- \ l n ( L ) = A + B, (E.7) 
di 

in which 
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O, K - 0 , 
(E.8) 

and 

B 
Oj K - 0 ; V U ; 

V^i l - ^ i dt 
2 • 

(E.9) 

B can be rewritten, using Equation (E.4) and 

2 
d U: 1 - U; 
— • = - S i ( S i - l ) L 

dt ( 1 - t ) 

S j - l ^ j 

1 -t'dt ' 
(E.10) 

as 

-Zhi 
ifO- K-O^du, 

U- 1 - U; dt 
(EM) 

The final step in calculating the second derivative of ln(L) is to combine 
the terms in A and B that are proportional to Oj, and the terms proportional to 

K - O-. These combinations involve the factors 

1 ^ i 

U:'di 1 - t U, 1 - t 1 - t 
(E.12) 

and 

I dn^ S | - l 

1 - u J t 1 - t 
1 

1 - t 
(E.13) 

Using the results above, the second derivative of ln(L) is seen to be equal 
to 
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O; S; chX 

Hill-idi "̂  1 - t X 
O, K - 0 . 

1-u 1 / 

(E.14) 

which is negative when t = t, because the first term on the right hand side is 
negative, and the second term vanishes because of Equation (E.3). 

The heterogeneous case is similar, but more straightforward, for ln(L) is a 
sum of terms, each one of which depends on the cell fail probability of a sin
gle object only. Consequently, 

dx,t. 
ln(L) = 0 I'^J- (E.15) 

Furthermore, when i = j , all equations for the homogeneous case, starting with 
the definitions of A and B, remain valid after removing all sums over i, and 
replacing t by tj, and all derivatives with respect to t by partial derivatives with 
respect to tj. The second partial derivative of ln(L) equals 

Oj S; SUj 

+ 
^O; K-Oj^SUj 

1-t; 1-u l y 5t ' 
(E.16) 

which is negative when t = t, because the first term on the right is, while the 
second term vanishes according to Equation (E.2). 

At the solutions of the maximum likelihood equations, the second deriva
tives can also be written as 

5tf 
-ln(L) K 

U i ( I - U i ) 

SU; 

V^tiy 
(E.17) 

in the heterogeneous model, and 

«t i Uj ( l - U j ) 
St 

(E.18) 
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in the homogeneous one. The derivatives on the right in these equations are 

given in Equation (E.4), and need to be evaluated at \{ and t, respectively. 
When the sample size K is large, the variances of the maximum likelihood 
estimators are roughly equal to minus the inverses of these second derivatives. 
In the heterogeneous model, the variances actually form a covariance matrix, 
which is the inverse of the matrix of second derivatives. The latter matrix is 
diagonal, however, because of Equation (E.15), and inverting it amounts to 
nothing more than inverting the individual diagonal terms. 



Appendix F 

Characterization Group 

The characterization group contains M devices, and it is known of each 
device in the characterization group whether it passed or failed the object 
tests. The number of times object i failed among the devices in the character
ization group equals Oj, and it will be assumed that the objects fail 
independently. R, the probability that a device fails one or more of the object 
tests, is then given by 

R = 1 - ]^ (1 -Ui ) (Rl) 

Even if all the objects fail independently, this independence is lost within 
the characterization group, for then the probability that at least one of the 
objects fails is 1. To handle this dependency, all possible fail patterns need to 
be considered explicitly. 

1 LIKELIHOOD EQUATIONS 

Let H|̂  be a particular set of objects such that object i has failed if i e Sj^, 

and passed if i ^ Sj^. Each set Sĵ  is labeled by an integer k, running from 0 to 

2^-1. k = 0 corresponds to the empty set. To simplify the notation, sums over 

H|̂ , k > 1 will be indicated by sums over S, with the restriction to 

k > 1 understood. 
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The probability p^ of a particular set equals 0 when S is the empty set, 

and otherwise 

similar to equation (5.18). Note that p^ is a probability with respect to the 

characterization group. From equation (F.2), 

^ ^ P H = 1' (F-3) 

as it should, because every device in the characterization group has at least 
one failing object, and because the set of Hĵ , k > 1, covers all possible combi
nations of passing and failing objects. 

Equation (F.3) has an interesting consequence. The pj, introduced in Chap

ter 5.7, are related to the p̂ ^ through 

Pi = y P" . (F.4) 

Using Equations (F.4) and (F.3), we find 

^ P i > l , (F.5) 

for every p^ in the sum in Equation (F.3) occurs in at least one of the sums in 

Equations (F.4). 
The number of devices for which the set of failing objects is H, is M^ . By 

definition of the characterization group, M^ equals 0, and, by definition of 

M - , V M - = M. The resulting likelihood function L equals 
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Note that, if there is only one object, M equals Oj, R equals uj, and L 
equals the constant 1. This becomes obvious once we realize that, with only 
one object, the characterization group is merely a random selection from the 
failing devices, and no more statistical variability is possible within this 
group. Only with more than one object can any non-trivial information be 
obtained from the characterization group. 

L has to be maximized with either individual tj or all tj equal to a global t. 

