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Preface

The papers in this collection focus on the study of Leibniz’s mathematical and phil-
osophical thought and the interrelations between the two. They take advantage of 
the fact that we are today in the privileged position of being able to take a fresh look 
at material which has long been available in conjunction with those letters and pa-
pers recently published thanks to the remarkable efforts of the editors of the Acad-
emy Edition. With the benefit of a considerably extended textual basis, compared 
even to twenty years ago, we seek to examine Leibniz’s mathematical practice with 
philosophical eyes exploring his goals and the underlying values and ideas that 
guided so many of his investigations.

The present volume traces its origin to a memorable workshop on the interre-
lationships between mathematics and philosophy in G. W. Leibniz which was or-
ganized by Mic Detlefsen and David Rabouin, and which took place at Université 
Paris Diderot (Laboratoire SPHERE, CNRS, UMR 7219) and at the École Normale 
Supérieure in Paris, 8–10 March 2010. The workshop was conceived within the 
framework of the “Ideals of proof” project under the direction of Detlefsen and 
funded by the Agence Nationale de la Recherche. Besides providing the ideal set-
ting for discussion, that event revealed a common sentiment amongst all participants 
that a more in-depth study of the interrelations between these two fundamental as-
pects in Leibniz’s thought was not only highly desirable, but also most timely on 
account of growing interest in the philosophy and history of mathematical practice.

Initial plans for this volume were drawn up immediately after the workshop by 
Norma Goethe during long hours of lively discussions over coffee and with three 
other participants, Richard Arthur, Philip Beeley, and David Rabouin, in the won-
derful old Café Gay Lussac at the corner of Rue d’Ulm and Rue Claude Bernard. In 
fact, Norma Goethe, a fellow at the Lichtenberg-Kolleg (University of Göttingen) 
for the academic year 2009–2010, came from Göttingen with the undisclosed aim of 
persuading Philip and David of the timeliness of the project and invited them to join 
the editorial team. She should like to thank the Lichtenberg-Kolleg (University of 
Göttingen) and the German Research Foundation (DFG) for providing support for 
her participation in the workshop and the ongoing work towards the present volume 
which took her to Oxford and Nancy for exchanges with Philip and David. All of the 
editors should like to express their sincere gratitude to Jed Buchwald, editor of the 
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Archimedes series, for his interest in the project and also to Lucy Fleet and Mireille 
van Kan for their patience in the face of considerable delays in submission.

Some of the essays commissioned for this volume have grown out of papers 
presented in Paris, while others have been conceived and written since that time 
specifically for publication in this volume. All contributions have in no small mea-
sure benefitted from those three days of intense intellectual exchange and debate 
first in the Rue d’Ulm and then on the banks of the Seine in the Rue Thomas Mann.

The editors should like to thank all the participants of the workshop for the in-
sights on Leibniz’s mathematics which they shared and for the fruitful exchanges 
that were thereby made possible. Their thanks go especially to Mic Detlefsen who 
understood the significance of organizing such a scholarly gathering at that time 
and for the intellectually stimulating way in which he conducted the workshop. Par-
ticularly remembered is how his enthusiasm engendered lively interaction between 
all participants and how discussion continued through coffee breaks and well into 
the evenings.

In addition to thanking the authors who contributed to this volume, the editors 
should also like to thank all of the invited referees for the way in which they brought 
to bear their dedication to high scholarly standards. Besides those listed, we should 
also like to thank Marco Panza for the sound academic advice he gave. Special 
thanks go to Siegmund Probst for his unlimited generosity in providing all kinds of 
assistance to our book project. Finally, we should like to express our gratitude to 
Kirsti Andersen and Henk Bos for insightful exchanges and comments, wonderful 
conversations, and a most enjoyable time spent on the Rive Gauche after the confer-
ence was over.

Norma B. Goethe
Philip Beeley

David Rabouin
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The Interrelations Between Mathematics  
and Philosophy in Leibniz’s Thought

Norma B. Goethe, Philip Beeley and David Rabouin

© Springer Netherlands 2015
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1  A Mixture of Philosophical and Mathematical 
Reflections and Deliberations

The aim of this collection is to explore the ways in which mathematics and phi-
losophy (metaphysics and broader philosophical questions) are interrelated in the 
letters and papers of Gottfried Wilhelm Leibniz. Taking up one of his most notable 
expressions, the essays collected in this volume are all in some way concerned with 
“a curious mixture of philosophical and mathematical thought” which characterizes 
Leibniz’s reflections and deliberations.1 One of our principal aims in editing the 
present volume is to address the interrelations between mathematics and philosophy 
as far as possible without drawing on grand reconstructions which in the past all 
too often were based on insufficient evidence or what scholars conceived of as ad 
hoc programmatic stances, a typical example being Leibniz’s so easily misunder-
stood pronouncement: “My metaphysics is all mathematics, so to speak, or could 

1 In an exchange with Basnage de Bauval, Leibniz revealed his intention to publish his correspon-
dance with Arnauld and advanced what was to be expected from the content of his letters in these 
terms: “Il y aura un melange curieux de pensées philosophiques et Mathematiques qui auront 
peut-estre quelque fois la grace de la nouveauté”; Leibniz to Basnage de Bauval, 3/13 January 
1696 (A II, 3, 121).

Les Mathematiciens ont autant besoin d’estre philosophes, 
que les philosophes d’estre Mathematiciens.

Leibniz to Malebranche, 13/23 March 1699 (A II, 3, 539)



4

become so”.2 The difficulties presented by such reconstructions were already ap-
parent when they emerged at the beginning of the last Century, during the second 
“Leibniz Renaissance” (the first having occurred in the eighteenth Century). Com-
mentators such as Léon Brunschvicg followed an approach already adopted by the 
neo-Kantian philosopher Cassirer. Searching to defend him from attacks by Rus-
sell and Couturat3, Brunschvicg criticized those who tended to confuse Leibniz’s 
merely programmatic pronouncements with the position or rather positions which 
he actually maintained, which Brunschvicg termed his “real logic”:

We do not have the right to claim that Leibniz’s philosophy is, properly stated, unambigu-
ously and without ulterior motive, a panlogism. It would necessitate, in effect, that the rela-
tion of the predicate to the subject be achieved. In fact, the principles of ‘the real logic, or a 
certain general analysis independent of algebra’, as Leibniz put it in a letter to Malebranche, 
bring us back from traditional logic to differential calculus. The alternative expressed here 
was not completely satisfying for Leibniz in respect of his philosophical ambitions: for him, 
just as in the case of geometry for Descartes, differential calculus was only the most con-
vincing ‘sample’ of his method, and he never gave up the project of a system of universal 
logic, in which the new mathematics would enter as a particular case. This is beyond doubt, 
but it only concerns, once more, the dream of what leibnizianism should be according to 
Leibniz—a dream condemned to be lost in the clouds of a tireless imagination and that for 
two centuries were believed to be without fruit.4

But despite such criticism, Brunschvicg himself (as a reflection of his time) of-
fered his own reconstruction. He was convinced that it was possible to start from a 
coherent set of theses thus setting the ground for what he conceived of as Leibniz’s 
“mathematical philosophy”, while accepting that tensions and even inconsistencies 
might possibly remain. As a matter of fact, the use of such reading strategies was 
not uncommon until fairly recently amongst scholars seeking to elucidate from a va-
riety of intellectual perspectives the way in which mathematics and philosophy are 
interrelated in Leibniz’s thought.5 To a certain extent, the assumptions underlying 

2 Leibniz to L’Hospital, 27 December 1694 (A III, 6, 253): “Ma metaphysique est toute Mathema-
tique pour dire ainsi, ou la pourroit devenir”.
3 See Russell (1903).
4 Brunschvicg (1912, 204). Unless otherwise stated, all the translations are ours.
5 Concerning Leibniz scholarship in the twentieth Century, see Albert Heinekamp (1989) who 
distinguished three main lines of study: first, the view that focuses on the ideal of system (“à la 
recherche du vrai système leibnizien”); second, the defense of the “structuralist” reading (“les 
interprétations structuralistes”); third, the view that denies any systematic structure in Leibniz’s 
philosophy (“refus du caractère systématique de la philosophie leibnizienne”) which, according to 
Heinekamp, begins to be present only in the 80’s. The first line of reading may be regarded as the 
most widely represented amongst scholars interested in studying Leibniz from the perspective of 
the interrelations between mathematics and philosophy. Amongst French scholars, Serres (1968) 
and Belaval (1960) may be mentioned as cases where the indirect impact of mid-twentieth Century 
foundational philosophy of mathematics and logic can be detected. One could also mention the 
work of G.-G. Granger (1981), who emphasizes the epistemic value of Leibniz’s guiding ideas at 
the basis of his mathematical contributions (vis-à-vis the work of other great seventeenth Century 
contributions to mathematical analysis) but also sees Leibniz’ mathematical work as a possible 
anticipation of modern non-standard analysis. For a contextual study of the development of formal 
logic in the late nineteenth and early twentieth Century and the exact role played by Leibniz’s 

N. B. Goethe et al.
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such reconstructions often prevented the study of the interrelations between mathe-
matics and philosophy in their own right.

A further difficulty with such approaches to the study of Leibniz’s thought was 
that it motivated scholars to make sometimes arbitrary choices in his mathemati-
cal and philosophical writings without any consideration of the time and material 
context of production. This tendency comes to light paradigmatically in the selec-
tion of unpublished material practiced by past editors. As a matter of fact, it was 
precisely there where the problem started. As Couturat already noted, previous edi-
tors selected from the Leibniz’s Nachlass the most relevant pieces to be published 
according to their specific intellectual interest; but unavoidably, similar objections 
could be made against the editor of Opuscules et fragment inédits.6 While B. Rus-
sell’s attempt at systematic reconstruction flatly ignored Leibniz’s mathematical 
contributions, it is noteworthy that Cassirer and Brunschvicg, as reflected in the 
passage quoted above, mainly focused on the elaboration of the differential calculus 
taking it to be essential to understanding the interrelations between mathematics, 
physics, and metaphysics.7 On the other hand, Couturat was originally motivated 
by G. Peano’s references to Leibniz “logical insights” and anticipations to search 
amongst his unpublished notes for Leibniz’s many experiments with “formal cal-
culi” and other programmatic sketches related to his goal to design new working 
tools—which Leibniz called “characteristics”—as well as any material deemed 
relevant to the vision of a universal grammar, and universal mathematics with logic 
as the sustaining link.8

As noted, such lines of research by proceeding selectively led not only to the in-
troduction of arbitrary divisions in Leibniz’s writings, often ignoring chronological 
order, but sometimes even entailed opposing readings of one and the same section 
of his works. For instance, the very same texts on analysis situs could be interpreted 
either along the lines of conceptual analysis (by commentators such as Cassirer) or 
along the lines of formal calculus and logical theory of relations (by commentators 
such as Couturat).

A last difficulty presented by this time-honored approach was its pretention to 
propose a picture of Leibniz’s philosophy as a whole. As Dietrich Mahnke empha-
sized already in the early 1920s, it left readers with the unfortunate impression of 
facing a choice between different ‘paintings’ of Leibniz, depending on whether or 
not mathematics was involved in the drawn portrait. Typical examples were, on the 
one hand, the project to which Mahnke gave the name “universal mathematics”, 

work as a possible anticipation of modern approaches in logic and mathematics, see Peckhaus 
(1997). Despite revealing historical studies, the ‘logicist’ trend is still represented explicitly in re-
cent times, for instance, by Sasaki (2004, 405), who goes so far as to speak of “Leibniz’s ‘logicist-
formalist’ philosophy of mathematics”.
6 Couturat (1903), Preface.
7 See Russell’s Preface to the second edition of his book on Leibniz, Russell (1937): in composing 
his original book, Russell conceded that he ignored all material relevant to Leibniz’s mathematical 
studies and contributions, but still insisted that his “interpretation of Leibniz’s philosophy is still 
the same” as in 1900.
8 See Couturat (1903), Preface, and Peckhaus (1997).
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as dealt with in various forms by Couturat, Cassirer, and Brunschvicg and, on the 
other hand, the so-called “metaphysics of individuation” which he identified with 
commentators such as Kabitz, Sickel, and Baruzi.9 Interestingly enough, Couturat10 
himself warned against philosophers as well as mathematicians who ignored Leib-
niz’s recommendations that “mathematicians have just as much need to be philoso-
phers as philosophers to be mathematicians”.11

Once again, the elements at the basis of all these interpretations are to be found 
in Leibniz’s writings, as well as in his rich and extensive correspondence.

The present collection of essays aims to elucidate how these different aspects in 
Leibniz’s thought relate to each other, evolving over time as his thinking unfolds. 
With this aim in mind, the papers in this volume take advantage of two fortunate 
circumstances. First, we are today in the privileged position of being able to take a 
fresh look at material which has long been available in conjunction with those let-
ters and papers most recently published by the Academy edition. With the benefit of 
a considerable extended textual basis we propose to look at Leibniz’s mathematical 
practice while at the same time exploring his goals and the underlying values and 
ideas that guided his problem-solving activities. For example, we examine his notes 
and interactions with others in the process of studying mathematics in Paris under 
the guidance of Huygens, but we are also interested in exploring how his mathemat-
ical experience evolved, transforming his earlier philosophical views. For Leibniz, 
thinking unfolds and takes place in time, a fact which is beautifully reflected in his 
writings. The second fortunate circumstance that motivates scholarly research on 
the interrelations between mathematics and philosophy in Leibniz’s thought relates 
to today’s growing interest in broadening the perspective of philosophy of math-
ematics, so that it engages historical case-studies. The new focus on the history of 
mathematical practice emphasizes precisely how such practice is intertwined with 
philosophical ideas. The notion of a specific area of study called “philosophy of 
mathematics” began to develop only in the early twentieth Century as an enterprise 
whose main concern was to deal with growing worries about foundational issues in 
mathematics. This logicist project left no room for historical case studies and the 
institutional contextualization of mathematical practice. Instead, it focused on de-
ductive rigor, the elaboration of predicate logic, and the axiomatic method. Leaving 
behind such stringent formal concerns, the field has been opening up to include the 

9 However, even Mahnke tried to rescue the idea of system by proposing a view which was con-
ceived as a synthesis of both leading interpretations at his time in his book Leibnizens Synthese von 
Universalmathematik und Individualmetaphysik (Mahnke 1925).
10 See Couturat (1901, vii): “Les philosophes, séduits à bon droit par sa métaphysique, n’ont ac-
cordé que peu d’attention à ses doctrines purement logiques, et n’ont guère étudié son projet d’une 
Caractéristique universelle, sans doute à cause de la forme mathématique qu’il revêtait. D’autre 
part, les mathématiciens ont surtout vu dans Leibniz l’inventeur du Calcul différentiel et intégral, 
et ne se sont pas occupés de ses théories générales sur la valeur et la portée de la méthode mathé-
matique, ni de ses essais d’application de l’Algèbre à la Logique, qu’ils considéraient dédaigneu-
sement comme de la métaphysique. Il en est résulté que ni les uns ni les autres n’ont pleinement 
compris les principes du système, et n´ont pu remonter jusqu´à la source d´où découlent à la fois 
le Calcul infinitésimal et la Monadologie”.
11 Leibniz to Nicolas Malebranche, 13/23 March 1699 (A II, 3, 539): “Les Mathematiciens ont 
autant besoin d’estre philosophes, que les philosophes d´estre Mathematiciens”.
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study of the work of the research mathematician, and how that work interacts with 
philosophical ideas and other cultural ingredients in broader historical context. This 
is the most welcome setting to return to the study of Leibniz, the research mathe-
matician, who insisted upon the need to think philosophically while immersed in 
mathematical practice.

2  Encountering Mathematics in Paris

Although Leibniz had good political reasons for travelling to Paris in March 1672, 
it was the intellectual culture and above all the presence of some of the then greatest 
mathematical minds in Europe which persuaded him to prolong his stay, interrupted 
by a short visit to London, until October 1676.12 In a letter written some two years 
after he had returned to Germany in order to take up his position as court counsellor 
and librarian in Hanover, he talks of devoting himself with an “almost limitless pas-
sion” to mathematics during those four heady years in the French capital.13

Leibniz’s initiation to mathematics is of course associated primarily with Chris-
tiaan Huygens. On numerous occasions in later life he expresses his considerable 
intellectual debt to the Dutch savant.14 However, it was some time after Leibniz’s 
arrival in Paris before the two men actually met. Until late summer 1672, Leibniz 
was preoccupied with official tasks which his patron Johann Christian von Boine-
burg had assigned to him: the Egyptian plan, which Leibniz had himself devised in 
order to divert Louis XIV’s military ambitions away from Europe, and the recovery 
of Boineburg’s French rent and pension. Nonetheless, by September Leibniz had 
been introduced to Antoine Arnauld and Pierre de Carcavi, and soon thereafter there 
were encounters with the astronomers Giovanni Cassini and Ole Rømer.15 This was 
the challenging intellectual environment he had long desired:

Paris is a place where it is difficult to distinguish oneself: one finds the most capable men 
of the time in every kind of scientific endeavour and much effort and a little robustness is 
necessary in order to establish one’s reputation.16

12 Leibniz to Duke Johann Friedrich, autumn 1679 (A II, 1 (2006), 761); Leibniz to Fabri, begin-
ning of 1677(A II, 1 (2006), 442); Leibniz to Conring, 24 August 1677 (A II, 1 (2006), 563).
13 Leibniz to the Pfalzgräfin Elisabeth, November 1678 (A II, 1 (2006), 66).
14 See for example Leibniz, De solutionibus problematic catenarii vel funicularis in Actis Junii A. 
1691. aliisque a Dn. I. B. propositis (GM V, 255); Historia et origo calculi differentialis (GM V, 
398); Leibniz to Huygens, first half of October 1690 (A III, 4, 598); Leibniz to Remond, 10 Janu-
ary 1714 (GP III, 606): “Il est vray que je n’entray dans les plus profondes [sc. mathematiques] 
qu’apres avois conversé avec M. Hugens à Paris”.
15 See Antognazza (2009, 140–141).
16 Leibniz to Duke Johann Friedrich, 21 January 1675 (A I, 1, 491−492): “Paris est un lieu, ou il 
est difficile de se distinguer: on y trouve les plus habiles hommes du temps, en toutes sortes des 
sciences, et il faut beaucoup de travail, et un peu de solidité, pour y establir sa reputation”. See 
also Leibniz to Gallois, first half of December 1677 (A III, 2, 293−294); Leibniz to Bignon, 9/19 
October 1693 (A I, 10, 590) .



8 N. B. Goethe et al.

It was not until the autumn that Leibniz was able to meet with Huygens for the first 
time. For the Dutch savant, effectively entrusted by Colbert with the planning and 
organization of the Académie Royale des Sciences, this was not a meeting with an 
absolute stranger. Leibniz was already becoming known in the Republic of Letters 
as a man of prodigious learning, who besides possessing exceptional knowledge in 
law and philosophy was “mathematically very inclined, and well versed in phys-
ics, medicine, and mechanics”.17 But, more specifically, Huygens’s attention had 
been drawn to the promising young man from Germany almost a year and a half 
before they actually met. The Bremen-born secretary of the Royal Society, Henry 
Oldenburg, eager to promote the growth of the new science in Germany, had spo-
ken enthusiastically of Leibniz in his letters. In his most recent communication, he 
referred to Leibniz’s two tracts on motion, the Hypothesis physica nova and the 
Theoria motus abstracti, both of which with his help had been reprinted in London 
under the auspices of the Royal Society in 1671. Oldenburg’s description of Leibniz 
was clearly intended to serve as an introduction:

He seems of no ordinary intelligence, but is one who has examined minutely what great 
men, both ancient and modern, have had to say about Nature, and finding that plenty of dif-
ficulties remain, has set to work to resolve them. I cannot tell you how far he has succeeded, 
but I dare affirm that his ideas deserve consideration.18

Knowing full well that Leibniz had first been motivated to write on the theory of 
motion after he had read the laws of motion published in the Philosophical Transac-
tions by John Wallis, Christopher Wren, and Huygens himself, Oldenburg proceed-
ed to quote a passage from Leibniz questioning the conformity of the laws presented 
by Huygens and Wren to the abstract concepts of motion.

3  The Mathematical Novice

It is important to recognize that the young man initiated in mathematics in the au-
tumn of 1672 was, as Oldenburg emphasized, steeped in both ancient and mod-
ern philosophy, while having a sound knowledge of jurisprudence and Protestant 
and Catholic theology. By contrast, as far as mathematics was concerned, Leibniz 
brought with him little more than what he had been able to glean from introductory 

17 Boineburg to Conring, 22 April 1670, Gruber (1745, II, 1286−1287): “Leibnizio literae tuae 
maximo sunt solatio. Est iuvenis 24 annorum, Lipsiensis, Juris Doctor: imo doctus supra quam vel 
dici potest, vel credi, Philosophiam omnem percallet, veteris et novae felix ratiocinator. Scribendi 
facultate apprime armatus. Mathematicus, rei naturalis, medicinae, mechanicae omnis sciens et 
percupidus; assiduus et ardens”.
18 Oldenburg to Huygens, 28 March 1671, Hall and Hall (1965−1986, VII, 537−538/538−539): “Il 
ne semble pas un Esprit du commun, mais qui ait esplusché ce que les grands hommes, anciens 
et modernes ont commenté sur la Nature, et trouvant bien de difficultez qui restent, travaillé d’y 
satisfaire. Je ne vous scaurois pas dire comment il y ait reussi; j’oseray pourtant affirmer que ses 
pensees meritent d’estre considerées.” See also Oldenburg to Huygens, 8 November 1670, Hall 
and Hall (1965−1986, VII, 239−240/241−242).
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textbooks of Harsdörffer or Cardano and from the mathematical exploits of Thomas 
Hobbes—an author he had read avidly while he was in Mainz. Although he de-
scribed the two tracts on motion of his youth on one occasion to Nicolas Male-
branche as “the beginnings of his mathematical studies”19, he would later gener-
ally dismiss them precisely because of their lack of sophistication in exact science. 
When he arrived in Paris, Leibniz was to all intents and purposes a mathematical 
novice.

The desire to do justice to the favourable opinion which people had of me led me by good 
fortune to find new ways of analysis and to make discoveries in mathematics, although I 
had scarcely thought about this science before I came to France, for philosophy and juris-
prudence had previously been the object of my studies from which I produced a number 
of essays.20

It is probable that the first meeting between Huygens and Leibniz took place in 
the Dutch savant’s rooms in the Royal Library in Paris. During the course of their 
exchange, Leibniz mentioned with the remarkable boldness typical of his youth that 
he had discovered a method for summing infinite series. This method was the fruit 
of investigations into the Euclidean axiom “The whole is greater than its part”, to 
which his attention had been drawn in Mainz, after reading the first part of Hobbes’s 
De corpore.21 In Chap. 8, Hobbes argues that Totum esse maius parte, like all geo-
metrical axioms, must be demonstrable.22 Already then during his service at the 
court of Johann Philipp von Schönborn, Leibniz had considered Totum esse maius 
parte to be reducible to the only two types of unproved truths which he considered 
admissible, namely definitions and identities. By the time he met Huygens he had 
not only succeeded in producing a syllogistic proof that every part of a given mag-
nitude is smaller than the whole, but also, using the principle of identity, he had 
developed his main theorem that the summation of consecutive terms of a series of 
differences could be carried out over an infinite number of terms—assuming only 
that the expected total sum approaches a finite limit.

19 Leibniz to Malebranche, end of January 1693 (A II, 2, 659): “Au commencement de mes etudes 
mathematiques je me fis une theorie du movement absolu, où supposant qu’il n’y avoit rien dans 
le corps que l’étendüe et l’impenetrabilité, je fis des regles du mouvement absolu que je croyois 
veritables, et j’esperois de les pouvoir concilier avec les phenomenes par le moyen du systeme 
des choses.”
20 Leibniz to Pellisson-Fontanier, 7 May 1691 (A I, 6, 195−196): “L’envie de me rendre digne 
de l’opinion favorable qu’on avoit de eue de moy, m’avoit fait faire quelques decouvertes dans 
les Mathematiques, quoyque je n’eusse gueres songé à cette science, avant que j’estois venu en 
France, la philosophie et la jurisprudence ayant esté auparavant l’objet de mes études dont j’avois 
donné quelques essais.” See also Leibniz to Duke Johann Friedrich, 29 March 1679 (A I, 2, 155); 
Leibniz to Duke Ernst August, early 1680? (A I, 3, 32); Leibniz to Foucher, 1675 (A II, 1 (2006), 
389); De numeris characteristicis ad linguam universalem constituendam (A VI, 4, 266).
21 See Leibniz, Historia et origo calculi differentialis (GM V, 395).
22 I, 8, § 25; Hobbes (1651, 72).
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4  Early Successes in Paris

After listening to Leibniz’s youthful deliberations, Huygens decided to put him to 
the test and asked him to determine the sum of the infinite series of reciprocal tri-
angular numbers.23

The result of this summation was already known to him, but he had not yet put this 
into print. Huygens also suggested that Leibniz consult two books which he had 
previously cited, but had not read: Wallis’s Arithmetica infinitorum and the Opus 
geometricum of Grégoire de Saint-Vincent.

Developing a principle found in the Opus Geometricum, that the line segments 
representing terms of the geometrical progression must be considered to start from 
the same place, Leibniz recognized that the differences of consecutive terms are 
proportional to the original series.
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From here can be read off

Or, more generally

Decisively, Leibniz was able to show how conceptually a general method could 
be applied. Thus, by taking AB = 1, AC = 1/2, AD = 1/3, AE = 1/4, he achieved the 
relation

and then, multiplying by 2, produced the result which Huygens had sought, namely

23 See Hofmann (1974, 15).

1/1 1/3 1/6 1/10 etc .+ + + +

2/3 2/9 2/27 1+ + +…=

2 31/t 1/t 1/t 1/(t 1)+ + +…= −

1/1.2 1/2.3 1/3.4 1/4.5 1+ + + + …=

1/1 1/3 1/6 1/10 2+ + + +…=



11The Interrelations Between Mathematics and Philosophy in Leibniz’s Thought

Writing to Oldenburg on 16/26 April 1673, Leibniz does not seek to hide his joy at 
this early success:

But by my method I find the sum of the whole series continued to infinity, 1/3, 1/6, 1/10, 
1/15, 1/21, 1/28 etc.; indeed, I do not believe this to have been laid before the public previ-
ously for the reason that the very noble Huygens first proposed this problem to me, with 
respect to triangular numbers, and I solved it generally for numbers of all kinds much to the 
surprise of Huygens himself.24

Nor did Leibniz stop here, but also succeeded in obtaining the sum of the reciprocals 
of pyramidal numbers as well as the sum of reciprocal trigono-trigonal numbers.

The exuberance which Leibniz felt at achieving such early success—and being able 
to impress Huygens at the same time—can be gauged from the language he em-
ployed in what he evidently hoped would be his first mathematical publication, 
having already seen two letters to Oldenburg on his theory of motion published in 
the Philosophical Transactions. Most articles which appeared in the new scientific 
journals of the second half of the seventeenth century took the form of letters to the 
editor. It was therefore perfectly natural for Leibniz to set out some of his newly 
achieved mathematical results in a long letter to Jean Gallois, editor of the Journal 
des Sçavans and secretary of the Académie Royale des Sciences.25 Unfortunately 
for Leibniz, and no doubt unbeknown to him at the time, the French journal tempo-
rarily ceased publication on 12 December 1672, that is to say, around the time his 
letter was sent. By the time publication was resumed on 1 January 1674, Leibniz’s 
contribution would have been considered out of date, not least in view of the au-
thor’s mathematical development during the intervening twelve months.

5  Mathematical and Philosophical Deliberations  
on Infinity

The Accessio ad arithmeticam infinitorum, as the letter to Gallois was entitled, pro-
vides evidence of the remarkable growth in Leibniz’s understanding of the nature 
of concept of infinity compared to the views he had set out little over a year earlier 
in his Theoria motus abstracti. Whereas there he had approached the continuum 
ontologically, seeking to reconcile infinite divisibility with the actual existence of 
parts by postulating points in such a way that they could be conceived as constitu-
tive entities, he now appeals to the argumentative force provided by genuine mathe-

24 Leibniz to Oldenburg, 26 April 1673 (A III, 1, 83−89, 88): “At ego totius seriei in infinitum con-
tinuatae summam invenio methodo mea: 1/3 1/6 1/10 1/15 1/21 1/28 etc. in infinitum; quod jam 
publice propositum esse, vel ideo non credidi, quia a Nobilissimo Hugenio mihi primum proposi-
tum est hoc problema in numeris triangularibus; ego vero id non in triangularibus tantum, sed et 
pyramidalibus etc. et in universum in omnibus ejus generis numeris solvi ipso Hugenio mirante”.
25 See Bos (1978, 61).

D 1 1/5 1/15 1/35 1/70 4/3= + + + + +…=
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matical proofs, such as those he had shown to Huygens, where there is an infinite 
progression within finite limits.

He namely who is led by the senses will persuade himself that there cannot be a line of such 
shortness, that it contains not only an infinite number of points, but also an infinite number 
of lines (as an infinite number of actually separated parts) having a finite relation to what is 
given, unless demonstrations compel this.26

Part of what Leibniz sets out to achieve in the Accessio is to demonstrate that infinite 
number is impossible. Employing a strategy used in numerous other contemporary 
letters and papers, he develops his position in contrast to the position put forward by 
Galileo in the Discorsi e dimostrazioni matematiche, where infinite number, under-
stood as the number of all numbers, is compared to unity. Galileo argued that every 
number into infinity had its own square, its own cube, and so on, and that there-
fore there must be as many squares and cubes as there are roots or integers, which 
however is impossible. The Pisan mathematician famously concludes from this that 
quantitative relations such as those of equality or “greater than” or “less than” do 
not apply when it comes to the infinite. That is to say, Galileo effectively negated 
the validity of the axiom Totum esse maius parte with respect to infinite numbers.

Leibniz compared Galileo’s conclusion to Grégoire’s negation of the validity of 
the axiom in horn angles in his Opus geometricum. In both cases, Leibniz found 
that it was a mistaken concept of infinity which had led to denying the universality 
of the axiom: “that this axiom should fail is impossible, or, to say the same thing in 
other words, the axiom never fails except in the case of null or nothing”.27 Precisely 
the universal validity of the axiom leads to the conclusion that infinite number is 
impossible, “it is not one, not a whole, but nothing”. Employing an argument which 
is also found in contemporary algebraic studies, Leibniz is able to proclaim that 
not only is 0 + 0 = 0, but also 0 − 0 = 0. Consequently, an infinity which is produced 
from all units or which is the sum of all must in his view be regarded quite simply 
as nothing, about which, therefore, “nothing can be known or demonstrated, and 
which has no attributes”.28

Alongside providing evidence of the relative sophistication of Leibniz’s mathe-
matical work by the end of 1672, the Accessio provides the earliest example of the 
intimate relation between philosophy and mathematics in his thought.29 Right at the 
beginning, he asserts that the method of indivisibles is to be ranked among those 

26 Leibniz for Gallois, end of 1672 (A II, 1 (2006), 342): “Quis enim sensu duce persuaderet sibi, 
nullam dari posse lineam tantae brevitatis, quin in ea sint non tantum infinita puncta, sed et infini-
tae lineae (ac proinde partes a se invicem separatae actu infinitae) rationem habentes finitam ad 
datam; nisi demonstrationes cogerent.”
27 Ibid, 349: “at Axioma illud fallere impossibile est, seu quod idem est, Axioma illud nunquam, ac 
non nisi in Nullo seu Nihilo fallit, Ergo Numerus infinitus est impossibilis, non unum, non totum, 
sed Nihil.”
28 Leibniz, Mathematica (A VII, 1, 657): “Nam 0 + 0 = 0. Et 0–0 = 0. Infinitum ergo ex omnibus 
unitatibus conflatum, seu summa omnium esr nihil, de quo scilicet nihil potest cogitari aut demon-
strari, et nulla sunt attributa.” See also De bipartitionibus numerorum eorumque geometricis inter-
pretationibus (A VII, 1, 227).
29 See Beeley (2009).
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things capable of vindicating the incorporeality of the mind. This assertion refers 
on the one hand to the geometrical method of Cavalieri , Torricelli and Roberval 
which had since been arithmetized by Wallis and on the other hand to one of the 
philosophical doctrines of his youth, namely that the immortality of the soul could 
be guaranteed through its location in a geometrical point. Nor was this remark at the 
beginning of his Paris sojourn simply a remnant of the philosophy he had brought 
with him from Mainz. Even in the Système nouveau (1695), where Leibniz consid-
ers the nature of the communication of substances and of the union between sub-
stance and body, he sees points as providing the ontological interface between the 
various spheres, distinguishing thereby what he calls “metaphysical points” from 
those of physics and mathematics.

6  Traces of a General Ars Inveniendi

Leibniz brings philosophical incisiveness to mathematics, analyzing concepts 
which contemporary mathematicians without his philosophical bent were inclined 
to use unreflectively. “For me the mark of imperfect knowledge,” he writes to Mal-
ebranche, “is when the subject has properties of which one has not yet been able to 
provide a demonstration”.30 He cites the examples of the concept of a straight line 
employed by the geometers without having a sufficiently clear idea of what the 
concept involves, and of the notion of extension in respect of bodies, which clearly 
presupposes that there is something extended or repeated.

Conversely, Leibniz ascribed to mathematics an essential role in extending the 
limits of human knowledge in the context of his philosophical project of ars inve-
niendi. Shortly after he had left Paris for his new post in Hanover, he wrote that 
he valued mathematics solely because one could find in it “traces of a general art 
of invention”.31 Admittedly, Leibniz often described mathematics and indeed phi-
losophy in terms of means to a particular end. But his evaluation of mathematics in 
respect to discovering new truths reflected in part the relatively recent emergence of 
mathematical analysis as a discipline, complementing the traditional model of a rig-
orously deductive science with which the concept of geometrical method had long 
been identified. Put simply, mathematics could now be considered to encompass 
both analysis and synthesis according to the ancient model of scientific method.32 

30 Leibniz to Malebranche, end of January 1693 (A II, 2, 661): “La marque d’une connoissance 
imparfaite chez moy, est, quand le sujet a des proprietiés, dont on ne peut encor donner la dem-
onstration.”
31 Leibniz to the Pfalzgräfin Elisabeth?, November 1678 (A II, 1 (2006), 662): “Mais pour moy 
je ne cherissois les Mathematiques, que par ce que j’y trouvois les traces de l’art d’inventer en 
general […].” See also Leibniz to Duke Johann Friedrich, February 1679 (A II, 1 (2006), 684).
32 See Leibniz, De arte characteristica inventoriaque analytica (A VI, 4, 321): “Duobus maxime 
modis homines inventores fieri deprehendo, per Synthesin scilicet sive Combinationem et per 
analysin; utrumque autem vel facultati natura usuve comparatae, vel methodo debere.” See also 
ibid. (A VI, 4, 329).
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Moreover, these two basic paths to new knowledge would be further enhanced and 
vastly extended by the implementation of a suitable, that is to say exact system of 
symbols which would mirror not only the structure of concepts but also thought 
itself, which could thereby be effectively replaced by a symbolic calculus.

The importance of such a calculus is formulated explicitly in his remarks on 
George Dalgarno’s Ars signorum, probably written after his return to Paris follow-
ing his first visit to London in 1673. Seeking to proceed further than contempo-
rary exponents of artificial languages, he describes his universal character as being 
among “the most suitable instruments of the human mind, having namely an in-
vincible power of invention, or retention, and judgment. Then this will accomplish 
in all matters of things, which arithmetical and algebraic symbols accomplish in 
mathematics”.33

Building on his early fascination with the art of combinations, Leibniz recog-
nized that a synthetic or deductive model proceeding systematically from simple 
elements, representing the alphabet of human thought34, would not only serve as 
a suitable means of presenting existing knowledge, but also of acquiring entirely 
new knowledge. In this way, ars combinatoria could be understood properly as an 
important part of the art of invention. In his letter to Jean Gallois of December 1678, 
he writes:

I am more and more convinced of the utility and reality of this general science, and I see 
that few people have grasped its scope. But in order to make this science easier and so to 
speak sensible, I want to employ the characteristic of which I have spoken to you a number 
of times, and of which algebra and arithmetic are just samples. This characteristic consists 
in a certain writing or language, (for whoever has the one may have the other) which cor-
responds perfectly to the relations of our thoughts. This science will be quite different 
from everything which one has planned up to now. For the most important part has been 
overlooked, which is that the characters of this writing must be conducive to discovery and 
judgment as they are in algebra and arithmetic.35

Evidently, one of the by-products of Leibniz’s early work on mathematics, and par-
ticularly algebra, during his stay in Paris was to recognize the full potential for de-
riving a symbolic calculus in order to extend human knowledge. On occasion Leib-
niz describes his characteristica universalis as a “universal algebra”, with whose 
help it would in his view be just as easy to make discoveries in ethics, physics or 

33 Leibniz, Zur Ars signorum von George Dalgarno (A VI, 3, 170): “sed vera Characteristica Rea-
lis, qualis a me concipitur, inter [ap]tissima humanae Mentis instrumenta censeri deberet, [invin]
cibilem scilicet vim habitura et ad inveniendum, et ad retinendum et ad dijudicandum. Illud enim 
efficient in omni material, quod characteres Arithmetici et Algebraici in Mathematica.” See also 
Antognazza (2009, 162).
34 See Leibniz, De alphabeto cogitationum humanarum (A VI, 4, 271−272).
35 Leibniz to Gallois, 19 December 1678 (A III, 2, 570): “Je suis confirmé de plus en plus 
de l’utilité et de la realité de cette science generale, et je voy que peu de gens en ont compris 
l’étendue. Mais pour la rendre plus facile et pour ainsi dire sensible; je pretends de me servir de la 
Characteristique, dont je vous ay parlé quelques fois, et dont l’Algebre et l’Arithmetique ne sont 
que des échantillons. Cette Characteristique consiste dans une certaine ecriture ou langue, (car qui 
a l’une peut avoir l’autre) qui rapporte parfaitement les relations des nos pensées. Ce charactere 
seroit tout autre que tout ce qu’on a projetté jusqu’icy. Car on a oublié le principal qui est que les 
caracteres de cette écriture doivvent servir à l’invention et au jugement, comme dans l’algebre et 
dans l’arithmetique”.
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mechanics as it is in geometry.36 An essential part of this consideration is that the 
rigor of mathematics will also apply here, enabling us to have no less certainty 
about God and the mind than about figures and numbers. In this way, Leibniz sug-
gests, inventing machines would be no more difficult than constructing a problem 
in geometry. He expresses the full promise of universal character in this context in 
his letter to Oldenburg of 28 December 1675:

This algebra (of which we deservedly make so much) is only part of that general system. 
It is an outstanding part, in that we cannot err even if we wish to, and in that truth is as it 
were delineated for us as though with the aid of a sketching machine. But I am truly will-
ing to recognize that whatever algebra furnishes to us of this sort is the fruit of a superior 
science which I am accustomed to call either Combinatory or Characteristic, a science very 
different from either of those which might at once come to one’s mind on hearing those 
words […] I cannot here describe its nature in a few words, but I am emboldened to say that 
nothing can be imagined which is more effective for the perfection of the human mind.37

But, by reading this kind of declarations, one should also keep in mind Brunsch-
vicg’s warning and not confuse “the dream of what leibnizianism should be accord-
ing to Leibniz” with his “real logic”. Indeed the same letter to Oldenburg begins 
with an important caveat: “we seem to think of many things (though confusedly) 
which nevertheless imply contradiction”. Here again the motivation comes from 
mathematics, the basic example of contradictory notion mentioned being precisely 
the one presented in the Accessio ad arithmeticam infinitorum: “the number of all 
numbers” (A II, 1, 393). This a typical example of a joining together of apparently 
simple ideas (unit and addition), which produces an impossible object (the sum of 
all units or “number of all numbers”). As emphasized by the De synthesi et analysi 
universali, one must then take care that “the combinations do not become useless 
through the joining-together of incompatible concepts”. If the universal character, 
based on the constitution of an “alphabet of human thoughts” and the full develop-
ment of an ars combinatoria, is the goal to obtain, one should not forget that it 
implies nothing less than a complete analysis of human thoughts. Before reaching 
this goal, which may well be inaccessible to finite human beings, one has to be very 
cautious with symbolic manipulations, keeping in mind that they must be comple-
mented by demonstrations of possibility : “one must be especially careful, in setting 
up real definitions, to establish their possibility, that is, to show that the concepts 
from which they are formed are compatible with each other”.38 Since the main field 
in which Leibniz developed such an “analysis of thoughts” and such a work on defi-

36 Leibniz to Mariotte, July 1676 (A II, 1 (2006), 424): “ce seroit pour ainsi dire une algebre uni-
verselle, et il seroit aussi aisé d’inventer en morale, physique ou mechanique, qu’en Geometrie”.
37 Leibniz to Oldenburg, [18]/28 December 1675 (A III, 1, 331): “Haec algebra, quam tanti faci-
mus merito, generalis illius artificii non nisi pars est. Id tamen praestat, ut errare ne possimus 
quidem, si velimus, et ut veritas quasi picta velut machinae ope in charta expressa deprehendatur. 
Ego vero agnosco, quicquid in hoc genere praebet algebra, non nisi superioris scientiae beneficium 
esse, quam nunc combinatoriam, nunc characteristicam appellare soleo, longe diversam ab illis, 
quae auditis his vocibus statim alicui in mentem venire possent”.
38 Leibniz, De synthesi et analysi universali seu Arte inveniendi et judicandi (A VI, 4, 540).
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nitions was precisely mathematics, this will be enough to indicate the complexity of 
the interrelations between the various domains under consideration.

7  Presentation of the Collection of Essays

As should be clear from the historical sketch proposed above, mathematics and 
philosophy evolved in tandem, fruitfully interacting in Leibniz’s work, influencing 
each other in multifarious ways throughout the different periods of his intellectual 
life. Yet relatively few studies have been devoted to the investigation of these com-
plex interrelations. One reason may be the fact that Leibniz’s scholarship has for too 
long been rather compartmentalized, with the study of metaphysics on the one side, 
and the study of mathematics on the other, each of these pursuits involving techni-
calities of its own which would require it to be placed within the context of the time. 
One could also invoke the changing perceptions in the history of mathematics itself, 
which in the last thirty years has moved away from “internalist” accounts advocated 
by the founders of the discipline. The availability or rather lack of availability of 
most of Leibniz’s mathematical papers of course did not help. Until fairly recently, 
commentators were largely reliant on articles which Leibniz published during his 
lifetime or the few texts which in intervening years found their way into print. Over 
the last 20 years things have changed dramatically for the better. Progress in the edi-
tion of the Academy Edition of Leibniz’s letters and papers has made available to 
readers many of the previously unpublished drafts or letters long hidden from pub-
lic view. Material edited in Series VII (Mathematical Papers) as well as in Series III 
(Mathematical and Scientific Correspondence), not forgetting Series I (General and 
Political Correspondence), Series II (Philosophical Correspondence), and Series VI 
(Philosophical Papers) shows just how closely related Leibniz’s philosophical and 
mathematical reflections sometimes were.

As already noted, together with the newly available material, the papers in this 
collection also take advantage of the growing interest amongst philosophers and 
historians of mathematics in addressing the work of the research mathematician, 
his mathematical practice in specific institutional contexts, often in exchange with 
others. Thus the scholar enters the workshop of the mathematician to explore un-
derlying values, guiding ideas, methods and working tools, a strategy which in the 
case of the mathematician-philosopher Leibniz seems most promising. In his paper, 
Philip Beeley invites us to meet Leibniz, the philosopher mathematician who could 
not help but think as a mathematical philosopher. The paper shows Leibniz’s great 
concern to account for the explanatory power of the mathematical sciences as ap-
plied to our understanding of the natural world, an interest that can be traced to 
earlier writings from the Mainz Period (before arriving in Paris). Leibniz’s ultimate 
motivation was his recognition of the usefulness of the mathematical sciences with 
a view to the improvement of the human condition. The deep interconnection Leib-
niz saw between theory and practice inspired him to discuss mathematical work-
ing tools such as the notion of “negligible error” used in justifying infinitesimal 
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techniques in connection with practical matters and its applicability in the natural 
world. In his discussion of “negligible error,” Leibniz revisits his early interest in 
Archimedean ideas further developed by his later mathematical studies, a conjunc-
tion which is not divorced from its special place in the search for wisdom. Discus-
sions such as this and related issues reveal that the dialogue between philosophy 
and mathematics was not just a novelty brought about by his mathematical studies 
in Paris (1672–1676).

The emphasis on pragmatic considerations in Leibniz’s mathematical practice 
allows us to trace an important evolution in his thought. Careful scholarship reveals 
that earlier versions of this great project of an ars combinatoria, which if fully real-
ized would have led to establishing an “alphabet of human thoughts”, and which a 
very young Leibniz once assumed was objectively possible, were abandoned. In his 
paper “The difficulty of being simple”, David Rabouin shows that with the start of 
his studies in Paris, Leibniz was motivated seriously to question the feasibility of 
such a project. In particular, the study of mathematics played a decisive role in this 
evolution. The Accessio ad arithmeticam infinitorum and the demonstration of the 
impossibility of a “number of all numbers”, as already noted, as well as his work 
on the “arithmetic quadrature of the circle” culminating in another demonstration 
of impossibility, and the study in number theory, gave Leibniz new insight into cru-
cial questions about the possibility (and impossibility) of notions. Accordingly, the 
form that an “analysis of human thoughts” should take evolved considerably during 
this period; Leibniz’s mathematical practice transformed his way of engaging with 
mathematical concepts.

The question of why mathematics not only applies to the natural world but also 
helps us to find explanations of natural phenomena was also of great importance 
to Leibniz. He sought a middle pathway between Bacon’s empiricism and the ra-
tionalism of Descartes as he framed his conception of scientific method. As Emily 
Grosholz argues in “Leibniz and the Philosophical Analysis of Time,” he came 
to think that mathematics and experience were limited approaches to the study of 
nature when taken in isolation, and thus should be considered in tandem. Leibniz 
calls upon metaphysics, in particular the principles of Continuity and Sufficient 
Reason, to play a harmonizing role, as he sought to answer the question about how 
the two scientific activities (theoretical analysis and empirical compilation) should 
be combined in practice. She argues in particular that metaphysical principles play a 
substantive role in his account of time. Another remarkable aspect that comes to the 
fore in Grosholz’s study is a conception of scientific research which involves a set 
of values, perhaps the most important of which is the idea that the use of mathemat-
ics applied to nature requires careful philosophical reflection.

The complete and carefully designed study of De quadratura arithmetica cir-
culi ellipseos et hyperbolae (1675/1676) which Leibniz himself originally intended 
to publish, was meticulously edited by Eberhard Knobloch and first published in 
1993. This edition offered a welcome occasion for a revival of interest in the study 
and assessment of Leibniz’s views on infinitesimals, including Leibniz’s use and 
interpretation of the role of “syncategorematical” expressions.39 As the historian of 

39 Concerning this issue, see the material gathered in Jesseph and Goldenbaum (2008) .
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mathematics Henk Bos (2001) showed in his study of the role of exactness in Des-
cartes’ work on geometry, discernible just under the surface of mathematical work-
ing tools lie implicit epistemic values that operate in mathematical practice, but 
often are never made explicit by the mathematician. Thus, later scholarly debates 
concerning the relevant values cannot be easily settled. In his essay “Analyticité, 
équipollence et théorie des courbes chez Leibniz”, Eberhard Knobloch likewise 
approaches Leibniz’s mathematical writings by studying the way in which he con-
ceived of the relationship between “geometricity”and “analyzability”. He also con-
siders the way that Leibniz’s thought evolved throughout his mathematical research. 
For instance, Leibniz starts out by borrowing notions from Cartesian geometry, but 
reworks them while progressively transforming their use and meaning. As an il-
luminating example of this process, Knobloch discusses the Leibnizian notion of 
“equipollence” which reveals itself as one of the key tools for expanding the range 
of objects (curves) that can be treated mathematically by using his new methods.

Epistemic values also play a key role in Leibniz’s invention of the differential 
calculus. The philosophical project of a “general character”, which turned out to be 
one of Leibniz’s most fruitful guiding ideas, was central to the search for a symbolic 
calculus able to express techniques stemming from infinitesimal analysis in an eco-
nomical way. This may be part of the reason why Leibniz was often unconcerned 
about acknowledging results previously established by other mathematicians. In 
his essay on “Leibniz as second inventor”, Siegmund Probst delivers a careful in-
vestigation, based on recently edited material, of the relationship between Leibniz 
and his predecessors, especially Isaac Barrow and Pietro Mengoli. Although some 
results were the outcome of Leibniz’s intensive study of the relevant sources of the 
time which often overlap concerning the consideration of specific topics, Probst 
argues, the Hanoverian philosopher-mathematician was probably more concerned 
with the introduction of new methods and a new kind of access to those results, 
which only a symbolic calculus operating at a higher level of abstraction could pro-
vide.40 To take up Leibniz’s own triumphant words: “Most of the theorems of the 
geometry of indivisibles which are to be found in the works of Cavalieri, Vincent, 
Wallis, Gregory, and Barrow are immediately evident from the calculus”.41

The concept of infinity and its historical adjunct, the concept of continuity, con-
stitutes in many ways an important focus of the meeting of mathematics and phi-
losophy in Leibniz. Philosophical reflections on the infinitely small and the infi-
nitely large abound in his letters and papers. Indeed the concept of the continuum 
effectively constitutes a thread through the whole of his philosophical thought from 
the Hypothesis physica nova of his youth through to the doctrine of monads of his 

40 For a discussion of the different “levels of abstraction” in Leibniz´s mathematical practice, 
see Breger (2008b) and, in particular, in connection with the present idea, see Breger (2008a, 
193): “[…] it was only by proving many theorems and gaining experience with the new material 
that Leibniz arrived at the higher level of abstraction from which he was able to recognize and 
explicitly formulate the rules of calculus”.
41 Leibniz, Analyseos tetragonisticae pars tertia (A VII, 5, 313): “Pleraque theoremata Geome-
triae indivisibilium quae apud Cavalerium, Vincentium, Wallisium, Gregorium, Barrovium extant 
statim ex calculo patent”.
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maturity. Although he tells us already in De quadratura arithmetica circuli that 
metaphysical considerations in respect of the infinite are of no consequences when 
mathematical rigor can be shown to obtain, he nonetheless recognizes that precisely 
the concept of infinite parvum cannot of itself be above philosophical analysis if it 
is to serve its function of explaining the applicability of the infinitesimal calculus to 
those natural phenomena which are its object.42

Since Leibniz developed and promoted infinitesimal analysis and since also he 
claimed to be an ardent supporter of the existence of actual infinite in nature43, one 
might think that he was furthermore an ardent supporter of actual infinite entities in 
mathematics. But this is not what the sources tell us. Quite on the contrary, Leibniz 
regularly insists on the fact that he does not believe in actual infinite in mathemat-
ics. This raises many questions which have long remained hidden in past recon-
structive approaches and which only now are being raised. First, what is exactly his 
view, or perhaps better, what were his views, on the ontological status of the infinite 
in mathematics, be it the infinitely large or the infinitely small? Second, how can we 
reconcile two apparently incompatible theses according to which Leibniz on the one 
hand supported the existence of an actual infinite in nature and on the other hand 
denied its existence in mathematics? Is it not the case that we have to accept that 
there is an infinite number of things in the world? And if so, how can we express 
this infinity?

In “Leibniz’s Actual Infinite in Relation to his Analysis of Matter”, Richard Ar-
thur tackles precisely the last problem mentioned, namely, how to understand why 
Leibniz denied the existence of an infinite number in mathematics while positing 
actual infinity in Nature—such as in the infinite division of matter or in the plu-
rality of simple substances. First of all, he sets out to defend Leibniz’s views on 
the mathematical infinite as a fiction against accusations of inconsistency raised in 
recent literature. Such claims are often based on the anachronistic point of view of 
our modern “Cantorian” theory of the infinite. In the remaining part of the paper, 
Arthur confronts a dilemma already raised by Russell: if infinite plurality is just a 
fiction, depending on the way we perceive things, then there appears to be no way 
to assert that there is an infinite plurality of substances or that matter is actually di-
vided into an infinity of parts. If, on the contrary, there is a real, mind-independent, 

42 See Leibniz to Schmidt, 3 August 1694 (A I, 10, 499): “Novum Calculi Analytici genus a me in 
Geometriam introductam […] Usum inprimis habet ad ea analysi subjicienda, in quibus quantitates 
finitae determinantur interveniente aliqua consideratione infiniti, quemadmodum saepe praesertim 
cum Geometria applicatur ad naturam. Ubique enim infinitum Naturae operationibus involvitur. 
See also Leibniz to Kochański, 10/20 August 1694 (A I, 10, 513−514); Leibniz to the Electress 
Sophie for the Duchess Elisabeth Charlotte of Orléans, 28 October 1696 (A I, 13, 85): “Et c’est 
une chose estrange, qu’on peut calculer avec l’infini comme avec des jettons, et que cependant nos 
Philosophes et Mathematiciens ont si peu reconnu combien l’infini est mêlé en tout”.
43 Leibniz to Foucher, end of June 1693 (A II, 2, 713): “Je suis tellement pour l’infini actuel, que au 
lieu d’admettre que la nature l’abhorre, comme l’on dit vulgairement, je tiens qu’elle l’affecte par-
tout, pour mieux marquer les perfections de son auteur. Ainsi je crois qu’il n’y a aucune partie de la 
matiere, qui ne soit, je ne dis pas divisible mais actuellement divisée, et par consequent la moindre 
particelle doit estre considerée comme un monde plein d’une infinité de creatures differentes.”
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infinite plurality of substances, or infinite plurality of parts of matter, then one must 
acknowledge infinite pluralities which are not fictions and which would correspond 
to the actual infinite wholes that Leibniz wants to exclude from mathematics. The 
solution to the dilemma, Arthur argues, is that one should not confuse the plurality 
itself with its perception as a unity. On this basis, it is possible to understand how 
the infinite plurality of parts of matter is reconcilable with the infinite plurality of 
substances, assuming, as Leibniz repeatedly argues, that these parts are real  .

In “Comparability and Infinite Multitude in Galileo and Leibniz”, Sam Levey 
revisits the contrasted positions of those two thinkers on the status of “infinite 
multitude”. Galileo’s paradox, which shows that one infinite multitude can be put 
in one-to-one correspondence with another even when one is a proper part of the 
other (such as in the case of natural numbers and their squares), was instrumental 
in Leibniz’s reflections. In the Accessio ad arithmeticam infinitorum, as we already 
mentioned, he argues against the Pisan mathematician that infinity should not be 
compared with unity (which is “equal” to its powers), but with zero or “nothing”. 
According to Leibniz, this means that there is no such thing as an infinite number, 
and more generally that a mathematical infinite cannot be considered as a “whole”. 
Hence emerges a way of saving Euclid’s axiom (“the whole is greater than the part”) 
which enters as essential ingredient in Galileo’s paradox. This is, however, only 
one amongst a number of strategies to save the axiom. Another possibility, often 
ascribed to Galileo himself, is that the infinite falls outside of the realm of quantifi-
able entities ( quanti). Levey reexamines these interpretations in detail in order to 
assess the pertinence of Leibniz’s strategy and its strength.

Finally, in his paper “Leibniz on The Elimination of Infinitesimal”, Douglas 
Jesseph studies the status of infinitesimal quantities in Leibniz. As already noted, 
recent scholarly research, inspired by the rediscovery of De quadratura arithmeti-
ca circuli has set emphasis on revisiting the so called “syncategorematical” inter-
pretation. According to this view, infinitesimals are “useful fictions” in the sense 
that they can be eliminated through a paraphrase involving only finite quantities. 
Following the seminal investigation published by Henk Bos in 1974, Jesseph argues 
that this is only one amongst two strategies to “find truth in fiction”. He proposes 
to contrast each strategy as a “syntactic” (or “proof theoretic”) and a “semantic” 
(or “model theoretic”) approach. In the semantic approach, one seeks to show that, 
even if reference to infinitesimals cannot be eliminated from the mathematical dis-
course, it will never lead from truth to falsehood. The paper gives an example of 
these two strategies in Leibniz’s texts and seeks to explain why they had to coexist 
in his mathematical practice.
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Of the numerous constants in Leibniz’s philosophy, stretching from his intellec-
tually formative years in Leipzig and Jena through to the mature writings of the 
Monadology conceived largely in Hanover and Berlin, few are as remarkable as 
his conviction that a firm understanding of the concepts of unity and infinity ulti-
mately provide the key to developing sound metaphysics. When he famously wrote 
to Gilles Filleau des Billettes in December 1696 that his fundamental considerations 
rest on two things, namely unity and infinity1, he simultaneously situated his meta-
physics on the one side in the philosophical tradition of Aristotle and Thomas Aqui-
nas and on the other side in the new mechanistic approach of Galileo and Descartes. 
For infinity and the intimately related concept of continuity, while having an ancient 
philosophical tradition of their own, were for him always also the key to harmoniz-
ing or at least connecting the three central pillars of his system: mathematics, phys-
ics, and indeed metaphysics itself. Even before his progression from mathematical 
novice, who had probably read little more on the subject than Daniel Schwenter’s 
Erquickstunden, and some of Girolamo Cardano’s Practica arithmeticae generalis2, 
to becoming one of the most productive mathematical thinkers of his day, Leibniz 
recognized that mathematics was the foundation on which modern scientific and 
technological advances leading to an improvement of the human condition firmly 
rested3. Avoiding the negative theological consequences of Cartesianism and atom-
ism, his metaphysics would ultimately conform more radically to the conceptual 
foundations of the mathematical sciences than the philosophical positions of any of 
his contemporaries.

1 Leibniz to Des Billettes, 4/14 December 1696, Leibniz 1923 (cited hereafter as ‘A’) I, 13, 90: 
“Mes Meditations fondamentales roulent sur deux choses, Sçavoir sur l’unité, et sur l’infini.”
2 See Hofmann 1974, pp. 3–4.
3 See Leibniz, De republica literaria, A VI, 4, 432, 438.
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1  Rivers and Motion

Evidence of Leibniz’s recognition of this fundamental role of mathematics is to 
be found in his earliest extant piece of writing on the theory of motion. In De ra-
tionibus motus, drawn up under remarkable circumstances in 1669, he describes 
mathematics metaphorically as the source of the mixed sciences, on which so much 
useful knowledge depends:

We therefore set out the foundations of motion, such as they are in the pure state of nature, 
for they are neither strengthened by demonstrations, nor embellished by logical conclu-
sions, though these conclusions be infinite and manifest; for the sources of the arts, though 
they are accustomed because of a certain aridity and simplicity to displease the fastidi-
ous, flow from thence through continuous descent to the richest rivers of the sciences, and 
finally as if into an ocean of uses and applications.4

It is surely no accident that this metaphor was conceived during Leibniz’s first en-
counter with recent scientific work from France and England on the theory of mo-
tion. In August 1669, he spent three weeks in the spa town of Bad Schwalbach in 
Hesse accompanying his patron Johann Christian von Boineburg, who regularly 
spent part of the summer taking waters away from the stresses and strains of court 
life in Mainz. While he was there, Leibniz was lent the recently-published April 
1669 issue of the Philosophical Transactions by a friend of Boineburg’s, the Kiel 
law professor Erich Mauritius. Geographically far removed from the meetings of 
the leading scientific community in Europe, he was able to read that the discovery 
of the laws of motion was a central concern to members of the Royal Society of 
London. The April issue contained Christiaan Huygens’s contribution to the debate, 
which controversially had been suppressed from earlier publication, because the 
publisher, Henry Oldenburg, had considered Huygens’s rules to be largely identical 
to those of the English mathematician Christopher Wren5.

