

CPU Design:
Answers to Frequently
Asked Questions

Chandra M. R. Thimmannagari

CPU Design:
Answers to
Frequently Asked
Questions

Springer

eBook ISBN: 0-387-23800-X
Print ISBN: 0-387-23799-2

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

To my wife Haritha,

my kids Sanjana and Siddharth,

and my parents Krishna Reddy and Saraswathi

Contents

Foreword

Preface

Acknowledgements

1. Architecture

2. Logic

3. Circuits and Layout

4. Verification and Testing

5. Tools

6. Verilog

ix

xi

xiii

1

121

153

179

195

207

Foreword

I am honored to write the foreword for Chandra Thimmannagari’s book on CPU
design. Chandra’s book provides a practical overview of Microprocessor and high
end ASIC design as practiced today. It is a valuable addition to the literature on CPU
design, and is made possible by Chandra’s unique combination of extensive hands-on
CPU design experience at companies such as AMD and Sun Microsystems and a
passion for writing.

Technical books related to CPU design are almost always written by researchers in
academia or industry and tend to pick one area, CPU architecture/Bus architecture/
CMOS design that is the area of expertise of the author, and present that in great
detail. Such books are of great value to students and practitioners in that area.
However, engineers working on CPU design need to develop an understanding of
areas outside their own to be effective. CPU design is a multi dimensional problem
and one dimensional optimization is often counterproductive.

For instance, as someone who mainly does CPU architecture, I have found that CPU
architects who understand how logic design, circuit design and chip integration are
really done in practice do a much better job architecting the chip. There are
constraints in these different areas that could make an architectural idea hard to
implement, and an architect who understands these constraints is more likely to make
the right decisions upfront. However, there are really no books out there to help an
architect understand quickly how the later stages of chip design work. Reading
detailed technical books on physical design to obtain this knowledge is typically not
an option given time constraints. The most accessible way today to learn the broader
skill set necessary is from chatting with friends and picking up bits of knowledge
here and there. Over time the good ones do develop a working knowledge of all areas
of CPU design, but it takes many years.

The same goes for circuit designers who want to understand architecture. I have had
several circuit engineers come to me wanting to know more about architecture. I
answer questions as time permits and suggest they read “Hennessy and Patterson”. It

x

helps, but goes only so far even though H&P is a really well written book. There is
just too much detail, and it is hard to filter out what is relevant.

In a way Chandra’s book is structured as a chat with a knowledgeable friend with
much time to spare. So we could imagine a circuit designer who is working on a
cache, and has a design problem - for instance, the replacement algorithm he is trying
to implement is not making timing. He will have to discuss this with the logic owner
or architect, but it will help if he has an understanding of the architectural options
available and any potential circuit issues with those options prior to the discussion.
He could look up this book and starting with the first question on caches (Q5 in
Architecture: What is cache memory in a CPU and what are the most common terms
associated with caches?) work through replacement policy related questions (Q10 to
Q15 in Architecture) to develop an understanding of the options available. Or
imagine an architect who is told that the particular idea she has in mind cannot be
implemented owing to routing density issues related to noise. She could look up the
relevant question in the book (Q6 in Circuits and Layout: What do you mean by
effect of noise in a design and what are the most common techniques used to reduce
its effect?) to develop a quick understanding of noise issues as well as possible
solutions and work with designers to find a way to implement her idea.

The book also provides excellent lists of techniques in the experienced logic/circuit
designer’s toolbox to attack a problem. For instance, a logic designer who is trying to
figure out how to make timing for a block could go straight to Q4 in the Logic
chapter and look at the list of suggestions there for fixing timing paths and start
making headway. Or a designer who is trying to reduce power for a block or a chip
could go to Q6 in the Logic chapter and look at the list of suggestions there for
reducing power. Or a circuit designer who is trying to fix noise problems could go to
Q6 in the Circuits and Layout chapter. Or a manager who wants to learn about design
tools available for a particular task could go to the relevant question in the Tools
chapter.

The book also includes good, concise descriptions of many thorny issues in CPU
design such as RAS, electromigration, IR drop, pass gate muxes and mintime fixes.

I believe the book will be a valuable addition to any CPU designer’s library.

Rabin Sugumar
CPU Architect
22 September 2004

Preface

This book describes the basic concepts and techniques used towards building a
Microprocessor. This book is made primarily for graduate students and design engi-
neers as a quick reference material. Readers will be exposed to an effective processor
design methodology. Some of the things covered here are, techniques to fix timing of
a critical path, techniques to reduce power dissipation in a block, typical processor
design flowchart, concepts of caches, techniques to fix mintime violations, techniques
to fix noise violations, concepts of flops and latches, various multithreading tech-
niques used in a processor design, various benchmarks used for CPU performance
evaluation, various tools used in a processor design, concepts of Verilog, some Ver-
ilog coding guidelines, implementation details of out-of-order processor, concepts of
electromigration and IR drop etc.

CHANDRA M. R. THIMMANNAGARI

Senior Staff Engineer

Acknowledgements

I would like to express my heartfelt gratitude to a number of people who contrib-
uted their time and effort towards this book. Without their help, it would have been
impossible to take this enormous task.

First and foremost, I would like to thank my family, who gave me continuous sup-
port and encouragement that kept me constantly motivated towards the completion of
this project. A special thanks to my wife Haritha, who patiently withstood my late
night book activities. I could not have accomplished this task without her help and
understanding. Thank you Haritha.

I am extremely fortunate to have it reviewed by Rabin Sugumar whom I have
always respected for his extraordinary technical skills and down to earth personality.
Thank you Rabin.

I would like to thank the following people who have devoted their precious time
in reviewing the manuscript.

Rambabu Pyapali (Sun Microsystems)

Mathew Joseph (Sun Microsystems)

Suresh Tirumalaiswamy (Sun Microsystems)

Bruce Petrick (Sun Microsystems)

Ramaswamy Sivaramakrishnan (Sun Microsystems)

Sunil Vemula (Sun Microsystems)

Bob Nuckolls (Sun Microsystems)

Grant Davidson (Sun Microsystems)

Sorin Iacobovici (Sun Microsystems)

Amjad Qureshi (Cradle Technologies)

Andy Charnas (Cradle Technologies)

xiv

George Phan (Cradle Technologies)

Jason Lin (Cradle Technologies)

Sudhakar Bhat (Intel Corporation)

Ravisekhar Reddy Naral (Texas Instruments)

Jagan Mohan Reddy Thimmannagari

I would like to thank all my previous employers, Advanced Micro Devices, Sun
Microsystems and Cradle Technologies for giving me an opportunity to work on the
latest cutting edge technologies.

Also I would like to thank Michael Hackett, Rebecca Olson and Deborah from
Kluwer Publishers in supporting me throughout the project.

1 Architecture

1. What are some of the responsibilities of a Chip Architect?

Some of the responsibilities of a Chip Architect are summarized below.

Table 1: Architect Responsibilities

1

2

3

Do market research to see what kind of Chip he wants to build (i.e whether he should be build-
ing a chip targeting commercial applications (database etc.) or technical applications (applica-
tions which need high performance computing such as DSP applications, BioTech applications
etc.) or both commercial as well as technical applications) or talk to his/company’s customers to
see what they are interested in.

Come up with the feature set for the Chip i.e ask the following questions to himself (below
questions mostly relate to Chip being a Microprocessor)
1. Should it be a CMP(Chip Multiprocessing) or a Non-CMP Chip.
2. Should the Chip be supporting more than one Thread i.e should it be Single Threaded or
Multi Threaded.
3. If it is Multi Threaded how many Threads it should be supporting and should it be supporting
SMT (Simultaneous Multithreading) or VT (Vertical Threading).
4. Should the Core part of the Chip be Out-Of-Order or In-Order.
5. Should it be Superscalar or Non-Superscalar and if it is Superscalar how wide it should be.
6. What should be the Frequency target i.e the frequency at which it should be operating at.
7. Number of Pipe Stages it should be supporting.
8. Should it be supporting Static/Dynamic Branch Prediction.
9. Number of Cache Levels, Size of various Caches, Cache Policies and Associativity.
10. Size of Main Memory it should be supporting.
11 . Should it be designed for SMP (Symmetric Multiprocessing) systems or Uniprocessor Sys-
tems.
12. Should it provide support for an on-chip Memory Controller and if it does provide support
for an on-chip Memory Controller how many Memory Controllers it should be supporting.
13. What should be the Peak Memory bandwidth it should be supporting.
14. What should be the Power Spec for the Chip (i.e Peak Power number and Average Power
number).
15. Amount of RAS (Reliability, Availability and Serviceability) it should be supporting.
16. What should be the external interface to the outside world (i.e the kind of System Bus it
should be supporting etc.).

Come up with a high level (i.e in C/C++) Performance Model for the Chip and run various
benchmarks to see if the performance numbers meet the Performance Spec defined for the
Chip.

2 CPU Design: Answers to Frequently Asked Questions

Table 1: Architect Responsibilities

4

5

6

7

8

9

10

11

Partition the Chip into several major Blocks and come up with a 1 pager document for each of
the blocks describing its functionality and the number of pipe stages within it. Pass on these
documents to the Microarchitects (RTL/Logic designers).

Get constant feedback from the Microarchitects regarding information related to critical paths
within there blocks and try to see if anything could be done at the architectural level to resolve
them without compromising much on performance i.e adding few pipe stages, reducing the
operating frequency etc. Feed the proposed changes into the performance model to see if we
can live with the performance impact of these changes.

Get constant feedback from the Circuit designers and Integration folks regarding information
related to Power dissipated and Area occupied by the Chip. If these numbers are beyond the
numbers provided to them then try to see if anything could be done at the architectural level to
resolve them without compromising much on performance i.e reducing the Issue width, reduc-
ing the number of Thread support, reducing the Cache size, lowering the Frequency etc. Feed
the proposed changes into the performance model to see if we can live with the performance
impact of these changes.

Present the Spec to various groups within the Company i.e System groups, Design groups etc.

Work with the System folks to resolve any System issues with the Chip.

Come up with the Programmer’s Reference Manual.

Present the Spec at various well known Conferences mainly trying to gain support/momentum
for the Chip.

Patent all the novel Architectural ideas which you were part off and which got implemented in
the Chip.

2. Describe a typical ASIC design flow using a Flowchart?

A typical ASIC design flow as shown in Figure 1 has the following steps -

1

2

3

4

5

6

7

Spec out the Architectural definition of the ASIC.

Code the Functionality described in the Spec using hardware descriptive language (i.e Verilog
or VHDL).

Compile the Code and Verify its functionality by simulating the Code (i.e RTL model) using
one of the HDL simulators in a test bench environment.

Synthesize the Code by applying proper Area and Timing constraints and generate a Gate Level
netlist.

Do equivalence checking between the Gate Level netlist and the RTL model.

Floorplan the design using one of the in-house or commercially available floorplan tools.

Place and Route all instances within the design using one of the in-house or commercially
available Place and Route tools.

Architecture 3

8

9

10

11

12

13

Run Physical verification by running LVS (Layout versus Schematic), DRC (Design Rule
Checking) and ERC (Electrical Rule Checking) on the Layout database.

Extract Parasitics.

Extract Gate level netlist and verify its functionality by running Gate Level simulation using
one of the HDL simulators.

Do equivalence checking between the extracted Gate level netlist and the coded behavioral
RTL.

Run Static Timing Analysis to find the Maxtime and Mintime paths. If there are any such paths
then loop back to RTL (if the paths cannot be fixed by Re-Synthesis) or Logic Synthesis (if the
paths cannot be fixed by Re-Floorplaning and Redoing Place & Route) or Floorplanning (if the
paths can be fixed simply by Re-Floorplaning and Redoing Place & Route) and repeat the steps
in the flowchart all over again.

Tapeout the Chip once the Functionality is verified and Timing spec is met.

Figure below shows the flowchart for a typical ASIC design flow.

Figure 1: Flowchart for a Typical ASIC Design Flow

4 CPU Design: Answers to Frequently Asked Questions

3. Describe a typical Processor Design flow using a Flowchart?

A typical Processor design flow as shown in Figure 2 has the following steps -

1

2

3

4

5

6

7

8

Define the Processor Spec (i.e Performance numbers (i.e SpecInt, SpecFp, TPC-C etc.), Die
Size, Power Consumption, Process Technology, Frequency, Pin Count, Type of Package, Uni-
processor/MultiProcessor Support etc.)

Spec out the Architectural definition of the Processor (i.e number of Pipe Stages, number of
Cache Levels, type of Cache Coherency Protocol, Cache Size, Line Size, Size of Main Mem-
ory, Page Size, Out-Of-Order/In-Order, Superscalar/Non-Superscalar, Support for Multiple
Threads etc.)

Develop a high level Performance Model and run various benchmarks to see if the results meet
the desired performance goals.

Partition the Processor into several major Blocks and each major Block into several Sub-
Blocks (i.e Control, Datapath and Megacells).

Define Microarchitectural Spec for each of the major Blocks (i.e number of Pipe Stages within
the Block, Functionality within each stage, number of Sub-Blocks, Area of the Block etc.)

Analyze the paths within the Block to see if there are any paths which will be timing critical.
Come up with a list of such paths and simulate them using dynamic timing analysis tools (i.e
Spice) to see if they meet timing. If the paths fail to meet timing with all the design optimiza-
tion tricks (i.e using dynamic gates, shielding signal lines etc.) then talk to the Architect to see
if he can update the Spec (i.e repartitioning some of the functionality between the Blocks,
Simplifying few architectures features etc.) to take care of such paths. This is an iterative pro-
cess and continues until its assured that all the critical paths within the Block meets timing.
Paths between Blocks are also analyzed.

Develop behavioral model (i.e RTL model) for each of the Sub-Blocks (i.e Megacell, Control
and Datapath) within the Block. Even though here I have shown the Block to be having 1
Megacell, 1 Datapath and 1 Control, In reality a Block could have multiple Megacell sub-
blocks, multiple Datapath subblocks and multiple Control subblocks. The sole purpose for
doing so was to simplify the flowchart for better description.

Generally a Block gets verified for functional bugs in 3 different environments which are
Stand Alone Test Bench (SAT) environment, Formal verification environment and Full Chip
verification environment.

Full Chip - Build a chip level RTL/Gate/Mixed (i.e a mixture of RTL and Gate netlists for the
Blocks/Subblocks (we use this when Gate netlists for some of the Blocks/Subblocks is not yet
ready or in some cases for case in debug)) model and verify it in a Full Chip simulation envi-
ronment. The tests run in this environment are Directed tests and Pseudo Random tests gener-
ated by Pseudo Random test generator. Directed assembly tests/diags are manually written
tests to focus on a particular functional aspect of a design. These tests could be self-checking
or non-self-checking. In the case of self-checking tests they have built in checkers which com-
pare the observed data against the expected ones and throws an error in the case of a mis-
match. In the case of non-self-checking tests, they are run simultaneously on both the Chip
model and the golden ISS (Instruction Set Simulator (Instruction Accurate Architectural

Architecture 5

9

Model)) and a stand alone checker checks the architectural state (i.e various architectural reg-
isters) in both the Chip model as well as ISS on instruction boundaries. If there is a mismatch
then the checker throws an error. Pseudo Random test generator in many cases is a internally
developed test generator whose main responsibility is to generate random assembly diags
based on a template or weightage provided by the user. These random diags in most cases are
non self checking diags and are run simultaneously on both the Chip and golden ISS model to
find any bugs. Any bugs found in this environment are fixed in the RTL/Gate netlists for the
Blocks/Subblocks and the process of rebuilding the RTL/Gate/Mixed model for the Chip and
running the tests continues until all the bugs are found with very good Functional and Code
coverage. Functional coverage here refers to the percentage of functionality verified and Code
coverage refers to the percentage of Code covered. Generally functional coverage objects
(written in Vera/Verilog/VHDL) are manually written to measure functional coverage whereas
Code coverage is measured by the various software simulator tools (i.e VCS) or commercially
available tools (i.e HDLScore). RN in the flowchart refers to RTL netlist and GN refers to
Gate level netlist. In some cases to speed things up the RTL or Gate netlists of the entire Chip
or portions of the Chip which take too many simulation cycles are mapped into an Hardware
accelerator or Emulator before running the tests.

SAT - Build an RTL/Gate/Mixed (i.e a mixture of RTL and Gate netlists for the Subblocks (we
use this when Gate netlists for some of the Datapath/Control Subblocks is not yet ready or in
some cases for case in debug)) model for the Block (i.e Block 1 in this case) and verify it in a
Stand Alone Test bench environment (i.e SAT). The tests run in this environment could be any
of the following - Simple binary test vectors, Directed assembly diags (manually written
assembly diags) or Assembly Diags generated from Pseudo Random Test generator. Simple
binary test vector is a mixed sequence of 0’s and 1’s. Directed diags here could be self check-
ing or non-self checking. In the case of non-self checking directed diags and pseudo random
diags, they are run simultaneously both on the RTL/Gate/Mixed model and the golden ISS to
find bugs in the design. Any bugs found in this environment are fixed in the RTL/Gate netlists
and the process of rebuilding the RTL/Gate/Mixed model for the Block and running the tests
continues until all the bugs are found with very good Functional and Code coverage. One of
the main advantages of verifying a block in this environment is the easiness in setting up test
cases.

Formal - Build an RTL model for the Block (i.e Block1 in this case) and run Formal verifica-
tion tools to prove or disprove the Assertions built in the RTL. In the case of disproof the for-
mal verification tool provides a counter example (i.e test vectors which result in disproving the
Assertion) for debug purposes. Any bugs found here are fixed in the RTL and the process of
rebuilding the RTL model for the Block and running formal verification tools on it continues
until all the assertions are proved.

Control subblock within a Block (i.e Block1 in this case) goes through the following steps -

1 .Synthesize the block with proper timing constraints and generate a gate level netlist. Initially
the block is synthesized with a default wire load model but once we have layout for the block
custom wire load model is generated and is used in all future synthesis work for the block.
Every time a block (i.e control block) goes through layout changes a new custom wire load
model is generated and used.

2. Push the block through Floorplan and timing driven Place and Route tools to generate a lay-
out database. LVS (layout versus schematic), DRC (design rule checking) and ERC (electrical
rule checking) are run on the layout database to see if there are any errors. In case of errors the
layout is fixed (could be custom fixes or pushing through the flow again) and the Physical Ver-
ification Checks (i.e LVS, DRC and ERC) are rerun. This is an iterative process and

6 CPU Design: Answers to Frequently Asked Questions

10

continues until the layout is LVS, DRC and ERC clean.

3. Run Mintime(to make sure there are no mintime paths within the control block), EM/IR (to
make sure the current density and voltage drop are within the Spec), Noise (to make sure the
noise induced by the aggressors is within the noise limit) and Clock flow (to make sure the
clock network within the block meets the Min and Max Clock Spec) on the layout database to
see if they meet the required Spec. If they don’t meet the required Spec then appropriate edits
are made to the layout database by pushing the block through the flow again or by custom
edits and the process of rerunning the above mentioned checks continues until all the checks
meet the required Spec. Whenever the layout changes, the checks are rerun.

4. Extract Gate Level netlist and Parasitics. Run equivalence checking between the extracted
gate level netlist and the RTL model to make sure that they are equivalent. Run Static Timing
Analysis on the block with the extracted parasitics to see if it meets the required timing Spec.
If it doesn’t meet the timing Spec then branch to either A3, B3, C3, or D3 as shown in the
flowchart. Branch to A3 if the path cannot be solved by simply resynthesizing the block,
branch to B3 if the path cannot be solved by incremental ECO, branch to C3 if the path can be
solved by incremental ECO or branch to D3 if the database is frozen. Incremental ECO (Engi-
neering Change Order) is a technique where the Place and Route tool updates the layout data-
base with the required edits by retaining most of the previous placement and routing
information, “database is frozen” refers to a stage in a design phase where the design is frozen
(i.e no RTL changes and no pushing the block through P&R tools) and future edits need to be
manually done in the layout.

Datapath subblock within a Block (i.e Block1 in this case) goes through the following steps -

1 . Develop Structural code for the Behavioral RTL. Run equivalency checking to make sure
that the Structural code is functionally equivalent to the behavioral RTL.

2. Develop a Placement file which provides the placement information (i.e Row and Column
information) for each of the instances in the Structural code. The Placement tool uses this
information to appropriately place the gates referred in the Structural code.

3. Once the Placement file is ready push the block through Floorplan and timing driven Place
and Route tools to generate a layout database. LVS, DRC and ERC are run on the layout data-
base to see if there are any errors. In case of any errors the layout is fixed (could be custom
fixes or pushing it through the flow again) and the Physical Verification Checks are rerun. This
is an iterative process and continues until the layout is LVS, DRC and ERC clean.

4. Run Min time, EM/IR, Noise and Clock flow on the layout database to see if they meet the
required Spec. If they don’t meet the required Spec then appropriate edits are made to the lay-
out database by pushing the block through the flow again or by custom edits and the process of
rerunning the above mentioned checks continues until all the checks meet the required Spec.
Whenever the layout changes, the checks are rerun.

5. Extract Gate Level netlist and Parasitics. Run equivalence checking between the extracted
gate level netlist and the RTL model to make sure that they are equivalent. Run Static Timing
Analysis on the block with the extracted parasitics to see if it meets the required timing Spec.
If it doesn’t meet the timing Spec then branch to either A2, B2, C2, or D2 as shown in the
flowchart. Branch to A2 if the path cannot be solved by simply updating the Structural code
for the block, branch to B2 if the path cannot be solved by incremental ECO, branch to C2 if
the path can be solved by incremental ECO or branch to D2 if the database is frozen.

Architecture 7

11

12

13

14

Megacell subblock within a Block (i.e Block 1 in this case) goes through the following steps -

1. Capture Schematics for the behavioral RTL using one of the Schematic editor tools.

2. Extract Transistor Level netlist and run equivalency checking to make sure that the transis-
tor level netlist is functionally equivalent to its corresponding behavioral RTL.

3. Custom floorplan and draw Polygons for the transistors in the Schematics using one of the
custom Layout Editor tools. Route the polygons manually. LVS, DRC and ERC are run on the
layout database to see if there are any errors. In case of errors the layout is fixed and the Phys-
ical Verification Checks are rerun. This is an iterative process and continues until the layout is
LVS, DRC and ERC clean.

4. Run Min time, EM/IR, Noise and Clock flow on the layout database to see if they meet the
required Spec. If they don’t meet the required Spec then appropriate edits are made to the lay-
out database and the process of rerunning the above mentioned checks continues until all the
checks meet the required Spec. Whenever the layout changes, the checks are rerun.

5. Extract Transistor Level netlist from the layout database and run Switch-Level Simulation
using Playback vectors to see if there are any bugs in the netlist. If there are bugs then update
Schematics and go through C1 (as shown in the Flowchart) again. Re-extract the Transistor
Level netlist once the layout is LVS, DRC and ERC clean and rerun Switch-Level Simulation.
This process continues until the Playback vectors run bug free. Playback vectors are test vec-
tors which provides both the input test patterns and the expected data for each of the input test
patterns.

6. Extract Parasitics and run Dynamic Timing Analysis on the block to see if it meets the
required timing Spec. If it doesn’t meet the timing Spec then branch to either A1, B1 or C1 as
shown in the flowchart. Branch to A1 if the path cannot be solved by simply updating the
Schematics, branch to B1 if the path cannot be solved by editing the layout or branch to C1 if
the path can be solved by editing the layout.

Run Block level Static Timing analysis by using the extracted Parasitics for Datapath and Con-
trol blocks and Black box model for the Megacell. If the timing does not meet the required
timing Spec then branch to either A1, A2, A3, B1, B2, B3, C1, C2, C3, D2 or D3 as shown in
the flowchart to fix timing. Fixing timing in one or more branches and rerunning Static Timing
on the block continues until the timing Spec is met.

Floorplan the Chip using one of the custom Floorplan tools and Place and Route Blocks/Sub-
blocks within the Chip. In many cases most of the routes between blocks are shielded. Run
LVS, DRC and ERC on the layout database and fix any errors in the layout. Run Min time,
EM/IR, Noise and Clock flow on the Chip layout database to see if they meet the required
Spec. If they don’t meet the required Spec then appropriate edits are made to the layout data-
base and the process of rerunning the above mentioned checks continues until all the checks
meet the required Spec. Whenever the layout changes, the checks arc rerun. Extract Parasitics
and run Static Timing Analysis on the Chip to see if it meets the required timing Spec. If it
doesn’t meet the timing Spec then branch to either A1, A2, A3, B1, B2, B3, C1, C2, C3, D2,
D3 or F as shown in the flowchart. Fixing timing in one or more branches and rerunning Static
Timing on the Chip continues until the timing spec is met.

When all “Done’s” in the flowchart are satisfied, Tapeout the Chip.

Figure 2: Flowchart for a Typical Processor Design Flow

8 CPU Design: Answers to Frequently Asked Questions

Figure below shows the flowchart for a typical Processor design flow.

Architecture 9

4. What is the difference between a CISC and a RISC Processor?

CISC (Complex Instruction Set Computer) processors use complex instruction set
whereas RISC (Reduced Instruction Set Computer) processors use reduced instruc-
tion set. Additional characteristics of CISC and RISC Processors are tabulated below.

Table 2: Comparison of CISC against RISC

CISC

1 . Variable instruction length.

2. Large number of addressing modes.

3. Support for small number of general purpose
registers.

4. Requires less number of instructions to repre-
sent an application code when compared to
RISC.

5. Requires complex Compiler.

6. Since the application code compiled for
CISC instruction set results in less number of
instructions we need less memory to store the
application binaries in a CISC machine.

7. Less number of instructions need not neces-
sarily mean that an application running on a
CISC processor results in higher performance
than the same running on a RISC processor.

8. In addition to Load/Store there are other
instructions which results in accessing memory.

9. A typical CISC instruction (Intel x 86 instruction)

10. Examples of CISC processors are Intel’s
486, Pentium (all flavours), AMD’s Krypton,
Athlon etc.

RISC

1. Fixed instruction length.

2. Few addressing modes.

3. Support for large number of general purpose
registers.

4. Requires more number of instructions to repre-
sent an application code when compared to CISC
although this is debatable.

5. Requires less complex Compiler.

6. Since the application code compiled for RISC
instruction set results in more number of instruc-
tions (when compared to CISC) we need more
memory to store the application binaries in a
RISC machine.

7. More number of instructions need not necessar-
ily mean that an application running on a RISC
processor results in lower performance than the
same running on a CISC processor.

8. Load/Store (Atomics included) are the only
ones which can access memory.

9. A typical RISC instruction (SPARC instruction)

10. Examples of RISC processors are SUN’s
UltraSparc, MIPS’s MIPS32, MIPS64, ARM’S
ARM11, Motorola’s PowerPC etc.

10 CPU Design: Answers to Frequently Asked Questions

5. What is Cache Memory in a CPU and what are the most common terms asso-
ciated with Caches?

A Cache is a small high speed memory which stores the most recently used instruc-
tions or data from a larger but slower memory system. A Cache could be residing on-
chip or off-chip and there could be more than one level of cache in a memory hierar-
chy. In Figure 3 below, fig (a) has 2 levels of caches, one on-chip (assuming here that
we have a separate Level 1 cache for Instruction and Data) and one off-chip, fig (b)
has three levels of caches, two on-chip and one off-chip, fig (c) has four levels of
caches, three on-chip and one off-chip.

Figure 3: Various Cache Levels

Table below shows the most common terms associated with Caches.

Architecture 11

Table 3: Common Terms Associated with Caches

Term

Bit, Nibble, Byte,
HalfWord, Word,
Double Word, Quad-
Word, Line, Page

Description

Bit - It is a group of 1 -bit, Nibble - It is a group of 4-bits, Byte - It is a group of
8-bits, HalfWord - It is a group of 16 bits, Word - It is a group of 32-bits, Dou-
bleWord- It is a group of 64-bits, Quad Word - It is a group of 128-bits, Line -
It is the unit of transfer between Main Memory and Cache or between a
higher level Cache and a lower level Cache, Page - It is the unit of transfer
between Main Memory and secondary storage (i.e Hard Drive or Tape etc.)

Figure below shows the definition of the above mentioned terms as applied to
Main Memory having several Pages.

Figure 4: Bit, Nibble, Byte, HalfWord, Word, DoubleWord,
QuadWord, Line and Page

Cold Start,
Warm Start

These are the terms used for Cache Performance evaluation.

Cold start is a condition where simulation assumes no instructions or data
corresponding to the benchmark or application sitting in the Cache.

Warm start is a condition where simulation assumes instructions or data cor-
responding to the benchmark or application sitting in the Cache.

12 CPU Design: Answers to Frequently Asked Questions

Table 3: Common Terms Associated with Caches

Term

Hit, Miss

Description

Hit is a condition where the CPU finds the required data in Cache whereas
Miss is a condition where the CPU doesn’t find the required data in the
Cache. Figure below shows the Cache Hit and Miss condition.

Figure 5: Cache Hit and Cache Miss

Temporal Locality,
Spatial Locality,
Sequential Locality

Temporal Locality - If a location is referenced then it is likely to be refer-
enced again in the near future.

Spatial Locality - If a location is referenced then it is likely that locations near
it will be referenced in the near future.

Sequential Locality - This is a special case of Spatial locality where the
address of the next reference will be the immediate successor of the present
reference.

Figure below shows Temporal, Spatial and Sequential locality.

Figure 6: Temporal Locality, Spatial Locality and Sequential Locality

Architecture 13

Table 3: Common Terms Associated with Caches

Term Description

Compulsory Misses,
Capacity Misses,
Conflict Misses

Compulsory misses are due to programs first reference to a memory block.
These misses can not be prevented by any caching technique.

Capacity misses are due to insufficient capacity in a Cache. These misses can
be prevented to a certain extent by increasing the size of the Cache.

Conflict misses are due to insufficient associativity in a direct mapped or a set
associative Cache implementation. These misses can be prevented to a cer-
tain extent by increasing the associativity of the Cache.

Virtually Indexed
Physically Tagged,

Physically Indexed
Physically Tagged

A Cache indexed by a Virtual Address and tagged with a Physical Address is
known as a Virtually Indexed Physically Tagged (i.e VIPT) Cache and a
Cache indexed by a Physical Address and tagged with a Physical Address is
known as a Physically Indexed Physically Tagged (i.e PIPT) Cache.

One of the problems with VIPT caches is address aliasing i.e two Virtual
Addresses getting mapped to the same Physical Address. Using page offset
(since page offset is unaffected by address translation) to index the Cache
results in avoiding any address aliasing issues with VIPT Caches. Figure
below shows VIPT and PIPT Caches.

Figure 7: VIPT and PIPT Caches

14 CPU Design: Answers to Frequently Asked Questions

Table 3: Common Terms Associated with Caches

Term

Load use Latency

Harvard
Architecture,

Berkeley
Architecture

Store Allocate,
Store Non-Allocate

Description

It is the number of cycles a Load dependent instruction has to wait before it
can be issued for execution from the time the Load gets issued to the address
generation logic. Typically the load use latency for a Load that hits in Level 1
Cache is 3 to 4 cycles and for the one that Misses in Level 1 Cache is 8 to 15
cycles. Figure below shows load use latency.

Figure 8: Load Use Latency

Harvard Architecture is a split architecture where you have a separate dedi-
cated Cache for Instructions and Data.

Berkeley Architecture is a unified architecture where you have one unified
Cache for both Instructions and Data.

Figure below shows Harvard and Berkeley architecture as applied to a Level
1 Cache.

Figure 9: Harvard and Berkeley Architecture

Store Allocate is a write miss policy where the block (line) is loaded from
either higher level cache or main memory in the case of a write miss in lower
level cache.

Store Non-Allocate is a write miss policy where the block is modified in
higher level cache but not allocated in lower level cache in the case of a write
miss in lower level cache.

Figure below shows Store Allocate and Store Non-Allocate cache policies.

Architecture 15

Table 3: Common Terms Associated with Caches

Term Description

Figure 10: Store Allocate and Store Non-Allocate Cache Policies

16 CPU Design: Answers to Frequently Asked Questions

Table 3: Common Terms Associated with Caches

Term Description

Write Back,
Write Through

Write Back is a write policy where the corresponding memory block is
updated only when the block in cache is selected for replacement.

Write Through is a write policy where the corresponding memory block is
updated whenever the block in cache is updated or the corresponding cache
block in higher level cache maintaining cache coherency is updated whenever
the block in lower level cache is updated.

Figure below shows Write Back and Write Through policies.

Figure 11 : Write Back and Write Through Cache

Architecture 17

Table 3: Common Terms Associated with Caches

Term

Multi-Ported,
Multi-Banked,
Multi-Pumped

Description

Multi-Ported Cache

It is a cache implementation where the cache provides support for more than
one Read or Write port for providing high bandwidth. Because of these multi-
ple ports it results in servicing multiple requests per cycle (i.e a 2 Read port
cache can service two read requests per cycle). A 2 port, 4-Way Set Associa-
tive cache is shown in Figure 12. We see from the figure that irrespective of
the type of address we result in servicing two requests in any given cycle.

Figure 12: Multi-Ported Cache

Typically this kind of implementation gets used in lower level caches (i.e
level 1) where the cache size is small.

Multi-Banked Cache

It is a cache implementation where the cache is implemented as a banked
structure for providing high bandwidth by providing the illusion of multiple
ports. Here it results in servicing multiple requests per cycle if there are no
bank conflicts. A 4-Way Set Associative banked cache is shown in Figure 13
below. We see from the figure that it has 4 banks with each bank having all 4
Ways. Here we can process all 4 requests if there is no bank select conflict
between the requested addresses.

Figure 13: Multi-Banked Cache

Typically this kind of implementation gets used in higher level caches (i.e
level 2, level 3 etc.) where the cache size is big.

18 CPU Design: Answers to Frequently Asked Questions

Table 3: Common Terms Associated with Caches

Term

Inclusive,
Non-Inclusive

Description

Multi-Pumped Cache

It is a cache implementation where you time multiplex a single port thereby
providing multiple accesses in a given cycle. Here the cache is superpipelined
(i.e cache is operating at a higher frequency compared to the rest of the pipe)
for providing high bandwidth. A double pumped 4-Way Set Associative
cache is shown in Figure 14 below. We see from the figure that by double
pumping we can service two requests in a given cycle.

Figure 14: Multi-Pumped Cache

Inclusion is a cache property where the contents of lower level cache are a
subset of higher level cache i.e in a two level cache hierarchy, all the contents
of Level 1 cache are a subset of Level 2 cache (i.e a Hit in Level 1 guarantees
a Hit in Level 2 and a Miss in Level 1 need not necessarily be a Miss in Level
2). Maintaining inclusion in a two level cache hierarchy system is fairly
straight forward. Whenever a block or line enters Level 1 cache it must also
be placed in Level 2 cache and, whenever a line leaves Level 2 cache
(because of eviction due to line replacement) or is invalidated in Level 2
cache (because of external snoop) it must also be invalidated in Level 1 cache
if the block/line happens to reside in Level 1 cache.

Non-Inclusion is a cache property where the contents of lower level cache
need not necessarily be a subset of higher level cache i.e in a two level cache
hierarchy, the contents of Level 1 cache need not necessarily be sitting in
Level 2 cache (i.e a Hit/Miss in Level 1 cache need not necessarily be a Hit/
Miss in level 2 cache). Maintaining non-inclusion in a two level cache hierar-
chy system requires the following: coherency is maintained independently for
each cache level (i.e Level 1 and Level 2 here) i.e in a snooping implementa-
tion this implies that both Level 1 and Level 2 of the cache hierarchy must
snoop all addresses over the system bus.

Figure below shows Inclusive and Non-Inclusive cache property.

Architecture 19

Table 3: Common Terms Associated with Caches

Term

Cacheable,
Non-Cacheable

Description

Figure 15: Inclusive and Non-Inclusive Cache

Data that can be cached (i.e written into cache) is known as Cacheable data
whereas data that cannot be cached (i.e can not be written into cache) is
known as Non-Cacheable data.

Figure below shows Non-Cacheable load access.

Figure 16: Non-Cacheable Load access

20 CPU Design: Answers to Frequently Asked Questions

Table 3: Common Terms Associated with Caches

Term

Big-Endian,
Little-Endian

Description

Big-Endian and Little-Endian are terms that describe the order in which a
sequence of bytes are stored in a Cache. Big-Endian is an addressing conven-
tion where the byte with the smallest address is the most significant byte in a
multi-byte word. Little-Endian is an addressing convention where the byte
with the smallest address is the least significant byte in a multi-byte word.
Figure 17 below shows the way data gets read and written into a direct-
mapped Data Cache in the case of a Big-Endian and Little-Endian addressing
convention. This is true for any Cache configuration. We see from the figure
that while the Cache is supporting Big-Endian addressing convention the
most significant byte (i.e B7) of the incoming 8 byte word gets written at the
lowest address location (i.e m000) and the least significant byte (i.e B0) gets
written at the highest address location (i.e m111) whereas, while the Cache is
supporting Little-Endian addressing convention we see that the least signifi-
cant byte (i.e B0) of the incoming 8 byte word gets written at the lowest
address location (i.e m000) and the most significant byte (i.e B7) gets written
at the highest address location (i.e m111). Processors supporting Big-Endian
byte order by default are Sparc processors whereas processors supporting Lit-
tle-Endian byte order by default are Intel’s x86 processors, ARM processors
etc.

Figure 17: Big-Endian and Little-Endian

Architecture 21

6. What are the various Cache mappings?

The various Cache Mappings are tabulated below.

Table 4: Cache Mappings

Cache
Mappings

Direct Mapped
Cache

Fully Associative
Cache

Set Associative
Cache

Description

In this kind of cache a given main memory line can be placed in one and only
one place in the cache.

In this kind of mapping any line from main memory can be placed anywhere in
the cache.

This is similar to direct mapped but in this case more than one line from each
set reside in the cache.

7. Describe a Direct Mapped Cache Memory with an example?

Figures 18 and 19 below shows a Direct Mapped Cache Memory in the case of a Hit
and a Miss. In Figures 18 and 19, the following things are assumed -

16-bit Virtual Address (VA, i.e the address seen by the Programmer)

16Kbyte (KB) Main Memory (MM)

8KB Page size

1B Line size (Unit of transfer between Main Memory and Cache)

256B L1 Cache

2-entry Fully Associative TLB (Translation Look Aside Buffer)

Following facts can be drawn from the assumptions made above -

Since the size of Main Memory is 16KB, we need a 14-bit Physical Address (PA, i.e the address to
index any byte within the Main Memory).