In the former case, maximizing the logarithm of L with respect to the Uj will 

work just as well. The likelihood equation is 

O i _ M ^ M | R , „ 

U| 1 ~ ^i R ^^i 

Using Equation (F.l), we find 

5R 1 - R 
9U| 1 ~ ^i 

(F.8) 

which leads to the maximum likelihood estimator u - / R = O^/M, and 

shows that pj can be estimated by 0 | / M , despite the dependencies between 

the object fails in the characterization group. Likewise, when a single cell fail 

probability t is assumed, the p- obey the equation 

O-s. 

i Pi i 

2 HETEROGENEOUS MODEL 

In the heterogeneous case, pj is estimated by 0 - / M , but it is not immedi

ately obvious that the desired cell fail probabilities t- can be extracted from 

p- . In the following discussion, the ^ mark over the random variables will be 

left out, and all random variables will be understood to be maximum likeli
hood estimators. 
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Clearly, if the object fail probabilities û  can be obtained, so can the cell 

fail probabilities, and, as the former equal Rp., and as R is related to the 

object fail probabilities through Equation (F.l), the latter can be obtained if 
the equation 

can be solved. With the definition 

f(R) = 1 - R - J ^ ( l - R p . ) , (F.ll) 

Equation (F.IO) is equivalent to f(R) = 0, and the question is whether f(R) has 
zeros in [0, 1]. 

Equation (F. 11) always has the solution R = 0, but that is not an acceptable 
solution, for the existence of failing objects shows that the probability of a 
device failing the objects tests is not zero. It has the solution R = 1 if, and only 
if, at least one p̂  equals 1. In all other cases, a solution between 0 and 1 

should be found. 
It is easy to see that f(0) is 0 and f(l) is negative. Also, the slope of f(R) 

equals 

- i + y P i T T (1-Rpj) (F-12) 

It equals - 1 + Vp- at R = 0, and is non-negative there, according to Equa
tion (F.5). Furthermore, the slope is a continuous function of R, and is 
monotonically decreasing when R goes to 1. In fact, at R equal to 1, the slope 
is negative, as f(R) decreases between R = 0 and R = 1. The slope, therefore, 
must have a single zero in [0, 1]. 

The behavior of f(R) on [0, 1] is now as follows. It starts out at 0 and 
increases. It then has a maximum, after which it continuously decreases until 
it reaches f(l), where its value is negative. It, therefore, has a unique zero on 
[0, 1], in addition to the one at R = 0. 

The exception to this qualitative behavior occurs when Vp^ = 1, 

because then the two zeros coincide at R = 0. On the other hand, this anoma-
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lous case occurs only when each device has exactly one failing object. This 
indicates a strong negative correlation between the object fails, and it is not 
surprising then that Equation (F.l 1) fails to produce a meaningful result. 

3 HOMOGENEOUS MODEL 

Equation (F.9), like Equation (5.6), is a complex implicit equation in t. It 
always has a solution, for the same reason that Equation (E.6) always has a 
solution. The proof of the existence of a solution relies on the monotonic 
increase of pj as a function oft 

In the homogeneous model, pj is estimated using Equation (5.19), with Uj 

and R being functions of the estimate t . pj is never equal to 0, even when 
/—̂  
t = 0, because then 

Pi = . (F.13) 

On the other hand, when t = 1, p̂  is equal to 1 too. That p̂  is an increas

ing function of t is intuitively obvious, and will now be demonstrated. 

We use the abbreviation 

Q = ( 1 - t ) , (F.14) 

and find . ^ 
P = - ^ , (0.1) 

1-Q^ 
in which a = S/s . s is the size of the object in question and S is the sum 
over the sizes of all the objects. 

As Q is a decreasing function oft, p is an increasing function oft if it is a 
decreasing function of Q. It equals 1 when Q is 0, and 1/a when Q is 1. Con
sequently, p is monotonically decreasing for Q G [ 0 , 1], if it has no 
extremum in that range. 

To show the absence of an extremum, we use 
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dp _ Q^'VQ(l-a) + a ) - l 

2 2 
This derivative equals - ( a - 1) / a when Q is 1. It has a zero when 

Q^~\Q(l-a) + a) = 1. (F.16) 

The left hand side of Equation (F.16) equals 0 when Q is 0, and equals 1 when 
Q is 1. It has extrema at Q equal to 0 and 1, and, therefore, is equal to 1 only 
when Q is 1. That, however, does not correspond to an extremum of p, and we 
conclude that p has no extremum when Q € [0, 1 ] ; or, in other words, that p 
is an increasing function oft. 

In the homogeneous model, the primary estimate is that of t . This esti
mate, and, therefore, also the estimate of R, equals 1 only if all objects fail on 
all devices in the characterization group. It equals 0 in the same situation in 

which the heterogeneous estimate of R equals 0, namely when V O- = M. 