During the next two years, Leibniz would adopt quite a different approach to 
work on the laws of motion than that which he found while reading the Philosophi-
cal Transactions in the idyllic surroundings of Bad Schwalbach.6 But for the mo-
ment it was primarily the geography of the region itself which arrested the young 
philosopher’s mind. Bad Schwalbach lies on a tributary of the river Aar, which 
flows into the river Lahn. Its waters flow into those of Germany’s great mercantile 
artery, the Rhine, and they in turn flow into the North Sea. Leibniz’s surroundings 
suggested a metaphor for the relations between theory and practice, mathematics, 

4 Leibniz, De rationibus motus § 7, A VI, 2, 160: “Ordiamur igitur proferre Fundamenta motuum, 
qualia sunt in puro naturae statu, neque tamen munita demonstrationibus, neque ornata consectari-
is, infinitis tamen illis et illustribus; nam fontes artium, ut ariditate quadam et simplicitate delicatis 
displicere solent, ita decursu perpetuo in uberrima scientiarum flumina, denique quoddam, velut 
mare usus ac praxeos excrescunt.”
5 Christiaan Huygens’s ‘Regulae de motu corporum ex mutuo impulsu’ were published under the 
English title ‘A Summary Account of the Laws of Motion’ in Philosophical Transactions Huygens 
1669, pp. 927−928. (Oldenburg’s account of the controversy is printed pp. 925−9277.) The laws 
had been published before in French in the Journal des Sçavans, 18 March 1669, pp. 22−24.
6 See Garber 1995, especially pp. 273−281; Beeley 1999, pp. 134−135.
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the mathematical sciences, and their applications which would hold true throughout 
the whole of his philosophical career. Indeed, as I will seek to show in the course of 
this chapter, the river metaphor only begins to acquire its full significance towards 
the end of his life, when so many of his theories and ideas contained in his innumer-
able drafts, memoranda, and letters were falling into place. Just as there is remark-
able constancy in the theoretical importance of the concepts of unity and infinity in 
his thought, so, too, in the systematic importance he attaches to mathematics. And 
as I also hope to demonstrate, the concept of infinity serves as a vital link between 
the two.

2  Three Central Considerations: Utility, Conciliation 
and Rigour

It cannot be emphasized enough that among seventeenth-century and early eigh-
teenth-century Enlightenment philosophers Leibniz stands out as having thought 
more than any other about the need to provide a rational account of the successful 
application of mathematics in the mixed sciences such as mechanics, optics, and 
navigation, which he expressed so evocatively in the river metaphor of 1669. Three 
central considerations motivated him in this.

First, it was driven by his conviction, already expressed in his youth, that the 
sole aim of philosophy consists in improving the lives of people and that the math-
ematical sciences must necessarily play a decisive role in achieving this aim7. The 
utilitarian justification of philosophy was of course widely propagated in the seven-
teenth century and was for instance written into the charter of the Royal Society. But 
for Leibniz its importance stretched beyond general claims of mechanistic and ex-
perimental science to the explanatory core of his hypothesis. In effect, the extraor-
dinary success of the mathematical sciences needed, in his view, to be explained 
metaphysically. No other thinker had succeeded in providing such an explanation 
before him.

Second, accommodating the mathematical sciences on a structural level was part 
of Leibniz’s broader conciliatory approach, often descriptively couched in terms of 
divine economy, by means of which he sought to evince the highest possible degree 
of veracity of his own hypothesis, be it the Hypothesis physica nova of his youth 
or the Monadology of his philosophical maturity8. All philosophical and scientific 
tradition contained in his view something of value as part of the heritage of human 
culture and learning9. But for Leibniz it was more than simply taking account of 
philosophical and scientific tradition which he set out to achieve. As he writes on 

7 See Leibniz, Hypothesis physica nova, conclusio, A VI, 2, 257.
8 See Leibniz, Hypothesis physica nova, § 59, A VI, 2, 255; Leibniz to Arnauld, [29 September/9 
October 1687], A II, 2, 249−250; Leibniz, Reponse aux reflexions contenues dans la seconde Edi-
tion du Dictionnaire Critique de M. Bayle, Gerhardt 1875-90 (cited hereafter as ‘GP’) IV, 568.
9 See Leibniz, Nouveaux Essais III, 9, § 9, A VI, 6, 336−337.
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one occasion, “it is no small indication of the truth of our hypothesis that it harmo-
nizes all”10. If central tenets of ancient learning and modern scientific thought could 
be comfortably accommodated in his philosophy, there could be no better evidence 
for its truth.

Third, Leibniz was convinced that mathematical minds were able to introduce 
rigour into metaphysics which would otherwise be lacking, particularly as concerns 
our fundamental knowledge of the natural world. At the same time, he rejected 
the use of mos geometricus or geometrical method in philosophy, as this is found 
for example in Baruch de Spinoza’s Ethics, on the grounds that such an approach 
represented an unsuitable methodological crossing of disciplinary borders11. When 
Pierre Bayle suggested in his Remarques sur le systeme de M. Leibniz that math-
ematicians who get involved in philosophical matters do not achieve much, Leibniz 
retorted that, on the contrary, they necessarily achieve more than most philosophers, 
“because they are accustomed to reason with precision”12.

It is not necessary here to rehearse the many instances in which mathematical 
reasoning informed Leibniz’s philosophical investigations. Much of his work on 
universal character and combinatorics sought to achieve a more exact, that is to 
say semantically unambiguous determination of the world around us, which would 
lead ultimately to the growth of knowledge, by starting out from basic elements or 
simple propositions. It suffices to say that already in his Dissertatio de arte com-
binatoria, first published in1666, the basic concept of the mechanistic philosophy, 
that all larger things are composed of smaller ones, be they atoms or molecules, was 
seen as providing the metaphysical basis for the universal application of combina-
torics, since the fundamental relation of the latter, that of whole to part, is seen as 
having a direct correspondent in reality13. Even after Leibniz had disassociated him-
self from atomism, to which he was at times attracted14, and was reintroducing the 
concept of substantial form into his philosophy, that is to say around 1679, he still 
described combinatorics as “a kind of metaphysical geometry”15. What is important 
here is that Leibniz for profound metaphysical and theological reasons rejected the 
reduction of nature philosophically to a mathematical model, for this would entail 
among other things the absolute necessity of human action. Nonetheless, he consis-
tently employed from the time of his early writings on the theory of motion onward 

10 Leibniz, Hypothesis physica nova § 59, A VI, 2, 252: “Hypothesis nostra non parvo veritatis 
indicio omnes conciliat.” See Beeley 1996, pp. 223−234.
11 See Leibniz, Recommandation pour instituer la science générale, A VI, 4, 705.
12 Leibniz to Masson, after [1]/12 October, 1716, GP VI, 628: “Il pretend que les Mathematiciens 
qui se mêlent de Philosophie, n’y reussissent gueres: au lieu qu’il semble qu’ils devroient reussir 
le mieux, étant accoustumés à raisonner avec exactitude.”
13 See Leibniz, Dissertatio de arte combinatoria § 34, A VI, 1, 187; Leibniz to Gallois, end of 
1672, A II, 1 (2006), 354; Leibniz, De arte inveniendi combinatoriae, A VI, 4, 332; Beeley 1999, 
p. 138.
14 See Arthur 2003.
15 Leibniz, De arte inveniendi combinatoria, A VI, 4, 332: “Combinatoria agit quodammodo de 
Entium configuratione, seu coordinatione, nullo respectu habito loci, est quasi Geometria Meta-
physica.”
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a model of the core of nature—albeit one which underwent a radical transformation 
from quasi-materialism to idealism by means of the concept of force—which had 
its origins in essentially mathematical concepts. Conversely his model of nature 
was able to facilitate the harmonization of mathematics and nature to a degree not 
found among any of his contemporaries. This essentially mathematical core is the 
reason why we find so many references in his letters and papers to “arcana rerum”16, 
“arcana naturae”17, “interieur de la nature”18, and the like.

3  Metaphysics of Discovery and Explanation

The relationship between mathematics and model of nature in Leibniz is complex, 
as it comprises three components which do not always sit comfortably alongside 
one another.

First, there are genuinely metaphysical concepts which he postulates as part of 
the fundamental architectonics, most readily apparent in the hypothesis that basic 
material structures are replicated or folded into infinity, but also evident in ques-
tions concerning the composition of motion. The monadological concept of the ex-
istence of worlds within worlds ad infinitum always took its source from theoretical 
deliberations on infinite divisibility of the continuum19.

Second, there is a heuristic aspect to the interrelationship, because we are led 
to expect precisely the agreement between the explanatory model and scientific 
discovery, that is to say between the explanans and the explanandum which is ul-
timately evinced. Thus for example the law of continuity, which as Leibniz never 
ceases to tell us20, he first introduced into the republic of letters, is able to exclude 
false theories of motion, such as those originally proposed by Descartes and later 
elaborated by some of his followers. At the same time, the law of continuity derives 
from the principle of reason and is thus already written into the very constitution of 
the created world21.

Third, there is the explanatory component itself, in which Leibniz on the basis 
of his model of nature seeks to provide metaphysical reasons for discoveries in 
contemporary mathematical—and indeed biological—science, which are often ex-
pressed in terms of divine benevolence. These explanations are essentially ground-
ed in his metaphysics, for example in the concept that God is a perfect geometer or 

16 Leibniz, Rationale fidei catholicae, A VI, 4, 2321. See Beeley 2004, pp. 29–30.
17 Leibniz, Praefatio ad libellum elementorum physicae, A VI, 4, 2003; Leibniz to Carcavy, begin-
ning of November 1671, A II, 1 (2006), 288.
18 Leibniz to Oldenburg, end of October 1676?, A II, 1 (2006), 380.
19 See Leibniz to Queen Sophie Charlotte, [20]/31 October 1705, GP VII, 560.
20 See for example Leibniz, Tentamen anagogicum, GP VII, 279; Leibniz, Justification du calcul 
des infinitesimales par celuy de l’algebre ordinaire, Gerhardt 1849-63 (cited hereafter as ‘GM’) 
IV, 105; Leibniz to De Volder, 1699, GP II, 192.
21 See Duchesneau 1994.
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that the continuum constitutes the base of God’s reason. Here, not only are meta-
physical grounds given for the scientific discoveries themselves, but also—as a kind 
of divine payback—post hoc justification for the very hypothesis that is obtained.

The beginning of this interrelationship between mathematics and nature can be 
observed already in Leibniz’s first philosophical system which emerged during his 
employment as privy councillor in Mainz in the early 1670s. The concept of point 
which he developed in his Theoria motus abstracti mirrored precisely the concept 
of conatus, thereby allowing a direct correlation between lines and motions, math-
ematics and phoronomy. It is to this early work of Leibniz which I now turn.

4  Metaphysics and Mathematics in Leibniz’s Early 
Philosophy

Leibniz presents his concept of point in Theoria motus abstracti through a series of 
negations by means of which he sets it apart from the defining characteristics laid 
down by Aristotle and Hobbes. Just as the Aristotelian conception of unextended 
indivisible is rejected, so, too, the diametrically opposing Hobbesian conception of 
an infinitely small extended divisible whose parts and quantity simply do not enter 
any calculation:

A point is not that whose part is nothing, nor that whose part is not considered; rather, it is 
that whose extension is nothing or that whose parts are without distance, whose magnitude 
is inconsiderable, indeterminable, smaller than that whose relation to another sensible mag-
nitude can be expressed except as infinity, smaller than that which can be given. Moreover 
this is the foundation of the method of Cavalieri, through which its truth is plainly demon-
strated when certain rudiments or beginnings of lines and figures are imagined to be smaller 
than any giveable line or figure.”22

By conceiving points in this way, Leibniz believed he would be able to overcome 
the labyrinth of the continuum, whose composition had vexed philosophers since 
ancient times. The paradoxes which arose when attempting to compose a continuum 
out of true indivisibles– as atomism had sought to do at least implicitly—vanished 
once the categorical distinction between point and extension was largely negat-
ed23. Both now consisted of parts, the only difference being that the parts of point 
were considered to be “indistant” (partes indistantes). It was for this reason that the 
young Leibniz was convinced that he was also able to save Cavalieri’s method for 
determining quadratures and cubatures from critics like the Austrian mathematician 

22 Leibniz, Theoria motus abstracti, fund. praed. § 5, A VI, 2, 265: “Punctum non est, cujus pars 
nulla est, nec cujus pars non consideratur; sed cujus extensio nulla est, seu cujus partes sunt in-
distantes, cujus magnitudo est inconsiderabilis, inassignabilis, minor quam quae ratione, nisi in-
finita ad aliam sensibilem exponi possit, minor quam quae dari potest: atque hoc est fundamentum 
Methodi Cavalerianae, quo ejus veritas evidenter demonstratur, ut cogitentur quaedam ut sic dicam 
rudimenta seu initia linearum figurarumque qualibet dabili minora.”
23 See Beeley 1996, pp. 235−261. This interpretation is accepted by Arthur, although he confus-
ingly calls Leibniz’s actually divided points “indivisibles”. See Arthur 2009, pp. 12−17.
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and astronomer Paul Guldin who had attacked it on account of the implied composi-
tion of extension from indivisibles24. Significantly, the characterization of the mag-
nitude of point as being smaller than any magnitude which can be given negates the 
absolute and thus opens up the possibility of quantitative relations between points 
themselves.

In Theoria motus abstracti, Leibniz defines the phoronomic concept of conatus 
analogously to the concept of point as the beginning or end of motion. Just as point 
is ontologically the limit of a line, so conatus is ontologically the limit of a motion. 
But points fulfilled this function already within the Aristotelian tradition, where 
they are conceived as being true indivisibles. The decisive theoretical development 
which Leibniz proposes in his early philosophy is that through infinite replication 
points can be seen to compose lines, just as through infinite forward replication 
conatus can be seen to compose motion: “Conatus is to motion as point is to space, 
or as one to infinity, it is namely the beginning or end of motion.”25

Conatus is therefore clearly distinguished from rest, which as Leibniz empha-
sizes does not stand in relation to motion as point does to space, but rather in the 
relation of nothing to the number one26. Leibniz always believed that there could 
be no true state of rest in nature27. Everything on his view is constantly in flux, 
even if imperceptibly so; conatus is thus something like an infinitely small motion, 
endowed with its own direction. This belief was theoretically founded in his convic-
tion that motion cannot be rationally defined in terms of its contrary, and provided 
him with one of his strongest reasons for rejecting the laws of motion propounded 
by Huygens and Wren. According to Huygens’s first law of motion, a hard body 
in motion colliding with an equally hard body at rest would lose all its motion and 
transfer that motion to the body hitherto at rest28. Leibniz explicitly negates the idea 
that a resting body can cause another body to lose its motion29.

As already mentioned, Leibniz’s early concept of point allowed him to postu-
late the existence of quantitative relationships on a non-quantitative level of a kind 
which to a remarkable extent anticipated the quantitative relationships he postulated 
in his subsequent work on the calculus. The most thorough exposition of his concept 
of point at this time is to be found in the section of his theory of abstract motion 
entitled “Predemonstrable foundations” (fundamenta praedemonstrabilia). Drawing 
on the third of these foundations, which denies either in space or body the existence 

24 See Mancosu 1996, pp. 50−56.
25 Leibniz, Theoria motus abstracti, fund. praed. § 10, A VI, 2, 265: “Conatus est ad motum, ut 
punctum ad spatium, seu ut unum ad infinitum, est enim initium finisque motus.”
26 Leibniz, Theoria motus abstracti, fund. praed. § 6, A VI, 2, 265: “Quietis ad motum non est ratio 
quae puncti ad spatium, sed quae nullius ad unum.”
27 See Leibniz, De rationibus motus § 12, A VI, 2, 161; De mundo praesenti, A VI, 4, 1511; Nou-
veaux Essais, préface, A VI, 6, 53, 56.
28 Huygens 1669, p. 927: “1. Si Corpori quiescenti duro aliud aequale Corpus durum occurrat, 
post contactum hoc quidem quiescet, quiescenti vero acquiretur eadem quae fuit in Impellente 
celeritas.”
29 See Leibniz, De rationibus motus § 12, A VI, 2, 161: “Quies nullius rei causa est, seu corpus 
quiescens alii corpori nec motum tribuit, nec quietem, nec directionem, nec velocitatem.”
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of a minimum, where minimum is understood as that which has neither part nor 
magnitude, he argues in the fourteenth foundation for the interdependency of his 
concepts of point, temporal moment and conatus:

But whatever moves at all is not at any time in one place while it moves, not even in a 
certain instant or minimum time, since what moves in time strives in an instant or begins or 
ceases to move, that is, it changes its place. Nor is it necessary to say that to strive in a time 
smaller than any time which can be given is assuredly to be in a minimal space, for there 
can be no minimal part of time or else there would be a minimal part of space. Then what 
covers the length a line in time covers the length of a line smaller than any line which can 
be given or a point in a time smaller than any time which can be given; and in an absolutely 
minimal time an absolutely minimal part of space, such as which cannot be the case accord-
ing to foundation 3.30

This interdependency of space, time, and motion allows Leibniz to develop a fur-
ther principle, namely that one point can be larger than another just as one conatus 
can be larger than another, on the necessary assumption of a tertium comparationis: 
that each temporal instant is equal to another.

No-one can easily deny the inequality of conatus, for this follows from the inequality of 
points. […] Therefore in a given instant the stronger conatus covers more spacethan the 
weaker, but no conatus can pass through more than a point or a part of space smaller than 
can be expressed in one instant; otherwise it could pass through an infinite line in time. 
Therefore one point is larger than another.31

Implicitly, the concepts of point, instant, and conatus are understood in Theoria 
motus abstracti as being infinitely small in relation to their corresponding quantita-
tively extensive concepts of space, time, and motion. Already in Mainz, the infinite 
difference between point and line, instant and time, as well as between conatus and 
motion, precludes on Leibniz’s view that the one can be expressed in terms of the 
other.

30 Leibniz, Theoria motus abstracti, fund. praed. § 14, A VI, 2, 265−266: “Sed et omnino quicquid 
movetur non est unquam in uno loco dum movetur, ne instanti quidem seu tempore minimo; quia 
quod in tempore movetur, in instanti conatur, seu incipit desinitque moveri, id est locum mutare: 
nec refert dicere, quolibet tempore minore quam quod dari potest, conari, minimo vero esse in 
loco: non enim datur pars temporis minima, alioquin et spatii dabitur. Nam quod tempore absolvit 
lineam, tempore minore quam quod dari potest, absolvet lineam minorem quam quae dari potest 
seu punctum; et tempore absolute minimo partem spatii absolute minimam, qualis nulla est per 
fund. 3.”
31 Leibniz, Theoria motus abstracti, fund. praed. 18, A VI, 2, 266−267: “Conatu[u]m inaequali-
tatem nemo facile negaverit, sed inde sequitur inaequalitas punctorum. […] Ergo instanti dato 
fortiori spatii absolvet, quam tardior, sed quilibet conatus non potest percurrere uno instanti plus 
quam punctum, seu partem spatii minorem, quam quae exponi potest; alioquin in tempore percur-
reret lineam infinitam: est ergo punctum puncto majus.”
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5  Infinity, Error and Utility

Even on the basis of his still largely rudimentary knowledge of mathematics, if we 
are to believe his own accounts, Leibniz draws conclusions concerning the infinite 
which anticipate to a remarkable degree later work where he has a much more 
sophisticated conceptual framework in mathematics at his disposal. This is particu-
larly evident in his treatment of curves. Although he at times allows a metaphysical 
distinction between a circle and its inscribed or described polygon in his writings of 
the early 1670s, Leibniz crucially argues that curves can be treated in the way estab-
lished in Archimedes, because the resulting error is “smaller than can be expressed 
by us”32 or, as he also puts it, because the resulting error is “imperceptible”33. After 
outlining a series of special problems such as the construction of a cylinder from 
mere rectilinear bodies or the construction of circular motion from a number of rec-
tilinear motions, which appear to require mechanical solutions, he writes in Theoria 
motus abstracti:

Even if these and other problems cannot be solved through abstract concepts of motion in 
bodies considered absolutely, they can nonetheless easily be explained in sensible bodies, 
namely under the assumption of an insensible ether, on account of which no sensible error 
disturbs our reasons, which suffices to explain phenomena. For sure, nature […] and art 
solve these problems quite differently from the geometer, namely mechanically by means 
of motions that are not continuous but actually interrupted; just as when geometers describe 
the quadratrix by points, and Archimedes the circle by polygons, through the removal of 
error nothing will disturb the phenomena.34

As this passage suggests, Leibniz occasionally in his early work allows phenom-
enal considerations to run into theoretical considerations when talking about what 
might be called infinitely small quantities. But we should not allow this apparent 
conflation to obscure the importance of his remarks, formulated as they are, some 
2 years before the beginning of his momentous stay in Paris. Leibniz was already 
clear at this time that only the existence of an imperceptible error could explain the 
applicability of mathematical reasoning to our understanding of natural phenomena. 
In this sense there must according to his metaphysics be an insignificant differ-
ence between what is mathematically exact and that which is natural and therefore 

32 Leibniz, Pacidius philalethi, A VI, 3, 569, var. (reconstructed): “ Quemadmodum polygonum 
regulare infinitorum laterum pro circulo metaphysice haberi non potest, tametsi in Geometria pro 
circulo habeatur, ob errorem minorem quam ut a nobis exprimi possit.” Cf. Leibniz, De infinite 
parvis, A VI, 3, 434.
33 Leibniz to Jean Chapelain (?), first half of 1670, A II, 1 (2006), 87; Leibniz, Theoria motus 
abstracti, usus, A VI, 2, 273; De rebus in scientia mathematica tractandis, A VI, 4, 379; Beeley 
1999, p. 140.
34 Leibniz, Theoria motus abstracti, usus, A VI, 2, 273: “Etsi haec aliave solvi non possent ex 
abstractis motus rationibus in corporibus absolute consideratis; in sensibilibus tamen, assumto 
saltem Aethere insensibili, facile explicari potest qua ratione efficiatur ut nullus error sensibilis 
rationes nostras turbet, quod phaenomenis sufficit. Nimirum longe aliter Natura […] et Ars haec 
problemata solvit, quam Geometra; mechanice scilicet, motibus non continuis, sed revera inter-
ruptis; uti Geometriae describunt quadratricem per puncta, et Archimedes quadrat Circulum per 
Polygona, spreto errore nihil phaenomena turbaturo.”
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somewhat less than exact. Precisely this kind of approximation came into play when 
working with the infinite in mathematics. In a letter to Jean Chapelain, written in 
the first half of 1670, he reveals the results of his latest deliberations. Claiming that 
no curvilinear figure is imaginable which cannot be rationally expressed, he sug-
gests that any error contained in the expression can be made less than what can be 
perceived. And this, he argues, is sufficient for practical purposes:

In general, I maintain, as exemplified by the Elements of Euclid, that no figure can be con-
trived which cannot be explicated according to a prescribed method (if one does not mind 
subjecting oneself to laborious operations such as Archimedes did in the measurement of 
the circle, and also Ludolph van Ceulen, who has proceeded much further) in such a way 
that no error can be perceived, which is sufficient in practice.35

The fundamental significance of these remarks is clear: when working with the in-
finite, procedures can be pursued indefinitely; we can in principle increase the level 
of accuracy as much as we want. Almost incidentally, Leibniz refers to the long-
windedness of the method of exhaustion employed by Archimedes in his work on 
the dimension of the circle, and suggests that Ludolph van Ceulen had substantially 
furthered our knowledge through his calculation of pi in Van den Circkel (1596). 
As is well known, Leibniz himself began work on determining the best possible ap-
proximation to pi already during his stay in Paris, although he did not publish details 
of these investigations until 1682.

The conflation of phenomenal and theoretical considerations during the Mainz 
period is not as extraordinary as might at first appear. Just as mathematics mirrors 
physics in respect of the elemental quanta point and conatus, so, too, does it do this 
in respect of procedures involving the infinite. When Leibniz sets out his model of 
nature in the Hypothesis physica nova, he postulates the existence of an infinitely 
replicated structure of bubbles (bullae) which combines the fundamental ideas of 
corpuscular theory with the infinite divisibility of matter. Nor does such a struc-
ture preclude the possibility of causal explanation. When considering the eventual 
causal contribution of events on a lower level to those on a higher level, the young 
philosopher suggests that they are of no consequence because they do not affect 
our phenomena. If there are worlds within worlds into infinity, as the micrographic 
investigations of men, such as Robert Hooke and Marcello Malpighi implied, they 
were for Leibniz at this time largely autonomous worlds from a causal point of 
view:

And although according to the observations of micrographers there are continuously some 
things smaller than others, the same relations will always obtain. Since aqueous bubbles 
compared to air bubbles are like earth bubbles and air bubbles compared to ether bubbles 
have the same relation, nothing prevents the possibility of there being another ether, of 
which we have no suspicion, and which is loftier than the ether we have recognized through 
reasoning and experiment to the same extent that water is loftier than earth and air is loftier 

35 Leibniz to Jean Chapelain (?), first half of 1670, A II, 1 (2006), 87: “Omnino inquam, quemad-
modum enim post extantia Euclidis Elementa, nulla est excogitabilis figura, quae non praescripta 
methodo (si quem non taedeat diuturnis subjectionibus operam impendere, uti in dimensione Cir-
culi fecit Archimedes, et qui multo longius progressus est, Ludolphus a Colonia) solvi ita possit, ut 
error sit insensibilis, quod in praxi sufficit.”
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than water. But this ether cannot enter into our calculation, because on its account no phe-
nomena are changed.36

The mathematization of nature in the young Leibniz effectively goes so far as to 
allow the identification of phenomenal and mathematical concepts of error. This 
is reflected in his assertion that when geometers describe the quadratrix by means 
of points, just as when Archimedes squares the circle by means of polygons, the 
resulting error is so small that phenomena are not disturbed37. And likewise it finds 
expression in the insensible ether, whose existence he postulates as an all-encom-
passing medium in the philosophical system of the Hypothesis physica nova. On 
account of this concept Leibniz is able to reconcile phenomena and theory in a 
thoroughly rational way, so that “no sensible error disturbs our reasoning, which 
satisfies the phenomena as well”38.

6  Natural Phenomena and the Question of Exactness

The ancient concept of satisfying phenomena is central to the strategy Leibniz pur-
sues in the mathematization of nature in his early writings. Decisively he distin-
guishes how things are in themselves from how they are perceived or how they are 
ad sensum—a distinction which he drops in his mature metaphysics on account 
of the fundamentally idealist tenet on which much of the theory of monads rests, 
namely that perception and expression are convertible. Tacitly presupposing the 
metaphysical principles which preclude mathematical necessity from entering his 
model of nature, Leibniz asserts in his Hypothesis physica nova that no perfect-
ly uniform and continuous curvilinear or straight motion can occur in the natural 
world. Although there might appear to be such motion, this is, he says, only ad 
sensum, that is to say, it is only apparently the case.39

Likewise, the paths of falling bodies might appear parallel, but they are on his 
view actually curved, as a result of the combined circular motion of the earth in one 
direction and of ether in the other, as he sets out in the explanatory model on which 

36 Leibniz, Hypothesis physica nova § 49, A VI, 2, 243: “Et quamvis ex Micrographorum ob-
servationibus dentur continuo aliae aliis minores, manebit tamen semper eadem proportio: cum 
aqueae aëreis comparatae sint terreae, et aëreae ad aethereas eandem proportionem habeant, et 
nihil prohibeat dari alium aetherem, de quo nobis nec suspicari licet, aethere illo quem ratione et 
experimentis colligimus tanto superiorem, quanto est aqua terra, aut aër aqua. Sed haec in compu-
tum nostrum, quia nihil inde Phaenomena variantur, venire non possunt.”
37 Leibniz, Theoria motus abstracti, usus, A VI, 2, 273: “[…] uti Geometrae describunt quadratri-
cem per puncta, et Archimedes quadrat Circulum per Polygona, spreto errore nihil phaenomena 
turbaturo.”
38 Leibniz, Theoria motus abstracti, usus, A VI, 2, 273: “Etsi haec aliave solvi non possent ex ab-
stractis motus rationibus in corporibus absolute consideratis, in sensibilibus tamen, assumto saltem 
Aethere insensibili, facile explicari potest, qua ratione efficiatur, ut nullus error sensibilis rationes 
nostras turbet, quod phaenomenis sufficit.”
39 Leibniz, Hypothesis physica nova § 59, A VI, 2, 255.
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his hypothesis rests40. Nonetheless, the absence of what counts as being mathemati-
cally exact in no way hinders the successful application of mathematics to our un-
derstanding of nature. While movements which appear straight are in themselves, 
that is to say on account of the contingencies of the existing natural world, actually 
curved, the curvature is, Leibniz suggests, so insensibly small, that all phenomena 
occur as if they were truly straight. The same applies to other phenomena, too: the 
flexibility and perspicuity of material bodies, the reflection and refraction of light, 
the behaviour of sound, and so on. The architectonics of his metaphysical model, 
as has already been noted, both explains and is confirmed by the successful appli-
cation of mathematics. Mixed sciences drawn from physics and mathematics can 
be applied, since through the benevolence of God the phenomena in question not 
only appear to be of the highest exactitude, but also as far as our usage is concerned 
everything happens as if it were so:

And here it is right that the geometrical practise of God in the economy of things be 
admired. For, although it is impossible in the nature of things that any physical body what-
soever be completely luminous, perspicuous, fluid, firm, soft, stretchable, bendable, hard, 
warm, and so on; or that motion be exactly continuous, uniform, uniform increased or 
decreased, rectilinear, circular, reflected, refracted, changed; or that the effect of a magnet, 
of light and sound reach any assignable point, and so on, all this happens nonetheless to the 
highest degree of exactness for the senses: although they are not, they nonetheless appear to 
the senses to be so. And as far as our usage is concerned, it is as if they were so; and more-
over through an extraordinary good deed of God optics, music, statics, elastics, the doctrine 
of impacts (or concerning impetus and percussion), myology or concerning the motion of 
muscles, and even pyrotechnics and general mechanics, and whatever is a combination of 
physical and mathematical sciences, can be perfected in theorems which to the envy of the 
pure sciences, do not fail to satisfy the senses.41

It is important to recognize that the systematic role which Leibniz accords to the 
mathematical sciences in our understanding of nature corresponds in a strict sense 
to his views on the ontological status of mathematical objects themselves. Already 

40 Leibniz, De firmitate, vi elastica, explosione, attractione, A VI, 4, 2082: “[…] uti ad sensum 
gravium directiones apud nos sunt parallelae.”; Leibniz to Queen Sophie Charlotte, [20]/31 Octo-
ber 1705, GP VII, 563: “Mais la Nature ne peut point, et la sagesse divine ne veut point tracer ex-
actement ces figures d’essence bornée, qui presupposent quelque chose de determiné, et par conse-
quent d’imparfait, dans les ouvrages de Dieu. Cependant elles se trouvent dans les phenomenes ou 
dans les objets des esprits bornés: nos sens ne remarquent point, et nostre entendement dissimule 
une infinité de petites inegalités qui n’empêchent pourtant pas la parfaite regularité de l’ouvrage de 
Dieu, quoyque une creature finie ne la puisse point comprendre.” See also Beeley 1995.
41 Leibniz, Hypothesis physica nova § 59, A VI, 2, 255: “Atque hic admirari licet praxin DEI in 
oeconomia rerum geometrisantis. Etsi enim per naturam rerum impossibile sit, corpus aliquod 
totum lucere, perspicuum, fluidum, grave, molle, tendibile, flexibile, durum, calidum etc., item 
motum continuum, uniformem, uniformiter acceleratum vel diminutum, rectilineum, circularem, 
reflexum, refractum, permutatum, exacte esse; effectum magnetis, luminis et soni ad quodlibet 
punctum assignabile pervenire etc. Evenit tamen ut summa ad sensum ἀκριβείᾳ haec omnia, etsi 
non sint ita, tamen sensu esse videantur, ut quantum ad usum nostrum, perinde sit ac si essent; 
atque ita incredibili Dei beneficio, Optica, Musica, Statica, Elastica, πληγικὴ (seu de impetu et 
percussione), Myologia seu de motu musculorum, imo et Pyrotechnica et Mechanica universa, et 
quidquid est mixtarum ex Physica Mathematicaque scientiarum, ad purarum invidiam usque, non 
fallentibus ad sensum (nisi per accidens) theorematibus excoli possint.”; Beeley 1999, p. 132.
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in the first draft of his Theoria motus abstracti, he deliberated on the nature of 
geometrical and physical construction and found that no-one up to that time had 
propounded the true, physical, real and exact causes of figures in the world, “for 
the causes of the geometers are imaginary”42. He then cites as an example the exact 
construction of a sphere from mere straight lines. Such deliberations are widespread 
in his writings from the 1670s in general and a number of particularly noteworthy 
instances are to be found in some of the papers on the arithmetical quadrature of 
the circle which will soon be published in the Academy Edition for the first time43.

On the evidence of numerous manuscript drafts which Leibniz produced in 1677, 
it seems that he was fairly clear by that time that mathematics carries its proof in 
itself44 and therefore does not refer essentially in any way to things in nature. In a 
piece to which he aptly gave the title Dialogus, Leibniz’s fictional opposite number 
points out that “when we inspect geometrical figures we often elicit truths through 
their accurate consideration”. To this Leibniz replies:

It is so, but it must be recognized that these figures are treated as characters, nor is for 
instance a circle described on paper a true circle, nor is it necessary, rather, it suffices that 
it be treated by us as a circle.45

Correspondingly, as he remarks in the contemporary piece entitled La vraie meth-
ode, referring among others to van Ceulen’s calculation of pi to twenty decimal 
places, he argues that proofs set out on paper in order to avoid false reasoning “are 
not made in the thing itself, but on the characters which we have substituted in place 
of these things”46. Even before this time he had established that the truth of a math-
ematical proof which rests on a geometrical construction does not lie in the actual 
construction itself. This could not be the case, Leibniz argued, because all visual 
mathematical objects brought about by artificial means—he generally calls these 
mechanical constructions—are necessarily inexact. Falling back on established tra-
dition he contrasts these with geometrical constructions, which contain procedures 

42 Leibniz, Theoria motus abstracti, first draft, A VI, 2, 184: “Et certe nemo hucusque tradidit 
causas versa, physicas, reales, exactas figurarum, quibus eas in mundo produci necesse est, nam 
causae geometrarum sunt imaginariae, v.g. quomodo non mechanice, sed exacte sphaera ex meris 
rectilineis fieri possit, nulla alia sphaera, imo curvilineo nullo, praesente.”
43 See for example the piece entitled Dissertationis de arithmetica circuli quadratura propositio-
nes septem, dated early 1674, to be published in A VII, 6.
44 See Leibniz, La vraie methode, A VI, 4, 4: “Cette raison est, que les Mathematiques portent leur 
épreuve avec elles.”
45 Leibniz, Dialogus, A VI, 4, 23: “B. At quando figuras Geometriae inspicimus saepe ex accurata 
earum meditatione veritates eruimus. A. Ita est, sed sciendum etiam has figuras habendas pro 
characteribus, neque enim circulus in charta descriptus verus est circulus, neque id opus est, sed 
sufficit eum a nobis pro circulo haberi.” See also Leibniz, De veritatis realitate (1677), A VI, 4, 18: 
“Etiamsi nullus existat reapse circulus.”
46 Leibniz, La vraie methode, A VI, 4, 5: “Il faut donc remarquer que les preuves ou experiences 
qu’on fait en mathematique pour se garantir d’un faux raisonnement (comme sont par exemple la 
preuve par l’abjection novenaire, le calcul de Ludolph de Cologne touchant la grandeur du cercle; 
les tables des sinus ou autres) ne se font pas sur la chose même, mais sur les caracteres que nous 
avons substitués à la place de la chose.”
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by which the production of a figure is possible, whereby the veracity of the figure 
is guaranteed when the cognitive principle of non-contradiction is upheld. Geo-
metrical constructions are thus already for the young Leibniz “imaginary but ex-
act”, since they contain procedures “according to which bodies can be constructed, 
although often by God alone.”47 It is this ideal status of mathematical objects which 
informs Leibniz’s metaphysics from beginning to end, precisely as the river meta-
phor formulated in 1669 already makes clear.

7  Mathematics and the Improvement of Human 
Understanding

The ontological ideality of mathematical objects is seen by Leibniz as an essential 
part of its usefulness as a discipline in at least one crucial respect: that through its 
exercise mathematics can on his view contribute directly to increasing the perfection 
of human understanding. Indeed, on numerous occasions he describes this as being 
one of the main uses of mathematics alongside that of contributing to improvements 
to the life of the general public. When he writes to the influential French minister of 
finance, Colbert, at the end of 1679, he emphasizes the importance of mathematical 
education as a means to promoting the public good:

When we now consider the innermost part of geometry, we stay in the cortex of nature. 
Natural science is more useful to our body; geometry is more efficacious in perfecting the 
mind. Whence it is not surprising, how much stronger geometry is pleasing to the intellect, 
even in natural science itself. Archimedes, while he invented so many other useful things, 
detected that the sphere and cylinders are related among themselves, and ratified this by 
drawings in a small mound of sand. It is important that geometry is not neglected in the 
state, for it sharpens intellects and teaches strict reasoning.48

France was always associated in Leibniz’s mind with his own mathematical educa-
tion. In a letter to the Helmstedt professor of law, Hermann Conring, written shortly 
after his arrival in Hanover, Leibniz describes natural philosophy as being “nothing 
else than concrete mathematics or mathematics exercised in matter, just as in optics 

47 Leibniz, Theoria motus abstracti, probl. gen., A VI, 2, 270: “Geometrica continet modos, quibus 
corpora construi possunt, licet saepe a solo Deo.”
48 Leibniz to Jean Baptiste Colbert, December 1679, A III, 2, 919: “Deinde Geometriae intima 
pervidemus, in naturae cortice haeremus. Utilior corpori nostro physica: ad perfectionem intellec-
tus efficacior Geometria. Unde mirum non est, quanto quisque ingenio validior Geometria magis, 
etiam in ipsa physica, delectari. Archimedes cum tot alia utiliora vitae invenisset, sphaeram tantum 
et cylindorum quorum inter se relationem deprehenderat, tumulo insculpi jussit. Geometriam non 
negligi Reipublicae interest, nam ingenia acuit, et severe ratiocinari docet.”; Leibniz to Friedrich 
Wilhelm Bierling, [26 June]/7 July 1711, GP VII, 496, Leibniz to Hermann Conring, 3/[13] Janu-
ary 1678, II, 1 (2006), 581. See also the piece entitled Introductio ad praefationem libelli geo-
metrici, to be published in A VII, 6: “Duplex est Geometriae utilitas, nam vel ad vitae praesentis 
commoditates pertinet vel ad ipsam per se mentis perfectionem refertur.”
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or music”49, before he proceeds to describe the training in firm and certain thought 
which he had experienced during his stay in Paris. As evidence of the successful re-
sults of the diligence and time he had devoted to the study of geometry, he cites his 
work on an infinite series for expressing pi, pointing out that he could in fact give 
many other examples of his mathematical work although none of these had been 
published. Significantly, when discussing the series, which today bears his name 
and which in modern terms can be expressed thus

he emphasizes, as we have already seen, not only that the series can be continued 
at will into infinity, but also that in thus proceeding the error will become less than 
any given quantity. Already in his pre-Paris writings, Leibniz had recognized that 
this guarantees not only certainty, but also usage.

Two things are important in this example. First, it is no coincidence that he moves 
from discussing the mental training afforded by mathematical—and one might add 
logical—study to an example of his work on the quadrature of the circle, for he was 
at pains particularly at this time to emphasize that despite the finiteness of the hu-
man mind we are able to know much about the infinite. In fact, he stresses that we 
can know the infinite, not that we can understand it. At the end of the 1670s Leibniz 
was in the process of developing a highly sophisticated philosophical concept of 
infinity, partly based on his own work on quadratures and infinite series, partly 
drawing on the work of others such as Evangelista Torricelli and John Wallis on 
calculating the volumes of infinitely long solids.50

Second, it reflects his continuing interest in the concept of error, both in the sense 
of negligible error when working with infinite procedures in mathematics, and in 
the sense of errors occurring in mathematical reasoning—which as we have al-
ready seen pertains directly to the ontological status of mathematical objects. Since, 

49 Leibniz to Hermann Conring, 3/[13] January 1678, A II, 1 (2006), 581−582: “Geometriae enim 
usus in applicatione consistit, abstracta autem tantum ingenio exercendo et solidis certisque as-
suescendo servit, quod me in Gallia fecisse, majore fortasse animi contentione quam necesse erat, 
nunquam poenitebit. Nam ab eo tempore quo diligentius Geometriae dedi operam, de rebus om-
nibus paulo curatius judicare coepi. Specimina studii mei Geometrici habeo multa, sed nondum 
edita; unum mirifice amicis in Gallia Angliaque placuit, quod demonstravi, Quadratum circum-
scriptum Circulo esse ad ipsum Circulum ut 1/1 ad 1/1–1/3 + 1/5–1/7 + 1/9–1/11 + 1/13–1/15 etc. 
in infinitum, id est posito quadrato unitate, Circulo magnitudinem in numeris rationalibus simpli-
cissime exprimi per hanc seriem seu harum fractionum alternatim additarum et subtractarum ag-
gregatum. Eadem series servit ad appropinquandum pro lubitu in infinitum. Nam 1/1 est quantitas 
major circulo, sed error est minor 1/3, at 1/1–1/3 est quantitas minor circulo […] et ita procedi 
potest in infinitum, ita ut error possit reddi minor quolibet assignato.” See also Leibniz to François 
de la Chaise, second half of April/first half of May 1680, A III, 3, 191; Leibniz to Gerhard Molanus 
for Arnold Eckhard, beginning of April 1677, A II, 1 (2006), 281−282.
50 See Leibniz 1993, p. 36, 104, 132 ( De quadratura arithmetica circuli, prop. VII, schol., prop. 
XLV schol., variant to prop. XI schol.); Mancosu and Vailati 1991.
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as Leibniz makes clear the ideality of mathematical objects in themselves also 
stretches to mathematical proofs—demonstrative reasoning, he writes to Sophie, 
Dowager Electress of Hanover in June 1700 “is based on inner light independent 
of sense”51—errors in human reasoning are primarily to be explained on his view 
through lack of attention of bad memory52. Error understood in this way is in us and 
quite definitely not in the object. Precisely with a view to perfecting the mind and 
achieving the cognitive rigour associated with this, Leibniz wrote in March of the 
previous year to Nicolas Malebranche that “mathematicians have just as much need 
to be philosophers as philosophers to be mathematicians”53. The central consider-
ation thereby, as he had set out years earlier in the Recommandation pour instituer 
la science générale, is that geometers have many means of discovering the smallest 
errors, even if through inattention or distraction these should escape them. In phi-
losophy, by contrast, it is necessary to employ precisely that exact reasoning which 
one finds in geometry, “because here other means of assuring oneself of correctness 
are most often missing”54.

8  Deviation of the Infinite Series

When Leibniz described natural philosophy to Conring as “mathematics exercised 
in matter”, he was expressing an idea which had informed the architectonics of his 
diverse metaphysical models of nature since 1666. Although he was consistently of 
the view that a philosophically tenable account cannot be comprehensively reduced 
to mathematical concepts, as Descartes and Hobbes had thought, he was nonethe-
less convinced that metaphysical reality can be grasped by mathematical concepts 
much in the way that a curve approximates to its asymptote—indeed, this is what he 
means when he occasionally in this context talks about “degrees” or “perfections” 
of reality55. The eternal truths of mathematics are therefore in a very profound sense 

51 Leibniz to the Electress Sophie, June 1700, GP VII, 553: “mais on ne sera jamais asseuré de la 
necessité de la chose sans appeller à son secours les raissonnemens demonstratifs, fondés sur la 
lumiere interne independante des sens.”
52 See Leibniz, Animadversiones in partem generalem Principiorum Cartesianorum, I §§ 31, 35, 
GP IV, 361. See also Leibniz to Queen Sophie Charlotte, mid-June 1702, GP VI, 501−502; Extrait 
d’une letter de M. D. L. sur son Hypothese de philosophie, GP IV, 501.
53 Leibniz to Nicolas Malebranche, 13/23 March 1699, GP I, 356: “Les Mathematiciens ont autant 
besoin d’estre philosophes que les philosophes d’estre Mathematiciens.”
54 Leibniz, Recommandation pour instituer le science générale, A VI, 4, 705: “C’est dans la phi-
losophie qu’il faudroit employer principalement cette rigeur exacte du raisonnement parce que les 
autres moyens de s’asseurer y manquent le plus souvent. ”
55 See Leibniz to de Volder, [26 August]/6 September 1700, GP II, 213: “Quae omnia jam dudum 
innueram, ne thesin prima fronte a plerisque admittendam precario prorsus assumsisse viderer, 
eaque rursus attingo non renovandi priora studio, sed ut pulcherrimae rei fontes intimius cog-
noscantur constetque principia naturae non minus metaphysica quam mathematica esse, vel potius 
causas rerum latere in metaphysica quadam mathesi, quae aestimat perfectiones seu gradus reali-
tatum.”
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constitutive of nature; they can never be contradicted by phenomena, he writes in 
1702 to Burchard de Volder, because the difference is always smaller than any mag-
nitude which can be assigned56. Clearly, “difference” is here understood in the sense 
of mathematical procedures for dealing with negligible error. Drawing on his work 
in analysis, Leibniz calls the deviation between natural phenomena on the one side 
and mathematical expressions expressing these natural phenomena on the other side 
the “deviation of the infinite series”57.

As has already been mentioned, Leibniz explicitly rejects the employment of 
geometrical method in philosophy and this is reflected in his evident, often repeated 
distinction between reason and appearance. In his letter to the Dowager Electress 
Sophie of 31 October 1705, he points out in similar fashion that while our sens-
es do not notice the difference our understanding effectively hides “an infinity of 
small inequalities”58. Our senses are limited, we do not perceive small differences 
in things. Our minds, in contrast, conceal these small differences so as not to hin-
der application. Mathematics, “the masterpiece of human reasoning”, can therefore 
serve to judge the truth of sensible things, because architectonically phenomena 
must conform to the laws of the mixed sciences through which mathematics is ap-
plied to nature. We say here that the phenomena must conform, precisely because 
the mind is partly involved in making them conform.

Often Leibniz’s remarks emphasize the benefits which accrue to mankind 
through the mixed sciences. Thus he describes physics in a letter to Jacob Auguste 
Barnabas, Comte des Viviers as “divine mathematics exercised in nature” and sug-
gests that the mathematical sciences will lead to discoveries “which could remedy 
our evils and make the political state perfect”59. Again, much of this is anticipated 
in Leibniz’s pre-Paris writings. Already in the Hypothesis physica nova, he talks of 
theorems being perfected in the mixed sciences which, to the envy of the pure sci-
ences cannot be failed by the senses except by accident, and in a similar way to in 
his later writings he puts this down to the incredible benevolence of God60.

56 Leibniz to de Volder, [8]/19 January 1702, GP II, 282−283: “Interim scientia continuorum hoc 
est possibilium continet aeternas veritates, quae ab actualibus phaenomenis nunquam violantur, 
cum differentia semper sit minor quavis assignabili data.” See Knobloch 2008, pp. 176−177.
57 Leibniz, Specimen inventorum de admirandis naturae generalis arcanis, A VI, 4, 1622: “Nam 
ex eo quod nullum corpus tam exiguum est, quin in partes diversis motibus incitatas actu sit di-
visum, sequitur nullam ulli corpori figuram determinatam assignari posse, neque exactam lineam 
rectam, aut circulum, aut aliam figuram assignabilem cujusquam corporis reperiri in natura rerum, 
tametsi in ipsa seriei infinitae deviatione regulae quaedam a natura serventur.”
58 Leibniz to Queen Sophie Charlotte, [20]/31 October 1705, GP VII, 563: “nos sens ne remar-
quent point, et nostre entendement dissimule une infinité de petites inegalités qui n’empêchent 
pourtant pas la parfaite regularité de l’ouvrage de Dieu, quoyque une creature finie ne la puisse 
point comprendre.”
59 Leibniz to Des Viviers, May 1692, A I, 8, 270: “Ainsi nous pourrons tourner tout la force de nos 
esprits à la physique, c'est-à-dire à la Mathematique divine exercée dans la nature, et à la decou-
verte de ce qui pourroit remedier à nos maux et perfectionner nostre estat.”
60 Leibniz, Hypothesis physica nova § 59, A VI, 2, 255: “Evenit tamen ut summa ad sensum 
ἀκριβείᾳ haec omnia, etsi non sint ita, tamen sensu esse videantur, ut quantum ad usum nostrum, 
perinde sit ac si essent; atque ita incredibili Dei beneficio.”
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The conceptual basis for this beneficial application of the mixed sciences lies 
decisively in the concept of negligible error. Leibniz does not tire of telling us that 
there is nothing in nature which exactly corresponds to the notions of mathematics. 
Just as there are no perfectly curvilinear motions of things, so, too, are no math-
ematically precise figures are to be found in things; no true circles, no true ellipses, 
no true straight lines, and so on. Such figures are ideal and are as such only defin-
able in the intellect61. Partly for the same reason there can in his opinion also be no 
perfect similitude in nature, for this would not only presuppose the natural existence 
of an essentially mathematical concept, but would in addition have the metaphysi-
cally harmful—when not to say with a view to the architectonics untenable—conse-
quence of destroying individuality. Mathematical concepts are for Leibniz necessar-
ily incomplete or underdetermined and they cannot therefore be reified62. Crucially 
on Leibniz’s view the mixed sciences succeed in explaining natural phenomena, be-
cause the deviation of these phenomena from the normative values of mathematics 
is so small that the error in calculation which results is smaller that any given error. 
And this he tells us, drawing on his mathematical practice since Paris, is sufficient 
in order to demonstrate certainty as well as usage63. He makes the source of these 
deliberations eminently clear in a letter which he wrote to the Dowager Electress 
Sophie of Hanover on 31 October 1705:

61 See for example Hypothesis physica nova § 59, A VI, 2, 255: “Etsi enim per naturam rerum im-
possibile sit, corpus aliquod totum lucere, perspicuum, fluidum, grave, molle, tendibile, flexibile, 
durum, calidum etc., item motum continuum, uniformem, uniformiter acceleratum vel diminutum, 
rectilineum circularem, reflexum, refractum, permutatum, exacte esse; effectum magnetis, lumi-
nis et soni, ad quodlibet punctum assignabile pervenire, etc. Evenit tamen ut summa ad sensum 
akribeia haec omnia, etsi non sint ita, tamen sensu esse videantur, et quantum ad usum nostrum, 
perinde sit ac si essent.” Similar remarks are found in later pieces: Mira de natura substantiae 
corporae, A VI, 4, 1465: “[…] revera nullae certae figurae extant in natura rerum ac proinde ne 
certi motus”; Dans les corps il n’y a point de figure parfaite, A VI, 4, 1613: “Il n’y a point de figure 
precise et arrestée dans les corps à cause de la division actuelle des parties à l’infini”; Principia 
logico-metaphysica, A VI, 4, 1648: “Non datur ulla in rebus actualis figura determinata, nulla enim 
infinitis impressionibus satisfacere potest. Itaque nec circulus, nec ellipsis, nec alia datur linea a 
nobis definibilis nisi intellectu, ut lineae antequam ducantur, aut partes antequam abscindantur”; 
Specimen inventorum de admirandis naturae generalis arcanis, A VI, 4, 1622: “Nam ex eo quod 
nullum corpus tam exiguum est, quin in partes diversis motibus incitatas actu sit divisum, sequi-
tur nullam ulli corpori figuram determinatam assignari posse, neque exactam lineam rectam, aut 
circulum, aut aliam figuram assignabilem cujusquam corporis reperiri in natura rerum, tametsi in 
ipsa seriei infinitae deviatione regulae quaedam a natura serventur”; Definitiones cogitationesque 
metaphysicae, A VI, 4, 1400. See also Elementa nova matheseos universalis, A VI, 4, 514.
62 It is the approximation to the normative values of mathematics rather than abstraction on the 
part of the knowing subject which is decisive for Leibniz’s concept of the success of the mixed 
sciences. Cf. Rutherford 1995, pp. 88−89.
63 Leibniz, De organo sive arte magna cogitandi, A VI, 4, 159: “Nam etiamsi non darentur in natu-
ra nec dari possent rectae ac circuli, sufficiet tamen dari posse figuras, quae a rectis et circularibus 
tam parum absint, ut error sit minor quolibet dato. Quod satis est ad certitudinem demonstrationis 
pariter et usus.”
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Nevertheless the eternal truths founded on the limited ideas of mathematics do not fail to 
serve us in practice, so long as it is allowed to disregard those errors which are too small to 
cause errors of consequence in relation to the aim which one proposes; just as an engineer 
who draws a regular polygon on the ground does not need to trouble himself if one side is 
longer than another by several inches.64

It is not necessary here to cite the many places in Leibniz’s letters and papers where 
he develops his ideas on negligible errors when working with the infinite. Some of 
these places are more philosophical, some more mathematical in character. What 
is common to them is the emphasis that he puts on showing that neither certainty 
nor usefulness is compromised when using infinite procedures in mathematics. 
Particularly remarkable is that these ideas are to be found, admittedly in a more 
rudimentary manner, already in writings which preceded his largely autodidactic 
mathematical training in Paris. Moreover, the notion that the infinite is not only 
deeply embedded in nature’s core—“nature bears everywhere the character of the 
infinite”, he remarks on one occasion to Des Billettes65 –, but also must necessarily 
provide the key to understanding how mathematics and nature meet in physics or in 
the mixed sciences is present in his philosophical thought well before he turns his 
mathematical mind to questions of the infinite. And this is because the concept of 
negligible error seems to have been substantially derived from the overarching prin-
ciple of usefulness so important in early modern philosophy and science rather than 
precise mathematical considerations on infinite procedures which only later acquire 
prominence in his work. Of course, it is not unlikely that Leibniz already in Mainz 
became acquainted with the basic principles of the classical method of exhaustion, 
perhaps through reading mathematical and physical sections of Hobbes’s works in 
Boineburg’s library66, but the conclusions which he draws before he has achieved a 
thorough grounding in mathematics are nonetheless remarkable—not least in view 
of their longevity in his thought.

64 Leibniz to the Electress Sophie, [20]/31 October 1705, GP VII, 563−564: “Cependant les veri-
tés eternelles fondées sur les idées mathematiques bornées ne laissent pas de nous servir dans las 
practique, autant qu’il est permis de faire abstraction des inegalités trop petites pour pouvoir causer 
des erreurs considerables par rapport au but qu’on se propose; comme un ingenieur qui trace sur le 
terrain un polygone regulier ne se met pas en peine si un costé est plus long que l’autre de quelques 
pouces.” See also Leibniz, Reponse aux reflexions, GP IV, 569.
65 Leibniz to des Billettes 15/25 March 1697, A I, 13, 656: “La nature seroit peu de chose si elle 
estoit epuisable à des esprits finis, elle qui porte en tout le caractere infini. On a pour maxime 
que la nature abhorre l’infini, et c’est tout le contraire pour moy.” Similarly, Leibniz writes to 
the Electress Sophie in respect of van Helmont on [23 September]/3 October 1694, A I, 10, 61: 
“J’approuve sur tout son sentiment de l’infinité des choses, et j’ay deja dit dans le journal de sça-
vans que chaque partie ayant des parties, à l’infini, il n’y a point de petite portion de la matière qui 
ne contienne une infinité actuelle de creatures et apparement de creatures vivantes. C’est par là 
que la nature porte par tout le caractere de son Creature.” See also Considerations sur la différence 
qu’il y a entre l’analyse ordinaire et le nouveau calcul des transcendantes, GM V, 308.
66 On Leibniz’s reception of Hobbes during his time in Mainz see Goldenbaum 2008, pp. 67–76.
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9  The Justification of Infinitesimals

Usefulness was a criterion which Leibniz regularly adduced when seeking to justify 
the foundations of his infinitesimal calculus in the face of considerable criticism 
levelled against it. This is true already of his rigorously conceived infinitely small 
or infinitesimal quantities, which he characterizes as mental fictions comparable 
to the imaginary roots used in algebra67, and with which he believes he is able to 
achieve something approaching direct proof in quadratures68. Part of the justifica-
tion for these quantities was that in this way the circuitous apagogical proofs of 
Archimedes could be avoided69. Indeed, he claims on occasion that the concept of 
the infinitesimal in the sense of disappearing or evanescent quantities is not only 
useful but also founded in reality, since such quantities occur in the phenomena of 
natural change and motion.