Since the size of L1 Cache (L1$) is 256B and the Line size is 1B, L1 Data will hold 256 lines from
Main Memory and L1Tag will hold 256 Tag address where each Tag address corresponds to a Line in
L1Data.

Assuming that we would like to access one Line of data (i.e 1Byte in this case) on every access from
L1$ and since L1$ is 256 entries (L1$ being Direct Mapped), we need 8-bits to index L1Data and
L1Tag.

22 CPU Design: Answers to Frequently Asked Questions

Since Main Memory is 16KB, we will have a maximum of 2 Pages (16KB/8KB=2) sitting in Main
Memory at any given time. Each Page in Main Memory has 8K Lines (i.e 8KB(Page size)/1B(Line
size)=8K Lines).

Since L1$ in this case has 256 entries, any access for a Miss in L1$ will see Main Memory to be hav-
ing 256 Sets with each Set having 64 Lines each (16K Lines/256=64 Lines) as shown in Figures 18
and 19.

Since in a Direct Mapped Cache only one Line from each Set could be sitting in the Cache at any
given point of time, one of the lines, LineA, LineC, LineW, LineY or any other Line belonging to Set
0 could be sitting in entry 0 of L1$, Similarly one of the lines, LineB, LineD, LineX, LineZ or any
other Line belonging to Set 255 could be sitting in entry 255 of L1$.

Description for the Hit case

In Figure 18 we have assumed that LineA from Set 0 is sitting in entry 0 and LineD from Set 255 is
sitting in entry 255 of the L1$. The program while it gets executed on CPU always generates a VA (i.e
VA1 in this case) and this address needs to be translated to PA before we can access data from the
Cache or Main Memory. TLB in this case translates the VA into PA. If we assume here that the VA (i.e
VA1) generated by the program is 16’b0011 1111 1111 1111, TLB here only has to translate the most
significant 3-bits of the VA into a Physical Page number. This is because since the Page size is 8KB,
the least significant 13-bits of PA should be same as the least significant 13-bits of VA. Since only 2
Pages could be residing in Main Memory at any given point of time, TLB translates the upper 3-bits of
VA to either 0 or 1 assuming that we don’t have a Page Fault (a condition where the requested Page is
not sitting in Main Memory). In Figure 18 below TLB translates Virtual Page Number 3’b001 (i.e
most significant 3 bits of VA 16’b0011 1111 1111 1111) to 1’b0 (Physical Page Number (i.e the most
significant bit(s) of PA). Since L1$ has 256 entries and is Direct Mapped, the least significant 8-bits of
the PA gets used to index both the Tag and Data portion of the Cache (Since here the least significant
13-bits of the PA is same as the least significant 13-bits of the VA we could as well use the least signif-
icant 8-bits of the VA to index the Tag and Data portion of the Cache to make things faster). Once
accessed the data from Tag array gets compared against the Tag portion of the PA (i.e in this case the
most significant 6-bits of PA1 which is 6’b01 1111). Since here we have a match, we have a Cache Hit
and the data read from Data portion of the Cache gets forwarded to the Unit requesting it.

Description for the Miss case

In Figure 19 we have assumed that LineA from Set 0 is sitting in entry 0 and LineD from Set 255 is
sitting in entry 255 of the L1$. If we assume here that the VA (i.e VA2) generated by the program is
16’b1011 1111 1111 1111 then the TLB translates the most significant 3-bits of the VA (i.e 3’b101,
Virtual Page Number) to 1’b1 (i.e Physical Page Number). On Tag comparison after accessing the Tag
array we find that it results in a mismatch thereby resulting in a Cache Miss. In such case the Cache
requests data from Main Memory in which case LineZ from Main Memory replaces LineD in Data
array and 6’b11 1111 replaces 6’b01 1111 in Tag array. LineZ also gets forwarded to the Unit request-
ing it.

Architecture 23

Figure 18: Direct Mapped Cache in the case of a Hit

24 CPU Design: Answers to Frequently Asked Questions

Figure 19: Direct Mapped Cache in the case of a Miss

8. Describe a Fully Associative Cache Memory with an example?

Figures 20 and 21 below shows a Fully Associative Cache Memory in the case of a
Hit and a Miss. In Figures 20 and 21, the following things are assumed

Architecture 25

16-bit Virtual Addres (VA, i.e the address seen by the Programmer)

16Kbyte (KB) Main Memory (MM)

8KB Page size

1B Line size (Unit of transfer between Main Memory and Cache)

256B L1 Cache

2-entry Fully Associative TLB (Translation Look Aside Buffer)

Following facts can be drawn from the assumsions made above -

Since the size of Main Memory is 16KB, we need a 14-bit Physical Address (PA, i.e the address to
index any byte within the Main Memory).

Since the size of L1 Cache (L1$) is 256B and the Line size is 1B, L1 Data will hold 256 lines from
Main Memory and L1Tag will hold 256 Tag address where each Tag address corresponds to a Line in
L1 Data.

Since Main Memory is 16KB, we will have a maximum of 2 Pages (16KB/8KB=2) sitting in Main
Memory at any given time. Each Page in Main Memory has 8K Lines (i.e 8KB(Page size)/1B(Line
size)=8K Lines).

Since L1$ in this case has 256 entries, any access for a Miss in L1$ will see Main Memory to be hav-
ing 256 Sets with each Set having 64 Lines each (16K Lines/256=64 Lines) as shown in Figures 20
and 21.

Since in a Fully Associative Cache any line from any Set could be sitting anywhere in the Cache, any
of the lines (i.e LineA, LineB, LineC, LineD, LineW, LineX, LineY, LineZ etc.) in Main Memory
could be sitting in entry0 of L1$. Similarly any of the lines in Main Memory could be sitting in entry
255 of L1$.

26 CPU Design: Answers to Frequently Asked Questions

Description for the Hit case

In Figure 20 we have assumed that LineD from Set 255 is sitting in entry 0 and LineA from Set 0 is
sitting in entry 255 of the L1$. The program while it gets executed on CPU always generates a VA (i.e
VA1 in this case) and this address needs to be translated to PA before we can access data from the
Cache or Main Memory. TLB in this case translates the VA into PA. If we assume here that the VA (i.e
VA1) generated by the program is 16’b0011 1111 1111 1111, TLB here only has to translate the most
significant 3-bits of the VA into a Physical Page number. This is because since the Page size is 8KB,
the least significant 13-bits of PA should be same as the least significant 13-bits of VA. Since only 2
Pages could be residing in Main Memory at any given point of time, TLB translates the upper 3-bits of
VA to either 0 or 1 assuming that we don’t have a Page Fault (a condition where the requested Page is
not sitting in Main Memory). In Figure 20 below TLB translates Virtual Page Number 3’b001 (i.e
most significant 3 bits of VA 16’b0011 1111 1111 1111) to 1’b0 (Physical Page Number (i.e the most
significant bit(s) of PA). Since L1$ has 256 entries and is Fully Associative, all the bits of PA are com-
pared against all the entries of the Tag array resulting in a one-hot vector (i.e in the case of a Hit)
which gets used to select one of the 256 entries of the Data array. Since here the PA matches with entry
0 of the Tag array, we have a Cache Hit. In this case data sitting in entry 0 (i.e LineD) of the Data array
gets forwarded to the Unit requesting it.

Description for the Miss case

In Figure 21 we have assumed that LineD from Set 255 is sitting in entry 0 and LineA from Set 0 is
sitting in entry 255 of the L1$. If we assume here that the VA (i.e VA2) generated by the program is
16’b1011 1111 1111 1111 then the TLB translates the most significant 3-bits of the VA (i.e 3 ’b101,
Virtual Page Number) to 1 ’b1 (i.e Physical Page Number). On Tag comparison against all the entries
in Tag array we find that it results in a mismatch thereby resulting in a Miss. In such case the Cache
requests data from Main Memory in which case LineZ from Main Memory replaces one of the entries
in Data array (the Line getting replaced depends on the kind of replacement algorithm being used).
LineZ also gets forwarded to the Unit requesting it.

Architecture 27

Figure 20: Fully Associative Cache in the case of a Hit

28 CPU Design: Answers to Frequently Asked Questions

Figure 21: Fully Associative Cache in the case of a Miss

9. Describe a 2-Way Set Associative Cache Memory with an example?

Figures 22 and 23 below shows a 2-Way Set Associative Cache Memory in the case
of a Hit and a Miss. In Figures 22 and 23, the following things are assumed -

16-bit Virtual Addres (VA, i.e the address seen by the Programmer)

Architecture 29

16Kbyte (KB) Main Memory(MM)

8KB Page size

1B Line size (Unit of transfer between Main Memory and Cache)

256B L1 Cache

2-entry Fully Associative TLB (Translation Look Aside Buffer)

Following facts can be drawn from the assumsions made above -

Since the size of Main Memory is 16KB, we need a 14-bit Physical Address (PA, i.e the address to
index any byte within the Main Memory).

Since the size of L1Cache (L1$) is 256B and the Line size is 1B, L1Data will hold 256 lines from
Main Memory and L1Tag will hold 256 Tag address where each Tag address corresponds to a Line in
L1Data.

Assuming that we would like to access one Line of data (i.e 1Byte in this case) on every access from
L1$ and since L1$ is 128x2 entries (L1$ being 2-Way Set Associative), we need 7-bits to index
L1Data and L1Tag arrays.

Since Main Memory is 16KB, we will have a maximum of 2 Pages (16KB/8KB=2) sitting in Main
Memory at any given time. Each Page in Main Memory has 8K Lines (i.e 8KB(Page size)/1B(Line
size)=8K Lines).

Since L1$ in this case has 128x2 entries, any access for a Miss in L1$ will see Main Memory to be
having 128 Sets with each Set having 128 Lines each (16K Lines/128=128 Lines) as shown in Figures
22 and 23.

Since in a 2-Way Set Associative Cache two Lines from each Set could be sitting in the Cache at any
given point of time, one of the lines, LineA, LineC, LineW, LineY or any other Line belonging to Set
0 could be sitting in entry 0 of Way0 and Way1 of L1$. Similarly one of the lines, LineB, LineD,
LineX, LineZ or any other Line belonging to Set 127 could be sitting in entry 127 of Way0 and Way1
of L1$.

30 CPU Design: Answers to Frequently Asked Questions

Description for the Hit case

In Figure 22 we have assumed that LineA from Set 0 is sitting in entry 0 of Way0, LineC from Set 0
is sitting in entry 0 of Way1, LineD from Set 127 is sitting in entry 127 of Way0 and LineX from Set
127 is sitting in entry 127 of Way1. The program while it gets executed on CPU always generates a VA
(i.e VA1 in this case) and this address needs to be translated to PA before we can access data from the
Cache or Main Memory. TLB in this case translates the VA into PA. If we assume here that the VA (i.e
VA1) generated by the program is 16’b0011 1111 1111 1111, TLB here only has to translate the most
significant 3-bits of the VA into a Physical Page number. This is because since the Page size is 8KB,
the least significant 13-bits of PA should be same as the least significant 13-bits of VA. Since only 2
Pages could be residing in Main Memory at any given point of time, TLB translates the upper 3-bits of
VA to either 0 or 1 assuming that we don’t have a Page Fault (a condition where the requested Page is
not sitting in Main Memory). In Figure 22 below TLB translates Virtual Page Number 3’b001 (i.e
most significant 3 bits of VA 16’b0011 1111 1111 1111) to 1’b0 (Physical Page Number (i.e the most
significant bit(s) of PA). Since L1$ has 128x2 entries and is 2-Way Set Associative, the least signifi-
cant 7-bits of the PA gets used to index both the Tag and Data portion of Way0 and Way1 of the Cache
(Since here the least significant 13-bits of the PA is same as the least significant 13-bits of the VA we
could as well use the least significant 7-bits of the VA to index the Tag and Data portion of the Cache).
Once accessed the data from Tag array of Way0 and Way1 gets compared against the Tag portion of
the PA (i.e in this case the most significant 7-bits of PA1 which is 7’b01 1111 1). Since here we have a
match as the tag matches with the one sitting in Tag array of Way0, we have a Cache Hit and the data
read from Data portion of Way0 (i.e LineD) gets forwarded to the Unit requesting it.

Description for the Miss case

In Figure 23 we have assumed that LineA from Set 0 is sitting in entry 0 of Way0, LineC from Set
0 is sitting in entry 0 of Way1, LineD from Set 127 is sitting in entry 127 of Way0 and LineX from Set
127 is sitting in entry 127 of Way1. If we assume here that the VA (i.e VA2) generated by the program
is 16’b1011 1111 1111 1111 then the TLB translates the most significant 3-bits of the VA (i.e3’b101,
Virtual Page Number) to 1’b1 (i.e Physical Page Number). On Tag comparison after accessing the Tag
array of Way0 and Way1 we find that it results in a mismatch thereby resulting in a Cache Miss. In
such case the Cache requests data from Main Memory in which case LineZ from Main Memory
replaces LineD/LineX in Way0/Way1 (the Way that gets replaced depends on the kind of replacement
algorithm being used). LineZ also gets forwarded to the Unit requesting it.

Architecture 31

Figure 22: 2-Way Set Associative Cache in the case of a Hit

32 CPU Design: Answers to Frequently Asked Questions

Figure 23: 2-Way Set Associative Cache in the case of a Miss

10. What are the most common Replacement Algorithms used in a design ?

The most common Replacement Algorithms used in a design are tabulated below.

Architecture 33

Table 5: Replacement Algorithms

Algorithm

Pseudo Random

Full Random

Pseudo LRU

Full LRU

Round Robin

MRU

FIFO

Description

Under this policy the replacement of a line is determined in a pseudo random
fashion.

Under this policy the replacement of a line is determined in a fully random fash-
ion.

Under this policy the line that was least/last recently used (need not necessarily
be a true least/last recently used line) would be the candidate for replacement.

Under this policy the line that was least/last recently used (is a true least/last
recently used line) would be the candidate for replacement.

Under this policy the replacement of a line in a cache happens in a round robin
fashion.

Under this policy the line that was most recently used would be the candidate
for replacement.

Under this policy the line that had been in the cache for longest time would be
the candidate for replacement.

11. Describe the way Pseudo Random Algorithm gets used in replacing an entry
in a 4-Way Set Associative Cache Memory?

Table below shows the way Pseudo Random Algorithm gets used in replacing an
entry in a 4-Way Set Associative Cache Memory.

Table 6: Pseudo Random Algorithm as Applied to a 4-Way Set Associative Cache Memory

1. Maintain a 2-bit Random array with number of entries equal to the number of entries in the Tag
array as shown in Figure 24 below. Also maintain a LFSR (Linear Feedback Shift Register) whose
output gets used to update the Random array as shown in figure below. Instead of an LFSR, a N-bit
Up/Down Counter could also be used to update the Random array in which case the LFSR gets
replaced by a N-bit Counter. LFSR gets updated every clock cycle. The feedback configuration for
LFSR is chosen to provide a maximal length LFSR. In figure below the bits used to index the Data and
Tag array may be same or different (i.e index0 = index1 or index0 != index).

34 CPU Design: Answers to Frequently Asked Questions

Table 6: Pseudo Random Algorithm as Applied to a 4-Way Set Associative Cache Memory

Figure 24: Pseudo Random for a 4-Way Set Associative Cache Memory

2. At Power on, reset the entire Random Array to all 0’s.

3. Random array remains untouched (i.e doesn’t get updated) in the case of a Cache Hit.

4. Random array remains untouched in the case of a Snoop Invalidate.

5. Use the following algorithm to replace an entry and update the Random array in the case of a Cache
Miss.

12. Describe the way Full Random Algorithm gets used in replacing an entry in a
4-Way Set Associative Cache Memory?

Architecture 35

Table below shows the way Full Random Algorithm gets used in replacing an entry in
a 4-Way Set Associative Cache Memory.

Table 7: Full Random Algorithm as Applied to a 4-Way Set Associative Cache Memory

1. Maintain a 2-bit Random array with number of entries equal to the number of entries in the Tag
array as shown in Figure 25 below. A 2-bit Random Number Generator Logic (RNGL) is used to gen-
erate the 2-bit Random vector which gets used to update the Random array as shown in figure below.
RNGL makes use of two groups of control signals (i.e GroupA and GroupB) along with a even parity
generator and a noise source to generate a random number as a result of which the output of RNGL is
totally unpredictable (i.e Fully Random). These control signals could be tapped from anywhere within
the chip. There could be other means of generating a Fully Random number. Random values gets
updated every cycle. In figure below the bits used to index the Data and Tag array may be same or dif-
ferent (i.e index0 = index1 or index0 != index1).

Figure 25: Full Random for a 4-Way Set Associative Cache Memory

2. At Power on, reset the entire Random Array to all 0’s.

3. Random array remains untouched (i.e doesn’t get updated) in the case of a Cache Hit.

4. Random array remains untouched in the case of a Snoop Invalidate.

36 CPU Design: Answers to Frequently Asked Questions

Table 7: Full Random Algorithm as Applied to a 4-Way Set Associative Cache Memory

5. Use the following algorithm to replace an entry and update the Random array in the case of a Cache
Miss.

13. Describe the various flavours of Pseudo LRU Algorithms that gets used in
replacing an entry in a Fully Associative TLB and a 4-Way Set Associative
Cache Memory?

Table below shows the various flavours of Pseudo LRU Algorithms that gets used in
replacing an entry in a Fully Associative and a 4-Way Set Associative Cache Mem-
ory.

Table 8: Pseudo LRU Algorithms

1 3-bit UVL Pseudo LRU algorithm as applied to a Fully Associative TLB

1. Maintain a 3-bit UVL vector (U (Used), V (Valid) and L (Lock)) for each entry in the Fully
Associative TLB as shown in Figure 26 below.

Figure 26: 3-bit UVL Pseudo LRU for a Fully Associative TLB

2. At Power on, reset the entire UVL Array to all 0’s.

3. Use the following algorithm to update the 3-bit UVL vector in the case of a TLB Hit

Architecture 37

Table 8: Pseudo LRU Algorithms

4. Use the following algorithm to replace an entry and update the 3-bit UVL vector in the case
of a TLB Miss

2 3-bit Pseudo LRU algorithm as applied to a 4- Way Set Associative Cache Memory

1. Maintain a 3-bit LRU Array with number of entries equal to the number of entries in the Tag
Array as shown in Figure 27 below. Each entry in the LRU Array maintains a 3-bit LRU vector,
‘lru[2:0]’, where ‘lru[0]’ represents the last recently used (or most recently used) Way among
Way0 and Way1 (i.e if ‘0’ represents Way0 to be the last recently used Way and if ‘1’ repre-
sents Way1), ‘lru[2]’ represents the last recently used Way among Way2 and Way3 (i.e if ‘0’
represents Way2 to be last recently used Way and if ‘1’ represents Way3) and ‘lru[1]’ repre-
sents the last recently used Ways among Way0/Way1 and Way2/Way3 (i.e if ‘0’ represents
Way0/Way1 to be the last recently used Ways and if ‘1’ represents Way2/Way3). In figure
below the bits used to index the Data and Tag array may be same or different (i.e index0 =
index 1 or index0 != index 1).

Figure 27: 3-bit Pseudo LRU for a 4-Way Set Associative Cache Memory

2. At Power on, reset the entire LRU Array to all 0’s.

38 CPU Design: Answers to Frequently Asked Questions

Table 8: Pseudo LRU Algorithms

3. Use the following algorithm to update the 3-bit LRU vector in the case of a Cache Hit

4. Use the following algorithm to update the 3-bit LRU vector in the case of a Snoop Invalidate

5. Use the following algorithm to replace an entry and update the 3-bit LRU vector in the case
of a Cache Miss

3 3-bit UVL Pseudo LRU algorithm as applied to a 4-Way Set Associative Cache Mem-
ory

Architecture 39

Table 8: Pseudo LRU Algorithms

1. Maintain a 3-bit UVL vector (U (Used), V (Valid) and L (Lock)) for each Tag entry in each
Way of the 4-Way Set Associative Cache Memory as shown in Figure 28 below. In figure below
the bits used to index the Data and Tag array may be same or different (i.e index0 = index1 or
index0 != index1).

Figure 28: 3-bit UVL Pseudo LRU for a 4-Way Set Associative Cache Memory

2. At Power on, reset UVL arrays corresponding to all 4 Ways to all 0’s.

3. Use the following algorithm to update the 3-bit UVL vector in the case of a Cache Hit

4. Use the following algorithm to update the 3-bit UVL vector in the case of a Snoop Invalidate

40 CPU Design: Answers to Frequently Asked Questions

Table 8: Pseudo LRU Algorithms

5. Use the following algorithm to replace an entry and update the 3-bit UVL vector in the case
of a Cache Miss

4 3-bit UVL-RR Pseudo LRU algorithm as applied to a 4-Way Set Associative Cache
Memory

1. Maintain a 3-bit UVL vector (U (Used), V (Valid) and L (Lock)) for each Tag entry in each
Way of the 4-Way Set Associative Cache Memory as shown in Figure 29 below. Also maintain
a single round robin bit (round_robin) for the entire 4-Way Set Associative Cache Memory as
shown in figure below. In figure below the bits used to index the Data and Tag array may be
same or different (i.e index0 = index1 or index0 != index1).

Architecture 41

Table 8: Pseudo LRU Algorithms

Figure 29: 3-bit UVL-RR Pseudo LRU for a 4-Way Set Associative Cache Memory

2. At Power on, reset UVL arrays corresponding to all 4 Ways to all 0’s including the round
robin bit.

3. Use the following algorithm to update the 3-bit UVL vector in the case of a Cache Hit

4. Use the following algorithm to update the 3-bit UVL vector in the case of a Snoop Invalidate

42 CPU Design: Answers to Frequently Asked Questions

Table 8: Pseudo LRU Algorithms

5. Use the following algorithm to replace an entry and update the 3-bit UVL vector and
round_robin bit in the case of a Cache Miss

5 8-bit Pseudo LRU algorithm as applied to a 4-Way Set Associative Cache Memory

Architecture 43

Table 8: Pseudo LRU Algorithms

1. Maintain a 8-bit LRU Array with number of entries equal to the number of entries in the Tag
Array as shown in Figure 30 below. Each entry in the LRU Array maintains a 8-bit LRU vector,
‘lru[7:0]’, where ‘lru[1:0]’ represents the status of Way0 (i.e if 2’b00 represents Way0 to be
the least recently used Way among all 4 Ways, if 2’01 represents Way0 to be the second least
recently used Way among all 4 Ways, if 2’b10 represents Way0 to be the third least recently
used Way among all 4 Ways and if 2’b11 represents Way0 to be the last recently used (or most
recently used) Way among all 4 Ways), ‘lru[3:2]’ represents the status of Way1, ‘lru[5:4]’ rep-
resents the status of Way2 and ‘lru[7:6]’ represents the status of Way3. In figure below the bits
used to index the Data and Tag array may be same or different (i.e index0 = index1 or index0 !=
index1).

Figure 30: 8-bit Pseudo LRU for a 4-Way Set Associative Cache Memory

2. At Power on, set each entry in LRU Array to 8’b11100100 (i.e lru[7:0] = 8’b11100100 for
all entries).

3. Use the following algorithm to update the 8-bit vector in the case of a Cache Hit

44 CPU Design: Answers to Frequently Asked Questions

Table 8: Pseudo LRU Algorithms

4. Use the following algorithm to update the 8-bit vector in the case of a Snoop Invalidate

Architecture 45

Table 8: Pseudo LRU Algorithms

5. Use the following algorithm to replace an entry and update the 8-bit LRU vector in the case
of a Cache Miss

14. Describe the way Full LRU Algorithm gets used in replacing an entry in a 4-
Way Set Associative Cache Memory?

Table below shows the way Full LRU Algorithm gets used in replacing an entry in a
4-Way Set Associative Cache Memory.

46 CPU Design: Answers to Frequently Asked Questions

Table 9: Full LRU Algorithm as Applied to a 4-Way Set Associative Cache Memory

1. Maintain a N-bit LRU vector for each Tag entry in each Way (i.e lru0[(N-1):0] for Way0, lru1[(N-
1):0] for Way1, lru2[(N-1):0] for Way2 and lru3[(N-1):0] for Way3) of the 4-Way Set Associative
Cache Memory as shown in Figure 31 below. Also maintain a N-bit (i.e lru[(N-1):0]) Counter Array
with number of entries equal to the number of entries in the Tag Array as shown in figure below. In
figure below the bits used to index the Data and Tag array may be same or different (i.e index0 =
index 1 or index0 != index1).

Figure 31: Full LRU for a 4-Way Set Associative Cache Memory

2. At Power on, reset the N-bit Counter Array to all decimal 3’s, N-bit LRU Array corresponding to
Way0 to all decimal 0’s, N-bit LRU Array corresponding to Way1 to all decimal 1’s, N-bit LRU Array
corresponding to Way2 to all decimal 2’s and N-bit LRU Array corresponding to Way3 to all decimal
3’s.

Architecture 47

Table 9: Full LRU Algorithm as Applied to a 4-Way Set Associative Cache Memory

3. Use the following algorithm to update the N-bit Counter and N-bit LRU vectors in the case of a
Cache Hit

48 CPU Design: Answers to Frequently Asked Questions

Table 9: Full LRU Algorithm as Applied to a 4-Way Set Associative Cache Memory

4. Don’t update N-bit Counter and N-bit LRU vectors in the case of Snoop Invalidate as this involves
lot of additional complexity.

5. Use the following algorithm to replace an entry and update the N-bit Counter and N-bit LRU vec-
tors in the case of a Cache Miss

Architecture 49

Table 9: Full LRU Algorithm as Applied to a 4-Way Set Associative Cache Memory

15. Describe the way Round Robin Algorithm gets used in replacing an entry in a
4-Way Set Associative Cache Memory?

Table below shows the way Round Robin Algorithm gets used in replacing an entry in
a 4-Way Set Associative Cache Memory.

50 CPU Design: Answers to Frequently Asked Questions

Table 10: Round Robin Algorithm as Applied to a 4-Way Set Associative Cache Memory

1. Maintain a 2-bit Round Robin array with number of entries equal to the number of entries in the Tag
array as shown in the figure below. In figure below the bits used to index the Data and Tag array may
be same or different (i.e index0 = index 1 or index0 != index1).

Figure 32: RR for a 4-Way Set Associative Cache Memory

2. At Power on, reset the entire Round Robin Array to all 0’s.

3. Round Robin array remains untouched in the case of a Cache Hit.

4. Round Robin array remains untouched in the case of a Snoop Invalidate.

5. Use the following algorithm to replace an entry and update the Round Robin array in the case of a
Cache Miss.

16. What do you mean by Coherency and what are the various Cache Coherency
Protocols used?

Coherency problem refers to inconsistency of distributed cached copies of the same
cache line addressed from the shared memory. A Memory System is Coherent if it
meets the following three requirements -

Architecture 51

1. Write to a location by processor ‘P’ followed by a read to the same location by pro-
cessor ‘P’ returns the value written by processor ‘P’ as long as there are no other
writes by other processors to that location in between the write and read of processor
‘P’ i.e In figure below if CPU 1 writes ‘A’ to location ‘Y’ then all future reads of loca-
tion ‘Y’ will return ‘A’ if no other processor writes to location ‘Y’ after CPU 1.

Figure 33: Requirement 1 for a Coherent Memory System

2. Write to a location by processor ‘P’ eventually gets seen by other processors mak-
ing a read to the same location as long as the write and read are sufficiently separated
and there are no other writes happening to that location by other processors in

52 CPU Design: Answers to Frequently Asked Questions

between the write and read i.e In figure below if CPU 1 writes ‘A’ to location ‘Y’,
CPU 2 will eventually be able to read value ‘A’ from location ‘Y’ as long as there are
no other writes to location ‘Y’ in between the write made by CPU 1 and the read
made by CPU 2.

Figure 34: Requirement 2 for a Coherent Memory System

3. Writes to the same location are serialized i.e In figure below if CPU’s 1 and 2 both
write to location ‘Y’, all processors see the same order of writes.

Architecture 53

Figure 35: Requirement 3 for a Coherent Memory System

Protocol is a means by which caches, processors, main memory and bus masters com-
municate with each other. Cache Coherency protocol is a means by which all caches
within a system assure that coherency is maintained and bus collisions do not occur.

Table below shows the various schemes used to maintain Coherency.

Table 11: Schemes used to Maintain Coherency

Scheme

Software Scheme

Description

This scheme generally depends on the actions of the programmer, compiler or
the operating system in dealing with the coherence problem. Some of the meth-
ods used here are

1. declaring shared data as non-cacheable.
2. allowing caching of shared data and providing some special cache

managing instructions for cache flush or selective invalidation in order to
maintain coherence.

Decision about coherence related actions are often made statically (i.e while
coding if programmer and during compiler analysis if compiler) if we were
relying on the actions of the programmer or compiler to maintain coherency.

54 CPU Design: Answers to Frequently Asked Questions

Table 11: Schemes used to Maintain Coherency

Scheme

Hardware Scheme

Description

This scheme yields better performance if the amount of shared data is limited
but if the processors are cooperatively working on a common application shar-
ing a large database then degradations due to memory access are likely to be
felt. Software schemes are generally less expensive than their hardware coun-
terparts but their inefficiencies in maintaining coherency makes their usage less
favorable when compared to their hardware counterparts.

This scheme deals with the coherence problem by dynamic recognition of
inconsistency conditions for shared data entirely at run time. This scheme
promises better performance when compared to software scheme. Being totally
transparent to software, hardware scheme frees the programmer and compiler
from any responsibility for coherence maintenance. Two basic hardware
schemes used in the industry are

Directory (Point to Point) based Scheme
In this scheme the global, system wide status information relevant for coher-
ence maintenance is stored in some kind of a central or distributed directory.
Here directories can be organized in different ways and it is the responsibility of
the central or distributed memory controller to take appropriate actions to pre-
serve the coherence by sending directed (point-to-point) individual messages to
known locations, avoiding the broadcasts. This scheme is primarily suitable for
large scale multiprocessor systems with interconnection networks.

Broadcast (Snoop) Scheme
Unlike the directory based scheme, in this scheme the responsibility for main-
taining coherence is distributed among local caches. The name (i.e snoop)
comes from the ability of the local cache controllers to snoop on the shared bus,
while all processors have to broadcast their requests that can modify the coher-
ence state of shared blocks. The importance of this scheme comes from its rela-
tive simplicity, low-cost implementation and ease in system expansion. Since
all processors share a common bus, bus traffic puts an upper limit on the num-
ber of processors that can be supported. Because of the bus traffic this scheme
is typically used in systems with a small or medium number of processors. Two
write policies usually applied in this scheme are write-invalidate and write-
update/write-broadcast.

Tables 13 and 14 below summarizes MOSI (as applied to Inclusive, Non-CMP Multi-
Processor System shown in Figure 37), MOESI (as applied to Inclusive, Non-CMP
MultiProcessor System shown in Figure 37), MHOSI (as applied to Inclusive, CMP
MultiProcessor System shown in Figure 38) and MEI (as applied to Inclusive, Non-
CMP UniProcessor System shown in Figure 36) Cache Coherency Protocols as used
in the industry.

System configurations (i.e Non-CMP, UniProcessor System, Non-CMP MultiProces-
sor System and CMP MultiProcessor System) and State definitions used in Tables 13
and 14 are described in Table 12 below.

Architecture 55

Table 12: System Configuration Description and State Definitions

System Configurations

Non-CMP,
UniProcessor
System

Non-CMP
MultiProcessor
System

CMP
MultiProcessor
System

Figure below shows a Non-CMP UniProcessor system.

Figure 36: Non-CMP Uniprocessor System

Figure below shows a Non-CMP MultiProcessor system.

Figure 37: Non-CMP MultiProcessor System

Figure below shows a CMP MultiProcessor system.

Figure 38: CMP MultiProcessor System

State Definitions

56 CPU Design: Answers to Frequently Asked Questions

Table 12: System Configuration Description and State Definitions

Definition of
various states in
MEI, MOSI and
MOESI

Definition of
various states in
MHOSI

M - Line is modified by this CPU and is not shared by other CPU’s within the
System and the line may or may not be present in lower level Caches within this
CPU.
O - Line is modified by this CPU and is shared by other CPU’s within the System
and the line may or may not be present in lower level Caches within this CPU.
E - Line is unmodified by this CPU and is not shared by other CPU’s within the
System and the line may or may not be present in lower level Caches within this
CPU.
S - Line is unmodified by this CPU and is shared by other CPU’s within the Sys-
tem and the line may or may not be present in lower level Caches within this
CPU.
I - Line is Invalid within this CPU.

M - Line is modified by this CPU and is not shared by other CPU’s within the
System and the line is not present in any of the lower level Caches within this
CPU.
H - Line is modified by this CPU and is not shared by other CPU’s within the Sys-
tem and the line is present in at least one of the lower level Caches within this
CPU.
O - Line is modified by this CPU and is shared by other CPU’s within the System
and the line may or may not be present in lower level Caches within this CPU.
S - Line is unmodified by this CPU and is shared by other CPU’s within the Sys-
tem and the line may or may not be present in lower level Caches within this
CPU.
I - Line is Invalid within this CPU.

For the System Configurations shown in Figures 36, 37 and 38, following things are
assumed

L1$ is write through whereas L2$ is write back.
Stores do not allocate on a store miss in L1$.
Coherency is maintained in L2$.
L2$ is inclusive (i.e at any given time data sitting in L1$ is a subset of L2$).

1.
2.
3.
4.

In Tables 13 and 14 below, Hit is a condition where you have an address match and
the Line is in a state other than I (Invalid) state.

Architecture 57

Table 13: MOSI, MOESI and MHOSI Cache Coherency Protocols

Operation

Local Read Hit

MOSI
(Inclusive, Non-CMP Multi-

Processor)

CS

M

O

S

I

Operation, NS

1 . Read data.

2. Next State = M

1. Read Data.

2. Next State = O

1 . Read Data.

2. Next State = S

MOESI
(Inclusive, Non-CMP Multi-

Processor)

CS

M

O

E

S

I

Operation, NS

1. Read data.

2. Next State = M

1. Read Data.

2. Next State = O

1 . Read Data.

2. Next State = E

1. Read Data.

2. Next State = S

MHOSI
(Inclusive, CMP Multi-Processor)

CS

M

H

0

S

I

Operation, NS

1. Read data.

2. Next State = H

1. Read Data.

2. Next State = H

1 . Read Data.

2. Next State = O

1 . Read Data.

2. Next State = S

Local Read
Miss

M 1. Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the evicted address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3. Update entry with
required data from Main
memory or foreign
Caches.

4. Next State = S

M 1. Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the evicted address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

4. Next State = E if
Main memory forwarded
the data and it is the only
one which has it or Next
State = S if the data was
forwarded by foreign
Cache over the System
bus.

M 1. Evict data to Main
memory.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3. Update entry with
required data from Main
memory or foreign
Caches.

4. Next State = S

58 CPU Design: Answers to Frequently Asked Questions

Table 13: MOSI, MOESI and MHOSI Cache Coherency Protocols

Operation

MOSI
(Inclusive. Non-CMP Multi-

Processor)

CS

o

s

Operation, NS

1. Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the evicted address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

4. Next State = S

1. Invalidate local
Caches which has data
corresponding to the
Replaced address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

4. Next State = S

MOESI
(Inclusive, Non-CMP Multi-

Processor)

CS

o

E

Operation, NS

1. Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the evicted address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

4. Next State = E if
Main memory forwarded
the data and it is the only
one which has it or Next
State = S if the data was
forwarded by foreign
Cache over the System
bus.

1. Invalidate local
Caches which has data
corresponding to the
Replaced address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3, Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

4. Next State = E if
Main memory forwarded
the data and it is the only
one which has it or Next
State = S if the data was
forwarded by foreign
Cache over the System
bus.

MHOSI
(Inclusive, CMP Multi-Processor)

CS

H

O

Operation, NS

1 . Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the evicted address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

4. Next State = S

1 . Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the evicted address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3, Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

4. Next State = S

Architecture 59

Table 13: MOSI, MOESI and MHOSI Cache Coherency Protocols

Operation

MOSI
(Inclusive, Non-CMP Multi-

Processor)

CS

I

Operation, NS

1. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

2. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

3. Next State = S

MOESI
(Inclusive, Non-CMP Multi-

Processor)

CS

S

I

Operation, NS

1. Invalidate local
Caches which has data
corresponding to the
Replaced address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

3. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

4, Next State = E if
Main memory forwarded
the data and it is the only
one which has it or Next
State = S if the data was
forwarded by foreign
Cache over the System
bus.

1. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

2. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

3.Next State = E if
Main memory forwarded
the data and it is the only
one which has it or Next
State = S if the data was
forwarded by foreign
Cache over the System
bus.

MHOSI
(Inclusive, CMP Multi-Processor)

CS

S

I

Operation, NS

1. Invalidate local
Caches which has data
corresponding to the
Replaced address.

2. Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address,

3. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

4. Next State = S

1 . Place Read-to-Share
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Read Miss address.

2. Update entry with
required data from Main
memory or foreign
Caches over the System
bus.

3. Next State = S

60 CPU Design: Answers to Frequently Asked Questions

Table 13: MOSI, MOESI and MHOSI Cache Coherency Protocols

Operation

Local Write
Hit

MOSI
(Inclusive, Non-CMP Multi-

Processor)

CS

M

o

S

Operation, NS

1. Update entry with
new data

2. Next State = M

1. Place Write-to-Invali-
date request over the
System bus which forces
foreign Caches to invali-
date data corresponding
to the Write Hit address.

2. Update entry with
new data.

3. Next State = M

1. Place Write-to- Invali-
date request over the
System bus which forces
foreign Caches to invali-
date data corresponding
to the Write Hit address.

2. Update entry with
new data.

3. Next State = M

MOESI
(Inclusive, Non-CMP Multi-

Processor)

CS

M

O

E

Operation, NS

1 . Update entry with
new data

2. Next State = M

1. Place Write-to-Invali-
date request over the
System bus which forces
foreign Caches to invali-
date data corresponding
to the Write Hit address.

2. Update entry with
new data.

3. Next State = M

1 . Update entry with
new data

2. Next State = M

MHOSI
(Inclusive, CMP Multi-Processor)

CS

M

H

O

Operation, NS

1. Update entry with
new data

2. Next State = M

1. Invalidate local
Caches (excluding the
one which placed the
Write request) which has
data corresponding to
the Write Hit address.

2. Update entry with
new data.

3. Next State = M if the
cache which placed the
request had a Miss for
the Write address or
Next State = H if the
cache which placed the
request had a Hit for the
Write address.