4 VALIDITY OF THE LIKELIHOOD ESTIMATES 

Even if a solution of the maximum likelihood equation is found, it is not 
acceptable unless it corresponds to a maximum of L (or ln(L).) This issue will 
now be investigated, but only for the heterogeneous model. The starting point 
is the logarithm of the likelihood fiinction 

^ 0 . 1 n U i + ^ ( M - 0 . ) l n ( l - u - ) - M l n R . (F.17) 

The subsequent notation will be simplified by defining 

^ 5u- 1 - u. 

and 
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R;; = 
a aR 

iJ Su.SUj T^^iRj(i-V' (F.19) 

where 5^ equals 1 when i = j , and 0 otherwise. Uj and R, obey an important 

inequality. Rj equals T~T(1 - ^j) ? ^^^ is the probability that all objects other 

than i do not fail. Therefore, UjRj is the probability that object i fails, and no 
other objects. Consequently, the sum over these terms is the probability that 
exactly one object fails. R on the other hand is the probability that at least one 
object fails, that is, exactly one, or more than one. This implies 

Z^iRi^ R (F.20) 

The maximality of the solution of Equation (F.7) can be established by 
evaluating the second derivative of ln(L), which equals 

O.. M - O: 

Uj ( l - U j ) ' 
SiJ + P^i^J-fRiJ 

(hX'^dxX' 

'dt^'dt-
(F.21) 

Unlike the situation in Appendix E, this matrix is not diagonal, since the fails 
in the characterization group are correlated. At the solution of (F.7), the coef
ficient of the product of the derivatives of Uj and Uj equals 

M 
R 

l-̂ . 1 
8, 

R.Rj ^ 

u. 1 -u / y R(l-R)^ 
(F.22) 

For the solution of the maximum likelihood equations to be valid, its 
matrix of second derivatives has to be negative definite. This translates into 

the requirement that the matrix of the coefficients of —-- in equation (F.22) 
R 

needs to be positive definite. In other words, 

1 
S..«i-j i + , 

R;R; ^ 
5;: '-^ 

u- l-uJ 'J R ( l - R ) 
(F.23) 
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has to be positive for all values of the coefficients a^. 
(F.23) is now easily shown to be positive, as it can be written as 

Z 2 1 1 I V^ V^i IS-

. ^ U i ( l - U i ) R ( 1 - R ) ^ Z . . i ^ . V 1 1 

(F.24) 

The reason for writing the second term in this curious fashion is that we can 
now use Cauchy's inequality to show that (F.23) is larger than 

i R i Z z, 1 1 —! 
R 

(F.25) 

which is positive, as all factors preceding the one in parentheses are positive, 
and as that final factor is positive because of Equation (F.20). 
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Component Fail Probabilities 

1 MAXIMUM LIKELIHOOD ESTIMATION 

With 

and 

U; = 1 nV". 

(G.l) 

(G.2) 

the maximum likelihood equations for the probabilities QJ that the compo

nents are defect free are 

5qj 
InL = 1, 

^O; M; - O; 

U; 1 u j a q j 

,8n. 
^ = 0, (G.3) 

with 
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With the use of Equation (G.4), Equations (G.3) can be rewritten as 

^ M; - oy 
M i - - i -' 

•V l-^iy 
1 

%• - 0, (G.5) 

assuming that q: ^ 0. This set of equations has to be solved numerically. 

Before continuing with these equations, we need to determine when a 
solution corresponds to a maximum. Even though the likelihood function is 
defined for all values of the component probabilities, we need to restrict solu
tions to the hypercube % defined by 

( V j ) ( 0 < q j < l ) , (G.6) 

for the solutions to be physically meaningful. It is shown in that there is a sin
gle solution of Equations (G.5) in a region that includes %, and that this 
solution is a maximum. If the solution is outside K, the likelihood function has 
to be maximized on its boundary, which is a much more complicated problem 
than finding solutions to Equations (G.5), and will not be addressed here. 

The remaining question is how to find the unique maximum of L. As L is a 
non-linear function of many variables, and Equations (G.5) likewise are non
linear, no easy solution is available. The maximum, therefore, has to be found 
with a laborious search algorithm (see [44] for example). It is useful, how
ever, to first make a rough estimate of where the solution will likely end up. 

To be meaningful, the maximum has to be located within the hypercube K 
(Equation (G.6).) In addition, we expect the objects to have reasonable yields, 
which implies that the component yields should all be close to 1. This is 
unfortunate for numerical reasons, for an estimate close to 1 may end up as 1 
because of machine round off In other words, the computer used to do the 
numerical calculations may not be able to express the difference between qj 
and 1 if 1 - qj is small enough 

This numerical problem can be solved by changing variables. Instead of 
qj, we use r. = ln(q:). When qj is close to 1, rj is small, and when it goes to 0, 

rj goes to -00. The hypercube K is mapped onto the hyperquadrant %\ defined 

as 
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(Vj)(rj<0). (G.7) 

Uj equals e ^ , and is positive, except when any TJ goes to -oo, in wliich 
case it goes to 0. The other interesting value for Uj is 1, which it attains, in %\ 

when V.n-r . = 0, that is when r- = 0 for each j for which n-- T̂  0. L is Z^j iJ J J -̂  ij 
positive in %\ except when some Uj equals 0, or some Uj equals 1. 

All algorithms that attempt to find maxima need a good starting point, and 
one convenient one is the maximum of L along r- = r for all j . The corre
sponding maximum likelihood equation is 

O.-M.u. 
y ^ - ^ S , = 0, (G.8) 

s.r with u- = e . This equation is still non-linear, but now of only one variable. 

Moreover, we only need a solution in the range r < 0, and standard techniques 
are available for such a simplified problem. There obviously is a solution, for 
the sum on the left hand side of Equation (G.8) is positive when r goes to -oo, 
and is negative when r goes to 0. 