This of course opens up the whole question of whether Leibniz really held that 
infinitesimals could exist in nature. On some occasions he does indeed seem to be 
denying their existence. But I think that we need to be careful here, because de-
nial of the existence of infinitesimals is generally coupled with the argument that 
the success of the calculus does not depend on metaphysical discussions concern-
ing reality. When he makes such claims, this seems to be no more than a get-out-
clause vis-à-vis opponents who seek to provide metaphysical arguments against 
his calculus. Seen within the context of Leibniz’ dynamics, particularly in respect 
of dead force (vis mortua) it is evident that he must be committed in some way to 
the existence of infinitesimals70. The emphasis which Leibniz places on using these 
quantities is precisely on account of their practicality in shortening proofs which 
would otherwise have to be much more elaborate and because at the same time this 
can be done without compromising rigour. Metaphysical disputes on their nature 
have, he argues, no weight when measured against established criteria of rigorous 

67 Leibniz to Johann Bernoulli, [28 May]/7 June 1698, GM III, 499: “Fortasse infinita, quae con-
cipimus, et infinite parva imaginaria sunt, sed apta ad determinanda realia, ut radices quoque 
imaginariae facere solent.”; Leibniz to Varignon, [3]/14 May 1702, GM IV, 98.
68 See for example Leibniz, Observatio quod rationes sive proportiones non habeant locum circa 
quantitates nihilo minores, et de vero sensu methodi infinitesimalis, GM V, 389; Leibniz to Vari-
gnon, [22 January]/2 February 1702, GM IV, 92; Leibniz to Des Bosses [13]/24 January 1713, GP 
II, 305.
69 Leibniz, Historia et origo calculi differentialis, GM V, 410: “Et dum ille rationes nascentes aut 
evanescentes considerat, prorsus a differentiali calculo abduxit ad methodum exhaustionum, quae 
longe diversa est (etsi suas quoque utilitates habeat) nec per infinite parvas, sed ordinarias pro-
cedit, etsi in illis desinat.”; Leibniz, Responsio ad nonnullas difficultates a Dn. Bernardo Niewen-
tiit circa methodum differentialem seu infinitesimalem motas, GM V, 322; Leibniz to Pinsson, 
[18]/29 August 1701, A I, 20, 494: “Car au lieu de l’infini ou de l’infiniment petit, on prend des 
quantités aussi grandes et aussi petites qu’il faut pour que l’erreur soit moindre que l’erreur don-
née. De sorte qu’on ne differe du style d’Archimede que dans les expressions qui sont plus directes 
dans nostre Methode, et plus conformes à l’art d’inventer.”
70 This conclusion has, however, recently been rejected by Garber, who suggests that dead force 
‘should not be identified with its mathematical representation, and the reality of dead force should 
not be taken to entail the reality of infinitesimals’. See Garber 2008, pp. 303−304.
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mathematical proof71. Nonetheless, as is well known, he takes these disputes seri-
ously and at once weakens their force by allowing that infinitesimals be substituted 
by incomparables, that is to say, quantities which can be chosen smaller than any 
quantities which can be given72. In this way Leibniz claimed that he was able to 
reformulate any proof involving infinitesimals into a proof in the style of Archime-
des using the method of exhaustion, albeit a considerably shortened version of that 
method. Thus in a letter to François Pinsson, part of which was published under the 
title Mémoire de Mr. G. G. Leibniz touchant son sentiment sur le calcul differentiel, 
in the Journal de Trévoux in 1701, Leibniz states:

There is no need to take the infinite in a rigorous way, but only in the way in which one 
says in optics that the rays of the sun come from an infinitely distant point and are therefore 
taken to be parallel. And when there are several degrees of infinity, or infinitely small, this 
is like as when the globe of the earth is taken to be a point in comparison to the distance of 
the fixed stars, and a ball that we handle is still a point in comparison to the radius of the 
globe of the earth. So that the distance of the fixed stars is an infinitely infinite or infinite 
of the infinite in relation to the diameter of the ball. For, in place of the infinite or of the 
infinitely small, one can take quantities as great or as small as one needs so that the error 
be less than the given error. In this way one does not differ from Archimedes’ style but for 
the expressions which in our method are more direct and more in accordance with the art 
of discovery.73

His true infinitesimals are more in accordance with the ars inveniendi because they 
open up new ways of reasoning, in particular, they allow us to avoid the cumber-
some methods of the ancients.74

Already in the first major work presenting his new infinitesimal calculus, De 
quadratura arithmetica circuli, written in 1676, toward the end of his stay in Paris, 
Leibniz answers those who might question the economy of his method, the quality 

71 See Leibniz, Reponse aux reflexions contenues dans la seconde edition du Dictionnaire de M. 
Bayle, article Rorarius, sur le systeme de l’harmonie préétablie, GP IV, 569: “Les Mathématici-
ens cependant n’ont point besoin du tout des discussions métaphysiques, ni de s’embarrasser de 
l’existence réelle des points, des indivisibles, des infiniment petits, et des infinis à la rigueur.”
72 See Leibniz to Wallis, [20]/30 March 1699, GM IV, 63: “Verae interim an fictitiae sint quan-
titates inassignabiles, non disputo; sufficit servire ad compendium cogitandi, semperque mutato 
tantum stylo demonstrationem secum ferre; itaque notavi, si quis incomparabiliter vel quantum 
satis parva pro infinite parvis substituat, me non repugnare.”
73 Leibniz, Mémoire de Mr. G. G. Leibniz touchant son sentiment sur le calcul différentiel, GM V, 
350: “[…] on n’a pas besoin de prendre l’infini ici à la rigueur, mais seulement comme lorsqu’on 
dit dans l’optique, que les rayons du Soleil viennent d’un point infiniment éloigné, et ainsi sont es-
timés parallèles. Et quand il y a plusieurs degrés d’infini ou infiniment petits, c’est comme le globe 
de la Terre est estimé un point à l’égard de la distance des fixes, et une boule que nous manions est 
encore un point en comparaison du semidiamétre du globe de la Terre, de sorte que la distance des 
fixes est un infiniment infini ou infini de l’infini par rapport au diamétre de la boule. Car au lieu 
de l’infini ou de l’infiniment petit, on prend des quantités aussi grandes et aussi petites qu’il faut 
pour que l’erreur soit moindre que l’erreur donnée, de sorte qu’on ne diffère du stile d’Archimède 
que dans les expressions, qui sont plus directes dans nôtre méthode et plus conformes à l’art 
d’inventer.” (This text corresponds to that contained in Leibniz to Pinsson, [18]/29 August 1701, A 
I, 20, 493−494.) See also Leibniz to Varignon, [22 January]/2 February 1702, GM IV, 92; Leibniz, 
Tentamen anagogicum. Essai anagogique dans la recherche des causes, GP VII, 277; Knobloch 
2008, pp. 176−177.
74 See Knobloch 1999, pp. 215−216.
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of his proof, by replying that the error which results from employing his infinitely 
small quantities is smaller than any error which can be given and is therefore null75. 
We do not need the solution so accurately, is the point he is putting across there, but 
simply what is sufficient ad usum vitae. The central concept is again that of appli-
cability. He could, he suggests, in principle increase the accuracy, he could embel-
lish the reasoning with extensive proofs. But accuracy beyond what can be shown 
to suffice in order for rigour to obtain does not suffice in itself, rather it is also and 
indeed decisively questions of applicability, usefulness76.

Leibniz employs similar expressions then talking in general terms about the ap-
plication of mathematics to nature in the mixed sciences. Despite the absence of 
things which directly correspond to mathematical concepts, he tells us that it suf-
fices that figures exist which differ from true straight lines and circles to such a 
small extent that the error is smaller than any given error—“which is sufficient in 
order to demonstrate certainty as well as usage”77.

10  Nature, Mathematics and Infinity

There are abundant remarks of this kind, reflecting Leibniz’s conviction that nature 
can be shown to approach certain rational norms readily found in mathematics. The 
architectonics of the metaphysical model he developed around the concept of the 
monad in effect provides the foundation for the successful application of mathemat-
ics in modern scientific explanation, while conversely the success of the mixed 
sciences is interpreted as expressing not only divine benevolence but also a deep-
rooted economy of the system of nature. Leibniz is clear, it seems to me, although I 
by no means want to ignore inconsistencies, even contradictions in his thought, that 
the monadological theory of centres of force founds a mechanistic model of nature 
which can be grasped by certain mathematical tools. How this application ties up 
with his metaphysics is not always clear. It is perhaps conceivable that Leibniz 
thought a description in general terms would largely suffice. I do not know. But be 
that as it may, it is precisely this combination of foundational metaphysics and al-
ready proven scientific achievements which enabled Leibniz to utter the expectation 
that by means of his calculus natural phenomena will in future be more adequately 
grasped than had hitherto been the case:

75 Leibniz 1993, p. 39, ( De quadratura arithmetica circuli, prop. VII, def.): “Et proinde si quis as-
sertiones nostras neget facile convinci possit ostendendo errorem quovis assignabili esse minorem, 
adeoque nullum.” See also Beeley 1999, p. 141.
76 Leibniz 1993, p. 33 ( De quadratura arithmetica circuli, prop. VI, schol.): “[…] cum nihil sit 
magis alienum ab ingenio meo quam scrupulosae quorundam minutiae in quibus plus ostentationis 
quam fructus, nam et tempus quibusdam velut caeremoniis consumunt.”
77 Leibniz, De organo sive arte magna cogitandi, A VI, 4, 159: “Quid autem de tribus his continuis 
sentiendum sit videtur pendere ex consideratione perfectionis divinae. Sed Geometria ad haec as-
surgere necesse non habet. Nam etiamsi non darentur in natura nec dari possent rectae ac circuli, 
sufficiet tamen dari posse figuras, quae a rectis et circularibus tam parum absint, ut error sit minor 
quolibet dato. Quod satis est ad certitudinem demonstrationis pariter et usus.”
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For this reason it is now not surprising that certain problems on receipt of my calculus have 
found solutions which earlier could scarcely have been hoped for and which especially con-
cern the transition from geometry to nature. For traditional geometry is of little use as soon 
as the question of the infinite is involved, which is suitably involved in many operations in 
nature and whereby the Creator finds better expression.78

Leibniz is in fact more specific on how his calculus might be applied to solving 
physico-mathematical problems than here in his letter to John Wallis of 28 May 
1697. A few months earlier in the same year he had outlined to Claudio Filippo 
Grimaldi in remarkably clear terms how he conceived his infinitesimal calculus 
would find application in nature, drawing among others on discussions concerning 
the distinction between primitive and derivative force in his Specimen dynamicum 
of 1695.

Now I have worked out a new method of expressing in a calculus infinitely small progres-
sions of motions and the rudiments of these progressions which are infinitely infinitely 
small. Since motion, because it of course takes place in time is like a regular line, impetus 
as the momentary beginning of motion must be like an infinitely small or infinitesimal line. 
Thereupon conatus (for example gravity or the force receding from the centre), since it 
already constitutes impetus through infinite repetitions, will be an infinitely infinitely small 
quantity. When these notions of the infinite are transferred into a geometrical calculus the 
solutions to physico-mathematical problems which previously did not appear to be in our 
power but which now appear easier through infinite calculus are discovered, because nature 
everywhere involves something of the infinite, as it displays vestiges of the immeasurable 
author. Galileo investigated in vain the catenary line, which is formed when the most flex-
ible chain consisting of the smallest links is suspended from two fixed points.79

78 Leibniz to John Wallis, 28 May/[7 June] 1697, A III, 7, 430: “Unde jam mirum non est, prob-
lemata quaedam post receptum calculum meum soluta haberi, quae antea vix sperabantur; ea prae-
sertim quae ad transitum pertinent a Geometria ad Naturam; quoniam scilicet vulgaris Geometria 
minus sufficit, quoties infiniti involvitur consideratio, quam plerisque Naturae operationibus in-
esse consentaneum est, quo melius referat Autorem suum.” See also Leibniz, De arte character-
istica inventoriaque analytica combinatoriave in mathesi universali, A VI, 4, 331; Beeley 2004, 
24−41; Beeley 2009, pp. 38−39.
79 Leibniz to Claudio Filippo Grimaldi, mid-January/mid-February 1697, A I, 13, 522: “Nam no-
vam methodum excogitavi in calculo exprimendi motuum progressus infinite parvos et ipsa pro-
gressum rudimenta quae sunt infinities infinite parva. Cum enim motus, quippe qui in tempore fit, 
sit ut linea ordinaria, opportet ut impetus, tanquam initium motus instantaneum, sit ut linea infinite 
parva seu infinitesima. At conatus (exempli gratia, gravitas aut vis recedendi a centro) cum infini-
tis demum repetitionibus constituat impetum, erit quantitas infinities infinite parva. Has notiones 
infiniti ubi traduxi in calculum Geometricum inventae sunt solutiones problematum physico-math-
ematicorum, quae hactenus in potestate non esse videbantur, nunc autem paruere facilius calculo 
infinitesimali, quia natura ubique aliquid infiniti involvit, ut vestigia ostendat autoris immensi. 
Galilaeus frustra quaesierat lineam Catenariam, quam scilicet catena summe flexilis et annulis 
quam minimis constans, ex duobus datis punctis suspensa format.” See also Leibniz to Schmidt, 
3/13 August 1694, A I, 10, 499–500; Leibniz to Masson, n.d., GP VI, 629; Leibniz to Gabriel Wag-
ner, [20/30 October 1696], A II, 3, 229: “wie ich […] mit meinem Calculo infinitesimali der Differ-
enzen undt Summen die sach dahin gebracht, daß man in physico-mathematicis übermeistern kan, 
was man vor diesen anzutasten nicht einmahl sich erkühnen dürffen.”; Leibniz, Remarques de Mr. 
leibniz sur l’art. V. des Nouvelles de la République des Lettres du mois de février 1706, GM V, 391; 
Leibniz, De arte characteristica inventoriaque analytica combinatoriave in mathesi universali, A 
VI, 4, 331; Leibniz, Elementa nova matheseos universalis, A VI, 4, 522.
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Leibniz often cites his 1691 solution to the problem of the catenary in this con-
text, since Johann Bernoulli had publicly called upon him to provide a solution by 
means of his calculus80. As is well known, Leibniz was subsequently able to claim 
to have achieved precisely this, when in June 1691 he sent his solution to Rudolph 
Christian von Bodenhausen for publication in Italy81. From a philosophical point 
of view Leibniz sees his infinitesimal calculus as lending itself not just to transcen-
dental curves like the catenary or the Archimedean spiral, but also and in particular 
to grasping changes and processes in nature which as he points out always occur 
through an infinity of degrees and never through a discontinuous leap82. Moreover, 
he conceives such infinity of degrees explicitly in terms of inassignable or infinitely 
small quantities, whose infinite multitude must needs constitute finite, measurable 
quantities83. In this way, the architectonics of his metaphysical system and his math-
ematical practice again merge favourably, facilitating the passage from geometry to 
physics which he had expressed almost prophetically in his river metaphor of 1669. 
At the same time, almost incidentally, his law of continuity receives a more pro-
found physico-mathematical foundation than it had at its first publication in 1687.

Conclusion

While Leibniz in his mathematical practice generally sought to steer clear of meta-
physical disputes and instead placed emphasis on effectiveness and reliability of 
procedures, particularly when working with the infinite, he ultimately produced a 
philosophical system which in remarkable fashion was able to account for the suc-
cesses of mathematical science in contributing to our understanding of nature and 

80 See Bernoulli 1690, 219.
81 Leibniz to Bodenhausen, 12/22 June 1691, A III, 5, 118: “andere aber die solche [sc. Analysin 
novam] verachten und vor ein giocolino halten, können ihr heil an diesem problemate versuchen. 
Wiewohl nunmehr post exhibitam solutionem nichts leichter vor einen der den calculum verste-
het, als rationem finden; aber ipsam solutionem zu finden soll einer wohl bleiben laßen, der nicht 
meinen oder einen aequivalenten Calculum hat.”
82 Leibniz to Thévenot, 24 August/[3 September] 1691, A I, 7, 355: “Comme c’est proprement 
l’Analyse des infinis que j’establis par ce nouveau calcul, et que la nature passe tousjours par 
une infinité degrés, et jamais per saltum, c’est par ce calcul, qu’on peut attribuer quelque chose à 
rompre la barriere, qu’il y a entre la physique et la Geometrie.”
83 Leibniz for Bodenhausen, Änderungsvorschläge für Nova methodus als Anhang zu Dynamica, 
A III, 4, 488: “Calculus incrementalis vel differentialis locum habet ubicunque mutationi locus est. 
Omnis autem mutatio in natura continua est, ac per gradus fit non per saltum, adeoque transitus 
fiunt per quantitates inassignabiles seu indefinite parvas, quarum infinita multitudine opus est ad 
quantitates communes constituendas.”; Leibniz to Fardella, [3]/13 September 1696, A II, 3, 193: 
“Nam magnum inprimis usum habet calculus ille in transferenda Mathesi ad naturam, quia de 
infinito ratiocinari docet, omnia autem in natura habent characterem infiniti autoris.”; Leibniz to 
Chauvin, 27 April/[7 May] 1697, A I, 14, 155: “La nouvelle science sert pour faciliter le passage 
de la Geometrie à la Physique, par ce que la consideration des effects de la nature enveloppe ordi-
nairement l’infini pour exprimer le charactere de son auteur.”
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over and above this to the increase in human wellbeing. In a very true sense his 
philosophical deliberations on mathematics were deliberations pertaining to life84. 
As I have pointed out in the course of this paper, Leibniz incorporated infinite struc-
tures architectonically into his model of nature from the Hypothesis physica nova 
of 1671onward. But he could scarcely have envisaged the degree to which the state-
ment contained in his river metaphor would come to be theoretically verified over 
the years. His initial claims that mathematics finds application in nature, because 
the deviation is smaller than any quantity that can be given and because any result-
ing error must therefore be negligible are not wholly convincing until the concepts 
of negligible error and the infinitely small become embellished through the concep-
tual framework provided by infinitesimal calculus. It is almost as if Leibniz foresaw 
the very possibilities which his future work on infinitely small quantities would 
enable him and later mathematicians to achieve. In a very profound sense Leibniz’s 
metaphysics was mathematical. Without doubt, concepts he devised in his Theoria 
motus abstracti stood him in good stead when he was developing his infinitesimal 
calculus. But perhaps, after all is said and done, this should not be so surprising 
to those of us who study his work. In his mathematization of nature Leibniz was 
quite simply exceptional, not just in the context of the early enlightenment. “It is a 
strange thing,” he wrote to Duchess Elisabeth Charlotte of Orléans on 28 October 
1696, “that one can calculate with the infinite just as one can with counters, and 
that nonetheless our philosophers and mathematicians have so little recognized how 
much the infinite is mixed up in everything”85. Leibniz, of course, did not count 
himself among them.
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1  Introduction

In a famous letter from November 1678, presumably written for Princess Elisa-
beth and dedicated to a critique of Descartes’s philosophy, Leibniz states that he 
first cherished mathematics only because it was a way of accessing a more general 
ars inveniendi1. This is the path, he claims, on which he quickly realized the great 
limitation of Descartes’s “method”2. One can easily acknowledge this limitation, 
Leibniz pursues, by considering how the Cartesian method supported a drastic re-
striction of the realm of mathematics—as opposed to the various projects of “new 
analyses” elaborated by Leibniz during his stay in Paris (such as: analysis situs, 
infinitesimal analysis, combinatorial analysis or ars combinatoria). The connection 
between mathematics and philosophy is made even tighter in the following passage 
of the letter from 1678 where, before turning to Descartes’s demonstration of God’s 
existence, Leibniz develops his objection by presenting now metaphysics itself as 
being not so different from the general ars inveniendi or “true Logic”3.

However this famous text, supporting a harmonious connection between math-
ematics, logic and metaphysics holds some mysteries for anyone who tries to make 
this connection more explicit. What is the precise link between the limitation of the 
realm of mathematics and the limitation of the realm of metaphysics? What kind 

1 Unless otherwise stated, all the translations are mine.
2 “Mais pour moy je ne cherissois les Mathematiques, que par ce que j’y trouvois les traces de l’art 
d’inventer en général, et il me semble que je découvris à la fin que Monsieur des Cartes luy même 
n’avoit pas encor penetré le mystère de cette grande science” (A II, 1, 662).
3 “Car j’ay reconnu que la Metaphysique n’est gueres differente de la vraye Logique, c’est à dire 
de l’art d’inventer en general” (A II, 1, 662).
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of extension is provided by the new forms of mathematical analysis to a “general” 
ars inveniendi or “true Logic”? How is this mathematical analysis supposed to be 
useful outside of mathematics? These are not easy questions to answer, especially as 
long as one keeps in mind that Leibniz had not yet developed at that time the kind of 
dynamical models which could support a direct—but perhaps misleading—analogy 
between mathematics and ontology (a certain “divine metaphysical mathematics” 
as he would later put it: metaphysica quaedam mathesis4).

To answer these questions, a particular attention must be given to the very spe-
cific mathematical examples mentioned in the 1678 letter. Indeed these examples 
are not taken from the “new analyses”. They are notably impossibility results: the 
quadrature of the circle, the fastest speed, the “largest circle” and the “number of 
all units”5. My aim in this paper is to shed some light on this particular setting, put 
forward by the philosopher himself when mentioning the close connection between 
mathematics, logic and philosophy. In particular, I would like to bring certain math-
ematical documents dating from the stay in Paris into the picture and show their im-
portance in the reflection on logical analysis (in the sense of “analysis of notions”).

One consequence of the attention paid to these examples is, more generally, to 
bring new insights to what is sometimes presented as the core of Leibniz’s philo-
sophical program. As is well known, Leibniz once had the dream of reducing all 
human thoughts to a kind of computation based on an “alphabet”of simple notions 
(quoddam Alphabetum cogitationum humanarum)6. Next to the dynamical model, 
this is often presented as an essential feature of the way in which mathematics and 
philosophy are related in his work7. Indeed it does seem to command a certain simi-
larity between human thoughts and mathematical “combinations” (whatever these 
“combinations” are). Symmetrically, it leads to a certain program of rethinking 
mathematics by considering the centrality of ars combinatoria. One famous goal 

4 To De Volder, September 6th 1700, GP II, 213.
5 “Il faut avouer aussi que la preuve de Mons. des Cartes qu’il apporte à fin d’establir l’idée de 
Dieu est imparfaite. Comment dira-il pourroit on parler de Dieu sans y penser, et pourroit on  penser 
à Dieu sans en avoir l’idée. Ouy sans doute, on pense quelques fois à des choses  impossibles, 
et mêmes on en fait des demonstrations. Par exemple Mons. des Cartes tient que la quadrature 
du  cercle est impossible, et on ne laisse pas d’y penser, et de tirer des consequences de ce qui 
 arriveroit si elle estoit donnée. Le mouvement de la derniere vistesse est impossible dans quelque 
corps que ce soit (…). De même le plus grand de tous les Cercles, est une chose impossible, et 
le nombre de toutes les unités possibles ne l’est pas moins: il y en a démonstration.” (A II, 664).
6 “I (…) arrived at this remarkable thought, namely that a kind of alphabet of human thoughts 
can be worked out and that everything can be discovered and judged by a comparison of the let-
ters of this alphabet and an analysis of the words made from them. This discovery gave me great 
joy though it was childish of course, for I had not grasped the true importance of the matter” ( De 
numeris characteristicis ad linguam universalem constituendam (1679), A VI, 4, 265; transl. Lo-
emker (1989b), 222).
7 This program was of prime importance in the picture of Leibniz’s thought drawn by Couturat 
(1901)—especially chap. VI: “La Science Générale”, 180–184, where Couturat summarizes his 
interpretation by commenting on a fragment on which I shall also put some emphasis: De la Sa-
gesse [(1676); A VI, 3, 671]. On the relation between this program and that of a Characteristica 
Universalis, its origins and sources, see also Rossi (2006) and Pombo (1987).
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associated with this program was that of a Characteristica Universalis: a way of 
representing all human knowledge on the model of a combination of basic symbols 
representing primitive notions8. What is less well known, however, is that Leib-
niz expressed very early on serious doubts about the feasibility of such a program 
and that these doubts emerged from his mathematical practice. Moreover, these 
doubts are closely related to the arguments provided in the Letter to Elisabeth and 
attached to the problems raised by the demonstrations of impossibility. My goal, in 
this paper, is to shed some light on this specific interaction between mathematics 
and philosophy and to indicate its importance in Leibniz’s philosophical evolution.

1.1  “Leibniz’s Program”: Toward an Alphabet of Human 
Thoughts

According to Leibniz’s own account, his grand program emerged when he was a 
young boy from a very straightforward dissatisfaction:

As a boy I learned logic, and having already developed the habit of digging more deeply 
into the reasons for what I was taught, I raised the following question with my teachers. 
Seeing that there are categories for the simple terms by which concepts are ordered, why 
should there not also be categories for complex terms, by which truths may be ordered? 
(De synthesi et analysi universali seu Arte inveniendi et judicandi; A VI, 4, 538; transl. 
Loemker (1989b, 229))

From here emerged Leibniz’s suspicion that traditional categories were not well 
constituted and that there should be a process of constructing praedicamenta from 
simple notions in a more accurate way. This process could then be reproduced on 
each level and mimic the production of words and sentences from an alphabet 
(which Leibniz saw as a kind of “combination”). This is the famous theme of the 
“alphabet of human thoughts”:

It seemed to me (…) that this could be achieved universally if we first had the true cat-
egories for simple terms and if, to obtain these, we set something new in the nature of an 
alphabet of human thoughts, or a catalogue of the highest genera or of those we assume to 
be the highest, such as a, b, c, d, e, f, out of whose combination inferior concepts may be 
formed ( ibid.).

This account, written in the 1680s, is not merely a historical reconstruction by Leib-
niz. On the contrary, it refers directly to the De Arte Combinatoria (1666), and 
particularly to the sections concerned with the application ( usus) of problems dealt 
with in the first part of the treatise. The general program is presented there as a re-
newal of the “analytical part” of Logic ( partem logices Analyticam) and one of the 
main points of reference is the composition of propositions through basic “names” 

8 “We can make the analysis of thoughts perceptible and conduct it as if by some mechanical 
guide, since the analysis of characters is something that is somewhat perceptible. Indeed Analysis 
of characters occurs when we substitute certain characters for others, which are equivalent to the 
former in their use.” ( Analysis Linguarum (September1678); A VI, 4, 102).
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proposed by Hobbes at the beginning of the De Corpore (GP IV, 46). In the tenth 
application, after a long discussion of Lull’s art, Leibniz makes a more explicit 
reference to the Hobbesian model as a kind of computation; he then proposes a 
numerical model, based on the parallel between the decomposition of a term and 
the decomposition of a number into its factors (GP IV, 64–66). This analogy is also 
transcribed through an alphabetical model and the project of a scriptura universalis 
(GP IV, 72).

Even if these connections are still based on mere analogies, they nonetheless 
give the main direction of a program which Leibniz would describe, in a letter writ-
ten to Duke Johann Friedrich in 1671, as “to do in philosophy what Descartes and 
others have done in arithmetic and geometry by means of algebra and analysis” 
(A II, 1, 160). Although “analysis” has a very broad meaning in Leibniz’s work and 
although it is not clear that one can easily seize a unity behind this term, this pro-
gram provides us with a first coherent approach to a sound understanding. It should 
be noted that the term “analysis” is used in the De Arte Combinatoria not only to 
designate the “analytical part” of logic based on “analysis of notions”, but also sym-
bolical algebra as it was used to solve geometrical problems after Descartes9. From 
what we have seen above, the analogy between mathematical and logical “analysis” 
is first grounded on the basic operation of a decomposition into (an alphabet of) 
simple entities and (re)composition (of truths) on the basis of rules of combination 
or computation.

It is very tempting to see this first set of features as an ideal which Leibniz pur-
sued throughout the whole of his philosophical work. Reconsidering the De Arte 
Combinatoria in 1691, after it had been republished without his consent, Leibniz 
still acknowledged its importance in having spread the first seeds of the true ars in-
veniendi—the same topic as in the letter to Elisabeth. He clearly related those early 
efforts to the general project of an “analysis of thoughts” by means of a reduction 
of complex propositions to an alphabet of primitive notions10. Moreover, Leibniz 
not only continued exploring different ways of constituting a catalog of basic no-
tions up to the end of his life—be it in projects of a general Encyclopedia or in initia 
of different sciences, in particular Geometry—, but he also elaborated a theory of 
knowledge, which gave a very important role to this “analysis of thoughts”.

As is well known, this theory was first publicly presented in the Meditationes 
de cognitione, veritate et ideis, although it had already emerged during the stay 
in Paris11. It subsisted, at least partially, until the time of the Nouveaux Essais. Its 
basic structure was given by a series of criteria meant to guide the “decomposition” 
of notions and to provide a precise meaning for the terms used by the Cartesians 

9 “This is the origin of the ingenious specious analysis which Descartes was the first to work out, 
and which Frans van Schooten and Erasmus Bartholinus later organized into precepts; the latter 
in what he calls the elements of a universal mathematics. Analysis is thus the science of ratios and 
proportions, or of unknown quantity, while arithmetic is the science of known quantity, or num-
bers” (GP IV, 35; transl. Sasaki (2003, 298)).
10 Novas complures meditationes non poenitendas, quibus semina artis inveniendi sparguntur, (…) 
atque inter caeteras palmariam illam de Analysi cogitationum humanarum in Alphabetum quasi 
quoddam notionum primitivum (A VI, 2, 549).
11 See Picon (2003).
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when they claimed that one should rely on “clear and distinct ideas” and try to re-
duce complex judgment to them12. According to Leibniz, a notion is clear when we 
can recognize it without necessarily being able to decompose it into its distinctive 
characteristics; it is distinct when we can decompose it into its distinctive charac-
teristics (i.e. what suffices to distinguish it from other notions) or when it is its own 
characteristic (i.e. when it is already a primitive notion, with no prerequisite). In the 
case of a complex notion, to have a distinct knowledge of that notion does not mean, 
however, that we actually possess a distinct knowledge of the characteristics enter-
ing into it. This kind of knowledge, although distinct, can therefore still be symbolic 
or blind, but “if all which enters into a distinct knowledge is in its turn distinctly 
known, i.e. if the analysis can be conducted through to an end, then this knowledge 
is adequate”13.

As is obvious from this description, adequate knowledge is not possible without 
concomitant knowledge of the fact that the analysis is complete. This seems to im-
ply that we have at the same time access to primitive notions, i.e. notions which are 
their own characteristic. In this picture, the “alphabet of human thoughts” is not just 
a program: its realization, or at least partial realization, seems a necessary condition 
for any adequate knowledge whatsoever. This would explain why Leibniz spent a 
lot of time and energy trying to isolate what he calls the initia of different sciences, 
especially in mathematics, where it was supposed to be easier to realize.

This “analytical” model is also present in the way Leibniz pictures not only no-
tions, but propositions and reasoning. This is the ground for the famous argument 
according to which many truths which could appear to be “self evident” are in 
fact demonstrable. One should always try, Leibniz argues, to analyze truths further 
until one reaches “identicals” (for example: tautologies of the form A is A). Thus 
a famous passage of the Nouveaux Essais shows that propositions like “2 + 2 = 4” 
are not immediate and can be proved by means of definitions and axioms14. More 
generally, the very definition of a necessary truth or “truth of reason” is tied to its 
“analytical” nature: “When a truth is necessary, its reason can be found by analysis, 
resolving it into simpler ideas and simpler truths until we reach the primitives” 
( Monadology § 33; GP IV, 612). Patching these different pieces together, one could 
then easily come to the conclusion that Leibniz never gave up a certain “analytical” 

12 More than targeting at Descartes himself, the model of “Cartesian” logical analysis aimed at by 
Leibniz here is the one provided by Arnauld and Nicole in their Logique (1662).
13 Meditationes de Cognitione, veritate et ideis (A VI, 4, 587).
14 “Two and two are four is not quite an immediate truth. Assume that four signifies three and one. 
Then we can demonstrate it, and here is how.
Definitions:
(1) Two is one and one 
(2) Three is two and one 
(3) Four is three and one 
Axiom: If equals be substituted for equals, equal remains. 
Demonstration:
2 and 2 is 2 and 1 and 1 (def. 1) 2 + 2
2 and 1 and 1 is 3 and 1 (def. 2) (2 + 1) + 1
3 and 1 is 4 (def. 3) 3 + 1
Therefore (by the axiom) 2 and 2 is 4, which is what was to be demonstrated
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model of “perfect knowledge” based on the possibility of decomposing complex 
judgments into simpler ones, until one reaches primitive notions15.

While I do not want to deny that this picture was very important in Leibniz’s 
thought and that it remained in the background of many of his projects, my aim in 
this paper is to bring into this picture some nuances. I want to show not so much that 
this kind of model is not pertinent, but that it is only one amongst other models of 
“perfect knowledge”. In particular, one should not conflate the reduction to “iden-
ticals” as presented in the model of “analytical” proofs with the reduction to “sim-
ple notions” as characterizing accurate knowledge, although the two may possibly 
coincide (when the “identicals” under consideration happen to involve primitive 
notions)16. As I will argue in the following section, Leibniz saw very quickly how 
difficult, if not impossible, it was to reach a complete analysis of notions—even in 
the simple case of natural numbers. Reflecting on this issue, he came to realize that 
knowledge can be perfect without a complete analysis of the notions involved in it 
and he elaborated other models of logical analysis.

1.2  Doubts

My goal is not to enter into the details of what I have presented cum grano salis as 
“Leibniz’s program”, but to emphasize first that this program underwent very early 
a profound critique by its alleged main proponent. For example, in a text dedicated 
to the “Elements of thoughts” ( De Elementis cogitandi), which was presumably 
written in the spring of 1676, Leibniz starts by claiming that “if it is true that there 
is a perfect demonstration, i.e. one which leaves nothing unproven, then it neces-
sarily follows that some elements of thought must exist, since the demonstration 
will be perfect only when everything is analysed”. This seems to be an orthodox 
description of what we have seen as his “grand program”. However, he adds im-
mediately a startling caveat: “But I realize now that this is false”! He then explains 
this quite radical change of view in the following way: “a demonstration is perfect 
as soon as one can reach identical [propositions], which can happen even though 
everything is not analysed. For even notions which are not absolutely simple (like 
the parabola, or the ternary) can be stated from one another”17. In the terminology 
of the Meditationes, it is possible to have true knowledge which is not adequate 

15 As is well known, Leibniz never uses the expression “analytical proposition” which would come 
to have such an importance in later philosophy. Nonetheless, he talks of “analytical truths” (ana-
lyticae veritates) in order to designate truths which can be analyzed into simple terms and therefore 
expressed by natural numbers (A VI, 4, 715).
16 The role of the reduction to “identicals” in Leibniz’s mathematical practice is the subject 
of another paper of mine, which could be considered as a continuation of the present one cf. 
 Rabouin (2013).
17 A VI, 3, 504; my emphasis. Note that Leibniz explicitly mentions a case in which the notions 
are not analyzed in contrast to a case in which they would be assumed to be already analyzed, i.e. 
free of any potential contradiction.
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and this possibility is opened by the very existence of symbolic thinking. This is of 
importance, since according to the Meditationes, we make use of symbolic thinking 
“almost everywhere”: “in fact, if the concept is highly composed, we cannot think 
of all the notions entering it at the same time” (A VI, 4, 588; my emphasis).

In a paper written during the same period as De Elementis cogitandi and dedicat-
ed to investigating the “first propositions and first terms”, Leibniz sets out another 
important warning:

We cannot easily recognise indefinable primary terms for what they are. They are like 
prime numbers, which we have hitherto been able to identify only by trying to divide them. 
Similarly, irresoluble terms could be recognised properly only negatively and provisionally. 
For I know one criterion by which one can recognise resolubility. This is as follows: when 
we come across a proposition which looks necessary, but has not been demonstrated, it 
infallibly follows that this proposition contains a definable term (provided that it is neces-
sary). So we must try to give this demonstration, which cannot be done without finding the 
 definition in question. By this method, letting no axiom go without proof (except  definitions 
and identicals), we shall arrive at the resolution of terms, and the ultimately simple ideas. 
(“Sur les premières propositions et les premiers termes” (1676); A VI, 3, 436; my emphasis)

Interestingly enough, he then draws a parallel with the empirical sciences:
You will say that this could go on to infinity, and that new propositions could always be 
proved, which would oblige us to look for new resolutions. I do not believe so. But if 
it were the case, it would not matter, since by this method we would not have failed to 
have perfectly demonstrated all our theorems, and the resolutions which we would have 
performed would suffice us for an infinity of valid practical inferences. Just as in natural 
science we should not abandon experimental research because of its potential infinity, since 
we can already make perfectly good use of the results we have so far obtained. ( ibid.; my 
emphasis)

These texts seem to indicate that Leibniz gave up very early the dream of establish-
ing first a good connection between notions and judgment, before pursuing the re-
form of the ars inveniendi. This is quite explicit in another fragment from the same 
period in which Leibniz carefully distinguishes between what he calls “analyse des 
choses” and “analyse des vérités”:

It is very difficult to achieve the analysis of things, but it is not so difficult to achieve the 
analysis of truths needed. Since analysis of truth is achieved as soon as one has found a 
demonstration: and it is not always necessary to achieve the analysis of the subject or of 
the predicate to find the demonstration of a proposition. Most of the time, the beginning of 
the analysis of a thing is enough to reach the analysis or perfect knowledge of the truth that 
we get of this thing18.

One could consider this amendment not to be a substantial one: it could just state 
that the analysis of notions and the analysis of truths can be conducted separately, 
before they are merged in the final state of the research. But the Meditationes makes 

18 “Il est très difficile de venir à bout de l’analyse des choses, mais il n’est pas si difficile d’achever 
l’analyse des vérités dont on a besoin. Parce que l’analyse d’une vérité est achevée quand on en 
a trouvé la démonstration: et il n’est pas toujours nécessaire d’achever l’analyse du sujet ou du 
prédicat pour trouver la démonstration de la proposition. Le plus souvent le commencement de 
l’analyse de la chose suffit à l’analyse ou connaissance parfaite de la vérité qu’on connaît de la 
chose” ( De la Sagesse (1676); A VI, 3, 671; my emphasis).
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it clear, by mentioning the case of notions entailing a hidden contradiction, that a 
provisional separation was highly problematic. I will come back to this situation 
later since it is precisely the context in which mathematical proofs of impossibil-
ity reveal their importance in the analysis of notions. But let me first emphasize 
the consequence of this fact: if true knowledge can be symbolic, it should not be 
forgotten that prima facie instances of symbolic knowledge can turn out to be false, 
i.e. that we can manipulate clear and distinct notions which, after analysis, reveal a 
contradiction. This leads to a rather dramatic conclusion: there is no guarantee that 
analysis of notions and analysis of truth, when conducted separately, can finally 
merge into harmonious universal knowledge. Analysis of truth, despite its name, 
does not give access to the true “content” of the propositions involved. It is always 
possible that a contradiction lies hidden in the combination of notions involved 
in the reasoning. This is precisely one of the major objections that Leibniz raised 
against Descartes’ demonstration of God’s existence.

Leibniz’s position might have been recognized more clearly, had there not been 
the unfortunate tendency to cut the quotations at the crucial moment where Leibniz 
states explicitly the kind of caveat we encountered in the texts from 1675 and 1676. 
Let us return to the Meditationes where knowledge of numbers serves as the only 
example of adequate knowledge. This example provides an interesting connection 
to the theme of analytic truth presented in the Nouveaux Essais and, at the same 
time, gives the impression that we have here a very simple case of perfect analytical 
knowledge. But it is rare that Leibniz’s precise declaration is given in its entirety: “if 
the analysis can be conducted through to an end, then the knowledge is adequate; 
whether man can give a perfect example of this I do not know, even if the knowl-
edge of numbers certainly comes very close to it” (A VI, 4, 587; my emphasis).

The same should be said of the often quoted passage from “La vraie méthode” 
(1677) where Leibniz states his famous calculemus and describes what is often 
presented as the background to his general program, the possibility of reducing all 
human controversies to some computations:

Whence it is manifest that if we could find characters or signs appropriate for expressing 
all our thoughts as definitely and as exactly as arithmetic expresses numbers or geometric 
analysis expresses lines, we could in all subjects in so far as they are amenable to reasoning 
accomplish what is done in Arithmetic and Geometry. For all inquiries which depend on 
reasoning would be performed by the transposition of characters and by a kind of calcu-
lus, which would immediately facilitate the discovery of beautiful results. For we should 
not have to break our heads as much as is necessary today, and yet we should be sure of 
accomplishing everything the given facts allow. Moreover, we should be able to convince 
the world what we should have found or concluded, since it would be easy to verify the 
calculation either by doing it over or by trying tests similar to that of casting out nines in 
arithmetic. And if someone would doubt my results, I should say to him: ‘Let us calcu-
late, Sir’ and thus by taking to pen and ink, we should soon settle the question. (“La vraie 
méthode”, 1677; A VI, 4, 3; transl. Wiener, 15)

This is a beautiful program indeed, but it is one which seems dramatically mutilated 
if we do not also read the following passage: “I still add: in so far as the reasoning 
allows on the given facts. For although certain experiments are always necessary 
to serve as a basis for reasoning, nevertheless, once these experiments are given, 
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we should derive from them everything which anyone at all could possibly derive” 
( ibid.). The emphasis on the necessity of certain experiments as basis for knowl-
edge is surprising in this context and modifies significantly the picture given when 
mentioning the first part of the text only.

All these passages lean in the same direction: Leibniz supported a much more 
nuanced and flexible conception of the organization of knowledge than that which 
could be inferred from the “program” sketched in Sect. I.1. In particular, he is very 
clear, at least after his arrival in Paris, that perfect knowledge—the term occurs 
regularly in our quotes—can be achieved without a complete analysis of notions. 
More than that, it is not even established that we may possess one single example of 
a truly complete analysis of notions: exemplum perfectum nescio an homines dare 
possint. My aim, in the next sections, is to underline the role played by mathemati-
cal practice in the development of these ideas. By so doing, I hope to shed light on 
the declaration to Elisabeth from 1678 about the connection between mathematics 
and the constitution of a general ars inveniendi or “true logic”.

2  Behind the Doubts

In this section, I will put particular emphasis on two types of mathematical examples: 
first, we have the role played by the impossibility results mentioned to Elisabeth, 
especially the “number of all numbers” and the “quadrature of the circle”; second, 
we have the research undertaken in number theory. This latter example is mentioned 
in similar texts than the letter to Elisabeth such as the letter to Malebranche writ-
ten in January 167919. One common point to these examples is that they are taken 
neither from the new “transcendental geometry” nor from ars combinatoria, which 
are more often than not considered as the main, if not only, mathematical influences 
in Leibniz’s philosophical reflections. By focusing on other practices, I hope to give 
not only a larger view of Leibniz’s conceptions, but also a picture closer to that he 
presented in 1678 regarding the role of mathematics in the constitution of a general 
ars inveniendi.

2.1  The “Number of all Numbers”

It is well known that Leibniz had no real training in mathematics before he ar-
rived in Paris and that his mathematical awakening was partly due to his encounter 
with Christiaan Huygens. It is Huygens who opened the eyes of the young German 
scholar to the modern mathematical literature and who talked to him about a prob-
lem he encountered when dealing with probabilities: how to prove that the sum of 

19 A II, 1, 677; see below note 46.
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the inverse of the “triangular numbers”, i.e. the third line in what is now called the 
“Pascal Triangle”, is equal to two (Fig. 1).

Generalizing techniques regarding the summation of infinite series found in 
Grégoire de Saint Vincent, Leibniz was able not only to give an answer to Huy-
gens’ problem (which the Dutch mathematician already knew by other means), but 
also to calculate all of the sums in the “inverse” Pascal Triangle, which he would 
later coin the “Harmonic Triangle”20. Huygens was evidently impressed by these 
results, coming as they did from a near beginner in mathematics. For his part, Leib-
niz thought that results which impressed one of the greatest mathematicians of the 
time would suffice to insure his glorious entrance into the Parisian mathematical 
community21. The result of these early efforts was transcribed in a text written at 
the end of 1672 in the form of a letter to Jean Gallois, the editor of the Journal des 
Sçavans and entitled Accessio ad arithmeticam infinitorum22. It is in this text that 
one can find the Leibnizian proof of the impossibility of a “number of all numbers”.

20 On the methods used by Leibniz see Hofmann (1974, 15–20).
21 This was of course before his first journey to London where he came to realize just how limited 
his knowledge of mathematics in general, and of series in particular, actually was. See S. Probst’s 
paper in this volume.
22 A II, 1, 342–356. Part of the story is told by Leibniz himself at the beginning of the text. In fact, 
the paper was not submitted because the journal ceased publication for two years after December 
1672.

Fig. 1  Pascal’s Triangle as 
transcribed by Leibniz in the 
Accessio. (A II, 1, 345–346)

 



The Difficulty of Being Simple 59

The Accessio consists of a remarkable mixture of mathematical and philosophi-
cal reflections. The first part, after a general summary of what Leibniz thought to 
be the knowledge on infinite series at that time, presents his own results, namely 
the calculation of the sums for all the columns of the harmonic triangle (Fig. 2). He 
emphasizes the fact that he can then produce a general rule: the sum of all numbers 
in a column of the harmonic triangle is equal to the ratio of the “exponents” of the 
two preceding ones. The third column being of exponent 3, its sum will therefore 
be equal to 2/123.

As can be seen in the above table, Leibniz’s regula universalis led him to an 
audacious interpolation: the sum of the first column, which is the sum of all units, 
should be equal to the “exponent” of the preceding column over the preceding one, 
which gives 0

0
 (Leibniz does not consider that there could be a “− 1”-column; he 

also interprets 0
0

 as giving the value 0). This is the starting point of the philosophi-

cal reflections developed in the second part of the paper. In it, Leibniz dwells upon 

23 As Pascal already put it, the rule of formation for the triangle does not hold that the first line be 
generated by unity. Leibniz therefore gives a more general result concerning any series of fractions 
formed with an arbitrary generator of a Pascal Triangle as numerator and a line of the triangle as 
denominator: “Regula Universalis haec est: Summa seriei fractionum, quarum numerator est gen-
erator, nominatores sunt termini cujusdam progressionis Arithmeticae Replicatae est fractio seu 
ratio cujus numerator seu antecedens (…) est exponens seriei proximae praecedentis seu penul-
timae (data scilicet supposita ultima) nominator vero seu consequens est exponens seriei proxime 
praecedentis praecedentem, seu antepenultimate” (A II, 1, 346).

Fig. 2  The sums of the 
reciprocal figurate numbers. 
(A II, 1, 347)
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the fact that he has produced a demonstration that the “sum of all units”, i.e. the 
“maximal number” or “the number of all numbers” (since any natural number can 
be expressed as a certain finite sum of units) amounts to … “nothing”24. It therefore 
represents an impossible notion (the extension of it being empty).

His main goal in the second part of the letter is then to refute Galileo’s argument, 
based on the famous paradox which now bears his name25. The Pisan mathematician 
considered that infinity was comparable to unity and was therefore a “non-quanti-
ty”. His conclusion rested on the fact that in infinity the axiom totum esse majus 
parte fails. Leibniz’s own proposal is that infinity is more properly comparable to 
zero and therefore the axiom “the whole is greater than the part” holds universally. 
In effect, the only exception which can be found amounts to “nothing”. This belief 
is also grounded on the fact that one can produce a demonstration of this so-called 
axiom (which Leibniz undertakes to give at the close of the letter).

Leibniz’s enthusiasm for this result is quite surprising for the modern reader, not 
only because it is by far the least convincing result of the paper, but also because 
at first glance it seems mathematically quite trivial. Indeed one could consider that 
the impossibility of the greatest number which would be the “sum of all units” is 
evident by the construction of natural numbers. If not, it would, in any case, be a 
simple consequence of Euclid’s Elements IX.20 which proves that “the prime num-
bers are more than an assigned multitude of prime numbers”26. How could Leibniz 
be so proud to have produced a proof of the fact that there is no largest number? I 
would propose two possible and complementary replies:

• first, one could argue that Euclid’s and Leibniz’s proofs are fundamentally differ-
ent in that the first proves that there is a potential infinity of prime numbers (and 
therefore of natural numbers) whereas the second proves that there cannot be an 
actual infinity of them27.

• second, one could argue that Leibniz was impressed not so much by the math-
ematical but by the philosophical consequences of this result.

The first answer is largely confirmed by the fact that Leibniz, although he would 
rely on other demonstrations, would always mention this result in later texts in 
the context of the denial of the existence of an actual infinite in mathematics28. 

24 “Numerum istum infinitum sive Numerum maximum seu omnium Unitatum possibilium sum-
mam, quam et infinitissimum appellare possis, sive numerum omnium numerorum esse 0 seu Ni-
hil” (A II, 1, 352).
25 This “paradox” is modeled on the fact that one can establish a one to one correspondence be-
tween natural numbers and their squares (or their cubes), where it seems that there are “more” 
of the former than the latter (not all natural numbers are squares). See S. Levey’s paper in this 
volume.
26 I thank Marco Panza for having pressed me on this issue when I first presented this study.
27 As is well known, Euclid’s proof states that whatever prime number is considered to be the larg-
est, it is always possible to construct a larger one.
28 See, for example, the letter of late August 1698 to Johann Bernoulli: “Many years ago I proved 
beyond any doubt that the number or multitude of all numbers implies a contradiction, if taken as 
a unitary whole. I think that the same is true of the largest number, and of the smallest number, or 
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The second answer emerges naturally from the last section of the letter, devoted 
to a lengthy discussion of the fact that one should not accept any self evident truth 
except definitions, being as they are mere postulations29. In particular, one should 
always try to find demonstrations of the axioms, following the example of the pre-
ceding discussion on the axiom totum esse majus parte.

In other places Leibniz would point to further philosophical consequences close-
ly related to the result mentioned in the letter to Gallois. An important testimony is 
given in the letter to Oldenburg, dated 28 December 1675, in which he states:

But we seem to think of many things (though confusedly) which nevertheless imply [scil. 
contradiction]; for example, the number of all numbers. Hence we should be strongly suspi-
cious about notions like infinity, minimum and maximum, the most perfect, and even total-
ity itself. Nor should we trust these notions until they have been measured by that criterion, 
which I seem to recognize, and by which truth is rendered stable, visible, and, so to speak, 
irresistible as if it were by a mechanical procedure.30

We find here the general strategy which is at the core of Leibniz’s argument against 
Descartes in the letter to Elisabeth from 1678—and also at the center of the ar-
gumentation in the Meditationes: some notions like “the maximum of perfection” 
entering into the so-called “ontological proof” ought to be treated with caution since 
they may entail, after logical analysis, some hidden contradiction. When manipu-
lating them, one should therefore always accompany the “blind” reasoning with a 
demonstration of their possibility (or impossibility). The fact that the only example 
given to Oldenburg is that of the “number of all numbers” confirms the crucial role 
played by this mathematical example in the development of Leibniz’s philosophical 
ideas.

Let me develop this aspect in more detail and thereby consider for the sake of 
argument that Leibniz’s proof in the Accessio, as he thought it, is valid. What does 
it indicate in terms of theory of knowledge? This is not obvious if we do not keep in 
mind the general setting of Leibniz’s initial “program”. The core of this program, as 
we have seen, is the following: if we succeed in analyzing our knowledge until we 
reach simple notions and if we are very cautious about combining them according 
to simple intuitive relationships, we should succeed in mastering the totality of all 
potential knowledge—which could be acquired by mere “combinations” or compu-
tations31. Now, what is the relationship between this general philosophical program 

the lowest of all fractions. The same has to be said about these, as about the fastest motion and the 
such-like” (GM III, 535, transl. MacDonald Ross (1990, 129)). On the impossibility of an actual 
infinite number, see also Essais de Théodicée (GP VI, 90).
29 “exceptis scilicet ipsis definitionibus, quae ut toties in suis scriptis inculcat restaurator philoso-
phiae Galilaeus, arbitrariae sunt, nec falsitatis, sed ineptiae obscuritatisque tantum arguendae” 
(A II, 1, 351).
30  Multa videmur nobis cogitare (confuse scilicet) quae tamen implicant. Exempli causa: Nume-
rus omnium numerorum. Unde valde suspecta esse debet nobis notio infiniti, et minimi et maximi, 
et perfectissimi, et ipsius omnitatis. Neque fidendum his notionibus, antequam ad illud criterion 
exigantur, quod mihi agnoscere videor, et quod velut Mechanica ratione, fixam et visibilem, et ut 
ita dicam irresistibilem reddit veritatem (A II, 1, 393).
31 Even if it is dubious that this conception was genuinely Cartesian, it is certainly very close to 
the kind of representation of knowledge presented in the Regulae ad directionem ingenii. In the 
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and the result put forward in the Accessio? It is, I think, quite clear: the numerus 
maximus as the “sum of all units” gives us a very simple counter-example of a no-
tion which can be decomposed into apparently simple intuitive notions (unity) and 
intuitive relations (addition of units), but of which the synthesis is nonetheless im-
possible. This is precisely what Leibniz explains to Oldenburg: one should be very 
cautious with some notions that look perfectly meaningful, but which, after careful 
analysis, reveal themselves to be impossible.

One could object that the problem here comes from the recourse to infinity in 
the process of synthesis. Because of this recourse to infinity, it would be a typi-
cal case for which the “Cartesian” model of analysis would not claim to work. 
But Leibniz would have no difficulty in formulating other examples of impossible 
notions which do not involve recourse to infinity. This is the case of the famous 
regular decahedron mentioned in the Nouveaux Essais sur l’entendement humain 
(III, 3, § 15; GP V, 272). The situation is exactly the same: I can think of a regular 
decahedron, define it clearly and distinctly as a polyhedron composed of ten identi-
cal faces, break it down into apparently simple intuitive notions, namely segments 
forming ten triangles glued to one another in a diamond shape (such ten sided dia-
monds do exist in nature) (Fig. 3). More than that, I can produce true reasoning 
about it, such as calculating the relationship between the number of vertices, edges 
and faces—what we now would call its “Euler number”. This is a very nice and 
simple example of the danger of “blind” or “symbolic” thinking. In this case, it en-
tails, in effect, an impossible notion: there is no such thing as a regular decahedron 

Regulae Descartes reduced the entirety of knowledge, at least such as is accessible to certitude, to 
two basic operations: intuition and deduction (these being considered as chains of directly evident 
inferences). Although Leibniz read the Regulae only at the beginning of 1676, this model was 
clearly presented by the Logique de Port-Royal (1662) as the paradigm of the new, that is “Carte-
sian”, logical “analysis”. The comparison of the fragment De la Sagesse (1676) with this Cartesian 
concept is very interesting. Leibniz takes up the same model, but with the important distinction be-
tween “analysis of things” and “analysis of truth” mentioned in the previous section, i.e. he points 
to a possible gap between analysis of notions and truth based on simple notions.

Fig. 3  A regular decahedron? 
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and, more generally, as known since Euclid, no other (convex) regular polyhedra 
than the five constructed in the Elements32.

Notwithstanding this latter formulation, another problem is that Descartes 
himself used notions like the maximum of all perfection in his demonstration of 
God’s existence. Here we find again the problem mentioned in our introduction: 
if mathematics claims to give us the model of a general ars inveniendi, we should 
be aware that its use in metaphysics often implies infinitary arguments. So either 
we have to give up the dream of a general method, or we need to be able to build 
from  within mathematics a model of analysis adapted to these kinds of situations. 
We are therefore in a position to better understand why Leibniz mentions this type of 
 impossibility result to Elisabeth and why he does not take examples from his new 
Calculus. Not only are they directly connected to the default which Leibniz finds 
in Descartes demonstration of God’s existence, but they also reveal the intrinsic 
 difficulties of what Leibniz takes to be a Cartesian model of analysis33.

2.2  The Quadrature of the Circle

The case of the quadrature of the circle is very similar to that of the “number of all 
numbers” in that Leibniz prepared, in 1675–1676, a treatise which was never sent 
for publication and which may likewise reveal the hidden motivation for many of 
his declarations. I refer to his De quadratura arithmetica circuli ellipseos et hyper-
bolae. Thanks to the work of Leibniz scholars, we now have at our disposal not only 
an edition of the treatise (E. Knobloch (1993)), but also the documents concerning 
the discovery of the arithmetical quadrature of the circle from the beginning of 1673 
onwards34.

My purpose is not to enter into the positive part of the construction, that is to 
say the discovery of the famous series for π/4 to which Leibniz eventually gave his 
name. I will only focus on its pars destruens, which is the result mentioned in the 
letter from 1678. It consists of a proof that no algebraic quadrature of the circle is 
possible. Once again, I will consider, for the sake of argument that Leibniz’s proof is 
valid, even if we know that in order to be so it would require a conceptual apparatus 
which was not accessible before the nineteenth century.

32 The last demonstration of Euclid’s Elements, in Book XIII, establishes precisely the  impossibility 
of constructing another one. Note that the passage devoted to the chiliogon in the Meditationes 
is in the same vein. Leibniz turns Descartes’s example back on him, by noticing that the problem 
is not linked to the use of sensible imagination, but to the use of symbolic thinking in general (be 
it through words or through diagrams). Because we don’t proceed to the analysis of the notions 
involve to its end, we therefore have no guarantee that this notion does not imply a contradiction. 
This becomes obvious if we replace polygons by regular polyhedra in the example.
33 In contrast, the arguments taken from the new analysis simply indicate that Descartes’s concep-
tion of “geometrical curves” was too narrow, without establishing clearly that his general “meth-
od” was responsible for this.
34 They constitute a complete volume of the Academy Edition. See volume VII, 6: Arithmetische 
Kreisquadratur 1672−1676.
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The proof is presented in the Quadratura as no less than the climax of the whole 
treatise ( velut coronis erit contemplationis hujus nostrae)35. It consists in showing 
that there cannot be a “more geometrical” expression of the quadrature of the circle 
than the one given by an infinite series36. The argument is very simple: suppose, 
says Leibniz, that we possess an algebraic formula expressing the relationship of 
the tangent t to a given arc a, for example, a general equation of degree three in two 
variables in which some coefficients may be equal to zero (this would be the same 
as knowing how to “rectify” the circle, since the formula can be applied to an arc 
coinciding with the semi-circle). Since this equation holds for any arc, it would then 
imply that we also know the relationship between a tangent t and an arc smaller 
than the one which we chose, say an arc b of one eleventh of a. The equation in 
b is still the general equation (in our example a cubic). But this would mean that 
we can reduce the problem of the division of an angle into eleven parts to a third 
degree equation. This is absurd since Vieta’s work Sectiones angulatores has dem-
onstrated, according to Leibniz, that the division of an angle into a prime number 
of equal parts amounts to an equation which is not reducible to a lesser degree than 
the given prime number chosen37. Leibniz’s argument, carried out for an equation 
of degree three, generalizes immediately: for any algebraic equation of degree n, 
we would just have to choose a prime number bigger than n to encounter the same 
contradiction.

This example is very important because it is situated, once again, on a Carte-
sian foundation. As Leibniz very nicely puts it in the letter to Elisabeth, even if 
some Cartesians might say that we cannot talk meaningfully of something which 
is impossible (because we can have no idea of what is impossible)38, they would 
nonetheless need to talk meaningfully of impossible things in order to assess … 
their impossibility. The best example is given by the fact that Descartes had force-
fully emphasized that the quadrature of the circle was impossible. Indeed such a 
statement was crucial in the delimitation of what was truly “geometrical” according 
to him. Leibniz is perfectly right to point out that this example shows the limitation 
of any Cartesian attempt to base knowledge on “clear and distinct” ideas, known in 
and of themselves. Indeed, either we do not have a “clear and distinct” idea of the 
quadrature of the circle, which means that we simply do not know anything about 
it, including whether or not it belongs to the realm of geometry. Or we do have a 
clear and distinct idea of it, but that would mean to have a “clear and distinct” idea 

35 It is the last of 51 proposition and its last words are: “Impossibilis est ergo quadratura generalis 
sive constructio serviens pro data qualibet parte Hyperbolae aut Circuli adeoque et Ellipseos, 
quae magis geometrica sit, quam nostra est. Q.E.D.” (Parmentier 2004, 354).
36 “Geometrical” should be understood here in the Cartesian sense of “geometrical curve”, i.e. 
one which can be expressed through a finite algebraic formula. Leibniz also has other arguments, 
which I shall not go into here, by means of which he is able to defend the fact that his particular 
series is better than others.
37 This latter claim is not substantiated by Leibniz and one might doubt whether Vieta could be 
said to have produced a demonstration of this fact.
38 Leibniz would agree with them on this point (which is why he carefully distinguishes between 
having a “notion” and having an “idea” of something).
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of something which is … impossible. This is the core of Leibniz’s objection to 
Descartes’s demonstration of God’s existence: “clear and distinct” knowledge is not 
enough. When the analysis is not conducted to its end, it should be accompanied by 
a proof of the possibility of the notion involved in the reasoning.

Our two examples both proceed in the same direction: analysis of notions is not 
sufficient to ground perfect knowledge. We rarely reach truly simple notions and 
most of the times retain in our primitive terms hidden assumptions which reveal 
themselves only in the synthesis. This is why, as Leibniz sometimes puts it: “il n’est 
pas en nostre pouvoir de faire des combinaisons à nostre fantaisie”39. “The sum of 
all units” is a well-formulated mathematical sentence, just as the “algebraic quadra-
ture of the circle” is, but the states of affairs to which these statements seem to refer 
do not exist. This is not just a matter of “evidence”: in both cases, we have at our 
disposal proofs of this impossibility. But, as a consequence, we need to be able to 
reason clearly and distinctly about impossible objects in order to demonstrate their 
impossibility. This situation suffices to cast serious doubt on the initial program, or 
at least on the first and naive interpretation of it. It shows that the “combination” 
itself is not a transparent operation on concepts, if we did not reach perfectly simple 
elements. It cannot therefore be represented by a simple juxtaposition of letters. 
There is no purely logical incompatibility between the ingredients of a triangle, for 
example, the three sides which compose it, and the number ten. But when I “com-
bine” ten triangles in order to construct a diamond, I stumble upon an impossibility 
which is caused by the special kind of synthesis involved in this “combination”.