1. Invalidate local
Caches (excluding the
one which placed the
Write request) which has
data corresponding to
the Write Hit address.

2. Place Write-to-Invali-
date request over the
System bus which forces
foreign Caches to invali-
date data corresponding
to the Write Hit address.

3. Update entry with
new data.

4. Next State = M if the
cache which placed the
request had a Miss for
the Write address or
Next State = H if the
cache which placed the
request had a Hit for the
Write address.

Architecture 61

Table 13: MOSI, MOESI and MHOSI Cache Coherency Protocols

Operation

MOSI
(Inclusive, Non-CMP Multi-

processor)

cs Operation, NS

MOESI
(Inclusive, Non-CMP Multi-

processor)

CS

S

I

Operation, NS

1. Place Write-to-Invali-
date request over the
System bus which forces
foreign Caches to invali-
date data corresponding
to the Write Hit address.

2. Update entry with
new data.

3. Next State = M

MHOSI
(Inclusive, CMP Multi-Processor)

CS

S

I

Operation, NS

1. Invalidate local
Caches (excluding the
one which placed the
Write request) which has
data corresponding to
the Write Hit address.

2. Place Write-to- Invali-
date request over the
System bus which forces
foreign Caches to invali-
date data corresponding
to the Write Hit address.

3. Update entry with
new data.

4. Next State = M if the
cache which placed the
request had a Miss for
the Write address or
Next State =H if the
cache which placed the
request had a Hit for the
Write address.

Local Write
Miss

M 1. Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the Evicted address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

M 1. Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the Evicted address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

M 1. Evict data to Main
memory.

2, Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

I -

- -

62 CPU Design: Answers to Frequently Asked Questions

Table 13: MOSI, MOESI and MHOSI Cache Coherency Protocols

Operation

MOSI
(Inclusive, Non-CMP Multi-

Processor)

cs

S

Operation, NS

1 . Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the Evicted address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

1. Invalidate local
Caches which has data
corresponding to the
Replaced address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

MOESI
(Inclusive, Non-CMP Multi-

Processor)

CS

O

E

Operation, NS

1. Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the Evicted address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

1. Invalidate local
Caches which has data
corresponding to the
Replaced address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

MHOSI
(Inclusive, CMP Multi-Processor)

CS

H

O

Operation, NS

1. Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the Evicted address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

1 . Evict data to Main
memory and Invalidate
local Caches which has
data corresponding to
the Evicted address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

O

Architecture 63

Table 13: MOSI, MOESI and MHOSI Cache Coherency Protocols

Operation

MOSI
(Inclusive, Non-CMP Multi-

Processor)

cs

I

Operation, NS

1. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

2. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

3. Next State = M

MOESI
(Inclusive, Non-CMP Multi-

Processor)

CS

S

I

Operation, NS

1. Invalidate local
Caches which has data
corresponding to the
Replaced address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

1. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

2. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

3. Next State = M

MHOSI
(Inclusive, CMP Multi-Processor)

CS

S

I

Operation, NS

1. Invalidate local
Caches which has data
corresponding to the
Replaced address.

2. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

3. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

4. Next State = M

1. Place Read-to-Own
request over the System
bus which forces Main
Memory or foreign
Caches over the System
bus to forward the latest
data corresponding to
the Write Miss address
and also forces foreign
Caches to invalidate data
corresponding to the
Write Miss address.

2. Update entry with
data formed by merging
data (i.e either from for-
eign Caches or Main
Memory) over System
bus with the latest data.

3. Next State = M

64 CPU Design: Answers to Frequently Asked Questions

Table 13: MOSI, MOESI and MHOSI Cache Coherency Protocols

Operation

Snoop Hit
(Read-to-Share
Request)

MOSI
(Inclusive, Non-CMP Multi-

processor)

cs

M

O

S

I

Operation, NS

1 . Provide data.

2. Next State = O

1. Provide Data.

2. Next State = O

1 . Next State = S

-

MOESI
(Inclusive, Non-CMP Multi-

processor)

CS

M

O

E

S

I

Operation, NS

1 . Provide data.

2. Next State = O

1 . Provide Data.

2. Next State = O

1 . Provide data.

2. Next State = S

1 . Next State = S

-

MHOSI
(Inclusive, CMP Multi-Processor)

CS

M

H

O

S

I

Operation, NS

1 . Provide data.

2. Next State = O

1. Provide Data.

2. Next State = O

1 . Provide Data.

2. Next State = O

1 . Next State = S

Snoop Hit
(Read-to-Own
Request)

M

O

s

1. Provide data.

2. Invalidate local
Caches which has data
corresponding to the
Snoop address.

3. Next State = I

1. Provide data.

2. Invalidate local
Caches which has data
corresponding to the
Snoop address.

3. Next State = I

1. Invalidate local
Caches which has data
corresponding to the
Snoop address.

2. Next State = I

M

O

E

S

I

1. Provide data.

2. Invalidate local
Caches which has data
corresponding to the
Snoop address.

3. Next State = I

1. Provide data.

2. Invalidate local
Caches which has data
corresponding to the
Snoop address.

3. Next State = I

1. Provide data.

2. Invalidate local
Caches which has data
corresponding to the
Snoop address.

3. Next State =I

1. Invalidate local
Caches which has data
corresponding to the
Snoop address.

2. Next State = I

M

H

O

S

I

1. Provide data.

2. Next State =I

1. Provide data.

2. Invalidate local
Caches which has data
corresponding to the
Snoop address.

3. Next State = I

1. Provide data.

2. Invalidate local
Caches which has data
corresponding to the
Snoop address.

3. Next State = I

1. Invalidate local
Caches which has data
corresponding to the
Snoop address.

2. Next State = I

-

I -

- -

Architecture 65

Table 13: MOSI, MOESI and MHOSI Cache Coherency Protocols

Operation

Snoop Hit
(Write-to
Invalidate
Request)

MOSI
(Inclusive, Non-CMP Multi-

Processor)

CS Operation, NS

M

O

S

I

1. Invalidate local
Caches which has data
corresponding to the
Snoop address.

2. Next State = I

1. Invalidate local
Caches which has data
corresponding to the
Snoop address.

2. Next State = I

MOESI
(Inclusive, Non-CMP Multi-

processor)

CS Operation, NS

M

O

E

S

I

-

1. Invalidate local
Caches which has data
corresponding to the
Snoop address.

2. Next State = I

-

1. Invalidate local
Caches which has data
corresponding to the
Snoop address.

2. Next State = I

MHOSI
(Inclusive, CMP Multi-Processor)

CS

M

H

O

S

I

Operation, NS

1. Invalidate local
Caches which has data
corresponding to the
Snoop address.

2. Next State = I

1 . Invalidate local
Caches which has data
corresponding to the
Snoop address.

2. Next State = I

-

Table below summarizes MEI Cache Coherency Protocol as applied to a inclusive,
Non-CMP Uniprocessor System.

Table 14: MEI Cache Coherency Protocol

MEI
(Inclusive, Non-CMP Uniprocessor)

CS

M

Local Read Hit
(Operation, NS)

1. Read data.

2. Next State = M

Local Read Miss
(Operation, NS)

1 . Evict data to Main memory
and Invalidate local Caches
which has data corresponding
to the evicted address.

2. Place Read request to Main
memory.

3. Update entry with required
data from Main memory,

4. Next State = E

Local Write Hit
(Operation, NS)

1 . Update entry with new data

2. Next State = M

Local Write Miss
(Operation, NS)

1 . Evict data to Main mem-
ory and Invalidate local
Caches which has data cor-
responding to the Evicted
address.

2. Place Read request to
Main memory.

3. Update entry with data
formed by merging data
from Main Memory with
the latest data.

4. Next State = M

-

-

-

-

-

66 CPU Design: Answers to Frequently Asked Questions

Table 14: MEI Cache Coherency Protocol

MEI
(Inclusive, Non-CMP Uniprocessor)

CS

E

I

Local Read Hit
(Operation, NS)

1. Read Data.

2. Next State = E

-

Local Read Miss
(Operation, NS)

1. Invalidate local Caches
which has data corresponding
to the Replaced address.

2. Place Read request to Main
memory.

3. Update entry with required
data from Main memory.

4. Next State = E

1 . Place Read request to Main
memory.

2. Update entry with required
data from Main memory.

3. Next State = E

Local Write Hit
(Operation, NS)

1. Update entry with new data

2. Next State = M

Local Write Miss
(Operation, NS)

1. Invalidate local Caches
which has data correspond-
ing to the Replaced address.

2. Place Read request to
Main memory.

3. Update entry with data
formed by merging data
from Main Memory with
the latest data.

4. Next State = M

1 . Place Read request to
Main memory.

2. Update entry with data
formed by merging data
from Main Memory with
the latest data.

3. Next State = M

M

E

I

I/O Snoop Read Hit
(Operation, NS)

1. Provide data.

2. Next State = M

1. Provide data.

2. Next State = E

-

I/O Snoop Read Miss
(Operation, NS)

I/O Snoop Write Hit
(Operation, NS)

1. Invalidate local Caches
which has data corresponding
to the Snoop address.

2. Update entry with new data

3. Next State = M

1. Invalidate local Caches
which has data corresponding
to the Snoop address.

2. Update entry with new data

3. Next State = M

-

I/O Snoop Write Miss
(Operation, NS)

-

17. Explain Non-Pipelining, Pipelining, Superscalar, In-Order Execution and
Out-Of-Order Execution as applied to a Processor?

Table 15 below gives a brief description for Non-Pipelining, Pipelining, Superscalar,
In-Order Execution and Out-Of-Order Execution as applied to a Processor.

-

-

-

-

-

-

Architecture 67

Table 15: Non-Pipelining, Pipelining, Superscalar, In-Order and Out-Of-Order

Non-Pipelining

Pipelining

Superscalar

Here the Processor waits for an instruction to complete before it feeds a new
instruction in the pipe (i.e there is no overlap in the instruction flow). Figure
below illustrates the instruction flow in a Non-Pipelined Processor.
(Here we have assumed a 5-stage pipeline (i.e F (Fetch), D (Decode), R
(Read Register File), E (Execute), W (Writeback)) where the pipes are sepa-
rated by flops or latches.)

Figure 39: Non-Pipelined Processor

Here the Processor can potentially feed a new instruction in the pipe every
cycle by overlapping instruction execution. Figure below illustrates the
instruction flow in a Pipelined Processor.
(Here we have assumed a 5-stage pipeline (i.e F (Fetch), D (Decode), R
(Read Register File), E (Execute), W (Writeback)) where the pipes are sepa-
rated by flops or latches.)

Figure 40: Pipelined Processor

Here the Processor executes more than one instruction in a pipe stage. Figure
below illustrates the instruction flow in a Pipelined, 2-Way Superscalar Pro-
cessor.
(Here we have assumed a 5-stage pipeline (i.e F (Fetch), D (Decode), R
(Read Register File), E (Execute), W (Writeback)) where the pipes are sepa-
rated by flops or latches.)

Figure 41 : Pipelined, 2-Way Superscalar Processor

68 CPU Design: Answers to Frequently Asked Questions

Table 15: Non-Pipelining, Pipelining, Superscalar, In-Order and Out-Of-Order

In-Order
Execution

Out-Of-Order
Execution

Here the Processor executes instructions in a sequential fashion i.e a younger
instruction which is not dependent on any of the previous older instructions
still has to wait for its execution until all the older instructions gets executed.
Figure below illustrates In-Order Execution as applied to a Pipelined, 2-Way
Superscalar Processor.

Figure 42: In-Order Execution

Here the Processor executes instructions in a non sequential fashion i.e a
younger instruction which is not dependent on any of the previous older
instructions can be issued for execution before the older instructions get
issued. Figure below illustrates Out-Of-Order Execution as applied to a Pipe-
lined, 2- Way Superscalar Processor.

Figure 43: Out-Of-Order Execution

18. What is the equation for CPU Performance?

CPU performance is expressed as the amount of time it takes to execute a program.
CPU performance is given by the following equation -

Table below provides Ideal CPU performance for various Implementations.

CPU Performance CPU time

CPU time = Number of CPU cycles to execute a Program x Cycle time
= Instruction count(IC) x Average number of cycles per instruction(CPI) x Cycle time(T)

= IC x CPI x T(where T is inversely proportional to Frequency(F))

Architecture 69

Table 16: Ideal CPU Performance

19. Describe a simple Out-Of-Order CMP Chip with an example?

A typical CMP chip has more than one identical processor core, all of them connected
to a Memory Subsystem (MS) as shown in Figure 44 below. A processor core in a
CMP chip is implementation dependent i.e it could be an out-of-order or in-order
core. The choice of implementation really depends on the kind of applications you are
targeting for. An out-of-order processor core as shown in Figure 44 below typically
has 6 major units which are Fetch Unit (FU), Decode Unit (DU), Rename and Issue
Unit (RIU), Execution Unit (EXU), Dcache Unit (DCU) and Commit Unit (CU).

Typically FU is responsible for fetching instructions which need to be executed by the
Core. It could have more than one pipe stage. In many cases it is also responsible for
the following tasks - accessing ITLB (Instruction Translation Lookaside Buffer) for
translating Virtual address to Physical address for instruction access, accessing I$
(Instruction Cache) for instructions, providing support for static/dynamic branch pre-
diction, accessing DCU (assuming MMU (Memory Management Unit) is sitting in
DCU) in the case of ITLB miss, accessing MS in the case of I$ miss, providing parity
or ECC for the instructions and detecting few exception conditions (eg. parity error
etc.).

70 CPU Design: Answers to Frequently Asked Questions

Typically DU is responsible for decoding instructions. In many cases it is also respon-
sible for renaming destination registers and managing various resources in various
units down the pipeline. Typical resources being Commit Queue (queue which is
responsible for handling in-order retirement of instructions), Issue Queue (queue
where instructions go and sit waiting for them to be picked for issue), various Reorder
Buffers or Working Register Files (temporary place holder for results before being
written into Architectural Register File), Load Queue (queue responsible for handling
Load instructions) and Store Queue (queue responsible for handling Store instruc-
tions).

Typically RIU is responsible for renaming source registers, picking instructions
which are ready to be issued and issuing instructions by providing the necessary con-
trols to the Architectural Register File (ARF), Working Register File (WRF) and
Bypass Mux’s.

Typically EXU is responsible for executing integer as well as floating point and
graphics instructions. In many cases EXU has multiple similar functional units to sup-
port the superscalar nature of the pipe. In many cases it is also the place where archi-
tectural register files (ARF’s) and working register files (WRF’s) reside. In a 64-bit
architecture these registers are 64-bit wide whereas in a 32-bit architecture they are
32-bits wide. In many cases in addition to data there could be some control informa-
tion sitting in the WRF’s.

Typically DCU is responsible for handling Loads and Stores. In many cases it has a
Load Queue (LQ) for handling the Load instructions, Store Queue (SQ) for handling
the Store instructions and a Data Cache (D$) for holding the most recently used data.
It is also the place of residence for DTLB (Data TLB) and second level unified TLB
(i.e MMU (Memory Management Unit)). DTLB is responsible for providing the
address translation (i.e VA to PA) for Loads and Stores. MMU is responsible for pro-
viding address translations for the ones which missed in ITLB and DTLB. In some
cases MMU could be represented as a separate unit in the block diagram.

Typically CU is responsible for committing instructions which have executed without
exceptions. It commits instructions in-order by reading a value from WRF and writ-
ing it into ARF for the instructions which have valid destination registers and for the
ones which doesn’t have one it treats them as NOP’s (i.e there is no movement of data
into ARF). In many cases it is also responsible for handling external interrupts, inter-
nal exceptions/traps, redirecting FU in the case of branch misdirection and initializing
PC and NPC coming out of RESET.

Typically MS is responsible for servicing requests that missed in Level 1 Caches of
each of the individual cores and external Snoop requests. MS has a Crossbar Inter-
face, additional levels of Caches (i.e L2, L3 etc.), on chip Memory Controllers and
System Interface logic. MS could see one of the following requests from each core -
D$ miss request, I$ miss request, MMU miss request (if supporting hardware table

Architecture 71

walk), instruction prefetch from FU and data prefetch from DCU. MS is also respon-
sible for maintaining cache coherency. Typical cache coherency protocols used are -
MEI, MOSI, MOESI and MHOSI

Figure 44: Block Diagram of a CMP Chip with an Out-Of-Order Processor Core

In the following paragraphs, tables and figures I tend to explain Core0 (an Out-Of-
Order Processor Core) within the CMP Chip (shown in Figure 44 above) by taking an
example.

Let’s assume the Core to be a 64-bit, 3-Way superscalar Out-Of-Order Processor.
Let’s assume a 10-stage Integer/Floating Point and Graphics pipeline and a 13-stage
Memory pipeline which spans across various blocks within the Core as shown in Fig-
ure 45 below. Eventhough most of the floating point and graphics (fp&g) operations
take more than one pipe stage, here for simplicity it’s been assumed that these opera-
tions (including integer multiply and divide) take one pipe stage. The reason behind
the number of pipe stages assumed for integer/fp&g/memory operations is to keep up
with the current design trend of high frequency and high performance processors.

Table 17 below shows the functionality assumed within various blocks within the
Core and Memory Subsystem. Here I have tried to be realistic by assuming the vari-
ous cache sizes, queue depths and other functionality within the blocks to reflect the
current design trend in the CPU design towards providing a good performance num-
ber for both commercial and technical applications. I have tried to provide enough
functional information for each block to a point where it gets easy to understand the
Out-Of-Orderliness of the Core. I need to warn you here that you may find some
details missing for each block in the tables and figures below, this has been done on
purpose to make it easier for explanation.

72 CPU Design: Answers to Frequently Asked Questions

Figure 45: 10-Stage Integer/Floating Point & Graphics and 13-stage Memory Pipeline

Architecture 73

Table 17: Functionality within Various Blocks

Block

FU

Functionality

It has a 32K, 8-Way, 1 Read port, 1 Write port I$, 64-entry fully associative translation
lookaside buffer (FA-ITLB), a 2-bit Gshare branch prediction logic, a Branch target
address buffer (BTA) and a 2-entry Instruction Miss Buffer (IMB). Assuming there is no
self modifying code, there won’t be any invalidation requests to I$. I$ here is responsible
for storing instructions which has high probability of getting executed. FA-ITLB here is
responsible for providing Physical Address for instruction access (for simplicity reasons I
haven’t shown context ID and other privileged and control bits as part of the FA-ITLB
entry). 2-bit Gshare is responsible for providing the prediction information for branches.
BTA is responsible for proving the target address for non-PC relative branches which are
predicted as taken and IMB is responsible for handling I$ and ITLB misses. IMB is a place
holder for both the Miss information and the data coming from MS. Let’s assume that each
instruction is 4 bytes wide, line size is 32bytes, Page size (i.e the size of pages in Main
Memory) is 8KB and Main Memory is 32PetaBytes. Lets assume a 64-bit Virtual Address
(VA). Since the Cache size is 32KB, the size of each Way will be 4KB (i.e 32KB/8). The
branch prediction logic here consists of a 7-bit Gshare register, an array of 2-bit saturating
counters to predict branches and a branch target address buffer (BTA) for storing the target
address of taken branches (non PC relative branches). An array of 2-bit saturating counters
form BPA (Branch Prediction Array) which is organized as a 128x16 structure. BTA is
organized as a 128x62 structure. A saturating counter here refers to the following - When
the counter reaches its maximum count (i.e 2’b11 in this case) further increments to its
count value will not change the value (i.e will remain at 2’b11). Since CALL/RETURN
instructions are not being supported (for simplicity reasons), FU does not provide support
for a RAS (Return Address Stack) structure. Typically RAS gets used to push PC of the
CALL (results in calling a Subroutine) instruction and a RETURN (returns from Subrou-
tine) instruction pops this value back from RAS wherein this popped value plus four gets
used for next instruction access. Having a RAS structure greatly improves the performance
of CALL/RETURN instructions. Here FU has 2 stages namely A and F (Figures 48 and 5 3
in the following pages provides micro-architectural description for the functionality in pipe
stages A and F). Following are the things that get done in each of the 2 stages -

A Stage -
1. Access all 8-Ways of I$ Data as well as Tag array with the lower bits (i.e [11 :5]) of the
Virtual Address (since the minimum page size is 8KB, the lower 13 bits of Virtual Address
(VA) should be same as the lower 13 bits of Physical Address (PA), so accessing the Cache
with bits [11:5] of VA should not cause any aliasing issues). Since the line size is 32bytes
we will have 128 lines sitting in each Way. Each Way is organized as a 128x256 array (i.e
128 rows with each row having 8 instructions). On every access we access 8 instructions
from each Way as shown in Figure 48. Since each Way has 128 lines we need to store Tag
addresses for all 128 lines. Tag array is implemented as a 128 entry structure with each
entry holding Tag address (i.e bits [44:12]) for a line stored in its corresponding Data Way.
Since the line size is 32bytes, we use bits [11:5] of the VA to access each Way of the Tag
array. Since ITLB is fully associative we compare bits [63:13] of the VA against all the
entries of VAA (Virtual Address Array). If one of the entries results in a HIT then we end
up with a 64-bit one hot vector which gets used to select its corresponding entry

74 CPU Design: Answers to Frequently Asked Questions

Table 17: Functionality within Various Blocks

Block Functionality

holding on to bits [44:13] of the PA in PAA (Physical Address Array). The PA coming out
of FA-ITLB along with bit 12 of the VA gets compared against the ones read out of each of
the Tag arrays. In the case of a HIT we end up with a 8-bit one hot vector which gets
flopped at the end of this stage. The 8 instructions from each Way gets flopped at the end of
this stage.
2. On every access to I$, BPA and BTA also gets accessed. The value that gets used to
index BPA is an XORed value of the index bits used to access I$ (i.e VA[11 :5]) and 7-bit
Gshare register value. Gshare register which is initially initialized with all 0’s is a shift left
register. This register is left shifted every time a branch instruction is found to be predicted
taken and the shift in value into this register is the least significant bit (i.e bit 2 (i.e [2]) in
this case) of the target address of the branch instruction which was predicted as taken. We
read a 16-bit value from BPA (i.e [15:14] for 10, [13:12] for I1, [11:10] for I2, [9:8] for I3,
[7:6] for I4, [5:4] for I5, [3:2] for I6 and [1:0] for I7) and a 62-bit value (i.e [63:2]) from
BTA and flop them at the end of this stage. The most significant bit of the 2-bit value read
from BPA for each instruction is the prediction bit and the least significant bit is the
strength bit. This 2-bit value can have one of the following four combinations

The 2-bit saturating counters in the BPA are all initialized to 2’b01 at the time of RESET.
BPA along with BTA are updated by CU with the result of the branch instruction. BTA gets
updated only for non-PC relative branch instructions. In the case of a I$ or ITLB miss the
miss information gets forwarded to IMB which is responsible for getting the data and
updating I$/ITLB for the missed addresses.

F Stage -
1. Select instructions from one of the 8 Ways using 8-bit one hot vector as Way select and
forward the selected fetch group to DU/Instruction Buffer.
2. Instructions are decoded to see if there are any branch instructions and if there are
branch instructions then 2-bit Gshare corresponding to the branch instruction gets used to
predict whether it needs to be taken or not taken. If its predicted taken then the instructions
following the branch instruction are discarded and the new PC and NPC values are calcu-
lated and used to access I$. If the branch is predicted not taken then there is no change in
the flow of execution. In many cases there is a 1-2 cycle penalty once we come across a
branch instruction which is predicted taken. This penalty is for the reason that while we are
predicting a branch in F stage there is already an access happening in A stage and if this
branch were to be predicted taken then we need to cancel the current access in A stage and
make a new I$ access.
3. Generate and forward 3-bit Valid Vector to DU. This provides information about the
validity of instructions in the current fetch group being forwarded to DU.
4. See if any fetched instruction results in any kind of exception (i.e Parity error etc.) and if
it does result in any kind of exception then forward this information to DU along with the
instruction.

Architecture 75

Table 17: Functionality within Various Blocks

Block

DU

Functionality

It maintains the following logic -
1. 5-bit counter (since all the WRF’s are 32 entries) for renaming destination registers (i.e
assigning WRF_ID) of instructions forwarded by FU. Issue Queue and Commit Queue
uses this 5-bit WRF_ID (i.e IID) to update its entries with instructions forwarded by DU.
2. 6-bit counter (since LQ is 32 entries deep, the additional bit (i.e bit [5] of the 6-bit
counter value) is the wrap bit that gets used by LQ in determining the age of the instruc-
tions sitting in it) for assigning Load Queue ID’s (i.e LQ_ID) for Load and Store instruc-
tions that gets forwarded by FU. LQ_ID[4:0] gets used by DCU as index to update LQ
entries with its corresponding Load/Store instruction.
3. 5-bit counter (since SQ is 16 entries deep, the additional bit (i.e bit [4] of the 5-bit
counter value) is the wrap bit that gets used by SQ in determining the age of the Store
instructions sitting in it)) for assigning Store Queue ID’s (i.e SQ_ID) for Store instructions
forwarded by FU. SQ_ID[3:0] gets used by DCU as index to update SQ entries with its
corresponding Store instruction.
4. Resource management logic for managing various resources in various units down the
pipe.

DU has 1 pipe stage namely D (Figures 48 and 53,54 in the following pages provides
micro-architectural description for the functionality in pipe stage D). Following are the
things that get done in D stage -

D Stage -
1. Generate predecode bits as required by units (i.e RIU, EXU, DCU and CU) down the
pipe.
2. Manage the following resources in various units down the pipeline - 32-entry Issue
Queue (in RIU), 32-entry Integer Working Register File (in EXU), 32-entry Floating Point
Working Register File (in EXU), 32-entry Condition Code Working Register File (in
EXU), 32-entry Load Queue (in DCU), 16-entry Store Queue (in DCU) and 32-entry Com-
mit Queue (in CU)
3. Provide Instruction ID’s (i.e IID) for all the valid instructions that gets forwarded by FU.
4. Rename destination registers (i.e assigning IWRF_ID, FWRF_ID and CWRF_ID) of all
the valid instructions that gets forwarded by FU.
5. Provide Load Queue ID’s (i.e LQ_ID) for all the valid Loads and Stores forwarded by
FU.
6. Provide Store Queue ID’s (i.e SQ_ID) for all the valid Stores forwarded by FU.
7. Provide a 3-bit Slot information (i.e Slot Vcctor[2:0]) for each valid instruction for-
warded by FU. Slot Vector corresponding to an instruction conveys the following informa-
tion to RIU -
a. if Slot Vector[2:0] = 3’b001, this instruction can be issued only to Slot0 in EXU.
b. if Slot Vector[2:0] = 3’b010, this instruction can be issued only to Slot1 in EXU.
c. if Slot Vector[2:0] = 3’b100, this instruction can be issued only to Slot2 in EXU.

Since most of the Queue structures are less than or equal to the size of Commit Queue, we
only have to manage Commit Queue and Store Queue. The reason we have to manage
Store Queue even though its size is less than CQ is because Store instructions which are
commited (i.e drained from CQ) need not necessarily be completed (i.e written to local
caches and seen globally by other Processors) yet by the SQ. Also since we are providing
WRF_ID to all the valid instructions forwarded by FU, IID = WRF_ID for any valid
instruction.

76 CPU Design: Answers to Frequently Asked Questions

Table 17: Functionality within Various Blocks

Block

RIU

Functionality

It has a 32 entry IRT (Integer Rename Table), 32 entry FRT (Floating point Rename Table)
and a 8 entry CRT (Condition Code Rename Table). The reason IRT is 32 entries, FRT is
32 entries and CRT is 8 entries is because the Core provides support for 32 Integer archi-
tectural registers, 32 Floating Point architectural registers and 8 Condition Code architec-
tural registers. Architectural registers are the ones seen by the programmer. It has a 32
entry Issue Queue (IQ) where the instructions from DU go and sit before getting picked for
issue. It has a 32-entry Ready Bit Array (RBA). RBA is indexed with the renamed source
register specifier (i.e WRF_ID). If the entry in RBA indexed by WRF_ID has 1 in it then it
means that the source register is dependent free. Here for simplicity its been assumed that
floating point (fp) and graphics instructions only use fp registers and fp&g condition codes
where as integer instructions only use integer registers and integer condition codes (except
for Load and Store instructions). IRT, FRT and CRT are implemented as register file struc-
tures for area, timing and power reasons.

IRT has 12 read ports (9 read ports to support source register renaming of 3 integer instruc-
tions (each of which can have a maximum of 3 integer source registers) forwarded by D
stage, 3 read ports to support reading of data for invalidation based on commit information
provided by CU) and 6 write ports (3 write ports to update entries with the new renamed
destination register specifiers of 3 integer instructions (each of which can have one integer
destination register) provided by D stage, 3 write ports to invalidate entries based on com-
mit information provided by CU). Here Read happens in the first half and Write happens in
the second half of the cycle.

FRT has 12 read ports (9 read ports to support source register renaming of 3 floating point
(fp) and graphics instructions (each of which can have a maximum of 3 fp source registers)
forwarded by D stage, 3 read ports to support reading of data for invalidation based on
commit information provided by CU) and 6 write ports (3 write ports to update entries with
the new renamed destination register specifiers of 3 floating point and graphics instructions
(each of which can have one fp destination register) provided by D stage, 3 write ports to
invalidate entries based on commit information provided by CU). Here Read happens in
the first half and Write happens in the second half of the cycle.

CRT has 6 read ports (3 read ports to support source register renaming of 3 condition code
(CC) integer and floating point and graphics (fp&g) instructions (each of which can have a
maximum of one condition code source register) forwarded by D stage, 3 read ports to sup-
port reading of data for invalidation based on commit information provided by CU) and 6
write ports (3 write ports to update entries with the new renamed destination integer and
fp&g condition code register specifiers of 3 integer/fp&g instructions (each of which can
have one integer or fp&g destination CC register) provided by D stage, 3 write ports to
invalidate entries based on commit information provided by CU). Here Read happens in
the first half and Write happens in the second half of the cycle.

Here we could have optimized logic by having a separate Valid bit array for each of the
Rename tables but to make things simpler for explanation I have combined it with each of
the rename tables.

Since EXU is 3-Way Superscalar (i.e it has 3 Slots with each Slot having one or more func-
tional units), RIU provides support for 3 pickers (i.e one for each Slot (i.e Slot0, Slot1 and

Architecture 77

Table 17: Functionality within Various Blocks

Block Functionality

Slot2)) each of which can pick an instruction Out-Of-Order (i.e a younger instruction could
be picked for issue ahead of an older instruction). RIU has 3 pipe stages namely R, UI and
P (Figures 49, 50 and 54, 55, 56 in the following pages provides micro-architectural
description for the functionality in pipe stages R, UI and P). Following are the things that
get done in each of the three stages -

R Stage -
1. Rename source registers by doing intra-bundle dependency checking and by looking at
the rename tables using architectural register specifiers (5-bit register specifiers in the
instruction opcode) as index.
2. Update rename tables with the new values forwarded by DU i.e index rename tables with
valid destination architectural register specifiers forwarded by DU and update those entries
with renamed destination register values (i.e WRF_ID’s) provided by DU.
3. Invalidate entries in rename tables based on commit data provided by CU. It invalidates
an entry if the following condition is true

WRF_ID of the retiring instruction (i.e instruction being committed by CU) matches with
the WRF_ID sitting in the rename table at location indexed by the architectural destination
register specifier (i.e ARF_ID) of the retiring instruction.
4. Provide ‘use_WRF_data’ (if set to Logic 1 means use data from WRF) bit for each of the
source register fields (i.e RS1, RS2 and RS3) in an instruction. ‘use_WRF_data’ bit for a
source register field say ‘RS1’ is set if one of the following 2 conditions is true
Condition 1
a. Instruction has valid ‘RS1’ field.
b. Register field ‘RS1’ matches with one of the destination register field (i.e ‘RD’) of an
instruction older to it in the same fetch group.
Condition 2
a. Instruction has valid ‘RS1’ field.
b. Rename table indexed with ‘RS1’ as index has a valid entry in it.
c. ARF_ID of the committing instruction does not match with ‘RS1’ or if it matches the
WRF_ID sitting in the indexed entry (i.e indexed by ARF_ID of the committing instruc-
tion) does not match with the WRF_ID of the committing instruction.
5. Provide ‘Ready’ bit (if set to Logic 1 means source register is dependent free) for each of
the source register fields (i.e RS1 , RS2 and RS3) in an instruction. ‘Ready’ bit for a source
register field say ‘RS1’ is set if one of the following conditions is true
Condition 1
Source register specifier ‘RS1’ is invalid (i.e the instruction does not have a valid ‘RS1’
field).
Condition 2
Valid bit in its corresponding entry in the rename table shows the entry to be invalid and
‘RS1’ does not have a match with any of the architectural destination register specifiers of
older valid instructions in its fetch group (i.e fetch group forwarded by D stage).
Condition 3
Valid bit in its corresponding entry in the rename table shows the entry to be valid, ‘RS1’
does not have a match with any of the architectural destination register specifiers of older
valid instructions in its fetch group (i.e fetch group forwarded by D stage) and
ARF_ID (architectural destination register specifier) of the retiring instruction matches
with RS1 and the WRF_ID of the retiring instruction matches with the WRF_ID sitting in
the rename table indexed by the ARF_ID of the retiring instruction.

Condition

78 CPU Design: Answers to Frequently Asked Questions

Table 17: Functionality within Various Blocks

Block Functionality

UI Stage -
1. Re-evaluate ready status of the incoming instructions from R stage by looking at the
Ready Bit Array (RBA). ‘Ready’ bit for a source register specifier is set if one of the fol-
lowing conditions is true
Condition 1
‘Ready’ bit for the source register specifier forwarded by R stage shows logic 1(i.e ready)
in it.
Condition 2
‘Ready’ bit for the source register specifier forwarded by R stage shows logic 0 (i.e not
ready) in it but indexing RBA with renamed source register specifier (i.e WRF_ID of the
source register specifier) as index shows 1 in its corresponding entry.
2. Set entries in RBA with data from P stage i.e destination WRF_ID’s of the picked
instructions in P stage gets used to index RBA to set its corresponding entry to 1. Destina-
tion WRF_ID’s of the committing instructions index RBA and resets its corresponding
entries.
3. Re-evaluate ‘use_WRF_data’ bit for each of the source register fields by comparing the
WRF_ID’s of the committing instructions against the renamed source register fields of the
instructions forwarded by R stage. If there is a match then the ‘use_WRF_data’ bit for the
matching renamed source register field is reset to 0 and if there is no match then the bit
retains its value from R stage.
4. Update IQ with these new instructions from R stage.

P Stage -
1. Re-evaluate ‘Ready’ bit status for each of the renamed source register specifiers of the
instructions sitting in the Issue Queue by comparing the renamed source register specifiers
(i.e WRF_ID’s) of the instructions against the renamed destination register specifiers of the
instructions picked for issue in the previous cycle. The bit gets set to Logic 1 if there is a
match and remains unmodified otherwise.
2. Re-evaluate ‘use_WRF_data’ bit for each of the renamed source register specifiers of
the instructions sitting in the Issue Queue by comparing the source register specifiers of the
instructions against the WRF_ID of the retiring instructions. The bit gets reset to Logic 0 if
there is a match and remains unmodified otherwise.
3. Each picker picks an instruction for issue based on the slot vector associated with the
instruction, ready status of the instruction and the age of the instruction. For an instruction
to be picked by Slot0 picker the following three conditions need to be true -
a. Slot Vector = 3’b001.
b. Instruction has no register dependency (i.e all its source registers are dependent free).
c. Instruction is the oldest among the instructions sitting in the IQ which are dependent free
and have their slot vector equal to 3’b001.
Similarly for Slot1 picker and Slot2 picker.
4. Provide the necessary controls to the ARF, WRF and bypass Mux’s.
5. Update Issue Queue with the updated ‘Ready’ bit status and ‘use_WRF_data’ bit status
for each of the source register specifiers of the instruction.

Architecture 79

Table 17: Functionality within Various Blocks

Block

EXU

Functionality

EXU has three Slots (i.e Slot0, Slot1 and Slot2) to support superscalar nature of the pipe.

Slot0 has two functional units - Integer ALU and Branch execution unit (BEU). Integer
ALU is responsible for handling all the integer arithmetic, logic and condition code
instructions whereas BEU is responsible for handling all the branch instructions. Type of
instructions that get executed in this Slot are -

Slot1 has 3 functional units - Integer ALU, Integer Multiplier and Integer Divider. Integer
ALU is responsible for handling all the integer arithmetic and logic instructions along with
all the Load/Store instructions for calculating Virtual Address. Integer Multiplier is respon-
sible for handling all the integer multiply instructions and integer Divider is responsible for
handling all the integer divide instructions. Type of instructions that get executed in this
Slot are -

80 CPU Design: Answers to Frequently Asked Questions

Block Functionality

Slot2 has 3 functional units - Floating point and Graphics (FPG) ALU, FPG Multiplier and
FPG Divider. FPG ALU is responsible for handling all the floating point and graphics
arithmetic, logic and condition code instructions. FPG Multiplier is responsible for han-
dling all the fp and graphics multiply instructions. FPG Divider is responsible for handling
all the fp and graphics divide instructions. Type of instructions that get executed in this Slot
are -

Table 17: Functionality within Various Blocks

Architecture 81

Table 17: Functionality within Various Blocks

Block Functionality

It has a 32 entry IWRF, 32 entry FWRF, 32 entry CWRF, 32 entry IARF, 32 entry FARF
and a 8 entry CARF. Here IWRF, FWRF, CWRF, IARF, FARF and CARF are all imple-
mented as register file structures.

IWRF has 9 read ports (3 read ports to support instructions with three integer source regis-
ters issued to Slot0, 3 read ports to support instructions with three integer source registers
issued to Slot1, 3 read ports to read data from IWRF to be written into IARF or to be for-
warded to DCU (for integer Stores) as we can commit three integer instructions in a given
cycle) and 3 write ports (1 write port for Slot0, 1 write port for Slot1, 1 write port for data
from DCU (i.e for integer Loads)).

FWRF has 5 read ports (2 read ports to support floating point and graphics instructions
with two floating point source registers issued to Slot2, 3 read ports to read data from
FWRF to be written into FARF or to be forwarded to DCU (for floating point Stores) as we
can commit three floating point and graphics instructions in a given cycle) and 2 write
ports (1 write port for Slot2, 1 write port for data from DCU (i.e for floating point Loads)).