2 LOCATION OF THE MAXIMA OF THE LIKELI
HOOD FUNCTION 

The question of whether the solutions to the maximum likelihood equa
tions correspond to a maximum can be settled by determining whether the 
matrix of second derivatives of ln(L) is negative definite at those solutions. 
This matrix is described by the general element 
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d d 
InL 

E. = 

n-n, i^ti 1 
Z^if5:'--2^^^t 

^r^t % 

( l -U ; ) ' 
• ^ ( M i - O j ) 

M; 
M; - O: 

J 1 - u 
J ^ 

(G.9) 

At the solution of the maximum likelihood equations, F = 0, according to 
Equation (G.5). 

Consequently, for an arbitrary set of numbers {a^.}, 

^ a j . a ^ ^ „ InL 

r,t 
'Sq^eqt 

(G.IO) 

which is manifestly negative for all choices of {a^,}. The matrix of second 

derivatives is, therefore, negative definite, and any solution of the maximum 
likelihood equations corresponds to a maximum. 

The remaining question is whether this solution exists within the hyper-
cube % defined in Equation (G.6), and whether this solution is unique. I will 
show the existence and uniqueness of the solution within a region J that is 
somewhat larger %. 

L is a polynomial in the component probabilities qj, and is therefore 
defined for all finite values of those probabilities. It vanishes whenever any of 
these probabilities equals 0, and also whenever any of the object probabilities 
Uj equals 1. The latter are also polynomials in the qj. 

Let h be the region in which all q; are positive. In A, u, is a positive and 

non-decreasing fiinction of the qj. We can easily find the region 61-^ ah in 

which Uj is less than 1. As Uj is trivially less than ImK.KczSi^. 

The extended region c5 is now defined as the intersection of all regions ffij 

Each /£j contains at least K, and cJ, therefore, contains the hypercube as well. In 

addition, L is positive inside cJ, and goes to 0 on its boundary. It defines an 

extended region in which the likelihood fiinction has a single maximum, and 
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no other extrema (because all extrema are maxima.) The position of the maxi
mum need not be in %, though. 



Appendix H 

Yield and Coverage 

Assume that there are F defects. Let the fraction of tested single defects be 
c, and let T be the set of defects not exposed by some arbitrary but fixed test 
sequence. T depends on the test, but its size y = (l-c)F is independent of the 
test. 

let Xj be a random variable that equals 1 when defect i is tested by the test 
sequence with defect coverage c, and 0 otherwise. The Xj are in general not 
mutually independent. Because of its definition, 

x^x. = X, 
(H.l) 

(1 -X. ) (1-X. ) = 1-X. 

Each chip contains a set S of the defects. S can be empty, indicating a good 
chip. The probability of finding a chip with this set of S defects will be indi
cated by ps. S is assumed to be tested when any of its members is. The 

corresponding random variable Xg equals 1 - TT (1 - X:), which equals 
-̂  -^j G S 

1 when any of the members of S is tested and 0 otherwise. 
It is more convenient to work with 1 - Xg than with Xg. 1 - Xg depends on 

r , for it equals 1 when S c F , and is 0 otherwise. To make this dependency 
explicit, it will be indicated by r|gp. Because the test sequences considered at 

this point all have coverage c, rj^p obeys the useful sum rule 
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^ | S | = n ^ ^ ^ ( | S | = „ ) , S c r ^n^ 

independent of the actual test sequence. The average over all test procedures 
of rigp will be indicated by 

(H.3) 

(H.4) 

and, because of 

The average 

^s 

Equation (H.2), 

y 

°"(! 

= (-Hsr)^ 

n 

) ^ i s i = 

D-

n 
(H.5) 

will also be needed. Equation (H.4) leads to the result that 

3 
^n= 7f^' (H.6) 

When n > y, aĵ  equals 0. SLQ equals 1, and aj equals 1 - c. Otherwise, when 

F » n andn> 1, 

(H.7) 

1 AVERAGE YIELD 

We are now ready to consider the yield Y. Clearly, Y corresponds to the 
event that either the chip is not defective, or that any existing defects are not 
detected by the test sequence; in other words, when the defect S is empty, or 
when all the members of the defect S are in P. 
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It is more convenient to consider y, the expected value of Y given the test 
sequence. Even though y is an expected value, it still depends on the test 
sequence, or, equivalently, on F. As we will study the dependence of y on F, 
and as F depends on the randomly selected test sequence, y really should be 
treated as a random variable. In this section, it will continue to be indicated by 
a lower case y, but a subscript F will be added to make the dependence of y on 
F clear. 

The yield is given by 

^-^n ^ S | = n 

and the average over different test generations by 

^^n ^^^ = n 

Let us now use the all-important assumption that p^ and b^ are uncorre-
lated, at least for sets S of the same size. Or, in other words, that 

y Aps(bs-a^) = 0 , (H.lO) 

where Equation (8.1) was used as well as the abbreviation 

APs=Ps-j4Pn- (H.11) 

Equation (H.lO) leads to the equality 

y Apobc. = 0 , (H.12) 
^ |S |=n ' ' 

which will turn out to be useful later. It can also be rewritten in the more use
ful form 

y , PS^S = P„a„- (H.13) 

In other words, combining Equations (H.13) and (H.9), 
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<yr) = S Vn-SPnd-'^)"- (H-14) 
n n 

To get an impression of the difference between â  and (1-c)^ on the aver
age yield, consider the independent defect case with all the occurrence 
probabilities equal to n. In that case, ji, the mean number of defects per 
device, equals TTF, and 

The yield using Equation (H.6) is then equal to (1 -TT) = (1 -TI) 
F while it equals (1 - CTI) when the approximate value of aĵ  is used. Because 

the approximate value of aĵ  is valid only when F is very large, and because V^ 
decreases rapidly when n increases, these two results for the yield are in fact 

both equal to e , which is the standard Poisson result. 