Moreover, this general situation shows that the reduction of synthesis to a mere 
computation ( Calculemus!) would not be insured by the analysis of notions, as was 
at first expected. In this sense a characteristica universalis would be in exactly the 
same situation as classical Geometry (on which it is precisely modeled): the defini-
tions, axioms and postulates of Euclid’s Elements do not spare one the work of pro-
viding a demonstration that, for example, it is impossible for two circles to intersect 
at more than two points (prop. III, 10 of the Elements). When the proof is produced, 
one could then consider that this impossibility is a direct consequence of the primi-
tive principles, but this is just a retrospective reading of the kind of evidence that 
the proof, and only the proof, has provided. Nothing, in the definition of the circle 
and the principle of Euclidean geometry, prevents you from forming the “blind” 
combination: “the three points of intersection of two circles”. This is a possibility 
that has to be excluded by the work of the proof itself and this proof is not reducible 
to a mere combination of notions (especially in the case mentioned, in which one 
has to rely on a reductio ad absurdum).

39 GP V, 301; Nouveaux Essais III, 6, § 28. The continuation of the sentence being precisely: “au-
trement on auroit droit de parler des Decaedres reguliers” (“otherwise, one would have the right 
to speak about regular decahedra”).



D. Rabouin66

2.3  Prime Numbers

Now, it is also true that the “analysis of notions” contains some difficulties of its 
own, i.e. which are not linked to hidden assumptions revealed by synthesis. The 
most obvious is the fact that it seems particularly difficult to have a general method 
for the detection of simple notions. More dramatically, and more interestingly, it is 
not clear what a “simple notion” is. In this last section, I would like to show that 
mathematical practice also played a role in emphasizing this fact .

As we have seen in the fragment entitled Sur les premières propositions et les 
premiers termes, Leibniz compares the difficulty of finding basic notions with the 
difficulty of recognizing prime numbers. This comparison comes as no surprise. 
One of Leibniz’ ideas in elaborating a first sketch of an algebra of thoughts, already 
set out in the De Arte Combinatoria, was to represent basic notions by prime num-
bers and to represent the composition of notions through the way natural numbers 
can be produced by the multiplication of primes. However, it is not always recog-
nized that this had a ricochet effect on Leibniz’s mathematical practice by orient-
ing his research towards a topic which was not considered as central at the time. 
In contrast to Descartes in particular, Leibniz did not despise number theoretical 
problems. He even devoted a lot of energy to their investigation during his stay in 
Paris. Among these were the problems of ascertaining whether or not a number is 
prime and where to find prime numbers in the scale of natural numbers40. These two 
questions are now considered as basic problems in number theory, but in Leibniz’s 
day this was far from being the case, even amongst mathematicians interested in 
problems of numbers41.

Once again, my aim is not to enter into the technicalities of these questions, but 
to emphasize their philosophical consequences. As Leibniz points out, we do not 
possess a rule for describing exactly where to find the prime numbers on the scale 
of natural numbers—something which is still true today. It is of interest to compare 
this position with that of Pell who was one of the few mathematicians interested in 
these questions at that time and whose work was well known to Leibniz. Pell devot-
ed a lot of energy to the realization of huge tables of prime factors (up to 100,000). 
This endeavor was incorporated into a philosophical program whose aim was to 
find “prime truths” and to organize them into a systematic encyclopedia. This is 
why Pell put a lot of emphasis on the fact that one should produce a “complete and 
orderly enumeration” when producing a table of factors42. His program is very close 
to Leibniz’s and this is why it is particularly interesting to consider the differences 
between them. Indeed, Leibniz did not consider that a “complete and orderly enu-
meration” of prime numbers was sufficient. In the passage from Sur les premières 

40 See Ouverture nouvelle des nombres multiples, et des diviseurs des puissances, January 1676 
(A VII, 1, 576–578); Figuram numerorum ordine dispositorum et punctatorum ut appareant qui 
multipli qui primitivi (A VII, 1, 579–581); De numeris figuratis divisoribusque potestatum (A VII, 
1, 583–586); De natura numerorum primorum et in genere multiplorum (A VII, 1, 594–598).
41 On the history of the study of prime numbers in the seventeenth century, see Bullynck (2010).
42 Bullynck (2010) and Malcolm and Stedall (2005, 263–265).
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propositions et les premiers termes, he even considers that mathematicians of his 
time were able to identify prime numbers only in an empirical way, “by trying to 
divide them”. He then emphasizes the fact that on these matters what we need (and 
are still lacking) is a universal rule.

One could object that this is of no particular concern since we also have a simple 
additive model of natural numbers in which decomposition into units is always 
successful (as opposed to a multiplicative model in which decomposition involves 
prime numbers and the mysteries of their distribution). But that would be a very 
naive approach to the nature of mathematical knowledge. Indeed, the knowledge 
of a mathematical object, natural numbers in this case, is not exhausted by an ad-
equate definition or our ability to derive well known facts such as “2 + 2 = 4”. It 
also involves our ability to find new properties, that is to say, it involves the kind 
of questions which we are able to answer concerning it—a fact that we already en-
countered with the example of the intersection of two circles. Yet it so happens that 
most of the basic questions which one can address concerning natural numbers are 
at the same time very simple to formulate and very difficult to answer. Such is the 
case with some of the problems which interested Leibniz during his stay in Paris: 
to find a number which, after division by three given numbers, would give three 
given remainders; to find two squares equal to a given number; to find three num-
bers such that the sum of two of them is a square and the difference of two of them 
is also a square, etc43. It also happens that these kinds of problems involve more 
often than not questions of divisibility and of primality. In this sense, as is now well 
understood, questions concerning prime numbers and the way of recognizing them 
amongst natural numbers are not just a matter of describing natural numbers: they 
are also tools for use in the resolution of number-theoretic problems and therefore 
in gaining knowledge of their essential properties .

Nowadays, these remarks are trivial for mathematicians. But they were certainly 
not in Leibniz’s time and he even may have been the first to realize their impor-
tance. They provide a general context to the parallel suggested between prime num-
bers and simple notions. The fact that we do not know how to find systematically 
prime numbers in the scale of natural numbers, except by tests and approxima-
tion, does not only concern the difficulty of finding simple elements—a fact which 
could  always be interpreted as an indication of a temporary and purely contingent 
 limitation of our knowledge. It also indicates that we do not master some essential 
mecanisms which enter into the solution of basic questions concerning numbers. 
This is a way of saying that we do not have “perfect knowledge” of some of the 
essential properties of the most simple, or at least apparently most simple, math-
ematical objects. At this point, we should keep in mind that natural numbers are the 
only example provided by the Meditationes of things which “come close” to notions 
capable of being fully analyzed.

This conclusion may possibly sound rather dramatic. What it means is that the 
true nature of arithmetic is to a large degree unknown to us. This is, in fact, explicitly 

43 This last problem occupied Leibniz so intensely that he made no less than thirty attempts at solv-
ing it—around four hundred pages in the Academy Edition. See Hofmann (1969).
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stated by Leibniz, even in later texts: “magna verae Arithmeticae pars hactenus sit 
ignorata” (GM VII, 61)44. Hence the following dilemma: either we have to admit 
that our knowledge of numbers is not certain, because there is  something in our 
understanding of their deep structure which lays hidden to us; or we must consider 
that our knowledge of numbers is certain, but partial. In this last conception, the 
problem is not that we lack a complete analysis—since we do have a complete 
analysis, or at least that which most resembles one—, but that a complete analy-
sis under one consideration (additive model) can lead to a partial knowledge un-
der another one (multiplicative model). This situation is still true: we possess very 
 satisfactory  axiomatic characterizations of natural numbers, but this does not mean 
that we  really understand what a natural number is; this latter fact emerges clearly 
from the enormous difficulties lying in number-theoretic problems45.

That this example belongs to the same line of argument against the Cartesian 
model of “method” as the one Leibniz presented in his letter of 1678 is made clear 
in a letter to Malebranche dating from the same period:

I would like to know if your Mr. Prestet still works in analysis. I hope so, because he 
seems able in it. I recognize more and more the imperfection of the one we have at our dis-
posal. For example, it provides no sure way to solve the problems in Diophant’s  Arithmetic 
[…]. Finally, I could write a book about the fields in which it does not succeed and where 
any Cartesian whosoever could not succeed without inventing some method beyond Des-
cartes’s method46.

44 See also this striking passage from the Nouveaux Essais about prime numbers: “C’est la multi-
tude des considérations aussi qui fait que dans la science des nombres même il y a des difficultés 
très grandes, car on y cherche des abregés et on ne scait pas quelquesfois, si la nature en a dans ses 
replis pour le cas dont il s’agit. Par exemple, qu’y a t-il de plus simple en apparence que la notion 
du nombre primitif? c’est à dire du nombre entier indivisible par tout autre excepté par l’unité et 
par luy même. Cependant on cherche encor une marque positive et facile pour les reconnoistre 
certainement sans essayer tous les diviseurs primitifs, moindres que la racine quarrée du primitif 
donné. Il y a quantité de marques qui font connoistre sans beaucoup de calcul, que tel nombre n’est 
point primitif, mais on en demande une qui soit facile et qui fasse connoistre certainement qu’il est 
primitif quand il l’est” ( Nouveaux Essais IV, 17, § 9, GP V, 470).
45 The demonstration of Fermat’s last theorem was certainly the most spectacular example of this 
fact in recent years, but there are many other examples in present day mathematics. One could 
mention that this is also something which was emphasized by the Bourbaki group in their struc-
turalist manifesto, L’architecture des mathématiques: “[…] in certain theories (for example in the 
theory of Numbers), there exist many isolated results that up till now no one has been able to clas-
sify, nor connect in a satisfactory way with known structures” (Bourbaki 1950).
46 “Je voudrois sçavoir si vostre M. Prestet continue à travailler dans l’analyse. Je le souhaite, 
parce qu’il y paroist propre. Je reconnois de plus en plus l’imperfection de celle que nous avons. 
Par exemple, elle ne donne pas un moyen seur pour resoudre les problemes de l’Arithmetique de 
Diophante […] Enfin, je pourrois faire un livre des recherches où elle n’arrive point, et où quelque 
Cartesien que ce soit ne sçauroit arriver sans inventer quelque methode au delà de la methode de 
des Cartes. (Letter to Malebranche, January 1679; A II, 1, 677). See also A VI, 4, 2047 (1689) and 
Nouveaux Essais IV, 2, § 7: “On n’a pas encore trouvé l’analyse des nombres: Il arrive aussi que 
l’induction nous presente des verités dans les nombres et dans les figures dont on n’a pas encor 
decouvert la raison generale. Car il s’en faut beaucoup, qu’on soit parvenu à la perfection de 
l’Analyse en Geometrie et en nombres, comme plusieurs se sont imaginés sur les Gasconnades de 
quelques hommes excellens d’ailleurs, mais un peu trop prompts ou trop ambitieux” (GP V, 349).
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Even if Leibniz did not mention Diophantine analysis to Elisabeth, it is clear from 
the preceding passage that it represented to his eyes another important example of 
the limitations of Descartes’s “method”.

 Conclusion

The mathematical examples discussed in this paper contain in my opinion two ma-
jor points of interest. First, they are explicitly mentioned by Leibniz when he com-
ments on the relationship between mathematics and philosophy at the end of the 
1670s and the beginning of the 1680s. As I have tried to show, they did indeed play 
a major role in his philosophical reflections during his stay in Paris and continued 
to remain important in his later thought47. Second, these mathematical examples 
provide a much more profound understanding of the doubts expressed in section II 
than those that first come to mind. Indeed it is very tempting to understand the dif-
ficulty related to the analysis notionum as being purely contingent and factual: we 
do not possess a complete analysis of human thoughts and if it were a feasible task 
it would certainly not be an easy one, especially for a single person. But as we saw 
through our examples, this is just one part of the story and perhaps the most superfi-
cial one. In fact, the real difficulty of “being simple” for notions is not only that it is 
difficult to achieve a complete analysis of notions, but that, even if it were feasible, 
it would leave untouched major difficulties which Leibniz encountered very early 
in his mathematical practice.

One of them is linked to the fact that a logical analysis offers no guarantee of 
not producing further contradictions if the analysis is not truly complete or, in other 
words, if the expected synthesis involves constraints which are not purely “logi-
cal”. A regular decahedron is not in and of itself a contradictory notion: its inher-
ent contradiction is attached to specific constraints characterizing the admissible 
constructions in Euclidean Geometry—in the same way that a triangle in which the 
sum of all angles is less than 180° is not in and of itself a contradictory notion, but 
may be incompatible with assumptions given by certain axioms. In other words, the 
problem is not only with the analysis of notions, but with the analysis of axioms (or, 
in Leibniz’s parlance: “proof of axioms”). As we saw above, there is another type 
of difficulty attached to the same fact: as long as one begins with a given charac-
terizations of domains of objects, even a complete analysis offers no guarantee of 
uncovering the “true nature” or “essence” of the objects under study. This is linked 
to the fact that an apparently complete analysis under one perspective could appear 
as incomplete under another one—this may be a reason why Leibniz says in the 

47 This situation has to be contrasted with the fact that Leibniz was also very explicit about some 
connections which he resisted making—although modern commentators tend to put a lot of em-
phasis on them. One famous example is given by the provocative declaration made to Masson in 
1716: “The infinitesimal calculus is useful with respect to the application of mathematics to phys-
ics; however, that is not how I claim to account for the nature of things. For I consider infinitesimal 
quantities to be useful fictions” (GP VI, 629; transl. in Ariew & Garber, 230).
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Meditationes that the analysis of numbers comes only close to a perfect example of 
complete analysis. Although one can easily recover the multiplicative structure of 
natural numbers from the additive structure, that does not give one a hint of the fact 
that the first perspective seems to be the accurate one to approach natural numbers. 
A testimony of this difficulty is the fact that problems easy to formulate in that do-
main still strongly resist to us.

In fact the difficulty is much deeper that might first be thought: one has simply 
no way to guarantee that the perspective adopted to engage the logical analysis 
is the accurate one. The only way to do so would be to already dispose of a com-
plete analysis under all possible (essential) perspectives so as to be sure that the 
characterization under study is not only attached to essential properties, but also 
truly complete (i.e. entailing all the essential properties characterizing the objects 
under study). This latter point touches a very profound difficulty in any kind of 
“analytical” program. Indeed, there is no notion of “complete” analysis if we do 
not already have at hand an accurate characterization of the notions involved—at 
least a complete list of the prerequisites constituting the “essential” properties of a 
given concept. But how can we have at hand an accurate delimitation of the notions 
if we do not already have accurate knowledge of them, that is to say … a complete 
analysis of them? The example of natural numbers is very interesting in this regard. 
We certainly do have, according to Leibniz, a “clear and distinct” notion of them, 
but this does not mean that our knowledge of them is adequate. All we can say, and 
all that Leibniz says, is that it is what “comes close” to it. But we also have to admit, 
and Leibniz had no difficulty in admitting this fact, that a large part of the science 
of numbers is still hidden to us.

By assembling the different pieces which we have encountered so far, one might 
have the impression that Leibniz’s “grand program” was just a youthful dream and 
that it could not survive the kind of difficulties which he began to face very early 
in his mathematical practice. But this would be to go too far. What Leibniz actually 
concluded was more likely that it was possible to reach perfect knowledge without 
having completed the analysis of notions. How is this possible? How can we be 
sure, for example, that our knowledge does not imply a hidden contradiction if we 
are not able to pursue the analysis of notions to its end? Leibniz is very clear about 
the different solutions which he proposed to these difficulties. In the Meditationes 
he sketches two other strategies alongside complete analysis to insure the possibility 
of the notions involved: experience and causal definitions48. Here is not the place to 
describe these in detail, but we should at least take note that they have not received 
much attention amongst scholars studying Leibniz’s philosophy of mathematics. 
This is particularly true of the role of experience49. Another strategy presented in the 

48 A VI, 4, 489.
49 One can remember here the striking formulation of “La vraie méthode” (1677): “certain experi-
ments are always necessary to serve as a basis for reasoning” (A VI, 4, 3. My emphasis). One could 
object that, according to the Meditationes, experience can only serve as basis for an a posteriori 
proof. But the fact that mathematical truths are a priori does not exclude in and of itself the validity 
of a posteriori proof of their possibility (especially if we don’t have access to complete analysis 
of these notions).
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De Elementis cogitandi, is to reduce the demonstration to “identicals”. According 
to this, “a demonstration is perfect as soon as one can reach identicals, which can 
happen even though everything is not analysed” (A VI, 3, 504).

Although it is not clear how the reduction to “identicals” could keep us from the 
danger of hidden contradictions, this strategy was certainly practiced by Leibniz 
and it is in fact a very good example of how reflection on general method led him 
to new considerations in mathematics. The catalog of basic relations which Leibniz 
produced for geometry in his numerous fragments devoted to the realization of 
a “characteristica geometrica” are what we now call “equivalence relations” and 
often mentioned by him amongst “identicals”50. We have here a beautiful example 
of a mathematical practice which seems to be derived from the reevaluation of the 
analysis notionum and it is important to note that the relationship between math-
ematics and philosophy was certainly not one-way in Leibniz’s thought51. But there 
is more to be said about this last strategy. The fact that, in mathematics, one can 
stop the logical analysis with equivalence relations indicates a specificity of this 
form of knowledge. Mathematical objects, in contrast to “real” objects, are indeed 
characterized by a kind of indiscernibility. But as soon as one realizes the differ-
ence between two types of notions (“complete” and “incomplete”), one has also 
to admit that the logical analysis can no longer work according to the same model 
in metaphysics and in mathematics. This is a good point upon which to close our 
investigation: the analysis notionum splits here into two types of tasks, depending 
on the kind of notions involved and the kind of simplicity which is reachable in it. 
This case indicates once again the way in which mathematics and philosophy really 
did interact in Leibniz’s thought in a constant and complex dialog.
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Leibniz believed that mathematics has a special place in the human search for 
 wisdom, knowledge of the “most sublime principles of order and perfection,” 
 because the things of mathematics are so determinate, and exhibit their determi-
nate inter- relations so clearly. However, the proper use of mathematics requires 
 careful philosophical reflection. The reason why materialism has seemed attractive 
to serious thinkers, he argues in the Tentamen Anagogicum (1696), is because it 
lends itself well to mathematical representation, and thus to calculation and rigorous 
inference.1 However, we should not over-estimate the extent to which the  material 
world lends itself to mathematics, for all mathematical ‘models’ are a finitary rep-
resentation of an infinitary reality; and we should not forget that other aspects of 
reality also lend themselves similarly to mathematization. The materialist illusion 
is not only a  mathematical mistake (which should be addressed by yet more math-
ematics) but also a metaphysical mistake. The alleged materialist universe is a mi-
rage, for it  violates the principle of sufficient reason, which along with the principle 
of contradiction governs the created world; it is thus after all not thinkable, like 
the mirage of the ‘greatest speed.’ The world’s beings are not only material, but 
thoroughly sentient and endowed with force or conatus, a striving for perfection; 
and in that striving they express their Maker, as well as the intelligibility for which 
 mathematics is apt.

1 Leibniz, G. W. Philosophische Schriften, ed. C. I. Gerhardt, Vol. VII, pp. 270–279. Abbreviated 
hereafter as ‘GP’ with reference to volume and page number.
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1  Leibniz on Method

Leibniz writes that “the ancients who recognized nothing in the universe but a con-
course of corpuscles”, as well as the modern philosophers who are inspired by them, 
find materialism plausible,

because they believe that they need to use only mathematical principles, without having 
any need either for metaphysical principles, which they treat as illusory, or for principles 
of the good, which they reduce to human morals; as if perfection and the good were only a 
particular result of our thinking and not to be found in universal nature… It is rather easy 
to fall into this error, especially when one’s thinking stops at what imagination alone can 
supply, namely, at magnitudes and figures and their modifications. But when one pushes 
forward his inquiry after reasons, it is found that the laws of motion cannot be explained 
through purely geometric principles or by imagination alone. (GP VII, 271)2

Moreover, he adds, there is no reason to suppose that other phenomena which in that 
era had eluded mathematical formulation (he mentions light, weight, and elastic force) 
will not sooner or later prove to lie within the expressive powers of mathematics. But 
all such representation will be provisional, because while finitary models can express 
the infinitary things of nature well, they can never express them completely; and the 
formulation of increasingly accurate stages of representation must be governed, like 
nature itself, by the two great principles of contradiction and sufficient reason.

Leibniz recognizes that different sciences require different methodologies, but 
no matter what special features different domains exhibit, he believes that all scien-
tific investigation must move between mathematics and metaphysics. Mechanics, in 
particular, is best viewed as a middle term between mathematics and metaphysics, 
and so too Leibniz’s account of time. Of all the parameters involved in mechanics, 
time is the least tied to any specific content, even though it presents a determinate 
topic for scientific investigation. Thus a closer look at Leibniz’s account of time 
presents an especially ‘pure’ version of the interaction of mathematics and philoso-
phy in the service of progressive knowledge.

As Yvon Belaval, Gilles-Gaston Granger, François Duchesneau, and Daniel 
 Garber have variously argued on the basis of a wide range of texts, Leibniz’s novel 
conception of scientific method has two dimensions (Belaval 1960; Granger 1981; 
Duchesneau 1993; Garber 2009). His account of method is informed by that of 
Bacon and Descartes, but diverges from both in significant ways and combines 
aspects of each. He borrows from Bacon the project of collecting empirical sam-
ples from the laboratory and field, inductively, and compiling tables, taxonomies 
and  encyclopediae, always with the expectation of discovering harmonies and 
analogies, deeper systematic organization in the things of nature. He borrows from 

2 “Parce qu’ils croyent de n’avoir à employer que des principes de mathematique, sans avoir    be-
soin ny de ceux de metaphysique qu’ils traitent de chimeres, ny de ceux du bien qu’ils renvoyent à 
la morale des hommes, comme si la perfection et le bien n’estoient qu’un effect particulier de nos 
pensées, sans se trouver dans la nature universelle… il est assez aisé de tomber dans cette erreur, 
et par tout quand on s’arreste en meditant à ce que l’imagination seule peut fournir, c’est à dire 
aux grandeurs et figures, et à leurs modifications. Mais quand on pousse la recherche des raisons, 
il se trouve que les loix du mouvement ne scauroient estre expliquées par des principes purement 
geometriques, ou de la seule imagination.” (GP VII, 271).
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 Descartes the assurance that the indefinite presentations of sense can be associated 
with precise mathematical concepts, and thus by analogy be re-organized as ordered 
 series, which can then be subject to deductive inference.

In the Tentamen Anagogicum, Leibniz mentions the use of geometry in the “anal-
ysis of the laws of nature”, and goes on in that essay to develop the ideas of Fermat, 
Descartes, and Snell in optics using a series of geometrical diagrams, as well as the 
ideas of maximal and minimal quantities developed in his infinitesimal calculus. 
In an earlier, more general essay, “Projet d’un art d’inventer” (1686), he invokes 
 arithmetic as a source of formulations apt for analysis considered as the art of inven-
tion, “which would have the same effect in other subject matters, like that which 
algebra has on arithmetic. I have even found an astonishing thing, which is that one 
can represent all kinds of truths and inferences by means of numbers.” (C 175) 3 
The idea is to locate nominal definitions, involving a finite number of requisites, 
and then reason on the basis of them:

I found that there are certain primitive terms —if not absolutely primitive then at least 
primitive for us—which once having been consituted, all our reasonings could be made 
determinate in the same way as arithmetical calculations; and even in the case of those 
reasonings where the data, or given conditions, don’t suffice to determine the question 
completely, one could nevertheless determine [metaphysically] mathematically the degree 
of probability. (C 176)4

The clarity and determinacy of mathematical things is crucial to this method of 
analysis. “The only way to improve our reasonings is to make them as salient as 
those of mathematicians, so that one can spot an error clearly and quickly, and when 
there is a dispute, one need only say: let us compute, without further ado, to see who 
is right.” (C 176)5

Early modern mechanics begins by exploiting an already existing trove of 
 empirical records, the precise tables left by centuries of astronomers tracking the 
movements of the moon, the planets, certain stars and the named constellations 
which culminate in the careful data of Tycho Brahe, so important to Kepler, and 
which are soon thereafter improved by the measurements of astronomers equipped 
with telescopes. Happily for human science, the solar system is both an exemplary 
mechanical system (just a few moving parts, isolated, and so almost closed despite 

3 “qui feroit quelque chose de semblable en d’autres matieres, à ce que l’Algebre fait dans les 
Nombres. J’ay même trouvé une chose estonnante, c’est qu’on peut representer par les Nombres, 
toutes sortes de verités et consequences.” (Leibniz, G. W. Opuscules et fragments inédits. Ed. L. 
Couturat. Hildesheim: Georg Olms, p. 175. Abbreviated hereafter as ‘C’ with reference to page 
number).
4 “Je trouva donc qu’il y a des certains Termes primitifs si non absolument, au moins à nostre 
egard, les quels estant constitués, tous les raisonnements se pourroient determiner à la façon des 
nombres et meme à l’egard de ceux ou les circonstances données, ou data, ne suffisent pas à la 
determination de la question, on pourroit neantmoins determiner [Metaphysiquement] mathema-
tiquement le degré de la probabilité.” (C 176) (Couturat indicates by brackets a word or phrase that 
Leibniz has crossed out.).
5 “L’unique moyen de redresser nos raisonnemens est de les rendre aussi sensibles que le sont 
ceux des Mathematiciens, en sorte qu’on puisse trouver son erreur à veue d’oeil, et quand il y a des 
disputes entre les gens, on puisse dire seulement: contons, sans autre ceremonie, pour voir lequel 
a raison.” (C 176).
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the occasional comet) and a very precise clock; so its study richly repaid the efforts 
of early modern physicists.

How shall these two occupations, empirical compilation and theoretical analysis, 
be combined? Leibniz calls on metaphysics, in particular the principle of sufficient 
reason in the guise of the principle of continuity, to regulate a science that must be 
(due to the infinite complexity of individual substances) both empirical and ratio-
nalist. The correlation of precise empirical description with the abstract conception 
of science more geometrico is guaranteed by the thoroughgoing intelligibility and 
perfection of the created world, and encourages us to work out our sciences through 
successive stages, moving back and forth between a concrete taxonomy and abstract 
systematization. Empirical research furnishes nominalist definitions—finite lists of 
requisites for the thing defined—which can set up the possibility of provisionally 
correct deductions, though every such definition due to its finitude can be corrected 
and amplified; mathematics provides the rule of the series.

At the beginning of Chap. 6, “La philosophie de l’histoire” of his book Leibniz 
historien, Louis Davillé writes:

From the metaphysical point of view, Leibniz, contemplating together the diversity and 
uniformity of things and beings, also follows two opposed principles, recognized earlier by 
scholastic philosophers, the principle of individuation and the principle of analogy, which 
he expresses by two phrases, in French: “l’individualité enveloppe l’infini” and “c’est tout 
comme ici.” But this is only an appearance. Always seeking to reconcile opposites, he 
unites these two points of view in “la conception d’un développement à la fois spontané et 
régulier des êtres,”6 through the contemplation of the universal harmony, principle of things 
persisting in diversity balanced by identity. This powerful and original synthesis he calls 
the law of continuity … The notion of continuity plays a leading role in Leibniz’s philoso-
phy, differentiating it sharply from that of Descartes. One might call the law of continuity 
the ‘general method’ of Leibniz, and this expression doesn’t seem to be an exaggeration. 
(Davillé 1909, pp. 667– 68)

Davillé notes three formulations of the principle of continuity: (1) Time and space 
are divisible to infinity. (2) The order of the input terms (‘principes’) is expressed 
in the order of the output values (‘consequences’) and vice versa. (I use the anach-
ronistic vocabulary of functions here, to capture the generality of Leibniz’s words.) 
This principle, ‘of harmony’, is a corollary of the principle of reason. It can also be 
understood as the principle of induction, that the cause can always be retrieved from 
the effect; the principle of differentials (ratios between finite magnitudes persist 
even when the magnitudes are reduced to infinitesimals, as in the ‘characteristic tri-
angle’) ; and the principle of analogy. (3) Change never occurs in jumps, but always 
by degrees. Leibniz also calls this the principle of transition; like the principle of the 
identity of indiscernibles, Leibniz deduces it from the principle of sufficient reason. 
The principle of continuity, taken as a principle governing history, corresponds to 
a conception of historical evolution, slow and successive change due to natural and 
immanent causes. (Davillé 1909, pp. 668– 670)

This model of scientific inquiry accords very well with Leibniz’s own investiga-
tions into mechanics and planetary motion, and so too his mathematical-metaphysical 

6 Davillé quotes Delbos in this context. See V. Delbos. La philosophie pratique de Kant. Paris: 
Alcan, 1905, p. 264.
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account of time. Given the subtlety of his conception of method, I will argue that his 
account of time is deeper and more multivalent than that of Newton, which explains 
why it has proved to be more suggestive for physicists in succeeding eras and espe-
cially during the last century.

2  Descartes and Newton

Descartes’ definition of motion in the Principles is “the transfer of one piece of 
matter, or one body, from the vicinity of those bodies which are in immediate 
 contact with it, and which are regarded as being at rest, to the vicinity of other bod-
ies.” (AT VIII, 53).7 Thus motion and rest can be interpreted only as a difference 
in  velocity or acceleration established with respect to a reference frame of other 
 bodies; no absolute determination of motion or rest is possible. This definition of 
motion and rest is so radically relativistic that, strictly speaking, the Cartesian ob-
server, by choosing different reference frames, may not only shift from judging that 
a given particle is at rest to judging that it is in inertial motion (rectilinear motion at 
a constant speed), but also to judging that its trajectory should be considered accel-
erated (and perhaps curvilinear). Descartes himself never seems to have considered 
this consequence of his relativism, nor its inconsistency with his invocation of iner-
tial motion in the first two rules of motion given at the beginning of the Principles. 
Perhaps the inconsistency escaped his notice because in his mechanics there is no 
accelerated motion: the inherent motion of corpuscles is rectilinear and constant 
in speed (that is, inertial) and the transfer of momenta (defined for each contrib-
uting corpuscle as bulk times constant speed) in a collision is instantaneous. His 
 mechanics is thus undynamical and atemporal; its laws are not only time-reversal 
invariant, they do not involve time as an independent variable: nothing in Descartes’ 
mechanics varies continuously with respect to time.

Newton, however, saw and criticized this outcome, precisely because it entails 
that Descartes is not entitled to his own definition of inertial motion. In De Gravita-
tione (unpublished in his lifetime) he argues that since in Cartesian vortex mechan-
ics all bodies are constantly shifting their relative positions with time, “Cartesian 
motion is not motion, for it has not velocity, nor definition, and there is no space or 
distance traversed by it. So it is necessary that the definition of places, and hence of 
local motion, be referred to some motionless thing such as extension alone or space 
in so far as it is seen to be truly distinct from bodies” (Newton 1962, p. 131). That 
is, Descartes cannot give empirical procedures in his mechanics that allow him to 
distinguish inertial motion from accelerated motion.

Newton responds with his well known thought experiment about the revolving 
bucket, arguing that the presence of forces is the sign of true (accelerated) motion; 
forces are real and measurable. But he goes beyond that claim: in Book III of the 
Principia, he writes,

7 Descartes (1964–1974).
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Hypothesis I: The center of the system of the world is at rest.
Proposition 11, Theorem 11: The common center of gravity of the earth, the sun, and all the 
planets is at rest. (Newton 1999, p. 816)

Taken together, these claims offer an absolutist conception of space that makes 
not only accelerated motion, but even uniform motion, definable with respect to a 
Euclidean space that has been provided with a centre and axes. By countering so 
strongly Descartes’ relativism and subsequent loss of the distinction between iner-
tial motion and accelerated (straight or curvilinear) motion, Newton has sacrificed 
the equivalence of inertial reference frames and thus his own first law. He has also 
postulated a spatio-temporal structure that cannot be empirically verified, a set of 
Cartesian coordinates for the Euclidean space of his planetary mechanics, which 
violates his methodological principle of not invoking merely metaphysical hypoth-
eses. Newton is not entitled to the equivalence of rest and inertial motion, which 
is just as essential to his system as Descartes’ concept of inertial motion is to his 
system. (Grosholz 2011)

3  Leibnizian Time

Leibniz acknowledged but was not troubled by the consequences of Descartes’ rela-
tivism, and extended it to time. Thus in a commentary on the Principles, “Critical 
Thoughts on the General Part of the Principles of Descartes” (unpublished in his 
lifetime), Leibniz writes about Principles II, Articles 25 and 26:

If motion is nothing but the change of contact or of immediate vicinity, it follows that we 
can never define which thing is moved. For just as the same phenomena may be interpreted 
by different hypotheses in astronomy, so it will always be possible to attribute the real 
motion to either one or the other of the two bodies which change their mutual vicinity or 
position. Hence, since one of them is arbitrarily chosen to be at rest or moving at a given 
rate in a given line, we may define geometrically what motion or rest is to be ascribed to 
the other, so as to produce the given phenomena. Hence if there is nothing more in motion 
that this reciprocal change, it follows that there is no reason in nature to ascribe motion to 
one thing rather than to others. The consequence of this will be that there is no real motion. 
(GP IV, 369)8

This is just what Newton says! But for Leibniz, it is not a problem, certainly not a 
problem to be banished by postulating absolute space and time as the arena for mo-
tion. Rather, he makes the following claim: “Thus, in order to say that something 
is moving, we will require not only that it change its position with respect to other 

8 “Si motus nihil aliud est quam mutatio contactus seu viciniae immediatae, sequitur nunquam 
posse definiri, quaenam res moveatur. Ut enim in Astronomicis eadem phaenomena diversis hy-
pothesibus praestantur, ita semper licebit, motum realem vel uni vel alteri eorum tribuere quae 
viciniam aut situm inter se mutant; adeo ut uno ex ipsis pro arbitrio electo, tanquam quiescente, aut 
data ratione in data linea moto geometrice definiri queat, quid motus quietisve reliquis tribuendum 
sit, ut data phaenomena prodeant. Unde si nihil aliud inest in motu, quam haec respectiva mutatio, 
sequitur nullam in natura rationem dari cur uni rei potius quam aliis ascribi motum oporteat. Cujus 
consequens erit, motum realem esse nullum.” (GP IV, 369).
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things but also that there be within itself a cause of change, a force, an action.”9 
Newton proposes that whenever acceleration occurs, it is due to the action of forces; 
Leibniz proposes that whenever any motion occurs, it is due to the action of forces. 
This doesn’t mean that he has reverted to Aristotelianism, but is instead an expres-
sion of his pan-animism. What Leibniz means by force is not Newtonian force, but 
something more like energy, internal to the body. Leibniz believes that no body is 
ever truly at rest, for all bodies are ensouled: motion thus becomes an expression of 
conatus, as individual substances jostle each other for a place within the Cartesian 
plenum at all times. (GP IV, 354−392)

In this picture of the universe, we see the principle of sufficient reason at work, 
fashioning Lebniz’s mechanics along with mathematics. The universe must be a ple-
num, and the individual substances in that plenum are jostling each other in an effort 
to attain perfection: everything strives. Indeed for Leibniz even unactualized pos-
sibles strive: essences strive for existence. In the realm of ideas, this striving sorts 
ideas out into an infinity of possible worlds, and (with the beneficent cooperation of 
God) precipitates one world into creation; in the created world, it induces vortical 
motion in the plenum as well as temporality. Time is the expression of the incompati-
bility of things; because creation involves plurality, mentality, and mutual limitation, 
all things are active, passive and intentional. This is the best of all possible worlds 
because it is continually becoming more perfect, on into the infinite open future: 
creation is a continuous temporal process. In the law of the series, the independent 
variable is always time. Thus matter is not merely extended, but involves resistance 
and action; and it develops: Leibniz’s science will also be a natural history.

Having invented a supple and powerful notation for his version of the infinitesi-
mal calculus during his sojourn in Paris (1672–1676), Leibniz proceeded to work 
out a theory and practice of differential equations, in which the dependence of dif-
ferent forms of accelerated motion on time could be clearly expressed by the term 
‘dt’. One application of this method was to planetary motion. While in Vienna on his 
way to Rome in 1688, Leibniz read Newton’s Principia, took extensive notes and 
then wrote a series of papers that culminated in the Tentamen de Motuum Coeles-
tium Causis ( Acta Eruditorum, Feb. 1689), where he proposed differential equa-
tions that would characterize planetary motion. Leibniz combined Cartesian vortex 
theory with Newton’s reformulation of Kepler’s laws, locating the planets in ‘fluid 
orbs’ rather than empty space, in order to derive the laws governing central forces 
while avoiding the problem of action at a distance. Whereas Newton calculates the 
deviation from the tangent to the curve, Leibniz expresses the situation with a single 
differential equation, by calculating the variation of the distance from the center, 
comparing the distances at different times by a rotation of the radius. The upshot of 
his calculation is that the effect of gravity is [(2h2)/( ar2)] dt2, so that the ‘solicitation 
of gravity’ (conceptualized in Cartesian terms as the action of a vortex) is inversely 
proportional to the square of the distance, which was of course the result Leibniz 
was trying to reproduce. (Aiton 1985, Chap. 6; Bertoloni Meli 1993, Chap. 4) 

9 “Itaque ad hoc, ut moveri aliquid dicatur, requiremus non tantum ut mutet situm respectu alio-
rum, sed etiam ut causa mutationis, vis, actio, sit in ipso.” (GP IV, 369).
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4  Leibnizian Relationalism

For Leibniz, space is the expression in the created world of the logical order of 
compossibility among individual substances, and time is the logical order of in-
compatability among individual substances.10 Thus, space and time only come into 
being with the creation of this material universe, the best of all possible worlds, and 
have only a secondary ontological status, because they are constituted as  relational 
structures of the things with primary ontological status, individual substances. This 
is the basis of Leibniz’s relationalism; but we must recall that his relationalism is 
deployed on the basis of a method which is two-tiered, both mathematical (seeking 
a precise mathematical correlate for the law of the series) and metaphysical while at 
the same time empirical (examining and tabulating evidence in an ongoing search 
for the systematic organization of things). The true scientist will find ways to put 
the mutual adjustment of nominalistic form with the investigation of the infinitely 
complex, infinitely ordered world of individual substances, in the service of the 
progress of knowledge; this process requires both mathematics and metaphysics.

To correlate time with precise mathematical concepts, Leibniz chooses as the 
correct representation the straight Euclidean line, endowed with directionality by 
Descartes’ analytic geometry, which assigns positive and negative numbers—real 
numbers we would say—to the line. In some texts, it appears that Leibniz holds 
time to be a half-line, given what he writes to Clarke in the fifth letter of the Leib-
niz-Clarke correspondence (GP VII, 389–420). Since this is the best of all possible 
worlds, created by God, the universe must constantly increase in perfection, and so 
has a temporal beginning point but no end. Thus it is metaphysically important that 
the number-line is both geometrical and arithmetical. As arithmetical, it expresses 
the fact that time is asymmetric; time may be counted out in units, like seconds or 
years, and the numbers increase in a unidirectional order without bound to infin-
ity. The asymmetry of time follows from the metaphysical ground that everything 
strives. As geometrical, the number-line expresses the fact that time is a continuum; 
units of time like seconds are not atoms, but conventionally established, constant 
measures of time, as the inch is a measure of continuous length. An instant is only 
the marker of a boundary of a stretch of time, not what time is composed of; we 
misunderstand what an instant is, Leibniz observes, if we conceive of it as an atom 
of time. Time must be both measured and counted.

This duality of time is not however without conundrums. Analysis in arithmetic 
leads us to the unit; but in geometry it leads us to the point. Whole numbers are 
composed of units, but lines are bounded by points, not composed of them; Car-
tesian reductionism is useful as an approach to arithmetic, but not to geometry. In 
a letter to Louis Bourguet, written just before the correspondence with Clarke, in 
August 1715, Leibniz writes,

As for the nature of succession, where you seem to hold that we must think of a first, funda-
mental instant, just as unity is the foundation of numbers and the point is the foundation of 

10 See, for example, GP II, 248−53.
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extension, I could reply to this that the instant is indeed the foundation of time but that since 
there is no one point whatsoever in nature which is fundamental with respect to all other 
points and which is therefore the seat of God, so to speak, I likewise see no necessity what-
ever of conceiving a primary instant. I admit, however, that there is this difference between 
instants and points—one point of the universe has no advantage of priority over another, 
while a preceding instant always has the advantage of priority, not merely in time but in 
nature, over following instants. But this does not make it necessary for there to be a first 
instant. There is involved here the difference between the analysis of necessities and the 
analysis of contingents. The analysis of necessities, which is that of essences, proceeds from 
the posterior by nature to the prior by nature, and it is in this sense that numbers are ana-
lyzed into unities. But in contingents or existents, this analysis from the posterior by nature 
to the prior by nature proceeds to infinity without ever being reduced to primitive elements. 
Thus the analogy of numbers to instants does not at all apply here. It is true that the concept 
of number is finally resolvable into the concept of unity, which is not further analyzable and 
can be considered the primitive number. But it does not follow that the concepts of different 
instants can be resolved finally into a primitive instant. (GP III, 581–582)11

The analysis of time requires the scientist to proceed both by the analysis of contin-
gents, using the line whose continuity is the best expression mathematics provides 
for infinite complexity; and by the analysis of necessities, using the natural numbers 
whose linear ordering and asymmetry is the best mathematical expression of irrevo-
cability. Leibniz goes on to observe that the use of mathematics does not solve the 
metaphysical question whether time has a beginning, which leads one to suppose 
that more metaphysics and more empirical research are required. He writes:

Yet I do not venture to deny that there may be a first instant. Two hypotheses can be 
formed—one that nature is always equally perfect, the other that it always increases in 
perfection. If it is always equally perfect, though in variable ways, it is more probable that 
it had no beginning. But if it always increases in perfection (assuming that it is impossible 
to give its whole perfection at once), there would still be two ways of explaining the matter, 
namely, by the ordinates of the hyperbola B or by that of the triangle C.12

11 “Pour ce qui est de la succession, où vous semblés juger, Monsieur, qu’il faut concevoir un 
premier instant fondamental, comme l’unité est le fondement des nombres, et comme le point est 
aussi le fondement de l’etendue: à cela je pourrois repondre, que l’instant est aussi le fondement du 
temps, mais comme il n’y a point de point dans la nature, qui soit fondamental à l’egard de tous les 
autres points, et pour ainsi dire le siege de Dieu, de meme je ne vois point qu’il soit necessaire de 
concevoir un instant principal. J’avoue cependant qu’il y a cette difference entre les instans et les 
points, qu’un point de l’Univers n’a point l’avantage de priorité de nature sur l’autre, au lieu que 
l’instant precedent a tousjours l’avantage de priorité non seulement de temps, mais encor de nature 
sur l’instant suivant. Mais il n’est point necessaire pour cela qu’il y ait un premier instant. Il y a 
de la difference en cela entre l’analyse des necessaires, et l’analyse des contingens: l’analyse des 
necessaires, qui est celle des essences, allant a natura posterioribus ad natura priora, se termine 
dans les notions primitives, et c’est ainsi que les nombres se resolvent en unités. Mais dans les 
contingens ou existences cette analyse a natura posterioribus ad natura priora va à l’infini, sans 
qu’on puisse jamais la reduire à des elemens primitifs. Ainsi l’analogie des nombres aux instans 
ne procede point icy. Il est vray que la notion des nombres est resoluble enfin dans la notion de 
l’unité qui n’est plus resoluble, et qu’on peut considerer comme le nombre primitif. Mais il ne 
s’ensuit point que les notions des differens instans se resolvent enfin dans un instant primitif. ” 
(GP III, 581−582).
12 “Cependant je n’ose point nier qu’il y ait eu un instant premier. On peut former deux hypotheses, 
l’une que la nature est tousjours egalement parfaite, l’autre qu’elle croit tousjours en perfection. 
Si elle est tousjours egalement parfait, mais variablement, il est plus vraisemblable qu’il n’y ait 
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Here Leibniz gives the diagrams reproduced in Fig. 1.
His explanation of these diagrams shows that, despite what he would shortly 

write to Clarke, he was perhaps not convinced that time has a beginning:
According to the hypothesis of the hyperbola, there would be no beginning, and the instants 
or states of the world would have been increasing in perfection from all eternity. But, accord-
ing to the hypothesis of the triangle, there would have been a beginning. The hypothesis of 
equal perfection would be that of rectangle A. I do not yet see any way of demonstrating 
by pure reason which of these we should choose. But though the state of the world could 
never be absolutely perfect at any particular instant whatever according to the hypothesis 
of increase, nevertheless the whole actual sequence would always be the most perfect of 
all possible sequences, because God always chooses the best possible. (GP III, 582 − 83)13

In any case, Leibniz’s conception of method requires that time be investigated not 
solely by pure reason or pure mathematics, which he admits here to being incon-
clusive; time must also be investigated empirically. It must be considered as the 
relational structure of the individual substances that exist, insofar as they are not 
logically compatible with each other. This means that we may have to revisit the 
formal structures we have just been discussing, in light of what we discover about 

point de commencement. Mais si elle croissoit tousjours en perfection (supposé qu’il ne soit point 
possible de luy donner toute la perfection tout à la fois) la chose se pourroit encor expliquer de 
deux façons, savoir par les ordonnées de l’Hyperbole B ou par celle du triangle C.” (GP III, 582).
13 “Suivant l’hypothese de l’Hyperbole, il n’y auroit point de commencement, et les instans ou 
etats du Monde seroient crûs en perfection depuis toute l’eternité; mais suivant l’hypothese du 
Triangle, il y auroit eu un commencement. L’hypothese de la perfection egale seroit celle d’un 
Rectangle A. Je ne vois pas encor le moyen de faire voir demonstrativement ce qu’on doit choisir 
par la pure raison. Cependant quoyque suivant l’hypothese de l’accroissement, l’etat du Monde 
ne pourroit jamais etre parfait absolument, etant pris dans quelque instant que ce soit; neanmoins 
toute la suite actuelle ne laisseroit pas d’etre la plus parfaite de toutes les suites possibles, par la 
raison que Dieu choisit tousjours le meilleur possible.” (GP III, 582−583).

Fig. 1  Letter from Leibniz to Bourguet, 5 August 1715, GP III, p. 582
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the physical universe. The principle of sufficient reason governs the created world; 
not only does it entail that everything is determinate and intelligible (which for 
Leibniz means, thinkable), it also entails that everything strives for perfection. Thus 
the essences that are ideas in the mind of God strive for existence, but only those 
that constitute this best of all possible worlds succeed; and in the created world, the 
essences continue to jostle each other, to interfere with each other, as they all strive. 
This dynamic quality of ideas produces time, as their harmonies produce space; 
creation entails plurality and mutual limitation, activity and passivity. And the time 
that is produced is asymmetrical, as creation tends towards greater perfection, a 
harmonious dissention among the sentient, active individual substances.

What Leibniz heralds is the now received belief that matter is not passive and in-
ert, or dead: even a molecule is mobile, active, forceful, and sensitive. As he writes 
in the Monadology, sec. 66–69:

66. (…) there is a world of creatures, of living beings, of animals, of entelechies, of souls 
in the least part of matter.
67. Each portion of matter can be conceived as a garden full of plants, and as a pond full 
of fish. But each branch of a plant, each limb of an animal, each drop of its humors, is still 
another such garden or pond.
68. And although the earth and air lying between the garden plants, or the water lying 
between the fish of the pond, are neither plant nor fish, they contain yet more of them, 
though of a subtleness imperceptible to us, most often.
69. Thus there is nothing fallow, sterile, or dead in the universe, no chaos and no confusion 
except in appearance (…). (GP IV, 618–619)14

5  A Thought Experiment

To probe the limits of Leibniz’s relationalism, I propose to leave the path of textual 
analysis for a while, and venture into the forest of thought experiments. Inspired by 
twentieth century speculation, I propose that we try out Leibnizian relationalism on 
models of the universe very different from that which he entertained, and see what 
becomes of the account of time. First, let us suppose that nothing exists except a 
single particle. Then there is no time, because time is the expression of relations of 
incompatibility among things and one thing is clearly compatible with itself.

Suppose next that nothing exists except a perfect harmonic oscillator, which 
moves through a certain series of configurations only to return to exactly the same 
configuration in which it began. The motion of the harmonic oscillator, with one 

14 “66. (…) il y a un Monde de Creatures, de vivans, d’Animaux, d’Entelechies, d’Ames dans la 
moindre partie de la matiere. 67. Chaque portion de la matiere peut être conçue comme un jardin 
plein de plantes, et comme un étang plein de poissons. Mais chaque rameau de la plante, chaque 
membre de l’Animal, chaque goutte de ses humeurs est encor un tel jardin ou un tel étang. 68. Et 
quoyque la terre et l’air interceptés entre les plantes du jardin, ou l’eau interceptée entre les pois-
sons de l’étang, ne soit point plante, ny poisson, ils en contiennent pourtant encor, mais le plus 
souvent d’une subtilité à nous imperceptible. 69. Ainsi il n’y a rien d’inculte, de sterile, de mort 
dans l’univers, point de Chaos, point de confusions qu’en apparence (…)” (GP VI, 618–619).
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causal state giving rise to another, expresses time, but is the time it expresses finite 
or infinite? Since its beginning and end state are identical, it seems as if we should 
identify the times they express; then time would be finite. The local ‘befores’ and 
‘afters’ would have no global significance; the asymmetry of cause and effect along 
the way would be absorbed into a larger symmetry, because every effect would 
ultimately be the cause of the cause… of the cause of its cause. Thus the local in-
compatibility of before and after would be absorbed into a global compatibility; but 
then we must wonder whether this finite time is really temporal at all. It seems that 
in this picture duration both does and does not occur.

Moreover, the picture seems to contradict the supposition that what exists is a 
perfect harmonic oscillator, for there is no oscillation. The concept of oscillation 
involves the notion of repetition, which in turn requires a linear ordering of time, 
so that when a particular configuration recurs, that is when it occurs again, the 
first occurrence is earlier than the later one, but the later one is not earlier than the 
first. We can imagine that the same configuration recurs at a later moment of time; 
but it is incoherent to suppose that the selfsame moment of time recurs at another 
moment of time, for those two moments of time must then be both identified with, 
and distinguished from, each other. As Leibniz often observes, contradiction makes 
alleged ideas vanish into nothingness; the relationalist idea of an isolated harmonic 
oscillator is a mirage, and so is the idea of a moment of time recurring.

So we would have to admit that the time that frames the harmonic oscillator is 
ongoing, linear and infinite, and so must be constituted by something beyond the 
relations that hold among the moving parts of the harmonic oscillator; but this goes 
against Leibnizian relationalism. To avoid this problem, Leibniz must completely 
fill up his cosmos with things and events that never repeat, on pain of incoherence. 
Such a cosmos is precisely what his metaphysics provides, chosen by God accord-
ing to the Principle of Plenitude, the Principle of Perfection, the Principle of Suffi-
cient Reason, and the Principle of Contradiction. Moreover, since all of his monads 
are body-souls, everything that exists is provided with a developed or rudimentary 
intentionality, that drives it forward in time. The strong asymmetry observed in the 
organic, sentient world is guaranteed for everything that exists. In Leibniz’s cos-
mos, everything is alive and everything strives. The dispute with Clarke shows that 
Leibniz’s cosmos must be a plenum, for otherwise isolated things would show up 
in absolute space and God’s choice of their location would be arbitrary; similarly, 
if isolated events happened in absolute time, God’s choice of when they occurred 
would be arbitrary. So even if we imagine the ideal harmonic oscillator to express 
an ongoing, infinite time, perhaps by allowing the natural numbers as a condition of 
its intelligibility, so that each of its oscillations might thereby be distinguished by a 
numerical index, it would still violate the Principle of Sufficient Reason.

At this juncture in the argument, however, we might suspect that Leibniz has not 
discovered the infinity and uni-directionality of time in the relations among things, 
but merely construed the relations among things so that the time they express will 
turn out to be appropriate, that is, infinite and uni-directional. And another suspicion 
may arise: Even if Leibniz is accurately describing the way things are (an organicist, 
animist plenum), perhaps that in itself sheds no light on time. Time itself may have 
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no flow; and it may prove to be finite, coming to an end that no living thing (includ-
ing Leibniz) foresees. If our grasp of time is merely empirical, based on temporal 
relations among things, maybe real time is beyond our grasp. However, for Leibniz 
no pursuit of truth should be merely empirical; to be a Leibnizian relationalist is 
not to reduce science to empiricism. Leibniz avoids this skeptical worry by trust-
ing in the ability of metaphysical principles to regulate the interaction of empirical 
research and theoretical speculation in science. Informing this trust is his trust in 
the perfection and intelligibility of the cosmos, so that time is the expression of the 
infinite, harmonious incompatibility of things.

6  Coda

Leibniz understands that productive scientific and mathematical discourse must 
carry out distinct tasks in tandem: a more abstract search for conditions of 
 intelligibility or solvability, and a more concrete strategy for achieving success-
ful reference, the clear and public indication of what we are talking about. The 
texts characteristic of successful scientific research will thus be heterogeneous and 
 multivalent. This fact has been missed by philosophers who begin from the point of 
view of logic, where rationality is often equated with strict discursive homogeneity 
and method is construed as the rewriting of science and mathematics in a formal, 
axiomatized language; and it has led scholars influenced by logicism, among them 
Louis Couturat and Bertrand Russell, to misread Leibniz. While deductive argu-
ment is important (since its forms guarantee the transmission of truth from prem-
ises to conclusion) as a guide to effective mathematical and scientific reasoning, it 
does not exhaust method, for Leibniz. As we have seen, Leibnizian method has two 
dimensions, empirical and rational, and both require analysis, whose logical struc-
ture includes abduction and induction, as well as deduction. Moreover, analysis, 
the search for conditions of intelligibility, is more than logic; it is a compendium 
of research and problem-solving procedures, which vary among investigations of 
different kinds of things.

An unswerving focus on logic diverts attention from other forms of rational-
ity and demonstration. Human awareness is both receptive and active, an accom-
modating construal and an explanatory construction. Some empiricist or naturalist 
philosophers of science demand that true knowledge be an accurate construal of 
the way things are, but then they deny the obvious fact that all representation is 
distortion, however informative it is, and that representation itself changes the way 
things are. And explanatory analysis goes far ‘beyond’ the things that invoked it, 
and thus often sacrifices concrete, descriptive accuracy. Other logicist or anti-realist 
philosophers of science want to suppose that all knowledge, and indeed all reality, 
is a human construction, but then they deny the obvious fact that the world is the 
way it is whether we like it or not, and that it has depths that elude our construals 
and constructions altogether. Many an explanatory analysis has shipwrecked on the 
hidden shoals of reality. A more reasonable view of human knowledge is to regard 
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it with Leibniz as a combination of focussed awareness and theoretical elaboration; 
thus when we combine multiple modes of representation in our scientific work we 
may in fact have a better chance of doing justice to what we are investigating. Such 
representational combination and multivocality is just what we find in Leibniz’s 
most important pronouncements on the nature of time.
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1  Introduction

En 1890 fut créée l’Association Allemande des Mathématiciens. Plus tard, on ré-
alisa pour elle une médaille sur laquelle était écrite l’inscription latine suivante 
(Fig. 1):

Artem geometriae discere atque exercere publice interest
« C’est dans l’intérêt public que d’apprendre et d’exercer l’art de la géométrie. »

Qui y contredirait? Personne assurément. Mais d’où cette l’inscription tire-t-elle 
son origine? On la retrouve dans le codex Iustinianus du droit romain, au chapitre 
18 du Livre 9, intitulé: De maleficis et mathematicis et ceteris similibus (« Sur les 
malfaiteurs, les mathématiciens et autres semblables »)! On s’étonne, et à plus forte 
raison si l’on lit le texte qui suit: « Il est pire de tuer un homme par poison que de 
le faire mourir par l’épée ». Après quoi se trouve la citation mentionnée plus haut, 
qui se poursuit ainsi: Ars autem mathematica damnabilis interdicta est (« Mais l’art 
mathématique condamnable est interdit »)!

Pour comprendre cette interdiction, il faut se souvenir que l’art mathématique 
était alors l’astrologie qui fut interdite par l’empereur romain Dioclétien en 294 
(Fögen 1997, p. 13, 260). L’art mathématique et la géométrie sont donc des choses 
complètement différentes. L’importance de la géométrie, comme le rappelle notre 
citation, est, elle, incontestée. Mais comment délimiter la géométrie? René Des-
cartes a essayé de donner une réponse à cette question: « je ne sache rien de meil-
leur que de dire que tous les points de celles [scil. les courbes] qu’on peut nom-
mer géométriques, c’est-à-dire qui tombent sous quelque mesure précise et exacte, 
ont nécessairement quelque rapport à tous les points d’une ligne droite, qui 
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peut être exprimé par quelque équation »1. La certitude et l’exactitude jouent ici le 
rôle crucial. L’approche cartésienne concernant l’exactitude était liée à « l’analyse 
 philosophique de l’intuition géométrique » (Bos 2001, p. 411). Nous verrons com-
ment ce point de vue a influencé Leibniz. À cette fin, je voudrais discuter les quatre 
sujets suivants: le lien entre analyticité et géométrie, l’équipollence, la classification 
des courbes et la théorie des courbes analytiques.

1.1  Analyticité et géométrie

Notre première question sera la suivante: Que veulent dire « analytique » et « ana-
lyticité » chez Leibniz? Quelle est la relation entre ces notions et celle de géomé-
trie? Pour être capable de répondre à cette question, il nous faut étudier l’emploi 
de l’épithète « analytique » et du substantif « analyse », et cela dans un ordre chro-
nologique. On remarque, en effet, que Leibniz change le sens de sa terminologie 
avec le temps. De cette manière, nous établirons cinq résultats essentiels.

Nous considèrerons tout d’abord un premier tableau de notions qui sont appelées 
« analytiques » par Leibniz: figura analytica (figure analytique, Janvier 1675)2, 
campus analyticus novae geometriae (champ analytique de la nouvelle géométrie)3; 
curva analytica (courbe analytique, 1675/76)4, calculus analyticus exactus (calcul 

1 Texte que Leibniz connaissait par sa traduction latine (Descartes 1659/1661, p. 21): « Aptius 
quidquam afferre nescio, quam ut dicam, quod puncta omnia illarum, quae geometricae appellari 
possunt, hoc est, quae sub mensuram aliquam certam et exactam cadunt, necessario ad puncta 
omnia lineae rectae, certam quandam relationem habeant, quae per aequationem aliquam, omnia 
puncta respicientem, exprimi possit ».
2 A VII, 5, 202.
3 A VII, 5, 193.
4 Leibniz 1993, 49 (trad. fr. Leibniz 2004, 116 sq.).

Fig. 1  La médaille de la 
Deutsche Mathematiker-
Vereinigung (Association 
Allemande des Mathématici-
ens). (Eberhard Knobloch, 
100 Jahre Mathematik in 
Berlin. Mitteilungen der 
Deutschen Mathematiker-
Vereinigung 2001, p. 34)
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analytique exact)5, expressio arithmetica sive analytica (expression arithmétique 
ou analytique)6, methodus certa et analytica (méthode certaine et analytique)7, re-
latio analytica (vera, generalis) (relation analytique (vraie, générale))8; aequatio 
analytica (équation analytique)9, quadratura analytica (quadrature analytique)10.