CWRF has 5 read ports (1 read port to support instructions with integer condition code
source register issued to Slot0, 1 read port to support instructions with fp & g condition
code source register issued to Slot2, 3 read ports to read data from CWRF to be written into
CARF as we can commit three condition code modifying instructions in a given cycle) and
2 write ports (1 write port for Slot0, 1 write port for Slot2).

IARF has 6 read ports (3 read ports to support instructions with three integer source regis-
ters issued to Slot0, 3 read ports to support instructions with three integer source registers
issued to Slot1) and 3 write ports (3 write ports to update IARF with data from IWRF as we
can commit three integer instructions in a given cycle).

82 CPU Design: Answers to Frequently Asked Questions

Table 17: Functionality within Various Blocks

Block Functionality

FARF has 2 read ports (2 read ports to support floating point and graphics instructions with
two floating point source registers issued to Slot2) and 3 write ports (3 write ports to update
FARF with data from FWRF as we can commit three floating point and graphics instruc-
tions in a given cycle).

CARF has 2 read ports (1 read port to support instructions with integer condition code
source register issued to Slot0, 1 read port to support instructions with fp & g condition
code source register issued to Slot2) and 3 write ports (3 write ports to update CARF with
data from CWRF as we can commit three condition code (CC) modifying instructions in a
given cycle).

EXU has 4 pipestages namely RD, E, UW and W (Figures 51, 52 and 56, 57 in the follow-
ing pages provides micro-architectural description for the functionality in pipe stages RD,
E, UW and W). Following are the things that get done in each of the four stages -

RD Stage -
1. Here instructions picked for issue read their data from either IWRF, IARF, FWRF,
FARF, CWRF or CARF based on the validity of their register specifiers, type of register
specifier (i.e integer, floating point or condition code) and read from (i.e from WRF or
ARF) information provided by P stage. The read data goes through final bypass Mux
which has any one of the following inputs as one of its legs based on the Slot it gets issued
to - data from IWRF, data from IARF, data from FWRF, data from FARF, data from
CWRF, data from CARF, data from Slot0, data from Slot1, data from Slot2, Immediate
data forwarded by P stage and data from DCU.

E Stage -
1. Each Slot executes instructions based on the operands and control information received
from RD stage. If Slot1 gets an ‘ADD’ instruction then ALU1 is active while the rest of the
functional units within this Slot (i.e Multiplier and Divider) are inactive.
2. Slot0 generates a 64-bit integer value and a 8-bit integer condition code value which gets
flopped at the end of this stage and also gets bypassed to the bypass Muxes in RD stage.
3. Slot1 generates a 64-bit integer value which gets flopped at the end of this stage and also
gets bypassed to the Muxes in RD stage.
4. Slot2 generates a 64-bit floating point and graphics value and a 8-bit fp & g condition
code value which gets flopped at the end of this stage and also gets bypassed to the Muxes
in RD stage.
5. Completion and exception reports for all the instructions being executed are generated
and flopped at the end of this stage.

UW Stage -
1. Data values (i.e 64-bit integer data and 8-bit integer CC data from Slot0, 64-bit integer
data from Slot1, 64-bit floating point and graphics data and 8-bit fp & g CC data from
Slot2) forwarded by E stage are written into the appropriate WRF’s (i.e IWRF, FWRF or
CWRF)
2. Forward completion and exception report of instructions that got executed in E stage to
CU.

W Stage -
1. Move data from WRF’s to ARF’s or DCU based on control information from CU.

Architecture 83

Table 17: Functionality within Various Blocks

Block

DCU

Functionality

It has a 32 entry Load Queue (LQ), 16 entry Store Queue (SQ), 32KB, 8-Way set associa-
tive D$ (1 Read, 1 Write Port Data Array, 2 Read, 2 Write Port Tag Array), a 64 entry fully
associative DTLB and a 128x4 Way set associative MMU (Memory Management Unit).
Read/Write port in Data array and 1 Read/Write port in Tag array are shared between Load
and Store requests. The additional Read/Write port in Tag array is used by MS for invalida-
tions (i.e for the case of external snoop requests). D$ here is Virtually indexed and Physi-
cally tagged. Let’s assume the line size to be 32bytes. Since the Cache size is 32KB, the
size of each Way will be 4KB (i.e 32KB/8). D$ here is non-blocking (i.e a Load miss does
not block other Loads from being processed) and write through (i.e Store hit updates both
D$ as well as MS). Loads are allocating (i.e in the case of a Load miss the data correspond-
ing to the Load coming from MS gets written into D$) while Stores are non-allocating (i.e
in the case of a Store miss, Stores do not update D$ with its data). Control logic here pro-
vides support for 1, 2, 4 and 8 byte Loads and Stores with alignment and zero or sign exten-
sion for Loads. Also here its assumed that the Core supports TSO (Total Store Order)
memory ordering where all the older Loads complete before a younger Load completes, all
the older Loads completes before a younger Store completes and all the older Stores com-
plete (i.e is committed and is seen by all other Processors within the System) before a
younger Store completes.

MMU here provides address translation for the case where you miss in DTLB or ITLB.

LQ uses LQ_ID forwarded by EXU (which gets it from RIU) to update its entries with the
Loads and Stores forwarded by EXU. SQ uses SQ_ID forwarded by EXU to update its
entries with the Stores forwarded by EXU. LQ and SQ uses the most significant bit of their
LQ_ID and SQ_ID (i.e LQ_ID[5] and SQ_ID[4]) forwarded by EXU to determine the age
of Loads and Stores sitting in their respective entries. Some of the fields in a LQ entry are
VA/PA, LQ_ID[5:0]/SQ_ID[4:0], Valid bit etc. Some of the fields in a SQ entry are PA,
SQ_ID[4:0], Valid bit, Data[63:0] etc. A younger Load could be processed by the LQ
before an older Load gets processed (this can happen as Loads get issued out-of-order by
the Issue Queue). Eventhough Loads can be processed out-of-order by the LQ, they are
freed in program order. Freeing of the Load (i.e say Load1) in the LQ does not necessarily
mean that Load (Load1 here) gets retired by CU. While a Load gets processed by the LQ, it
is still snoopable until it gets freed by the LQ. If a match is detected (i.e a completed but
not freed Load address matches with the Snoop address) then LQ forces CU to re-ifetch all
the instructions younger to the Load which had a match along with the matching Load
instruction.

A Load issued from the LQ accesses DTLB along with D$. Each entry in LQ has Virtual
Address forwarded by EXU in E stage. DTLB provides address translation (i.e VA to PA)
for the Load instruction which gets forwarded to both the D$ and LQ. D$ provides the data
for the Load in case of a Hit. In case of a Miss the Load request gets forwarded to MS
through some arbitration logic. The inputs to the arbitration logic listed in priority are - 1.
I$ miss request from FU 2. Load request from LQ 3. Instruction prefetch request from FU
4. Data prefetch request from DCU 5. Store request from SQ. LQ compares its Loads
against all the Stores sitting in the SQ to see if there is a RAW (Read after Write) hit. For a
RAW hit to happen the following needs to be true - Physical Address of the Load matches
with the Physical Address of an older Store sitting in the SQ. In such case we wait for the
Store to complete (i.e drained from SQ) and then get data for the Load which had a RAW

84 CPU Design: Answers to Frequently Asked Questions

Table 17: Functionality within Various Blocks

Block Functionality

hit from either D$ or MS (if the Store had a Miss in D$). Here we are not bypassing data
(i.e for the Load) from SQ to make things simpler and doing this also saves power as we
have got rid of all the bypass logic which would have otherwise been needed.

A Store issued from the LQ accesses DTLB along with D$. DTLB provides address trans-
lation for the Store instruction which gets forwarded to both the D$ and SQ. D$ provides
the Hit/Miss information for Stores and this information goes and sits in SQ. Stores are
completed in-order from the SQ i.e an younger Store is completed only after all the older
Stores are completed.

A Load which hits in D$ forwards the completion and exception report to CU once it gets
the Hit information. In the case of a miss it forwards the completion and exception report
when it receives data for the Load from MS. A Store sends the completion and exception
report once it gets Hit/Miss information from D$.

As Loads and Stores get drained from LQ and SQ once they have completed execution, the
drain count of these Loads and Stores gets forwarded to DU so that it can properly manage
LQ and SQ.

DCU has 4 pipe stages namely AT, DA, DT and UW (Figure 46 below provides micro-
architectural description for the functionality in pipe stages AT, DA and DT). Following
are the things that get done in each of the four stages -

AT Stage -
1. Virtual Address along with the rest of the control signals for the Load/Store forwarded
by EXU is flopped at the end of this stage.

DA Stage -
1. Here we access all 8-Ways of D$ Data as well as Tag array with the lower bits (i.e
[11 :3]) of the Virtual Address (since the minimum page size is 8KB, the lower 13 bits of
Virtual Address (VA) should be same as the lower 13 bits of Physical Address (PA), so
accessing the Cache with bits [11:3] of VA should not cause any aliasing issues). Since the
line size is 32bytes we will have 128 lines sitting in each Way. Each Way is organized as a
128x256 array (i.e 128 rows with each row having 32bytes of data). On every access we
access 64-bit data from each Way as shown in Figure 46 below. Since each Way has 128
lines we need to store 128 Tag addresses for all the 128 lines. Tag array is implemented as
a 128 entry structure with each entry holding Tag address (i.e bits [44:12]) for a line stored
in its corresponding Data Way. Since the line size is 32bytes, we use bits [11:5] of VA to
access each Way of Tag array. Since DTLB is fully associative we compare bits [63:13] of
VA against all the entries of VAA (Virtual Address Array). If one of the entries results in a
HIT then we end up with a 64-bit one hot vector which gets used to select its corresponding
entry holding on to bits [44:13] of the PA in PAA (Physical Address Array). The PA com-
ing out of FA-DTLB along with bit 12 of the VA gets compared against the ones read out of
each of the Tag arrays. In the case of a HIT we end up with a 8-bit one hot vector which
gets flopped at the end of this stage.
2. Update LQ and SQ with the incoming Load and Store instructions with LQ_ID and
SQ_ID as index.

Architecture 85

Table 17: Functionality within Various Blocks

Block Functionality

DT Stage -
1. Select 64-bit data from one of the 8 Ways using 8-bit one hot vector as Way select and
forward the aligned and zero or sign extended data to EXU in the case of Loads.
2. See if there is a RAW hit by comparing the physical address of the Load against older
Stores sitting in the SQ. If there is a match then prevent the Load from forwarding data to
EXU but rather wait for the matching Store to complete (i.e the Store is drained from SQ
and the data has been updated in both Level 1 (i.e if there is a Hit in Level 1 Cache) and
Level 2 Caches). Once the Store has completed, retry Load again by reading the data from
either Level 1 or Level 2 Caches and forward it to EXU after formatting and zero or sign
extending it.
3. Determine Parity error for the Load and if there is one then force a Miss in Level 1
Cache (i.e D$) and get the data from Level 2 (i.e L2$) before forwarding it to EXU.

UW Stage -
1. Forward completion and exception report for the Load/Store to CU.

Figure 46: Functionality in Pipe Stage AT, DA and DT

86 CPU Design: Answers to Frequently Asked Questions

Table 17: Functionality within Various Blocks

Block

CU

MS

Functionality

It has a 32 entry Commit Queue (CQ). CU uses instruction ID (IID) forwarded by various
units to index into CQ. It can commit any combination of 3 instructions in a given cycle.
All the instructions are committed in program order i.e a younger instruction cannot be
committed until all the instructions older to it have been committed. A requirement for any
instruction to be ready for commit is it has executed without an exception and it is the old-
est among the group of instructions sitting in the CQ. A ‘DIV’ instruction could result in a
‘div_by_zero’ exception if EXU finds that the divisor for the DIV instruction is zero. A
Load Word(i.e load 4bytes of data) operation could result in a ‘mem_address_not_aligned’
exception if DCU finds that the least significant 2-bits of the VA are non zero for the Load.
Whenever CU comes across an instruction which results in an exception then it does not
commit this instruction but rather does the following things -
1. Flush the pipe (i.e invalidate all the instructions currently in the pipe) and force all the
various counters in various units to initialize to its RESET value.
2. Invalidate all the entries in CQ or reset the pointers used to access CQ.
3. Send new PC and NPC values to FU. These new values will result in loading the soft-
ware trap handler code to take care of the exception.

CU also sends a count of the number of instructions it is committing in a given cycle to DU
so that DU can properly manage the CQ resource. CU has 2 pipe stages namely UW and
W. Following are the things that get done in each of the two stages -

UW Stage -
1. Update CQ with data sent from various units using IID as index.
2. Pick 3 instructions for commit.
3. Send retire count to DU.
4. Send necessary control information to RIU to update its Rename Tables, Ready Bit
Array and Issue Queue.

W Stage -
1. Forward necessary control information to EXU for data transfer from desired WRF’s to
ARF’s.

It has a 4MB, 8 Way, 1 Read port, 1 Write port L2$, 2 Memory Controllers (MC0, MC1),
Cross Bar Interface, Memory Subsystem Controller and System Interface Unit. L2$ here
supports MHOSI Cache Coherency Protocol as this CMP Chip is assumed to be designed
for Multiprocessor systems. Since L2$ is 4MB, the size of each Way will be 512KB (i.e
4MB/8). Let’s assume the line size to be 64Bytes. L2$ here is physically organized as 4
banks with each bank having all 8 Ways as shown in Figure 47 below. L2$ is banked
mainly to improve bandwidth and save power while not all banks are being accessed. L2$
is inclusive to reduce the amount of snoop traffic going into Level 1 Caches of each of the
individual Cores.

L2$ here is responsible for the following things
1. Handle requests from Cross Bar Interface.
2. Provide data in the case of a Hit and place requests to one of the memory controllers (i.e
MC0 or MC1) or System Interface Unit in the case of a Cache Miss.
3. Maintain Cache Coherency.
4. Provide and maintain ECC protection for Data and Parity protection for Tag.
5. Provide support for BIST and BISI.

Architecture 87

Table 17: Functionality within Various Blocks

Block Functionality

Memory controllers (i.e MC0 and MC1) here are mainly responsible for handling requests
that missed in L2$. Cross Bar Interface here is responsible for handling requests from
Core0 thru CoreN. System Interface Unit here is responsible for handling all the snoop
traffic from the system bus and the requests from Memory Subsystem Controller. Memory
Subsystem Controller here manages inflow and outflow of data to/from L2$, Cross Bar
Interface, Memory Controllers and SIU.

Figure 47: Memory Subsystem

Figures 48 thru 57 below show how 3 integer instructions (I0 (ADD R1, R2, R9), I1
(SUB R4, R5, R11) and I2 (ADD R9, R11, R13) where, I2 younger than I1 younger
than I0) belonging to a fetch group get executed in various pipe stages as they flow
from A stage all the way to W stage.

Table 18 below gives a brief description of the interface between various blocks
within the Core.

CPU Design: Answers to Frequently Asked Questions

Table 18: Interface between Various Blocks within the Core

FU

DU

RIU

EXU

DCU

CU

FU

Stall request

Forward
requested
instruction line
(i.e for I$ miss,
Instruction
prefetch) or
address transla-
tion (i.e for
ITLB miss)

Forward pipe
flush informa-
tion and new PC
and NPC values
in the case of
branch mispre-
diction, excep-
tion, interrupt or
RESET

DU

Forward fetch
group (i.e a max
of three instruc-
tions)

Forward a count
of the number of
load queue and
store queue
entries being
drained/released

Forward a count
of the number of
commit queue
(CQ) entries
being drained/
released along
with pipe flush
and throttle
information

RIU

Forward desired
predecode infor-
mation (i.e slot
ID, instruction
type, register
valid specifiers
etc.), renamed
destination
specifiers,
instruction ID,
load queue ID
and store queue
ID along with
the instructions

D$ miss infor-
mation

Forward
instruction com-
mit information
(i.e architec-
tural destina-
tion register
specifier,
renamed desti-
nation register
specifier etc.)
along with pipe
flush informa-
tion

EXU

Forward neces-
sary control
information to
access the
desired entries
in various
WRF’s and
ARF’s, bypass
MUX’s and
functional units

Data for Loads

Forward neces-
sary control
information (i.e
architectural
destination reg-
ister specifier,
renamed desti-
nation register
specifier etc.)
for transfer of
data from
desired WRF’s
to desired
ARF’s

DCU

I$ miss, ITLB
miss and
Instruction
Prefetch
requests

Forward load
queue ID and
store queue ID
along with some
desired prede-
code informa-
tion for Loads
and Stores that
gets issued

Forward virtual
address for
Loads/Stores
along with data
to be stored for
Stores

Commit infor-
mation for
Stores so that
store queue in
DCU can mark
the Store as
being commit-
ted

Forward pipe
flush informa-
tion

CU

Forward desired
predecode infor-
mation (i.e
instruction type,
register valid
specifiers etc.),
renamed and
architectural
destination reg-
ister specifiers
and exception
report for each
instruction

Forward com-
pletion and
exception report
for each instruc-
tion

Forward com-
pletion and
exception report
for each Load/
Store instruction

88

Architecture 89

Figure 48: Functionality in Pipe Stage A, F and D

90 CPU Design: Answers to Frequently Asked Questions

Figure 49: Functionality in Pipe Stage R

Architecture 91

Figure 50: Functionality in Pipe Stage UI and P

92 CPU Design: Answers to Frequently Asked Questions

Figure 51: Functionality in Pipe Stage RD and E

Architecture 93

Figure 52: Functionality in Pipe Stage UW and W

94 CPU Design: Answers to Frequently Asked Questions

Figure 53: Description for Functionality shown in Figure 48

Architecture 95

Figure 54: Description for Functionality shown in Figures 48 and 49

96 CPU Design: Answers to Frequently Asked Questions

Figure 55: Description for Functionality shown in Figures 49 and 50

Architecture 97

Figure 56: Description for Functionality shown in Figures 50 and 51

98 CPU Design: Answers to Frequently Asked Questions

Figure 57: Description for Functionality shown in Figures 51 and 52

Architecture 99

19. What is a Multithreaded Processor and what are the various threading tech-
niques used in a Multithreaded Processor?

A Processor supporting multiple threads (a thread is a schedulable software entity; It
is equivalent to a Solaris lightweight process) is known as a Multithreaded Processor.
Two terms most commonly associated with Multithreading are Horizontal waste and
Vertical waste. Horizontal waste occurs when some but not all of the execution slots
can be used. Vertical waste occurs when a execution cycle goes completely unused.
Multithreading helps in reducing Horizontal waste and Vertical waste. Figure below
shows Horizontal and Vertical waste in a 2-Way Superscalar Processor supporting
single Thread.

Figure 58: Horizontal Waste and Vertical Waste

Table below shows the various threading techniques used in a Multithreaded Proces-
sor.

Table 19: Threading Techniques used in a Multithreaded Processor

Threading
Technique

Vertical
Threading
(VT)

Description

A coarse grain processor scheduling technique in which instructions from one par-
ticular thread occupies a given pipe stage. Multiple threads share superscalar pro-
cessing resources in aggregate but not in the same cycle. The motivation here is to
simplify the scheduling of execution timeslots. A typical VT switching algorithm as
applied to an out-of-order, 2-way superscalar processor supporting two threads is
shown in Figure 59 below. It shows a 5 stage frontend pipeline (with switching logic
in D stage) for such a processor.

100 CPU Design: Answers to Frequently Asked Questions

Table 19: Threading Techniques used in a Multithreaded Processor

Threading
Technique

Description

Figure 59: F, D, R, P and E Stages with VT Support

In the figure above thread switching logic (TSL) supporting VT gets the following
inputs -

1. Decode unit (in D stage) which maintains an active thread (thread which is cur-
rently active in the pipe) counter (which gets initialized to zero while there is a
thread switch and is incremented every cycle thereafter) forwards the active thread
count value to TSL (TSL looks at active thread count value mainly to avoid thread
starvation; here the maximum count value the active thread count gets compared
against could be set by the software or could be a hardwired value).
2. Decode unit (in D stage) which manages all the various resources down the pipe
(Load Queue, Store Queue, Commit Queue etc.) for each thread provides resource
scarcity information to TSL.
3. Fetch unit (in F stage) which manages IBuffers for both the threads provides
buffer empty information to TSL.
4. Commit unit down the pipe (assuming an out of order processor) provides the
flush pipe (while there is a branch mispredict or exception or interrupt etc.) informa-
tion for each thread to TSL.

In the figure above, TSL in D stage switches threads based on the flowchart shown
below.

Architecture 101

Table 19: Threading Techniques used in a Multithreaded Processor

Threading
Technique

Description

Figure 60: VT Switching Algorithm

Figure 61 below shows instruction issue as a function of time for a single threaded,
out-of-order, 2-way superscalar processor and a 2 threaded, out-of-order superscalar
processor supporting VT.

Figure 61: Instruction Issue as a Function of Time for a Single Threaded
Processor and a 2 Threaded Processor Supporting VT

Figure above illustrates how a processor supporting VT results in reducing Vertical

102 CPU Design: Answers to Frequently Asked Questions

Table 19: Threading Techniques used in a Multithreaded Processor

Threading
Technique

Description

waste when compared to a single threaded, 2-way superscalar processor.

Simultaneous
Multithread-
ing
(SMT)

A fine grain process or scheduling technique that permits multiple independent
threads to issue instructions to a superscalar’s functional units in a single cycle.
SMT combines the multiple-instruction-issue features of wide superscalar proces-
sors with the latency-hiding ability of multithreaded architectures. On an SMT pro-
cessor, all hardware threads are active simultaneously, competing each cycle for all
available resources. This dynamic sharing of processor resources enables SMT to
exploit thread-level and instruction-level parallelism interchangeably. Here both
forms of parallelism can be effectively used to increase processor utilization. A typ-
ical SMT switching algorithm as applied to an out-of-order, 2-way superscalar pro-
cessor supporting two threads is shown in Figure 62 below. It shows a 5 stage
pipeline (with switching logic in D stage) for such a processor.

Figure 62: F, D, R, P and E Stages with SMT Support

Architecture 103

Table 19: Threading Techniques used in a Multithreaded Processor

Threading
Technique

Description

In the figure above, TSL in D stage switches threads based on the flowchart shown
in figure below.

Figure 63: SMT Switching Algorithm

Figure 64 below shows instruction issue as a function of time for a single threaded,
out-of-order, 2-way superscalar processor and a 2 threaded, out-of-order superscalar
processor supporting SMT.

Figure 64: Instruction Issue as a Function of Time for a Single Threaded
Processor and a 2 Threaded Processor Supporting SMT

From figure above we see that by feeding fetch groups from either threads in a
round robin fashion and allowing instructions from both threads to participate in
resource (functional units) sharing (shown in P and E stage) we have avoided both
horizontal and vertical waste.

104 CPU Design: Answers to Frequently Asked Questions

Table 19: Threading Techniques used in a Multithreaded Processor

Threading
Technique

Branch
Threading
(BT)

Description

A coarse grain processor scheduling technique where the thread switch is based on
hitting a branch instruction in a particular thread. The motivation here is to avoid
branch penalty where the processor doesn’t provide support for static or dynamic
branch prediction techniques. A typical BT switching algorithm as applied to an out-
of-order, 2-way superscalar processor supporting two threads is shown in Figure 65
below. It shows a 5 stage frontend pipeline (with switching logic in D stage) for such
a processor.

Figure 65: F, D, R, P and E Stages with BT Support

In the figure above thread switching logic (TSL) supporting BT gets the following
inputs -

1. Decode unit (in D stage) which maintains an active thread (thread which is cur-
rently active in the pipe) counter (which gets initialized to zero while there is a
thread switch and is incremented every cycle thereafter) forwards the active thread
count value to TSL (TSL looks at active thread count value mainly to avoid thread
starvation; here the maximum count value the active thread count gets compared
against could be set by the software or could be a hardwired value).
2. Decode unit (in D stage) which decodes instructions in the fetch group to see if
there are any branches forwards this information to TSL.
3. Fetch unit (in F stage) which manages IBuffers for both the threads provides
buffer empty information to TSL.
4. Commit unit down the pipe (assuming an out of order processor) provides the
flush pipe (while there is a branch mispredict or exception or interrupt etc.) informa-
tion for each thread to TSL.

In the figure above, TSL in D stage switches threads based on the flowchart shown
below.

Architecture 105

Table 19: Threading Techniques used in a Multithreaded Processor

Threading
Technique

Description

Figure 66: BT Switching Algorithm

Figure 67 below shows instruction issue as a function of time for a single threaded,
out-of-order, 2-way superscalar processor with no static or dynamic branch predic-
tion and a 2 threaded, out-of-order superscalar processor supporting BT with no
static or dynamic branch prediction.

Figure 67: Instruction Issue as a Function of Time for a Single Threaded
Processor and a 2 Threaded Processor Supporting BT

106 CPU Design: Answers to Frequently Asked Questions

Table 19: Threading Techniques used in a Multithreaded Processor

Threading
Technique

Description

Figure above illustrates how BT results in reducing Vertical waste when compared
to a single threaded, 2-way superscalar processor which throttles on branches.

Power
Threading
(PT)

A coarse grain processor scheduling technique where the thread switch is based on
power dissipated by a particular thread being processed. The motivation here is to
keep the average power dissipated within Spec. A typical PT switching algorithm as
applied to an out-of-order, 2-way superscalar processor supporting two threads is
shown in Figure 68 below. It shows a 5 stage frontend pipeline (with switching logic
in D stage) for such a processor.

Figure 68: F, D, R, P and E Stages with PT Support

In the figure above thread switching logic (TSL) supporting PT gets the following
inputs -

1. Decode unit (in D stage) which maintains an active thread(thread which is cur-
rently active in the pipe) counter (which gets initialized to zero while there is a
thread switch and is incremented every cycle thereafter) forwards the active thread
count value to TSL (TSL looks at active thread count value mainly to avoid thread
starvation; here the maximum count value the active thread count gets compared
against could be set by the software or could be a hardwired value).
2. Decode unit (in D stage) which manages power dissipated for each thread pro-
vides this information to TSL (here the high threshold value for power dissipation
could be set by the software or could be a hardwired value).
3. Fetch unit (in F stage) which manages IBuffers for both the threads provides
buffer empty information to TSL.
4. Commit unit down the pipe (assuming an out of order processor) provides the
flush pipe (while there is a branch mispredict or exception or interrupt etc.) informa-
tion for each thread to TSL.

Architecture 107

Table 19: Threading Techniques used in a Multithreaded Processor

Threading
Technique

Description

In Figure 68 above, TSL in D stage switches threads based on the flowchart shown
below.

Figure 69: PT Switching Algorithm

20. What are the most common Data Protection Schemes used for Caches?

Table below shows the most common Data Protection Schemes used for Caches.

Table 20: Data Protection Schemes for Caches

Scheme

Providing
Odd Parity

Description

This scheme requires following things to happen -
1. Generate Odd Parity bit(s) (the bit is set to 1 if the count of number of 1’s in the data
bits it is associated with is even and is set to 0 if the count of the number of 1’s in the
data bits it is associated with is odd) for the Data that needs to be written into the
Cache. The number of Parity bits generated really depends on the number of Data bits
we want to cover with one Parity bit. If we want to have one Parity bit per 8-bit data
word then we need to generate 8 Parity bits for a 64-bit Data word.
2. Update the Cache with the Data along with the Odd Parity bit(s).

108 CPU Design: Answers to Frequently Asked Questions

Table 20: Data Protection Schemes for Caches

Scheme Description

3. When the Data is read (here you read both Data as well as the Odd Parity bit(s) asso-
ciated with it) regenerate the Odd Parity bit(s) and compare it against the Parity bit(s)
read from the Cache. If they match then the Data is Valid otherwise it is bad (i.e cor-
rupted).

Figure below shows the Architectural Path for Odd Parity generation (Data here is
shown as a 32-bit wide word with one Parity bit across the entire word), Equation for
Odd Parity generation and an Example showing Odd Parity as applied to a 8-bit data
word.

If the Data is bad then the architecture normally calls for one of the following things to
happen 1. Take a Software Trap (i.e here the Software Trap handler replaces the bad
Data with the good one from either higher level Caches or Main Memory) or 2. Force
a Miss for the request and reload the Data from either higher level Caches or Main
Memory. If the Cache under question is a write-back Cache and the data under ques-
tion is in ‘Modified’ state (i.e this is the only one which has the latest updated data)
then the architecture handles it differently (in many cases it takes a RESET trap where
the trap handler Reset’s the CPU).

Figure 70: Odd Parity Logic

Architecture 109

Table 20: Data Protection Schemes for Caches

Scheme

Providing
Even
Parity

Description

This scheme requires following things to happen -
1. Generate Even Parity bit(s) (the bit is set to 1 if the count of number of 1’s in the
data bits it is associated with is odd and is set to 0 if the count of the number of 1’s in
the data bits it is associated with is even) for the Data that needs to be written into the
Cache. The number of Parity bits generated really depends on the number of Data bits
we want to cover with one Parity bit. If we want to have one Parity bit per 8-bit data
word then we need to generate 8 Parity bits for a 64-bit Data word.
2. Update the Cache with the Data along with the Even Parity bit(s).
3. When the Data is read (here you read both Data as well as the Even Parity bit(s)
associated with it) regenerate the Even Parity bit(s) and compare it against the Parity
bit(s) read from the Cache. If they match then the Data is Valid otherwise it is bad (i.e
corrupted).

Figure below shows the Architectural Path for Even Parity generation (Data here is
shown as a 32-bit wide word with one Parity bit across the entire word), Equation for
Even Parity generation and an Example showing Even Parity as applied to a 8-bit data
word.

If the Data is bad then the architecture normally calls for one of the following things to
happen 1. Take a Software Trap (i.e here the Software Trap handler replaces the bad
Data with the good one from either higher level Caches or Main Memory) or 2. Force
a Miss for the request and reload the Data from either higher level Caches or Main
Memory. If the Cache under question is a write-back Cache and the data under ques-
tion is in ‘Modified’ state (i.e this is the only one which has the latest updated data)
then the architecture handles it differently (in many cases it takes a RESET trap where
the trap handler Reset’s the CPU).

110 CPU Design: Answers to Frequently Asked Questions

Table 20: Data Protection Schemes for Caches

Scheme Description

Figure 71: Even Parity Logic

Providing
ECC
through
Hamming
Code

This scheme requires following things to happen -
1. Generate Partial Parity bits and Whole Parity bit for the Data that needs to be writ-
ten into the Cache.
2. Form a Code Word with the Partial Parity bits, Whole Parity bit and Data bits.
3. Update the Cache with the Code Word.
4. When the Data is read (i.e Code Word) generate Check bits and Universal Parity bit
to see if the Data is Valid or Corrupted.

Figure below shows the Architectural Path for ECC as applied to a Data Word (Data
here is shown as a 32-bit wide word), Equations associated with ECC and an Example
showing ECC as applied to a 4-bit data word. Following paragraphs give a more
detailed explanation of the terms associated with Hamming Code.

Hamming Code requires the generation of more than one parity bit for the correction
of single bit error and the detection of double bit error. The parity bits generated here
are labeled as Partial Parity (PP) bits and Whole Parity (WP) bit. There are multiple

Architecture 111

Table 20: Data Protection Schemes for Caches

Scheme Description

Partial Parity bits and one Whole Parity bit. Partial Parity bits get used in the correc-
tion of single bit error and occupy power of two positions in the Code Word whereas
Whole Parity bit gets used in the detection of double bit error and occupies the most
significant bit position in the Code Word. Code Word here is the word formed by the
concatenation of parity and data bits with Partial Parity bits occupying the power of
two bit positions, Whole Parity bit occupying the most significant bit position and the
data bits occupying the remaining positions.

Each Partial Parity bit here is assigned to a group of data bits. Data bits associated
with a particular PP bit really depends on the position of the PP bit in the Code Word.

The First PP bit (i.e in location 1 (i.e of the Code Word) is assigned to data bits in

positions 3, 5, 7, 9, 11, 13, ...(i.e positions which have 1 in their bit position), Sec-

ond PP bit (i.e in location 2 (i.e of the Code Word) is assigned to data bits in posi-

tions 3, 6, 7, 10, 11, 14, 15, ...(i.e positions which have 1 in their bit position), Third

PP bit (i.e in location 4 (i.e of the Code Word) is assigned to data bits 5, 6, 7, 12,

13, 14, 15, ...(i.e positions which have 1 in their bit position) etc. Each of the PP bits
maintain even parity across the data bits it is associated with (i.e it is set to 0 if the
count of the number of 1’s in the data bits it is associated with is even and is set to 1 if
the count of the number of 1’s in the data bits it is associated with is odd).

The Whole Parity bit is assigned to all the data bits and PP bits. It maintains even par-
ity across all the data bits and PP bits (i.e it is set to 0 if the count of the number of 1’s
in the bits it is associated with is even and is set to 1 if the count of the number of 1’s
in the bits it is associated with is odd).

To find if there is a single bit error or double bit error, Check bits and Universal Parity
(UP) bit are generated. All the Check bits are concatenated to form a Check Bit Vector
which gets used to determine if their is a single bit error and if their is one which data
bit has an error. The number of Check bits generated (in other words the size of the
Check Bit Vector) really depends on the number of PP bits associated with the data
bits. The least significant bit of the Check Bit Vector (i.e C[0]) is generated by calcu-
lating even parity across the first PP bit in position 1 and data bits in positions 3, 5, 7,
9, 11, 13, ... of the read Code Word, C[1] is generated by calculating even parity across
the second PP bit in position 2 and data bits in positions 3, 6, 7, 10, 11, 14, 15, ... of the
read Code Word, C[2] is generated by calculating even parity across the third PP bit in
position 4 and data bits in positions 5, 6, 7, 12, 13, 14, 15, ... of the read Code Word
etc. The Universal Parity bit is generated by calculating even parity across the read
Code Word. The kind of error (i.e single bit or double bit) and position of the error (i.e
in the case of single bit error) is determined from the table shown in Figure below.

If it is found that the Data has double bit error then the architecture normally calls for
one of the following things to happen 1. Take a Software Trap (i.e here the Software
Trap handler replaces the bad Data with the good one from either higher level Caches
or Main Memory) or 2. Force a Miss for the request and reload the Data from either
higher level Caches or Main Memory. If the Cache under question is a write-back
Cache and the data under question is in ‘Modified’ state (i.e this is the only one which
has the latest updated data) then the architecture handles it differently (in many cases it
takes a RESET trap where the trap handler Reset’s the CPU).

112 CPU Design: Answers to Frequently Asked Questions

Table 20: Data Protection Schemes for Caches

Scheme Description

Figure 72: ECC Logic

Architecture 113

21. Describe a technique for improving performance (single thread as well as
multi thread performance) of a CMP (Chip Multi Processing) chip by sharing
Working Register File(s) between adjacent Processor Cores?

The motivation behind this question is to make the reader think that there could be
many resources that could be shared between Cores in a CMP chip. Even though peo-
ple might argue that as we go into deep submicron technologies transistors come for
free, but there will be cases where sharing some critical resources between Cores does
make sense from performance point of view.

In an out-of-order processor instructions get renamed so that they could be issued out-
of-order. In such case an younger instruction which is dependent free could be issued
for execution before an older instruction gets issued. Instructions here get renamed to
one of the entries in Working Register File (WRF). WRF (in some cases it could be
called Working Data Structure/Re-Order Buffer) here refers to the structure which
holds on to the result of an instruction immediately after its execution. Generally an
out-of-order processor has a WRF, an Issue Queue and a Commit Queue in addition to
other Units. Typically an instruction which gets renamed goes and sits in an Issue
Queue before it gets picked for execution. While in Issue Queue if the instruction is
dependent free and there are no other older instructions which are ready to be issued
then it gets picked for execution. After execution the result of the instruction goes and
sits in WRF. Once the instruction becomes top of the commit queue entry, Commit
Queue looks at the instruction to see if it is ready for retirement by looking at its
exception and status reports. If the instruction has not resulted in any kind of excep-
tion then it reads the value corresponding to the instruction sitting in WRF and writes
it into the desired architectural register file.

In an out-of-order processor with a N-entry Commit Queue, N-entry Issue Queue and
a N/2-entry WRF, the performance of such a processor could be improved if the size
of WRF be increased to N entries. This could be achieved in a CMP chip by sharing
WRF between two neighboring processor cores. Sharing is done when one of the pro-
cessor cores is dead or, alive but parked. ‘Processor core is dead’ here means that at
the time of fab it was found that the core is bad (i.e one of the reasons could be one of
the RAM structures in the core has defects etc.). To support sharing of WRF’s, a fuse
is provided within each core which gets blown at the time of fab when its found that a
particular core is bad. An unblown fuse within a core indicates the core being alive. A
core could be Parked by the Operating System (OS) when it finds that it doesn’t have
enough threads to keep the core busy. A Parked core here means the core is idle doing
nothing. In a four core CMP chip as shown in Figure 73 (here its assumed that each
CORE has a 32-entry, 6 read/3write port WRF structure) we share WRF’s between
CORE0 and CORE1, and CORE2 and CORE3. Here it is really important to physi-
cally place the WRF blocks within individual cores near the edge in the floorplan (as
seen from Figure 73). This will reduce most of the routing congestion between Cores
and will also ease WRF access timing. Flowchart in Figure 74 shows the conditions

114 CPU Design: Answers to Frequently Asked Questions

under which CORE0 shares WRF of CORE1. Figure 75 shows the logic involved in
sharing WRF’s between CORE0 and CORE1. Here its been assumed that any instruc-
tion can have a maximum of two source registers and one destination register.

In Figures 74 and 75, I have assumed individual cores to be supporting single strand
but it could be extended to cores supporting multiple strands with few updates which
are not shown here. Also here when CORE0 shares WRF of CORE1, the read data
corresponding to WRF_ID’s=1xxxxx comes from WRF of CORE1 and write data
corresponding to WRF_ID’s=1xxxxx gets written into WRF of CORE1.