2 VARIANCE OF THE YIELD 

The actual value of yp depends on the test sequence, as indicated by the 
subscript F, and will differ from <yr> by some amount. The typical size of 
this difference will now be estimated. The conclusion will be that it is propor-

-1/2 tional to F , and therefore negligibly small for large designs. 
Consider first the difference 

yr-<yr) = y y Ps(^sr-bs) • (HI6) 
^^n ^ S | = n 

If Ps is a function only of n, but otherwise independent of S, Equations (H.2) 

and (H.4) show that yp - (yp) vanishes, or, in other words, that yp is a con

stant, depending only on c and on the constants pg. This suggests that 

yp - (yp) depends on the deviation of pg from its average value. And indeed. 

Equation (H.16) can be rewritten with the help of Equations (H.2) and (H.4) 
as 
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yr-<yr) = Z Z . ^Ps(^sr-bs) • (H.17) 

Unlike the left hand side of Equation (H.IO), the right hand side of Equation 
(H.17) does not vanish, for it still depends on F, and T could be chosen such 
that those sets S are favored that have, for example, especially large ps- On 
the other hand, Equation (H.12) can be used to simplify Equation (H.17) even 
further to 

yr-<yr) ^ Z L . "^Ps^sr 
n |S| = n 

(H.18) 

Note that the sum over n runs from n = 1 to n = y, because Apg equals 0 when 

n = 0, and r|gp equals 0 when n is larger than y. 

To estimate the size of yp - (yp), we use the inequality 

|yr-<yr)|^Z Z . ^^s^sr 
n| |S| = n ' 

(H.19) 

and concentrate on the absolute value of the sum over |S| equal to n. In fact, 
we will estimate the expected value of its square 

y ApsAp^(rispri^p) . 
^ | S | = n, |T| = n 

(H.20) 

The first step is an estimate of the typical size of lApgl, which we take to 

be the standard deviation of pg . As there are f J different sets S of size n, 

the variance of pg equals 

1 V- n 2 
' p V 

D. 
(H.21) 

The Pg can have all kinds of values, but we will assume that its distribution is 

not dominated by a very small number of very likely defects. I.e.: 
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P S ^ \ 7 ? N P „ ' (H.22) 

with X^ a constant that is much smaller than f j and independent of F. The 

standard deviation of Pg is then bounded by 

fV\ nA/ n 1 . (H.23) 

The next step is the actual estimation of the size of the double sum in 

Equation (H.20). This double sum seems to be a sum of f J terms, each of 

2 2 fV\ "̂  
order ^^^n^l ) ^̂  ('Hsr^Tr^ ^̂  ^̂  ^^^^ of order 1. kp - (yp)|, therefore, 

seems to be of order V^^^n • '̂̂ ^ '̂ however, is not correct, for the Apg can 
n 

be both positive and negative, and a fair amount of cancellation is expected to 
occur. In fact, I will show below that these cancellations lead to an effective 
reduction in the number of terms, and that the actual number is of order 

fV\^xv 1 
I I - — . The final result is then that kp - (yp)| is of order - p V ^n^^n' ̂ •̂ • 

n 
-1 /2 

that yp differs from its average by an amount proportional to F 

What remains to be demonstrated is the reduction in the number of terms 
in Equation (H.20). For any given S, the sum over T can be divided into sev
eral parts, depending on the degree of overlap of S and T. Symbolically: 

y . - = 7 y . - . (H.24) 
^ T | =n ^ ^ n < m < 2 n ^ | T | = n), (|S u T| = m) 

where m indicates the size of the union of S and T. 
I will now show that almost all terms in the sum on the left have the maxi

mal value of m. The number of terms in the second sum on the right equals 

If J, for 2n - m is the number of elements in T n S, and 
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2n 
1 is the number of ways of selecting subsets of that size from S. Like

wise, m - n is the number of elements of T not in S, and f ~ 1 is the 

number of ways one can select those elements from F. The number of terms 

with m = 2n, therefore, equals f 1, while the total number of terms in 

the sum on the left of Equation (H.24) equals f J. As the ratio between the 

2 
two is approximately 1 - n / F , we can conclude that the fraction of terms in 

2 
the sum with M not equal to 2n equals n / F , which is small for large F and n 
not too large. 

To be able to use this result, we will have to make one more assumption. 
The terms with m equal to 2n contribute an amount 

y Ap^<r|spri^p) (H.25) 
^ ( | T | = n),(|SuT| = 2n) 

to (H.24). This sum can in general not be simplified, because (r|gpr|jp) 

depends on T. Let us assume then that (r|gpr|yp) and Apj are uncorrected 

for T that are completely outside S: 

y Ap^((r | spr |^p)-a^s) = 0, (H.26) 

in which the sum over T is assumed, and 

M^^~^p-^|SuT|=2n 

depends only on n and S. Equation (H.26) allows us to rewrite Equation 
(H.25) as 

yAp^(r igpr i^p) = a^^^y Ap^, (H.28) 
^ ^ S u T | - 2 n 

which, using the definition of Apy, becomes 
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^^ ^ S u T | < 2 n 

The result of all these manipulations is that the right hand side of Equation 
(H.20) can be rewritten as 

2 n - l 

|S| = n m = n |T| = n 
| S u T | - m 

in which the term with m = 2n is now absent. Consequently, the coefficient of 

Apg in this complex sum has about f 1 n F terms, as was to be proven. 