Analysons pas à pas ces notions et d’abord celle de figura analytica. Au mois 
de janvier 1675, Leibniz écrit son étude De figuris analyticis figurae analyticae 
quadratricis capacibus (Sur les figures analytiques donnant lieu à une figure analy-
tique quadratrice). Il y donne la définition suivante: « J’appelle figures analytiques 
celles dans lesquelles la relation de l’ordonnée à l’abscisse peut être expliquée par 
une équation » ( Figuras analyticas appello, in quibus relatio ordinatae ad abscis-
sam aequatione explicari potest)11. On remarque que les « figures » sont ici des 
courbes et non des aires délimitées par des courbes. Leibniz ne dit pas expressément 
« équation algébrique », mais c’est ce qu’il veut dire. Il se réfère à Descartes en di-
sant qu’il préfère, contrairement à lui, appeler ces figures « analytiques » plutôt que 
« géométriques ». En d’autres mots, Leibniz remplace la notion de géométrique non 
pas par la notion d’algébrique (Bos 2001, p. 336), mais par celle d’« analytique ». 
En fait, sa définition nous rappelle la définition cartésienne d’une courbe géomé-
trique (Descartes 1659/61, p. 21). Descartes avait dit qu’il s’agit des courbes ayant 
« nécessairement quelque rapport à tous les points d’une ligne droite, qui peut être 
exprimé par quelque équation » et la traduction latine donnait: relationem habeant, 
quae per aequationem aliquam ( …) exprimi possit. Leibniz a donc simplement 
remplacé exprimere par explicare.

Dans son traité sur la Quadrature arithmétique (1675/1676), Leibniz est plus 
précis: « J’appelle courbe analytique celle dont tous les points peuvent être trou-
vés par un calcul exact » ( Curvam analyticam voco cujus puncta omnia calculo 
exacto possunt inveniri)12. En conséquence, il doit expliquer l’expression « calcul 
 analytique exact ». Le problème est ici simplement déplacé. Dès le début du traité, il 
est clair que la notion d’algébrique ne coïncide déjà plus avec la notion d’analytique 
qui est beaucoup plus étendue et qui comprend l’algébricité comme un cas spécial. 
Leibniz définit: « Mais on appelle ce calcul analytique exact lorsque la quantité 
cherchée peut être trouvée à partir des données à l’aide d’une équation ayant pour 
inconnue la quantité cherchée » ( Calculus autem analyticus exactus ille vocatur, 
cum quantitas quaesita ex datis inveniri potest ope aequationis, in qua ipsa quanti-
tas quaesita incognitae locum obtinet). Il a remplacé la notion d’équation de la dé-
finition du mois de janvier 1675 par la notion de calcul analytique exact. L’équation 

5 Leibniz 1993, 50 (trad. fr. 2004, 116 et 117, 12); ainsi que Leibniz 1993, 79 (trad. fr. Leibniz 
2004, 218 sq.); Leibniz 1686, 231 (trad. fr. 1989, 138); Leibniz 1714, 394.
6 Leibniz 1993, 56, 79 (trad. fr. 2004, 138 sq., 216–217, 219).
7 Leibniz 1993, 107 (trad. fr. 2004, 300 sq.).
8 Leibniz 1993, 79 (trad. fr. 2004, 217–219).
9 Leibniz 1682, 119 (trad. fr. 1989, 75).
10 Leibniz 1682, 119 (trad. fr. 1989, 74).
11 A VII, 5, 202.
12 Leibniz 1993, 49 (trad. fr. 2004, 116 sq.).
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Quadrature analytique c’est-à-dire résultant d’un calcul analytique exact
Transcendante Algébrique Arithmétique
xx + x = 30 Au moyen de racines 

d’équations communes
Exprime la valeur exacte 
au moyen de séries 
(infinies)13

qui figure dans la définition de cette nouvelle notion peut être une équation infinie 
ou une série infinie. En d’autres mots, Leibniz généralise la notion d’équation dont 
le degré peut être fini ou infini et introduit une notion qui est plus générale que 
la notion d’algébrique et l’englobe. Ce procédé est d’autant plus aisé à effectuer 
qu’il n’avait pas utilisé expressément l’épithète « algébrique » auparavant. Nous 
 obtenons ainsi un premier résultat essentiel:

1. Analyticité coïncide avec calculabilité.

Ce résultat devient encore plus évident lorsqu’on étudie l’article De vera propor-
tione circuli ad quadratum circumscriptum in numeris rationalibus expressa (« Sur 
la vraie proportion entre un cercle et le carré circonscrit exprimée en nombres ra-
tionnels ») qui parut en 1682. Leibniz y remplace le mot relatio de son traité sur la 
Quadrature arithmétique par proportio et donne une classification des quadratures 
analytiques (Leibniz 1682, 120; trad. fr. 1989, 75) sous la forme suivante:

La notion d’exactitude joue ici à nouveau le rôle crucial. L’exactitude n’est pas 
réalisée seulement par un calcul exact algébrique, mais aussi par deux autres types 
d’équations: les équations transcendantes et les équations infinies. En fait, Leib-
niz distingue entre trois types de quadratures analytiques et ainsi entre trois types 
d’équations.

Nous reconnaissons un procédé leibnizien d’utilisation d’une notion (par ex-
emple celle d’analyticité ou d’équation) et obtenons le deuxième résultat essentiel:

2. Leibniz conserve une notion mais en change le sens14.1314

Après avoir clarifié la signification d’analyticité chez Leibniz nous pouvons 
élargir le premier tableau des notions qui ont « analytique » comme épithète. 
Sans vouloir être exhaustif, en voici quelques exemples: subsidium analyticum 

13 Leibniz 1682, 120: 
 quadratura analytica 
 seu quae per calculum accuratum fit
transcendens                                     algebraica                                                 arithmetica 
x x = 30x +                              per radices aequationum                       per series (infinitas) exactum
                                                         communium                                         exprimit valorem
14 La même chose s’applique, par exemple, à la notion d’« indivisible ». Au printemps de l’année 
1673, il la définit comme une quantité infiniment petite (A VII, 4, 265) ce qui, au sens strict du 
mot, porte à contradiction, car d’après la définition aristotélicienne d’une quantité ( Métaphysique 
V, 13), ce qui ne peut pas être divisé ne peut pas être une quantité.
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(« ressource analytique »)15; valor analyticus (« valeur analytique »)16; ars analytica 
(« art analytique »)17, canon analyticus (« règle analytique »)18, res analytica  
(« sujet analytique »)19.

Notre deuxième tableau concerne l’emploi leibnizien du substantif analysis 
(analyse), de nouveau dans un ordre chronologique: analysis indivisibilium atque 
infinitorum (analyse des indivisibles et des infinis)20; cette analyse est aussi nom-
mée calculus differentialis (calcul différentiel), calculus indefinite parvorum (calcul 
des indéfiniment petits) ou algebrae supplementum pro transcendentibus (supplé-
ment de l’algèbre pour les transcendantes)21. On parvient ainsi un troisième résultat 
essentiel:

3. L’analyse est un calcul pour Leibniz de même que l’analyticité n’est rien d’autre 
que la calculabilité.

En conséquence, on trouvera aussi les expressions analysis infinitorum (analyse 
des infinis)22, analysis seu ars inveniendi (analyse ou l’art d’inventer)23, analyse 
des transcendantes24. Dans le titre de (Leibniz 1694a), Leibniz parle d’un nouveau 
calcul des transcendantes et dans le corps de cet article, il utilise l’expression « ana-
lyse des transcendantes » (1694, 308). D’une manière semblable, Leibniz identifie 
le calcul nouveau avec l’analyse des infinis (Leibniz 1692a, 259) ou parle d’une 
analysis infinitesimalium (analyse des infinitésimaux)25.

On peut y ajouter une série de termes où la notion d’analyse est caractérisée 
par une épithète: analysis tetragonistica (analyse tétragonistique, 1675)26; analysis 
transcendens (analyse transcendante, 1675/76)27, analysis pura (analyse pure)28, 
analysis mea (mon analyse)29; analysis perfecta (analyse parfaite)30. Leibniz donne 
la définition suivante31: « C’est la marque d’une analyse parfaite lorsqu’un pro-
blème peut être résolu ou lorsque son impossibilité peut être démontrée » ( Sig-
num est perfectae analyseos, quando aut solvi problema potest, aut ostendi ejus 
impossibilitas). Cette remarque nous rappelle évidemment la fameuse phrase de 

15 Leibniz 1684a, 123 (trad. fr. 1989, 88).
16 Leibniz 1694b, 317 (trad. fr. 1989, 304).
17 Leibniz 1700, 340 (trad. fr. 1989, 359). Évidemment, l’expression « art analytique » reprend 
celle de Viète 1591 (page de titre).
18 Leibniz 1700, 349 (trad. fr. 1989, 382).
19 Leibniz 1700, 348 (trad. fr. 1989, 379).
20 Leibniz 1686, 230 (trad. fr. 1989, 137).
21 Leibniz 1686, 232 s. (trad. fr. 1989, 141).
22 Leibniz 1689, 242; 1691, 244 (trad. fr. 1989, 192).
23 Leibniz 1691, 243 (trad. fr. 1989, 192).
24 Leibniz 1692c, 278 sq.
25 Leibniz 1713, 412.
26 A VII, 5, n. 38, 40, 44, 79.
27 Leibniz 1993, 55 (trad. fr. 2004, 138 sq.); 1703, 362.
28 Leibniz 1993, 56 (trad. fr. 2004, 138 sq.).
29 Leibniz 1993, 107 (trad. fr. 2004, 298; 301).
30 Leibniz 1684a, 123 (trad. fr. 1989, 88).
31 Ibid.
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Viète: « Finalement, l’art analytique s’arroge à bon droit le plus magnifique des pro-
blèmes, à savoir de ne laisser aucun problème irrésolu »32. La remarque leibnizienne 
nous révèle en même temps une caractéristique du procédé leibnizien et ainsi un 
quatrième résultat essentiel:

4. L’idée de perfectionnement ne caractérise pas seulement la philosophie leibni-
zienne de l’histoire, mais aussi ses mathématiques.

Le panorama commencé plus haut peut être élargi avec les expressions suivantes: 
analysis certa et generalis (analyse certaine et générale)33; analysis interior quaedam 
(une certaine analyse plus profonde)34; analysis nova (analyse nouvelle)35. Ainsi se 
dessine un cinquième résultat essentiel qui nous rappelle les critères cartésiens:

5. Leibniz met en évidence la certitude et la généralité de sa nouvelle analyse.

Il y a encore d’autres adjectifs épithètes qui nous donnent des informations très 
importantes sur l’analyse et nous permettent de comprendre la classification leib-
nizienne. Ainsi en 1693, Leibniz déclare: « l’analyse qui correspond à la géomé-
trie des transcendantes (…) est la science de l’infini »36; il parle également de  
« l’analyse ordinaire (…) imparfaite »37, de « l’analyse ordinaire ou algébrique » 
( analysis ordinaria seu algebraica)38; de « l’analyse infinitésimale (…) algébrique »  
( analysis infinitesimalis ( …) algebraica)39; ou d’un « nouveau genre d’analyse 
mathématique connu sous le nom de calcul différentiel » ( novum analyseos 
 mathematicae genus, calculi differentialis nomine notum)40.

On peut illustrer la classification leibnizienne de la manière suivante:

32 Viète 1591, 12: « Denique fastuosum problema problematum ars analytice (…) jure sibi adrogat, 
quod est nullum non problema solvere ».
33 Leibniz 1686, 230 (trad. fr. 1989, 136).
34 Leibniz 1689b, 236 (trad. fr. 1989, 165).
35 Leibniz 1691, 247 (trad. fr. 1989, 199); Leibniz 1692b, 269 (trad. fr. 1989, 220); Leibniz 1714, 395.
36 Leibniz 1693a, 294 (trad. fr. 1989, 253): « analysis respondens geometriae transcendentium (…) 
sit scientia infiniti ».
37 Leibniz 1694a, 307.
38 Leibniz 1694b, 317 (trad. fr. 1989, 304).
39 Leibniz 1702, 352 (trad. fr. 1989, 389).
40 Leibniz 1714, 392.

Géométrie
Géométrie de détermination Géométrie des mesures  

Géométrie transcendante
Algèbre Complément de l’algèbre 

Ressource analytique Sup-
plément de l’algèbre pour les 
transcendantes

Analyse
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La géométrie consiste donc en deux parties qui sont toutes deux étudiées à l’aide 
des deux parties de l’analyse. Ainsi, toute la géométrie est soumise au calcul ou à 
l’analyse.

La cycloïde peut servir de modèle pour illustrer la manière dont l’attitude leibni-
zienne envers la relation entre analyticité et géométricité s’est changée au cours du 
temps. Au mois de janvier 1675, il constate: « Je préfère appeler figures  analytiques 
celle que d’autres après Descartes appellent géométriques. Car je ne vois pas ce 
qui empêcherait d’appeler la cycloïde géométrique puisqu’elle peut être tracée ex-
actement par un seul mouvement continu et au surplus très simple (…). Mais je 
conteste qu’elle soit analytique parce que la relation entre les ordonnées et les ab-
scisses ne peut être expliquée par aucune équation »41. Cela signifie qu’en 1675 
Leibniz justifie pourquoi il remplace l’épithète « géométrique » par « analytique ».  
D’après le critère cartésien de l’année 1637 pour la géométricité, une courbe est 
géométrique si elle peut être tracée exactement par un seul mouvement continu. 
Dans sa Géométrie, Descartes admet même plusieurs tels mouvements successifs 
(Bos 2001, p. 353). En conséquence, la cycloïde devrait être dite géométrique (sans 
être analytique). A cette époque, l’analyse est encore insuffisante. En plus, il y a 
encore des courbes qui échappent à la géométricité. L’invention du calcul leibnizien 
perfectionnera l’analyse  et rendra la deuxième constatation fausse. Mais comment 
peut-on réaliser ou garantir l’exactitude du calcul? Leibniz ne donne pas encore de 
réponse à cette question.

En fait en 1686, Leibniz répète d’abord cette argumentation: « Il est nécessaire 
que soient également admises dans la géométrie ces lignes par lesquelles seules ils 
[scil. les problèmes] peuvent être construits. Et parce qu’elles peuvent être tracées 
exactement par un mouvement continu, comme évidemment la cycloïde et d’autres 
lignes semblables, il faut les juger en fait (…) géométriques »42. Mais la suite du 
texte montre la différence à l’égard du texte de janvier 1675: « Si y est l’ordonnée 
d’une cycloïde, 2 : 2 ,y x xx dx x xx= − + −∫ équation qui exprime parfaitement 
la relation entre l’ordonnée y et l’abscisse x…. Ainsi, le calcul analytique est étendu 
à ces lignes qu’on a écartées jusqu’à présent pour aucune autre raison sinon qu’on 
les en croyait incapables »43.

L’exactitude joue le rôle crucial dans la détermination de la géométricité. Finale-
ment, les deux notions en viennent à devenir équivalentes chez Leibniz. En 1693, 
il critique ceux qui mesurent la géométricité seulement au moyen des équations 
algébriques d’un certain degré: « alors qu’est plutôt géométrique ce qui peut être 

41 A VII, 5, 202: « Figuras malim vocare analyticas, quas alii post Cartesium geometricas. Nam 
cycloeidem exempli gratia non video quid prohibeat appellari geometricam, cum uno continuo 
motu eoque admodum simplici exacte describi possit (…) analyticam autem esse nego, quoniam 
relatio inter ordinatas et abscissas nulla aequatione explicari potest ».
42 Leibniz 1686, 229 (trad. fr. 1989, 134): « Necesse est, eas quoque lineas recipi in geometriam, 
per quales solas construi possunt (sc. problemata); et cum eae exacte continuo motu describi pos-
sint, ut de cycloide et similibus patet, revera censendas esse (…) geometricas ».
43 Leibniz 1686, 231 (trad. fr. 1989, 138): « Si cycloidis ordinata sit y, fiet 2 : 2 ,y x xx dx x xx= − + −∫  
quae aequatio perfecte exprimit relationem inter ordinatam y et abscissam x…promotusque est hoc 
modo calculus analyticus ad eas lineas, quae non aliam magis ob causam hactenus exclusae sunt, 
quam quod ejus incapaces crederentur ».
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construit exactement par un mouvement continu » ( cum geometricum potius sit, 
quicquid motu continuo exacte construi potest)44. En d’autres mots, la construc-
tion exacte entraîne la géométricité. Il ne s’agit pas de l’exactitude géométrique: 
l’exactitude constitue la géométricité. Une année plus tard, Leibniz écrit: « Je con-
state que tout ce qui est exact, est géométrique, mais mécanique ce qui est effectué 
par approximation »45.

En 1695, il défend sa nouvelle définition de l’égalité: Deux quantités sont égales 
lorsque leur différence est plus petite qu’une quantité quelconque donnée. Il suf-
fit, dit-il, qu’une telle définition soit intelligible et utile pour l’invention, « parce 
que ce qui peut être trouvé au moyen d’une autre méthode (en apparence) plus 
rigoureuse, s’ensuit nécessairement toujours d’une manière non moins précise de 
cette méthode »46. Donc, Leibniz met en évidence l’exactitude du résultat au moyen 
d’une méthode au moins aussi rigoureuse qu’une autre méthode quelconque. En 
1714, il résume ainsi sa position: « Au moyen du nouveau calcul, toute la géométrie 
est désormais soumise dans toute son étendue au calcul analytique » ( Novo calculo 
jam tota quanta est geometria calculo analytico subjecta est)47. Grâce à son calcul, 
géométricité et analyticité sont devenues équivalentes.

1.2  Équipollence

Dans son traité sur la Quadrature arithmétique, Leibniz introduit la nouvelle rela-
tion opératoire d’équipollence48 qui joue un rôle crucial dans son calcul différentiel.

A l’origine, il s’agissait d’une relation entre une ligne droite et une ligne courbe. 
En fait, il nous faut commencer nos considérations avec Kepler et sa Nova ste-
reometria doliorum vinariorum ( Nouvelle stéréométrie des tonneaux à vin). Il y 
utilisait cette expression que Leibniz utilisa également dans un premier temps: ae-
quiparare. Kepler inscrit un polygone d’un nombre quelconque de côtés dans un 
cercle. La droite DB est un côté de ce polygone et aussi une corde de l’arc DB. 
L’arc EB est la moitié de l’arc DB (Fig. 2). Kepler continue: « Mais il est permis de 
raisonner sur EB comme sur une ligne droite parce que la force de la démonstration 
coupe le cercle en des arcs minimaux qui sont identifiés ( aequiparantur) avec des 
lignes droites »49.

L’expression aequiparantur est cruciale. Kepler ne dit pas « le plus petit arc est 
égal à une ligne droite », mais il y a une action, une identification de l’arc avec une 
ligne droite. Pour justifier cette identification, Kepler se réclame de la force de la 

44 Leibniz 1693, 290.
45 Leibniz 1694b, 312 (trad. fr. 1989, 295): « Statuo, quicquid exactum est, geometricum esse, 
mechanicum vero quod fit approximando ».
46 Leibniz 1695, 322 (trad. fr. 1989, 328): « cum ea quae alia magis (in speciem) rigorosa methodo 
inveniri possunt, hac methodo semper non minus accurate prodire sit necesse ».
47 Leibniz 1714, 394.
48 Parmentier dans Leibniz 2004, 19.
49 Kepler 1615, 14: « Licet autem argumentari de EB ut de recta, quia vis demonstrationis secat 
circulum in arcus minimos, qui aequiparantur rectis ».
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démonstration. Paul Guldin refusa cette référence parce que, disait-il, aucune force 
de la démonstration ne peut produire un tel fait, en ajoutant à bon droit qu’il n’y a 
aucun arc minimal; il y a toujours un arc qui est plus petit qu’un segment donné ap-
paremment minimal50. La notion de minimal n’était ni bien définie ni définissable. 
Leibniz a étudié l’œuvre de Guldin Sur le centre de gravité: Beaucoup d’allusions 
dans ses écrits mathématiques l’indiquent51. Il se réfère aussi à ce mathématicien 
suisse au mois de mars ou d’avril de l’année 1673 en étudiant les théorèmes de 
Guldin sans d’ailleurs le nommer: Il s’y occupe entre autres du centre de gravité 
d’un hémisphère (A VII, 4, n. 5). Il résume ses considérations en disant: « Mais 
cette méthode-là est réfutée ainsi: Les courbes doivent y être identifiées avec des 
polygones à une infinité de côtés »52.

Leibniz reprend l’expression keplérienne. Environ deux années plus tard, l’idée 
keplérienne devient la condition décisive de ses mathématiques infinitésimales. A 
l’automne de l’année 1675, il écrit dans sa Quadrature arithmétique: « Mais ils (les 
lecteurs) vont éprouver l’étendue du champ ouvert à l’invention dès qu’ils auront 
bien compris que toute figure curviligne n’est rien d’autre qu’un polygone com-
portant une infinité de côtés, de longueurs infiniment petites »53. À ce temps-là, 
Leibniz n’utilisait plus la notion de minimal qu’il avait employée en 1673 mais 
la notion d’« infiniment petit » bien définie comme « plus petit qu’une quantité 
quelconque donnée ». L’expression figure curviligne désigne ici une courbe et non 
pas une aire. On pourrait parler de l’axiome de linéarisation qui n’est pas démontré 
mais justifié par le théorème 6 du traité: Leibniz y démontre soigneusement que la 
différence entre certains espaces rectilignes, gradiformes et polygonaux et certaines 

50 Guldin 1635–1641 IV, 323.
51 A VII, 4, 106, 107, 160, 162, 231, 272, 340, 594.
52 A VII, 4, 63: « Sed ista methodus generaliter ita refutatur: Curvae aequiparandae sunt polygonis 
laterum infinitorum ».
53 Leibniz 1993, 69 (trad. fr. 2004, 184–187): « Sentient autem (sc. lectores) quantus inveniendi 
campus pateat, ubi hoc unum recte perceperint, figuram curvilineam omnem nihil aliud quam 
polygonum laterum numero infinitorum, magnitudine infinite parvorum esse ».

Fig. 2  Un polygone inscrit 
dans un cercle. (Johannes 
Kepler, Nova stereometria. 
Linz 1615. Dans: Johannes 
Kepler, Gesammelte Werke, 
Band IX, bearbeitet von 
Franz Hammer. München 
1960, p. 13)
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courbes peut être rendue plus petite qu’une quantité quelconque donnée, c’est-à-
dire « infiniment petite ».

Au mois de mai 1684, il parle d’un principe général dans son article De dimen-
sionibus inveniendis ( Sur la manière de trouver les mesures (de figures), Leibniz 
1684a, 126): « J’éprouve cependant que cette méthode et toutes les autres qu’on a 
employées jusqu’à maintenant peuvent être dérivées de mon principe général pour 
la mesure des courbes, à savoir qu’il faut considérer une figure curviligne comme 
équipollente à un polygone d’une infinité de côtés »54. La première publication de 
son calcul différentiel, c’est-à-dire son article Nova methodus ( Nouvelle méthode) 
qui parut au mois d’octobre 1684 s’appuie sur ce principe: « Il est aussi clair que 
notre méthode s’étend aux lignes transcendantes… pourvu seulement qu’on s’en ti-
enne en général à ceci que trouver la tangente consiste à tracer une droite… ou le côté 
prolongé d’un polygone infinitangulaire qui à mes yeux équivaut à une courbe »55.  
Le terme ‘équivaut’ a un sens rigoureux (Parmentier dans Leibniz 1989, 111 note 
59): Deux quantités sont équivalentes si leur différence est infiniment petite.

Jusqu’à maintenant, Leibniz a comparé une courbe avec un polygone infinitan-
gulaire en utilisant les expressions nihil aliud esse quam (ne pas être d’autre que), 
aequipollere (être équipollent), equivalere (équivaloir). Mais il comparait aussi di-
rectement deux courbes en les appelant « équipollentes » sous certaines conditions. 
Dans son traité Quadrature arithmétique, il écrit: « Or j’ai eu la chance de trouver 
que le théorème énoncé dans cette proposition 7 donne une courbe rationnelle d’une 
expression très simple et équipollente au cercle; voilà ce qui a donné naissance à 
la quadrature arithmétique du cercle et à la vraie expression analytique d’un arc à 
partir de sa tangente pour laquelle nous avons écrit ces choses-là. En conséquence, 
poussant plus loin mes recherches j’ai trouvé une méthode très générale et belle 
et cherchée depuis longtemps. À l’aide de cette méthode, une courbe analytique 
rationnelle peut être exhibée qui est équipollente à une courbe donnée analytique 
quelconque après avoir réduit le problème à l’analyse pure »56.

54 « Sentio autem et hanc (methodum) et alias hactenus adhibitas omnes deduci posse ex generali 
quodam meo dimetiendorum curvilineorum principio, quod figura curvilinea censenda sit aequi-
pollere polygono infinitorum laterum ». Comme dans le traité Quadrature arithmétique, Leibniz 
compare une figure curviligne avec un polygone. Il ne fait aucun sens de comparer une aire avec 
un polygone. Donc aussi ici, Leibniz désigne par figure curviligne une courbe et non pas une aire 
comme on a pu le maintenir. (Parmentier dans Leibniz 1989, 111 note 59). En fait, il ne distin-
guait pas strictement entre figura (figure), linea (ligne), curva (courbe) (voir A VII, 4, Table des 
matières, articles curva, figura, Kurve, linea).
55 Leibniz 1684b, 223 (trad. fr. 1989, 111): « Patet etiam methodum nostram porrigi ad lineas 
transcendentes…modo teneatur in genere tangentem invenire esse rectam ducere… seu latus pro-
ductum polygoni infinitanguli, quod nobis curvae equivalet ».
56 Leibniz 1993, 56 (trad. fr. 2004, 138 sq.): « Mihi vero feliciter accidit, ut theorema prop. 7. hujus 
traditum curvam daret rationalem simplicis admodum expressionis; circulo aequipollentem; unde 
nata est quadratura circuli arithmetica, et vera expressio analytica arcus ex tangente, cujus gratia 
ista conscripsimus. Inde porro investigans methodum reperi generalem admodum et  pulchram ac 
diu quaesitam, cujus ope datae cuilibet curvae analyticae, exhiberi potest curva analytica rationalis 
aequipollens, re ad puram analysin reducta ».
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La septième proposition est le théorème dit de « transmutation ». Elle décrit 
comment on peut construire à partir d’une courbe donnée une deuxième courbe de 
sorte que l’espace délimité par l’axe des abscisses, la seconde courbe et les deux or-
données extrêmes soit double de celui que délimitent la première courbe et les deux 
droites reliant ses extrémités au centre de l’angle droit qu’on s’est fixé. En termes 
modernes, il s’agit d’une intégration partielle. La fin du texte met en évidence 
l’aspect analytique: analyse pure veut dire qu’on n’a besoin ni de l’intuition ni 
d’une figure. Leibniz n’explique pas expressément la relation d’équipollence entre 
différentes courbes qui constitue le fondement de la mesure des aires en ce qu’elle 
peut intervenir entre des figures rectilignes et des figures curvilignes. Mais la cita-
tion de la septième proposition ne laisse aucun doute: Deux courbes sont équipol-
lentes lorsqu’elles définissent des aires égales ou lorsqu’elles ont la même quadra-
ture à un facteur multiplicatif près (Parmentier dans Leibniz 1989, p. 20, 39). Dans 
le cas du théorème de transmutation, c’est le facteur deux. Le cercle 2 2y 2ax x= −  

et la versiera d’Agnesi 
2

2 2
2x az

a z
=

+
peuvent servir d’exemple. Les ordonnées de 

la versiera sont commensurables à leurs abscisses (Leibniz à La Roque fin 1675: 
A III, 1, 346). Pour cette raison, Leibniz l’appelle « analytique rationnelle ». Nous 
reviendrons sur la classification des courbes dans la section suivante.

Nous constatons donc que l’équipollence des courbes s’appuie sur la notion de 
quadrature et par conséquent sur la sixième proposition de la Quadrature arith-
métique. Cette proposition est le théorème fondamental de la théorie leibnizienne 
de l’intégration (qui est au fond la théorie de l’intégrale riemannienne). Leibniz 
répète son résultat encore une fois plus tard dans sa Quadrature arithmétique: « J’ai 
donc découvert une méthode par laquelle le cercle de même que toute autre figure 
peuvent être transformées en une figure rationnelle équipollente et exprimées par 
des sommes infinies rationnelles… Nous avons reconnu une méthode par laquelle 
toutes les figures d’équation quelconque peuvent être réduites à des figures rati-
onnelles équipollentes »57.

Leibniz reprend cette idée cruciale encore une fois dans son article De geome-
tria recondita et analysi indivisibilium atque infinitorum ( Sur la géométrie cachée 
et l’analyse des indivisibles et des infinis, publié en 1686): « C’est précisément 
là-dessus que la plupart se sont trompés et se sont barrés la route à ce qui suit, 
parce qu’ils ne respectaient pas l’universalité propre aux indivisibles de ce type-là 
comme dx (une progression quelconque des x pouvant être en fait choisie) alors que 
c’est seulement de cette manière qu’apparaissent d’innombrables transformations et 
équipollences entre les figures »58.

57 Leibniz 1993, 110 (trad. fr. 2004, 308, 307, 309): « Mihi ergo methodus innotuit, qua tum cir-
culus tum alia quaelibet figura in aliam rationalem aequipollentem transmutari, ac per summas 
infinitas rationales exhiberi potest (…). Nos viam deprehendimus qua omnes figurae aequationis 
cujuscunque reduci possint ad rationales aequipollentes ».
58 Leibniz 1686, 233 (trad. fr. 1989, 141 sq.): « Nam in hoc ipso peccarunt plerique et sibi viam ad 
ulteriora praeclusere, quod indivisibilibus istiusmodi, velut dx, universalitatem suam (ut scilicet 
progressio ipsarum x assumi posset qualiscunque) non reliquerunt, cum tamen ex hoc uno innu-
merabiles figurarum transfigurationes et aequipollentiae oriantur ».
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Nous pouvons résumer: D’abord, Leibniz stipule qu’une courbe peut être iden-
tifiée avec un polygone infinitangulaire en utilisant le gérondif aequiparanda (A 
VII, 4, 63), censenda (Leibniz 1684a, p. 126). Il ne justifie pas ce principe (Leibniz 
1684a, p. 126) dans ses articles publiés mais dans son traité Quadrature arithmé-
tique (théorème 6) qu’il a écrit en 1675/76 sans le publier de son vivant. La rela-
tion d’équipollence entre deux courbes s’appuie alors sur leurs quadratures; elle est 
plus générale que l’équipollence d’un polygone et d’une courbe: cette égalité-là est 
seulement garantie à un facteur multiplicatif près. Leibniz crée même le substantif 
aequipollentia (équipollence) de deux figures. (aires) (Leibniz 1686, p. 233; trad. 
fr. 1989, 141sq.).

1.3  Classification des courbes

Nous avons vu dans la première partie qu’au mois de janvier 1675 Leibniz remplace 
la notion de « géométrique » par celle d’« analytique ». Il a fait la même chose avec 
leurs contraires logiques au mois de décembre 1674 en remplaçant non geometrica 
par non analytica (A VII, 5, 139). À cette époque, étant donnée sa première notion 
d’analytique, il y avait encore pour lui des courbes non-analytiques. En s’appuyant 
sur cette première notion, il explique: « on peut donc démontrer facilement que le 
cercle et l’hyperbole n’ont pas de quadratrice analytique parce qu’il est impossible 
que la quadratrice des anciens et la ligne logarithmique soient analytiques »59. C’est 
au cours de l’année 1675 que sa notion d’analyticité change et qu’il élabore une 
classification des courbes analytiques en un sens plus large. Dans son étude De 
tangentibus et speciatim figurarum simplicium (« Sur les tangentes et particulière-
ment des courbes simples ») écrite entre le mois de février et le mois de juin 1676, il 
définit: « J’appelle une figure simple si la nature de cette courbe peut être présentée 
par une équation de deux termes »60.

Les exemples qu’il donne montrent que Leibniz classe les courbes analytiques 
sans le dire expressément. La plus simple de toutes les courbes (analytiques) sim-
ples est la ligne droite y x= , la deuxième en simplicité est la parabole 2a x y= . En 
général, il s’agit des paraboloïdes z v z+va x y=  et des hyperboloïdes z+v z va x y= . 
Dans sa Quadrature arithmétique, Leibniz précise: « J’appelle courbe analytique 
simple celle dans laquelle la relation entre les ordonnées et les sections coupées d’un 
axe quelconque peut être expliquée par une équation de seulement deux termes. »61 
On peut décrire cette famille de courbes par l’équation moderne:

59 A VII, 5, 203: « Hinc facile demonstrari potest circulum et hyperbolam nullam habere quadra-
tricem analyticam; quoniam impossibile est quadratricem veterum, et lineam logarithmicam ana-
lyticas esse ».
60 A VII, 5, 450: « Figuram simplicem voco, cujus curvae natura aequatione duorum terminorum 
exhiberi potest ».
61 Leibniz 1993, 51 sq. (trad. fr. 2004, 124 sq.): « Curvam analyticam simplicem voco, in qua 
relatio inter ordinatas et portiones ex axe aliquo abscissas, aequatione duorum tantum terminorum 
explicari potest ».
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Ainsi, Leibniz brise l’unité des coniques, la parabole et l’hyperbole se retrouvant 
dans une catégorie différente de celle du cercle et de l’ellipse (Parmentier dans 
Leibniz 2004, 131 note 3).

Leibniz continue cette classification. Dans son étude De tangentibus et specia-
tim figurarum simplicium, il explique: « Une courbe est rationnelle lorsqu’un axe 
quelconque peut être pris tel que, les abscisses et les paramètres étant données en 
nombres rationnels, les ordonnées perpendiculaires le sont aussi en ces nombres. Et 
c’est le cas lorsque la valeur de l’ordonnée peut être reçue purement sans aucune ex-
traction de racines (…). Toutes les courbes dans lesquelles les ordonnées sont dans 
une raison directe ou réciproque multipliée ou multipliée inversement des abscisses 
sont de cette nature »62. Leibniz donne les exemples suivants (A VII, 5, 473 sq.):

Dans sa Quadrature arithmétique, Leibniz reprend: « Une courbe analytique est 
rationnelle lorsqu’on peut choisir son axe de sorte qu’en partant d’une abscisse et de 
paramètres rationnels, son ordonnée soit rationnelle »63. Les exemples leibniziens 
sont la parabole et l’hyperbole. Les exemples contraires sont le cercle et l’ellipse. 
Leibniz mentionne expressément qu’il n’y a dans toute la nature que deux lignes 
possédant des ordonnées rationnelles à la fois selon leurs axes conjugués, à savoir la 
droite et l’hyperbole ou figure de l’hyperbole (Leibniz 1993, 55; trad. fr. 2004, 136 
sq.). Cette terminologie démontre de nouveau que Leibniz ne distingue pas stricte-
ment entre la notion de ligne, de courbe et de figure.

C’est la raison pour laquelle (en dehors de la ligne droite) la ligne hyperbolique 
est la plus simple du point de vue de son expression analytique, la ligne circulaire 
étant la plus simple du point de vue de la construction. Cela veut dire que Leibniz 
recourt à deux types de simplicité, celui de l’expression (type algébrique) et celui 
de la construction (type géométrique). Il répète cette classification pour les courbes 
transcendantes (voir plus bas). Il faut ajouter en effet qu’il y a des courbes simples 
qui ne sont pas rationnelles comme y v=  et des courbes non-simples qui sont 
rationnelles comme 2=pxy x+ . Le cercle et l’ellipse ne sont ni simples (nous le 

62 A VII, 5, 473: « Curva rationalis est, cujus directrix aliqua ita assumi potest, ut datis abscissis et 
parametris in numeris rationalibus, etiam ordinatae normales in numeris haberi possint. Et hoc fit 
cum valor ordinatae haberi potest pure, sine ulla radicum extractione…Tales sunt omnes curvae, 
in quibus ordinatae sunt in directa aut reciproca ratione multiplicata aut submultiplicata abscis-
sarum ».
63 Leibniz 1993, 54 (trad. fr. 2004, 132 sq.): « Curva analytica rationalis est cujus axis ita sumi 
potest, ut sit ordinata rationalis posito abscissam et parametros, esse rationales ».

m nv py avec , nombres entiersm n=

v z-v zp x y=

2
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a y
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savons déjà) ni rationnels parce qu’il est impossible de choisir aucun axe rendant 
rationnelles les ordonnées. En revanche, les figures rationnelles permettent plus 
facilement une quadrature exacte ou à défaut arithmétique, c’est-à-dire renfermée 
dans une série infinie de nombres rationnels (Leibniz 1993, 55; trad. fr. 2004, 138 
sq.). Tout hyperboloïde rationnel constitue une quadratrice de l’hyperboloïde de 
degré supérieur. Tout paraboloïde rationnel constitue une quadratrice du paraboloïde 
de degré inférieur (Leibniz 1993, 140 sq.; trad. fr. 2004, 192 s.).

Un tableau synoptique peut illustrer la classification leibnizienne:
 courbes
 géométriques (vs. non-géométriques)
 analytiques (vs. non-analytiques)
         simples      non-simples
rationnelles   non-rationnelles    rationnelles   non-rationnelles
Par exemple

Il faut souligner que ce schéma ne se trouve pas chez Leibniz. Il s’agit d’un résultat 
déduit à partir de la terminologie qu’il utilise. Les expressions « non-géométriques »,  
« non-analytiques » sont les compléments logiquement nécessaires des termes tech-
niques « géométriques », « analytiques », mais sont également effectivement em-
ployées par Leibniz, comme nous l’avons vu. Le sens des deux paires de termes 
correspondants change au cours du temps. Avant l’invention de sa nouvelle analyse, 
Leibniz identifiait géométricité et analyticité. Il y avait pour lui aussi des courbes 
non-géométriques comme la courbe logarithmique. Après l’invention de sa nou-
velle analyse les courbes transcendantes appartiennent à la géométrie. Il n’y a plus 
de courbes non-géométriques.

Dans ses publications qui parurent à partir de 1682, Leibniz n’utilise plus la no-
tion d’analytique pour classer des courbes. Il introduit la dichotomie algébrique—
transcendante (Leibniz 1682, 119; trad. fr. 1989, 75; Leibniz 1684a, 123; trad. fr. 
1989, 89; Leibniz 1684b, 223; trad. fr. 1989, 111; Leibniz 1686, 228, 230; trad. 
fr. 1989, 134, 136 etc.). En fait, Leibniz s’occupait de beaucoup de courbes trans-
cendantes. Je m’en tiendrai à quelques exemples. Au premier rang figurent la cy-
cloïde (Leibniz 1993, prop. 12 et 13) et la courbe logarithmique (Leibniz 1993, déf. 
après prop. 43, prop. 44, 46, 47, 50). Parmi les courbes transcendantes, la cycloïde 
peut apparaître comme la plus simple du point de vue de la construction, la courbe 
logarithmique comme la plus simple du point de vue de l’expression. La première 
naît du cercle et de l’expression spatiale des angles, la seconde de l’hyperbole et de 
l’expression spatiale des rapports (Leibniz 1993, 55; trad. fr. 2004, 136–139). En 
1684, Leibniz met en évidence les applications immenses de ces deux courbes. Elles 
peuvent être représentées par des équations de degré indéfini, c’est-à-dire trans-
cendant (Leibniz 1684a, 124; trad. fr. 1989, 90). La cycloïde n’était pas seulement 
la tautochrone d’Huygens. Elle se révéla aussi être la courbe de la descente la plus 
rapide, c’est-à-dire la brachistochrone (Parmentier dans Leibniz 1989, 346).

2pvy = y ν= 2p +  y x x= 2 2 2rx y+ =
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En 1686, Leibniz constate (nous l’avons vu dans la première partie) que la 
cycloïde peut être tracée rigoureusement par un mouvement continu (Leibniz 
1686, 229; trad. fr. 1989, 134) et revient sur ce sujet également plus tard (Leibniz 
1693a, 295; trad. fr. 1989, 253 sq.). La courbe logarithmique est un exemple par-
ticulièrement intéressant de quadratrice transcendante (dans ce cas de l’hyperbole: 
Leibniz 1684a, 124; trad. fr. 1989, 90). Pour construire les logarithmes, Leibniz 
compose un mouvement uniforme et un mouvement retardé par un frottement 
constant, c’est-à-dire retardé proportionnellement aux espaces parcourus. Il dit 
lui-même que c’est un moyen physique de construire les logarithmes, alors que la 
géométrie ordinaire est incapable de les construire exactement (Leibniz 1693a, 295; 
trad. fr. 1989, 255; Knobloch 2004, 166 sq.).

Autres exemples de courbes transcendantes dont Leibniz s’occupe: les lignes 
optiques, entre autres la caustique (Leibniz 1689a); l’isochrone (le long de cette 
courbe un corps pesant tombe uniformément: Leibniz 1689b); l’isochrone paracen-
trique (sur cette courbe, un corps pesant descendant d’une hauteur H se rapproche 
ou s’éloigne régulièrement d’un centre A de sorte que les éléments des distances 
par rapport à A soient proportionnels aux éléments du temps: Leibniz 1694a); la 
chaînette ou courbe funiculaire (courbe que dessine un fil sous l’effet de son pro-
pre poids: Leibniz 1691); la tractrice (courbe telle que la portion de sa tangente 
comprise entre un point quelconque et l’axe soit constante; Leibniz déclare l’avoir 
découverte à Paris sur les instances du médecin Perrault (Parmentier dans Leibniz 
1989, p. 249); la courbe rhombique ou loxodromique (courbe à double courbure sur 
une surface sphérique: Leibniz 1691). Leibniz se glorifie d’être capable de calculer 
selon l’exactitude géométrique l’arc de trajectoire dans un même rhombe, c’est-à-
dire de donner la mesure de la courbe rhombique: « C’est une tâche de la géométrie 
transcendante » ( negotium est geometriae transcendentis), tandis qu’on ne réalise 
en général cette mesure que trop peu exactement ( parum accurate) » (Leibniz 1691, 
130 sq.; trad. fr. 1989, 181sq.).

Leibniz avance plus loin: il considère même des courbes tracées au hasard en 
disant que l’universalité de sa proposition de transmutation est telle qu’elle vaut 
pour toutes les courbes, même pour les courbes tracées arbitrairement, sans aucune 
loi déterminée64. Dans son Discours de métaphysique de l’année 1686, il donne une 
justification théologique selon laquelle même une telle courbe possède en réalité 
une équation: « Car supposons par exemple que quelqu’un fasse quantité de points 
sur le papier à tout hasard (…), je dis qu’il est possible de trouver une ligne géomé-
trique dont la notion soit constante et uniforme suivant une certaine règle, en sorte 
que cette ligne passe par tous ces points, et dans le même ordre que la main les avoit 
marqués. Dieu ne fait rien hors de l’ordre et il n’est pas même possible de feindre 
des événements qui ne soient pas réguliers » (A VI, 4B, 1537 sq.). En d’autres mots, 
l’ordre du monde créé par Dieu entraîne toujours une certaine topologie. On peut 
toujours lier deux points l’un à l’autre. Seulement dans un monde qui est mis en 
ordre moins parfaitement, on ne peut pas lier deux points quelconques.

64 Leibniz 1993, 35 sq. (trad. fr. 2004, 70 sq.).
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I. La théorie des courbes analytiques simples
Leibniz distingue les courbes analytiques simples selon une double distinction 
(Leibniz 1993, 57 sq.; trad. fr. 2004, 144–147): d’un côté les courbes analytiques 
simples directes (ou paraboloïdes) et les courbes analytiques simples réciproques 
(ou hyperboloïdes), de l’autre, les courbes analytiques simples rationnelles et les 
courbes analytiques simples non-rationnelles. Pour l’élaboration de ses trois listes 
de courbes analytiques simples dans sa Quadrature arithmétique du cercle, il 
s’appuie sur la première dichotomie (Leibniz 1993, 53 sq., 57 sq.; trad. fr. 2004, 
130–133, 144–147):

Leibniz utilise des puissances du paramètre p pour préserver la loi d’homogénéité 
de Viète. La permutation des indéterminées y, v et l’abaissement des degrés ou sim-
plification peut faire réapparaître une même courbe sous des équations  différentes. 
Il faut en trouver l’expression la plus simple. Les listes consistent en « classes 
d’équivalence, dans l’ensemble des équations possibles, modulo les deux opéra-
tions de permutation et de simplification » (Parmentier dans Leibniz 2004, 14).

On peut donc illustrer cette classification ainsi:
 courbes analytiques simples

paraboloïdes hyperboloïdes

rationnels non-rationnels rationnels non rationnels

Après avoir classé ces courbes, Leibniz démontre six théorèmes généraux concer-
nant ces courbes en même temps: théorèmes 15, 16, 17, 18, 21, 22. Avant qu’on 
puisse les considérer, il faut connaître la notion leibnizienne de figure des sections 
( figura resectarum). Il la définit ainsi (Leibniz 1993, 33; trad. fr. 2004, 64; 67): Par 
des points quelconques nC d’une courbe A1C2C3C etc., on tire les ordonnées per-
pendiculairement à l’axe des abscisses. Des points nC on tire les tangentes jusqu’à 
leurs rencontres avec l’axe des ordonnées. Les points d’intersection sont marqués 
nT. On transfère les sections AnT ( resectae) sur les ordonnées nBnC, prolongées 
si cela est nécessaire, et on obtient les points nD. Les points nD se trouvent sur une 
nouvelle courbe (quadratrice). L’espace situé entre cette nouvelle courbe, les deux 
ordonnées et l’axe des abscisses s’appelle « la figure des sections ».

m-n n m , m, n 1,2,3 .,p y v etc n m= = <

n n-m m , m, n 1,2,3 etc., m n pour les parabolo des;ïy p v= = <

n m n+m m , m, n 1,2,3 etc. pour les hyperbolo dï es.y v p v= =

y p v y v pmn n-m m n n+m= , n m m, n IN> = ∈,

ax y ax xy a x y a= = = =2 3 2 3y
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Donc, soit 1C2C3C une courbe analytique simple y v y vn m n ma ou b= = . Soit 
Bθ le segment linéaire de l’axe des abscisses entre le point d’intersection de la 
tangente Cθ et B le pied de l’ordonnée CB. Leibniz distingue entre les trois cas 
présentés dans les Figs. 3, 4 et 5.

C’est le théorème de Ricci (Ricci 1666). Leibniz ne donne aucune démonstration et 
se contente de dire: « La démonstration demanderait de dépenser beaucoup d’effort »  
( Demonstratio multo opus haberet apparatu)65, en renvoyant à Ricci. Dans son 
étude De tangentibus et speciatim figurarum simplicium de la première moitié de 
l’année 1676, il applique ce théorème seulement aux courbes analytiques simples 
rationnelles: « Sur une courbe analytique simple rationnelle l’intervalle entre la tan-
gente et l’ordonnée prise sur l’axe est à l’abscisse comme l’exposant de la puissance 
selon laquelle les abscisses sont prises à l’exposant de la puissance selon laquelle 
les ordonnées sont prises proportionnelles aux abscisses »66. Leibniz abandonne la 
démonstration après quelques pages: il ne donne aucune démonstration complète.

Considérons les cinq autres théorèmes qu’il démontre complètement:

65 Leibniz 1993, 56 (trad. fr. 2004, 140 sq.).
66 A VII, 5, 474 sq.: « In curva analytica simplice rationali intervallum tangentis ab ordinata sum-
tum in directrice est ad abscissam ut exponens dignitatis secundum quam sumuntur abscissae ad 
exponentem dignitatis secundum quam ipsis proportionales sumuntur ordinatae ».

( )Voici son théorème 15 : ou sous tangente :  abscisseB n
AB m
θ

− =

Fig. 3  Une courbe analytique 
simple (type 1). (G. W. Leibniz, 
De quadratura arithmetica 
circuli etc., éd. par Eberhard 
Knobloch. Göttingen 1993, 
p. 49)
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Théorème 16 Lorsque la figure génératrice est une figure analytique simple la 
 figure des sections qu’elle engendrera sera également une figure analytique simple. 
Soient BC, BD les ordonnées correspondantes des deux figures:

La preuve s’appuie sur le théorème 15. Pour le cas de la parabole, on obtient 
par exemple: BD = AT, donc BD : BC = θA : θB, donc (1θ1B − A1B) : 1θ1B = 1θ1B : 
1θ1B − A1B : 1θ1B = 1 − m : n = (n − m): n

Théorème 17 Le double de 1CA2C1C est avec 1C1B2B2C1C dans le rapport de 
n − m: n (Fig. 3) ou m − n: n (Fig. 4) ou n + m: n (Fig. 5).

La preuve s’appuie sur le théorème de transmutation et sur le théorème 16. 
D’après le théorème de transmutation le double de 1CA2C1C est égal à la Fig. 
1D1B2B2D1D. D’après sa méthode des indivisibles les sommes de toutes les lignes 
BD et de toutes les lignes BC sont égales aux deux figures considérées dont le rap-
port est donné par le théorème 16.

BC
BD

v BC
BD

v= − > − < = = + =n n m n m ou m n n m si y b n n m si y an m n m: ( ) : ( ) ; :

Fig. 5  Une courbe analy-
tique simple (type 3). (G. 
W. Leibniz, De quadratura 
arithmetica circuli etc., éd. 
par Eberhard Knobloch. Göt-
tingen 1993, p. 50)

 

Fig. 4  Une courbe analy-
tique simple (type 2). (G. 
W. Leibniz, De quadratura 
arithmetica circuli etc., éd. 
par Eberhard Knobloch. Göt-
tingen 1993, p. 49)
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Théorème 18 La zone entre deux ordonnées, l’arc de la courbe et l’axe est à la zone 
conjuguée entre les deux abscisses correspondantes, le même arc de la courbe et 
l’axe conjugué comme n: m (Fig. 6)

La preuve s’appuie sur le théorème 17. Soit S le secteur A1C2CA. Donc:

La division de la première équation par la deuxième nous donne le résultat cherché.
Grâce à ces théorèmes, Leibniz peut déduire la quadrature d’une figure analytique 

simple quelconque en dehors de l’hyperbole conique (théorème 19). Nous mention-
nerons les deux théorèmes qui manquent sans les démontrer67. Ce qui est intéressant 
ici est l’approche géométrique qui n’utilise pas encore le calcul différentiel:

Théorème 21 Soit une hyperboloïde donnée. Le rectangle sous l’abscisse infini-
ment petite A0B et l’ordonnée infiniment grande 0B0C est:

une quantité infinie, si m > n 
une quantité infiniment petite, si m < n,
une quantité finie, si n = m.

Théorème 22 Soit une hyperboloïde donnée quelconque en dehors de l’hyperbole 
conique. Il y a deux espaces de longueur infinie 1C1BA0G0C1C et 1C1GA3B…3C1C. 
Leurs aires sont infinies ou finies par rapport à l’une des asymptotes selon que n < m 
ou réciproquement.

67 On trouve une analyse précise des démonstrations dans Knobloch 1993.

2 fois secteur S  zone n m n ou m n n ou n m n: : : :1= − − +

2 fois secteur S  zone n m m ou m n m ou n m m: : : :2 = − − +

Fig. 6  Les deux zones 
conjuguées d’une courbe 
analytique simple. (Eberhard 
Knobloch, Les courbes analy-
tiques simples chez Leibniz. 
Sciences et techniques en 
perspective 26 (1993), p. 80)
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À l’aide de sa géométrie infinitésimale, fondée sur la notion bien définie 
d’infiniment petit, Leibniz élabore ainsi une théorie complète des courbes 
 analytiques simples. C’est la seule fois à notre connaissance: Les méthodes géo-
métriques et les méthodes infinitésimales cohabitent. Presqu’à la même époque, 
c’est-à-dire à l’automne de l’année 1675, il invente son calcul différentiel qui rend 
les méthodes infinitésimales superflues. Les résultats obtenus restent valables. On 
pourrait parler d’une ruse de l’histoire (des sciences) que la justification absolument 
rigoureuse de son principe général d’équipollence ne se trouve que dans son traité 
Quadrature arithmétique. Ce traité s’appuie sur des méthodes infinitésimales. Elles 
sont basées sur le théorème six qui est démontré à l’aide de méthodes archimédi-
ennes, en d’autres mots à l’aide de méthodes généralement acceptées.

1.4  Épilogue

Répétons les pas les plus importants du développement intellectuel expliqué dans 
cet article. Leibniz identifie l’analyticité avec la calculabilité qui devient la notion 
clé de ses idées à cet égard. Il complète, il perfectionne l’analyse de sorte que la 
géométrie soit soumise dans toute son étendue au calcul analytique. Cela devient 
possible grâce à son principe général d’équipollence justifiée rigoureusement dans 
son traité Quadrature arithmétique. Sa classification des courbes reflète ce déve-
loppement. Finalement il n’y a plus de courbes non-géométriques. Les courbes ana-
lytiques simples méritent d’être considérées un peu plus en détail, car Leibniz en a 
élaboré (une seule fois) la théorie complète.

On pourrait résumer les résultats leibniziens par ses propres mots: « Par l’incursion 
la plus libre de l’esprit, nous pouvons traiter non moins audacieusement que sûre-
ment les courbes que les droites »68. Cette remarque nous rappelle le mot fameux 
de Cantor: « L’essence des mathématiques consiste justement en leur liberté »  
(Cantor 1883, p. 182).
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1  Introduction

During his stay in Paris in the years 1672–1676 Leibniz acquired a wealth of knowl-
edge in mathematics and discovered significant results within a short time. But 
in respect of some of his findings he had to recognize that he was not the first 
mathematician to treat them successfully. The best known example is, of course, 
the calculus, where it was Isaac Newton who anticipated him. But there are other 
mathematicians who likewise anticipated Leibniz and whose writings were much 
more easily available to him. During his initial steps towards the calculus in 1673, 
for example, neither the use of the infinitesimal characteristic triangle, nor the trans-
mutation of curves, nor even recognition of the relationship between the calculation 
of tangents and areas were completely new insights. Several mathematicians had 
acquired knowledge of such methods and had worked with them. Indeed, all the 
examples mentioned had already been published by Isaac Barrow. But even with 
Leibniz’s first mathematical success in Paris, when he solved the problem of the 
summation of the reciprocal triangular numbers that Christiaan Huygens had set 
him in 1672, both the specific result and the general method of solution had already 
been discovered by Pietro Mengoli. Moreover, the general method had also been 
found by François Regnauld, as Leibniz learned during his visit to London early in 
1673. Another example is provided by the arctan series for the circle, which Leibniz 
formulated in 1673. Unbeknown to him, this series had already been discovered 
by James Gregory. It was not until April 1675 that he found out about this prior 
discovery − in a letter from Henry Oldenburg which also contained a sine series of 
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Newton1. And last but not least, the rules for the quadrature of the higher parabolas 
and hyperbolas with arbitrary real exponents had been published earlier by John 
Wallis.

In order to provide data for a comparative study of Leibniz’s treatment of prede-
cessors in these topics, it seems necessary first to investigate the extent of Leibniz’s 
knowledge of their results and his use of the sources available to him. This paper 
aims to contribute to the issue in exploring the cases of two mathematicians who 
anticipated results found by Leibniz, the more prominent Isaac Barrow (Part I)2 and 
the lesser-known Pietro Mengoli (Part II)3. Since E. W. v. Tschirnhaus in a letter to 
Leibniz argued that the calculus provided nothing essentially new in comparison to 
the methods in Barrows Lectiones geometricae4, the suspicion was raised from time 
to time that Leibniz had gained benefit in a decisive way from reading this book in 
finding and developing the differential and integral calculus5. After publication of 
the relevant portion of Leibniz’s manuscripts concerning the prehistory and early 
history of the calculus in the Academy Edition this question can be investigated on 
a secured basis of original texts6. In the case of Pietro Mengoli on the other hand, an 
investigation of Leibniz’s studies on series and on the arithmetic circle quadrature 
seems especially promising, because Leibniz wanted to publish in this work most 
of the results mentioned before.7

1 Leibniz (1923), A III 1 No. 492; OC (= Oldenburg 1965) XI No. 2642.
2 Part I is based on Probst (2011).
3 Part II is based on a talk “Die Rezeption der Reihenlehre von Pietro Mengoli durch Leibniz in der 
Zeit seines Parisaufenthalts (1672–1676)” presented at the meeting of the Fachsektion Geschichte 
der Mathematik der DMV Lambrecht (Pfalz) in 2007 (print forthcoming); an English version en-
titled “The Reception of Pietro Mengoli’s Work on Series by Leibniz (1672–1676)” was presented 
at the Joint International Meeting UMI-DMV in Perugia (18–22 June 2007).
4 See Tschirnhaus to Leibniz [April/May 1679] (A III 2 No. 301, 708–712). Barrow (1670), title 
print in Barrow (1672), title prints with additions Barrow (1674), Archimedes (1675); see Mahnke 
(1926, pp. 20–22).
5 The thesis of a dependence of Leibniz’s calculus from Barrow was again put forward by J. M. 
Child in Barrow (1916) and extensively developed in Leibniz (1920). Mahnke (1926), Hofmann 
(1974, pp. 74–78), and Mahoney (1990, pp. 236–249), denied such a dependence, Feingold (1993, 
pp. 324–331), repeated Child’s claims; Feingold added an investigation of the correspondence and 
the discussions during the lifetime of Leibniz and of parts of the later research. For a critique see 
Wahl (2011). The question has been raised again by Blank (2009, pp. 608–609). Recent publica-
tions by Nauenberg (2014) and Brown (2012, pp. 58–60), side with Child and Feingold.—A bal-
anced evaluation of the methods and results of Barrow and Leibniz is presented in Breger (2004).
6 See especially the volumes A VII 4 (1670–1673) and A VII 5 (1674–1676) concerning infinitesi-
mal mathematics.
7 The studies on series (1672–1676) are printed in A VII 3. The main manuscript text on the ar-
ithmetical circle quadrature has been published for the first time completely in Leibniz (1993). 
Together with the remaining relevant manuscripts from 1673 to 1676, De quadratura arithmetica 
has been published in 2012 in the Academy edition in vol. A VII 6 No. 51, 520–676.
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2  Part I: The Reception of Isaac Barrow’s Lectiones 
Geometricae (1670) by Leibniz in Paris (1672–1676)

2.1  References to Barrow and Marginal Notes in Leibniz’s 
Copy of the Lectiones Geometricae

Isaac Barrow was one of the first rank of contemporary mathematicians, whose 
name was known to Leibniz already in his early years in Germany: In De arte com-
binatoria (1666) and in the Nova methodus discendae docendaeque jurisprudentiae 
(1667), he referred to the mathematical symbols that Barrow had used in his edition 
of Euclid’s Elements of 16558. In August 1670 Henry Oldenburg informed him of 
the publication of Barrow’s Lectiones Opticae (1669) and Lectiones geometricae 
(1670) (A II 1 (2006) No. 27, 99; OC VII No. 1506, 111). Leibniz in a letter to 
Martin Fogel in January 1671 mentioned only the Lectiones Opticae (A II 1 (2006) 
No. 38, 126–127). Two years later, during his stay in London (January-February 
1673) Leibniz acquired the edition of 1672, in which the two works were sold to-
gether with a common titlepage (Hanover, Gottfried Wilhelm Leibniz Bibliothek, 
Leibn. Marg 0)9. In his notes on this journey, Observata in itinere Anglicano, Leib-
niz wrote that he had heard that Barrow tackled an optical phenomenon that he had 
not been able to explain (A VIII 1 No. 1, 6). In April 1673 in a letter to Oldenburg he 
referred to this statement in Barrow’s Lectiones Opticae and told him that Huygens 
and Mariotte declared that they were able to solve the problem concerned (A III 1 
No. 17, 87; OC IX No. 2208, 595–596). Another note in the Observata could pos-
sibly relate to the Lectiones geometricae of Barrow, as has been suggested already 
by Gerhardt10; Leibniz wrote: “Tangents to all curves. Development of geometrical 
figures by the motion of a point in a moving line.”11 Since Leibniz was familiar with 
the ancient idea of the generation of a line by a flowing point and already in 1671 
wanted to construct all possible lines by the composition of rectilinear motions, his 
note suggests that he was confronted with this issue again in London12. The second 
sentence goes well with a passage on page 27 of the Lectiones geometricae, under-
lined in Leibniz’s personal copy: “For every line that lies in a plane can be generated 

8 Euclid (1655), „Notarum explicatio“, facing page 1; see A VI 1 No. 8, 173; A VI 1 No. 10, 346.
9 The copy is available online at: http://digitale-sammlungen.gwlb.de/goobit3/ppnresolver 
/?PPN=688854583. (All pictures of figures in Barrow’s Lectiones geometricae in this paper are 
taken from this copy by courtesy of the Gottfried Wilhelm Leibniz Bibliothek Hanover.) The mar-
ginal notes to the Lectiones opticae are printed in A VIII 1 No. 26, 206–209; the marginal notes to 
the Lectiones geometricae are to be found in A VII 5 No. 43, 301–309; concerning the dating of 
these notes see 301.
10 Gerhardt (1891, pp. 157–158); Leibniz (1920, p. 160).
11 Leibniz (1920, p. 185); “Tangentes omnium figurarum. Figurarum geometricarum explicatio per 
motum puncti in moto lati.” (A VIII 1 No. 1, 5).
12 The flowing point is already mentioned by Aristotle, De anima, 409a 4–5; for Leibniz’s discus-
sion of the generation of lines by the composition of rectilinear motions see the Theoria motus 
abstracti (A VI 1 No. 41, 270–271).

http://digitale-sammlungen.gwlb.de/goobit3/ppnresolver
/?PPN=688854583
http://digitale-sammlungen.gwlb.de/goobit3/ppnresolver
/?PPN=688854583
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by the motion of a straight line parallel to itself, and the motion of a point along it; 
every surface by the motion of a plane parallel to itself and the motion of a line in it 
(that is, any line on a curved surface can be generated by rectilinear motions); in the 
same way solids, which are generated by surfaces, can be made to depend on rec-
tilinear motions.”13 The first sentence of the note in the Observata could also refer 
to Barrow’s book where a large part deals with the construction of the tangents of 
different curves. However, other interpretations are possible: On 8 February 1673, 
Leibniz took part in a meeting of the Royal Society, during which a letter from René 
François de Sluse containing an exposition of his method of tangents was read14. 
The letter was published in the current issue of the Philosophical Transactions15, 
and Leibniz conveyed a copy of the printed version to Huygens in Paris (see A III 1 
No. 6, 31–32) and made a personal copy of most of the article. Paraphrasing Sluse’s 
introductory remarks he gave the excerpt the title: “Method to draw tangents to all 
kinds of curves, without laborious calculation, which can be taught to a boy igno-
rant of geometry”16. The similarities between “tangents to all curves” and “tangents 
to all kind of curves” are striking. However, motions are not used in Sluse’s method 
of tangents. Another possibility could be a reference to Wallis (1672); this article 
had been printed a year earlier in the Philosophical Transactions. The motion of a 
point (“motus puncti”) is used by Wallis, especially on pages 4014–4016. Perhaps 
in connection to the reading of Sluse’s letter there had been talks where the article 
by Wallis was mentioned17.