Most of the signal names in Figure 75 are self explanatory. Some of the signal name
definitions are -

CORE0_ALIVE_AND_UNPARKED

I0_DST_WRF_ID[5:0]

I0_we

I0_SRC0_WRF_ID[4:0]

I0_re0

CORE1_I0_DST_WRF_ID[5:0]

CORE1_I0_we

CORE1_I0_SRC0_WRF_ID[4:0]

CORE1_I0_re0

CORE1_ALIVE_AND_UNPARKED

Core0 is alive and unparked

Renamed destination ID for instruction I0 assigned by WRF_ID assignment
logic in CORE0

Write enable for instruction I0 in CORE0

Renamed first source register value for instruction I0 in CORE0

Read enable for first source register(i.e SRC0) of instruction I0 in CORE0

Renamed destination ID for instruction I0 assigned by WRF_ID assignment
logic in CORE 1

Write enable for instruction 10 in CORE1

Renamed first source register value for instruction I0 in CORE1

Read enable for first source register(i.e SRC0) of instruction I0 in CORE1

Core1 is alive and unparked

Architecture 115

Figure 73: CMP Chip Showing Shared WRF’s between Adjacent Cores

Figure 74: Flowchart showing conditions under which CORE0 shares WRF of
CORE1

116 CPU Design: Answers to Frequently Asked Questions

Figure 75: Logic involved in sharing WRF’s between CORE0 and CORE1

Architecture 117

22. What are some of the techniques used at the Architectural/Microarchitec-
tural level to reduce Power in Caches.

Table below shows some of the techniques used at the Architectural and Microarchi-
tectural level to reduce Power in Caches.

Table 21: Architectural/Microarchitectural Techniques Used to Reduce Power in Caches

1

2

3

4

Going with a Direct Mapped Cache implementation instead of Fully Associative (FA) or Set
Associative (SA) Cache implementation where ever possible as FA and SA Caches result in
more power dissipation because of the additional logic associated with it (i.e Way select logic,
Comparator logic etc.).

In a Set Associative Cache, generate your Way select before accessing your Cache (i.e Data
portion of it). Doing this will result in accessing only one Way thereby saving power.

In the case of a Cache which is banked, selectively generating Read and Write enables for the
individual banks of Tag and Data arrays will result in reduced power dissipation.

Making use of NOP’s in the instruction stream to reduce power in the ICache read access path.

To illustrate this lets assume the following ICache implementation - 16KB, 4-Way set associa-
tive Cache implemented as 4 banks with bank0 and bank1 having Way0/Way1 and bank2 and
bank3 having Way2/Way3 as shown in figure below. Each bank is arranged as a 256x128 struc-
ture (i.e it has 256 rows with each row having 4 instructions each (assuming each instruction is
32-bits wide)). Here lets assume the instructions to be interleaved as they get written. In the cur-
rent illustration a row in bank0 is arranged as follows -

We see from above that each bit cell has 4-bits, 2 corresponding to way0 and 2 corresponding to
way1. In a similar fashion a row in bank0 is arranged as follows -

Let’s assume a 16 byte line fill to ICache. Here whenever we have line fill from L2$ we look to
see if there are any NOP instructions in word position 2 and 3 (as shown in figure below) of the
16 byte line fill (assuming 16 byte line fill is arranged as {word0 (I0), word1 (I1), word2 (I2),
word3 (I3)}. If there are NOP’s in either word position 2 or 3 then we replace NOP in word
position 2 with instruction in position 0 and NOP in word position 3 with instruction in position
1 and we append a predecode bit which gets set for NOP’s which got replaced in word positions
2 and 3. This bit tells various units handling this instruction to treat it as a NOP.

In figure below we see that we have replaced the first NOP with ADD and the second NOP with
SUB and the predecode bit (P) is set for the replaced instructions. This arrangement helps in
reducing power in the read access path when I2 and I3 gets accessed from I$. This technique
not only results in reducing power but also reduces the effect of coupling and pattern sensitive
faults in ICache.

118 CPU Design: Answers to Frequently Asked Questions

Table 21: Architectural/Microarchitectural Techniques Used to Reduce Power in Caches

Figure 76: ICache Read Access Path

24. What are the most common benchmarks used to measure CPU/System Per-
formance?

There are currently two roles that benchmarks play in today’s world. The first is for
customers, as one of several key differentiating points when making a decision and
for Organizations which don’t have the technical and financial resources to perform
benchmark tests can use them as a way of screening out handful of vendors. Ideally,
benchmarks provide a standard and meaningful way of measuring a computer sys-
tem’s performance. The second role that benchmarks play is as a marketing tool for

Architecture 119

vendors. All benchmarks are unique as each one tests an area a little different than the
other tests, and some are better measures of a system than others.

Table below shows the most common benchmarks used to measure CPU/System per-
formance.

Table 22: Benchmarks Used to Measure CPU/System Performance

Benchmark Description

SPEC - Standard Performance Evaluation Corporation is a non-profit corporation formed to estab-
lish, maintain and endorse a standardized set of relevant benchmarks that can be applied to the newest
generation of high-performance computers

SPECint2000

SPECfp2000

SPECintRate

SPECfpRate

SPECjAppServer2002

SPECjbb2000

SPEC SFS

Measures compute intensive Integer performance. It contains 12 applica-
tions (11 written in C and 1 written in C++ (Data compression, FPGA cir-
cuit placement and routing, C compiler, Minimum cost network flow solver,
Chess program, Natural language processing, Ray tracing, Perl, Computa-
tional group theory, Object Oriented Database, Data compression utility,
Place and route simulator)) that are used as benchmarks. It is measured as
a geometric mean of twelve normalized ratios (one for each integer bench-
mark mentioned above) when compiled with aggressive optimization for
each benchmark.

Measures compute intensive Floating-Point performance. It contains 14
applications (6 written in Fortran-77, 4 written in Fortran-90 and 4 written
in C (Quantum chromodynamics, Shallow water modeling, Multi-grid
solver in 3D potential field, Parabolic/elliptic partial differential equa-
tions, 3D Graphics library, Fluid dynamics, Neural network simulation,
Finite element simulation, Computer vision, Computational chemistry,
Number theory, Finite element crash simulation, Particle accelerator
model, application which solves problems regarding temperature, wind,
velocity and distribution of pollutants)) that are used as benchmarks. It is
measured as a geometric mean of fourteen normalized ratios (one for each
floating point benchmark mentioned above) when compiled with aggres-
sive optimization for each benchmark.

The geometric mean of twelve (uses the same 12 applications as used for
SPECint2000) normalized throughput ratios when compiled with aggres-
sive optimization for each benchmark.

The geometric mean of fourteen (uses the same 14 applications as used for
SPECfp2000) normalized throughput ratios when compiled with aggres-
sive optimization for each benchmark.

Measures the performance of a multi-tier workload with the application tier
implemented in Java (J2EE) server.

Measures the performance of a Java implemented application tier.

Measures NFS file servers performance in terms of throughput and
response time.

120 CPU Design: Answers to Frequently Asked Questions

Table 22: Benchmarks Used to Measure CPU/System Performance

Benchmark

SPEC WEB99

Description

Measures the performance of a web tier application.

TPC - Transaction Processing Performance Council is a non-profit corporation founded to define
transaction processing and database benchmarks and to disseminate objective, verifiable TPC perfor-
mance data to the industry.

TPC-C

TPC-H

TPC-W

TPC-R

It is a on-line transaction processing (OLTP) benchmark which measures
five light-weight transactions against nine tables in a simple workload. The
performance metric reported by TPC-C is the number transactions per
minute (tpmC).

It is a decision support benchmark which consists of a suite of business ori-
ented ad-hoc queries and concurrent data modifications. The queries and
the data populating the database have been chosen to have broad industry-
wide relevance. This benchmark illustrates decision support systems that
examine large volumes of data, execute queries with a high degree of com-
plexity, and give answers to critical business questions. The performance
metric reported by TPC-H is called the TPC-H Composite Query-per-Hour
Performance Metric, and reflects multiple aspects of the capability of the
system to process queries.

It is a transactional web benchmark. The workload is performed in a con-
trolled internet commerce environment that simulates the activities of a
business oriented transactional web server. It simulates three different pro-
files by varying the ratio of browse to buy: primarily shopping, browsing
and web-based ordering. The performance metric reported by TPC-W is
the number of web interactions processed per second.

It is a decision support benchmark similar to TPC-H, but here the DBMS
optimizers are allowed huge freedom in their use of software technologies.
It consists of a suite of business oriented queries and concurrent data modi-
fications. The performance metric reported by TPC-R is called the TPC-R
Composite Query-per-Hour Performance Metric, and reflects multiple
aspects of the capability of the system to process queries.

2 Logic

1. What are some of the responsibilities of a Logic Designer in the Chip Indus-
try?

Some of the responsibilities of a Logic Designer are summarized below.

Table 23: Logic Designer Responsibilities

1

2

3

4

5

6

7

8

9

10

11

12

13

Come up with a detailed Microarchitecture Spec for the assigned block and maintain the Spec
until its closure.

Partition the block into subblocks based on several factors, few being whether it is a Control,
Datapath or Megacell, whether the block is too big to be Synthesized, whether breaking the
block helps in resolving some of the floorplan and timing issues etc.

Come up with a Microarchitectural Spec for the Megacell. Present the Spec to the interested
groups i.e mainly circuit designers who will be working on them.

Identify critical paths in the block and try to solve them through various design techniques i.e
moving logic across stages, using complex gates etc. Talk to the circuit designer if anything
fancy could be done (i.e using domino, dual rail circuits etc.) to solve the ones which cannot be
solved using standard design techniques. If using such fancy techniques still results in timing
violation then talk to the Architect to see what could be done next to solve the path.

Code RTL for the block and come up with a test bench environment to test it out. Convey to the
full-chip/block-level Verification engineer the kind of tests you would be interested in.

Keep working towards a bug free design by constantly bombarding the design with various
tests and debugging the failures.

Synthesize the control blocks and push them through various back-end flows.

Structurally code all the datapath blocks and push them through various back-end flows.

Run Static timing analysis on the block to make sure the block meets the timing spec.

Work with the Floorplan team in converging towards a workable floorplan for the block at the
top level.

Keep track of the Area and Power number for the block and always thrive to be within the bud-
get.

Present the Microarchitecture Spec to various groups within the team.

Patent all the novel design ideas/techniques which got implemented within the design which
you were part off.

122 CPU Design: Answers to Frequently Asked Questions

Other names associated with Logic Designer are RTL Designer or Microarchitect.

2. What is Max Timing and Min Timing?

Max Timing

Max time of a circuit is defined as the maximum amount of time data can take to
traverse the logic between two memory elements (flops or latches). It determines the
maximum frequency a circuit can operate at. Figure below shows a cycle of logic in a
flop based design.

Figure 77: Cycle of Logic in a Flop Based Design

Equation for Max time with reference to figure above is given by,

Slack is given by, (where is the clock period (i.e frequency of the

Chip) and is the Max time)

can be a positive or negative number. A circuit with a negative slack is said to vio-
late Max time (or otherwise known as Setup time violation).

Min Timing

Min time is the minimum amount of time data can take to traverse the logic between
two memory elements (flops or latches). A Min time violation results in a circuit fail-
ure. Figure below shows a cycle of logic in a flop based design.

Logic 123

Figure 78: Cycle of Logic in a Flop Based Design

In the figure above, if then we have a Min time violation.

An example of a Min time violation can be a signal going through minimum logic
between two blocks in two separate clock skew domains (here would be high

because of the two separate domains)

3. What is Power dissipation and what are some of the methods used to measure
Power in a Chip?

Power dissipation is the amount of power dissipated in a circuit. There are three com-
ponents to the amount of power dissipated in a circuit which are

1. Static Power Dissipation - This is the power dissipated due to leakage current
flowing through transistors which are off. It is given by the following equation,

2. Dynamic Power Dissipation - This is the power dissipated due to charging and
discharging of load capacitance. This makes up a big chunk of the total power dissi-
pated in a circuit. In most properly designed digital CMOS logic, the majority of the
power goes into charging and discharging of load capacitance. These capacitors range
in size from normal gate input and signal interconnect all the way up to main clock
node on the Chip. These capacitors all get charged and discharged a certain number of
times per clock cycle (often less than once per cycle) depending on the logic function
and processor activity. The power dissipated here is given by the following equation,

124 CPU Design: Answers to Frequently Asked Questions

3. Short Circuit Power Dissipation - This is the power dissipated due to short
circuit current (crowbar current). This is the current that flows from power to ground
through a CMOS gate when its input voltage is not at VDD (Power) or VSS
(Ground). This component of power is particularly sensitive to the slope of the gate’s
input signals. Slow rise/fall times at the input and fast fall/rise times at the output
cause this component to be very high. It is given by the following equation,

Total Power Dissipation which is the sum of the above three components is given by,

Some important terms associated with Power are

Average Power
Dissipation

Minimum Power
Dissipation

Maximum Power
Dissipation

This is the power dissipated by a block when it is not idle
and is processing a typical sequence of input vectors. (This
is typically measured over atleast 4 cycles; It effects the
heat dissipated in the package during normal operation)

This is the power dissipated by a block when it is idle (i.e
block is inactive).

This is the power dissipated by a block in the cycle when
the worst case sequence of input vectors are going through
it. (This is typically the worst case power in 1 cycle)

Following are some of the methods used to measure Power in a Chip -

1. Prior to implementation Power Consumption of a Chip can be estimated using a
formula based on the estimated number of gates (G), the capacitance of a typical gate
(Cg), estimated number of wires (W), the capacitance of a typical wire (Cw), fre-

Logic 125

quency of the chip (F), the activity factor (A) and the voltage (V). The equation for
Power Consumption here would be

In the above equation gate power is multiplied by 1.1 to account for the short circuit
current (crowbar current) which in many cases is estimated to be 10% of the gate
switching power. A typical gate in many cases is represented by a average sized 2-
input NAND gate. Activity factor here is defined as the number of transitions per
cycle divided by 2 (activity factor for a static gate is assumed to be 0.25, for a
dynamic gate is assumed to be 0.5 and for a clock it is 1 (since clock switches twice
every cycle)).

2. Prior to implementation Power Consumption of a Chip can be estimated based on
area. The equation here typically used is,

In the equation above most of the time the power density numbers are picked from
previous processor projects and are scaled to the current process being used for the
design.

3. Once the layout is ready, vectors may be used to measure power using one of the
simulation tools (Simplex or Spice). The vectors chosen should be run for at least 4
cycles (this is a typical number used in the industry) to get a sustained average power.
Normally the vectors are captured by running a power diag (developed by the verifi-
cation folks with help from the designer) at the unit or chip level.

Table below lists some of the most common techniques used in the industry to
improve timing of a critical path.

4. List some of the most common techniques used to improve timing of a Critical
Path?

126 CPU Design: Answers to Frequently Asked Questions

Table 24: Techniques to Improve Timing

1

2

Move logic across pipe stages. Figure below shows how moving logic across pipe stages helps
in solving timing of a critical path. Here we have a fetch stage where instruction is accessed
from I$ and a decode stage where instruction gets decoded to select either input ‘a’ or ‘b’. As
decoding and selecting either ‘a’ or ‘b’ results in a critical path we have moved portion of the
decoding into fetch stage thereby solving the critical path.

Figure 79: Moving Logic across Pipe Stages to Improve Timing

Move critical signal closer to the output of a Gate. In the figure below if we assume that input
‘b’ is critical then we would be better off in timing if we connect ‘b’ to the transistor closer to
the output (i.e M3). The reason for this is when ‘b’ arrives the only charge it has to discharge is
the charge at the output node against discharging charge at intermediate node N1 and output
node when it is connected to M4.

Figure 80: Moving Critical Signals Closer to the Output of a Gate to Improve Timing

Logic 127

Table 24: Techniques to Improve Timing

3

4

Move critical signal closer to the output. In the figure below if we assume ‘a’ to be critical
when compared to the rest of the inputs then we will be better off in timing if we move ‘a’
closer to the output.

Figure 81: Moving Critical Signal Closer to the Output to Improve Timing

Replicate portion of the logic in the path which is timing critical. Figure below shows how rep-
licating logic resolves our critical path.

Figure 82: Replicating Logic to Improve Timing

128 CPU Design: Answers to Frequently Asked Questions

Table 24: Techniques to Improve Timing

5

6

7

8

Use complex gates. Figure below shows how using complex gates resolves our critical path.

Figure 83: Using Complex Gates to Improve Timing

Use Clock gating. Figure below shows the way Clock gating helps in solving the critical path
through node ‘n’.

Figure 84: Using Clock Gating to Improve Timing

Size up weak gates in the path.

Since low Vt (threshold voltage) gates in many cases provide 5-10% timing improvement over
standard Vt gates, use low Vt gates in the paths which are timing critical.

Logic 129

Table 24: Techniques to Improve Timing

9

10

If the path is wire dominated then do the following things -
a. Increase the width of the wire as this would reduce the wire resistance thereby improving
timing.
b. Increase spacing between the wire under reference and its neighbors as this would reduce
coupling capacitance thereby improving timing.
c. Single/Double shielding the wire under reference would reduce coupling capacitance thereby
improving timing.
d. Balancing wire load by inserting a repeater helps in getting a better edge rate at the destina-
tion (i.e node A in the figure below) thereby improving timing. Figure below shows how insert-
ing a repeater helps in resolving the critical path.

Figure 85: Adding Repeater to Improve Timing

e. Use a higher metal layer (i.e if the current route is in Metal2 then try using higher Metal layer
which is less resistive when compared to Metal2) for the route as this would result in reduced
wire resistance thereby improving timing.
f. Tapering wire improves timing as doing this reduces the total wire capacitance.

Figure 86: Tapering Wire to Improve Timing

Use non-static logic (i.e domino, dual rail, pseudo nMOS etc.) instead of static logic. This
should be the last resort because of the following disadvantages
a. Non-static circuits tend to dissipate more power when compared to static.
b. Doesn’t scale well when moving to a better process.
c. Needs more design time when compared to static.

130 CPU Design: Answers to Frequently Asked Questions

Table 24: Techniques to Improve Timing

11

12

Using a pulse flop instead of a master-slave flop. Since pulse flop tends to have a negative setup
time when compared to a master-slave flop which has a positive setup time (typically 40-60ps
without any embedded gates in 0.09micron process technology), replacing master-slave with a
pulse flop at the destination helps in solving some of the timing paths. Pulse flop typically has
higher clock to Q and power dissipation when compared to a master-slave flop, so we need to
be careful here to make sure the logic in Stage2 (in figure below) also meets timing with pulse
flop in place. Figure below shows how replacing a master-slave flop with a pulse flop resolves
our critical path.

Figure 87: Replacing Master-Slave Flop with a Pulse Flop to Improve Timing

At an architectural level timing of instruction decode logic could be improved by generating
predecode bits for an instruction on its way from L2/Memory and storing it in I$ along with the
instruction. Figure below shows how generating predecode bits and storing it in I$ resolves our
critical path in Decode stage.

Figure 88: Storing Predecode Bits to Improve Timing

Logic 131

5. List some of the most common techniques used to fix Mintime Paths in a
Design?

Table below lists some of the most common techniques used in the industry to fix
Mintime Paths in a Design.

Table 25: Techniques to Fix Mintime Paths

1

2

3

4

Use Poly or High Resistive Metal in the Path. Use this approach if the block is Gate dominated.
Figure below shows how using a poly or high resistive metal helps in fixing the Mintime path.

Figure 89: Using a Poly or High Resistive Metal to Fix Mintime Path

Use a Mintime flop (Flop with higher Clock to Output delay (i.e C to Q delay)) in the Path. Fig-
ure below shows how using a Mintime flop helps in fixing the Mintime path.

Figure 90: Using a Mintime Flop to Fix Mintime Path

Add Mintime buffer (i.e buffer designed to take care of the Mintime violation (i.e delay through
the buffer ensures that for the case of a back to back flop with minimum distance the placement
of this buffer in its path avoids any mintime violation)) in the Path. We need to be careful here
as this might result in an increase in area. Figure below shows how adding a Mintime buffer
helps in fixing the Mintime path.

Figure 91: Adding a Mintime Buffer to Fix Mintime Path

Down size logic in the Path. We need to be careful to make sure that the slew rate of intermedi-
ate nodes within the Path doesn’t result in any noise violations. Figure below shows how down-
sizing logic helps in fixing the Mintime path.

132 CPU Design: Answers to Frequently Asked Questions

Table 25: Techniques to Fix Mintime Paths

Figure 92: Downsizing Logic to Fix Mintime Path

6. List some of the basic techniques used to reduce Power Dissipation at the
Logic/Circuit level?

Table below lists some of the most common techniques used in the industry to reduce
Power dissipation at the Logic/Circuit level.

Table 26: Techniques to Reduce Power Dissipation

1 Provide support for Clock gating. Clock gating is a technique of masking off the clock when
circuits are idle and thus significantly reducing the switching activity in a circuit and on the
clock nets. Since clocks contribute to 30-40% of the total power dissipation, Clock gating is
considered as the most effective means of reducing power dissipation. In figure below by AND-
ing the clock with Clock_Enable control signal we essentially disable the clock from driving
the Flop whenever needed thereby saving power.

Figure 93: Clock Gating

Figure below shows Clock gating as applied to a 1-Way Superscalar Pipelined Processor. Here
we turn off the clock for few flops in E stage if we find that there is no ALU related instruction
in R stage. Here we need to latch the enable signal before gating it with Clk in order to avoid
any glitches in GClk.

Figure 94: Clock Gating as Applied to a 1-Way Superscalar Pipelined Processor

Logic 133

Table 26: Techniques to Reduce Power Dissipation

2 Forwarding an extra bit with the Data or Control bus which indicates whether the bus has valid
data or not. The flops at the receiving end of the bus only flop the data if the extra bit is set.
Doing this will allow logic beyond the receiving flops (i.e logic in Stage2 in the figure below)
to be inactive while the extra bit is not set thereby saving power. This method of saving power
in some cases is known as Logic gating. In figure below P1 < P0.

Figure 95: Logic Gating

Figure below shows Logic gating as applied to a 1-Way Superscalar Pipelined Processor. Here
we prevent signal toggling at the output of few flops in E stage by recirculating the data while
there is no ALU related instruction in R stage.

Figure 96: Logic Gating as Applied to a 1 -Way Superscalar Pipelined Processor

134 CPU Design: Answers to Frequently Asked Questions

Table 26: Techniques to Reduce Power Dissipation

3

4

5

Provide support for Power gating. As we go into deep submicron technology power dissipated
due to leakage current is of a great concern as current due to leakage increases in deep submi-
cron technology because of the lowered threshold voltage. One way to reduce leakage is by pro-
viding support for Power gating. The idea is to introduce an extra transistor in the supply
voltage or ground path. The extra transistor is turned on in the used section and turned off in the
unused section. Figure below shows a power gated NAND circuit. In the circuit below
Power_Enable control signal is set to logic0 when the NAND gate is used/active and set to
logic 1 when the NAND gate is unused/idle.

Figure 97: Power Gating

Figure below shows Power gating as applied to a BIST Controller. Since BIST controller is
active only while we are in BIST mode, here we cut off the power to the entire controller while
in non-BIST mode by applying inverted version of the ‘bist_mode’ signal as input to the addi-
tional P-transistor.

Figure 98: Power Gating as Applied to a BIST Controller

Determine signals with high activity levels and try to optimize paths involving these signals so
that these high active signals go through minimum logic levels. Doing this will reduce power in
these paths involving high active signals. Figure below shows the way path involving highly
active signal ‘a’ is optimized.

Figure 99: Optimizing Paths with Highly Active Signals to Reduce Power

Use high Vt (threshold voltage) gates in non-critical paths as they dissipate less power when
compared to standard Vt gates.

Logic 135

Table 26: Techniques to Reduce Power Dissipation

6

7

Since bigger gates consume more power, reducing the size of gates in non critical paths results
in reduced power dissipation. Figure below shows the way gates in a non-critical path could be
downsized thereby reducing power dissipation in the path but still meeting timing. In the figure
below ?x represents the drive strength of a gate where gate with a drive strength of 1x is weaker
than a similar gate with a drive strength of 2x and so on and so forth.

Figure 100: Downsizing Gates to Reduce Power

Try to achieve better edge rates on signals as slow edge rates results in DC power consumption
in the receiver. This is because if a signal takes too long to switch then the receiver which is
sensing the signal draws excessive current as the pullup and pulldown transistors of the receiv-
ing device are partially on all the time during which the switching of the signal is happening. In
the figure below since (transition time of signal A at Inverter N) (transition time of

signal A at Inverter M), M1 and M2 of Inverter N are partially ON for a less amount of time
when compared to that of Inverter M as a result of which DC power dissipation (because of
short circuit current) in N is less than that in M, so P1 < P0. (Here we have assumed that
increasing the size of the inverter at the source in order to get a better edge rate has minimal
effect on the Power number in the path)

Figure 101: Improving Edge Rate to Reduce Power

136 CPU Design: Answers to Frequently Asked Questions

Table 26: Techniques to Reduce Power Dissipation

8

9

10

11

12

Since Clock accounts for 30-40% of the total power dissipation, reducing loading on the clock
network will result in reduced power dissipation. One example would be using register file
structures instead of flops where ever possible.

Making sure that the wiring between gates is kept to minimum. Doing this will reduce the wire
capacitance and thereby results in reduced power dissipation.

Since non-static circuits consume more power avoid using non-static circuits (i.e domino, dual-
rail, pseudo-nMOS etc.) in the design.

Encode the Bus before transmitting it long distance. A data bus such as a counter value (in the
figure below sq_id[3:0] (4-bit store queue ID) which is assumed to always increment by 1/0 in
any given Cycle) which always steps by 1 will greatly benefit in terms of Power dissipation if
the value is encoded to Gray code before transmission and then decoded back to Binary format
at the receiving end. In the figure below P1 < P0. The benefit in Power dissipation by encoding
the value to Gray code comes from the fact that only one of the four bits will be changing on the
4-bit bus (sq_id[3:0] in the example below) as we go from Cycle to Cycle as against more than
one bit changing if the data were to be forwarded without encoding.

Figure 102: Encoding the Bus to Reduce Power

Allow some of the non critical flops to be non scannable as this would result in less logic within
the flop thereby saving power.

Logic 137

7. What is a Synchronizer and what are some of the design guidelines used to
help data integrity in designs with multiple clock domains?

Synchronizer circuits are needed in a multi clocked domain system where a signal
generated in one clock domain feeds into a memory element (typically Flop) in a dif-
ferent clock domain. Synchronizers help in preventing metastability at the destination
flop. Metastability is a state of a memory element where the output of the memory
element stays near VDD/2. Few ways of preventing metastability are

1

2

Insert a synchronizer in a signal path before entering the new clock domain. This
method is typically used for control signals.

Figure 103: Synchronizer to Prevent Metastability

2. Ensure that the signal does not violate the setup and hold time of the destination
memory element. In many cases this is achieved by

a. Preventing the input from changing while it is being sampled or
b. Preventing the memory element from sampling while the input is changing.

This method is typically used for data signals.

A synchronizer is typically made up of 2 flops clocked by the destination clock.
Unlike regular flops, these flops are specially designed to exit the metastable state
quickly. In many cases these flops are known as metastability hardened flops. Figure
below shows a 2-flop Synchronizer.

Figure 104: 2-flop Synchronizer

138 CPU Design: Answers to Frequently Asked Questions

In the figure above the output of the first flop in a synchronizer could be in a metasta-
ble state (as the input to synchronizer could arbitrarily change) for a period of time
but by the time the signal reaches the second flop there is a high probability that the
metastable state would have been resolved to a logic 0 or logic 1. There is still a finite
probability that the metastability would not have resolved in which case we have a
synchronization failure. The goal in a synchronizer design is to minimize the mean
time between failures (MTBF) to an acceptable level. MTBF is given by the follow-
ing equation

In the above equation

a. Allowing more resolution time (i.e is probably the simplest way to exponentially reduce the

failure rate (see if the output of the synchronizer can be avoided from being sampled on every clock
cycle; do not have any logic between the 2 flip-flops in a Synchronizer).

b. Decreasing and helps in reducing the failure rate (in cases where the data does not have to

be sampled on every clock cycle, synchronizer could be clocked at half the frequency of the receiver
clock).

c. Decreasing ‘T’ helps in reducing the failure rate (careful design of the latch input stage helps min-
imize T. Providing clean, crisp inputs can also help reduce this danger window.

d. Decreasing of the regenerative feedback loop will help in exponential decline in failure
rate. Keeping the parasitic load on the critical nodes as low as possible and using small devices in
the feedback loop and buffering the flop output helps in decreasing factor.

Some of the design guidelines used to help data integrity in designs with multiple
clock domains are

1. Partition the design carefully to minimize the number of synchronizers used.

Logic 139

2. Input to a synchronizer should come from a flop or guaranteed to be monotonic (if
the input to a synchronizer comes via combinational logic then it is likely that the sig-
nal may transition multiple times during a cycle before settling on a final value (due
to variations in the timing paths through the combinational logic) which may cause
false information to pass through the synchronizer which can be fatal).

3. In the case of non-stream data inputs crossing a clock domain (i.e going from one
clock domain to a different clock domain), cover the inputs with a strobe i.e place the
data on the data bus and assert a strobe. Here the strobe is fed through a synchronizer
to the destination clock domain whereas the data on the data bus is left until it is guar-
anteed that the data has been consumed by one of the following methods

a. The destination sends back an acknowledge signal through a synchronizer indi-
cating that the data has been consumed (this process is known as flow control mecha-
nism).

b. If you know the clock ratios, maximum latency through the synchronizer and the
maximum latency between the strobe signal arrival and the last use of data, then use
this information to appropriately control your data flow. Figure below shows a typical
usage of synchronizer for non-stream data.

Figure 105: Synchronizing Non-Stream Data through a Strobe

4. In the case of a stream data crossing clock domains, instead of synchronizing each
and every unit of data from one clock domain to another, use a FIFO (First In First
Out) memory structure which uses clocks from both source and destination clock
domains. This minimizes the number of synchronization events needed resulting in
better reliability and performance. Here logic in the reading clock domain only needs
to know when there is data in the FIFO to be read and when it is empty whereas logic
in the writing clock domain only needs to know if the FIFO is full or not. Here the
FIFO full and empty conditions are correctly managed by forwarding the write
pointer to the destination clock domain and the read pointer to the source clock
domain through synchronizers after going through encoding. Gray coding is the most
commonly used encoding where if a pointer has advanced by two, the only possible
outputs from the synchronizer would be advance by zero, one or two in which case
any of these outputs will allow correct operation. Likewise if the pointer has
advanced by three, the only possible outputs from the synchronizer would be advance
by zero, one, two or three thereby allowing correct operation. Figure below shows
this scheme.

140 CPU Design: Answers to Frequently Asked Questions

Figure 106: Synchronizing Stream Data through FIFO Structure

5. When sending data from high clock domain to low clock domain either provide
high bandwidth (enough synchronizers must be banked to reduce each synchronizer’s
input pulse transitions to a low enough rate to allow each synchronizer to work cor-
rectly at the given clock ratio) or slow down the data (by providing flow control
mechanism). Figure below shows a typical synchronization logic while transferring
data from high clock domain to lower clock domain.

Figure 107: Synchronization Logic for Data Transfer from Higher Frequency
Clock Domain to Lower Frequency Clock Domain

Table 27: Characteristics of a Flop and a Latch

Flop

1. It is edge triggered. Figure below shows a
Pulse Flop.

Figure 108: Pulse Flop

Latch

1. It is level sensitive. Figure below shows a
Level Sensitive Latch.

Figure 109: Positive Level Sensitive Latch

8. What are some of the characteristics of a Flop and a Latch?

Table below shows the characteristics of a Flop and a Latch.

Logic 141

Table 27: Characteristics of a Flop and a Latch

Flop

2. There is no time borrowing. Here the data
must arrive at least a setup time before the active
edge of the Clock. This limits the amount of
logic in a given cycle. Figure below shows the
maximum logic delay in a flop based design.

Figure 110: Maximum Logic Delay in a Flop
Based Design

3. Involves more logic resulting in more area and
power.

4. Flop based designs are more tool friendly than
latch based designs.

Latch

2. We can borrow time from the next phase or the
previous phase. Here time borrowing occurs
when data changes while the latch is transparent.
Time borrowing allows a circuit to use time from
a previous or next phase to perform its logic. Fig-
ure below shows forward time borrowing in a
latch based design.

Figure 111: Time Borrowing in a Latch Based
Design

3. Involves less logic resulting in less area and
power.

4. Latch based designs are less tool friendly than
flop based designs.

9. Describe with an example a Picker Logic associated with an Issue Queue in an
Out-Of-Order Processor?

Picker logic picks instructions to be issued for execution. Most of the time these
instructions are sitting in a buffer structure before they get picked. Issue Queue in an
Out-Of-Order Processor uses picker logic to pick instructions for execution by one of
the functional units. (other places where picker logic gets used are, Load Queue uses
picker logic to pick a load among bunch of loads sitting in the Load Queue for cache
access, Store Queue uses picker logic to pick a store among bunch of stores sitting in
the Store Queue for cache access etc.)

Figure below shows Picker Logic for an 8-entry Issue Queue (IQ) in an Out-Of-Order
Processor. IQ is the place holder for instructions before they get picked for execution.
In the figure below, WV[7:0] is the Wrap Vector (maintained by the IQ (wrap bit
could also be forwarded by one of the blocks preceeding IQ involved in assigning
instruction ID’s)) where in case of an instruction wrap around in the IQ, the wrap bit
corresponding to that instruction is toggled as can be seen from the figure below,
RV[7:0] is the Ready Vector (maintained by the IQ) where a bit in the vector gets set
when its corresponding instruction is ready to be issued (i.e it is dependent free).
Based on the Wrap Vector and Ready Vector one of the instructions sitting in the IQ

142 CPU Design: Answers to Frequently Asked Questions

gets picked for issue (i.e to the execution unit). Here we see that if multiple instruc-
tions are ready then the oldest gets picked for issue.

Figure 112: Picker Logic for an 8-Entry Issue Queue

10. What are some of the advantages and disadvantages of implementing Mux
functionality using an AOI against a Pass Gate?

Table below lists some of the advantages and disadvantages of implementing Mux
functionality using an AOI against a Pass Gate.

Logic 143

Table 28: AOI against Pass Gate

Mux functionality using AOI

1. We don’t have to worry about signal contention
while in scan mode.

Figure 113: Figure 1 for AOI

2. In normal functional mode we don’t have to
worry about the arrival times of select controls (i.e
S0, S1 and S2) to an AOI.

Figure 115: Figure 2 for AOI

Mux functionality using Pass Gate

1. Need to make sure Mux exclusivity is guar-
anteed in scan mode otherwise would result in
signal contention thereby damaging the device.

Figure 114: Figure 1 for Pass Gate

2. In normal functional mode we do have to
worry about the arrival times of select controls
to a Mux. The reason being if the final value of
{S2S1S0} in figure below is 3’b001 but S0
changes to 1 at time t0 and S2 changes to 0 at
time t2 and (t2-t0) is a big number then conten-
tion on the internal node will result in damaging
the device over a period of time. So here we
need to make sure that all selects to the Mux do
come within a fixed interval of time.

Figure 116: Figure 2 for Pass Gate

144 CPU Design: Answers to Frequently Asked Questions

Table 28: AOI against Pass Gate

Mux functionality using AOI

3. Provides better ATPG coverage than Pass Gate
implementation in certain implementation scenar-
ios. In figure below where the decode logic for the
selects is on the other side of the flops, we still get
100% ATPG coverage through the AOI gates
implementing a Mux functionality.

Figure 117: Figure 3 for AOI

4. Smaller width Mux functionality implemented
using AOI’s tend to give better timing number
than implementing the same functionality using a
Pass Gate.

Figure 119: Figure 4 for AOI

Mux functionality using Pass Gate

3. Less ATPG coverage than AOI implementa-
tion in certain implementation scenarios. In fig-
ure below because of the Mux protection logic
(to take care of contention while in scan mode)
in the select path we won’t get 100% ATPG
coverage through the Mux as the paths through
D0, D1 and D2 are never selected in scan mode.

Figure 118: Figure 3 for Pass Gate

4. Wide input Mux functionality implemented
using a Pass Gate tend to give better timing
number than implementing the same functional-
ity using AOI’s.

Figure 120: Figure 4 for Pass Gate

Logic 145

Table 28: AOI against Pass Gate

Mux functionality using AOI

5. In figure below where the logic uses an AOI
(‘aoi22’), the timing through path P2 depends
only on the arrival time of ‘D1’.

Figure 121: Figure 5 for AOI

Mux functionality using Pass Gate

5. In figure below where the logic uses a Pass
Gate Mux (‘mux2i’), the timing through path
P2 depends on the following events -
a. Arrival time of ‘D1’, if ‘D1’ arrives after the
arrival of ‘S0’ and ‘S1’ (i.e by the time ‘D1’
arrives ‘S0’ and ‘S1’ are in a valid mutually
exclusive state).
b. Arrival time of ‘S0’ and ‘S1’, if ‘S0’ or ‘S1’
arrives after the arrival of ‘D1’. If ‘S0’ or ‘S1’
arrives after the arrival of ‘D1’ and there is a
period of time during which they are non mutu-
ally exclusive after the arrival of ‘D1’ then dur-
ing that period node ‘A’ will be in some non-
deterministic state. The value will settle down
to logic0 or logic 1 (based on the value of ‘D1’)
once the selects (i.e ‘S0’ and ‘S1’ here) exit the
non mutually exclusive state. So here even
though ‘D1’ arrives early the delay through path
P2 is really determined by the arrival times of
‘S0’ and ‘S1’. As an example if ‘D1’ arrives at
time ‘t0’, ‘S1’ arrives at ‘t1‘ and ‘S0’ arrives at
‘t2’ and t2>t1>t0 then node ‘A’ will be in some
non-deterministic state if ‘D0’ and ‘D1’ have
opposite values while ‘S0’ and ‘S1’ are in non
mutually exclusive state and will go to a stable
state after the arrival of ‘S0’. So here we see
that the path through node ‘A’ is really depen-
dent on the arrival time of ‘S0’

Figure 122: Figure 5 for Pass Gate

11. Describe with an example a Working Register File ID Assignment Logic for
an Out-Of-Order Processor supporting Multiple Threads?

In an out-of-order processor, there exists a Working Register File (WRF)/Re-Order
Buffer where the results of uncommitted instructions (i.e instructions which are not
yet committed) go and sit before being written into the architectural register file at the
time of commit. Any valid instruction (typically with a valid destination register) in

146 CPU Design: Answers to Frequently Asked Questions

an out-of-order processor gets renamed to one of the entries in WRF allowing the
instruction to be issued out-of-order. This renamed value assigned to an instruction is
known as Working Register File ID (WRF_ID). Logic involved in assigning
WRF_ID’s is known as WRF_ID assignment logic. Working register file allows an
out-of-order processor to take advantage of instruction level parallelism in the code
whereby the processor can issue an younger instruction which is dependent free
before an older instruction gets issued.