Appendix I 

Estimating First Fail Probabilities from the Fallout 

The coverage at the completion of the î ^ test is cj, and the corresponding 
yield is yj. The coverage and the yield at the completion of scan based testing 
are indicated by Cf and yf, respectively. For completeness, I also define 
CQ = 0 and yo = 1- Note that in this appendix, and in this appendix only, yg is 

the perceived yield at the beginning of scan based testing, and not the true 
yield. 

The multinomial parameters are related to the yield by dj = Yj _ i - Yj ? 

and, vice versa. 

f 

1 
Yf = 1 - ^ dp (LI) 

The negative binomial parameters JLI and a are now estimated from the exper
imental fallout data by maximizing the multinomial distribution, taken as 
functions of ju and a. Because of the form of the negative binomial yield 
equation, it is convenient to take as its parameters the new variables v = |Li/a 
and P = a. With these new parameters, 

Yi = ( l + C i V ) ~ ^ (1.2) 

The likelihood function L equals 
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N- N 
n ^ i Yf ''''• (1-3) 

This function can be maximized using standard optimization routines. L does 
have a maximum, as I will now show. 

The range of values for the parameters v and P is v > 0 and (P > 0 ) . It is 

easy to see that L vanishes on the boundary of this range, for v = 0 or 

p = 0 implies that d- = 0 is zero for every i, while v = oo or P = oo 

implies that yf is zero. L, therefore, is a continuous, non-negative function of 

V and p, and equals 0 on the boundaries of the range of v and p. Consequently, 

it has a maximum in the interior of the range. 



Appendix J 

Identity of M and S. 

If the splats are completely separated, each pin in each splat explains all 
the patterns associated with that splat, and no other ones. Mis the set of pins 
in the multiplets, S is the set of pins in the splats, and M equals S. This equal
ity will be proven in this appendix. 

First, each pin in S^ has to be in M To see that this is true, consider the 
hypothetical case that some pin in S ,̂ say p, is not in M Some pin in Ŝ  has 
to be in M, because otherwise the patterns associated with^ are not explained 
by pins in M. Let this other pin be q. q can safely be replaced by p in each 
multiplet in which it occurs, and still have the multiplet explain all SLAT pat
terns, since p and q explain the same patterns. This replacement would create 
multiplets of the same size as the original ones, which would have been found 
already if the process outlined in Chapter 10.3.1 is correct. The replacement, 
therefore, does not create new multiplets, and p is in M. 

Secondly, each pin in Mis in S. For consider the case that some pin p in M 
explains some failing patterns in subset^, but not all. p, therefore, is not in S, 
because it does not explain the patterns in subset A, by assumption, and can
not explain the patterns in any other subset as the splats are completely 
separated. The other patterns in A still have to be explained by pins in the 
multiplets in which p occurs. Because the splats are completely separated, the 
patterns not explained by p can only be explained by some pin q in S .̂ q, 
however, explains all the patterns in A, including the one explained by p. 
Therefore, p is not necessary to explain all the SLAT patterns, and cannot 
occur in M, since the multiplets are minimal. 

Notice that the last argument also shows that the pins in the same multiplet 
all have to come from different splats, and, therefore, that the number of splats 
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is not smaller than the number of pins in the multiplets. On the other hand, 
each multiplet must have at least one pin from each splat, for the patterns in 
some subset^ would not be explained by a multiplet if none of the pins in S^ 
were in that multiplet. Consequently, there are as many pins in the multiplets 
as there are splats. 
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Symbols and Abbreviations 

Area of chip 

Set of objects on a device that were observed to have failed 

Cluster parameter 
> 

. . Probability that a defect produced by a cluster centered at r will fall 
^ within the area of the chip centered at the origin 

> 

A , B Partitions of SLAT patterns 

BIST Built In Self Test 

pj Logarithm of the expected yield of component of type j 

b(K;N,p) Binomial distribution of K fails given N tries and failure probability p 

(Eip Set of faults in the backcone defined by latch 1 and pattern p 

bg Probability that a randomly generated test sequence detects S 

c (Defect) coverage 

C Area of cluster 

cĵ  (Defect) coverage after the completion of the k̂ ^ test 

y Inverse cluster parameter 

D Fault machine value is 0, good machine value is 1 

D Fault machine value is 1, good machine value is 0. 

ci Input voltage range that will produce an output in S 

J^ Range of logically ambiguous voltages 

dj]̂  Probability that a chip on wafer i will fail first on the k* test step 

dĵ  Probability that a chip will fail first on the k test step 
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DL 

11 

F 

f(A) 

g(A) 

G(z) 

% 

h(ij) 

I 

J 

I 

1. 
^ intersection 

•̂  union 

J+-

J.. 

k 

K 

K 

kf 

X 

L 

A 

LLR 

M 

M 

m({ni};N;{pi}) 