The rest of the underlined passages in the first part of Leibniz’s copy of the 
Lectiones geometricae, which probably originated in the early stages of reading, 
relates twice (pages 13 and 17) to the concept of motion in geometry, in the third 
(page 21) Barrow justifies using the terminology of indivisibles (see A VII 5 No. 43, 
302). Whether the marginal notes on pages 131–133 and page 136 concerning the 
classification of curves using their equations already came about at this first reading 
or only later in Hannover, probably cannot be established. Leibniz uses the equality 
sign “ = ” both before mid-1674 as well as from 1677 on. There seems to be no direct 
evidence for a further reading of the Lectiones Geometricae before the autumn of 
1675. Only Leibniz’s expression of regret in his reply to Oldenburg, dated 12 June 
1675, on having heard the news that Barrow had retired from active mathematical 

13 Barrow (1916, p. 49); “Omnis, inquam, in uno plano constituta linea procreari potest e motu 
parallelo rectae lineae, et puncti in ea; omnis superficies e motu parallelo plani, et lineae in eo 
(lineae scilicet alicujus e rectis modo jam insinuato motibus progenitae) consequenter et linea 
quaevis etiam in curva superficie designata rectis motibus effici potest” (Barrow 1672, 27; see A 
VII 5 No. 43, 302). For a comprehensive analysis of Barrow’s treatment of curves and motion see 
Mahoney (1990, 203–213).
14 Neither Wallis nor Barrow or Newton were present at this meeting, and Leibniz did not meet 
them during his stay in England or later.
15 Sluse (1673).
16 “Methodus ducendi tangentes ad omnis generis curvas, sine calculi laboris, quam etiam puer 
ὰγεωμέτρητος doceri possit” (A VII 4 No. 6, 70–71).
17 See the note of the editors to A VII 4 No. 17, 360, which suggests that Leibniz has read this 
article in spring 1673. It is sure that Leibniz knew the paper in August 1673 (A VII 4 No. 40, 661).
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research because of other commitments could be an indication that by now he was 
familiar with the contents of the book: “I regret that Barrow has done with geom-
etry, for I was still in expectation of many distinguished things from him”18.

Leibniz probably received new grounds to consider the Lectiones Geometricae, 
when he had several meetings with Tschirnhaus in October 1675. His compatriot, 
who had recently arrived from England19, owned a copy of the edition of Lectiones 
geometricae with additions printed on pages 149–15120. Leibniz noted at the end 
of his copy of the 1672 edition, in which these additions are missing, that he had 
seen these “addenda”21. This note as well as the marginal notes on page 85 and the 
note on the related figures No. 122 and 125 in Leibniz’s personal copy may have 
originated in the context of these meetings. The single marginal note to the text of 
page 85 says, “I know for some time” (“Novi dudum”)22, and on the pages with fig-
ures No. 122 and 125, corresponding to the text on pages 85–89, Leibniz expressed 
some of the results of Barrow with his new integral symbol. The use of the integral 
symbol shows that these notes were not written earlier than the end of October 1675 
(Fig. 1).23

2.2  Readings Without References to Barrow

Leibniz read at least selectively Barrow’s Lectiones geometricae during the fol-
lowing months. This is documented by his marginal notes and additions to figure 
No. 119 concerning the quadratrix curve (Fig. 2).

The marginal notes (two equations) were written first and are partly overwrit-
ten by the additions to the figure which are made in a different ink. The notes are 
probably related to a manuscript from June 1676, De Quadratrice (A VII 5 No. 86), 
which is based on the investigation of the quadratrix by Barrow: Leibniz sketches a 
similar figure in his manuscript: several points are designated with the same letters 
and he adopts two equations directly from the text of Barrow. His additions to figure 
No. 119 in the Lectiones geometricae are, however, related to a manuscript written 

18 OC XI No. 2672, 333; “Barrovium geometrica missa fecisse doleo; nam multa ab eo praeclara 
adhuc exspectabam.” (A III 1 No. 55, 256.)
19 See Mayer (2006) .
20 See J. Collins to J. Gregory, 19/29 October 1675, printed in: Turnbull (1939, p. 342). Perhaps 
Tschirnhaus owned the edition of the Lectiones geometricae that had been added to Barrow’s 
edition of Archimedes (1675). There are notes from a talk between Leibniz und Tschirnhaus in 
February 1676 that refer to this edition (A VII 1 No. 23, 180–181).
21 The additions contain solutions to three problems concerning the arc length of curves, a gener-
alization of the quadrature of the cycloid and several propositions on maxima and minima based 
on tangent properties.
22 Barrow’s theorem XI, I on the area under the curve of the subnormals corresponds to

2

2
yyy dx ydy′ = =∫ ∫ . Leibniz proved an equivalent proposition in 1673 (A VII 4 No. 27, prop. 6, 

467–468).
23 The notes on the right side of Fig. 123 refer to Fig. 125.
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Fig. 2  Leibniz’s notes and additions to Barrow’s Fig. 119

 

Fig. 1  Leibniz’s marginal notes to Barrow’s Fig. 122
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in Hannover, De Quadratura quadratricis (LH 35 XIII 1 fol. 236–239), dating from 
6/[16] July 1677.

Another example from spring of 1676 is the Praefatio opusculi de Quadratura 
Circuli Arithmetica (A VII 6 No. 19, 169–177; GM V, 93–98): This is the only 
manuscript of the Paris period known so far where Leibniz mentions the circle ap-
proximation published by Adriaan Metius (A VII 6 No. 19, 173; GM V, 95)24. In 
a small note in this manuscript, not included in Gerhardt’s edition, Leibniz wrote 
down two inequalities. These two inequalities are the results of the approximation 
method by which Barrow derived the result of Metius in the Lectiones geometricae. 
Barrow expressed the results (for a circle with a diameter of 113 units) in the fol-
lowing words: “the whole circumference, calculated by this formula, will prove to 
be greater than 355 less a fraction of unity”, and “the whole circumference is less 

than 355 plus a fraction”25, Leibniz used symbolic formulas: “c  355 1
−

b
” and  

“ c  355
1

+
b ”26.

These two instances where it is sure that Leibniz used Barrow’s book without 
reference are from the year 1676 and therefore could not have any influence on 
Leibniz’s invention of the calculus which took place earlier. In addition, their the-
matic relevance for the calculus is a minor one. But the fact that Leibniz does not 
refer to his source in both cases, suggests further investigation into his manuscripts 
of 1673–1675. Perhaps there can be more adoptions from Barrow than these two. 
We know that in the use of the infinitesimal characteristic triangle, the transmuta-
tion of curves, and the insight into the relationship between the determination of 
tangents and of areas Barrow had preceded Leibniz27. If there is any adoption of 
Barrow’s methods and results concerning the invention of the calculus it should be 
possible to discover it in manuscripts dealing with these topics.

2.3  Transmutation Method and Characteristic Triangle

With regard to the transmutation method and the characteristic triangle of Leibniz, 
whose dependence on Barrow J.M. Child had claimed28, D. Mahnke has defended 
the independence of the development of Leibniz29. His argument on the basis of 
then unpublished manuscripts can now be confirmed by means of those texts re-
cently published in A VII 430.

24 The circle approximation 355
113

π ≈  found by Adriaan Anthonisz (ca. 1543–1620) was published 

by his son Adriaan Metius in Metius (1625, 178–179), and in Metius (1633, 102–103).
25 Barrow (1916, 150 and 151); “tota circumferentia major quam 355, minus fractione unitatis” 
and “fore Totam circumferentiam minorem quam 355, plus fractione” (Barrow 1672, 103). 
26 A VII 6 No. 19, 172; the symbols  and  are equivalent to the modern symbols > and < for 
“greater than” and “smaller than”.
27 For Barrow’s transformation methods see Mahoney (1990, 223–235).
28 See Leibniz (1920), especially 15–16, 172–179.
29 Mahnke (1926, 8–43).
30 See xxii-xxiii in the introduction to A VII 4.
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The transmutation method of Leibniz is a special method of integral transforma-
tion and proceeds in two steps: first, the decomposition of a curve segment into 
infinitesimal triangles starting from a common endpoint and infinitesimal baselines, 
the elements of arc, which together form the arc of the curve segment. Second, 
the use of the similarity of the infinitesimal triangle consisting of the elements of 
abscissa, ordinate, and arc (or tangent) that Leibniz calls the characteristic triangle 
of the curve and certain finite triangles (e.g., the triangle formed by the ordinate, 
tangent and subtangent of the curve), which allows the establishing of proportional 
equations between finite and infinitesimal sides of the triangles considered. Based 
on his investigation of surfaces of revolution and the associated determination of 
arc lengths Leibniz pursues in the spring of 1673 the idea to divide the area under 
a curve into triangles with a common vertex in the center of gravity of the arc and 
infinitesimal bases on the arc of the curve (A VII 4 No. 5, 63–64). After that he tries 
several approaches to implement this idea using the example of the parabola and the 
circle (A VII 4 No. 5, 64–69; A VII 3 No. 17, 202–227; A VII 4 No. 101, 140; A VII 4 
No. 102, 156–158; A VII 4 No. 121, 174–176). Later Leibniz learns about the results 
of the rectification method of H. van Heuraet (A VII 3 No. 16)31 and immediately 
tries to form infinite series of numbers whose sum would, for example, give a result 
for the rectification of an arc of a parabola (A VII 3 No. 17).

Leibniz uses different starting points for the decomposition of the area, from 
centers of gravity he moves to any point on the axis of the curve and finally uses 
the apex of the curve, drawing chords from the apex to the points on the arc of the 
curve as Barrow had done before him ( Lectiones geometricae XI, § XXIV, 92). This 
means that only after a series of general considerations and several investigations 
did Leibniz arrive at the point where Barrow started his transmutation. Since the 
area of an infinitesimal triangle with an element of arc or tangent as a baseline and 
the vertex at the apex of the curve is determined, when the altitude of this triangle 
(i.e. the perpendicular from the apex to the tangent) is determined, Leibniz gains 
from this the following segment theorem: The area of the curve segment is equal 
to the sum of the areas of these triangles and therefore equal to half the sum of the 
products from the baselines and altitudes of these triangles. It happened a few times 
that Leibniz forgot to halve the sum of the infinitesimal rectangles (e.g., A VII 4 
No. 16, 271). Using perpendiculars from the axis to the tangent Leibniz forms dif-
ferent right triangles between axis, tangent and perpendiculars to the axis or to the 
tangent (e.g., A VII 4 No. 5, 64; A VII 4 No. 102, 156; A VII 3 No. 17, 202–203, 210, 
220, 222; see Fig. 3). By contrast, Barrow formed his right-angled triangles with 
perpendiculars to the chords (Fig. 4):

31 Leibniz marks neighbouring points on the abscissa in the related drawing and calls the distances 
between these points arbitrarily small (“quantumvis parvae”), but in the following he only deals 
with the ordinates (A VII 3 No. 16, 200). He does not seem to have noticed the characteristic 
triangle used by van Heuraet. Perhaps Leibniz at this time did not yet know the original publica-
tion Heuraet (1659), but used the presentation of the result in Huygens (1673, 69–73). The related 
drawings in this book (p. 70–71) do not contain characteristic triangles, and Leibniz added them on 
page 70 in his own copy of the book he had received from Huygens (A VII 4 No. 2, 32).
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Fig. 3  A VII 3 No. 173, 220 

Fig. 4  Barrow’s Fig. 129  
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The right-angled triangles are already similar triangles to the infinitesimal tri-
angle Leibniz later (starting with A VII 4 No. 2432) calls the “characteristic” triangle 
of the abscissa, ordinate and tangent differences, and which is the basis for his 
transmutation method. Leibniz first carries out area transformations using finite 
similar triangles by setting equivalent various products of pairs of these sides (A VII 
4 No. 21 and 22). After establishing a proportional equation for the circle, which is 
essentially the same as tan sin

cos
= , Leibniz states:

“ AE
EN

HE
NA

=  [Fig. 5]. Therefore, AE NA EN HE⋅ = ⋅ . From this proposition fol-

lows the quadrature of the sine curve and nearly everything in Pascal’s treatises of 
the sines and arcs of the circle and the cycloid”33.

The use of products of geometrical quantities corresponds to the transformation 
methods, which he found earlier in the writings of Pascal and Fabri. Subsequently, 
in the summer of 1673, Leibniz carried out two systematic studies on the trigono-
metric quantities in the circle, using finite (A VII 4 No. 26) and infinitesimal (A VII 
4 No. 27) right triangles, establishing more than 150 equations for area transforma-
tions. While he already succeeded in this transmutation with the tangent of the half-
angle (A VII 4 No. 27, 489–494) a result that shortly afterwards would lead him to 

32 There is already a characteristic triangle in A VII 4 No. 102, 156, but this was probably added 
only later in connection with the additional remarks 158 l. 4–7. The psychological importance of 
the discovery of the characteristic triangle for Leibniz is indicated by the fact that in this example, 
as in many others documented after August 1673, he marked the vertices of the characteristic 
triangles with his initials G, W, L.
33 “ AE

EN
HE
NA

= Ergo AE ∩ NA = EN ∩ HE. Ex hac propositione pendet quadratura figurae sinuum, et 

pleraque omnia in Pascalii tract. de sinubus arcubusque circuli, deque cycloeide.” (A VII 4 No. 22, 
396–397; drawing 392.).

Fig. 5  A VII 4 No. 22, 392 
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the circle series (A VII 4 No. 42), he formulated transmutation theorems for general 
curves also with other quantities (A VII 4 No. 27, 495; A VII 4 No. 391, 617 and 
621). Leibniz uses the term “characteristic triangle” for the first time not in the case 
of the circle, but rather with other curves such as the conchoid curves, ellipses and 
cycloids (A VII 4 No. 24, No. 28, No. 29). Perhaps Leibniz coined the term after he 
noted a theorem of J. De Witt34 as “ellipsis character” (A VII 4 No. 28, 502).

2.4  Barrow’s Prop. XI, § XIX, and Leibniz’s Theorem

In the Lectiones geometricae, Barrow demonstrates some rules, which are equiva-
lent to rules of differential calculus: for example, VIII, § IX (quotient rule); IX, § 
XII (product rule)35. However, the texts in which Leibniz himself derives these rules 
(A VII 5 No. 512, No. 70, No. 89), do not seem to depend immediately on Barrow’s 
publication. Although Barrow’s text contains equivalents to the quotient rule and 
the product rule, the two rules are not formulated explicitly. The former theorem is a 
rule for determining geometrically the tangent of a curve if the tangent of the curve 
with reciprocal ordinates is known. The second is embedded in a more general 
theorem on the construction of tangents of curves that form the geometric means.

When Leibniz records the first example of a simple case of the product rule of 
differentiation in his new notation on 27 November 1675, he calculates with in-
finitesimal differences and remarks: “Now this is a really noteworthy theorem and 
a general one for all curves. But nothing new can be deduced from it, because we 
had already obtained it.”36 Apparently he immediately realized that the statement is 
equivalent to another one he had used since the spring of 1673, expressing the rela-
tions of the area of a segment of a curve and its complement to the circumscribed 
rectangle37, in modern notation xy ydx xdy= +∫ ∫ . It is noteworthy that Leibniz ex-
amines in this text the relationship between integration and inverse tangent method, 
and even in the same paragraph carries out transformations that are based on the 
equality of the ratio of the infinitesimal quantities dx and dy with the ratio of the 
subtangent t and the ordinate y. But he obtains the result directly from the investiga-
tion of sums (integrals) and differences of abscissas and ordinates of curves.

The situation is similar with his derivation of the quotient rule: In the spring 

of 1673 Leibniz calculates the differences of the terms of the sequence 
1
2a

(A VII 

3 No. 13, 160), in August 1673 the differences of the ordinates of the hyperbola 

y a
c x

=
+

2
(A VII 4 No. 402, 683). Again, the quotient rule is the result of a calcula-

34 Witt (1659), especially book I, prop. 18, 224.
35 See Breger (2004, 199–200).
36 Leibniz (1920, 107); “Quod Theorema sane memorabile curvis omnibus est commune. Sed nihil 
novi ex eo ducetur, quia adhibuimus jam.” (A VII 5 No. 512, 365.).
37 See A VII 4 No. 10, 136; A VII 4 No. 40, 690 and 705; more detailed in A VII 3 No. 40, 578–579 
(October 1674—January 1675).
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tion of differences: Leibniz subtracts fractions that express neighbouring ordinates 
(A VII 5 No. 70, 506; A VII 5 No. 89, 593–595). The consideration of tangents is 
irrelevant to this.

But there is a topic based on the consideration of tangents that is of interest for 
the invention of differential and integral calculus: the discovery of the equivalence 
of solutions for the inverse tangent problem and the problem of the determination 
of the area under a curve. This is what is often called the geometric form of the fun-
damental theorem of differential and integral calculus. N. Guicciardini, in a review 
of the volumes A VII 4, and VII 5, recently called attention to a possible influence 
of Barrow on Leibniz in regard to this issue38.

Barrow, who was the first to publish such a theorem, put the two reciprocal state-
ments into two separate theorems ( Lectiones geometricae X, § XI, 78 and XI, § 
XIX, 90–91). The second is illustrated by his Fig. 127 (Fig. 6):

“Again, let AMB be a curve of which the axis is AD and let BD be perpendicular 
to AD; also let KZL be another line such that, when any point M is taken in the 
curve AB, and through it are drawn MT a tangent to the curve AB, and MFZ parallel 
to DB, cutting KZ in Z and AD in F, and R is a line of given length, TF: FM = R: FZ. 
Then the space ADLK is equal to the rectangle contained by R and DB.”39

The subtangent TF of AMB is to the ordinate FM of AMB as a constant R to the 
ordinate FZ of KZL. So we have FZ = R × FM/TF. If FM = y, then results FT = y/y′, 

38 Guicciardini (2010, p. 546): “The marginalia to Isaac Barrow’s Lectiones geometricae (1670) 
are particularly noteworthy, since Barrow’s lectures would have provided Leibniz with a geomet-
ric expression of the so-called fundamental theorem of the calculus.” Nauenberg (2014) argues 
for an influence of Barrow’s Lectiones geometricae on Leibniz in the case of this theorem on the 
basis of an analysis of Leibniz (1693). Unfortunately Nauenberg does not investigate any of the 
manuscripts from 1673 (published in A VII 4) nor does he notice occurrences of similar statements 
in the manuscripts from 1674 to 1676 (e.g. A VII 5 No. 26, 203–204, and A VII 5 No. 49, 348).
39 Barrow (1916), 135; “Porro, sit curva quaepiam AMB, cujus axis AD, & huic perpendicularis 
BD; tum alia sit linea KZL talis, ut sumpto in curva AB utcunque puncto M; & per hoc ductis rectâ 
MT curvam AB tangente, rectâ MFZ ad DB parallelâ (quae lineam KL secet in Z, rectam AD in F) 
datâque quâdam lineâ R; sit TF . FM :: R . FZ; erit spatium ADLK aequale rectangulo ex R, & DB.”

Fig. 6  Barrow’s Fig. 127 
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and thus FM/TF = y′ and FZ = R × y′. The curve AMB is therefore an antiderivative 
of the curve KZL. Barrow proved this as follows:

“For, if DH = R and the rectangle BDHI is completed, and MN is taken to be an 
indefinitely small arc of the curve AB, and MEX, NOS are drawn parallel to AD; 
then we have NO : MO = TF : FM = R : FZ; NO . FZ = MO . R, and FG . FZ = ES . 
EX. Hence, since the sum of such rectangles as FG . FZ differs only in the least 
degree from the space ADLK, and the rectangles ES . EX form the rectangle DHIB, 
the theorem is quite obvious.”40

Leibniz formulates an equivalent theorem in August 1673:
“Let LD be a curve [Fig. 7], its sine (i. e. the ordinate perpendicular [to the ab-

scissa AS]) SL, abscissa AS, tangent TL, characteristic triangle GWL. And if it hap-
pens that ST is to SL or GW is to WL as a certain constant straight line [c is to] the 
corresponding sine SR of another curve with the same axis (i. e. the same abscissa), 
then any portion of the area below the other curve, cut off by its sine, will be equal 
to a rectangle formed by SL in c. The demonstration of this is very easy: TS

SL
GW
WL= or 

g
w from construction; c

RS r== from presupposition, therefore cw = rg. This suffices as 
proof for those understanding these matters.”41

The theorems of Barrow and Leibniz differ mainly by the fact that Leibniz al-
ready in the formulation of the statement introduces the infinitesimal characteristic 

40 Barrow (1916, p. 135); “Nam sit DH = R; & compleatur rectangulum BDHI; tum assumptâ MN 
indefinite parvâ curvae AB particulâ ducantur NG ad BD; & MEX, NOS ad AD parallelae. Estque 
NO . MO :: TF . FM :: R . FZ. Unde NO × FZ = MO × R; hoc est FG × FZ = ES × EX. ergò cum 
omnia rectangula FG × FZ minimè differant à spatio ADLK; & omnia totidem rectangula ES × EX 
componant rectangulum DHIB, satis liquet Propositum.”
41 “Sit curva LD, cuius sinus (id est ordinata normalis) SL, abscissa AS, tangens TL, triangulum 
characteristicum GWL. Sique fiat ut ST ad SL, vel GW ad WL, ita recta quaedam constans [c ad] 
alterius cuiusdam figurae eiusdem axis sinum respondentem (respondentem inquam[,] id est eius-
dem abscissae) SR, portio quaelibet ab altera figura abscissa per sinum eius, aequabitur rectangulo 
SL in c. Cuius rei demonstratio haec est perfacilis: TS

SL
GW
WL= vel g

w per constructionem; c
RS r==  ex 

hypothesi, ergo cw = rg. Quod rerum harum intelligentibus sufficit ad demonstrationem.” ( Pars 
IIItia Methodi tangentium inversae et de functionibus, A VII 4 No. 403, 692–693.) − Neither Ger-
hardt (1848, 20–22), or Gerhardt (1855, 55–57), nor Mahnke (1926, 43–59), mention this theorem 
in their investigations of the manuscript.

Fig. 7  A VII 4 No. 403, 692 
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triangle, while Barrow does so only in the proof. In both cases the ratio of the ordi-
nate to its subtangent is formed without using a terminological designation for the 
subtangent; in the hypothesis in each case only the tangent is employed, but the tan-
gent no longer occurs in the formulation of the proportional equations. Only in the 
example immediately following does Leibniz employ his usual term “producta” for 
the subtangent. In the subsequent conclusion, with which he emphasizes the gen-
eral validity of the theorem, he writes by mistake “tangent” instead of “producta”: 
“Therefore, the quadrature of all curves can be obtained, whose sines are to a certain 
constant straight line, as the sine of another known curve is to its tangent; or as the 
ratio of the sines of the characteristic triangle of a known curve”.42

All this taken together, could create the impression that Leibniz formulated his 
theorem on the model of Barrow’s 43. This possibility cannot be completely ruled 
out, but it is to be noted that the statement TS

SL
GW
WL= , which is required for the 

formulation of the theorem, is based on the similarity of the characteristic triangle 
with the triangle of subtangent, ordinate and tangent, and is already pronounced by 
Leibniz in the beginning of the manuscript (A VII 4 No. 401, 657). He expresses 
the relationship between ordinate and subtangent in the following way, letting the 
difference of the abscissas be equal to the unit: “In short, the matter goes back to 
the following: The straight line ED, the ordinate, divided by ID, its difference to the 
preceding ordinate, gives the straight line ME [scil: the subtangent]” 44. Leibniz then 
refers to this relation in A VII 4 No. 403, 689, shortly before the formulation of the 
theorem. The second half of the theorem GW g

WL w
c

RS r
=
=

=
=

does not follow imme-

diately from the preceding considerations. A similar proportional equation had been 

obtained by Leibniz in his previous investigations of the characteristic triangle of 
the circle, the radius playing the role of the constant term c (A VII 4 No. 27, prop. 3, 
467), but he had not attempted a generalization there. He studies the same example 
among others again in A VII 4 No. 403, 696–697, but his calculations probably were 
only carried out after the formulation of the theorem. It is therefore likely to remain 
an open question whether Leibniz found this theorem in the course of his studies on 
the inverse tangent method entirely independent from Barrow, or whether he had 
encountered the theorem while reading Barrow’s book.

Overall, it should be noted that Leibniz counted Barrow among the great math-
ematicians in the prehistory of calculus, as is evident by his statement from 1 No-
vember 1675 in Analyseos tetragonisticae pars tertia: “Most of the theorems of the 
geometry of indivisibles which are to be found in the works of Cavalieri, Vincent, 

42 “Quare omnium figurarum haberi potest quadratura, quarum sinus sunt ad rectam quandam 
constantem, ut sunt sinus alterius cuiusdam figurae cognitae ad suam tangentem; seu ratio sinuum 
trianguli characteristici figurae cognitae.”
43 It should be taken into consideration that both theorems are formulated in analogy to the rectifi-
cation theorem of Heuraet (1659, 518): Heuraet used the normal of the curve for the proportional 
equation, Barrow and Leibniz use the subtangent.
44 “Breviter res eo redit: Recta ED, applicata, divisa per ID, differentiam ab ipsamet et applicata 
praecedente, dat rectam ME.” (A VII 4 No. 401, 660); see also Mahnke (1926, 44–46).



125Leibniz as Reader and Second Inventor: The Cases of Barrow and Mengoli

Wallis, Gregory and Barrow are immediately evident from the calculus”45. Beyond 
this, Leibniz doesn’t seem to have acknowledged any influence of Barrow’s writ-
ings on his discovery of the calculus, neither then nor later. In 1686 he places Bar-
row alongside James Gregory in De geometria recondita when he writes: “These 
were followed by the Scotsman James Gregory and the Englishman Isaac Barrow, 
who in famous theorems of this kind advanced science in a wonderful way.”46

3  Part II: The Reception of Pietro Mengoli’s Work  
on Series by Leibniz (1672–1676)

Probably in September 1672 Leibniz, in a discussion with Christiaan Huygens, ex-
pressed his opinion that he possessed a general method for finding the sum of infi-
nite series. The basis for this was his realization that the terms of a monotonously 
decreasing zero-sequence are equal to the sums of the differences of the following 
terms. Huygens tested the mathematical abilities of Leibniz by proposing to him 
that he find the sum of the series of reciprocal triangular numbers, a result he had 
found himself some years before, in 1665, but had not published47.

After a few futile attempts, Leibniz, within a short space of time, achieved suc-
cess: he found out that the reciprocal triangular numbers are the doubled differences 
of the harmonic series (A VII 3 No. 1 and 2). In addition he was able to calculate the 
sum of the higher reciprocal figurate numbers by means of this method, since these 
can be obtained as triples, quadruples etc. of the iterated differences of the harmonic 
series. Already before the end of the year 1672 Leibniz had prepared a paper (A III 
1 No. 2) for the Journal des Sçavans, but unfortunately at that time publication of 
the journal was interrupted for more than a year.

3.1  Indirect Reception

In January 1673, Leibniz travelled with a diplomatic delegation of the court of the 
prince elector of Mainz to London48. On 12 February 1673, he visited Robert Boyle 
and met the mathematician John Pell. During a conversation with Pell, Leibniz 
mentioned his difference method. Pell declared that such a method already had al-
ready been found by François Regnauld and had been published, in 1670, in a book 

45 Leibniz (1920, 87); “Pleraque theoremata Geometriae indivisibilium quae apud Cavalerium, 
Vincentium, Wallisium, Gregorium, Barrovium extant statim ex calculo patent” (A VII 5 No. 44, 
313.).
46 “Secuti hos sunt Jacobus Gregorius Scotus, & Isaacus Barrovius Anglus, qui praeclaris in hoc 
genere theorematibus scientiam mire locupletarunt.” (Leibniz (1686, 104; GM V 232.)).
47 Huygens (1888–1950, vol XIV, 144–150).
48 See Hofmann (1974, 23–35).
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by Gabriel Mouton49. Leibniz was able to consult the book the following day when 
visiting Henry Oldenburg, the secretary of the Royal Society. He wrote immediately 
a short defence and a presentation of his method for the Royal Society, in which he 
also stated his results of the summation of the reciprocal figurate numbers (A III 1 
No. 4, 29). On 20 February 1673 he submitted a request for becoming a member of 
the Royal Society, including a paper with his results (A III 1 No. 72). This letter was 
read at the meeting of the Royal Society on 1 March 1673.

Since Leibniz was already back in Paris on 8 March 1673, he must have left 
London about two weeks earlier, one week before the meeting took place during 
which his paper was read. Shortly before his departure from London, Leibniz must 
have been informed about a certain reaction to his short defence, because in a letter 
dated 8 March 1673 he asked Oldenburg for more detailed information on Pell’s 
comments. This was the occasion on which he stated the priority of Mengoli con-
cerning the summation of the reciprocal triangular numbers (A III 1 No. 9, 43; OC 
IX No. 2165, 491). Leibniz received this fuller account of Pell’s reaction in a large 
letter from Oldenburg dated 20 April 1673, which also informed him of his success-
ful election into the Royal Society (A III 1 No. 13; OC IX No. 2196, 2196a, 2202): 
Oldenburg writes that John Collins told him that Mengoli’s result had been pub-
lished in his book entitled De additione fractionum sive quadraturae arithmeticae, 
Bologna 1658 (recte: Mengoli 1650). There Mengoli indicates that he found the 
sum of the reciprocal figurate numbers, but failed − as he himself admitted − to find 
the sum of the series of the reciprocal square numbers and the sum of the harmonic 
series (A III 1 No. 132, 60; OC IX No. 2196, 557). Leibniz replies to Oldenburg on 
26 April 1673 (and a second time on 24 May, erroneously believing that his first 
letter gone missing), writing that he has not yet been able to consult Mengoli’s book 
(A III 1 No. 17, 88, and No. 20, 92–93; OC IX No. 2208, 596 and No. 2233, 648). 
Since Leibniz also assumed that Mengoli had only found the sums of finite series, 
Oldenburg makes clear (again with the help of Collins) that Mengoli had actually 
found the sum of the infinite series of the reciprocal figurate numbers and had dem-
onstrated that the harmonic series cannot be summed, since it exceeds any finite 
value (A III 1 No. 22, 98; OC IX No. 2238, 667)50.

The exchange of letters between Leibniz and Oldenburg was interrupted thereaf-
ter for 1 year; Leibniz then writes to Oldenburg in July 1674, in order to inform him 
of the progress he made in the construction of the calculating machine and of his 
new results concerning quadratures (circle series, cycloid segment: A III 1 No. 30; 
OC XI No. 2511). Mengoli is not mentioned again until Leibniz’s letter to Olden-
burg of 16 October 1674, in which he reports on the number theoretical controversy 
between Jacques Ozanam and Mengoli concerning the six-square problem (A III 1 
No. 35 128–129; OC XI No. 2550, 98–99). Mengoli had sought to prove that the 
problem posed by Ozanam was unsolvable and published this proof, unaware of 
the serious errors it contained. Ozanam subsequently took delight in humiliating 
Mengoli by reprinting his flawed proof together with his own successful numerical 

49 Mouton (1670, 384).
50 For accounts of Mengoli’s results and methods see Giusti (1991), Massa (1997), Massa Esteve 
(2006), Massa Esteve/Delshams (2009) .
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solution to the problem51. Leibniz who—unlike James Gregory—apparently was 
not able to solve the problem himself does not seem to have disregarded the math-
ematical abilities of Mengoli because of this error. In his copy of Ozanam’s final 
flyleaf he only points to the places of error (A VII 1 No. 39, 236–237) and in a sheet 
enclosed he simply records the mere facts: “Mengoli was wrong, and the example 
shows that it is possible”52. In one of his designs for an international science or-
ganization, Consultatio de naturae cognitione [1679], Leibniz mentions Mengoli 
among the scholars, whose cooperation he desires (A IV, 3 No. 133, 868).

Evidently, Leibniz did not get access to Mengoli (1650) during his stay in Paris. 
But, when he visited London for a second time in October 1676, he made excerpts 
relating to Mengoli from the correspondence between James Gregory and John Col-
lins. In the sections copied by Leibniz there is a passage on Mengoli’s proof of the 
divergence of the harmonic series, characterized by Leibniz in a marginal note as 
“ingenious” (“ingeniose”, A III 1 No. 882, 486–487).

3.2  Leibniz’s Excerpts from Mengoli’s Circolo

It has been known since the 1920s that Leibniz in April 1676 finally had the op-
portunity to study Mengoli’s book Circolo (1672) and that he made extensive ex-
cerpts from this work53. According to the Catalogue critique of the manuscripts of 
Leibniz (Rivaud (1914–1924), quoted as Cc 2), the first part of these three excerpts 
(Cc 2, No. 1383 A, 1383 B, 1384) is missing, but probably this missing item is at 
least partly identical with the manuscript LH 35 XII 1 fol. 9–10 (= Cc 2, No. 1398, 
1400, 1401), entitled Arithmetica infinitorum et interpolationum figuris applicata, 
and printed in A VII 3 No. 572. This had formerly been located together with the 
excerpts by Leibniz (see A VII 3 No. 571) and had been removed to different place 
within the collection of Leibniz’s manuscripts at an unknown date before the end 
of the 19th Century.

In Arithmetica infinitorum et interpolationum figuris applicata Leibniz essen-
tially discusses the triangular tables of Mengoli (1672, 3–10), and tries to find a 
method for the computation of the partial sums of the harmonic series. With the 
help of these tables Mengoli determines by interpolation areas of curve segments, 
something he did already in Mengoli (1659). The values in these tables represent 

51 Mengoli suffered hard from this failure as is obvious from his letters to A. Magliabecchi vom 1 
June 1674 and to A. Marchetti from 2 June 1674, published in Mengoli (1986, 41–44).
52 “Erravit Mengolus, idque possibile esse docet… exemplum” (A VII 1 No. 40, 241). − The af-
fair has been studied in detail by Nastasi/Scimone (1994) . Leibniz had communicated Ozanam’s 
problem in the aforementioned letter from 8 March 1673 to Oldenburg (III 1 No. 9, 42; OC IX 
No. 2165, 490–491). His own contributions from 1672 to 1676 and some of the material by Men-
goli and Ozanam is published in A VII 1 No. 37–40, 42–44, 49–52, 55–61, 93, 96–100; see also 
Hofmann (1969).
53 A VII 6 No. 13, 113–131; the excerpts are recorded in Cc 2 and are mentioned in Mahnke 
(1926), 8 n. 7.
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special values of the beta function in today’s terminology54. Already after reading 
the first pages of the work of Mengoli, Leibniz became convinced of the truth of 
the statements made by Oldenburg (or Collins) in regard to the results of Mengoli 
concerning the summation of the reciprocal figurate numbers. In addition he was 
able to recognize that Mengoli had already been in possession of the harmonic tri-
angle, used by Leibniz in several different forms and arrangements since the end of 
1672 (e.g. A III 1 No. 2, 9; A VII 3 No. 532, 710) and for which Leibniz coined the 
expression “harmonic triangle” in his manuscript De triangulo harmonico (A VII 
3 No. 30, 337) between the end of 1673 and the middle of 167455. There Leibniz 
arranges the terms starting from a horizontal line with the terms of the harmonic 
sequence and indicates the differences of two neighbouring terms in the lines above, 
the sums in the lines below (Fig. 8).

Mengoli uses brackets in writing the denominator of a fraction behind the nomi-
nator (Fig. 9). Leibniz in his excerpt reproduces this arrangement, but (as in his 
other manuscripts) uses the common notation for fractions (Fig. 10).

The excerpts from Mengoli’s Circolo consist of a large sheet with three triangu-
lar tables (Mengoli (1672, 16, 19 and 7)), which was later folded (A VII 6 No. 131, 
113–120), and a folded sheet that bears the title Pars secunda excerptorum ex Cir-
culo Mengoli et ad eum annotatorum (A VII 6 No. 132, 120–131), containing a text 
primarily concerned with the circle calculation of Mengoli, starting from page 23 
of Circolo. This part of the manuscript is, however, partly damaged and can only 
be deciphered with difficulty; nonetheless, it can can be said that Leibniz recon-
structed step by step the most important stages of Mengoli’s argumentation. Only 
in two places did the Italian text cause difficulties for him, with the result that he 
did not attempt to provide a Latin paraphrase of the content, but instead quoted the 

54 See M. Rosa Massa Esteve (2006); a detailed account of the content of Mengoli (1672) is pro-
vided in Massa Esteve/Delshams (2009) .
55 See A VII 3 No. 30, 336–340, and Probst (2006).

Fig. 8  Leibniz’s harmonic 
triangle (End-1673—Mid-
1674), A VII 3 No. 30, 337 
(detail)
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Italian text verbatim56. In some places Leibniz inserted comments. For example, he 
noted in the excerpt that from the approximation sequences for the proportion of the 
square to the inscribed circle

56 A VII 6 No. 131, 129 and No. 132, 131; cf. Mengoli (1672), § 105, 39 and § 159, 59.

3 3.3.5 3.3.5.5.7 4 3.3.5.5.7.7 3.3.5.5 3.3... ...
2 2.4.4. 2.4.4.6.6 2.4.4.6.6.8 2.4.4.6 2.4π
> > > > > >

Fig. 9  Triangular table, Mengoli (1672, 4)

 

Fig. 10  Leibniz’s harmonic triangle (April 1676), A VII 3 No. 572, 736
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by forming differences new circle series can be obtained. In the computation of the 
series

however, minor errors of calculation came about (A VII 6 No. 132, 121–125).
It seems that Leibniz did not enter into a further investigation of Mengoli’s meth-

ods after making the excerpts. In the manuscript of De quadratura arithmetica, 
on which he probably worked until shortly before his departure from Paris at the 
beginning of October 1676, Leibniz included his results on the summation of the 
reciprocal figurate numbers and the harmonic triangle without so much as mention-
ing Mengoli − at least as far as can be established from the extant manuscripts57. Up 
to now no additional documents have been found in Leibniz’s manuscripts from his 
Paris sojourn which provide evidence of further occupation with Mengoli’s meth-
ods on his part. As far as the later period is concerned, only some manuscripts from 
1679 are known where he mentions Mengoli’s name. This is of course the same year 
in which Leibniz probably wrote the Consultatio de naturae cognitione, mentioned 
above. These manuscripts belong to the group around the study De cyclometria 
per interpolatione, dated 26 March 1679, in which Leibniz discusses the results of 
James Gregory, John Wallis and Pietro Mengoli in circle calculation and tries to find 
simpler approximation sequences58. Only a detailed analysis of these manuscripts 
will be able to furnish us with more information, but this is a task which will still 
needs to be carried out. Indeed, since the contents of many of Leibniz’s unpublished 
mathematical manuscripts from his Hanover period are insufficiently known, it is 
quite possible that still further evidence of his reception of Mengoli will be found 
in the future.

 Conclusion

Barrow and Mengoli were mathematicians who made discoveries and published 
results—and in some cases also their methods—which Leibniz achieved only years 
later. Despite appreciating their accomplishments, he evidently never acknowl-
edged any influence of their writings on his own discoveries between 1672 and 
1676. He behaved remarkably differently in the cases of Brouncker, Cavalieri, Des-
cartes, Fabri, Fermat, Galileo, Guldin, van Heuraet, Huygens, Pascal, Ricci, Rober-

57 Mengoli is not mentioned in the draft, which Leibniz took to Hanover, the version of the manu-
script which he had left in Paris, intended for publication, was lost later; cf. G. W. Leibniz, De 
quadratura arithmetica (A VII 6, introduction, xxi-xxiv, and No. 51, 606–611).
58 The manuscript of De cyclometria per interpolatione is located in LH 35 II 1 fol. 68–73 between 
the excerpts from Mengoli fol. 67 + 79, 74,75; fol. 76 discusses the interpolation result of Wallis, 
fols 77 and 78 contain the sequences for circle approximation and triangular tables from the ex-
cerpts from Mengoli’s Circolo.

1 1 2 32 1 8 192etc. and 1 etc.
4 2 6 45 1575 4 9 225 11025
π π= + + + − = + +



131Leibniz as Reader and Second Inventor: The Cases of Barrow and Mengoli

val, Saint-Vincent, Sluse, Wallis, and Wren. And this is just to name contemporary 
authors, who were in his view probably the most important for his mathematical 
development. One possible reason could be that Leibniz with regard to Mengoli and 
Barrow was always convinced that he had acquired his knowledge independently 
of them. A similar picture emerges when we look at the authors Leibniz commonly 
named as sources and predecessors, for also in these cases he showed different at-
titudes in different issues. For example, in De quadratura arithmetica as well as in 
the draft of a historical introduction to this treatise, he emphasized the originality 
of his proof of the method of quadrature of the higher parabolas and hyperbolas 
contrasted with the results of Fermat and Wallis59. He appears to behave the same 
way in his references to James Gregory and Newton. Informed by Huygens that 
the auxiliary curve which he used for his circle quadrature had already appeared in 
print in Gregory (1668), Leibniz added a note in his treatise of the circle quadrature 
of October 1674, emphasizing his independence of Gregory: “I further do not con-
ceal that Mons. Hugens brought to my attention, to wit that Mr Gregory hit upon 
the anonymous curve I use here, but for a different purpose, and without perceiv-
ing that property which served as the basis for my demonstration”60. Later, in De 
quadratura arithmetica of 1676, no such remarks can be found. Also in the sections 
concerning the circle series there is no mention of Gregory, although Leibniz had 
already been informed in April 1675 of Gregory’s identical series by Oldenburg61. 
Furthermore, the same is true for the sine series of Newton, contained in the same 
letter from Oldenburg, and later reported again to Leibniz by Georg Mohr62. Leibniz 
did not mention it in his treatment of the sine series, while he praised the binomial 
theorem of Newton, of which he had gained knowledge through another letter from 

59 De quadratura arithmetica, A VII 6 No. 51, 588–589. Leibniz cancelled this and other historical 
sections in the surviving mansucripts of his treatise in order to include them in an ample intro-
duction. There exist several manuscripts, one with outlines of this introduction (A VII 6 No. 39, 
427–432), three shorter pieces (A VII 6 No. 40, 433–436; No. 41, 437–439; No. 492, 514–518), 
and an extensive elaboration of the main part, entitled Dissertatio exoterica de usu geometriae, 
et statu praesenti, ac novissimis ejus incrementis (A VII 6 No. 491, 483–514; for the remarks 
concerning Fermat and Wallis see 507). This manuscript is split into two parts preserved in dif-
ferent locations of the Leibniz papers, and both have been published by C. I. Gerhardt separately 
without recognizing the connection between them (GM V 316–326, and Gerhardt (1891, 157–176, 
text 167–175). The first part is also printed in A VI 3 No. 541, 437–450; a partial translation of the 
second part is in Leibniz (1920, 186–190), the remarks mentioned are omitted there. The edition of 
the two isolated fragments has caused misunderstandings. At the end of the text (A VII 6 No. 491, 
510–514), Leibniz presents briefly the main result of his Quadratura arithmetica; Child in Leibniz 
(1920, 190), declared his incomprehension: “It is difficult to see the object Leibniz had in writing 
this long historical prelude to an imperfect proof of his arithmetical quadrature, unless it can be 
ascribed to a motive of self-praise.”
60 “Je ne dissimule non plus que ce Mons. Hugens m’a fait remarquer, sçavoir que Mons. Gregory a 
touché la Courbe Anonyme dont je me sers icy, mais pour un tout autre usage, et sans s’appercevoir 
de cette proprieté qui a servi de fondement à ma demonstration” (A III 1 No. 392, 169).
61 A III 1 No. 492, 235; OC XI No. 2642, 267.— For Newton’s sine series see A III 1, 233; OC 
XI, 266.
62 A III 1 No. 801, 375; OC XII No. 2893, 268–269; VII 6 No. 17, 162; VII 6 No. 47, 465.
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Oldenburg in August 167663. It is not certain if Leibniz discovered the sine series in-
dependently, although all the preconditions for him to deduce it in a way analogous 
to the method he employed for the logarithmic series in proposition XLVII, were 
given64. In De quadratura arithmetica he announced the corresponding proposition 
XLVIII quite ambiguously, relating only to the proof, not to the invention of the se-
ries: “Hence a similar rule for the trigonometric regress, or the invention of the sides 
from the given angles, was not difficult to demonstrate.”65 To sum up, then, from 
the examples investigated in this essay a common pattern can be established: When 
Leibniz was convinced that he had discovered a result or a method by himself, he 
regarded it as his own achievement for which he had no need to acknowledge a debt 
to any predecessor.
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1  Introduction: The Actually Infinite Division of Matter

It is well known that Leibniz held that matter is infinitely divided, and that there 
are infinitely many monads. But the connection between these two theses has not 
been well understood, and this has led to perplexity about Leibniz’s views on the 
actual infinite and on the composition of matter, and also prompted accusations of 
inconsistency. Georg Cantor, for example, seized on Leibniz’s endorsement of the 
actual infinite as an important precedent for this theory of the transfinite. Acknowl-
edging that Leibniz “often pronounces himself against infinite number”, Cantor 
declared that he was nevertheless “in the happy position of being able to cite pro-
nouncements by the same thinker in which, to some extent in contradiction with 
himself, he expresses himself unequivocally for the actual infinite (as distinct from 
the Absolute).”1 He quotes a typical passage to this effect from Leibniz’s letter to 
Simon Foucher in 1693:

I am so much in favour of the actual infinite that instead of admitting that Nature abhors it, 
as is commonly said, I hold that she manifests it everywhere, the better to indicate the per-
fections of her Author. Thus I believe that there is no part of matter which is not, I do not say 
divisible, but actually divided; and consequently the least particle ought to be considered as 
a world full of an infinity of different creatures.2

It should be remembered that Cantor was still battling with an Aristotelian ortho-
doxy in the philosophy of mathematics, a fact that explains the importance for 
him of Leibniz’s claim that there are actually infinitely many created substances 

1 Cantor, “Grundlagen einer allgemeinen Mannigfaltigkeitslehre” (1883), in Cantor 1932, p. 179. 
All translations in the present paper are my own. I cite current English translations where they exist 
for ease of reference.
2 Letter to Foucher, Journal de Sçavans, August 3, 1693, GP I 416 [= A II 2, N. 226. Leibniz an 
Simon Foucher (Wolfenbüttel, Ende Juni 1693), p. 713.].
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(monads), in defiance of the Aristotelian stricture that the infinite can exist only 
potentially.

Cantor, of course, believed that if there are actually infinitely many discrete 
creatures in any given part of matter, then there must be a corresponding infinite 
number of them. Indeed, his theory of transfinite numbers was designed to enable 
one to express precisely such statements. Now one might think that his success in 
establishing that mathematical theory would have marked the end of his interest in 
Leibniz’s philosophy of matter and monads. That, however, is far from the case. In 
a side of his thought that perhaps deserves to be better known, Cantor did in fact 
use his theory of transfinite numbers to express such statements about the actually 
infinitely many constituents of matter. Declaring himself a follower of Leibniz’s 
“organic philosophy”, Cantor held “that in order to obtain a satisfactory explanation 
of nature, one must posit the ultimate or properly simple elements of matter to be 
actually infinite in number.”3 He continued:

In agreement with Leibniz, I call these simple elements of nature monads or unities. [But 
since] there are two specific, different types of matter interacting with one another, namely 
corporeal matter and aetherial matter, one must also posit two different classes of monads 
as foundations, corporeal monads and aetherial monads. From this standpoint the question 
is raised (a question that occurred neither to Leibniz nor to later thinkers): what power is 
appropriate to these types of matter with respect to their elements, insofar as they are con-
sidered sets of corporeal and aetherial monads. In this connection, I frame the hypothesis 
that the power [Mächtigkeit] of the corporeal monads is (what I call in my researches) the 
first power, whilst the power of aetherial matter is the second. (Cantor 1932, pp. 275–276)

That is, Cantor posits corporeal monads which, as discrete unities, are equinumer-
ous with the natural numbers, and therefore have a power or cardinality ℵ0, the first 
of the transfinite cardinal numbers. He further proposes that the aether, which he 
assumes to be continuous, is composed of aetherial monads equinumerous with the 
points on a line, i.e. that the number of aetherial monads is equal to ℵ1, the second 
cardinal number, which he believed (but was never able to prove) to be the power 
of the continuum.4

There were certainly precedents for representing Leibniz’s monads in this way 
as elements of matter. Euler, for instance, interpreted Leibniz’s monads as “ulti-
mate particles which enter into the composition of bodies” (Euler 1843, p. 39).5 

3 This and the quotations following are culled from Cantor’s “Über verschiedene Theoreme aus 
der Theorie der Punktmengen in einem n-fach ausgedehnten stetigen Raume Gn” (1885), (Cantor 
1932, pp. 275–276).
4 Cantor 1932, p. 276. Cf. Dauben 1979, p. 292. Since Cantor’s time it has been shown that his 
Continuum Hypothesis is consistent with (by Gödel, in 1940) but independent of (by Cohen, in 
1963) Zermelo-Fraenkel set theory, the standard foundation of modern mathematics, provided ZF 
set theory is consistent.
5 Euler also called Leibniz’s monads parts of bodies that result from a “limited division” (1843, 
pp. 48–49). Perhaps also contributing to these eighteenth century misunderstandings of Leibniz 
were the views of Maupertuis, where the fundamental particles of matter are physical points en-
dowed with appetition and perception, and of Boscovic, whose particles are interacting point-
sources of attractive and repulsive force.
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But modern commentators, equipped with a much more comprehensive selection 
of Leibniz’s writings, would not consider Cantor’s reinterpretation of Leibniz-
ian monads a faithful elaboration of his views. For Leibniz conceived his monads 
or simple substances neither as interacting with one another, nor as elements out 
of which matter is composed. Both these ideas are closer to the views of Chris-
tian Wolff, who advocated a theory of simple substances that were avowedly not 
monads in Leibniz’s sense. Instead, Wolff’s substances were supposed to give rise 
to material atoms through their interactions, which atoms were the elements out of 
which extended bodies were then aggregated.6

Putting those objections to one side, however, modern scholars have by and large 
taken Cantor’s side on the actual infinite, agreeing with his criticisms of Leibniz’s 
rejection of infinite number. They point out that Leibniz would have had a precedent 
for embracing infinite number in Galileo Galilei, who in his Two New Sciences had 
declared matter to be composed of an actually infinite number of atoms, separated 
by infinitely small voids. Had Leibniz followed Galileo’s lead, it is often asserted, 
he might have well anticipated Cantor’s transfinite.7

I am not convinced, however, that such claims are justified. Leibniz insisted that 
the axiom that the whole is greater than its (proper) part must hold in the infinite 
as well as in the finite, whereas Cantor followed Dedekind in maintaining that an 
infinity of elements could be equal in number to an (infinite) proper subset of those 
elements, and consequently denied the applicability of the part-whole axiom to in-
finite sets. Galileo, by contrast, denied that the notions of being ‘greater’, ‘equal 
to’ or ‘less than’ applied in the infinite at all, thus contradicting both Leibniz and 
Cantor. But this very denial made his approach unsuitable as a foundation for the 
mathematics of the infinite.8

6 Wolff’s simple substances should not, however, be conflated with the (extended) primitive cor-
puscles which he supposed were constituted by their interactions. For whereas these primitive 
corpuscles are finitely extended and only physically indivisible, Wolff’s simple substances are 
unextended because partless, and aggregate into extended bodies. See (Wolff 1737, § 182, 186, 
187). A succinct and accurate summary of these aspects of Wolff’s philosophy is given by Matt 
Hettche in his (2006).
7 Rescher states that the Cantorian theory of the transfinite, point-set topology and measure theory 
“have shown that Leibniz’s method of attack was poor. Indeed, Galileo had already handled the 
problem more satisfactorily…” (Rescher 1967, p. 111); Gregory Brown asserts that, “had he not 
jumped the gun in rejecting the possibility of infinite number and infinite wholes, Leibniz, having 
already surmounted the prejudice against actual infinities, would have been well placed to antici-
pate the discoveries of Cantor and Frege by at least 200 years.” (Brown 2000, p. 24; see also his 
1998, pp. 122–123).
8 For Galileo the infinitely small parts of the continuum are non quante, whereas Leibniz insisted 
from the beginning that they were quantifiable. Leibniz continued to maintain that the infinite and 
the infinitely small are quantifiable even after defining them as useful fictions, which is why they 
are treatable in his differential calculus. I have argued this at greater length in Arthur 2001.
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2  The Fictionality of Infinite Wholes and Collections

Leibniz, in fact, was well aware of Galileo’s argument in the Two New Sciences that 
“in the infinite there is neither greater nor smaller”, having himself made notes on 
it in the Fall of 1672 (A VI 3, 168; LoC 6–9). He gives Galileo’s demonstration as 
follows:

Among numbers there are infinite roots, infinite squares, infinite cubes. Moreover, there 
are as many roots as numbers. And there are as many squares as roots. Therefore there are 
as many squares as numbers, that is to say, there are as many square numbers as there are 
numbers in the universe. Which is impossible. Hence it follows either that in the infinite 
the whole is not greater than the part, which is the opinion of Galileo and Gregory of St. 
Vincent, and which I cannot accept; or that infinity itself is nothing, i.e. that it is not one 
and not a whole. (LoC 9)

Leibniz had made these notes soon after his arrival in Paris, by which time he was 
already at work on infinite series under Huygens’ guidance. These studies in proto-
calculus did nothing to dissuade him from this opinion about the infinite not being a 
true whole. In fact, the expressions he found for the area under a hyperbola in terms 
of infinite series gave a pictorial representation of an infinite whole being equal to 
its part, and at the same time seemed to him to confirm the fictional nature of such 
a whole.

The following is a condensed version of Leibniz’s argument from a paper written 
in October 1674 (A VII 3, 468). He gives a symmetrical diagram (Fig. 1 below) of 
a hyperbola with centre A, vertex B, and radius AC = BC = a, which, without loss of 
generality, may be set equal to 1. M represents the fictional point where the curve 
“meets” each line AF… at infinity. Here the x-axis is the line ACF… across the 
top of the figure, the y-axis runs with increasing y down the page from A through 
DCH to F, and the dotted lines DE and HL represent the variable abscissa x. Thus 
AD = AC − CD = 1−y, and AH = AC + CH = AC + CD = 1 + y.

Fig. 1  Leibniz’s hyperbola 
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Leibniz now sets about discovering the area under the curve between the 
horizontal line CB and the x-axis running across the top of the figure. We have 
DE = 1/AD = 1/(1−y), which he expands as an infinite series:

Now the area in question is obtained by “applying” the variable line DE to the line 
AC = 1, giving

In modern terms, Leibniz has integrated a power series expansion of 1/(1−y) with 
respect to y, ∫(1 + y + y2 + y3 …) dy, between 0 and 1. By a similar argument, he 
obtains

Now Leibniz subtracts this finite area CFGLB from the infinite area ACBEM, to get

That is, subtracting the area CFGLB—an area that is perfectly definite and observ-
able—from the area under the curve leaves that area the same! Leibniz comments:

This is remarkable enough, and shows that the sum of the series 1, 1/2, 
1/3, etc. is infinite, 

and therefore that the area of the space ACGBM, even when the finite space CBGF is taken 
away from it, remains the same, i.e. this takes away nothing observable ( notabile). By this 
argument it can be concluded that the infinite is not a whole, but a fiction, since otherwise 
the part would be equal to the whole. (A VII 3, 468)

It is noteworthy here that Leibniz concludes that the sum of the series 1 + 1/2 + 1/3 + … 
is infinite on the implicit grounds that, if it is a whole, it is equal to a proper part 
of itself. As is well known, Dedekind, having followed Bolzano in characterizing 
a set as infinite if it can be set in 1-1 correspondence with a proper subset of itself, 

2 3 4 51/ (1 ) 1DE y y y y y y= − = + + + + + +…

Area( )ACBEM = + + + + + …1 1
2

1
3

1
4

1
5

1
6

Area etc.( )CFGLB = − + − + − = + + + + …1 1
2

1
3

1
4

1
5

1
6

1
2

1
12

1
30

1
56

1
90

Area( ) ( )ACBEM CFGlB− = − + − −





 + − +






 + − −


1 1 1

2
1
2

1
3

1
3

1
4

1
4


 + − +






…

1
5

1
5

2 2 2 2 2 2
2 4 6 8 10 12

= + + + + + …

1 1 1 1 11
2 3 4 5 6

= + + + + + …

= Area( )ACBEM



142 R. T. W. Arthur

defines two sets as equal iff there exists a 1-1 correspondence (bijection) between 
their elements—the definition of equality of sets that Cantor takes as foundational 
for his theory of size of infinite sets.9 As Russell remarks in his Introduction to 
Mathematical Philosophy (1919, p. 81), this enables Cantor to avoid Galileo’s Para-
dox. For if one takes the criterion of bijection as defining the equality (“similarity” 
in his terminology) of infinite sets, then “there is no contradiction, since an infinite 
collection can perfectly well have parts similar to itself”. That is, assuming infinite 
collections and the Dedekindian definition of equality adopted by Cantor, it can 
no longer be maintained that it is “self-contradictory that ‘the part should be equal 
to the whole’” (80–81). The contradiction is avoided by jettisoning the part-whole 
axiom (P) rather than the assumption that an infinity of terms can be collected into 
one whole (C).