A multithreaded processor (i.e a processor supporting multiple threads) could be sup-
porting any one of the following thread switching algorithms which are VT (Vertical
Threading), SMT (Simultaneous Multithreading), HT (Horizontal Threading), PT
(Power Threading) and BT (Branch Threading). Here lets assume the processor to be
supporting VT. Also lets assume the out-of-order processor to be a N-stage pipelined,
3-Way superscalar processor supporting two threads/strands (thread and strand are
synonyms and have been used interchangeably in the following paragraphs). Figure
30 below shows three of its N stages.

Figure 123: Fetch, Decode and Rename Stage of a N-Stage Pipelined Processor

The three stages shown are Fetch (F), Decode (D) and Rename (R). Since the proces-
sor supports dual strands we have two instruction buffers, one for each strand as
shown in Figure 123. In F stage we fetch instructions for each strand and feed them
into the appropriate instruction buffers. Based on the stand ID information from D
stage, instructions from appropriate strand gets forwarded to D stage. Lets assume the
WRF_ID Assignment Logic along with the main Strand Switching Logic (SSL) and
Resource Management Logic (RML) to be part of the D stage. SSL provides the
appropriate strand related information to WRF_ID assignment logic. It takes inputs
from Resource Management Logic (which manages various resources in various units
down the pipe), Commit Unit (which commits instructions based on the completion
and exception report) and Fetch Unit (which fetches instructions in addition to man-
aging the instruction buffers for individual strands). RML provides information about
the stall condition (i.e stall while there is a resource scarcity (i.e one of the resources
down the pipe is full or close to its high threshold value)) for appropriate strand,
Commit Unit provides the flush information (i.e in the case of a branch mispredict in
a particular strand or a particular strand being parked or an instruction in a particular
strand resulting in an exception etc.) for appropriate strand and Fetch Unit provides
the instruction buffer empty information for each strand.

Logic 147

Figure 124 below shows the pipeline diagram showing fetch groups from Strand0 and
Strand1 while there is a strand switch and resource stall. We see from the figure that
while there is a strand switch there is no penalty (i.e there is no bubble in the pipe (i.e
in the following cycle you see instructions from the other Strand in D stage)).

Figure 124: Pipeline Diagram showing Fetch Groups from Strand0 and Strand1

Definition of various terms used in Figure 124 above are

Let’s assume the processor to support a 32-entry WRF structure, a 32-entry Issue
Queue and a 32-entry Commit Queue. Also let’s assume the WRF, Issue Queue and
Commit Queue to be a 32 entry structure in single strand mode and is split between
strands (i.e 16 entries per strand) in dual strand mode. Figure 125 shows a flow pro-
cess for assigning WRF_ID’s for such a processor. Figure 126 shows the logic
involved in assigning WRF_ID’s for such a processor. Here the working register file
ID’s (WRF_ID’s) for individual instructions are assigned by maintaining an active
strand pointer (AS_PNTR[4:0]) and a set of individual strand pointers
(S0_PNTR[4:0], S1_PNTR[4:0]). The active strand pointer is maintained based on
data pertaining to instructions from a strand actively being processed by the Decode
Unit, while the individual strand pointers are maintained based on data pertaining to
instructions from a relevant strand. When a fetch group (i.e a maximum of 3 valid
instructions (since it is 3-Way Superscalar)) enters D stage, both the active strand
pointer and the individual strand pointer for the relevant strand are updated based on
its valid vector and other information as shown in Figure 126. Logic in Figure 126 is
based on the pipeline diagram and flowchart shown in Figures 124 and 125. WRF_ID
assignment logic takes necessary strand related information from SSL. Necessary
strand related information being, current strand being processed, whether we will be
switching strands in next cycle etc. Here every instruction gets assigned a WRF_ID
irrespective of whether it has a valid destination register or not. Since Commit Queue
is 32 entries deep assigning WRF_ID’s to every valid instruction doesn’t hurt our per-
formance. If we were to assign WRF_ID to valid instructions with valid destination
registers only then it could be achieved by making few updates to the logic shown in
Figure 126. Definition of various terms used in Figure 126 are

148 CPU Design: Answers to Frequently Asked Questions

Logic A in Figure 126 is used to take care of the condition where you are not switch-
ing strands but there is a resource stall on the current active strand as a result of which
you should not be incrementing your counters next cycle (assuming resource stall for
the active strand is still active) as no valid instruction bundle will be forwarded next
cycle. Logic B in Figure 126 is used to take care of the condition where you switched
to Strand0 but Strand0 is already in stall mode or you switched to Strand1 but Strand1
is already in stall mode in which case you should not be incrementing your counters
as there will be no valid instruction bundle forwarded in the current cycle.

One thing to note here is that in dual strand mode we forward ‘cs’ (current active
strand bit which is ‘0’ if the strand actively being processed in D stage is Strand0 and
‘1’ otherwise) in the least significant bit position of the WRF_ID. The reason for
doing this is, here if we assume that Issue Queue in I stage (not shown in Figure 123)
uses WRF_ID to update its entries with the new incoming instructions, having ‘cs’ bit
in the least significant bit position of the WRF_ID in dual strand mode helps Issue
Queue maintain fairness between strands to be picked for issue in certain implementa-
tions. One such implementation would be where Issue Queue is a unified structure
and the priority encoder used to pick an instruction picks in a circular fashion based
on age and ready status. As an example lets assume that there are 3 priority encoders
(i.e PE0 for Slot0, PE1 for Slot1 and PE2 for Slot2) to pick three instructions sta-
tioned in Issue Queue for each of the 3 execution slots (since processor is 3-way
superscalar) and also lets assume that IDU is currently processing instructions from
Strand0. If we assume that IDU assigns instructions in the current fetch group (i.e I0,
I1 and I2) from Strand0 to Slot0 with WRF_ID’s 0,2 and 4, then these instructions go
and sit in entries 0, 2 and 4 in the Issue Queue. Now if IDU switches strands (i.e
switches to Strand1) and processes fetch group from Strand1 then lets assume that
IDU assignees WRF_ID’s 1,3 and 5 to instructions I0, I1 and I2 from Strand1. These
instructions from Strand1 go and sit in entries 1, 3 and 5 in the Issue Queue. If in a
given cycle say N, I0 (belonging to Strand0) in entry 0, I0 (belonging to Strand1) in
entry 1 and I1 (belonging to Strand0) in entry 2 are ready to be picked for issue, then
PE0 picks I0 (belonging to Strand0) to be issued in cycle N, picks I0 (belonging to
Strand1) to be issued in cycle (N+l) and picks I1 (belonging to Strand0) to be issued
in cycle (N+2). So here we see that we have provided fairness in picking instructions
belonging to different strands by forcing instructions for Strand0 to go and sit in even
entries of Issue Queue and instructions for Strand1 to go and sit in odd entries of Issue
Queue by having ‘cs’ bit as the least significant bit of the WRF_ID in dual strand
mode.

Logic 149

150 CPU Design: Answers to Frequently Asked Questions

Figure 125: Flow Process for Assigning WRF_ID’s in an Out-Of-Order Processor
Supporting Dual Strands

Logic 151

Figure 126: WRF_ID Assignment Logic for an Out-Of-Order Processor Supporting
Dual Strands

3 Circuits and Layout

1. What are some of the responsibilities of a Circuit Designer in the Chip Indus-
try?

Some of the responsibilities of a Circuit Designer are summarized below.

Table 29: Circuit Designer Responsibilities

1

2

3

4

5

6

7

8

9

Design some of the key circuit intensive elements on the Chip such as SRAM’s, Register Files,
ROM’s, PLA’s, Buffer/Queue structures, Library Cells, PLL, DLL, CAM’s etc.

Work on feasibility studies of Critical Paths.

Characterize various Megacells and Library cells.

Come up with a detailed Spec for the Megacell, work on designing the Megacell and run
dynamic simulation and formal verification to check equivalence between the Megacell and its
behavioral model.

Run Min time and Max time checks (i.e Hold time and Setup time violation checks) on the final
Megacell layout, analyze the reports and fix any violations.

Run Noise check (check for Noise violations) on the Megacell/Library cell layout, analyze the
report and fix any violations.

Run EM/IR check (Electromigration and Voltage drop check)) on the Megacell/Library cell lay-
out, analyze the report and fix any violations.

Run Clock check (check for Clock network meeting the Clock Spec) on the Megacell/Library
cell layout, analyze the report and fix any violations.

Patent any novel circuit techniques which you were part off and which got implemented in the
Chip.

2. What are some of the responsibilities of a Physical/Integration Designer in the
Chip Industry?

Some of the responsibilities of a Physical/Integration Designer are summarized
below.

Table 30: Physical/Integration Designer Responsibilities

1 Custom Layout of Transistors and Gates.

154 CPU Design: Answers to Frequently Asked Questions

Table 30: Physical/Integration Designer Responsibilities

2

3

4

5

6

7

8

9

10

Custom Routing of signals between Transistors, between Gates and between Blocks within a
Chip

Running LVS (Layout Versus Schematic), DRC (Design Rule Checking) and ERC (Electrical
Rule Checking) on the Layout. Analyzing the reports to see if there any errors and if there are
then fixing them in the Layout.

Custom Routing of Power grid and Clock grid.

Work on Unit/Chip Floorplan.

Run Min time and Max time checks (i.e Hold time and Setup time violation checks) at the Unit
and Chip level, analyze the reports and fix any violations.

Run Noise check (check for Noise violations) at the Unit and Chip level, analyze the report and
fix any violations.

Run EM/IR check (Electromigration and Voltage drop check) at the Unit and Chip level, ana-
lyze the report and fix any violations.

Run Clock check (check for Clock network meeting the Clock Spec) at the Unit and Chip level,
analyze the report and fix any violations.

Patent any novel Layout techniques which you came up with and got implemented in the Chip.

3. What is Resistance, Capacitance and Inductance?

Table below provides definitions for Resistance, Capacitance and Inductance.

Table 31: Resistance, Capacitance and Inductance

Resistance All materials impede the flow of current to some extent. This property is called
Resistance. Insulators have a very high resistance to current flow whereas Conduc-
tors have low resistance and allow current to flow freely. The unit of measure for
Resistance is Ohms. Resistance of a wire on a chip is given by the following defini-
tion -

Circuits and Layout 155

Table 31: Resistance, Capacitance and Inductance

Capacitance

Inductance

Capacitance is the property of a electrical circuit that opposes a change in voltage. It
enables a circuit or device to store an electric charge. The unit of measure for Capac-
itance is Farads. Area capacitance between two wires on a chip is given by the fol-
lowing equation -

Inductance is the property of a electrical circuit that opposes any change in electric
current. The unit of measure for Inductance is Henry.

4. Describe the various terms associated with CMOS Process/Gate?

Various terms associated with CMOS Process/Gate are tabulated below.

Table 32: Various Terms Associated with CMOS Process/Gate

Bulk

Poly

The silicon region that a transistor is built in. In the context of HSpice, the bulk is
one of the 4 terminals of a transistor. In reality it is not a single node at all - it is
fairly resistive silicon which is largely depleted of carriers. The gate oxide is grown
on the bulk silicon and transistor source and drain regions are built in the bulk.

Polysilicon. The material used to make transistor gates. When it runs over field
oxide (i.e not over a transistor) it is called ‘field poly’. It is silicon but unlike the
bulk material, it is deposited, not grown, and it is polycrystalline.

156 CPU Design: Answers to Frequently Asked Questions

Table 32: Various Terms Associated with CMOS Process/Gate

Gate

Source/Drain

Channel

Isolation

Accumulation

Transistor gates are polysilicon deposited on top of a very thin gate oxide. The gate
oxide is thermally grown. The polysilicon deposited on the gate oxide is couple of
thousand Angstroms thick. The poly gate is doped p-type over p-channel transistors
and n-type over n-channel transistors. This is done to help achieve the necessary
threshold voltages in each transistor type (the threshold voltage depends (among lot
of other things) on the doping density and type of gate). The potential diode problem
at the interface of p-type poly and n-type poly is avoided by saliciding the top of the
poly. Salicide is a thin layer of Titanium that is deposited on top of he poly and is
combined with some of the silicon there to make TiSi2. It is called salicide because
it is a ‘self-aligned’ silicide layer. It is self-aligned because no mask is needed to
keep it only on poly and source/drain layers. In addition to shorting out the diode
between n-poly and p-poly, the salicide also reduces the resistance of poly by about
an order of magnitude, helping to reduce RC delays along gates.

The Source and Drain are the terminals of a transistor that abut the gate. They are
isolated when the gate is off and more or less connected when the gate is on. They
are formed by implanting n- or p-type dopants into selected well areas. The source
and drain regions need to be highly doped to minimize the contact resistance
between the metallization layer and the source/drain region. Source and Drain
regions are salicided at the same time as the poly gates. This helps to provide a low-
resistance contact to the interconnect above and lowers the resistance of the source/
drain regions. If the source/drain regions were not salicided the extra parasitic resis-
tance would rob the transistor of some of its performance. The salicide can be
masked off of selected source/drain regions. This is normally done only in I/O buff-
ers. In I/O buffers some series resistance is actually desirable because it helps to
attenuate ESD strikes. Drain specifically refers to the terminal of a transistor not
connected to the supply and Source specifically refers to the terminal of a transistor
connected to the supply. Source and Drain are physically identical.

A very thin region below the gate of a MOS transistor that can be made conductive
by putting an appropriate voltage on the gate of the transistor. It connects the source
and drain regions of the transistor.

Isolation is what separates transistors from each other. It defines the boundaries of
the source/drain regions and also the edges of gates that are not adjacent to source/
drain areas. Isolation is important because it prevents one transistor from affecting
another and because it provides a nice clean termination for source/drain regions
and gate edges. Without such a nice clean termination of these edges we would have
excessive leakage along the edge.

When a CMOS gate is turned off beyond the corresponding supply (i.e below VSS
for an n-channel or above VCC for a p-channel), the channel area has accumulated
carriers of the same type as the bulk doping for that device. For an n-channel device,
the bulk is p-type and holes accumulate for voltages less than Vt. For a p-channel
device, the bulk is n-type and electrons accumulate for gate voltages greater than
(VCC-Vt). These accumulated carriers cannot cause conduction between the source
and drain because at least one of these junctions is reverse biased.

Circuits and Layout 157

Table 32: Various Terms Associated with CMOS Process/Gate

Inversion

Majority
Carriers

Minority
Carriers

Dopant

Field Oxide

ESD

Latch-Up

Miller
Capacitance

When a CMOS gate is turned on (i.e gate voltage is greater than Vt for an n-channel
device and below (VCC-Vt) for a p-channel device), a thin layer of minority carriers
appears directly under the gate oxide. The type of carriers is opposite that of the
channel area doping, hence the term ‘Inversion’. In an n-channel device, the channel
area is doped p-type and the inversion layer is made up of electrons (hence the term
n-channel). Vice-versa for the p-channel device. The carriers in the inversion layer
can cause conduction to occur between the Source and Drain terminals because they
are of the same type as the carriers in the adjacent Source and Drain regions.

Holes in p-type material or electrons in n-type material. The relative number of
majority carriers depends on the doping concentration and other stuff.

Electrons in p-type material or holes in n-type material. The relative number of
minority carriers depends on the doping concentration and other stuff.

Extremely low levels of impurity introduced into extremely pure silicon for the pur-
pose of making microprocessors. Pure silicon (and with no light shining on it) is
only conductive because of thermally generated carriers (i.e electrons/holes). N-type
dopnts (Phosphorus, Arsenic) displace a silicon atom in the crystal lattice and con-
tribute an extra electron to the carrier soup. The n-type dopant atom itself, having
contributed its extra electron to the soup, remains as a fixed positive ion stuck in the
lattice. P-type dopants (i.e boron) also displace a silicon atom in the lattice but take
an electron from the carrier soup (i.e they add a hole). The p-type dopant atom is
then negatively charged ion stuck in the lattice. These extra carriers result in
increased conductivity.

This is what separates transistor channels and source/drain regions from each other
(except where they are separated by a gate).

Electrostatic Discharge. This is sort of like a lightning strike on a very small scale.
We design I/O buffers to absorb the energy of an ESD strike without being damaged.
ESD can also occur during silicon processing due to the use of plasma etches. These
etches involve high voltage RF fields that can cause charge to build up on the wafers
being processed.

A phenomenon in which a p-n-p-n device goes into a self sustaining low resistance
state. Unfortunately, power and ground are usually connected to the ends of the
pnpn device and the resulting supply current flow is catastrophic. Latch-Up can be
induced by a variety of means both in the I/O circuits of a processor and in strictly
internal circuits. Latch-Up is avoided by the use of epitaxial wafers and by good lay-
out practices. Latchup is generally worse at high operating temperatures because the
resistance of silicon is higher and CMOS latchup is caused by IR drops in silicon.

This is the capacitance between a transistor gate and the source and drain regions.
Part of this capacitance is because the source and drain regions extend under the
gate poly and part is due to the fringing capacitance between the side of the gate
poly and the outlying source/drain region. In practice, Miller capacitance often
refers to the total capacitance between a logic gate’s output and its input.

158 CPU Design: Answers to Frequently Asked Questions

Table 32: Various Terms Associated with CMOS Process/Gate

Miller Effect The phenomenon that a logic gate’s switching output affects the input of that gate
due to the capacitance between the gate and the output. Some of the capacitance is
between the poly gate and the drains of the output. If one or more of the logic gate’s
transistors are turned on then there is additional capacitance between the channel
and the gate. The output signal is capacitively coupled to the input, making the input
of the gate appear more capacitive than it would otherwise be. Because of the addi-
tional capacitance between the channel and the gate terminal, transistors that are
turned on exhibit this effect most.

5. What are the most common guidelines used to ensure Circuit Robustness?

Following are some of the most common guidelines used to ensure Circuit Robust-
ness

Table 33: Guidelines to Ensure Circuit Robustness

1

2

3

4

5

Use complementary circuits as they have good noise margins.

Do not use pseudo nMOS as they have very low noise margin and has steady current flow
which increases power.

Use synchronous logic where ever possible.

Limit stack heights in complementary logic gates to 3 or less for PMOS and 4 or less for NMOS
(these are typical values used in the industry for nano technology process).

Nodes that are prone to cross talk, leakage etc. should be observed during layout to ensure min-
imization of these phenomena on the final layout.

6. What do you mean by effect of Noise in a design and what are the most com-
mon techniques used to reduce its effect?

Noise is any phenomenon that causes the voltage of a signal net to deviate from the
nominal supply or ground voltage for reasons other than switching of the gate that
drives the signal. The net that has noise induced on it is called the Victim net and the
net that induces noise on its neighbors is called the Aggressor net. Noise can be clas-
sified into 4 categories as shown in Table below depending on the direction in which
it causes the deviation.

Circuits and Layout 159

Table 34: Noise Categories

High Overshoot
Noise

High Undershoot
Noise

Low Overshoot
Noise

Low Undershoot
Noise

Increases the voltage on the Victim net that is supposed to be at Logic1. Fig-
ure below shows High Overshoot Noise.

Figure 127: High Overshoot Noise

Reduces the voltage on the Victim net that is supposed to be at Logic1. Figure
below shows High Undershoot Noise.

Figure 128: High Undershoot Noise

Increases the voltage on the Victim net that is supposed to be at Logic0. Fig-
ure below shows Low Overshoot Noise.

Figure 129: Low Overshoot Noise

Reduces the voltage on the Victim net that is supposed to be at Logic0. Figure
below shows Low Undershoot Noise.

Figure 130: Low Undershoot Noise

Table below lists the most common sources of Noise.

160 CPU Design: Answers to Frequently Asked Questions

Table 35: Noise Sources with Description

Noise
Source

Capacitive
Coupling
Noise

Description

This is the most common source of noise in deep submicron designs. Capacitive Cou-
pling noise is the noise pulse as a result of capacitance between two neighboring wires.
There always exists a capacitance between any two neighboring wires. As a result of
this capacitance between neighboring wires, a transition on one wire (aggressor)
causes a voltage pulse (the strength of this pulse is proportional to C*dV/dt (where ‘C’
is the side wall capacitance and ‘dV/dt’ is the rate of change of voltage on the
aggressor)) on its neighbor (victim). This is because of the electric field that exists
across the capacitor. This voltage pulse causes either a overshoot or an undershoot on
the voltage level on the victim net which in some cases might result in a functional
failure. Figures 131, 132 and 133 below shows few cases where noise due to capaci-
tive coupling results in a functional failure.

Figure below shows functional failure as a result of capacitive coupling between net
‘d’ and net ‘a’. In the figure because of capacitive coupling between net ‘d’ and net
‘a’, net ‘d’ throws a voltage pulse on net ‘a’ whenever it makes a transition from
logic 1 to logic0 or logic0 to logic1. In the figure we see that when net ‘d’ makes a tran-
sition from logic 1 to logic0 during Phase A of Clock it results in a low undershoot on
net ‘a’ and since the transition on net ‘d’ happens somewhere in the middle of Phase
A, net ‘a’ has enough time to dissipate the undershoot as a result of which correct
value gets latched as can be seen from the value on net ‘c’ during Phase B of Clock.
Also in the figure when net ‘d’ makes a transition from logic0 to logic 1 sometime dur-
ing Phase C of Clock it results in a low overshoot on net ‘a’, but since the transition on
net ‘d’ happens just before Phase D of Clock, net ‘a’ doesn’t have enough time during
Phase C of Clock to dissipate the overshoot as a result of which incorrect value gets
latched as can be seen from the value on net ‘c’ during Phase D of Clock.

Figure 131: Capacitive Coupling between Two Signal Nets

Figure below shows functional failure as a result of capacitive coupling between net
‘d’ and Clock net. In the figure because of capacitive coupling between net ‘d’ and
Clock net, net ‘d’ throws a voltage pulse on Clock net whenever it makes a transition
from logic 1 to logic0 or logic0 to logic1. In the figure we see that when net ‘d’ makes a
transition from logic0 to logic 1 sometime during Phase B of clock it results

Circuits and Layout 161

Table 35: Noise Sources with Description

Noise
Source

Description

in a low overshoot on Clock net as a result of which the latched value in Phase B gets
overwritten with a new incorrect value as can be seen by the value on net ‘c’ during
Phase B of clock.

Figure 132: Capacitive Coupling between a Signal Net and a Clock Net

Figure below shows functional failure due to capacitive coupling in the path with
dynamic gates. In the figure because of capacitive coupling between net ‘a’ and net
‘d’, net ‘d’ throws a voltage pulse on net ‘a’ whenever it makes a transition from
logic 1 to logic0 or logic0 to logic1. In the figure we see that when net ‘d’ makes a tran-
sition from logic0 to logic 1 during Phase A of Clock it results in a low overshoot on
net ‘a’ as a result of which incorrect value gets latched as can be seen from the value
on net ‘g’ during Phase B of clock.

Figure 133: Capacitive Coupling in a Path with Dynamic Gates

Figure below shows the dominance of Coupling Capacitance over other Capacitances
associated with an Interconnect as we move towards smaller geometries.

162 CPU Design: Answers to Frequently Asked Questions

Table 35: Noise Sources with Description

Noise
Source

Inductive
Coupling
Noise

Leakage
Noise

Description

Figure 134: Coupling Capacitance Over Other Capacitances with Technology

This is caused by magnetic fields induced by currents flowing through neighboring
wires. This has become of increasing concern in deep submicron technology as the
low permittivity materials that act to reduce capacitance have increased permeability
and are therefore more susceptible to inductive coupling.

The failures caused in circuits by inductive coupling is similar to the ones caused by
capacitive coupling discussed above.

Main contributors to this are
1. Leakage currents through diode junctions
2. Subthreshold conduction through transistors (this is the current flowing through
transistors even when they are not conducting). Subthreshold conduction occurs when
a transistor has a greater than zero (in case of NMOS transistors) but less than

In this region the transistor will exhibit a drain current which is exponentially depen-
dent on both and Although the magnitude of this current is fairly small, it is

non zero and especially in the case of dynamic circuits it can be a significant contribu-
tor to overall noise margin. In the figure below while the inputs ‘a’ and ‘b’ in the 2-
input domino NAND gate are low during the evaluate phase of the clock, due to sub-
threshold leakage current through transistors M1 and M2 we may result in draining
away the charge on node ‘c’ leading to degradation in its voltage level and a wrong
value at the output node ‘d’.

Figure 135: 2-input Domino NAND Gate

Circuits and Layout 163

Table 35: Noise Sources with Description

Noise
Source

Charge
Sharing
Noise

Power
Supply
Noise

Description

In the above leakage noise due to subthreshold conduction is avoided by having a Half
Latch device.
3. Leakage through gate of a transistor

The primary contributing factor for this phenomenon is local variations in the power
supply voltage.

This is the noise induced at a dynamic node due to charge sharing (charge redistribu-
tion) between the dynamic node and some of the internal nodes of the gate. It is of a
prime concern in dynamic gates. To illustrate this let us consider a 2-input NAND gate
as shown in the figure below. From the waveform we see that during the first evaluate
phase when inputs ‘a’ and ‘b’ arc logic1, both nodes ‘e’ and ‘c’ are discharged. In the
following precharge phase let us assume that input ‘a’ is logic0 as a result of which
node ‘c’ will be prechargcd by transistor M1 and node ‘e’ will remain at logic0. In the
next evaluate phase if ‘a’ is logic1 and ‘b’ is logic0 then there will be charge sharing
between nodes ‘c’ and ‘e’ as a result of which node ‘e’ will be pulled high and node ‘c’
will be pulled low. If the voltage on node ‘c’ is reduced by a large amount then node
‘d’ may switch causing node ‘d’ to be wrongly set to logic1.

Figure 136: Charge Sharing Noise

In the figure above charge sharing is avoided by precharging the internal node in the
NMOS tree (i.e node ‘c’) during the precharge phase of the clock.

This refers to noise on the Power (P) and Ground (G) nets that gets passed on to the
signal nets by the transistors connected to these PG nets. The components of noise on
PG nets are -
1. IR drop on each element of PG net because of the finite resistance offered by these
elements.
2. RLC response of the chip and package to current demands that peak at the begin-
ning of a clock cycle.

Table below lists the techniques used to reduce the effect of noise sources mentioned
in the table above.

164 CPU Design: Answers to Frequently Asked Questions

Table 36: Techniques to Reduce Noise

Noise
Source

Capacitive
Coupling
Noise

Techniques to Reduce Noise

1. Staggering gates reduces noise due to capacitive coupling. This is because of two
reasons -

a. Since the length of overlap between adjacent wires is reduced the effective coupling
capacitance between the adjacent wires (i.e Victim and Aggressor) is reduced (as
capacitance is directly proportional to the length of overlap (i.e C=pLW/D)) which
results in a reduced noise on the Victim as can be seen from figure below.

b. The overshoot noise on Victim (i.e net1 in figure below) as a result of staggered gate
on the Aggressor tend to cancel itself with the undershoot noise on Victim (i.e net1) as
a result of which the effective noise on Victim (i.e net1) because of capacitive cou-
pling between net1 and net3/net4 is reduced as can be seen from figure below.
Eventhough the cancellation is not perfect it is still effective.

Figure 137: Staggering Gates

2. Shielding Victim by manually running supply/ground wire on one or both sides of
the Victim or above or below the Victim in the same or a different metal layer reduces
noise due to capacitive coupling. This is because of the reduced value of dV/dt (since
aggressor in this case would be VDD/VSS, dV/dt=0) in the equation for strength of
noise pulse on the Victim (i.e strength of noise pulse on the Victim = (Coupling capac-
itance) x (Rate of change of voltage on the Aggressor)). This can be seen from figure
below.

Circuits and Layout 165

Table 36: Techniques to Reduce Noise

Noise
Source

Techniques to Reduce Noise

Figure 138: Shielding on both sides of Victim

3. Increasing spacing between the Victim and the Aggressor reduces noise due to
capacitive coupling. This is because since coupling capacitance is inversely propor-
tional to the distance between Victim and Aggressor (i.e C=pLW/D), the increase in
spacing between Victim and Aggressor reduces the value of coupling capacitance
between them thereby reducing the noise due to coupling capacitance. This can be
seen from figure below.

Figure 139: Increasing Spacing between Victim and Aggressor

4. Increasing the width of Victim net reduces noise due to capacitive coupling. This is
because increasing width of Victim net offers less resistance to Victim driver (since
resistance of a net is inversely proportional to its width) as a result of which Victim
driver results in dissipating the noise voltage at a much faster pace than before because
of its improved drive strength (i.e since it sees less loading). This can be seen from fig-
ure below.

166 CPU Design: Answers to Frequently Asked Questions

Table 36: Techniques to Reduce Noise

Noise
Source

Techniques to Reduce Noise

Figure 140: Increasing Width of Victim Net

5. Inserting buffer on very long victim nets reduces noise due to capacitive coupling.
This is because inserting buffer reduces the length of the net and redistributes capaci-
tive coupling between two newly created nets as shown in figure below. Since cou-
pling capacitance is directly proportional to the length of Victim overlap, the smaller
the length the smaller the coupling capacitance as a result of which we see less noise
due to coupling capacitance. Also adding buffer improves the signal strength on the
Victim nets (i.e net1_0, net1_1 see better signal strength as drivers driving these nets
see less loading) which helps in faster dissipation of any noise voltage induced on
them.

Figure 141: Inserting Buffer in the Victim Net’s Path

6. When both the Aggressors and Victim are on the same metal layer moving the
Aggressors on to a different metal layer reduces the effect of capacitive coupling
noise. This is because when we move the Aggressors to a different metal layer the area
of overlap between the Victim and Aggressor goes down whereas the distance
between them goes up. Since capacitance is directly proportional to area of overlap
and inversely proportional to distance the value of coupling capacitance goes down as
a result of which we see less noise on Victim because of coupling capacitance.

Circuits and Layout 167

Table 36: Techniques to Reduce Noise

Noise
Source

Inductive
Coupling
Noise

Techniques to Reduce Noise

Figure 142: Moving Aggressor to a Higher Metal Layer

7. Increasing the size of Victim net driver or reducing the size of Aggressor net driver
will reduce noise due to capacitive coupling. Increasing the size of Victim driver
allows it to dissipate noise voltage (i.e the one induced by the Aggressor) at a much
faster pace than before whereas reducing the size of Aggressor driver results in less
noise being induced on the Victim as it can no longer transition as fast as before.

8. Using differential signaling.

1. Sandwiching the victim line between ground return lines (as shown in the figure
below) allows current return paths to be close to the signal line, thus minimizing
inductance.

Figure 143: Sandwiching Victim Line

168 CPU Design: Answers to Frequently Asked Questions

Table 36: Techniques to Reduce Noise

Noise
Source

Leakage
Noise

Techniques to Reduce Noise

2. Having dedicated ground planes in the layers above and below the victim line (as
shown in the figure below) will result in reducing inductance as the ground planes pro-
vides an excellent return paths for the signal current.

Figure 144: Dedicated Ground Planes

3. Splitting wider victim wires into thinner wires with shields in between (as shown in
figure below) results in reducing self-inductance.

Figure 145: Splitting Wider Wires into Thinner Wires with Shields in between

4. Using staggered inverter patterns (as shown in the figure below) results in reducing
inductance effects.

Figure 146: Staggered Inverter Patterns

5. Using a twisted bundle layout structure results in minimizing inductive coupling
noise as they create complementary and opposite current loops in the layout structure
such that the magnetic fluxes arising from any signal net within a twisted group cancel
each other in the current loop of a net of interest.

1. Use high Vt gates in the regions where we see increased effects of leakage noise.

2. Using Half Latch device on dynamic nodes (as shown in Figure 135).

Circuits and Layout 169

Table 36: Techniques to Reduce Noise

Noise
Source

Charge
Sharing
Noise

Power Sup-
ply Noise

Techniques to Reduce Noise

1. Using anti-charge sharing device on internal nodes (as shown in Figure 136).

1. Make the Power and Ground nets Wider and Denser in the regions where your IR
drop does not the meet the IR Spec.

2. Add on-chip Decoupling capacitors in the regions where there is demand for huge
currents.

7. What is Electromigration and IR drop?

Electromigration

If current density in any element of the power grid or signal exceeds the process limits
then the element could fail (break) due to overheating or migration of metal ions
under electrical field or a combination of both. This phenomenon is known as Elec-
tromigration. Table below shows the most common techniques used to reduce the
effect of Electromigration in a design:

Table 37: Techniques to Reduce the Effect of Electromigration

1

2

3

Metal Slotting.

Increasing the Width of Metal layer.

Adding more Vias.

The finite resistance of power grid generates a drop in voltage across each element
resulting in reduced supply voltage at the transistor. This reduced voltage could effect
timing and hence is controlled by a budget. This phenomenon is known as IR drop.
Table below shows the most common techniques used to reduce IR drop in a design.

Table 38: Techniques to Reduce IR drop

1

2

3

Increasing the Width of Metal layer (i.e Power layer).

Adding more Power and Ground layers near the region experiencing IR drop.

Adding more Vias.

IR drop

170 CPU Design: Answers to Frequently Asked Questions

8. What are Differential Sense Amplifiers?

Differential Sense Amplifiers (DSA) are circuits used by high performance memory
designs to achieve fast access time. The need to have the Cache memory cell as small
as possible (in order to have large cache sizes on chip), results in a poorer drive
strength for the cell and makes it impossible to swing its large output load (bitline
capacitance) full rail within a reasonable time. For this reason Caches and other mem-
ory structures use differential sense amplifiers which sample a small signal swing of
the bit line discharge and amplifies it to a full rail output, thereby speeding up mem-
ory access. Since sense amplifier is not a standard static CMOS circuit, extreme care
must be taken in both designing the circuit and the final layout. The two most com-
mon differential sense amplifier circuits used in the industry are gate fed differential
sense amplifier and drain fed differential sense amplifier. In the gate fed DSA the
input to the sense amplifier is fed to the gates where as in the drain fed the inputs are
fed to the drain of the sense amplifier. One of the advantages of gate fed DSA over
drain fed DSA is having reduced bit loading as the inputs are fed to the gates, and the
isolation of the sense amplifier nodes from the bit lines provides the feasibility of hav-
ing larger drive capabilities.

9. What is Antenna Effect and what are the most common techniques used to
reduce it in a design?

Antenna effect is a phenomenon of transistor gate oxide damage as a result of charge
buildup on the floating conductors during one of the processing steps (i.e plasma
etching, ion implantation or photoresist strip). If the gate of a transistor is connected
to a metal interconnect having a large area then during etching of the metal, the metal
area acts as an antenna collecting ions and rising in potential. When the rising voltage
on the gate (i.e because of the rising potential on the interconnect to the gate) reaches
a point where it is equal to the gate oxide breakdown voltage then the gate oxide
breaks resulting in a very low resistance path between the gate and the channel. In
order to avoid this from happening every manufacturer provides certain antenna rules
to be followed while building the masks. Antenna rules specify the limits of the max-
imum ratio of interconnect area to connected active poly gate area in cases where the
interconnect at some stage during processing is not connected to diffusion (i.e p/n
source or drain) i.e if a gate does not get connected to diffusion until Metal 5 deposi-
tion then any segments of the floating network on poly interconnect, Metal1, Metal2,
Metal3 or Metal4 each must not exceed the maximum area ratio of that segment to
total active poly area. These rules ensure that processing steps (i.e plasma etching, ion
implantation or photoresist strip) which can result in charge collection do not result in
transistor gate oxide damage due to excessive charge collection when the metal is
floating (i.e gates not yet tied to source/drain diffusion).

Table below shows the most common techniques used to reduce/eliminate Antenna
effect in a design.

Circuits and Layout 171

Table 39: Techniques to Reduce Antenna Effect

1 Inserting jumpers breaks up a long wire (i.e segment of a wire resulting in antenna effect) so
that the segment of the wire connected to the gate input is shorter thereby collecting less charge
and thus eliminating antenna effect. The disadvantage of using this technique is that it causes
routing congestion problems of upper metal layers. Figure below shows the way Jumpers are
used to eliminate antenna effect.

Figure 147: Adding Jumpers

172 CPU Design: Answers to Frequently Asked Questions

Table 39: Techniques to Reduce Antenna Effect

2 Inserting diode at the gate input provides a conduction path to the substrate so that the built up
charges can be directed to the substrate/well before it damages the transistor gate oxide. The
disadvantage of using this technique is that it results in increase in area and timing (as ‘net1’ in
figure below sees more loading). Figure below shows the way Diodes are used to eliminate
antenna effect.

Figure 148: Adding Diode at the Gate Input

10. What do you mean by a Simulation Corner and what are the typical simula-
tion corners used for Standard Cell Characterization, Max time, Min time, Elec-
tromigration, IR drop, Noise and Power?

Simulation Corner is the Transistor model (slow, typical, fast), Wire model (slow, typ-
ical, fast), Temperature (low, nominal, high, burn-in) and Voltage (ultra low, low,
nominal, high, burn-in) used to simulate a circuit. They are usually annotated by a set
of five letters that represent the Transistor models (i.e P and N), Supply Voltage, Tem-
perature and Wire model. Table below shows the typical simulation corners used for
Standard Cell Characterization, Max time, Min time, Electromigration, IR drop,
Noise and Power in the industry.

Circuits and Layout 173

Table 40: Typical Simulation Corners Used for Various Simulations

Type of
Simulation

Standard Cell
Characterization

Max time

Min time

Electromigration

IR Drop

Noise

Power

Simulation Corners Used

TTLH-T
(Typical P-transistor Model, Typical N-transistor Model, Low Voltage, High Temperature,
Typical Wire Model)

TTLH-T
(Typical P-transistor Model, Typical N-transistor Model, Low Voltage, High Temperature,
Typical Wire Model)

FFHL-F
(Fast P-transistor Model, Fast N-transistor Model, High Voltage, Low Temperature, Fast Wire
Model)

FFHH-F
(Fast P-transistor Model, Fast N-transistor Model, High Voltage, High Temperature, Fast
Wire Model)

TTNH-T
(Typical P-transistor Model, Typical N-transistor Model, Nominal Voltage, High Tempera-
ture, Typical Wire Model)

FFBB-S
(Fast P-transistor Model, Fast N-transistor Model, Burn-in Voltage, Burn-in Temperature,
Slow Wire Model)

TTNH-T
(Typical P-transistor Model, Typical N-transistor Model, Nominal Voltage, High Tempera-
ture, Typical Wire Model)

11. What are the various types of Pass Gate Mux Library elements used in a
CPU design?

Table below shows the various types of Pass Gate Mux Library elements used in a
CPU design.