VYk-l 

Fraction of chips that pass all tests, but are still defective; 
equal to (Y-Yo)A^ 

Expectation value of X-X-, with i and j neighbors 

Number of defects in the defect list 

InYo(A) 

A"'lnYo(A) 

Generating function of Pĵ  

(Vj ) (0<qj .< l ) 

Measure of fail similarity between objects i and j 

Number of wafers 

Number of pairs of die on a wafer 

Intersection of all regions Oi^ 

Intersection of faults in backcones 

Intersection of faults in backcones corresponding to pattern p 

SLAT based combination of faults in backcones 

Union of faults in backcones 

Number of pairs of die with both die passing 

Number of pairs of die with one die passing and one failing 

Number of pairs of die with both die failing 

Test step label 

Number of devices having passed some initial portion of the test sequence 

Probability that a failing device is also in the characterization group 

Label of final test step 

Distribution strength of clusters 

Likelihood ratio 

Likelihood ratio 

LogLikelihoodRatio; equal to -In A 

Number of chips on a wafer 

Set of multiplet pins 

Multinomial distribution given N tries and nj fails with probability pj in 
groupi 
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\x Average number of defects on a chip 

|Li M e a n 

m. Number of ICs on which object i is known to have failed the tests 

Mj Number of devices on which object i was tested 

M I S R Mult iple Input Shift Register 

N Number of chips to be tested 

V Distribution strength of defects in a cluster 

Average number of defects in cluster 

^ equals v C 

N^ef N u m b e r of defective chips that pass all tests 

N£)F N u m b e r of degrees of freedom 

nj Number of ICs on which object i is known to have passed the tests 

Vj Strength of primitive polluter i 

n ĵ N u m b e r of units of type j in the obj ect i 

ny N u m b e r of chips on wafer i failing test step j 

Nj Number of chips failing the j * test step 

Vj n^j/sj 

VQ Distribution strength of defects in uniform background 

Npass N u m b e r of chips passing all tests. 

v(r) Aggregate strength of primitive polluters at r ; equal to V Vjdr 

H Set of all of all failing objects on a device. 

Oj Number of devices on which object i failed the object tests 

Ojj Number of devices on which both objects i and j failed the object tests 

Po Overall wafer yield 

pj Yield in region i 

PI Primary Input 

TCj Occurrence probability of defect i 

Pjj Probabili ty that a chip has a defect complex of size n. 

P O Primary Output 

Ps Probabili ty that chip has defect complex S 

qj Probabili ty that component j is defect free 
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Qn 

Q(z) 

Probability that a chip with defect complex of size n will pass the first k 
tests 

Generating fiinction of the distribution of the number of defects on the 
chip produced by a single cluster 

r measure of deviation -21nA from its expected value 
> 
r point in two dimensional space, for example on a wafer 

R Radius of circular chip 

R Probability that at least one of the objects fails the object tests. 

p Radius of cluster 
-21nA-Nj)p 

p Measure of commonality; equal to = = — 
^2NDP 

(R-^ Region in which Uj is less than 1 

rj In(qj) 

S Circle with radius R + p 

S Defect complex on a chip 

h Region in which all QJ are positive 

S Set of splat pins 

S^ Set of pins in splat corresponding to partition A. 

s@l Stuck-at 1 fault. 

s@0 Stuck-at 0 fault. 

Sj S izeof object i. 

SLAT Single Location At a Time 

SLOR Spatial Log Odds Ratio 

tj Probability that a single cell in object i will fail 

TFSF Number of latches that fail on both the tester and the simulator 

TFSP Number of latches that fail on the tester but pass on the simulator 

TPSF Number of latches that fail on the tester and pass on the simulator 

TPSP Number of latches that fail on both the tester and the simulator 

Uj Probability that object i will fail the object tests 

y Probability that a chip will pass all tests; equal to <Y> 

Y Yield; equal to Np^ss/N 

y(c) Probability that a chip will pass the tests having coverage c 

y: Probability that a chip will not fail the first j test steps 
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Yj Yield after completion of the j * ^ test step 

Yo Probability that a chip is defect free; equal to <Yo> 

YQ Fraction of chips that are defect free 

Ys Gross yield 

a^(H) Variance of random variable H 

<H> Expected value of random variable H 

H Maximum likelihood estimate of random variable H 



Index 

accuracy 155,176 
area dependence 72 
Array BIST 83 

B 
backcone 111,150 
BIST 23,145,199 
bootstrap method 37, 79 
bridge 111,195 
bridge, dominant 154 
bridge, wired-AND 154 
Byzantine bridge 168 

center-satellite model 65,213 
characteristic function 140 
characterization group 95 
cluster analysis, spatial patterns 130 
cluster coefficient 32, 61, 219,221 
cluster coefficient, center-satellite 68 
cluster coefficient, inverse 33, 69,219 
cluster coefficient, negative 

binomial 76 
cluster coefficient, random 77 
clustering algorithm 51 
clustering, center-satellite 69 
commonality 51,101,103,105,113,152 
commonality analysis 25,101,115,201 
commonality matrix 184 
commonality measure 51,102,104, 

105,108,112,153,183 

configuration average 60 
correlation coefficient 96 
correlation coefficient, between 

objects 86 
correlation coefficient, inverse 126 
coverage 25,202,251 
coverage, test 137 