As I have argued elsewhere, this is typical of a reductio argument, where the 
conclusion to draw from proving a set of premises inconsistent depends on which 
premise one is prepared to reject. Leibniz, insisting on P, infers ¬C. Russell and 
Cantor, insisting on C, infer ¬P (Arthur 2001, p. 103). Gregory Brown has taken 
issue with this logic, arguing that, “given the consistency of Cantorian set theory, 
it would again appear that Leibniz’s argument against infinite number and infinite 
wholes must be unsound.” (Brown 2005, p. 481). He argues that if Leibniz’s argu-
ment were sound, then Cantor’s theory could not even be consistent, because it is 
erected on definitions of ‘less than’, ‘greater than’, and ‘equal to’—“given in terms 
of one–one correspondence of sets” (484)—that are in contradiction with Leibniz’s. 
But this is just to claim that, given C, P cannot be taken to be axiomatically true.

In mounting his case against Leibniz, Brown appeals to an argument given by 
Jose Benardete in his book on infinity (1964), who accused Leibniz of equivocating 
between different senses of the concept of equality—a criticism originating with 
Russell in his (1919). Benardete’s criticism has recently been developed further by 
Mark van Atten, who argues that “Russell and others have observed that Leibniz’s 
argument is not correct because it rests on an equivocation on the concept of equal-
ity.” (van Atten 2011, p. 123). Van Atten makes his case by quoting several versions 
of Leibniz’s argument, and then giving a reconstruction in which the third line is 
“3. The multitude of the squares is equal to a part of the whole of the numbers”, and 
the fifth is “5. The multitude of the squares is equal to the whole of the numbers.“ 
“Clearly,” he writes, “in line 3 ‘is equal to’ means ‘is identical to’, while in line 5 it 
means ‘can be put in a bijection with’” (123).

I do not agree that Leibniz is guilty of such an equivocation. In all versions he 
gives of this argument he accepts that if there is a bijection between the terms in 
two multiplicities ( multitudines),10 then they are equal. That is, Leibniz accepts that 

9 Although Bernard Bolzano recognized that it is a characteristic property of an infinite set that its 
members may be set in 1–1 correspondence with those of a proper subset of itself, he denied that 
the two sets would therefore have the same number of members. That was Dedekind’s contribu-
tion. See Mancosu 2009, esp. pp. 624–627 for an illuminating discussion.
10 Leibniz’s neutral term for a plurality is multitudo, which Van Atten and others translate literally 
as “multitude”, whereas I follow Russell in translating it as multiplicity. Unfortunately, Leibniz is 
not always consistent in his use of terms, sometimes using collectio (collection) as a synonym. But 
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bijection implies equality; he does not have to accept it as a definition of equality. 
Van Attenuses against him his definition of sameness or coincidence of terms as 
those “which can be substituted for each other without affecting the truth” to show 
that Leibniz uses “equality” in two diverse senses: “the concepts of equality in lines 
3 and 5 are diverse or different, as substitution of the one for the other does not 
preserve truth here” (124). But the only criterion of equality Leibniz appeals to is 
that of bijection: if the even numbers have a 1-1 correspondence with a subset of the 
whole numbers, the multiplicity of even numbers is equal to a part of the multiplic-
ity of whole numbers. Here by “part”, Leibniz understands “proper part” or proper 
subset, as van Atten acknowledges, so that one multiplicity B is a part of another 
multiplicity A if there are no terms in B that are not in A, while there are terms in A 
that are not in B. It will then follow that, if the multiplicity of natural numbers N and 
that of square numbers Q can be treated as wholes, Q is a part of the whole N; but 
since there is a 1-1 correspondence between their terms, they are equal: the whole 
is equal to the part. In a letter to Justus Christoph Böhmer in June, 1694, Leibniz 
phrases the argument in exactly this way:

If any A has a B corresponding to it, and any B has an A corresponding to it; it follows that 
there are as many A as there are B and vice versa.
But any number has a square corresponding to it, and any square has a number correspond-
ing to it.
Therefore there are as many numbers as there are squares, and vice versa.
Therefore the multiplicity of all numbers (if such there is), is equal to the multiplicity of 
all squares.
But the multiplicity of all numbers is a whole, and the multiplicity of all squares is a part, 
because the multiplicity of all numbers contains numbers that are not squares as well.
Therefore the whole is equal to the part. Which is absurd.
Therefore there is no multiplicity or number of all numbers, nor of all squares, but rather 
such a thing is chimerical. (A II 2B, 814)

Thus, given the part-whole axiom P (and his interpretation of ‘part’), Leibniz is cor-
rect to infer C, that an infinite collection of terms does not constitute a true whole. 
And this denial of the existence of infinite collections is equivalent, as accepted on 
all sides, to the denial of infinite number.

Now it is true that Leibniz claimed that he could demonstrate P from other no-
tions, such as “B is B” and “each thing is equal to itself”, as Brown reminds us in 
his criticisms of Leibniz’s argument. But the very consistency of Cantor’s theory of 
the transfinite, he argues, shows that Leibniz must have been wrong to claim this 
(Brown 2005, p. 484).11 If Leibniz had indeed demonstrated it, then Cantor’s theory 
would be unsound. Exactly this kind of criticism has been subjected to a detailed 

he wants to deny infinite collections, while still maintaining that there are infinite multiplicities 
or aggregates: one can collect together all the terms of a multiplicity if it is finite, but not if it is 
infinite.
11 Of course, one could also object to Brown that Cantor’s own “naive” set theory is known to 
be inconsistent; and that while it has now been replaced as the foundation of mathematics by 
Zermelo-Fraenkel set theory with the axiom of choice (ZFC), the consistency of ZFC (as Brown 
himself acknowledges on p. 486) has not been established yet. It is simply assumed that if ZFC 
were inconsistent, a contradiction in it would have been discovered by now.
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rebuttal by Herbert Breger in his (2008), in response to Van Atten’s criticisms. An 
argument of this kind, Breger argues, can show that Leibniz was wrong only if one 
assumes that there is just one correct foundation for mathematics, and that that 
was given by Cantor. Such a conception of mathematics, Breger argues, is belied 
by its actual historical development.12 It is clear, he argues, that each decision to 
generalize concepts of mathematics—such as the decision to admit negative num-
bers, imaginary numbers, or the transfinite—involved a contingent decision, made 
on philosophical grounds. One can argue that the revised definition is superior on 
the basis of the mathematics it enables, but it is a historiographical mistake then to 
interpret in terms of this revised definition statements made about numbers prior to 
the acceptance of this definition, in order to show that these statements are false. On 
Leibniz’s conception, the part-whole axiom is constitutive of number just because 
no comparisons of quantity can be made without presupposing it. If bijection im-
plies equality, this entails that infinite number entails a contradiction, given P. One 
cannot find fault with this argument by giving transfinite numbers as a counterex-
ample, since these are numbers only in the Cantorian revised sense of number based 
on the existence of infinite collections, for which P fails: they are not instances of 
the numbers Leibniz is discussing.13

Breger’s point about the contingency of the historical development of mathe-
matics, as well as his and my defence of the tenability of Leibniz’s retaining the 
part-whole axiom, have recently received strong indirect support from an intriguing 
article by Paolo Mancosu on measuring the size of infinite collections (Mancosu 
2009). Mancosu traces the idea that the size of an infinite set can be based on the 
part-whole axiom from its historical roots to recent developments in mathematics. 
He uses the existence of alternative theories of class sizes based on the part-whole 
axiom (due to Katz, Benci, Di Nasso and Forti) to “debunk” arguments such as Kurt 
Gödel’s that the Cantorian conception of infinite number (based on the Dedekin-
dian definition of the equality of sets) is inevitable.14 These theories of class size, 
of course, depend on the existence of infinite collections, which Leibniz denies, 
so they are not compatible with Leibniz’s own approach. But their very existence 
shows that there is nothing inevitable about having to adopt the Dedekindian defini-
tion of the equality of sets or about having to reject the part-whole axiom.

12 “One must renounce the assumption … that there is one mathematics—an assumption that 
should in fact have gone out of date with the acceptance of non-Euclidean geometries.” (Breger 
2008, p. 314).
13 Cf. Breger’s discussion of the two notions of ‘being the same number’, (i) A = B iff neither A nor 
B is a proper part of the other, and (ii) A = B iff there is a bivalent mapping between them: “The fact 
that one finds objects outside the theory examined here for which both notions are not equivalent 
is of no importance within the theory.” (2008, p. 314).
14 “I have hoped to show that the possibility of comparing Cantor’s theory against the alternative 
theories of class sizes (CS) and numerosities allows us to analyze more finely, and in some cases 
debunk, the arguments that claim either the inevitability of the Cantorian choice (Gödel) or that 
account for the (alleged) explanatory nature of the Cantorian generalization by appealing to the 
(alleged) nonrational nature of preserving the part–whole principle.” (Mancosu 2009, p. 642).
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Furthermore, despite his rejection of infinite number and infinite collections, 
Leibniz maintained that one can make true statements about an infinity of terms, 
such as in asserting that there are infinitely many terms in an infinite series. This 
does not mean that there is an infinite number of terms. It means that there are more 
terms than can be assigned any finite number. As Leibniz explained to Johann Ber-
noulliin a letter of February 21, 1699,

We can conceive an infinite series consisting merely of finite terms, or terms ordered in a 
decreasing geometric progression. I concede the infinite multiplicity of terms, but this mul-
tiplicity forms neither a number nor one whole. It means only that there are more terms than 
can be designated by a number; just as there is for instance a multiplicity or complex of all 
numbers; but this multiplicity is neither a number nor one whole. (GM III 575)

This is Leibniz’s actual but syncategorematic infinite. This term alludes to the dis-
tinction first formulated by Peter of Spain, and later elaborated by Jean Buridan, 
Gregory of Rimini and William of Ockham, who claimed that to assert that the 
continuum has infinitely many parts in a syncategorematic sense is to assert that 
“there are not so many parts finite in number that there are not more ( partes non tot 
finitas numero quin plures, or non sunt tot quin sint plura)”. The statement is called 
syncategorematic because the term ‘infinite’ occurs in it, but that term does not 
actually have a referent corresponding to it.15 Rather, it gains its meaning from the 
way the statement as a whole functions. This is contrasted with the categorematic 
sense of infinity, according to which to say that there are infinitely many parts is to 
say that there is a number of parts greater than any finite number, i.e. that there is an 
infinite number of parts. As Leibniz elaborates in his New Essays,

It is perfectly correct to say that there is an infinity of things, i.e. that there are always more 
of them than can be specified. But it is easy to demonstrate that there is no infinite number, 
nor any infinite line or other infinite quantity, if these are taken to be genuine wholes. The 
Scholastics were taking that view, or should have been doing so, when they allowed a 
‘syncategorematic’ infinite, as they called it, but not a ‘categorematic’ one. (Leibniz, New 
Essays, 1981, § 157; GP V 144; Russell 1900, p. 244)

Leibniz’s actual but syncategorematic infinite is thus distinct from Aristotle’s po-
tential infinite, in that it embraces an infinity of actually existents, but it also dif-
fers profoundly from Cantor’s theory of the actual infinite as transfinite in that it 
denies the existence of infinite collections or sets that are the basis of transfinite 
set theory. It is not the existence of an infinite plurality of terms that is denied, but 
the existence of an infinite collection, and thus an infinite number, of them. For 
instance, to assert that there are infinitely many primes, is to assert that, for any 
finite number x that you choose to number the primes, there is a number of primes 
y greater than this: ∀ ∃ → >x y x y x( )F , where Fx: = ‘x is finite’, and x and y are 
any numbers. By contrast, to assert their infinity categorematically would be to as-

15 See O. B. Bassler’s erudite footnote on the syncategorematic and categorematic in his 1998, 
855, n. 15, and the references cited therein. See also Sam Levey’s 2008 for a careful elaboration 
of Leibniz’s fictionalism.
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sert that there exists some one number of primes y which is greater than any finite 
number x, i.e. that ∃ ∀ → >y x x y x( )F —i. e. that there exists an infinite number. In-
terestingly, Euclid’s proof that there are infinitely many primes begins by assuming 
that there finitely many, so that there is a greatest prime, and then deriving a con-
tradiction. But the negation of the assumption that there is a greatest finite prime, 

[F &( )]x y x y x y x∃ ∀ ≠ → ≤ , is provably equivalent to ∀ ∃ → ≠ >x y x y x y x[ ( & )]F
. This says “for any finite number of primes, there is a number of primes different 
from and greater than this”. This is the syncategorematic actual infinite, not the cat-
egorematic, which would be [F ( & )]y x x y x y x∃ ∀ → ≠ > : “there exists a number of 
primes greater than any finite number”.

As I have argued elsewhere (Arthur 2008), this provides the foundation for a 
surprisingly cogent theory of the infinite and infinitesimal. Leibniz had already rec-
ognized in 1674 (as can be seen by the above quotation) that the infinite can be 
treated as a fiction. This signifies that it can be treated as if it is an entity, in a certain 
respect, provided that the statements in which it occurs can be interpreted without 
supposing there is such a thing. For instance, in an infinite series, the infinite mul-
tiplicity of terms can be treated as if they are a collection of terms added together, 
provided a workable account of this infinite ‘sum’ can be given which does not 
presume this. In 1676, Leibniz finds a definition of the sum of a converging infinite 
series in keeping with his syncategorematic account of the infinite:

Whenever it is said that a certain infinite series of numbers has a sum, I am of the opinion 
that all that is being said is that any finite series with the same rule has a sum, and that the 
error always diminishes as the series increases, so that it becomes as small as we would 
like. For numbers do not in themselves go absolutely to infinity, since then there would be 
a greatest number. (A VI 3, 503; LoC 98–99)

This is a good example of how Leibniz’s philosophy of the actual infinite is sup-
posed to work: you can still do mathematics with infinite quantities. Under certain 
conditions, they can be treated as fictional wholes, in the same way that the sum of 
this infinite series is a fictional sum, and the justification is in terms that, after Cau-
chy, we would now express in terms of ε and δ. Leibniz’s definition here of the sum 
of a converging infinite series is equivalent to the modern one in terms of a limit of 
partial sums, and does not involve first taking an actual infinity of terms and then 
forming a sum of them.16

16 As this paper goes to print, my attention has been drawn to a paper by David Rabouin (2011), 
who gives a reading entirely compatible with the present one by comparing Leibniz’s philosophy 
of the infinite with that of Nicholas of Cusa. See also Ishiguro (1990), who was one of the first to 
argue that Leibniz can allow for the success of treating the infinite and infinitely small as if they 
are entities (under certain conditions), and that it is this that allows him to claim that mathematical 
practice is not affected by whether one takes them to be real or not. Philip Beeley (2009) gives 
a subtly different reading, interpreting such claims as instances of Leibniz’s pragmatism. His pa-
per is highly recommended for the intriguing connections he traces between infinity, conceptual 
analysis, the divine mind and the universal characteristic in the development of Leibniz’s thought.
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3  The Leibnizian Analysis of Matter

Turning now to the analysis of matter, we find the kind of picture that Cantor was 
proposing where continuous aetherial matter would be composed out of an (un-
countable) infinity of substances ruled out in principle. The continuum, Leibniz 
claims, is something ideal, whereas what is real is an aggregate of unities. Here are 
some typical aphorisms to this effect:

In actuals, simples are prior to aggregates, in ideals the whole is prior to the part. The 
neglect of this consideration has brought forth the labyrinth of the continuum. (To Des 
Bosses, 31st July 1709; GP II 379; Russell 245)
Actuals are composed as is a number out of unities, ideals as a number out of fractions: the 
parts are actual in the real whole, not in the ideal whole. In fact we are confusing ideals with 
real substances when we seek actual parts in the order of possibles, and indeterminate parts 
in the aggregate of actuals, and we entangle ourselves in the labyrinth of the continuum and 
inexplicable contradictions. (To De Volder, 19/1/1706: GP II 282)
It is the confusion of the ideal and the actual that has embroiled everything and produced 
the labyrinth of the composition of the continuum. Those who compose a line from points 
have quite improperly sought first elements in ideal things or relations; and those who 
have found that relations such as number and space (which comprise the order or relation 
of possible coexistent things) cannot be formed from an assemblage of points, have for the 
most part been mistaken in denying that substantial realities have first elements, as if there 
were no primitive unities in them, or as if there were no simple substances. (Remark on 
Foucher’s Objections (1695); GP IV 491)

On the basis of such claims, Nicholas Rescher has concluded that the solution Leib-
niz is offering to the continuum problem is that in the mathematical continuum the 
whole is prior to the parts, but in the metaphysical one, the parts (monads) are prior 
to the whole. For it is not case that “both the indivisible constituent and the con-
tinuum to which it belongs [can] both at once be real”:

In mathematics the continuum, the line, is real and the point is merely the ideal limit of an 
infinite subdivision. In metaphysics only the ultimate constituents, the monads, are actual, 
and any continuum to which they give rise is but phenomenal. This is the Leibnizian solu-
tion of the paradoxes of the continuum. (Rescher 1967, p. 111)

Thus Rescher attributes to Leibniz a two-tiered ontology: the metaphysical, in which 
the actual monads are constituents of a phenomenal continuum, and the mathemati-
cal, in which the line segments are real and points are their merely ideal limits.

There are many problems with this analysis, however. Regarding the mathemati-
cal, Leibniz is clear that all mathematical objects are ideal entities, and (after 1676) 
that a point is always an endpoint of a line segment, never the ideal limit of an 
infinite subdivision. The infinitesimals of his mature theory, moreover, are not indi-
visible, and are in any case fictions rather than actual parts. And conversely, on the 
metaphysical side, any phenomenal whole resulting from an aggregate of monads 
(“secondary matter” or “body”) must be well founded or real, and cannot therefore 
have the indeterminate parts characteristic of the continuous: “But in real things, 
namely bodies, the parts are not indefinite, as they are in space, a mental thing” (To 
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De Volder, 6/30/1704: GP II 268); “in actuals there is nothing indefinite—indeed 
in them every division that can be made is made… the parts are actual in the real 
whole…” (To De Volder, 1st January 1706: GP II 282). Consequently such a real 
phenomenal whole is discrete rather than a continuum: “Matter is not continuous, 
but discrete… [It is the same with changes, which are not really continuous.]” (To 
De Volder, 11th October 1705; GP II 278).17

Many of these criticisms were made by J. E. McGuire in his (1976), who con-
sequently ascribed to Leibniz a three-tiered ontology, consisting in the actual, the 
phenomenal and the ideal.18 In distinguishing these levels he makes use of the dis-
tinction in Leibniz between division and resolution, a distinction of crucial impor-
tance in understanding Leibniz’s views, as we shall see in due course. Thus in Leib-
niz’s mature metaphysics, space and time are characterized as ideal, or “entities of 
reason” ( entia rationis) (McGuire 1976, p. 307; Hartz and Cover 1988, 504, 513). 
As continuous entities, they are arbitrarily divisible, though not composed of parts 
(McGuire 309; Hartz and Cover 505). They are resolvable into points or instants, 
but neither divisible into nor composed out of these, since points and instants are 
mere modalities (McGuire 1976, pp. 309–310). Well-founded phenomena, on the 
other hand are extended aggregates, and as such presuppose a plurality of entities 
from which their extension results. Thus they are resolvable into units of substance. 
They are also divisible into actual parts, and composed of these parts. McGuire 
concludes, however, that the only actuals are the substantial unities into which phe-
nomena are resolved. Being simple, these actual substances themselves “can be 
neither composable, nor resolvable, nor divisible” (310).

The difficulty with this last claim is as follows. If monads or simple substances 
are the only actuals, then they must be the actual parts from which phenomena are 
composed, as McGuire duly concludes: “the ‘actual parts’ of extended things are 
non-extended substances” (306). But this flies in the face of what Leibniz says, as 
McGuire is perhaps tacitly acknowledging by his use of scare quotes.19 Monads are 
supposed to be simples, entities into which bodies and motions are resolved, not 
parts out of which they are composed. As Leibniz writes to Burcher de Volder in 
1704 in a typical passage,

But, accurately speaking, matter is not composed of constitutive unities, but results from 
them, since matter or extended mass is nothing but a phenomenon founded in things, like a 

17 On an Aristotelian understanding of the continuous, a continuum is unbroken, and has no actual 
boundaries within. A line that is actually divided into contiguous line segments is therefore no 
longer regarded as continuous but as possessing discrete parts, notwithstanding the fact that there 
are no gaps between these contiguous segments. Thus when Leibniz describes matter as “discrete” 
he means actually divided into contiguous parts, but as still forming a plenum. For an engaging and 
informative history of this conception of the continuum as cohesive and unbroken, from Aristotle 
to present-day smooth infinitesimal analysis, see Bell 2006.
18 Here he has been followed by Glenn Hartz and Jan Cover (1988), who contend that Leibniz 
changed his position from a 2-realm view to the 3-realm view of his mature metaphysics, after a 
period of transition between the years 1695 and 1709.
19 Although Hartz and Cover criticize McGuire for his “misuse… of ‘actual’ to distinguish monads 
from bodies” (1988, p. 519), they nonetheless assert that “extension conceived as an abstract con-
tinuum has no actual parts, but extended bodies do have such parts: they are the genuine compos-
ites whose actual parts are Leibniz’s ‘atoms of substance’ (cf. L 539, GP II 282).” (1988, p. 497).
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rainbow or mock-sun, and all reality belongs only to unities… Substantial unities, in fact, 
are not parts but foundations of phenomena. (To De Volder, 30th June, 1704: GP II 268)

The actual parts of phenomenal bodies, in fact, are not substances, but actually 
existing parts, as opposed to the indefinite parts into which a continuous body is 
divisible. Indeed, they are always mentioned by Leibniz in the context of an actual 
division. In the letter to De Volder of 19/1/1706, Leibniz writes “in actuals there is 
nothing indefinite—indeed, in them any division that can be made, is made” (GP 
II 282). And in his Remarks of 1695, the points marking the possible divisions of 
an abstract line are contrasted with the “the divisions actually made, which des-
ignate these points in an entirely different manner” (GP IV 49). Now since only 
phenomenal bodies can be divided (simple substances are indivisible), this means 
that Leibniz’s “actual parts” must be parts of actually divided phenomenal bodies; 
and these parts will again be bodies. This is confirmed more explicitly in the fol-
lowing passages:

But in real things, that is, bodies, the parts are not indefinite (as they are in space, a mental 
thing), but are actually assigned in a certain way, as nature actually institutes the divisions 
and subdivisions according to the varieties of motion, and… these divisions proceed to 
infinity… (to De Volder, June 30th, 1704: GP II 268).
We should think of space as full of matter which is inherently fluid, capable of every sort 
of division, and indeed actually divided and subdivided to infinity; but with this difference, 
that how it is divisible and divided varies from place to place, because of variations in the 
extent to which the movements in it run the same way. ( New Essays, Preface; Leibniz 1981, 
p. 59)

As these passages indicate, the actual divisions of matter are determined by the 
“varieties of motion”. This is premised on the idea that any given body is individu-
ated by its parts all having a motion in common, so that parts with differing motions 
will be actually divided from one another, as Descartes had in fact argued in his 
Principles of Philosophy (II, § 34–35). But in a plenum, according to Leibniz, every 
body is acted upon by those around it, causing differentiated motions in its interior, 
and thus dividing it. Since this is the case for every body, the division will proceed 
to infinity. Therefore matter is actually infinitely divided. Moreover, since what is 
divided is an aggregate of the parts into which it is divided, it will be an infinite ag-
gregate. This argument is stated by Leibniz on numerous occasions throughout his 
oeuvre, including in the Monadology (1714): “every portion of matter is not only 
divisible to infinity, as the ancients realized, but is actually subdivided without end, 
every part into smaller parts, each one of which has its own motion.” (WFPT 277). 
A particularly explicit example occurs in an unpublished fragment probably dating 
from 1678–1679:

Created things are actually infinite. For any body whatever is actually divided into several 
parts, since any body whatever is acted upon by other bodies. And any part whatever of a 
body is a body by the very definition of body. So bodies are actually infinite, i.e. more bod-
ies can be found than there are unities in any given number. (c. 1678–1679; A VI 4, 1393; 
LoC 235)

Significantly, the notion of the actual infinite Leibniz appeals to here is precisely the 
syncategorematic notion explained above: bodies are actually infinite in the sense 
that for any finite number, there are actually (not merely potentially) more bodies 
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than this. Regarding the actual infinite, then, there is a perfect consilience between 
Leibniz’s mathematics and his natural philosophy.

One consequence of this is that a body cannot be a true whole. For since every 
body is an infinite aggregate of its parts, it is an infinite whole; and, as we have seen, 
Leibniz held infinite wholes to be fictions. In an earlier work (Arthur 1989) I sug-
gested that this explains in part why Leibniz held that bodies are phenomenal: since 
he regarded any substance as a true unity, bodies, being only fictional unities, would 
not qualify as substances. If a phenomenon is something that appears to the senses 
but is not a substance, then bodies, insofar as they really appear to the senses, must 
qualify as real phenomena. Thus the fact that bodies are phenomena is explained in 
part by Leibniz’s doctrine of the actual infinite.

To this, two objections can be made. First, as Gregory Brown objected, a unity is 
not the same as a whole (Brown 2000, p. 41). Since Leibniz held that no substance 
can be composed of parts, no substance can be a whole, whether fictional or true.20 
Secondly, as Russell had already perceptively observed in 1900, although it is true 
that Leibniz identified bodies as infinite aggregates, and these as “corresponding to 
the phenomena”, he also claimed that all aggregates are phenomenal, even finite 
ones: “A collection of substances does not really constitute a true substance. It is 
something resultant, which is given its final touch of unity by the soul’s thought 
and perception.” (Leibniz, New Essays, 1981, p. 226). Thus, as Russell remarks, 
“even a finite aggregate of monads is not a whole per se. The unity is mental or 
semi-mental” (Russell 1900, p. 116). This conclusion is a consequence of Leibniz’s 
nominalism about aggregates, again accurately epitomised by Russell: “Whatever is 
real about an aggregate is only the reality of its constituents taken one at a time; the 
unity of a collection is what Leibniz calls semi-mental (GP II 304), and therefore the 
collection is phenomenal although its constituents are all real.” (115)

When Russell was writing his book on Leibniz in 1900, he had still not encoun-
tered Cantor’s set theory and was sympathetic to Leibniz’s doctrine “that infinite 
aggregates have no number”, describing it as “one of the best ways of escaping from 
the antinomy of infinite number” (117). But whatever reservations he may have 
harboured then about number in connection with infinite aggregates, he certainly 
had none about finite aggregates, and believed the doctrine of the phenomenality of 
aggregates to be a serious deficiency in Leibniz’s philosophy. Russell took this doc-
trine to be a consequence of Leibniz’s deriving his metaphysics from his logic, as 
“the assertion of a plurality of substances is not of this [subject-predicate] form—it 
does not assign predicates to a substance” (116).) But, he argued, if it is “the mind, 
and the mind only, [that] synthesizes the diversity of monads”, then “a collection, as 
such, acquires only a precarious and derived reality from simultaneous perception” 
(116). So he confronted Leibniz with a dilemma:

20 Here I owe a profound debt to my former student Adam Harmer, who first persuaded me of the 
significance of Leibniz’s “mereological nihilism” for his notion of corporeal substance: this can-
not be, as I had formerly supposed, a substance with a body that is a true whole at any given time.
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For the present it is enough to place a dilemma before Leibniz. If the plurality lies only in 
the percipient, there cannot be many percipients, and the whole doctrine of monads col-
lapses. If the plurality lies not only in the percipient, then there is a proposition not reduc-
ible to the subject-predicate form, the basis for the use of substance has fallen through, and 
the assertion of infinite aggregates, with all its contradictions, becomes quite inevitable 
for Leibniz. The boasted solution of the difficulties of the continuum is thus resolved into 
smoke, and we are left with all the problems of matter unanswered. (Russell 1900, p. 117)

Even if we set aside Russell’s mistaken belief that Leibniz derived his metaphys-
ics of substance from a commitment to subject-predicate logic, though, there still 
remains a dilemma, given his reading of Leibniz’s stance on plurality. For if plu-
rality lies only in the percipient, then Leibniz is not entitled to assert that there is 
objectively more than one substance, and his system collapses into a monism; the 
infinite plurality of parts into which matter is divided must likewise exist only in 
the mind. Whereas if plurality is mind-independent, this seems to deprive Leibniz 
of any ground for denying the principle that to every aggregate there corresponds 
a number. In that case, Russell suggests, Leibniz would be forced to concede that 
there is infinite number, and he would fall into the very antinomies he was trying 
to avoid.

In fact, however, Russell’s dilemma is based on a mistaken reading of Leibniz’s 
doctrine of aggregates. It is not the plurality or aggregate that lies only in the percip-
ient, but the perception of it as a unity. It is not the plurality itself that is contributed 
by perception, but the aggregate conceived as an entity distinct from its constituents. 
The reality of the aggregate does indeed consist in that of the constituents of the ag-
gregate, just as Russell had described. What that means however is that if one has 
a flock of twenty sheep, say, each of these sheep exists independently of anyone 
perceiving it. If they are conceived or perceived together as making up a flock, then, 
according to Leibniz’s doctrine, it is the flock as distinct from its constituents whose 
existence consists in those constituents being conceived or perceived together. This 
is consistent with Leibniz’s position that numbers are ideal entities: the multiplicity 
of sheep exists independently of anyone numbering, but the numbering of the sheep 
as twenty requires someone to conceive them as making up a score or viguple, as a 
twenty. Thus the plurality itself is not mind-dependent, but only the judgement of it 
as forming a unity is, as is the applying to it of a number. In the same way, the divi-
sions in matter are actual: they are not the result of any mental judgement, but of the 
internal motions of matter which are responsible for the divisions.

Leibniz is perfectly explicit on this point, as for instance in this passage from a 
letter to De Volder:

I think that that which is extended has no unity except in the abstract, namely when we 
divert the mind from the internal motion of the parts by which each and every part of mat-
ter is, in turn, actually subdivided into different parts, something that plenitude does not 
prevent. Nor do the parts of matter differ only modally if they are divided by souls and 
entelechies, which always persist. (to De Volder, 3 April 1699; GP II 282)

Why, then, does Leibniz insist that matter is phenomenal? Again, his argument is 
laid out quite explicitly, both to Arnauld and to De Volder. It depends, as Russell 
recognized, on a “very bold use” (Russell 1900, p. 115) of his nominalist principle 
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that the reality of an aggregate derives only from the reality of its constituents. As 
he explained to Arnauld, it follows from this that anything which, like matter, is a 
being by aggregation, must presuppose true unities from which it is aggregated:

I believe that where there are only beings by aggregation, there will not in fact be any 
real beings; for any being by aggregation presupposes beings endowed with a true unity, 
because it derives its reality only from that of its constituents. It will therefore have no real-
ity at all if each constituent being is still a being by aggregation, for whose reality we have 
to find some further basis, which in the same way, if we have to go on searching for it, we 
will never find. (to Arnauld, 30th April 1687; GP II 96; WFPT 123)

If a body is the aggregate of the parts into which it is divided, then its reality consists 
in the parts alone, and not in their being perceived as one. But since each of these 
parts is further divided, the argument iterates: the body is a perceived unity and a 
plurality of parts, but each of these parts is also a perceived unity and a plurality of 
parts, and so on down. If there are no true unities, then, given infinite division, the 
reality of body will elude analysis: it will reduce to a pure phenomenon. If, on the 
other hand, there exist true unities in the body, then the body’s reality will reduce 
to the reality of these, while its unity will consist in their being perceived together. 
It will then be what Leibniz in his correspondence with De Volder calls a “quasi-
substance”, a plurality of substances with no substantial unity.21 Leibniz repeats this 
argument to De Volder:

Anything that can be divided into many (already actually existing) things is aggregated 
from many things, and a thing that is aggregated from many things is not one except in 
the mind, and has no reality except that which is borrowed from what it contains. From 
this I then inferred that there are therefore indivisible unities in things, because otherwise 
there will be no true unity in things and no reality that is not borrowed, which is absurd. 
For where there is no true unity then there is no true multitude. And where there is no real-
ity except that which is borrowed, there will never be reality, since this must in the end be 
proper to some subject. (30 June 1704; GP II 267)

Now it is important to appreciate that Leibniz does not identify the true unities that 
he claims must be in body with the various actual parts into which it is divided. 
Body is divided into parts, but resolved into unities. The unities are presupposed 
by the nature of a body as an aggregate: its reality must reduce to the reality of its 
constituents.22 The actual parts, on the other hand, are the result of a motion in com-
mon that is actually instituted in matter. But this does not prevent there from being 
other motions within this part of matter: in fact, of course, Leibniz argues that there 
are always such differentiated motions in any part of matter, and this is what results 
in its being infinitely divided.23 But this also means that no part of matter can be a 

21 See for instance Leibniz’s letter to De Volder of 19 November 1703, in Lodge 2009, p. 445, 
2013, p. 279.
22 I have given a fuller analysis of Leibniz’s notion of presupposition in Arthur 2011. If A presup-
poses B, then B is in A, and A contains B. These are equivalent technical notions of wide-ranging 
application, for which Leibniz gives a formal treatment. I argue that those things are constituents 
of A that are presupposed in every part of A and are not themselves further resolvable, such as 
points in a line, or simple substances in matter.
23 Cf. Levey 1999, pp. 144−145: “Adjacent parcels of matter form a cohesive whole in virtue of 
their sharing a motion in common ( motus conspirans), but this is consistent with each parcel hav-
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true unity. Moreover, because all parts of matter are constantly jostling one another, 
the divisions of matter differ from one instant to another. This means that no part 
of matter remains the same—i.e. has exactly the same shape and size—through 
time. The true unities, on the other hand, are precisely things that remain the same 
through time.

What then is the connection between the true unities presupposed by the reality 
of body and the actual parts into which matter is divided? The answer, in short, is 
motion, and the foundation Leibniz provides for it. As we have seen, the parts of 
matter are actually distinguished from one another by their motions. Motion, on the 
other hand, is not fully real, according to Leibniz. Because of the relativity of mo-
tion, it is impossible to say to which of several bodies in relative motion it belongs. 
There must nevertheless be some subject of motion, or all motion will be a pure 
phenomenon. There must also be some foundation for the real distinction of the dif-
fering motions (more accurately, tendencies to motion) that exist at each instant, or 
else there will be no objective basis for distinguishing the actual parts of matter.24

This is where Leibniz’s revamped notion of substance comes into play. The ar-
gument so far has been that there must be real unities in matter, and also that there 
must be some principles by which the differing motions in matter at any instant 
might be distinguished. These desiderata are both satisfied by Leibniz’s conception 
of the unities or substances as beings capable of action, for which it is necessary for 
them to be repositories of force. On the one hand, force is “an attribute from which 
change follows, whose subject is substance itself” (to De Volder, 3 April 1699; GP 
II 170; Lodge 2009, p. 313, 2013, p. 73); on the other, it involves an endeavour or 
striving ( nisus), and this is what the reality of motion consists in: “there is nothing 
real in motion but the momentary state which a force endowed with a striving for 
change must produce” ( Specimen Dynamicum, 1695; GM VI 236; WFPT 155). This 
force is thus the foundation for the motion of any actual part of matter at any instant. 
It is an entelechy in the sense that it remains self-identical through the changes 
of state that it brings into actuality: it is the real foundation at any instant for the 

ing a motion of its own that divides and distinguishes it from the others. Also there can be further 
differing motions within each parcel that distinguish its parts.” Thus having a motion in common 
is sufficient to individuate a raindrop, for instance, but does not preclude there being a variety of 
motions within the drop which, according to the Cartesian criterion, divide it within. Just as a line 
segment can be divided into further line segments, and these again, without limit, it is not neces-
sary that an infinite division should issue in points or infinitesimals, contra Gregory Brown’s as-
sertion: “For that the divisions within matter must finally resolve themselves into infinitesimals or 
minima is something that seems to be guaranteed by Leibniz’s assumption that every part of matter 
is divided to infinity” (Brown 2000, p. 34). Levey identifies this “folds” model as a third model 
for Leibnizian infinite division, in addition to his “divided block” and “diminishing pennies”, 
although he later describes both it and the divided block models as “incoherent, given Leibniz’s 
metaphysics of matter” (Levey 1999, p. 148).
24 “For at the present moment of its motion, not only is body in a place commensurate with itself, 
but it also has an endeavour or striving to change place, so that from its subsequent state follows 
per se from its present one by the force of nature. Otherwise, … there would be absolutely no dis-
tinction between bodies, seeing as in a plenum of mass that is uniform in itself the only means for 
distinguishing them is with respect to motion” ( On Nature Itself, GP IV 513; WFPT pp. 218−219).
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motion individuating the actual part of matter that is its body. The differing tenden-
cies to motion to which the entelechies in matter give rise are what make actual the 
various parts into which matter is divided at different instants.

Leibniz does not much stress the role of his entelechies in making the parts of 
matter actual, but it is there if you look for it. We have already quoted above his 
riposte to De Volder’s claim that the parts of mattercould be distinguished only 
modally: “Nor do the parts of matter differ only modally if they are divided by souls 
and entelechies, which always persist.” (GP II 282) There is also this passage:

Since, therefore, primitive entelechies are dispersed everywhere throughout matter—which 
can easily be shown from the fact that principles of motion are dispersed throughout mat-
ter—the consequence is that souls also are dispersed everywhere throughout matter. (GP 
VII 329; Russell 1900, p. 258)

Thus matter is actually divided by its different motions; each of these presupposes 
a principle, that is, a substance that is the subject of the changes, and a force that re-
sults in the changes occurring. Because each part of matter is further divided, there 
are such substances or true unities (Greek: monada) everywhere:

If there were no divisions of matter in nature, there would not be any diverse things, or 
rather there would be nothing but the mere possibility of things: but the actual division 
in masses makes distinct the things that appear, and presupposes ( supponit) simple sub-
stances. (unsent draft to De Volder, 1704-5; GP II 276)
Since monads or principles of substantial unity are everywhere in matter, it follows from 
this that there is also an actual infinity, since there is no part, or part of a part, which does 
not contain monads. (to Des Bosses, 14 Feb 1706; GP II 301; LDB 25; Russell 1900, p. 129)

This, then, is Leibniz’s argument for the actually infinite plurality of monads or sim-
ple substances. Because monads are presupposed in every actual part of matter, and 
matter is infinitely divided, there are actually infinitely many monads. Moreover, 
this actual infinite is understood syncategorematically, in perfect agreement with 
his mathematics of the infinite: their multiplicity is greater than any given number:

In actuals, there is nothing but discrete quantity, namely the multiplicity of monads or 
simple substances, which is greater than any number whatever in any aggregate whatever 
that corresponds to the phenomena. (to De Volder, 19th January, 1706; GP II 282)

Thus we have the following contrast between finite aggregates and infinite ones. A 
finite aggregate is the whole formed by its parts, by analogy with the formation of 
the natural numbers from unities: 1 + 1 + 1 = 3. Addition, however, is a mental opera-
tion: numbers as such are ideal, as are flocks interpreted as entities distinct from 
their members. One can imagine an infinite aggregate as similarly corresponding 
to an infinite sum, as the whole formed by an infinite addition: 1 + 1 + 1 + … = ∞. 
But the idea of an infinite whole leads to contradiction, since then a part will be 
equal to the whole. Thus it is a fiction: while one can work with infinite sums of 
infinitely small elements under certain well defined conditions without falling into 
error, there is no such thing in actuality as an infinite sum or an infinite addition: the 
infinite is not a true whole, and there is no such thing as an infinite number.

In conclusion: according to Leibniz, to say that there are actually infinitely many 
parts of matter at each instant is to say that there are so many that for any finite 
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number one assigns, there are more. But each of these actual parts presupposes true 
unities. These constitute what is real about the bodies, since the reality of the ag-
gregate reduces to the reality of its constituents, while the unity of the aggregate is 
supplied by a perceiving mind. Therefore, “since there is no part, or part of a part, 
which does not contain monads”, bodies are infinite aggregates of monads: in any 
body there are more monads than can be assigned. For Leibniz, there are actually 
infinite aggregates, but—in contrast to Cantor—there are no infinite numbers.
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1  Introduction

Galileo’s discussion of the infinite in Discourses and Mathematical Demonstra-
tions Concerning Two New Sciences (1638) hardly wants for recognition. But its 
importance for Leibniz’s philosophy has not always been appreciated. Nor, I think, 
has Galileo’s own view of the infinite in Two New Sciences yet been properly under-
stood. A close study of Galileo’s paradox of the natural numbers and his answer to 
it can throw new light on Galileo’s own position and, with its elements in view, the 
influence of Galileo on Leibniz comes into high relief. A number of new points of 
interpretation of Galileo will be on offer in what follows, some likely to be contro-
versial. Contrary to the customary account, for instance, I hold that Galileo allows 
for judgments of equality among infinite classes; indeed they are readily found in 
his mathematical and philosophical work. As I see it, his celebrated denial that the 
terms ‘greater’, ‘less’ and ‘equal’, apply in the infinite is in fact limited to unbound-
ed magnitudes, but consistent with judgments of cardinal equality among infinite 
multitudes that are bounded in magnitude and thus, as magnitudes, finite. Galileo’s 
denial of comparability nonetheless poses a threat to two important mathematical 
principles, Euclid’s Axiom and the Bijection Principle  of Cardinal Equality, and I 
consider two sorts of strategies for reconciling those principles with Galileo’s posi-
tion. One strategy, suggested by Eberhard Knobloch,1 appeals to Galileo’s use of the 
distinction between quanti and non quanti. The other is due to Leibniz and involves 
a distinction between totalities and pluralities. I argue that the first strategy cannot 
save Galileo’s account from having to relinquish at least one of the two mathemati-
cal principles. Leibniz’s strategy offers a more promising way to escape from the 
paradox while leaving both principles intact, although it imposes a peculiar meta-
physical cost of its own. Spelling out the details of Leibniz’s solution further reveals 

1 Knobloch (1999; 2011).
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how intimately related his account of the term ‘infinite’ is to Galileo’s discussion 
and draws out key contrasts between their respective views of comparability and 
their definitions of ‘infinite’.

1.1  Galileo’s Paradox of the Natural Numbers

Early in the discussion of the dialogue’s First Day, Galileo offers a striking proof 
for the claim that “one infinity cannot be said to be greater or less than or equal to 
another” (EN 8:78/D40).2 The context is one in which Galileo, via his spokesman 
Salviati, is looking to defend the coherence of the idea that a finite quantity such as a 
line or a solid might contain an infinity of indivisible points. Simplicio has detailed 
an objection: it seems a longer line would then contain an infinity of points greater 
than the infinity contained in a shorter line, implying an infinity greater than the 
infinite, “a concept not to be understood in any sense” (EN 8:77/D 39). Galileo’s 
proof would cut off the objection by disallowing any comparison of size among 
‘infinites.’ It is the proof itself, though, not the picture of matter being defended, 
that is our present concern.

Galileo takes the natural numbers as his example of an infinite and argues as fol-
lows. Since the natural numbers include both the square numbers and non-square 
numbers, there are more [esser più che] naturals than squares. Yet there are just 
as many squares as there are roots, since every root has its own square and every 
square its own root; and there are just as many naturals as roots, since every natural 
is a root and every root is a natural. So it follows that there are just as many [siano 
quanti] squares as naturals. We thus appear to have contradictory results: the natural 
numbers are both greater than and equal to the square numbers, which is absurd. 
(Cf. EN 8:78–79.)

Galileo’s paradox of the natural numbers, then, appears to derive a contradiction 
from the idea that one infinite can be said to be greater or less than or equal to anoth-
er. As is readily noted, the proof trades on two different standards for comparison. 
By the standard of ‘proper inclusion’, there are more naturals than squares since the 
natural numbers properly include the squares, i.e. the naturals include non-square 

2 Primary texts are abbreviated as follows. For Galileo: EN = Opere, Edizione Nazionale, ed. 
Antonio Favaro (Florence 1898). For Leibniz: A = Berlin Academy Edition, Sämtliche Schriften 
un Briefe. Philosophische Schriften. Series VI. Vols. 1–4. (Berlin: Akademie-Verlag, 1923−99); 
GP = Gerhardt, Die Philosophischen Schriften, Vols. 1–7. Ed. C.I. Gerhardt (Berlin: Weidma-
nnsche, Buchhandlung 1875–1890); GM = Mathematische Schriften von Gottfried Wilhelm Leib-
niz, Vols. 1–7. Ed. C.I. Gerhardt (Berlin: A. Asher; Halle: H.W. Schmidt 1849–1863). References 
to EN, GP and GM are to volume and page numbers; those to A are to series, volume and page. 
Translations of Galileo generally follow those of Stillman Drake (abbreviated ‘D’), Galileo Gali-
lei: Two New Sciences, Including Centers of Gravity and force of Percussion, 2nd Ed, (Toronto: 
Wall and Emerson, Inc. 1974), and those of Leibniz generally follow Richard Arthur (abbrevi-
ated ‘Ar’), G.W. Leibniz: The Labyrinth of the Continuum: Writings on the Continuum Problem, 
1672–1686 (New Haven: Yale University Press 2001). I have sometimes modified translations 
without comment.
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numbers as well as all the square numbers. Or as we might say, the squares form a 
proper subclass of the natural numbers.3 By the standard of ‘one-one maps’, how-
ever, there are just as many squares as naturals, since the two classes can be mapped 
one-one into each other, implying a ‘one-one correspondence’ (or bijection) be-
tween them. In the case of finite classes the standards are always in agreement: no 
finite class can be mapped one-one into one of its own proper subclasses, and finite 
classes are always greater than their proper subclasses. Only in the infinite can the 
standards conflict .

Galileo in effect treats the two standards of comparison as equally sound and 
suggests that we are mistaken to extend either one from the finite case to the infinite 
case. He recommends abandoning comparisons altogether in the infinite. History 
has instead taken sides in order to resolve the paradox, and it has favored the stan-
dard of one-one maps over that of proper inclusion. Classes X and Y are equal in 
size just in case there is a one-one correspondence between them, the proper inclu-
sion of one in the other notwithstanding. Developments in transfinite set theory due 
to Cantor would establish this as a consistent approach to the paradox,4 and sub-
sequent orthodoxy was to hold, in Russell’s words, “it is actually the case that the 
number of square (finite) numbers is the same as the number of (finite) numbers.”5

That is all familiar enough. Writers on the topic tend to be orthodox Russellians 
on this point today. Galileo’s own analysis of the paradox is hardly refuted by the 
preference of history,6 however, and what he has to say is quite interesting. Here in 
the words of Salviati:

I don’t see how any other decision can be reached than to say that all the numbers [tutti i 
numeri] are infinitely many [infiniti]; all the squares infinitely many; all their roots infi-
nitely many; that the multitude [moltitudine] of squares is not less than that of all numbers, 
nor is the latter greater than the former. And in the final conclusion, the attributes of equal, 
greater and less have no place in infinite, but only in bounded quantity [quantità terminate]. 
(EN 8:79/D 41)

The denial that such comparisons are possible in the infinite is Galileo’s signature 
conclusion here. But his words convey a few more ideas worth drawing out. The 

3 A quick note on terminology. In what follows I sometimes use the terms ‘class’, ‘subclass’, etc., 
for convenience, but without meaning to imply that the many elements of a class thereby form a 
set or totality or other ‘single object.’ (Mostly here it will cause no harm to read ‘class’ and ‘set’ 
as equivalent, but sometimes it will lead astray, so beware.) Occurrences of ‘class’, etc., can, with 
appropriate shifts in syntax, always be replaced by suitable plural expressions—e.g., ‘the natural 
numbers’ instead of ‘the class of natural numbers’—or by terms such as ‘multitude’ or ‘plurality’ 
that cancel the implication of one thing formed from many. In contexts in which greater precision 
is required to convey the intended meaning, and avoid unwanted implications, I shall use unam-
biguous terms.
4 Cantor writes, “There is no contradiction when, as often happens with infinite aggregates, two 
aggregates of which one is a part of the other have the same cardinal number” (Cantor 1915, p. 75; 
noted in Parker (2009)).
5 Russell (1913, p. 198).
6 For a very illuminating discussion of the history of the idea of measuring the size of the natural 
number collections, as it has evolved up to Cantor, plus some contemporary alternatives to Cantor, 
see Mancosu (2009).
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multitude of (natural) numbers is infinite, as are those of the squares and their roots. 
This is justified, presumably, by the one-one correspondences between the squares 
and the roots and the roots and the naturals. Thus it seems that even if a one-one 
correspondence isn’t sufficient for claiming that two classes are equal, it is suffi-
cient for claiming that a class is infinite if there is a one-one map from some infinite 
class into it—or, at least, a class is infinite if there is a one-one map from the natural 
numbers into it.

Galileo does not define ‘infinite’ explicitly in Two New Sciences. Still, his sug-
gestion that a class is infinite if the natural numbers can be mapped into it can itself 
serve well as an intuitive definition. And his discovery that the class of natural 
numbers can be mapped one-one into a proper subclass of itself suggests a structural 
property of classes that would later be elevated by Dedekind into a definition of 
‘infinite’: infinite classes are exactly those that can be mapped into one of their own 
proper subclasses. In Dedekind’s words, ‘A system S is said to be infinite when it is 
similar to a proper part of itself.’7 In the terms of modern-day mathematics, Galileo 
discovered that the natural numbers are ‘Dedekind infinite’ .

1.2  Parts, Wholes and Euclid’s Axiom

Unlike Dedekind, Galileo does not use the word ‘part’ or ‘proper part’ in an explic-
itly formal statement of his mathematical principles. The language of parts is not 
absent from his discussion, however, for he does say, in passing, that the squares 
form a part of the natural numbers—a ‘tenth part’ of the first hundred numbers, a 
‘hundredth part’ of the first ten thousand, etc.—and that the non-squares form a 
‘greater part’ [maggior parte] than the squares (EN 8: 79). But it is at best equivo-
cal evidence that he means to use the language of parts and wholes for his technical 
mathematical vocabulary. And Galileo does not say that the natural numbers form a 
‘whole’ or ‘totality’ or even a ‘system’. His phrase tutti i numeri might suggest this, 
since tutti can have the force of ‘whole’ in some uses,8 but taken straightforwardly 
what Galileo says is simply ‘all the numbers’ and likewise ‘all the squares’ and ‘all 
the roots’. Moreover, his use of the term moltitudine, or ‘multitude’, in claiming that 
the multitude of squares, that of natural numbers and that of roots are all infinite, 
seems gauged to avoid the supposition that there is a single totality, a single math-
ematical object, made up of all the squares or all the naturals or all the roots.

The language of parts and wholes is nonetheless a natural one in which to frame 
the discussion, and it also offers an idea that likely lies behind Galileo’s appeal to 
the standard of proper inclusion in his initial claim that the natural numbers as a 

7 In the usual formula: S is infinite if and only if there is a one-one map Φ from S into S with some 
element of S not in the range of Φ. Was sind und was sollen die Zahlen?, Sect. 64; cf. Sect 66.
8 Crew and de Salvio’s 1914 translation renders tutti i numeri as “the totality of all numbers” (cf. 
p. 31). In the same lines it also inserts ‘number’ in “the number of squares is infinite” and “the 
number of roots is infinite”, where the corresponding term does not occur in the original. Drake’s 
translation steers clear of those interpolations.
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class are greater than the squares. That idea is the following principle: The whole is 
greater than the part. It is sometimes called ‘Euclid’s Axiom’ for its occurrence as 
Common Notion V at the start of Book One of the Elements. If the square numbers 
form a part of the natural numbers, then by Euclid’s Axiom the whole of the natural 
numbers must be greater than the part formed by the square numbers alone. When 
Dedekind says that in an infinite system the proper part is equal (‘similar’) to the 
whole, his position implies the falsity of Euclid’s Axiom.

It is not hard to think Galileo’s position has the same consequence, if somewhat 
more subtly. When he recommends that we drop the terms ‘greater’, ‘equal’ and 
‘less’ from use in application to infinites, he is in effect abandoning Euclid’s Axiom, 
at least in the case of the infinite. For the result would be to deny that the whole is 
greater than the part in this case, even if the equality of part and whole is not as-
serted. As we shall see, Leibniz interprets Galileo in just this way. At the moment it 
is enough to observe the potential implication for Euclid’s Axiom, and to note that 
Galileo himself may not quite be committed to it, since it is not evident to what ex-
tent he embraces the language of parts and wholes for classes of numbers.

The minimal reading of Galileo’s own position is just that the extension of Eu-
clid’s Axiom from the finite to the infinite is incorrect. He is explicit in warning 
against taking such extensions for granted. “These are some of those difficulties that 
arise”, he writes, “that derive from reasoning about infinites with our finite minds 
and giving to them those attributes that we give to the finite and the bounded” (EN 
8: 77–78/D39-40). It will then remain to say why it is incorrect to apply terms of 
comparison, or principles like Euclid’s Axiom, in the infinite case. The paradox 
only points up an inconsistency, perhaps showing that the extension is invalid; it 
does not explain the underlying problem.

It is open to Galileo to deny the applicability of Euclid’s Axiom in the infinite 
case without thereby rejecting the axiom itself, if a condition of its terms can be 
seen not to hold in the infinite. The involvement of the concepts of part and whole 
in the axiom indicates one possible avenue for doing this: if we should say that infi-
nite multitudes cannot form wholes, then Euclid’s Axiom will be seen not to apply 
in the infinite case without thereby being overturned by a counterexample. If there 
are no infinite wholes, then there is no whole that fails to be greater than its parts. 
Another possible avenue might be to identify some less explicitly stated condition 
of Euclid’s Axiom, say, some requirement that the terms it compares be in some 
way ‘measurable’ or ‘quantifiable’, and then see if it can be denied that ‘infinites’ 
meet this condition. If it can be held that infinites are not measurable or quantifiable 
in the relevant way, then denying that Euclid’s Axiom applies to them might fall 
short of rejecting the axiom itself. Again, its inapplicability would not be due to the 
existence of counterexamples.

I belabor those points because each of those two avenues has been suggested as 
a possible route of escape from the prospect of having to deny Euclid’s Axiom. The 
first—denying that infinite multitudes form a whole—is proposed by Leibniz, who, 
commenting on Galileo’s paradox of the natural numbers in his notes on Two New 
Sciences, writes:
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Hence it follows either that in the infinite the whole is not greater than the part, which is the 
opinion of Galileo and Gregory of St. Vincent, and which I cannot accept; or that infinity 
itself is nothing, i.e. that it is not one [Unum] and not a whole [totum]. (A VI, 3, 158/Ar 9)

As before, it is not quite true that Galileo says the whole is not greater than the part 
in the infinite, since his mention of parts is not clearly committal and he does not 
write of the number classes directly in terms of wholes. (Perhaps Leibniz, like some 
of Galileo’s later readers, sees the language of wholes [totum] in Galileo’s phrase 
tutti i numeri. This would not be surprising, since part-whole terminology was a 
common feature of mathematical language in the seventeenth century.) We shall 
consider Leibniz’s own position in due course.

The second avenue of escape—that of denying that infinites are suitably measur-
able or quantifiable—is suggested as Galileo’s own view by Eberhard Knobloch, 
who calls attention to Galileo’s careful distinction between those things which are 
true quantities or ‘quantified’ ( quanti) and those which are ‘non-quantified’ ( non-
quanti) in the treatment of infinites and indivisibles in Two New Sciences. Knobloch 
writes,

An ‘infinite quantity’ (‘quantità infinita’) would according to Galileo’s conception actually 
be a ‘contradiction in terms’, because an infinite lacks precisely those properties which 
characterize a quantity. […]
Correspondingly, the Euclidean axiom ‘The whole is greater than the part’ is not invalidated 
in the sense that the logical opposite is valid in the domain of infinite sets, that is, that an 
infinite set is smaller than or equal to one of its parts. Rather it is invalidated in the sense 
that it cannot be applied there, simply because there are not quantities which could be 
compared.9

Knobloch’s analysis of Galileo’s position is an important one, and we shall turn 
shortly to consider the content of the distinction between quanti and non-quanti. For 
now it is enough to note that it stands as an alternative to Leibniz’s proposed route 
of escape. Each one in its own way allows us to see how Galileo’s suggestion that 
infinites cannot be compared need not automatically imply the rejection of Euclid’s 
Axiom. And each would give us a way to explain why the axiom is not rendered 
invalid: either there are no infinite wholes or there are no infinite quantities, and 
hence there are no counterexamples.

1.3  The Same Question Revisited: The Bijection Principle

Just as Galileo’s denial of comparison among infinites poses at least a prima facie 
threat to Euclid’s Axiom, so too it poses a threat to the idea that one-one correspon-
dence between classes is a valid standard of equality—and, more generally, a threat 
to the validity of using one-one maps to determine comparisons of size among sets 
or classes. To the modern eye this may seem the more troubling element of Galileo’s 
position, since in the wake of Cantor, Euclid’s Axiom has been set aside while the 
standard of one-one maps has come into its own as a vital piece of mathematical 
theory and practice.

9 Knobloch (1999), p. 94.
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A few words of clarification are in order about the intended principle of equality 
based on one-one maps and what we shall call it.10 In contrast to some writers,11 
Galileo is addressing the idea of comparison between multitudes without any obvi-
ous presupposition of number.12 His expressions for equality in the relevant pas-
sages are simply tanti quanti and altrettanti with the sense of ‘precisely as many as’. 
Thus for now in representing his view we can step back from the idea of assigning 
a number to a multitude, and ask more minimally whether one-one correspondence, 
or bijection, implies equality of relative size, though of course the relevant no-
tion of size is the cardinal one of ‘many-ness’ rather than, say, the metrical one of 
‘much-ness’ or measure. Likewise for the related definitions of ‘greater’ and ‘less’: 
X is greater than Y if and only if Y can be mapped one-one into X but X cannot be 
mapped one-one into Y, and vice versa for ‘less’, but neither need be taken to imply 
a claim about number or absolute size. We shall adopt the precise if anachronistic 
label ‘the Bijection Principle of Cardinal Equality’—or just ‘the Bijection Prin-
ciple’—for the principle that says X and Y are equal if and only if there is a one-one 
correspondence (bijection) between their elements. (Better still is the plural form: 
there are just as many Xs as Ys if and only if there is a one-correspondence between 
the Xs and the Ys.)