174 CPU Design: Answers to Frequently Asked Questions

Table 41: Types of Pass Gate Mux Library Elements

Type of Pass
Gate Mux

One-Hot
Inverting
Pass Gate Mux

One-Hot
Non-Inverting
Pass Gate Mux

Library Cell

mux2i (2-input one-hot
inverting pass gate Mux)

mux2 (2-input one-hot non-
inverting pass gate Mux)

Typical Usage

If you are determined to use a pass gate Mux
then use one-hot inverting pass gate Mux where
the following 3 conditions are true -

1. In cases where a Mux is used as one of the
gates in a path within the block, using this type
of Mux gives the best possible delay number
through the data inputs (i.e D0 and D1).
2. In cases where more than one Mux gets the
same selects, it is good to have decode logic for
the selects outside the Mux (as is the case here)
as it results in a more area efficient design when
compared to encoded version.
3. You are aware of the signal contention issue
in scan and functional mode and you are plan-
ning on taking care of it outside the Mux.

If you are determined to use a pass gate Mux
then use one-hot inverting pass gate Mux where
the following 3 conditions are true -

1. In cases where a Mux is used to drive a signal
out of the block, using this type of Mux pro-
vides good drive strength.
2. In cases where more than one Mux gets the
same selects, it is good to have decode logic for
the selects outside the Mux (as is the case here)
as it results in a more area efficient design when
compared to encoded version.
3. You are aware of the signal contention issue
in scan and functional mode and you are plan-
ning on taking care of it outside the Mux.

Circuits and Layout 175

Table 41: Types of Pass Gate Mux Library Elements

Type of Pass
Gate Mux

One-Hot
Buffered
Pass Gate Mux

Encoded
Inverting Pass
Gate Mux

Library Cell

mux2b (2-input one-hot
buffered pass gate Mux)

mux4ei (4-input encoded
inverting pass gate Mux)

Typical Usage

If you are determined to use a pass gate Mux
then use one-hot inverting pass gate Mux where
the following 3 conditions are true -

1. In cases where the inputs coming from a dis-
tant block feeds directly into a Mux, using this
type of Mux gives a better slew rate at the inter-
nal node (i.e node A in figure) thereby giving a
better signal transition at the output of the Mux
(i.e node OUT in figure). Also here we don’t
have to worry about any charge sharing issues
as the input buffer (i.e I1 and I2) isolates the
huge wire capacitance outside the block and the
pass gate internal to the Mux.
2. In cases where more than one Mux gets the
same selects, it is good to have decode logic for
the selects outside the Mux (as is the case here)
as it results in a more area efficient design when
compared to encoded version.
3. You are aware of the signal contention issue
in scan and functional mode and you are plan-
ning on taking care of it outside the Mux.

If you are determined to use a pass gate Mux
then use encoded inverting pass gate Mux
where the following 2 conditions are true -

1. In cases where a Mux is used as one of the
gates in a path within the block, using this type
of Mux gives the best possible delay number
through the data inputs (i.e D0 and D1).
2. In cases where you don’t want the additional
burden of worrying about signal contention
issue in scan and functional mode.

176 CPU Design: Answers to Frequently Asked Questions

Table 41: Types of Pass Gate Mux Library Elements

Type of Pass
Gate Mux

Encoded
Non-Inverting
Pass Gate Mux

Encoded
Buffered Pass
Gate Mux

Library Cell

mux4e(4-input encoded non-
inverting pass gate Mux)

mux4eb (4-input encoded
buffered pass gate Mux)

Typical Usage

If you are determined to use a pass gate Mux
then use encoded non-inverting pass gate Mux
where the following 2 conditions are true -

1. In cases where a Mux is used to drive a signal
out of the block, using this type of Mux pro-
vides good drive strength.
2. In cases where you don’t want the additional
burder of worrying about signal contention
issue in scan and functional mode.

If you are determined to use a pass gate Mux
then use encoded buffered pass gate Mux where
the following 2 conditions are true -

1. In cases where the inputs coming from a dis-
tant block feeds directly into a Mux, using this
type of Mux gives a better slew rate at the inter-
nal node (i.e node A in figure) thereby giving a
better signal transition at the output of the Mux
(i.e node OUT in figure). Also here we don’t
have to worry about any charge sharing issues
as the buffer isolates the huge wire capacitance
outside the block and the pass gate internal to
the Mux.
2. In cases where you don’t want the additional
burder of worrying about signal contention
issue in scan and functional mode.

CMP (Chemical Mechanical Polishing) has emerged as the primary semiconductor
fabrication process for planarizing interlayer dielectrics but it is hampered by its sen-
sitivity to layout patterns which cause certain regions on a chip to have thicker dielec-
tric layers than other regions (reason being CMP process tends to polish dielectric
over isolated features much more rapidly than that over dense areas). This interlayer
dielectric (ILD) variation must be kept in control as this could potentially reduce yield
and impact circuit performance. Metal fill patterning has been used to reduce ILD
variation due to its sensitivity to layout patterns. Metal fill patterning is a technique of
filling large open areas on each metal layer with a metal pattern, which is either

12. What is the importance of adding Metal Fill Patterns in a Layout?

Circuits and Layout 177

grounded or left floating to compensate for pattern dependent ILD thickness varia-
tion. Adding Metal Fill results in maintaining a uniform metal density across the chip
on each layer thereby ensuring planarity during CMP process. Foundries today typi-
cally impose metal pattern density rule which in most cases is “within any window of
size YxY (i.e typically 200u x200u for 0.09u Process) the metal pattern density
should be greater than or equal to 30%”. Figure below shows the effect on ILD thick-
ness variation by adding Metal Fill patterns in the layout.

Figure 149: Effect on ILD thickness variation by Addition of Metal Fill Pattern

Care should be taken while adding metal fills as blindly adding metal fill could result
in an increased delay on a net (say net1) because of capacitive coupling between the
added metal fill and its neighbour (net1 in this case). The advantages and disadvan-
tages of using grounded and floating metal fills are tabulated below.

Table 42: Grounded against Floating Metal Fill

Fill Technique

Grounded Metal
Fill

Floating Metal
Fill

Advantages

1. Since they are at a known poten-
tial the noise voltage it offers
because of its coupling with its
neighbors is very low.

1. No additional burden of connect-
ing the metal fills to ground.

Disadvantages

1. Additional burden of connecting
all the metal fills to ground.

1. Noise voltage it offers because of
its coupling with its neighbor is
more than that offered by a
Grounded Metal Fill.

13. What are the most common Layout Schemes used for implementing a Power
Network?

The three most common Layout Schemes for implementing a Power network are
Power Plane, Power Grid and as a Routed Network. Table below summarizes their
characteristics.

178 CPU Design: Answers to Frequently Asked Questions

Table 43: Power Network Implementation Schemes

Char ester is
tics

Implementation

IR Drop

Inductive Drop

Electromigration

Usage

Power Plane

Figure below shows a
typical Power Plane
implementation of a
Power Network.

Figure 150: Power Plane

Very Low

Low

Very Low

Will be common for
High frequency
designs (i.e GHz
designs)

Power Grid

Figure below shows a
typical Power Grid
implementation of a
Power Network.

Figure 151: Power Grid

Low

High

Low

Most popular

Routed Network

Figure below shows a
typical Routed Net-
work implementation
of a Power Network.

Figure 152: Power Network

High

Very High

High Probability

Low cost systems

4 Verification and Testing

1. What are some of the responsibilities of a Verification Engineer in the Chip
Industry?

Some of the responsibilities of Verification Engineer are summarized below.

Table 44: Verification Engineer Responsibilities

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Develop Stand Alone Test Bench environment for a block.

Develop Full Chip regression environment for the Chip.

Write Directed diags for the design.

Write Functional Coverage Objects for various blocks within the Chip, run the simulation with
these coverage objects in place, generate reports and use the reports to generate additional tests
to cover the functionality.

Run Formal Functional verification tools to find bugs within the Design.

Model turnin, Job submission and Tracking of results.

Configuration management administration.

Develop Pseudo Random Test generator.

Generate Random tests (weighted or templatized) using Pseudo Random Test generator.

Debug test failures.

Come up with a verification test plan (i.e things he want to test, how he want to test (i.e self-
checking diags or simulating against a reference model (instruction accurate architectural
model) and comparing the architectural state or through assertions or eye boiling the simulation
output etc.)

Filing bugs through a bug tool and keeping track of it until they get resolved.

Providing play back vectors for post-silicon debug (i.e for tester).

Writing Monitors, Checkers or Assertions for better functional coverage and early detection of
bugs in the simulation environment.

Running Code Coverage tools and generating reports for various types of code coverages (i.e
Path, Block, Expression, Toggle, State etc.) and using the reports to generate additional tests to
cover remaining portion of the coverage.

180 CPU Design: Answers to Frequently Asked Questions

2. What are some of the responsibilities of a Test Engineer in the Chip Industry?

Some of the responsibilities of Test Engineer are summarized below.

Table 45: Test Engineer Responsibilities

1

2

3

4

5

6

7

Running ATPG test patterns.

Provide architectural definition for TAP (Test Access Port) controller for the Chip.

Provide architectural definition for any BIST controllers within the Chip.

Define tester interface for the Chip.

Work on post silicon debug.

Work with the process guys to resolve any process related post silicon issues.

Come up with a list of debug features he would like to have.

3. What are the Verification metrics used for Tapeout?

Table below lists the Verification metrics used for Tapeout.

Table 46: Verification Metrics for Tapeout

1

2

3

Bug rate in the last few weeks before tapeout is zero.

Design went through more than 10 billion cycles of simulation without a bug.

Code and Functional coverage close to 100%.

4. What is a Monitor, Checker and Assertion?

Table below provides definitions for Monitors, Checkers and Assertions.

Verification and Testing 181

Table 47: Monitor, Checker and Assertion

Monitor

Definition

It displays information about the design or test while the test is running. They are
inserted anywhere in the simulation environment or design that requires monitoring. In
many cases designer or verification engineer may want to be notified when a particular
event or a series of events happen in a simulation. Simulation may flag the condition
with a simple print statement. A simple Monitor (verilog code) observing signals in
decode stage of a pipeline is shown below -

182 CPU Design: Answers to Frequently Asked Questions

Table 47: Monitor, Checker and Assertion

Checker

Definition

In addition to having the properties of a Monitor, Checkers check for correctness of
the design while the test is running. They allow for quick detection and correction of
bugs at the source, rather than relying on those failures being propagated through the
test bench. A simple Checker (verilog code) checking for correctness of Instruction ID
generation logic (instruction ID generally gets used by units down the pipe (i.e units
after Decode Unit) to index one of their queue structures or to determine the age of an
instruction) is shown below -

Verification and Testing 183

Table 47: Monitor, Checker and Assertion

Assertion

Definition

Assertion is a statement of design intent, or an assumption about a particular logic
behavior, or the behavior of an interface written in assertion language (0-in, System
Verilog, OVL etc.) normally placed in line with the RTL code in the comments section
to help Simulation and Formal verification tools in finding bugs in the design. Asser-
tions require comprehensive set of stimuli from a simulation environment in order to
exercise them. Formal verification tools exhaustively exercise assertions by proving or
disproving them without the use of external stimuli. Like Checkers, Assertions allow
for quick detection and correction of bugs at the source, rather than relying on those
failures being propagated through the test bench. Assertion is synonymous with Prop-
erty. A simple Assertion (0-in assertion) is shown below -

5. What is Mux Exclusivity and what are the most common techniques used to
guarantee Mux Exclusivity in a design while in Scan mode?

Mux Exclusivity is guaranteeing the fact that not more than one bit in a mux select
vector is active in a given cycle.

While scanning, selects and data for the pass gate muxes will be changing and there is
a possibility that multiple mux selects could be active for few scan-in vectors unless
ATPG tool (tool providing the test vectors) is burdened with the task of determining a
contention free state for the mux selects. If the mux selects are not mutually exclusive
then multiple selects will be simultaneously active causing contention on the output
node thereby damaging the part. In a debug mode it is possible that this contentious
state could persist for seconds or minutes or perhaps hours in the odd case. So it
becomes necessary to guarantee mux exclusivity for a pass gate mux in the scan
mode. Table below shows the most common techniques used to guarantee mux exclu-
sivity while in scan mode. One advantage of technique 2 over technique 1 is that tech-
nique 2 results in better toggle coverage.

184 CPU Design: Answers to Frequently Asked Questions

Table 48: Techniques Used to guarantee Mux Exclusivity

1

2

Adding mux protection logic after the flops which drive the mux selects. This can be achieved by
gating the selects coming out of the flops with mux protection signal (active while in scan mode)
as shown below. The mux protection signal which is active high in scan mode guarantees that the
output of the mux protection logic is one hot in scan mode thereby guaranteeing mux exclusivity.
This can be seen from figure below.

Figure 153: Adding Mux Protection Logic

Moving select decode logic after the flops guarantees that the pass gate mux selects are mutually
exclusive in scan mode. This can be seen from figure below.

Figure 154: Moving Select Decode Logic After the Flops

6. What is SAT (Stand Alone Testing) environment and what are the advantages
of having SAT environment for Verification?

SAT is a verification environment where a Block is tested for functionality and cover-
age in a stand alone fashion. In some cases multiple Blocks instead of one could be
tested. Figure below shows a typical SAT environment for a Block.

Verification and Testing 185

Figure 155: SAT Environment for a Block

Some of the advantages of having SAT environment are tabulated below.

Table 49: Advantages of SAT Environment

1

2

3

4

In early phases of the design where we don’t have a full chip model, SAT provides a means for
debugging.

By testing in SAT and releasing the code to full chip ensures good quality code to be released to
full chip. This is important because debugging in full chip environment is much more cumber-
some than debugging in SAT environment.

It is easy to setup test cases in SAT than in full chip environment (i.e better controlability and
observability).

It provides an environment for independent work when the full chip model is broken.

7. What is Code Coverage and what are the various Code Coverage metrics used
for Verification completeness?

Code coverage provides information on how thoroughly a design has been exercised
during simulation. They are used to evaluate the effectiveness of random and directed
tests and to guide the generation of new tests. Most common code coverage metrics
used for verification completeness are tabulated below.

186 CPU Design: Answers to Frequently Asked Questions

Table 50: Code Coverage Metrics used for Verification Completeness

Type of
Coverage

Block/
Statement
Coverage

Description

Block/Statement Coverage measures the percentage (i.e number of lines) of code that
has been exercised by the test suite.

Verilog code below has 9 statements (lines) that needs to be covered in order to have a
100% Block/Statement Coverage. If during simulation the test suite covers 7 (say lines
1, 2, 3, 4, 5, 7 and 8) out of 9 lines then we have a 77% Block/Statement Coverage for
the code.

Verification and Testing 187

Table 50: Code Coverage Metrics used for Verification Completeness

Type of
Coverage

Path
Coverage

Description

Path Coverage measures all possible ways you can execute a sequence of statements
within a code. The paths through an initial or always verilog statement corresponds to
the different sequence of statements that execute when initiating the initial or always
statement. The if, case/casex/casez, and disable statements are the only verilog state-
ments that can cause multiple paths to appear in a code. A sequence of statements con-
tributes only one path when there are no if, case/casex/casez, and disable statements

An if or if....else statement generates two paths (i.e one for the True condition and one
for the False condition).
A case/casex/casez statement has ‘n’ paths for ‘n’ case items.
A disable statement placed within the block it names provides an early exit and
defines two paths (i.e a normal exit and an early exit) through that block.

Verilog code below has 4 paths that needs to be covered in order to have a 100% Path
Coverage. If during simulation the test suite covers 2 out of 4 paths then we have a
50% Path Coverage for the code.

188 CPU Design: Answers to Frequently Asked Questions

Table 50: Code Coverage Metrics used for Verification Completeness

Type of
Coverage

Expression
Coverage

Description

Expression coverage ensures that the statements with expressions have been exercised
to the fullest. Verilog expressions that get covered here are bitwise, reduction, logical,
relational and event.

Verilog code below has 14 coverage points for the expressions that need to be covered
in order to have a 100% Expression Coverage. If during simulation the test suite cov-
ers 7 (shown in bold below) out of 14 coverage points then we have a 50% Expression
Coverage for the code.

Verification and Testing 189

Table 50: Code Coverage Metrics used for Verification Completeness

Type of
Coverage

Toggle
Coverage

Description

Toggle Coverage measures the ratio of the number of signals that experienced 1 to 0
and 0 to 1 transitions during simulation to the total number of effective signals. The
number of effective signals here is adjusted to include only those that can be toggled.

Verilog code below has 14 effective signals that needs to toggle (i.e from 1 to 0 and 0
to 1) in order to have a 100% Toggle Coverage. If during simulation the test suite
results in toggling 5 out of 14 effective signals then we have a 35% Toggle Coverage
for the code.

190 CPU Design: Answers to Frequently Asked Questions

Table 50: Code Coverage Metrics used for Verification Completeness

Type of
Coverage

FSM
Coverage

Description

FSM’s (Finite State Machine) are a special class of sequential logic. It consists of a
combinational block that computes the next state for the next cycle and the output val-
ues for the current clock cycle and memory elements that preserve the present state of
the machine.The next-state computation typically depends on the machine’s present-
state and input values. Output can be either Mealy or Moore. A Mealy output is a func-
tion of both present-state and inputs, while a Moore output is a function of only the
present state of the machine. Typically FSM coverage involves State coverage, Arc
coverage and Sequence coverage. State coverage measures the number of states within
an FSM exercised by the test suite, Arc coverage measures the number of valid arcs
exercised by the test suite and Sequence coverage measures the valid sequences exer-
cised by the test suite.

Figure below shows a simple Strand/Thread switch FSM. In order to have a 100%
State coverage for the FSM the test suite should exercise all 3 states (i.e S0 (Strand0),
S1 (Strand1) and S2 (Strand2)). If the test suite exercises 2 out of 3 states then we have
a 66% State coverage. In order to have a 100% Arc coverage for the FSM the test suite
should exercise all 6 arcs shown below. If the test suite covers 2 out of 6 arcs then we
have a 33% Arc coverage. In order to have a 100% Sequence coverage for the FSM
the test suite should exercise all 15 valid sequences i.e S0, S0 -> S1, S0 -> S2, S0 ->
S1 -> S2, S0 -> S2 -> S1, S1, S1 -> S0, S1 -> S2, S1 -> S0 -> S2, S1 -> S2 -> S0, S2,
S2 -> S0, S2 -> S1, S2 -> S0 -> S1 and S2 -> S1 -> S0. If the test suite results in exer-
cising 4 out of 15 sequences then we have a 26% Sequence coverage.

Figure 156: Strand/Thread Switch FSM

8. Describe LBIST, MBIST and ATPG?

LBIST

LBIST (Logic Built-In Self Test) tests on chip logic at speed. Here thousands of tests
can be executed at speed without consuming any tester memory. Typically LBIST is
activated on every Power-On-Reset (POR). A typical LBIST architecture is shown in
the figure below

Verification and Testing 191

Figure 157: LBIST Architecture

In the above PRTG (Pseudo Random Test Generator) is responsible for generating
test patterns for logic which needs to be tested using LBIST. In many cases PRTG is a
maximal length LFSR (Linear Feedback Shift Register). MISR (Multiple Input Sig-
nature Analyzer Register) is responsible for collecting and compressing the test
responses. Sequence of operations in LBIST are: fill in the scan chains with data from
PRTG; transition to functional mode and advance your clock; transition to scan mode
and scan out the results of the test into MISR for signature generation while simulta-
neously filling in the chains with new data from PRTG. When the entire testing is
complete the MISR will hold a signature that can be compared against the expected
signature for a fault free logic. A very simple controller can be used to initiate LBIST.
The controller itself can be initiated using a special JTAG instruction, through soft-
ware or through dedicated pins on chip.

Eventhough LBIST provides good fault coverage (ratio of the number of faults
detected to the total number of possible faults), it doesn’t provide enough fault cover-
age to replace manufacturing tests driven by ATPG scan patterns.

MBIST (Memory Built-In Self Test) tests on chip memories at speed. Here tests can
be executed at speed without consuming any tester memory. Typically MBIST is acti-
vated on every POR. A simple MBIST architecture is shown in the figure below.

Figure 158: MBIST Architecture

MBIST

192 CPU Design: Answers to Frequently Asked Questions

In the above Address and Data Pattern Generator is responsible for providing the
address and data to memory blocks which needs to be tested. Control logic provides
the necessary Read/Write and other control information. Data comparator compares
the read data from memory with the expected data and provides Pass/Fail information
based on whether there was a mismatch or not. Few BIST controllers support captur-
ing the failing data/address which can be scaned out or read through software. Typical
algorithms used for address and data generation are 6N, March, March C etc. March
C algorithm is shown below

Here the test is composed of six elements: the first element traverses the memory
address space in the ascending order writing the ‘0’ data pattern, the second element
traverses the address space in the ascending order reading the ‘0’ data pattern and
writing the ‘ 1’ data pattern. The sequence of read, write address change is as follows:
at the first address location the BIST controller will read ‘0’ data pattern and at the
same location writes the ‘1’ data pattern, the engine will then increment the address to
the next location and repeat the read/write process. Testing continues in a similar
fashion for the remainder of the address space in the descending order. Here a ‘0’ data
pattern need not necessarily be all ‘0’s and a ‘1’ data pattern need not necessarily be
all 1’s. Some of the data patterns used are (8’h66, 8’h99), (8’h33, 8’hCC), (8’h55,
8’hAA) etc. In some cases BIST controllers provide an option where user can scan in
his data which he wants to be used as a data pattern.

Here the controller can be initiated using a special JTAG instruction, through software
or through dedicated pins on chip.

Figure 159: ATPG Pattern Detecting Stuck-At Fault

ATPG

ATPG (Automatic Test Pattern Generation) is the application of a set of algorithmic
techniques to generate a set of test patterns that detects faulty behavior of a circuit
after its fabrication (i.e manufacturing defects). Figure below shows a ATPG pattern
applied to a combinational logic that detects stuck-at fault in the logic.

Verification and Testing 193

In a scan based architecture, testing using ATPG patterns typically involves the fol-
lowing steps: scan in the ATPG pattern into the sequential elements (i.e flops/latches)
while in scan mode; revert to functional mode and advance your clock; revert back to
scan mode and scan out the data while concurrently scaning in a new ATPG pattern. If
the scanned out data does not match with the expected data pattern then we have a
fault in the circuit.

9. What are Spare Gates and what are the advantages of having Spare Gates in a
Design?

Spare gates are additional non functional gates (i.e gates not involved in functionality
of a block) sprinkled in a block.

Table below lists the advantages of having spare gates in a design.

Table 51: Advantages of having Spare Gates in a Design

1

2

3

Advantages

Late bugs before tapeout can be fixed in many cases using Spare Gates. This prevents us from
respinning (i.e going through the entire backend flow (i.e synthesis, floorplanning, place &
route etc.)) the block all over again.

They can be used to fix bugs found during post silicon debug effort. This allows us in preparing
metal only masks instead of preparing all layer masks thereby saving lots of $$$$.

They can be used to do FIB (focussed ion beam (it uses an ion beam to cut and expose various
metal lines on a functional chip and to deposit platinum thereby reconnecting the gates into a
new logic structure)) for the bug in lab before committing to a second tapeout with fix for the
bug in place. FIBing is one way of guaranteeing that the fix for the bug is going to work or not.

A rule of thumb is to have 3% of the total gate count as spare gate count within a
block. A typical distribution for the spare gates is 20% Flops, 30% inverters and 50%
complex and non-complex gates

5 Tools

1. What are the most common Software Verilog Simulation tools used in the
industry?

Software Verilog simulation tools are used to compile and simulate designs described
in Verilog. Table below shows the most common software Verilog simulation tools
used in the industry.

Table 52: Verilog Simulation Tools

Event-driven Tool

NC- Verilog, Verilog-
XL

VCS

ModelSim

Cycle-based Tool

SpeedSim

Polaris

X

Company

Cadence

Synopsys

Mentor Graphics

2. What are the most common Software VHDL Simulation tools used in the
industry?

Software VHDL simulation tools are used to compile and simulate designs described
in VHDL. Table below shows the most common software VHDL simulation tools
used in the industry.

Table 53: VHDL Simulation Tools

Event-driven Tool

NC-VHDL

Scirocco

ModelSim

Cycle-based Tool

X

Scirocco

X

Company

Cadence

Synopsys

Mentor Graphics

3. What are the most common Linting tools used in the industry?

196 CPU Design: Answers to Frequently Asked Questions

Linting tools are used to make sure that designs coded in Verilog and VHDL are
coded properly. Most of the Processor companies have there own inhouse linting
tools. Table below shows the most common commercially available Linting tools
used in the industry.

Table 54: Linting Tools

Tool

VN-Check

Verity-Check

0-In Checklist

Company

TransEDA

Veritable

0-In

4. What are the most common Testbench Automation tools used in the industry?

Testbench Automation tools are used to automate a testbench environment for a
design to be tested. Table below shows the most common Testbench Automation tools
used in the industry.

Table 55: Testbench Automation Tools

Tool

Vera

Specman Elite

Company

Synopsys

Verisity

5. What are the most common languages used to develop a Testbench?

The most common languages used to develop a Testbench are OpenVera, e, Verilog,
VHDL and C.

6. What are the most common Debugging tools used in the industry?

Debugging tools help in debugging a design. Table below shows the most common
Debugging tools used in the industry.

Table 56: Debugging Tools

Tool

Signalscan

Company

Cadence

Tools 197

Table 56: Debugging Tools

Tool

Debussy

Undertow

Company

Novas

Veritools

7. What are the most common Formal Functional Verification tools used in the
industry?

Formal Functional Verification tools help find bugs in a design. Table below shows
the most common Formal Functional Verification tools used in the industry.

Table 57: Formal Functional Verification Tools

Tool

0-in Search

BlackTie UDC

Magellan

VN-Property

Company

0-In

Cadence

Synopsys

TransEDA

8. What are the most common Formal Equivalence Checking tools used in the
industry?

Formal Equivalence Checking tools verify equivalency between two designs (i.e RTL
against Gate level netlist etc.). Table below shows the most common Formal Equiva-
lence Checking tools used in the industry.

Table 58: Formal Equivalence Checking Tools

Tool

Conformal LEC, FormalCheck

Formality, Design Verifyer

FormalPro

ESP-CV, Innologic

Company

Cadence

Synopsys

Mentor Graphics

9. What are the most common Code Coverage tools used in the industry?

198 CPU Design: Answers to Frequently Asked Questions

Code coverage tools are used to provide coverage information for a design being
tested. Table below shows the most common Code Coverage tools used in the indus-
try.

Table 59: Code Coverage Tools

Tool

SureCove

VN-Cover

VeriCover

HDLScore

VCS

NC-Verilog, NC-VHDL

Covermeter

Company

Verisity

TransEDA

Veritools

Innoveda

Synopsys

Cadence

Synopsys

10. What are the most common Hardware Accelerator tools used in the indus-
try?

They are custom hardware dedicated to simulate through high speed RAM and pro-
prietary ASIC designs architected for parallel, pipelined operation. The main differ-
ence between acceleration and emulation is what drives the design stimulus, which
ultimately impacts the run-time performance. With acceleration, stimulus is provided
by a software testbench whereas with emulation stimulus comes from live electrical
connections. With acceleration if stimulus is residing in a workstation then the accel-
erator need to synchronize at every clock cycle. Table below shows the most common
Hardware Accelerator tools used in the industry.

Table 60: Hardware Accelerator Tools

Tool

Xcite, XoC, Xtreme

Hammer

Palladium, CoBALT Ultra

ARES

HES

Company

Axis Systems

Tharas Systems

Cadence

Mentor Graphics

Alatek

Tools 199

11. What are the most common Hardware Emulation tools used in the industry?

Hardware Emulation tools are used to emulate a design in hardware using ASIC’s and
FPGA’s. Table below shows the most common Hardware Emulation tools used in the
industry.

Table 61: Hardware Emulation Tools

Tool

XoC, Xtreme

Palladium, CoBALT Ultra

VStation, CelaroPRO

COMULATOR

Company

Axis Systems

Cadence

Mentor Graphics

Alatek

12. What are the most common Logic Synthesis tools used in the industry?

Logic Synthesis tools are used to synthesize a design written in Verilog or VHDL.
Table below shows the most common Logic Synthesis tools used in the industry.

Table 62: Logic Synthesis Tools

Tool

Design Compiler

Blast Create

BuildGates

Synplify ASIC

Company

Synopsys

Magma

Cadence

Synplicity

13. What are the most common FPGA Synthesis tools used in the industry?

FPGA Synthesis tools are used to synthesize a design for it to be mapped to FPGA’s.
Table below shows the most common FPGA Synthesis tools used in the industry.

Table 63: FPGA Synthesis Tools

Tool

Synplify Pro

Precision RTL, LeonardoSpcctrum

Company

Synplicity

Mentor Graphics

200 CPU Design: Answers to Frequently Asked Questions

Table 63: FPGA Synthesis Tools

Tool

FPGA Compiler II

XST

Company

Synopsys

Xilinx

14. What are the most common Static Timing Analysis tools used in the indus-
try?

Timing analysis is required to verify the timing performance of a design by ensuring
that the setup and hold times of flip-flops/latches are met and the critical paths in the
design meet the required timing spec. Static timing analysis tools are used for this
purpose. They analyze all the paths in the design to see if they meet the required tim-
ing spec. Few advantages of Static timing analysis over Dynamic timing analysis is
that they are a magnitude faster than Dynamic timing analysis tools and they don’t
require vectors for simulation. One of the main disadvantage of these tools is that they
result in reporting false paths (these are the paths which are reported as critical but in
reality they are non-critical as these paths are never exercised during normal opera-
tion of the circuit/logic).Table below shows the most common Static Timing Analysis
tools used in the industry.

Table 64: Static Timing Analysis Tools

Tool

PrimeTime, PathMill

Pearl, PKS

Blast Logic

SST Velocity

ShowTime

Dolphin

DynaCore

Company

Synopsys

Cadence

Magma

Mentor Graphics

Sequence Design

Monterey Design Systems

Circuit Semantics

15. What are the most common Dynamic Timing Analysis tools used in the
industry?

Dynamic Timing Analysis tools like Static tools are used to verify timing perfor-
mance of a design. One of the key differences between Dynamic and Static tools is
that Dynamic Timing Analysis tools require vectors for simulation and they don’t

Tools 201

report any false paths. Table below shows the most common Dynamic Timing Analy-
sis tools used in the industry.

Table 65: Dynamic Timing Analysis Tools

Tool

Spectre, PSpice

Mach TA

NanoSim, Star-SimXT, TimeMill, HSPICE

SmartSpice

Company

Cadence

Mentor Graphics

Synopsys

Silvaco

16. What are the most common Power Analysis tools used in the industry?

Power Analysis tools are used to analyze power consumed by a design. Table below
shows the most common Power Analysis tools used in the industry.

Table 66: Power Analysis Tools

Gate/Circuit Power Analysis
Tool

PowerMill, PrimePower

Blast Rail

X

RTL Power Analysis
Tool

Power Compiler

X

PowerTheater Designer

Company

Synopsys

Magma

Sequence Design

17. What are the most common Schematic Capture tools used in the industry?

Schematic Capture tools are used to capture schematics for a design. Table below
shows the most common Schematic Capture tools used in the industry.

Table 67: Schematic Capture Tools

Tool

Design Architect-IC

Virtuoso Composer, OrCAD Capture

CosmosSE

Scholar

Company

Mentor Graphics

Cadence

Synopsys

Silvaco

202 CPU Design: Answers to Frequently Asked Questions

18. What are the most common Place and Route tools used in the industry?

Place and Route tools are used to place and route standard cells in a design. Table
below shows the most common Place and Route tools used in the industry.

Table 68: Place and Route Tools

Tool

Silicon Ensemble

Apollo, Astro

AutoCells

Blast Fusion

Dolphin

Company

Cadence

Synopsys

Mentor Graphics

Magma

Monterey Design Systems

19. What are the most common Floorplanning tools used in the industry?

Floorplanning tools help in floorplanning a design. Table below shows the most com-
mon Floorplanning tools used in the industry.

Table 69: Floorplanning Tools

Tool

Chip Architect

SoC Encounter

IC Wizard

Blast Plan

IC Station

Company

Synopsys

Cadence

Monterey Design Systems

Magma

Mentor Graphics

20. What are the most common Layout Editor tools used in the industry?

Tools 203

Layout Editor tools help in drawing mask layers for a design. Table below shows the
most Layout Editor tools used in the industry.

Table 70: Layout Editor Tools

Tool

IC Station

Virtuoso-XL Layout Editor

CosmosLE

Expert

Company

Mentor Graphics

Cadence

Synopsys

Silvaco

21. What are the most common Chip Level Routing tools used in the industry?

Chip Level Routing tools are used to route metal layers at the Chip Level. Table
below shows the most common Chip Level Routing tools used in the industry.

Table 71: Chip Level Routing Tools

Tool

FlexRoute

Virtuoso Chip Assembly Router,
NanoRoute Ultra

IC Station

Company

Synopsys

Cadence

Mentor Graphics

22. What are the most common Physical Verification tools used in the industry?

Physical Verification tools are used to verify LVS (Layout versus Schematic), DRC
(Design Rule Checking) and ERC (Electrical Rule Checking) for a design. Table
below shows the most common Physical Verification tools used in the industry.

Table 72: Physical Verification Tools

Tool

Dracula, Diva, Assura DRC, Assura LVS

ICVerify, Calibre

Hercules

Guardian

Company

Cadence

Mentor Graphics

Synopsys

Silvaco

204 CPU Design: Answers to Frequently Asked Questions

23. What are the most common Parasitic Extraction tools used in the industry?

Parasitic Extraction tools are used to extract parasitics (i.e Resistance and Capaci-
tance values) for a design. Table below shows the most common Parasitic Extraction
tools used in the industry.

Table 73: Parasitic Extraction Tools

Tool

Fire & Ice QXC, Assura RCX

Star-RCXT

Calibre xRC

Blast Fusion

Clever

Columbus-AMS

Company

Cadence

Synopsys

Mentor Graphics

Magma

Silvaco

Sequence Design

24. What are the most common Noise Analysis tools used in the industry?

Noise Analysis tools are used to analyze noise in a design. Table below shows the
most common Noise Analysis tools used in the industry.

Table 74: Noise Analysis Tools

Tool

PrimeTime SI

Signal Storm

Blast Noise

CoolTimc

Company

Synopsys

Cadence

Magma

Sequence Design

25. What are the most common EM-IR Analysis tools used in the industry?

Tools 205

EM-IR tools verify for IR drop and EM violations on power and ground networks.
Table below shows the most common EM-IR tools used in the industry.

Table 75: EM-IR Analysis Tools

Tool

Thunder, Hail

RailMill

Blast Rail

Physical Studio, CoolTime

Company

Cadence

Synopsys

Magma

Sequence Design

26. What are the most common ATPG (Automatic Test Pattern Generator) tools
used in the industry?

ATPG tools are used to provide test vectors for a design. Table below shows the most
common ATPG tools used in the industry.

Table 76: ATPG Tools

Tool

FastScan

TetraMAX

TurboScan

Company

Mentor Graphics

Synopsys

Syntest

27. What are the most common Boundary Scan tools used in the industry?

Boundary Scan tools are used to verify connectivity at the module level. Table below
shows the most common Boundary Scan tools used in the industry.

Table 77: Boundary Scan Tools

Tool

BSDArchitect

BSD Compiler

TurboBSD

Eclipse

Company

Mentor Graphics

Synopsys

Syntest

Intellitech

206 CPU Design: Answers to Frequently Asked Questions

Table 77: Boundary Scan Tools

Tool

ScanPlus

Company

Corelis

28. What is the difference between a cycle-based simulator and a event-driven
simulator?

Cycle-based simulation is generally faster than event-driven simulation. It is used
most effectively early in the design cycle where timing verification is not yet critical.
Together with equivalence checking and static timing analysis, cycle-base simulation
can provide a complete sign-off methodology without the need for gate-level simula-
tion. Event-driven simulation continues to dominate the sign-off verification market-
place and will continue to do so until more trust is built by using cycle-based
simulation, equivalence checking and static timing analysis as a sign-off methodol-
ogy. Trust will be a function of the relative number of successful chips built using this
newer methodology. While it will take several years before this trust is built, event-
driven simulation will have a central role. It is expected that the use of event-driven
simulation will continue to increase even as the shift to the newer methodology is
made. Even in the future, after sign-off methodologies are radically changed, event-
driven simulation will still be useful in many circumstances i.e asynchronous blocks
where timing and function are closely intertwined, for example.

6 Verilog

1. What are the various Operators in Verilog?

Table below lists the various Operators in Verilog.

Table 78: Operators in Verilog

208 CPU Design: Answers to Frequently Asked Questions

Table 78: Operators in Verilog

2. What is the Operator Order of Precedence in Verilog?

Table below lists the Operator Order of Precedence in Verilog.

Verilog 209

Table 79: Operator Order of Precedence

3. List some of the Format Specifiers in Verilog?

Table below lists some of the Format Specifiers in Verilog.

Table 80: Format Specifiers

Symbol

%b

%0b

%d

%0d

%h

%0h

Description

Binary with leading zeroes

Binary with no leading zeroes

Decimal

Decimal with leading spaces trun-
cated

Hexadecimal with leading zeroes

Hexadecimal with no leading
zeroes

Symbol

%c

%s

%t

%f

%e

\n

Description

Character

String

Time format

Real in decimal format

Real in exponential format

New line

210 CPU Design: Answers to Frequently Asked Questions

4. What are System Tasks and Functions in Verilog?

There are certain buit-in commands in Verilog to provide support for system functions
such as printing messages or reading and writing of files etc. These special commands
are known as System Tasks and Functions and they always begin with “$” symbol.
Users may define their own built-in tasks and functions using Verilog Programming
Language Interface. Table below lists the most commonly used System Tasks and
Functions.

Table 81: System Tasks and Functions

System
Task

$display

$write

$strobe

Description

Prints the formatted message once
when the statement is executed
during simulation. A new line is
automatically added at the end of
its output.

Prints the formatted message once
when the statement is executed
during simulation. No newline is
added at the end of its output.

It executes after all simulation
events in the current time step
have executed. Prints the format-
ted message once when executed.
This task guarantees that the
printed values for the signals/vari-
ables are the final values the sig-
nals/variables can have at that
time step.

Usage

$display(“optional text with format speci-
fier”, signal1, signal2, ..);

Example
initial $display(“Hello World”);

Prints the string between the quotation marks
with a new line added at the end of the string

$write(“optional text with format specifier”,
signal1, signal2, ..);

Example
initial $write(“Hello World”);

Prints the string between the quotation marks
with no new line added at the end of the string

$strobe(“optional text with format specifier”,
signal1, signal2, ..);

Example
initial $strobe(“Current values of A, B and C
are A=%b, B=%b, C=%b”, A, B, C);

Prints A, B and C and prints their value in
binary format after all simulation events in
the current time step have executed.