D 
data collection 28,197 
defect coverage 56,133,243 
defect distribution 56,134 
defect distribution, center-satellite 66, 

68 
defect distribution, independent 136 
defect distribution, Poisson 122 
defect level 41,141,208 
defect list 148 
defect model 147,167 
defect, gross 71 
degrees of freedom 36,49,91 
design data 26 
design requirements 197 
designed experiment 100 
detection probability 139,206 
deterministic test 22,23,44,106,145, 

201 
diagnosis 21 
dictionary 151 
digital behavior 167 
distribution, Bernoulli 85 
distribution, binomial 29,46,206 
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distribution, clii-squared 36 
distribution, compound 135 
distribution, connpound binomial 30 
distribution, compound Polsson 31,56, 

217 
distribution, gamma 32 
distribution, multinomial 30,46, 76,79, 

205 
distribution, negative binomial 32,75, 

76, 135 
distribution, Polsson 31,56 
distribution, compound Polsson 135 
dominant bridge 166 

fault machine 145 
fault selection 149 
fault set, intersection 150 
fault set, SLAT 151 
fault set, union 150 
fault, bridge 166 
fault, bridging 154,165 
fault, intermittent 165 
fault, pattern 148 
fault, stuck-at 148,165 
fault, transition 148 
flush delay 22 
flush test 83 

E 
efficiency 155,192 
embedded memory 83,199 
embedded object 83,117 
equivalence class 157,158,161 
error 147 
explain fails table 172 

G 
Gamma function 219 
generating function, center-

satellite 67,213 
generating function, number of 

defects 61,209 
geometric center 119 
gross test 22 

fail group 83 
fail probability, cell 88,231 
fail probability, component 98 
fail probability, embedded object 88 
fail probability, first 45,251 
fail probability, global cell 85, 89,224 
fail probability, heterogeneous 

model 231,234 
fail probability, homogeneous 

model 233 
fail probability, marginal 124 
failing cycle 155 
falling latch 152 
failing pattern 160 
failure 145 
failure analysis 115,191,195 
fallout 44,133,251 
fallout fluctuations 207 
fallout history 44,47 
fallout, heterogeneous model 48 
fallout, homogeneous model 48 
fault 147 
fault dominance 160 
fault equivalence 148,157,160,171 
fault list 148 

H 
heterogeneous model 86, 89, 97,226 
homogeneous model 85, 89, 97,224 
hypercube 238,240 
hyperquadrant 238 

I 
IDDq 22,44 

L 
LBIST 133 
likelihood function 34 
likelihood function, cell fail 

probabilities 223 
likelihood function, characterization 

group 230 
likelihood function, component 

fails 99,238, 239 
likelihood function, embedded object 

fails 87,94 
likelihood function, first fail 

probabilities 49 
likelihood function, heterogeneous 

model 234 
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likelihood function, marginal 
probability 125 

likelihood function, yield curve 251 
likelihood ratio 35 
likelihood ratio, embedded object 

fails 91 
likelihood ratio, first fail probabilities 49 
likelihood ratio, marginal 

probability 125 
logic behavior 145,147,166 
logic defect 168,171 
logic diagnosis 145 
logic model 145,167 
LSSD 22,133 

M 
masking 138 
maximum likelihood estimate 36,223 

pattern, ring 127 
pin 147 
pin commonality 183 
primitive polluter 58,209 

Q 
quadrat 74,75,217 
quadrat analysis 217 
quadrat method 74,217 
quadrat method, problems with 

R 
regression, least squares 75 
regression, logistic 98 
repeater 113,125,127 
resolution 155,157,158,175 

74 

maximum likelihood method 34,76,89, 
219 

maximum likelihood method, yield 
curve 143 

memory BIST 24 
moment, center-satellite 67,215 
moment, number of defects 61,210 
multi-defect 134 
multiplet 173,177,179,193,253 
multiplet analysis 179 
multiplet, abnormal 186,195 
multiplet, complete set of 185 
multiplet, incomplete 195 

N 
net 147 
non SLAT pattern 177 
nuisance explain 182 

o occurrence probability 101,134,137, 
138,246 

P 
passing pattern 154,161,178 
pattern, bad sector 127 

s 
scan chain 83,199 
scannable latch 199 
score 145,152,156 
signature, composite 165 
size, object 85 
SLAT 26,150,165,202 
SLAT pattern 170,171,192 
SLAT property 170 
SLOR 121,126 
SOFE 93 
sort code 23,44,117 
spatial clustering 135 
spatial distribution 117 
splat 179,183,253 
splat structure 180 
splat, completely separated 181 
stopping protocol 94 
strength, Poisson distribution 31,217 
strength, primitive polluter 58 
structural test 133 

T 
test history 23 
test pattern, multi-clock 169 
test requirements 201 
test sequence 22 

pattern, fragmented ring 127 
pattern, no discernible 130 
pattern, partial ring 127 
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u 
unmasking 138 

w 
wipe out 72,217 

Y 
yield 133 
yield curve 46,140,143 
yield, average 244 
yield, center-satellite 66 
yield, expected 40, 60,245 
yield, expected true 41 
yield, gross 72, 76, 80, 219,220 
yield, perceived 40,46,140,251 
yield, pseudo 76,219 
yield, true 40,210 
yield, variance of 246 