Verilog 211

Table 81: System Tasks and Functions

System
Task

$monitor

$fopen

$fclose

$fdisplay

Description

Invokes a background process that
continuously monitors the signals
listed, and prints the formatted
message whenever one of the sig-
nals changes. A newline is auto-
matically added at the end of its
output. Only one $monitor can be
active at a time.

A function that opens a file to
redirect the output of Verilog. It
returns a 32-bit value called a
multi-channel descriptor(mcd).
Only one bit is set in a mcd. The
standard output(also known as
channel 0) has a mcd with the
LSB(i.e bit 0) set. Each successive
call to $fopen opens a new chan-
nel and returns a 32-bit mcd with
bit 1 set, bit 2 set and so on upto
bit 31 set.

A function that closes a file that
was opened by $fopen.

Writes to a file the formatted mes-
sage once when the statement is
executed during simulation. A
new line is automatically added at
the end of its output.

Usage

$monitor(“optional text with format speci-
fier”, signal1, signal2, ..);

Example
initial $monitor(“Current values of A, B and
C are A=%b, B=%b, C=%b”, A, B, C);

Monitors A, B and C and prints their value in
binary format whenever one of the signals(i.e
A or B or C) changes its value during simula-
tion.

mcd = $fopen(“name_of_file”);

initial f1 = $fopen(“error_file”);

Opens a file named ‘error_file’ and provides
a file handler(i.e ‘f1’) by setting one of the
bits in the 32-bit mcd to 1.

$fclose(mcd);

Example
initial $fclose(“f1”);

Closes file corresponding to file handler ‘f1’
that was opened by $fopen.

$fdisplay(mcd, “optional text with format
specifier”, signal1, signal2, ..);

Example
initial $fdisplay(f1 , “Current values of A, B
and C are A=%b, B=%b, C=%b”, A, B, C);

Writes to a file referred by ‘f1’ the formatted
text along with the binary values of A, B and
C once the statement gets executed.

Example

212 CPU Design: Answers to Frequently Asked Questions

Table 81: System Tasks and Functions

System
Task

$timeformat

$time

$stime

$realtime

Description

Controls the format used by the
%t text format specifier.

Returns the current simulation
time as a 64-bit integer.

Returns the lower 32-bits of simu-
lation time as an integer.

Returns a real number representa-
tion of simulation time.

Usage

$timeformat(unit, precision, “suffix”,
field_width);
unit - base that time is to be displayed in(-9 =
1ns, -12= 1ps etc.)
precision - specifies number of decimal
points to be displayed
suffix - string appended to the time(“ns”,
“ps”, “nanoseconds” etc.)
field_width - minimum number of characters
that will be displayed

Example
initial $timeformat(-12, 2, “ps”,10);

Displays values like 20.00ps, 40.00ps etc.

$time

Example
initial $monitor(“time = %d, A = %d”, $time,
A);

Prints the current simulation time as a 64-bit
decimal whenever $monitor gets executed.

$stime

Example
initial $monitor(“time = %d, A = %d”,
$stime, A);

Prints the lower 32-bits of the current simula-
tion time as a 32-bit decimal whenever $mon-
itor gets executed.

$realtime

Prints a real number representation of simula-
tion time.

Verilog 213

Table 81: System Tasks and Functions

System
Task

$random

$finish

$stop

$readmemb

Description

Returns a random 32-bit signed
random number. It can be used
with a seed to ensure the same
random number sequence each
time the test is run.

Finishes a simulation and exits the
simulation process.

Halts a simulation and enters an
interactive debug mode.

Opens a file for reading, and loads
the contents into a register mem-
ory array. The file must be an
ASCII file with values represented
in binary. The start and end
address values are optional.

Usage

$random;
$random(seed);

Example
initial $random;
initial $random(2356);

$finish;

Example
initial $finish;

$stop;

initial $stop;

$readmemb(“file_name”, memory_name);
$readmemb(“file_name”, memory_name,
start_addr);
$readmemb(“file_name”, memory_name,
start_addr, finish_addr);

Example
initial $readmemb(“initialize”, dcache);

The file ‘initialize’ contains the initialization
data for memory array ‘dcache’. Addresses
are specified in the file with @address. They
are specified as hexadecimal numbers. Data
is separated by white spaces and may contain
‘X’ or ‘Z’. Uninitialized locations default to
‘X’. A sample data for ‘initialize’ is

Example

214 CPU Design: Answers to Frequently Asked Questions

Table 81: System Tasks and Functions

System
Task

$readmemh

$dumpvars

$dumpfile

$dumpon

Description

Opens a file for reading, and loads
the contents into a register mem-
ory array. The file must be an
ASCII file with values represented
in hex. The start and end address
values are optional.

A system task which is used to
dump value-changes of variables
into a file which gets used by
waveform viewer to display the
results in the form of a waveform
display.

A system task which allows you to
provide a file name where the
value-changes of variables needs
to be dumped to.

A system task used to control the
start of dumping process.

Usage

$readmemh(“file_name”, memory_name);
$readmemh(“file_name”, memory_name,
start_addr);
$readmemh(“file_name”, memory_name,
start_addr, finish_addr);

Example
initial $readmemh(“initialize”, dcache);

The file ‘initialize’ contains the initialization
data for memory array ‘dcache’. Addresses
are specified in the file with @address. They
are specified as hexadecimal numbers. Data
is separated by white spaces and may contain
‘X’ or ‘Z’. Uninitialized locations default to
‘X’. A sample data for ‘initialize’ is

$dumpvars(levels, list_of_modules);

Example
initial $dumpvars(2, top);

Dumps all variables upto 2 levels of hierarchy
in module instance ‘top’.

$dumpfile(“file_name”);

initial $dumpfile(“signals.dump”);

Dumps the value-changes of variables into a
file called ‘signals.dump’.

$dumpon;

Example
initial #100 $dumpon;

Start dump process after 100 timeunits.

Example

Verilog 215

Table 81: System Tasks and Functions

System
Task

$dumpoff

Description

A system task used to control the
stop of dumping process.

Usage

$dumpoff;

initial #500 $dumpoff;

Stop dump process after 500 timeunits.

5. What are Compiler Directives in Verilog?

Compiler Directives direct the pre-processor part of Verilog Parser or Simulator.
Some of the processing involves substitution of strings, conditional inclusion and
exclusion of code etc. They all precede with the character (‘). They ar not bound by
modules or files. When a Simulator encounters a compiler directive, the directive
remains in effect until another compiler directive either modifies it or turns it off.
Table below lists the most commonly used Compiler Directives.

Table 82: Compiler Directives

Compiler
directive

‘include

‘define

Description

File inclusion. The contents of
another Verilog source file is
inserted where the ‘include direc-
tive appears.

Allows a text string to be defined
as a macro name.

Usage

‘include “file name”

Here the contents of ‘define.h’ are
included within the ‘idu’ module.

‘define macro_name text_string
Example
‘define gate_regression 1

Allows ‘gate_regression’ to be substituted
by 1 where ever it gets used.

Example

216 CPU Design: Answers to Frequently Asked Questions

Table 82: Compiler Directives

Compiler
directive

‘ifdef-‘else-‘endif

‘timescale

‘resetall

‘defaultnettype

Description

Conditional compilation. Allows
Verilog source code to be option-
ally included based on whether or
not the macro_name has been
defined using ‘define or an invo-
cation option.

Specifies the time units and preci-
sion for delays, ‘time unit’ is the
amount of time a delay of 1 repre-
sents. The time unit must be 1, 10
or 100. ‘base’ is the time base for
each unit, ranging from seconds to
femtoseconds, and must be s, ms,
us, ps or fs. ‘precision’ represents
how many decimal points of pre-
cision to use relative to the time
units.

Resets all compiler directives
back to its original default values.

Changes the net data type to be
used for implicit net declarations
in a design.

Usage

‘ifdef-‘else-‘endif

Here since ‘gate_regression’ is 1 we end
up compiling ‘gate_source_code’ instead
of ‘rtl_source_code’.

‘timescale time_unit base/precision base

Example
‘timescale 1ns/1ns
initial #100 assign a = b & c;

Here ‘a’ gets evaluated after 100 time
units(i.e 100ns).

‘resetall

‘defaultnettype

6. What are Procedural blocks in Verilog?

Procedural blocks in Verilog are used to model both combinatorial and sequential
logic. They are also used in building a test bench environment for a design. There are
two types of Procedural blocks which are ‘initial’ and ‘always’.

‘initial’ procedural block starts at time 0 and executes exactly once during a simula-
tion and then does not execute again. If there are multiple ‘initial’ blocks then each
block starts to execute concurrently at time 0. Each ‘initial’ block finishes execution
independently of other blocks. The time at which they finish depends on the code in
the ‘initial’ block. It is possible to have a ‘initial’ block that never finishes. An exam-
ple of ‘initial’ block is shown below,

Verilog 217

‘always’ procedural block is similar in behavior to ‘initial’ block except that it exe-
cutes the statements repeatedly(i.e once the statements finish execution they start exe-
cuting all over again). An ‘always’ block is like an ‘initial’ block with an infinite
loop. An example of ‘always’ block is shown below,

‘initial’ and ‘always’ procedural blocks cannot be nested.

7. What are the Timing Control Statements in Verilog?

Table below lists the Timing Control Statements supported in Verilog.

Table 83: Timing Controls in Verilog

Timing
Controls

#

Description

It delays execution for a specific amount of time, ‘delay’ may be a number, a
variable or an expression. Example of a procedural block using ‘#” is shown
below.

218 CPU Design: Answers to Frequently Asked Questions

Table 83: Timing Controls in Verilog

Timing
Controls

@

wait

Description

Here ‘(c & d)’ gets evaluated at time 0 but gets assigned to ‘a’ after 2 time
units whereas gets evaluated after 3 timeunits and gets assigned to ‘e’
immediately.

It delays execution until there is a transition on any one of the signals in the
sensitivity list. ‘edge’ may be either a posedge or negedge. If no edge is spec-
ified then any logic transition is used. Signals here may be scalar or vector,
and any data type. Example of a procedural block using ‘@’ is shown below.

Here the statement within the always block gets evaluated when ever there is
a transition on ‘b’ or ‘c’.

It delays execution until the condition evaluates as true. Example of a proce-
dural block using ‘wait’ is shown below.

Here we wait for ‘a’ to be equal to 2 before evaluating ‘e’.

8. What are the various Programming Statements used in Verilog?

Table below lists the various Programming Statements used in Verilog.

Verilog 219

Table 84: Programming Statements in Verilog

Programming
Statements

if

if-else

case

Usage

It executes the statement or statement_group if the condition evaluates as
true. If we need more than one statement (i.e statement_group) then we
need to use begin-end or a fork-join block. The condition here can be an
expression or a single value. If the condition evaluates to ‘0’ or unknown
then the condition is considered false, and if the condition evaluates to ‘1’
or more then the condition is considered true.

It executes the first statement or statement_group if the condition evaluates
as true and executes the second statement or statement_group if the condi-
tion evaluates as false. If we need more than one statement (i.e
statement_group) then we need to use begin-end or a fork-join block. The
condition here can be an expression or a single value. If the condition eval-
uates to ‘0’ or unknown then the condition is considered false, and if the
condition evaluates to ‘ 1’ or more then the condition is considered true.

It compares the expression with each of the case_item’s and executes the
statement or statement_group associated with the first matching case_item.
It executes the default if none of the case_item’s match. Here the default
case is optional. If we need more than one statement (i.e statement_group)
then we need to use begin-end or a fork-join block.

220 CPU Design: Answers to Frequently Asked Questions

Table 84: Programming Statements in Verilog

Programming
Statements

casez

casex

forever

Usage

It is special version of case statement where ‘z’ and ‘?’ are treated as don’t
cares. Similar to case statement it compares the expression with each of the
case_item’s and executes the statement or statement_group associated with
the first matching case_item. It executes the default if none of the
case_item’s match. Here the default case is optional. If we need more than
one statement (i.e statement_group) then we need to use begin-end or a
fork-join block.

It is special version of case statement where ‘x’, ‘z’ and ‘?’ are treated as
don’t cares. Similar to case statement it compares the expression with each
of the case_item’s and executes the statement or statement_group associ-
ated with the first matching case_item. It executes the default if none of the
case_item’s match. Here the default case is optional. If we need more than
one statement (i.e statement_group) then we need to use begin-end or a
fork-join block.

It is an infinite loop that continuously executes the statement or
statement_group. If we need more than one statement (i.e
statement_group) then we need to use begin-end or a fork-join block.

Verilog 221

Table 84: Programming Statements in Verilog

Programming
Statements

repeat

while

for

disable

Usage

Syntax
repeat(expression)
statement or statement _group

Like forever it is a loop that executes the statement or statement _group a
fixed number of times based on the expression. If we need more than one
statement (i.e statement_group) then we need to use begin-end or a fork-
join block.

Syntax
while(condition)
statement or statement_group

It executes the statement or statement_group as long as the condition eval-
uates as true. If the condition evaluates to ‘0’ or unknown then the condi-
tion is considered false, and if the condition evaluates to ‘ 1 ’ or more then
the condition is considered true. If we need more than one statement (i.e
statement_group) then we need to use begin-end or a fork-join block.

Syntax
for(initial_value; condition; step)
statement or statement_group

The for loop here uses three expressions separated by semicolons to control
the loop. The first expression (initial_value) is executed once before enter-
ing the loop the first time. The second expression (condition) is evaluated
to determine if the contents of the loop (i.e statement or statement_group)
should be executed. If the loop condition expression is true, the loop is
entered. The final expression (step) is evaluated at the end of the loop. If
we need more than one statement (i.e statement_group) then we need to
use begin-end or a fork-join block.

Syntax
disable group_name;

It discontinues execution of a named group of statements.

9. What is Full_Case and Parallel_Case?

Full_Case

This particular directive is used to inform the synthesis tool that the ‘case’ statement
is fully defined, and that the output assignments for all unused cases are don’t cares. if
all cases are in fact specified, synthesis tool can recognize this automatically. The
functionality between ‘pre’ and ‘post’ synthesized designs may or may not remain the
same when using this directive.

222 CPU Design: Answers to Frequently Asked Questions

Parallel_Case

This particular directive is used to inform the synthesis tool that all the case items are
mutually exclusive i.e more than one case item can never be true. Here when a design
does have overlapping cases then the functionality between ‘pre’ and ‘post’ synthesis
designs will be different.

10. What is Moore and a Mealy State Machine?

Moore State Machine

Here outputs are only a function of the present state. A Moore State Machine is shown
in the figure below.

Figure 160: Moore State Machine

Mealy State Machine

Here one or more of the outputs are function of the present state and one or more of
the inputs. A Mealy State Machine is shown in the figure below.

Figure 161: Mealy State Machine

11. What is a UDP?

A UDP (User Defined Primitives) describes a piece of logic with a truth table. They
can be either combinatorial or sequential. They are scalar (1-bit) and only one output
is allowed which must be the first terminal. The main reason UDP’s are used is per-
formance as Verilog evaluates UDP’s quickly and UDP’s take up a very small amount
of memory. The most common use for UDP’s is in modeling a library of standard
cells. An optimistic ‘mux’ UDP is shown below. It is optimistic because if the inputs
are same and the select is unknown, the input still propagates.

Verilog 223

12. What are Functions and Tasks in Verilog?

Verilog provides Functions and Tasks to allow the behavioral description of a module
to be broken into more manageable parts allowing better readability and manageabil-
ity. Functions and Tasks are useful for several reasons which are, they allow often-
used behavioral sequences to be written once and called when needed, they allow for
a cleaner writing style and finally they allow data to be hidden from other parts of the
design.

Table below lists the characteristics of a Function and a Task.

Table 85: Function and Task

Function

1. It returns a value to the expression that called
it.

2. It takes zero time.

3. It cannot contain delay or event controls (#,
@ and wait).

4. It may be called from within a procedural and
continuous assignment statements.

5. It has atleast one input but does not have out-
puts or inouts.

6. Syntax for Function

function [size_or_type] function_name;
input declarations
local variable declarations
procedural_statement or statement_group

endfunction

Task

1. It does not return a value to an expression.

2. It can take more than zero time to execute.

3. It can contain delay or event controls (#, @
and wait).

4. It cannot be called from a continuous assign-
ment statement.

5. It can have zero or more arguments (i.e
inputs, outputs or inouts) of any type.

6. Syntax for Task

task task_name;
input, output, and inout declarations
local variable declarations
procedural_statement or statement_group

endtask

224 CPU Design: Answers to Frequently Asked Questions

13. Provide Verilog code for the most commonly used Flops and Latches in a
design?

Tables below provide the verilog definition for the most commonly used Flops and
Latches in a design.

Table 86: Verilog Code for Regular/Synchronous/Asynchronous Flops

Regular Flop Synchronous Reset Flop Asynchronous Reset Flop

Table 87: Verilog Code for Regular/Synchronous/Asynchronous Latches

Regular Latch Synchronous Reset Latch
Asynchronous Reset

Latch

14. Provide different Verilog coding styles for a Mux functionality?

Table below provides the different Verilog coding styles for a Mux functionality.

Verilog 225

Table 88: Verilog Coding Styles for a Mux Functionality

226 CPU Design: Answers to Frequently Asked Questions

Table 88: Verilog Coding Styles for a Mux Functionality

15. Write Verilog code for modelling different Memory configurations?

Table below shows Verilog code for different Memory configurations.

Table 89: Memory Models

Direct Mapped Cache(1 Read/Write Port) -

Figure 162: Direct Mapped Cache

Verilog 227

Table 89: Memory Models

‘timescale 1ps/1ps
module DIRECT_CACHE(read, write, data_in, address_in, data_out, clock)

input read, write, clock;
input [63:0] data_in;
input [6:0] address_in;
output [63:0] data_out;

reg read_f, write_f, clock;
reg [63:0] data_in_f;
reg [6:0] address_in_f;
reg [63:0] data_out, temp;
reg [63:0] memory [0:127];

parameter period = 500;

//// Clock Generation ////
initial

begin
clock = 0;
forever #(period/2) clock = ~clock;

end

//// Flop Incoming Control and Data Signals ////
always @(posedge clock)

begin
read_f <= read;
write_f<= write;
data_in_f <= data_in;
address_in_f <= address_in;

end

//// Cache Write Operation ////
always @(write_f)

#1 if(write_f)
memory[address_in_f] = data_in_f;

//// Cache Read Operation ////
always @(read_f)

#1
if(read_f)
temp = memory[address_in_f];

else
temp = 64’hffffffffffffffff;

//// Forward Data ////
always @(posedge clock)

data_out <= temp;
endmodule

228 CPU Design: Answers to Frequently Asked Questions

Table 89: Memory Models

4-Way Set Associative Cache(1 Read/Write Port) -

Figure 163: 4-Way Set Associative Cache

‘timescale 1ps/1ps
module FWSA_CACHE(read, write, data_in, address_in, way_sel, bank_sel, byte_sel, data_out,
clock);

input read, write, bank_sel, clock;
input[71:0] data_in;
input[6:0] address_in;
input[3:0] way_sel;
input[7:0] byte_sel;
output[63:0] data_out;

reg [71:0] array_b0_w0[0:127];
reg [71:0] array_b0_w1[0:127];
reg [71:0] array_b0_w2[0:127];
reg [71:0] array_b0_w3[0:127];
reg [71:0] array_b1_w0[0:127];
reg [71:0] array_b1_w1[0:127];
reg [71:0] array_b1_w2[0:127];
reg [71:0] array_b1_w3[0:127];

reg [71:0] temp0_b0_w0, temp0_b0_w1, temp0_b0_w2, temp0_b0_w3;
reg [71:0] temp0_b1_w0, temp0_b1_w1, temp0_b1_w2, temp0_b1_w3;

reg[71:0]temp0;
reg [8:0] byte0, byte1, byte2, byte3, byte4, byte5, byte6, byte7;
reg [71:0] data_b0, data_b1;
reg [71:0] data_b0_f, data_b1_f;
reg [71:0] data_out;

Verilog 229

Table 89: Memory Models

reg read_f, write_f;
reg [71:0]data_in_f;
reg [6:0] index_f;
reg [3:0] way_sel_f, bank_sel_f, byte_sel_f;
reg [7:0] bank_sel_ff;

parameter period = 500;

//// Clock Generation ////
initial

begin
clock = 0;
forever #(period/2) clock = ~clock;

end

//// Flop Incoming Control and Data Signals ////
always@(posedge clock)
begin

read_f <= read;
write_f <= write;
data_in_f <= data_in;
index_f <= address_ in;
way_sel_f <= way_sel;
bank_sel_f <= bank_sel;
byte_sel_f <= byte_sel;
bank_sel_ff <= bank_sel_f;

end

//// Cache Write Operation ////
always @(write_ f or index_f or way_sel_f or bank_sel_f or byte_sel_f or data_in_f)

#1
begin

if(write_f & ~bank_sel_f) // Update Bank0
begin

if(way_sel_f == 4’b0001) // Update Way0 of Bank0
begin

temp0 = array_b0_w0[index_f];
byte0 = ({9{byte_sel_f[0]}} & data_in_f[8:0]) | ({9{~byte_sel_f[0]}} & temp0[8:0]);
byte1 = ({9{byte_sel_f[1]}} & data_in_f[17:9]) | ({9{~byte_sel_f[1]}} & temp0[17:9]);
byte2 = ({9{byte_sel_f[2]}} & data_in_f[26:18]) | ({9{~byte_sel_f[2]}} & temp0[26:18]);
byte3 = ({9{byte_sel_f[3]}} & data_in_f[35:27]) | ({9{~byte_sel_ f[3]}} & temp0[35:27]);
byte4 = ({9{byte_sel_f[4]}} & data_in_f[44:36]) | ({9{~byte_sel_f[4]}} & temp0[44:36]);
byte5 = ({9{byte_sel_f[5]}} & data_in_f[53:45]) | ({9{~byte_sel_f[5]}} & temp0[53:45]);
byte6 = ({9{byte_sel_f[6]}} & data_in_f[62:54]) | ({9{~byte_sel_f[6]}} & temp0[62:54]);
byte7 = ({9{byte_sel_f[7]}} & data _in_f[71:63]) | ({9{~byte_se1_f[7]}} & temp0[71:63]);
array_b0_w0[index_f] = {byte7, byte7, byte5, byte4, byte3, byte2, byte 1, byte0};

end
if(way_sel_f == 4’b0010) // Update Way1 of Bank0
begin

temp0 = array_b0_w1[index_f];

230 CPU Design: Answers to Frequently Asked Questions

Table 89: Memory Models

byte0 = ({9{byte_sel_f[0]}} & data_in_f[8:0]) | ({9{~byte_sel_f[0]}} & temp0[8:0]);
byte1 = ({9{byte_sel_f[1]}} & data_in_f[17:9]) | ({9{~byte_sel_f[l]}} & temp0[17:9]);
byte2 = ({9{byte_sel_f[2]}} & data_in_f[26:18]) | ({9 {~byte_sel_f[2]}} & temp0[26:18]);
byte3 = ({9{byte_sel_f[3]}} & data_in_f[35:27]) | ({9{~byte_sel_f[3]}} & temp0[35:27]);
byte4 = ({9{byte_sel_f[4]}} & data_in_f[44:36]) | ({9{~byte_sel_f[4]}} & temp0[44:36]);
byte5 = ({9{byte_sel_f[5]}} & data_in_f[53:45]) | ({9{~byte_sel_f[5]}} & temp0[53:45]);
byte6 = ({9{byte_sel_f[6]}} & data_in_f[62:54]) | ({9{~byte_sel_f[6]}} & temp0[62:54]);
byte7 = ({9 {byte_sel_f[7]}} & data_in_f[71:63]) | ({9 {~byte_sel_f[7]}} & temp0[71:63]);
array_b0_w1[index_f] = {byte7, byte7, byte5, byte4, byte3, byte2, byte1, byte0};

end
if(way_sel_f = = 4’b0100) // Update Way2 of Bank0

begin
temp0 = array_b0_w2[index_f];
byte0 = ({9{byte_sel_f[0]}} & data_in_f[8:0]) | ({9{~byte_sel_f[0]}} & temp0[8:0]);
bytel = ({9{byte_sel_f[l]}} & data_in_f[17:9]) | ({9{~byte_sel_f[l]}} & temp0[17:9]);
byte2 = ({9{byte_sel_f[2]}} & data_in_f[26:18]) | ({9{~byte_sel_f[2]}} & temp0[26:18]);
byte3 = ({9{byte_sel_f[3]}} & data_in_f[35:27]) | ({9{~byte_sel_f[3]}} & temp0[35:27]);
byte4 = ({9{byte_sel_f[4]}} & data_in_f[44:36]) | ({9{~byte_sel_f[4]}} & temp0[44:36]);
byte5 = ({9{byte_sel_f[5]}} & data_in_f[53:45]) | ({9{~byte_sel_f[5]}} & temp0[53:45]);
byte6 = ({9{byte_sel_f[6]}} & data_in_f[62:54]) | ({9{~byte_sel_f[6]}} & temp0[62:54]);
byte7 = ({9{byte_sel_f[7]}} & data_in_f[71:63]) | ({9{~byte_sel_f[7]}} & temp0[71:63]);
array_b0_w2[index_f] = {byte7, byte7, byte5, byte4, byte3, byte2, byte1, byte0};

end
if(way_sel_f == 4’b1000) // Update Way3 of Bank0

begin
temp0 = array_b0_w3[index_f];
byte0 = ({9{byte_sel_f[0]}} & data_in_f[8:0]) | ({9{~byte_sel_f[0]}} & temp0[8:0]);
byte1 = ({9{byte_sel_f[1]}} &data_in_f[17:9]) | ({9{~byte_sel_f[1]}} & temp0[17:9]);
byte2 = ({9{byte_sel_f[2]}} & data_in_f[26:18]) | ({9{~byte_sel_f[2]}} & temp0[26:l8]);
byte3 = ({9{byte_sel_f[3]}} & data_in_f[35:27]) | ({9{~byte_sel_f[3]}} & temp0[35:27]);
byte4 = ({9{byte_sel_f[4]}} & data_in_f[44:36]) | ({9{~byte_sel_f[4]}} & temp0[44:36]);
byte5 = ({9{byte_sel_f[5]}} & data_in_f[53:45]) | ({9{~byte_sel_f[5]}} & temp0[53:45]);
byte6 = ({9{byte_sel_f[6]}}& data_in_f[62:54]) | ({9{~byte_sel_f[6]}} & temp0[62:54]);
byte7 = ({9{byte_sel_f[7]}} &data_in_f[71:63]) | ({9{~byte_sel_f[7]}} & temp0[71:63]);
array_b0_w3[index_f] = {byte7, byte7, byte5, byte4, byte3, byte2, byte1, byte0};

end

if(write_f & bank_sel_f) // Update Bank1
begin

if(way_sel_f == 4’b0001) // Update Way0 of Bank1
begin

temp0 = array _b1_w0[index_f];
byte0 = ({9{byte_sel_f[0]}} & data_in_f[8:0]) | ({9{~byte_sel_f[0]}} & temp0[8:0]);
bytel = ({9{byte_sel_f[1]}} & data_in_f[17:9]) | ({9{~byte_sel_f[1]}} & temp0[I7:9]);
byte2 = ({9{byte_sel_f[2]}} & data_in_f[26:18]) | ({9{~byte_sel_f[2]}} & temp0[26:18]);
byte3 = ({9{byte_sel_f[3]}} & data_in_f[35:27]) | ({9{~byte_sel_f[3]}} & temp0[35:27]);
byte4 = ({9{byte_sel_f[4]}} & data_in_f[44:36]) | ({9{~byte_sel_fI4]}} & temp0[44:36]);
byte5 = ({9{byte_sel_f[5]}} & data_in_f[53:45]) | ({9{~byte_sel_f[5]}} & temp0[53:45]);
byte6 = ({9{byte_sel_f[6]}} & data_in_f[62:54]) | ({9{~byte_sel_f[6]}} & temp0[62:54]);

Verilog 231

Table 89: Memory Models

byte7 = ({9{byte_sel_f[7]}} & data_in_f[71:63]) | ({9{~byte_sel_f[7]}} & temp0[71:63]);
array _b1_w0[index_f] = {byte7, byte7, byte5, byte4, byte3, byte2, byte1, byte0};

end
if(way_sel_f == 4’b0010) // Update Way 1 of Bank1
begin

temp0 = array_b1_w1[index_f];
byte0 = ({9{byte_sel_f[0]}} & data_in_f[8:0]) | ({9{~byte_sel_f[0]}} & temp0[8:0]);
byte1 = ({9{byte_sel_f[1]}} & data_in_f[17:9]) | ({9{~byte_sel_f[l]}} & temp0[17:9]);
byte2 = ({9{byte_sel_f[2]}} & data_in_f[26:18]) | ({9{~byte_sel_f[2]}} & temp0[26:18]);
byte3 = ({9{byte_sel_f[3]}} & data_in_f[35:27]) | ({9{~byte_sel_f[3]}} & temp0[35:27]);
byte4 = ({9{byte_sel_f[4]}} & data_in_f[44:36]) | ({9{~byte_sel_f[4]}} & temp0[44:36]);
byte5 = ({9{byte_sel_f[5]}} & data_in_f[53:45]) | ({9{~byte_sel_f[5]}} & temp0[53:45]);
byte6 = ({9{byte_sel_f[6]}} & data_in_f[62:54]) | ({9{~byte_sel_f[6]}} & temp0[62:54]);
byte7 = ({9{byte_sel_f[7]}} & data_in_f[71:63]) | ({9{~byte_sel_f[7]}} & temp0[71:63]);
array_b1_w1 [index_f] = {byte7, byte7, byte5, byte4, byte3, byte2, byte1, byte0};

end
if(way_sel_f == 4’b0100) // Update Way2 of Bank1

begin
temp0 = array_b1_w2[index_f];
byte0 = ({9{byte_sel_f[0]}} & data_in_f[8:0]) | ({9{~byte_sel_f[0]}} & temp0[8:0]);
byte1 = ({9{byte_sel_f[1]}} & data_in_f[17:9]) | ({9{~byte_sel_f[1]}} & temp0[17:9]);
byte2 = ({9{byte_sel_f[2]}} & data_in_f[26:18]) | ({9{~byte_sel_f[2]}} & temp0[26:18]);
byte3 = ({9{byte_sel_f[3]}} & data_in_f[35:27]) | ({9{~byte_sel_f[3]}} & temp0[35:27]);
byte4 = ({9{byte_sel_f[4]}} & data_in_f[44:36]) | ({9{~byte_sel_f[4]}} & temp0[44:36]);
byte5 = ({9{byte_sel_f[5]}} & data_in_f[53:45]) | ({9{~byte_sel_f[5]}} & temp0[53:45]);
byte6 = ({9{byte_sel_f[6]}} & data_in_f[62:54]) | ({9{~byte_sel_f[6]}} & temp0[62:54]);
byte7 = ({9{byte_sel_f[7]}} & data_in_f[71:63]) | ({9{~byte_sel_f[7]}} & temp0[71:63]);
array_b1_w2[index_f] = {byte7, byte7, byte5, byte4, byte3, byte2, byte1, byte0};

end
if(way_sel_f = = 4’b1000) // Update Way3 of Bank1

begin
temp0 = array _b1_w3[index_f);
byte0 = ({9{byte_sel_f[0]}} & data_in_f[8:0]) | ({9{~byte_sel_f[0]}} & temp0[8:0]);
byte1 = ({9{byte_sel_f[1]}} & data_in_f[17:9]) | ({9{~byte_sel_f[1]}} & temp0[17:9]);
byte2 = ({9{byte_sel_f[2]}} & data_in_f[26:18]) | ({9{~byte_sel_f[2]}} & temp0[26:18]);
byte3 = ({9{byte_sel_f[3]}} & data_in_f[35:27]) | ({9{~byte_sel_f[3]}} & temp0[35:27]);
byte4 = ({9{byte_sel_f[4]}} & data_in_f[44:36]) | ({9{~byte_sel_f[4]}} & temp0[44:36]);
byte5 = ({9{byte_sel_f[5]}} & data_in_f[53:45]) | ({9{~byte_se1_f[5]}} & temp0[53:45]);
byte6 = ({9{byte_sel_f[6]}} & data_in_f[62:54]) | ({9{~byte_sel_f[6]}} & temp0[62:54]);
byte7 = ({9{byte_sel_f[7]}} & data_in_f[71:63]) | ({9{~byte_sel_f[7]}} & temp0[71:63]);
array_b1_w3[index_f] = {byte7, byte7, byte5, byte4, byte3, byte2, byte1, byte0};

end

//// Cache Read Operation ////
always @(read_f or indcx_f)

#1
if(read_f)

begin
temp0_b0_w0 = array_b0_w0[index_f];
temp0_b0_w1 = array_b0_w1[index_f];
temp0_b0_w2 = array_b0_w2[index_f];

232 CPU Design: Answers to Frequently Asked Questions

Table 89: Memory Models

temp0_b0_w3 = array_b0_w3[index_f];
temp0_b1_w0 = array_b1_w0[index_f];
temp0_bl_wl = array_b1_w1[index_f];
temp0_b1_w2 = array_b1_w2[index_f];
temp0_bl_w3 = array_b1_w3[index_f];

end
else

begin
temp0_b0_w0 = 72’hffffffffffffffffff;
temp0_b0_w1 = 72’hffffffffffffffffff;
temp0_b0_w2 = 72’hffffffffffffffffff;
temp0_b0_w3 = 72’hffffffffffffffffff;
temp0_b1_w0 = 72’hffffffffffffffffff;
temp0_b1_wl = 72’hffffffffffffffffff;
temp0_b1_w2 = 72’hffffffffffffffffff;
temp0_b1_w3 = 72’hffffffffffffffffff;

end

//// Data Select for Bank0 ////
always @(way_sel_f or temp0_b0_w0 or temp0_b0_w1 or temp0_b0_w2 or temp0_b0_w3)

#2
case(way_sel_f)
4’b0001: data_b0 = temp0_b0_w0;
4’b0010: data_b0 = temp0_b0_w1;
4’b0100: data_b0 = temp0_b0_w2;
4’b0100: data_b0 = temp0_b0_w3;
default: data_b0 = 72’hxxxxxxxxxxxxxxxxxx;

endcase
//// Data Select for Bank1 ////

always @(way_sel_f or temp0_b1_w0 or temp0_b1_w1 or temp0_b1_w2 or temp0_b1_w3)
#2
case(way_sel_f)

4’b0001: data_b1 = temp0_b1_w0;
4’b0010: data_b1 = temp0_b1_w1;
4’b0100: data_b1 = temp0_b1_w2;
4’bl000: data_b1 = temp0_bl_w3;
default: data_b1 = 72’hxxxxxxxxxxxxxxxxxx;

endcase

//// Flop 72-bit Data from Bank0 and Bank1 ////
always @(posedge clock)

begin
data_b0_f <= data_b0;
data_b1_f <= data_b1;

end

//// Final Data Select ////
always @(bank_sel_ff or data_b0_f or data_b1_f)

#1
data_out = bank_sel_ff ? data_b1 _f : data_b0_f;

endmodule

Verilog 233

Table 89: Memory Models

Register File(6 Read Port, 3 Write Port) -

Figure 164: 6 Read, 3 Write Port Register File

‘timescale 1ps/1ps
module 6R_3W_RF(read, write0, write1, write2, raddr0, raddr1, raddr2, raddr3, raddr4, raddr5,
waddr0, waddr1, waddr2, rdata0, rdata1, rdata2, rdata3, rdata4, rdata5, wdata0, wdata1, wdata2,
clock);
input read, write0, write1, write2, clock;
input [4:0] raddr0, raddr1, raddr2, raddr3, raddr4, raddr5;
input [4:0] waddr0, waddr1, waddr2;
input [63:0] wdata0, wdata1, wdata2;
output[63:0] rdata0, rdata1, rdata2, rdata3, rdata4, rdata5;

reg read_f, write0_f, write l_f, write2_f;
reg [4:0] raddr0_f, raddr1_f, raddr2_f, raddr3_f, raddr4_f, raddr5_f;
reg [4:0] waddr0_f, waddr0_f, waddr0_f;
reg [63:0] wdata0_f, wdata1_f, wdata2_f;
reg [63:0] rdata0, rdata1, rdata2, rdata3, rdata4, rdata5;

reg [63:0] mem[0:31];

parameter period = 500;

234 CPU Design: Answers to Frequently Asked Questions

Table 89: Memory Models

//// Clock Generation ////
initial
begin

clock = 0;
forever #(period/2) clock = ~clock;

end

//// Flop Incoming Control and Data Signals ////
always@(posedge clock)

begin
read_f <= read;
write0_f <= write0;
write1_ f <= write1;
write2_f <= write2;
raddr0_f <= raddr0;
raddr1_f <= raddr1;
raddr2_f <= raddr2;
raddr3_f <= raddr3;
raddr4_f <= raddr4;
raddr5_f <= raddr5;
waddr0_f <= waddr0;
waddr1_f <= waddr1;
waddr2_f <= waddr2;
wdata0_f <= wdata0;
wdata1_f <= wdata1;
wdata2_f <= wdata2;

end

//// Write Operation ////
always @(write0_f or write1_ f or write2_f or waddr0_ f or waddr1_f or waddr2_f or wdata0_f or

wdata1_f or wdata2_f)
#1
begin

if(write0_f) mem[waddr0_f] = wdata0_f;
if(write1_f) mem[waddr1_f] = wdata1_f;
if(write2_f) mem[waddr2_f] = wdata2_f;

end

//// Read Operation ////
always @(negedge clock)

if(read_f)
data0 = mem[raddr0_f];
data 1 = mem[raddr1_ f];
data2 = mem[raddr2_f];
data3 = mem[raddr3_f];
data4 = mem[raddr4_f];
data5 = mem[raddr5_f];

else
data0 = 64’hffffffffffffffff;
data1 = 64’hffffffffffffffff;
data2 = 64’hffffffffffffffff;
data3 = 64’hffffffffffffffff;
data4 = 64’hffffffffffffffff;
data5 = 64’hffffffffffffffff;

//// Forward Read Data ////
always @(posedge clock)

begin
rdata0 <= data0;
rdata1 <= data1;
rdata2 <= data2;
rdata3 <= data3;
rdata4 <= data4;
rdata5 <= data5;

end
endmodule

Verilog 235

Table 89: Memory Models

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