The issue before us is what to make of Galileo’s abandonment of the Bijection 
Principle in the infinite. There are both conceptual and historical questions to con-
sider. Take first the purely analytical question of whether this means that the Bijec-
tion Principle is simply invalid on Galileo’s terms. Such a result did not follow in 
the case of Euclid’s Axiom; there are ways of leaving the axiom intact while with-
holding it from the infinite. Yet unlike Euclid’s Axiom, the Bijection Principle is not 
phrased in terms of parts and wholes. So if we follow Galileo in denying the com-
parability of infinites, there is no taking Leibniz’s escape from the conclusion that 
infinites are counterexamples to the Bijection Principle by denying that infinites are 
wholes. If we take the Bijection Principle to apply only to sets, a clear version of 
Leibniz’s tactic remains available. If an infinite multitude does not form a set—if, in 

10 My discussion is indebted to Parker (2009), who, defensibly, calls our two principles ‘Euclid’s 
Principle’ and ‘Hume’s Principle’. If Galileo had not rejected the one-one maps standard in the 
infinite case, we should call it ‘Galileo’s Principle’. For reasons to think Archimedes made use of 
this principle in application to infinite classes, see Netz  et al. (2001–2002).
11 Notably those involved in discussion of a similar principle of equality sometimes called ‘Hume’s 
Principle’: the number of Fs equals the number of Gs iff there is a one-one correspondence be-
tween the Fs and the Gs. The principle is so-called for Frege’s reference, in Sect. 73 of the Founda-
tions of Mathematics, to Hume’s remark, in Treatise I.iii.1, “When two numbers are so combin’d 
as that one has always an unite answering to every unite of the other, we pronounce them equal.” 
Yet both of those authors have their sights on slightly more restricted conditions than the ones 
Galileo considers. Frege takes one-one correspondence between classes to imply the existence 
of a number that measures them; Hume \t "See Principle" is expressly considering a standard of 
equality for numbers, where the numbers themselves are conceived as made up of units. It is in 
this vein that one-one correspondence is sometimes said to be a criterion of ‘equinumerosity’: 
equality of number.
12 Or he appears to be doing so. Below I shall suggest his account of comparisons of infinite num-
ber classes turns out to involve an infinite number after all; that is, if, per impossibile, there were 
such a comparison, it would have to involve an infinite number.
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Russell’s phrase, it is a proper class—then perhaps it does not fall within the scope 
of the Bijection Principle, and so denying that it is comparable to other infinites via 
one-one maps does not thereby make it a counterexample to the principle. (Here our 
use of the neutral term ‘class’ rather than ‘set’ in referring to multitudes of things 
matters.13) Likewise, a version of Knobloch’s strategy is available if we can read the 
Bijection Principle as tacitly requiring its terms of comparison to be quanti and then 
hold that infinite multitudes are non-quanti. The two strategies might be regarded as 
nearly equivalent, since a natural thought is that something is mathematically quan-
tifiable or fit for mathematical measurement only if it can be understood as a ‘single 
object,’ such as a set. If infinites are not unities, but only uncollected multitudes like 
proper classes, they might on that ground be regarded as non-quanti and hence not 
candidates to be counterexamples to the Bijection Principle.

The question of whether Euclid’s Axiom or the Bijection Principle face counter-
examples matters because each has, in its time, been thought to capture or reflect 
something deep about the idea of a mathematical quantity. Euclid’s Axiom was re-
garded as nearly constitutive of the very idea of quantity.14 The Bijection Principle 
has something of the same position with respect to the idea of cardinality today. If 
either one were shown to be incorrect in clear cases, there would be reason to doubt 
whether the related understanding of quantity or cardinality were truly secure. Even 
damming up counterexamples on the far side of the distinction between the finite 
and the infinite is not automatically a satisfactory solution if we would otherwise 
take ourselves to see clearly that infinite classes meet the conditions of quantity or 
cardinality. If the properties we appeal to in the finite in order to justify our math-
ematical reasoning are patently also exemplified in the infinite but then lead into 
contradiction, we should doubt whether our original appeal was sound. That is, 
we should doubt whether it was sound unless we can explain why the extension of 
those properties to the infinite case is invalid.

Denying that infinites are wholes or that they are truly quantities can be a step 
in the direction of an explanation. “Our mathematical justifications in the finite 
case”, we could say, “presupposed that the objects of study are wholes or quantities. 
The infinite case provided an initial appearance of this, but it was only an illusion. 
There simply are no ‘infinite wholes’ or ‘infinite quantities’ to which they may be 
applied. So there are no counterexamples to our principles.” Of course, this only 
works if we have some ground for saying that infinites are not wholes or quantities 
independently of the paradox; otherwise, we are just left “wielding the big stick”—
i.e., pointing to the contradiction—rather than offering an explanation.15 I suspect 
the proposed escape routes, whether Leibniz’s or the one Knobloch sees in Galileo, 

13 See footnote 3 above.
14 Bolzano, for example, explicitly defended the primacy of Euclid’s Axiom against the Bijection 
Principle, writing that even two sets that stand in a one-one correspondence “can still stand in a 
relation of inequality in the sense that the one is found to be a whole, and the other a part of that 
whole” (Bolzano 1950, p. 98). For discussion of Bolzano, see Parker (2009) and Mancosu (2009). 
Even Russell acknowledged that “the possibility that the whole and part may have the same num-
ber of terms is, it must be confessed, shocking to common sense” (1903, p. 358).
15 On “wielding the big stick”, see Michael Dummett (1994).
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may turn out to be cases of the big stick and not truly explanations. But in any case it 
should be clear that there is something at stake here (if different stakes for audiences 
from different eras) in asking whether Euclid’s Axiom or the Bijection Principle is 
in jeopardy of admitting counterexamples even in the infinite case.

1.4  Infinite Multitude and Non Quanti in Galileo

Back to Galileo and a few historical questions. Is Galileo’s concept of non quanti 
meant to cover the case of the infinite multitude? I think the answer is no, or at 
least I believe that infinite multitudes do not automatically qualify as non quanti for 
Galileo, though in special cases they may do so. To cast enough light on Galileo’s 
view here, a fairly close look at the texts will be required, though technical matters 
can be kept to a minimum.

The distinction between quanti and non-quanti in Two New Sciences occurs in 
connection with indivisibles, in particular with the idea that quantities such as lines 
or circles or solid bodies might contain or be resolved into infinitely many indivis-
ible parts. Two sections of the dialogue are most explicit in discussing the idea of 
non quanti. In both, Galileo, in the voice of Salviati, appeals to the hypothesis of 
the composition of matter from indivisibles and the presence within it of indivisible 
vacua or void spaces to make sense of the possibility of the expansion or contrac-
tion in size of a finite quantity. These expansions and contractions (‘rarefaction’ 
and ‘condensation’) are themselves introduced to resolve the ancient paradox of the 
wheel, concerning the motion of concentric circles rolling along a line. The puzzle 
is that it appears that the smaller interior circle and the larger outer one will traverse 
equal distances in the course of a single revolution despite the difference in their 
circumferences. (See Fig. 1.)

Galileo approaches the problem by developing an analysis of the motion of con-
centric polygons and then extending it to that of the circles, taking the circles as 

Fig. 1  Galileo’s analysis of ‘Aristotle’s Wheel.’ (EN 8: 68)
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infinilateral polygons. The details of the analysis are, as Galileo’s Sagredo notes, 
‘intricate,’ and need not detain us.16 The key point is that Galileo finds that the mo-
tion of the larger polygon passes over a line approximately equal in length to that 
traversed by the smaller polygon, but with the interposition of ‘skipped over’ void 
spaces into the line traversed by the smaller. (The presence of the void spaces com-
pensates for the difference in the lengths directly marked out on the line through 
contact by the sides the two polygons, whose perimeters are, of course, unequal.) As 
the number of sides is increased, the sides and void spaces become smaller and the 
lengths of the lines measured out by the motions come closer to equality. Advancing 
now to the limit case of the motion of two concentric circles, the distinction between 
quanti and non quanti appears when Salviati says:

And just so, I shall say, in the circles (which are polygons of infinitely many sides), the 
line passed over by the infinitely many sides of the larger circle, arranged continuously < in 
a straight line>, is equal in length to the line passed over by the infinitely many sides of 
the smaller, but in the latter case with the interposition of just as many voids [d’altrettanti 
vacui] between them. And just as the sides are not quantified [lati non son quanti], but are 
infinitely many [ma bene infiniti], so too the interposed voids are not quantified [vacui non 
son quanti], but are infinitely many; that is, for the former < line touched by the larger circle 
there are > infinitely many points all filled, and for the latter < line touched by the smaller 
circle>, infinitely many points, part of them filled points and part of them voids. (N 8:71/D 
33)

As Knobloch observes,17 Galileo shifts from having a little earlier spoken of the 
lines as ‘measured’ ( misurata) by the finitely many sides of the finite polygons to 
saying only that they are ‘passed over’ ( passata) by the infinitely many sides of the 
circles. The sides are no longer strictly fit to measure the lines they touch: they are 
lati non quanti.

There is a delicate question here in interpreting Galileo’s remarks about the lati and 
vacui non quanti. What is quite clear is that the sides and voids themselves are non 
quanti in the sense that each individual sidelet or void space has no measure; each is an 
indivisible point that cannot mark a unit of measure of a line or a body. So being non 
quanti is an intrinsic characterization of an indivisible point, whether filled or unfilled. 
Less clear is whether the characterization of the sides and voids as non quanti is also 
supposed to apply to their being infinitely many. Is an infinite multitude, simply by 
virtue of its infinitude, ‘not quantified’? When Galileo says the sides and voids non son 
quanti, ma bene infiniti (“are not quantified, but infinitely many”), this could be taken 
to contrast being quanti with being infinitely many, so that being infinite in multitude 
is itself a further case of being non-quantified. Or it may instead be taken to clarify the 
fact that although the sides and voids are non quanti—each of them not itself a mea-
surable unit—there are nonetheless infinitely many of them, without thereby implying 
that non quanti applies also the idea of infinite multitude. Which is it?

16 It should be noted that Galileo’s analysis is mistaken—at most one of the two circles rolls along 
the tangent, the other merely revolves continuously along it with the illusion of rolling—but our 
interest concerns the elements of his analysis, not the quality of his solution. For detailed discus-
sion see Drabkin (1950), Costabel (1964), and Knobloch (1999, 2011). See also Mancosu (1996, 
pp. 121–122).
17 Knobloch (1999, p. 92).
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Unsurprisingly, there are two concepts of quantity to be considered in asking 
after the meaning of non quanti for Galileo, the metrical and the cardinal. Calling 
indivisibles non quanti is an intrinsic description of points, denying them metrical 
properties. If non quanti is also supposed to characterize infinite multitudes as such, 
it is then a description denying infinite multitudes cardinal properties. Certainly it is 
a description denying such multitudes a definite cardinality or number, which would 
already have been a commonplace view of the time. But perhaps the phrase non 
quanti is further laying the groundwork for denying infinite multitudes very general 
cardinal properties of comparability: qualifying as ‘greater’, ‘less’ or ‘equal’ in the 
sense of being more, fewer or equally many. It is this cardinal sense of being non 
quanti that is crucial to asking whether Galileo’s reply to the paradox of the natural 
numbers requires him to deny Euclid’s Axiom and the Bijection Principle.

I suspect that Galileo is fairly consistently thinking of non quanti through a met-
rical lens rather than a cardinal one in the passage just reviewed above. After all, 
he quite explicitly says the line passed over by the smaller circle contains ‘just 
as many’ voids ( altrettanti vacui) as the infinitely many sides ( infiniti lati) of the 
smaller circle, even while going on to say that the voids and sides are non quanti. A 
cardinal conception of non quanti that disallows comparison of infinite multitudes 
should have ruled that out. Moreover, the basis for the judgment of equality in that 
very example is paradigmatically cardinal. In the case of finite polygons, the equal 
number of sides and voids is established by the one-one correspondence of the sides 
of the revolving polygons to the parts of the line successively touched or skipped 
over. In the infinite case of the circles, there will likewise be a succession of touches 
and skips to establish a one-one correspondence. It is this one-one correspondence 
which underwrites Galileo’s claim that there are just as many voids in the line as 
sides on the circle, understood as an infinite polygon. So the fact that the sides and 
voids are non quanti does not yet preclude the claim of cardinal comparability. Per-
haps when Galileo later denies the possibility of comparison among infinite multi-
tudes, in examining the paradox of the natural numbers, it is not because he thinks 
infinite multitudes automatically qualify as non quanti.

Cardinal notions are at work in his thought as he discusses non quanti, and this 
is evident in the lines that follow immediately on those of the prior passage. Galileo 
elaborates the idea of composing a finite quantity from an infinity of non quanti in 
order to show how the doctrine of indivisible voids can be deployed to make sense 
of the possibility of the expansion (and presumably contraction) of lines or solids 
into spaces of different sizes. Salviati continues with his explanation:

Here I want you to note how, if a line is resolved and divided into parts that are quantified [in 
parti quante], and consequently numbered [numerate], we cannot then arrange these into 
a greater extension than that which they occupied when they were continuous and joined, 
without the interposition of just as many [altrettanti] void < finite > spaces. But imagining 
the line resolved into unquantifiable parts [parti non quante]—that is, into infinitely many 
indivisibles—we can conceive it immensely [immenso] expanded without the interposition 
of any quantified void spaces, though not without infinitely many indivisible voids.
What is thus said of simple lines is to be understood also of surfaces and solid bodies, 
considering those as composed of infinitely many unquantifiable atoms [infiniti atomi non 
quanti]; for when we wish to divide them into quantifiable parts [parti quante], doubtless 
we cannot arrange those in a larger space than that originally occupied by the solid unless 
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quantified voids [quanti vacui] are interposed—void, I mean, at least of the material of the 
solid. But if we take the highest and ultimate resolution < of surfaces and solid bodies > into 
the prime components unquantifiable and infinitely many [componenti non quanti ed infin-
iti], then we can conceive such components as being expanded into immense space [in 
spazio immenso] without the interposition of any quantified void spaces, but only of infi-
nitely many unquantifiable voids [vacui infiniti non quanti]. In this way there would be no 
contradiction in expanding, for instance, a little globe of gold into a very great space with-
out introducing quantifiable void spaces [spazii vacui quanti]—provided, however, that 
gold is assumed to be composed of infinitely many indivisibles. (EN 8: 71–72/D 33–34)

There is much to say about this passage, but we shall focus on just a few points. 
With the conception of lines and solids as composed of infinitely many non quanti 
indivisibles in mind—a familiar precursor to contemporary point-set analysis of 
the continuum—Galileo is observing, correctly, how the metrical properties of col-
lections are not directly determined by those of their elements if the elements are 
allowed to be both infinitely many and to have, individually, no positive measure. 
The same infinite collection of non quanti points might constitute a line of any finite 
length, or a globe of any size, depending on how the points are arranged. Or more 
carefully: any assignment of measure might be consistent with a collection of infi-
nitely many non quanti points; there is no contradiction in assigning different sizes 
to such collections.18 Galileo’s appeal to the presence of non quanti voids in the 
lines or solids to explain the differences in measure for the different arrangements 
seems questionable. It’s not clear why non quanti voids should expand things any 
more than non quanti atoms would on their own; the appeal to voids seems to serve 
as a placeholder for whatever it is that makes the difference in the ‘arrangement’ of 
the non quanti atoms to yield different measures.19

The emphasis in most of the passage is on a metrical concept of non quanti: the 
individual points have no measure, and this allows a consistent assignment of any 
measure at all to lines or bodies composed of them. Cardinality is something of a 
background condition: there must be infinitely many such non quanti points if they 
are to constitute lines or solids of finite measure in the first place. A finite number 
of such points cannot suffice. Galileo expressly argues for this claim in response to 
a different objection to the idea of composing lines from indivisibles. If a line could 
consist of only finitely many points, it could consist of an odd number of them; but 
in that case what we might call ‘the bisection principle’, that a continuous line can 
always be divided into two equal parts, would require that the middle indivisible be 
cut, contrary to hypothesis.20 Galileo replies:

18 This runs parallel to the classical contemporary point-set analysis, which allows unions of infi-
nitely many zero-dimensional points (or singletons) to have any positive measure, though with the 
proviso, on the contemporary account, that the cardinality of the union be uncountable; countably 
infinite unions of points would still have measure zero. See Skyrms (1983).
19 Perhaps an expansion by mere rearrangement of non quanti atoms would seem to violate con-
servation principles, whereas the interposition of non quanti voids would not, if void is not a 
conserved quantity, so to speak.
20 For provocative discussion of the bisection principle and its possible denial, see Benardete 
(1964, pp. 240 ff).
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In this, and other objections of this kind, satisfaction is given to its partisans by telling them 
that not only two indivisibles, but ten, or a hundred, or a thousand do not compose a divis-
ible and quantifiable magnitude [grandezza divisible e quanti]; yet infinitely many of them 
may do so. (EN 8:77/D 39)

Nearly all the uses of the idea of the distinction between quanti and non quanti in 
those passages is devoted to the metrical concept. Cardinal properties are involved 
only in a rather indirect way, when the non quanti components are allowed to be in-
finitely many in order to free up the metrical properties of the finite quantities com-
posed of them. There is no indication of Galileo holding that infinite multitudes may 
not be judged equal in cardinal terms because they are non quanti. The indivisible 
parts, components, atoms and voids are non quanti; the status of infinite multitudes 
as such remains out of the spotlight.

There is a single phrase at the start of the long passage above, from EN 8:71, that 
would seem to imply that infinite multitudes cannot be quanti, when Galileo de-
scribes a line as “divided into parts that are quantified and consequently numbered 
[consequenza numerate].” Taken at face value, this says that being quanti entails 
being numbered, which could well mean having a finite cardinality, rather than, say, 
just being ‘reckoned’ into measurable units. If being quanti directly implies a finite 
cardinality in this way, then infinite multitudes will trivially be non quanti, and 
counting an infinite multitude as a ‘quantity’ would be a ‘contradiction in terms’, 
as Knobloch puts it. It is unclear how much weight to assign to this line and to 
this potential reading of it, but interpreters following Knobloch’s lead will want to 
fasten onto it as evidence that infinite multitudes, just in virtue of cardinality, are 
automatically non quanti for Galileo.

The distinction between quanti and non quanti comes back to the fore most 
clearly a little later when Galileo returns to the puzzle of the concentric circles and 
his solution to it based on the analysis of rotating polygons. Again we can sidestep 
the details of the analysis and focus on what Galileo says about the limit case of 
circles:

If we were to apply similar reasoning to the case of circles, we should have to say that 
where the sides of any polygon are contained within some number, the sides of any circle 
are infinitely many: the former are quantified [quanti] and divisible, the latter unquantifi-
able [non quanti] and indivisible. (EN 8: 95/D 56)

Although it is clear that the sides of the polygon are finite, quanti and divisible, 
whereas those of the circle are infinite, non quanti and indivisible, it is not obvi-
ous that quanti and non quanti refer to more than just the metrical properties of the 
sides, as one of three distinct categories of properties, roughly: cardinality, measure, 
and divisibility. And that is, in fact, how I am inclined to read the passage.

For the final reason that leads me to interpret non quanti in Galileo as only an 
intrinsic metrical characterization of indivisibles, and not applying to infinite mul-
titudes just in virtue of their being cardinally infinite, consider a key element of the 
demonstration of Theorem 1, Proposition 1, in Two New Sciences. This proposition 
is the mean-value theorem for free fall, i.e., the law of falling bodies which says that 
the time required for an object traveling with uniformly accelerated motion across 
a given distance is the same as that which would be required for an object traveling 
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with uniform motion of half the maximum and final degree of speed of the first. 
Galileo’s proof employs a version of the method of indivisibles, taking aggregates 
of ‘all parallels’—thus infinite aggregates of parallels—cutting across the triangles 
and quadrilaterals that contain them. (See Fig. 2.)

Points on the line AB are taken to represent instants of time, and the parallels 
drawn from those points across to AIE or GF in the figures in Galileo’s diagram rep-
resent degrees of speed, either increasing or ‘equable.’ The parallels do the work of 
establishing a one-one correspondence between the instants of time and the degrees 
of increasing speed, as well as a one-one correspondence between the instants and 
the degrees of equable speed. On the strength of those correspondences, Galileo 
is able to conclude that there are “just as many degrees of speed not increased but 
equable”, and “there are just as many momenta of speed consumed in the acceler-
ated motion as in the equable motion” (EN 8:208–209/D 165–166). ‘Just as many’ 
here is the Latin totidem. It is, again, a paradigmatically cardinal treatment of com-
parison of the aggregates of parallels, despite their being infinitely many. Knobloch 
is quite right to observe that Galileo does not treat the parallels as having a sum; 
Galileo’s ‘aggregate’ does not indicate that the indivisible points or parallels can be 
added together.21 Despite this, the aggregates of points and parallels have cardinal 
properties: one-one correspondence implies ‘just as many,’ despite the fact that the 
points and parallels are infinite in multitude.

In my view, Galileo’s use of one-one correspondences between infinite multi-
tudes to justify cardinal claims of equality—the non-numerical but precise claim 
that there are just as many Xs as Ys—is the strongest evidence that Galileo does 
not regard infinite multitudes per se as falling under the rubric of non quanti, which 

21 Knobloch (1999, p. 93; 2011).

Fig. 2  Diagram for proof of 
the mean velocity theorem for 
falling bodies. (EN 8:208)
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seems to be primarily a metrical concept rather than a cardinal one. There is a risk in 
this argument, of course, since Galileo’s claims of cardinal equality between infinite 
multitudes also appear to run directly contrary to the very philosophical pronounce-
ment that is driving our present inquiry, namely, that “one infinity cannot be said to 
be greater or less than or equal to another” (NE 8: 78/D40).22 It may thus ‘prove too 
much’ to appeal to Galileo’s mathematical practice, when evaluating his considered 
philosophical position. The practice in some places appears to be patently at odds 
with the philosophy, even apart from the question of non quanti; perhaps it is incau-
tious to draw a philosophical conclusion from it.

In fact, however, the cases are not truly parallel. The clash between the proof of 
Thm. 1, Prop. 1, described on the Third Day and Salviati’s denial of comparability 
among infinites during the First Day’s discussion of paradoxes at least takes place 
across relatively distant points within Two New Sciences. And of course the ‘math-
ematical demonstrations’ are attributed to ‘the Author’ of the Latin treatise On Lo-
cal Motion, i.e. Galileo, and not necessarily endorsed in every respect by the more 
philosophically drawn Salviati. As we saw above, however, Galileo’s (Salviati’s) 
assertions of cardinal equality among infinite multitudes of indivisibles—between 
the sides and the voids—occur even in the same breath as his careful efforts to 
distinguish quanti from non quanti. If infinite multitudes are supposed to be cardi-
nally incomparable on grounds of being non quanti, Galileo’s analyses of the rolling 
circles and polygons in those texts are then grossly mistaken on their own terms. 
This strikes me as a needlessly damaging interpretation. A more natural and less 
destructive reading is to take non quanti as a metrical concept that is not meant to 
cover just any case of infinite multitude, and further to take the denial by Salviati, 
later in the First Day, of comparability among infinites to be based on a somewhat 
different mix of considerations, which we shall consider shortly below.

To sum up, Galileo’s distinction between quanti and non quanti appears to be 
metrical rather than cardinal in character. While it marks out a crucial difference 
between the intrinsic properties of divisible parts and those of indivisible ones—
only the former are quanti and suitable for ‘measure’—it does not by itself rule out 
judgments of cardinal equality among infinite multitudes.

Before pressing ahead with this result, it is worth noting that we should not be 
too quick to pull apart the metrical and cardinal concepts of quantity in Galileo, 
as if they were wholly severable in his thought.23 The idea of cardinality as some-
thing determined by one-one maps—by functions on sets—would not be properly 

22 Another possibility is that Galileo’s denial that ‘greater’, ‘less’ and ‘equal’ apply in the infinite is 
carefully consistent with his judgments that there as just as many Xs as Ys in some cases of infinite 
multitudes: perhaps the Xs and the Ys can be just as many without falling under the term ‘equal’. 
If so, however, it would seem to be only a matter of a word, as no richer notion of cardinal equal-
ity seems available for which ‘just as many’ is not sufficient. A more substantial possibility here 
would be that for Galileo, ‘greater’, ‘less’ and ‘equal’ are essentially metrical notions, and their 
cardinal counterparts ‘more’, ‘fewer’ and ‘equally many’ cannot be applied on the basis of one-one 
maps without corresponding geometrical judgments in place as well. I am more sympathetic to this 
idea but cannot pursue it here; a few related points are discussed below.
23 I am indebted here to Katherine Dunlop.
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distilled until well into the eighteenth century or even later. Galileo’s handling of 
one-one relations between elements of multitudes, especially infinite multitudes, is 
typically mediated by geometrical relations between the mathematical objects that 
contain those elements. In the case of Aristotle’s wheel, for instance, the one-one 
correspondences between sides of the rotating polygons (including the circles) and 
parts and voids in the lines are established under the aegis of geometrical relations 
between sides of the polygons and the parts of the lines they touch. For instance, 
the judgment that the line passed over by the smaller circle contains as many voids 
as there are sides on the circle is based on the following consideration. For every 
length of the line BF passed over by a side of the larger circle, an equal segment of 
the equal line CE must be passed over by a side of the smaller circle. (See, again, 
Fig. 1.) Since each side of the smaller circle is shorter than the segment of the line 
CE that it passes over, the side touches only some part of that segment; thus there 
must a be void interval remaining in that segment which the circle ‘skips over’ in its 
passage. (Why must each side of the smaller circle be shorter than those of the larger 
circle? Because their ratio is supposed to be preserved when we shift from the case 
of finite polygons to the case of infinilateral circles.) The one-one correspondences 
among the elements of the figures—sides, parts, voids—are thus fixed within a pat-
tern of systematic geometrical relations between the figures themselves.

Nowadays measurements of cardinality require that the two objects compared 
are sets, and this remains a natural counterpart (and perhaps remnant) of the earlier 
thought that the two measured objects are wholes. The measurements themselves 
are effected by functions, which need not require any rule or procedure by which to 
relate the elements of the two sets. In the early modern context, however, the idea 
of a completely arbitrary relation between the elements—a purely ‘combinatorial’ 
concept of function—would have been rather alien. Thus measurement of cardinal-
ity still needed to be supplemented by other considerations, ones in which metrical 
concepts often had important roles to play. When we find, as we shall below, Galileo 
limiting judgments of cardinal equality among infinite multitudes to cases with spe-
cific metrical constraints—namely, that the objects be bounded quantities—there 
should be no surprise. This arises organically from the way in which geometrical 
concepts remain coeval with more purely arithmetical ones in his thought.

1.5  Euclid’s Axiom Revisited: Infinity, Magnitude  
and Infinite Number in Galileo

If our conclusions in the last section are right, then when Galileo denies comparabil-
ity among infinite classes of numbers, no simple appeal to the distinction between 
quanti and non quanti will offer a route of escape from overturning the Bijection 
Principle. Infinite multitudes are not automatically non quanti, at least with respect 
to cardinal comparisons, and therefore they are not out of play as potential coun-
terexamples to the Bijection Principle. Likewise, Knobloch’s original proposal that 
Euclid’s Axiom is not invalidated on Galileo’s account because infinites are non 
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quanti seems not to be fully sustained either. If the various infinite number classes 
are non quanti and thereby outside the scope of Euclid’s Axiom, that remains to be 
shown; it does not follow merely from their being infinite in multitude.

Yet Knobloch’s defense of Galileo in the case of Euclid’s Axiom strikes very 
close to the truth. The most natural concept of size for the idea that the whole is 
greater than the part is a metrical one rather than a cardinal one. So an extension 
of Galileo’s distinction between quanti and non quanti parts of lines or solids to 
multitudes of those parts could comfortably rule that only multitudes with a finite 
total measure can count as quanti and thus qualify for comparison. For whereas the 
concept of infinite multitude might admit of precise mathematical handling in terms 
of maps, classes, etc., the concept of infinite measure—infinite magnitude, as we 
might say—is less amenable to mathematical analysis and would arouse more skep-
ticism. And Galileo himself seems to confine mathematical analysis to objects that 
are in some way limited in magnitude. As Knobloch notes, Galileo’s term for this 
is terminata or ‘bounded.’24 When considering a line or a circle or a solid as com-
posed of infinitely many indivisibles, it qualifies as a quantity fit for mathematical 
treatment only if it is itself a bounded magnitude. Galileo remarks on the “infinite 
difference and even repugnance and contrariety of nature in a bounded quantity in 
passing over to the infinite” (EN 8:83/D 46):

Consider, then, what a difference there is < in moving from > a finite to an infinite circle. 
The latter changes its being so completely as to lose its existence and its possibility of 
being < a circle>. For we understand well that there cannot be an infinite circle, from which 
it follows as a consequence that still less can a sphere be infinite; nor can any other solid 
or surface having shape be infinite. What shall we say about this metamorphosis in passing 
from finite to infinite? (EN 8:85/D 47)

In fact Galileo does not say exactly what his answer to this question is, beyond the 
idea that the nature of the objects in question changes or is lost entirely in passing to 
the infinite, and, in his earlier words of admonition, “These are among the marvels 
that surpass the bounds of our imagination and that must warn us how gravely one 
errs in trying to reason about infinites by using the same attributes that we apply 
to finites; for the natures of these have no necessary relation between them” (EN 
8:83/D 46). But the warning is clearly about passing from the intelligible to the un-
intelligible, and as Knobloch keenly observes, Galileo’s language and argumenta-
tion clearly evoke that of Nicholas of Cusa, who originated the distinction between 
(in the Latin) quanta and non quanta and imbued the whole topic with almost mys-
tical significance.25 If Galileo does not quite say that the infinite circle and sphere 
are non quanti, the allusions to Nicholas may in effect do this for him.

With that in mind, a second look at the lesson Galileo draws from the paradox of 
the natural numbers readily finds the same concern to limit comparisons to bounded 
quantities: “And in the final conclusion, the attributes of equal, greater and less have 
no place in infinite, but only in bounded quantity [quantità terminate]” (EN 8:79/D 

24 Knobloch (1999, p. 92). See also Knobloch (2011).
25 See Nicholas ([1440] 1985), De Docta Ignorantia, Book 1, Chaps. 11–23; see especially 
Chap. 14 for use of the distinction between quanta and non quanta.
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41). This is revealing, for it shows that Galileo sees the crux of the problem to be the 
unboundedness of the multitude of natural numbers. His contrast between ‘infinite’ 
and ‘bounded’ strongly suggests that he is thinking of magnitude rather than multi-
tude. ‘Bounded’ of course has cardinal as well as metrical senses, but it would be re-
dundant here to point out that the infinite multitude of natural numbers is cardinally 
unbounded. By contrast, pointing out that the natural numbers taken together are 
infinite and unbounded in magnitude distinguishes them in a special way, for an in-
finite multitude is not always unbounded in magnitude. Even on Galileo’s view, infi-
nitely many points may compose a bounded quantity such as a finite globe. Because 
the individual points themselves are non quanti, taking infinitely many of them in 
aggregate need not total up to an unbounded quantity; they can consistently be taken 
to compose a bounded quantity of finite magnitude such as a little globe of gold. 
The same could not be true of quanti parts, unless they happen to form a convergent 
infinite series (e.g., 1/2 + 1/4 + 1/8 + 1/16, &c., whose sum is equal to 1). Apart from 
this exceptional case (which was much disputed at the time and is not mentioned by 
Galileo in connection with the topic of quanti and non quanti), any infinite collection 
of finite quantities will surpass any finite size and thus be unbounded.

When Galileo holds the multitude of natural numbers to be infinite and unbound-
ed, it seems he is regarding each natural number as if it were a ‘quantifiable’ part of 
all the naturals. This is not so strange an idea, and it shows that the concept of num-
ber at work includes metrical as well as cardinal elements. Taking the natural num-
bers to be multiples of the number one as the basic unit of ‘arithmetical measure’, 
each natural itself is a finite quantity. If all the naturals are taken together there is no 
way for the total to be bounded, i.e. less than or equal to some finite magnitude, i.e. 
the magnitude of some finite number. Their aggregate would instead appear to be an 
infinite magnitude, as if a colossal infinite number made up of all the finite numbers 
or infinitely many copies of the unit number one.

If this is how the infinity of natural numbers is understood by Galileo, then there 
is a case to be made that it too qualifies as ‘non-quantifiable’, like the infinite globe 
or infinite circle, not in virtue of its smallness but in virtue of its greatness. But it 
is metrical greatness—greatness of magnitude—rather than cardinal greatness that 
yields the verdict of non quanti. For there is no cardinal difference between the 
infinity of natural numbers and the infinity of indivisibles in a little globe of gold, 
or the infinity of sides of a circle. There is textual evidence that Galileo thinks of 
the idea that the natural numbers are susceptible to comparative measurement as 
representing the natural numbers as components in a single colossal number with 
infinitely many finite parts. And it comes directly in his discussion of the paradox 
of the natural numbers. Having established the one-one correspondences among 
squares, roots and naturals, Galileo notes:

That being the case, it must be said that square numbers are as numerous as all numbers, 
because they are as many as their roots, and all numbers are roots. Yet at the outset we said 
that all the numbers were many more than the squares, the greater part [maggior parte] 
being non-squares. Indeed, the multitude of squares diminishes in ever-greater ratio as one 
moves on to greater numbers, for up to one hundred there are ten squares, which is to say 
one-tenth part [parte] are squares; in ten thousand, only one-hundredth part [parte] are 
squares; in one million, only one-thousandth. (EN 8:78–79/D 40–41)
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The farther the series of numbers is finitely extended, the smaller the share of 
squares becomes, so it seems especially peculiar how in the infinite case a transi-
tion occurs to make the squares and naturals equal. Now notice exactly how Galileo 
phrases his point in the line that follows:

Yet in the infinite number [numero infinito], if one can conceive that, it must be said that 
there are as many squares as all numbers together. (Ibid.)

The comparison between the squares and the naturals that shows them to be equal 
takes place ‘in the infinite number’, of which, it seems, the squares form a share or 
part. So it appears that comparison of infinite multitudes of numbers, at least, pre-
supposes a single number after all—not in order to stand as the absolute cardinality 
of the multitudes being compared, but to be a common object of which each multi-
tude is some proportional part and can be compared in ratio to the other. The com-
mon object in this case is a number because it is composed of numbers, the infinite 
aggregate of all numbers. Perhaps if comparisons were being made among infinite 
multitudes of other types, the need for a common object would not automatically 
entail the existence of an infinite number but of something else, say, the aggregate of 
all stars in the heavens, or, to use a case straight from Galileo’s texts, the aggregate 
of all parallels in a given figure or points in a line or sides on a circle. Galileo is not 
explicit about the details. But it is clear enough in the case of the natural numbers 
that comparisons among its infinite subclasses are conceived by Galileo to involve 
an infinite number as the common object containing the compared classes as parts.

The same strand of thought is carried through when Galileo returns to the para-
dox later in the dialogue. It appears this time when Salviati introduces the revision-
ary suggestion that infinity be regarded, if anything, not as a number standing at the 
far end of the natural numbers but instead as the number one:

In our discussion a little while ago, we concluded that in the infinite number [numero 
infinito], there must be as many squares or cubes as all the numbers because both < squares 
and cubes > are as many as [tante…quanti] their roots, and all numbers are roots. Next we 
saw that the larger the numbers taken, the scarcer became the squares to be found among 
them, and still rarer, the cubes. Hence it is manifest that to the extent that we go to greater 
numbers, by that much and more do we depart from the infinite number. From this it fol-
lows that turning back (since our direction took us always farther from our desired goal), 
if any number may be called infinite, it is unity. And truly, in unity are those conditions 
and necessary requisites of the infinite number. I refer to those < conditions > of containing 
in itself as many squares as cubes, and as many as all the numbers < contained>. (EN 8: 
82–83/D 45)

Leave aside the new suggestion that the infinite number is unity or one. What mat-
ters for us is Galileo’s consistent appeal to the idea of an infinite number in his 
handling of comparisons between the squares, cubes, roots and naturals. For these 
classes of numbers to be compared to one another, it seems as if they must be able 
to stand in ratio to one another and to form parts or shares of some single common 
whole, the infinite number formed out of all the natural numbers taken together  
(at least prior to Salviati’s revisionary identification of the infinite number with 
unity). Such a number would indeed be infinite in magnitude, unbounded, and com-
fortably regarded as ‘non-quantifiable’ on account of its greatness.



176 S. Levey

It is instructive to note that in the instances in which Galileo relies on compari-
sons of equality among infinite multitudes in his avowed mathematical arguments, 
those multitudes are confined to bounded spaces of finite magnitude. His proof of 
Thm. 1, Prop. 1 in On Local Motion, for example, trades on the cardinal equality 
of degrees of speed and instants in time; but these ‘infinites’ are represented as 
aggregates of points or parallels within bounded geometrical figures. Unbounded 
magnitude is in effect ruled out from the start, and with that safe harbor established 
it seems Galileo is prepared to make use of cardinal comparison, or at least cardinal 
equality, among infinites. ‘Safe harbor’ perhaps suggests too much, for we have 
not seen whether it is a sufficient condition for infinite collections to be cardinally 
comparable that they be bounded in magnitude. The present suggestion is only that 
Galileo seems to treat it as a necessary condition, one which the aggregate of paral-
lels in a bounded figure satisfies but the collection of all natural numbers does not. 
What else, precisely, is required for a sufficient condition for cardinal comparabil-
ity is not immediately clear; though as suggested before, perhaps some geometrical 
relation or finitary rule or procedure would be expected in order to establish the 
one-one mapping among the elements.

The result of all this would appear to be that, given Galileo’s reliance on the idea 
of an infinite number as a common whole in framing comparisons involving all 
the natural numbers taken together, his distinction between quanti and non quanti 
can be extended to count the infinity of natural numbers as ‘non-quantified’—not 
because they are infinite in multitude but because the infinite number they com-
pose would be unbounded in magnitude and thus unfit for comparison. This then 
also preempts the natural numbers, and any similar infinite class of numbers, from 
constituting a potential counterexample to Euclid’s Axiom. Such infinites, by virtue 
of their magnitude, are non quanti and unfit for comparison, and thus do not fall 
within the scope of Euclid’s Axiom in the first place. So with respect to the specific 
paradox of the natural numbers, Knobloch’s diagnosis appears to be correct.

Yet not all infinite multitudes will likewise amount to infinite magnitudes when 
taken all together, and those which do not, such as infinite multitudes of indivisibles 
in bounded lines or solids, may still be open for comparison in cardinal terms by 
means of one-one maps. There are as many sides in the circle as indivisible parts 
in the line it traverses. The difficulty now reappears just as it emerged in Simpli-
cio’s original objection. If finite and bounded quantities consist of infinitely many 
indivisible points—their non quanti parts—examples can easily be found in which 
the whole is equal to the part, by use of one-one correspondences and the Bijection 
Principle. Parallels can be dropped from all the points on the diagonal of a square 
to all those on one of its sides, and yet by rotating that side back up to the diagonal, 
the points on the side can be put into one-one correspondence with those of only 
a part of the diagonal. Thus all the points on the diagonal can be put into one-one 
correspondence with the subclass of those points composing the part of it congruent 
with the rotated side.26 Again Euclid’s Axiom and the Bijection Principle conflict: 
the diagonal is both greater than and equal to its part.

26 This so-called Diagonal Paradox was well-known by the seventeenth century; see Leibniz’s use 
of it at A VI, 3, 199. As noted by Lison (2006/2007, p. 199fn3), the example goes back at least to 
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If Galileo’s denial of comparability is limited to cases in which infinite multi-
tudes constitute aggregates of infinite magnitude, there is no escape from contradic-
tion in the finite bounded case. But if his denial is taken to apply across the board 
even to those infinite multitudes that compose only bounded magnitudes, then it 
seems either Euclid’s Axiom or the Bijection Principle (or both) must be a casualty 
of his analysis after all.

Similarly, a limited denial of comparability of infinites would allow Galileo’s 
use of the Bijection Principle in his mathematical practice to remain in harmony 
with his philosophical pronouncements, since he appears to confine that use to in-
finite multitudes housed within bounded quantities. But an across-the-board denial 
of comparability among infinites will yield a clash with his mathematical practice 
of applying the Bijection Principle in reasoning about infinite classes of indivisibles 
in the bounded cases.

The lesson of our inquiry is that the distinction between quanti and non quanti 
will not allow Galileo a fully reconciled position that avoids contravening at least 
some major mathematical principle of comparison. If all infinite multitudes are non 
quanti, then Galileo’s ready use of cardinal comparison among infinite multitudes 
in bounded cases is, as we have seen, grossly at odds with his philosophy on this 
point, even in the very texts in which he articulates his notion of non quanti. On the 
other hand, if infinite multitudes are non quanti only when they constitute unbound-
ed magnitudes—as I have been suggesting—then paradox reemerges in cases in 
which infinite multitudes compose only finite and bounded magnitudes, and Galileo 
has no choice but to abandon either Euclid’s Axiom or the Bijection Principle.

Unless, that is, there is altogether another way for him to solve paradox.

1.6  Leibniz’s Alternative

In notes written in 1672 on Two New Sciences, Leibniz reviews Galileo’s paradox 
of the natural numbers:

He [Galileo] thinks that one infinity is… not greater than another infinity… And the dem-
onstration is worth noting: Among the numbers there are infinite roots, infinite squares, 
infinite cubes. Moreover, there are as many roots as numbers. And there are as many 
squares as roots. Therefore there are as many squares as numbers, that is to say, there are as 
many square numbers as there are numbers in general [in universum]. Which is impossible. 
(A VI, 3, 158)

Leibniz sees that the equality of the squares with the natural numbers will violate 
Euclid’s Axiom and that one option is simply to reject the axiom in the case of the 

Ockham. Note also that similar examples can be constructed even with multitudes containing only 
quanti parts, provided their total measure remains finitely bounded. Considering a line segment 
as composed of a sequence of geometrically decreasing non-overlapping subsegments, one can 
easily construct a one-one correspondence between the subsegments of the side of a square and 
the subsegments of the diagonal, even though the side can be shown by rotation to be equal to a 
part of the diagonal.
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infinite, which he takes to be Galileo’s solution. Yet, as we observed once before, 
he regards this as unacceptable, an admission that the axiom itself has counterex-
amples, and he appears to see another way out of the paradox:

Hence it follows either that in the infinite the whole is not greater than the part, which is the 
opinion of Galileo and Gregory of St. Vincent, and which I cannot accept; or that infinity 
itself is nothing, i.e. that it is not one [Unum] and not a whole [totum]. (Ibid.)

What is Leibniz’s alternative to (what he takes to be) Galileo’s answer? First let us 
understand the elements of his reply.27 When Leibniz denies that infinity is one or a 
whole he is not saying that there is no such thing as infinity, but rather he is deny-
ing that an infinity of things forms a unity or single whole. It is not the number one 
(contrary to Salviati’s revisionary suggestion), nor is it to be understood as a single 
set with infinitely many elements. Leibniz’s position here is subtle. There are actu-
ally infinitely many natural numbers, on his view, but they do not form a totality. 
There is only a plurality or multitude of them, but no one thing, no single object, to 
which they all belong as constituents. There is no set of all natural numbers, so to 
speak, but only a proper class. When Leibniz says “infinity itself is nothing” he is 
not denying that there are infinitely many numbers; he means there is nothing over 
and above the natural numbers themselves. To call them ‘infinite’ is not to posit a 
special entity—a super-number or super-whole embracing all the naturals and larger 
than every finite number. It is, rather, to describe the multitude of natural numbers 
in a particular way. Exactly what he means by ‘infinite’ we shall discuss shortly 
below.

It is fairly straightforward to see how this can solve the paradox. By denying that 
an infinite multitude can form a whole, Euclid’s Axiom is taken out of play, and 
along with it the consequence that there must be more naturals than squares. The in-
finite multitude of natural numbers is not a whole of which the square numbers form 
a part, so the infinity of natural numbers does not have to be said to be greater than 
the infinity of the squares. This removes the contradiction that the naturals are both 
greater than and equal to the squares. Note that it also does so without contravening 
Euclid’s Axiom. If there are no infinite wholes, then there is no whole that can fail 
to be greater than the part, and so no counterexample to the axiom.

It is less clear whether infinite multitudes can or cannot be compared to one 
another at all on Leibniz’s view. Unlike the earlier strategy of looking to classify 
infinites as non quanti and thereby preclude them from comparison altogether, de-
nying that infinites form wholes only takes them out of the specific jurisdiction of 
Euclid’s Axiom. It remains open, at least, to compare them using one-one maps and 
the Bijection Principle. What comparisons, if any, does Leibniz allow under this 
principle? We will not resolve the issue completely in the present essay, but a few 
points may be instructive nonetheless.

I think the matter turns on what is involved in the idea of there being ‘as many’ 
elements in one class as in another. As before, one thought is that in order for there 
to be as many Fs as Gs, the must be a number that records how many Fs there are, 

27 For related discussion, see Levey (1998) and Arthur’s introduction to Leibniz (2001). 
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and likewise a number to record the cardinality of the Gs. If those two numbers are 
equal, then there are as many Fs as Gs, and not otherwise. For reasons we shall not 
pursue, however, Leibniz holds that there is no such thing as an infinite number, no 
number that could say of an infinite class just how many elements there are in it.28 
To call a class infinite is not to assign it a number, on his view. If infinite classes 
are without number, and if there are as many Fs as Gs only if they are the same in 
number, then it cannot be said that there are as many Fs as Gs when they are infinite. 
There may well be one-one correspondences between the Fs and the Gs, but this 
will not automatically yield the conclusion that they are equal in any sense beyond 
the idea that both classes are infinite.

Leibniz does not, to my knowledge, explicitly say that equality of class size—in 
the sense of ‘as many Fs as Gs’—requires equality of number. But it is clear that 
he thinks the question of equality of number is relevant to the analysis of Galileo’s 
paradox. For in a subsequent discussion of the paradox, in the dialogue Pacidius to 
Philalethes (1676), he systematically frames the issue not in terms of there being as 
many squares as numbers, as he had in the earlier notes on Two New Sciences, but in 
terms of ‘the number of all squares’ and ‘the number of all numbers’ (A VI, 3, 550). 
The interlocutors consider Galileo’s response to the paradox and reject it:

CHARINUS: Please allow me to hear first from Gallutius what Galileo said.
GALLUTIUS: He said: the appellations ‘greater’, ‘equal’ and ‘less’ have no place in the 
infinite.
CHARINUS: It is difficult to agree with this. For who would deny that the number of 
square numbers is contained in the number of all numbers, when squares are found among 
all numbers? But to be contained in something is certainly to be a part of it, and I believe it 
to be no less true in the infinite than in the finite that the part is less than the whole.
(A VI, 3, 551/Ar 178–179)

The commitment to Euclid’s Axiom is clear, as is the deployment of the language of 
parts and wholes in describing the relation between the squares and the natural num-
bers. In fact the view here seems to integrate ‘number’, ‘whole’, ‘part’ and ‘contain-
ment’ quite fully. Not only are the square numbers among all the numbers, but also 
the number of squares is a part of the number of all numbers; the latter number is 
the whole that contains the part. Leibniz’s strategy for solving the paradox by deny-
ing that the natural numbers forms a whole is thus expressed in subsequent lines by 
Charinus through the claim, “there is no number of all numbers at all, and that such 
a notion implies a contradiction” (ibid.). The denial that there is such a number is 
the denial that the natural numbers form a whole. Leibniz’s principal spokesman, 
Pacidius, then praises Charinus’s answer as “very clear, and if I am any judge, true”, 

28 Leibniz has a few different lines of argument to offer against infinite number, including, notably 
for us, a deployment of Galileo’s paradox that expressly says infinite numbers are “impossible” 
because “it is impossible that this axiom”—Euclid’s Axiom—“fails” (A III, 1, 11). (This passage 
comes from some remarks by Leibniz on Galileo’s paradox, written in 1673.) Here an infinite 
number is presumably understood as a whole constituted of infinitely many units or the combi-
nation of all natural numbers, themselves taken as wholes composed of units. For some related 
discussion, see Levey (1998).
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and adds, “for it is necessary that what has contradictory consequences is by all 
means impossible” (ibid.)

Again, Galileo does not quite say directly that the natural numbers form a whole; 
Leibniz is reading this into Galileo’s position. But as we saw, Galileo’s account of 
what it would be for the natural numbers to be comparable to the squares or cubes, 
etc., seems to involve the existence of an infinite number, made up of all the num-
bers, as the common object of which the squares form a part. So while Galileo does 
not say that the (cardinal) equality of two infinite multitudes must be equality in 
number, in the sense that there is some single number that says precisely how many 
elements there are in each multitude, nonetheless for the case of comparison of 
infinite number classes his analysis does seem to require the existence of an infinite 
number in which those classes are contained. It is not evident that Leibniz has dis-
cerned all this in Galileo—he does not describe Galileo’s account in enough detail 
to tell—but when he attributes to Galileo the idea that the natural numbers form a 
whole, it seems he has hit upon the truth.

Leibniz’s solution to the paradox does not require him to reject Euclid’s Law. 
And it seems also to leave the Bijection Principle intact, if only because the prin-
ciple is silent about the distinction between whole and multitudes, and silent also 
about the concept of number, and so is not called into question by Leibniz’s denial 
of infinite wholes and infinite numbers. It remains to ask whether Leibniz himself 
will endorse the Bijection Principle or any related form of comparability of infi-
nite classes using one-one maps; we turn to that in the next section. Before doing 
so, however, it should be noted that Leibniz’s solution does not completely disarm 
Galileo’s paradox .

Just as the appeal to the distinction between quanti and non quanti left a version 
of the paradox untouched when reconfigured from an unbounded infinite case to a 
bounded case—for instance, the Diagonal Paradox—so too there remains a prob-
lem for Leibniz’s strategy. For in order to prevent Euclid’s Axiom and the Bijection 
Principle from coming into conflict by appeal to the distinction between wholes and 
pluralities, he will have to deny that any infinite multitude forms a whole. This goes 
for bounded and unbounded infinite multitudes alike. In mathematical examples of 
the unbounded case, this means that the classes of natural numbers, of squares, etc., 
are not wholes. In a natural-world example, this means that the infinite universe 
itself does not form a whole—a conclusion Leibniz expressly draws on the basis 
of his analysis of Galileo’s paradox.29 But both mathematics and the natural world 
also provide bounded cases of infinite multitudes: the Diagonal Paradox for finite, 
bounded geometrical figures; and any given finite body in nature, since according 
to Leibniz every body is actually infinitely divided into parts.

29 Leibniz writes: “God is not the soul of the world can be demonstrated; for the world is either 
finite or infinite. If the world is finite, certainly God, who is infinite, cannot be said to be the soul 
of the World. If the world is supposed to be infinite, it is not one Being or one body per se (just as 
it has elsewhere been demonstrated that infinite in number and in magnitude is neither one nor a 
whole, but infinite in perfection is one and a whole). Thus no soul of this sort can be understood. 
An infinite world, of course, is no more one [Being] and a whole than an infinite number, which 
Galileo has demonstrated to be neither one nor a whole” (Leibniz 1948, p. 558).
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In the case of geometrical figures, it is easy enough for Leibniz to accept the 
verdict that they are not truly wholes. After all, they are, on his view, only entia 
rationis and not real beings. The same conclusion is harder to accept in the case 
of bodies, for it will quickly preclude any body from truly being a single whole, 
calling into question its reality and indeed the reality of the entire corporeal world. 
Certain interpretations of Leibniz might welcome this result, while others would 
find it an unhappy fit with his views at least for important parts of his career.30 
Leaving aside the implication for ‘idealist’ and ‘realist’ interpretations of Leibniz, 
however, it should be noted that Leibniz shows no sign of intending his analysis of 
Galileo’s paradox to issue in a denial of the reality of finite corporeal beings. Since 
Galileo, like Leibniz, regards bodies as infinitely divided into parts, if he were to 
take Leibniz’s path of escape from overturning Euclid’s Axiom and the Bijection 
Principle, he too would face this discomforting consequence for the natural world. 
Thus although Leibniz’s distinction between wholes and multitudes might provide 
a way to resolve the contradiction in mathematics alone, the paradox continues to 
hold some hostages in metaphysics.

1.7  Comparability and the Definition of Infinite in  
Leibniz and Galileo

There are a few last pieces of Leibniz’s view that still need to be articulated, con-
cerning comparability, number and infinity. Leibniz rejects both infinite totalities 
and infinite numbers. Does he also reject the idea that infinite classes can be com-
parable? The squares and the naturals cannot literally be equal in number, and they 
cannot be equal parts of a single common object, the infinite number. But might 
they nonetheless be equal in the general sense of being ‘just as many’, in virtue of 
there being a one-one correspondence between them? That is, does Leibniz endorse 
the Bijection Principle even for infinite classes?

In at least one clear statement, first noted by Russell, Leibniz denies the claim 
of equality for infinite classes despite the existence of a one-one correspondence 
between them:

There is an actual infinite in the mode of a distributive whole, not of a collective whole. 
Thus something can be enunciated concerning all numbers, but not collectively. So it can 
be said that to every even < number > corresponds its odd < number>, and vice versa; but 
it cannot be accurately said that the multitudes of odds and evens are equal. (GP II, 315)

The link between speaking of ‘all numbers’ and taking them as a ‘collective whole’ 
is explicit, and it seems that equality of the odds and the evens has to be denied 
precisely because such infinite classes do not form collective wholes (presumably 
‘distributive whole’ just means multitude or plurality here). Leibniz’s solution to 
Galileo’s paradox protects Euclid’s Axiom but in turn leads him to reject the Bijec-
tion Principle for the infinite case—if, that is, this passage reflects his considered 

30 For an overview of this dispute in the interpretation of Leibniz, see Levey (2011).
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position. It should be noted that the passage occurs on a separate slip of paper 
enclosed in Leibniz’s copy of his letter of 1 September 1706 to Bartholomew Des 
Bosses, and Leibniz has crossed it out.31 It is hard, therefore, to know how much 
weight to give it.

Even if it were Leibniz’s view that the odds and evens are not equal, it cannot 
be the entirety of Leibniz’s position to deny comparisons involving infinite classes. 
For he has to preserve at least one crucial claim of comparability for infinite classes, 
namely, that there are more elements in an infinite class than in any finite one. This 
is essential to Leibniz’s definition of infinite:

When it is said that there are infinitely many terms, it is not being said that there is some 
specific number of them, but that there are more than any specific number. (GM III, 566)

This is no fleeting aspect of Leibniz’s philosophy of mathematics but his deeply 
held definition of ‘infinite’ with ramifications across his thought, and thus he is 
quite committed to the coherence of this comparison between infinite and finite 
classes. Interestingly, Galileo, in the character of Sagredo, denies that infinite quan-
tities can be compared even with finite ones, apparently in an echo of Aristotle’s 
prohibition, in De Caelo 274a10 and 274b12, against ratios between finite and infi-
nite; cf. EN 8: 79–80/D 42.32 (Again, though, this may be limited to comparisons of 
magnitudes and not to multitudes.)

Taken just at face value, and if we include the crossed-out remark on the slip in 
the letter to Des Bosses, Leibniz may seem to have landed in almost the inverse of 
Galileo’s position: infinite multitudes cannot be said to be equal, but the infinite can 
be compared to the finite and judged to be (cardinally) greater. The particular ex-
ample Leibniz offers in denying equality among infinites is one about which Galileo 
would agree. For the evens and the odds would each constitute an unbounded infi-
nite magnitude if taken all together and thus fail to be quanti for Galileo, thereby 
preempting a judgment of equality.

Unlike Galileo, whose denial of comparability among infinites turns out to be 
linked to the concept of magnitude—infinite magnitudes are unbounded and thus 
non quanti and incomparable—Leibniz’s denial of comparability (or at least equal-
ity) among infinites relies only on the distinction between ‘collected’ wholes or to-
talities and multitudes, without any obvious reference to the concept of magnitude. 
So whereas Galileo can allow infinite multitudes of finite and bounded magnitude 
to be among the quanti and hence comparable, it is not clear that Leibniz can make 
the parallel allowance that those infinite multitudes of finite and bounded magni-
tude can count as wholes. Given similar opportunities to treat bounded mathemati-
cal magnitudes with infinitely many elements as wholes, he appears to take steps 
not to do so.33

31 See Leibniz (2007), p. 409.
32 Drake suggests that Galileo neither fully accepted nor fully rejected Aristotle’s principle (1974, 
42fn26).
33 See Levey (1998, 1999, 2003). For defense of the view that Leibniz’s strictures against infinite 
wholes only preclude wholes of infinite magnitude, and thus can allow wholes of finite magnitude 
that include infinitely elements, see Brown (2005).
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Either Leibniz has an unstated subtlety at work here in his restrictions on compa-
rability—one that allows the claim of ‘more than’ between infinite and finite classes 
but rules out the claim of equality among the evens and odds—or he is inconsistent 
in his statements across texts. I am inclined to think the denial of cardinal equality 
in the crossed-out passage is an outlier and not Leibniz’s considered view. As noted 
earlier, however, this matter will not be entirely resolved here. In any case, for now 
it is enough to note that insofar as Leibniz requires comparability of an infinite class 
with a finite one for his definition of ‘infinite’, infinite multitude is not eo ipso a 
barrier to it.

On the definition of ‘infinite’ there is a further illuminating, and perhaps ironic, 
connection between Galileo and Leibniz. In Two New Sciences, Galileo has the 
interlocutors consider the question of how many quanti parts a bounded continuum 
such as a finite line segment can be divided into. Finitely many or infinitely many? 
Salviati’s answer is that there are neither finitely many nor infinitely many, but 
something intermediate between the two:

Salviati: To the question which asks whether the quantified parts in the bounded continuum 
are finite or infinitely many [infinite], I shall reply exactly the opposite of what Simplicio 
has replied; that is, ‘neither finite nor infinite.’
Simplicio: I could never have said that, not believing that any middle ground is to be found 
between the finite and the infinite, as if the dichotomy or distinction that makes a thing 
finite or else infinite were somehow wanting and defective.
Salv.: It seems to me to be so. Speaking of discrete quantity it appears to me that there is a 
third, or middle, term; it is that of answering to every [ogni] designated number. Thus in the 
present case, if asked whether the quantified parts in the continuum are finite or infinitely 
many [infinite], the most suitable reply is ‘neither finite nor infinitely many, but so many 
as [ma tante che] to correspond to every specified number.’ To do that, it is necessary that 
these be not included within a limited number, because then they would not answer to a 
greater < number>; yet it is not necessary that they be infinitely many, since no specified 
number is infinite [infinito]. And thus at the choice of the questioner we may cut a given 
line into a hundred quantified parts, into a thousand, and into a hundred thousand, accord-
ing to whatever number he likes, but not into infinitely many < quantified parts>.
(EN 8: 81/D 43–44)

Galileo’s ‘middle term’ between finite and infinite is almost exactly Leibniz’s of-
ficial definition of infinite, differing only in whether the parts in the multitude are 
so many as to correspond to any specified number or to be more than any specified 
number. This quickly comes to the same thing, since, as Galileo points out, corre-
sponding to any specified number requires not being included in any limited num-
ber; so for any given number n, the parts in the multitude must exceed n anyway. In 
his 1672 notes on this passage, Leibniz just describes this as saying that the parts in 
the continuum are ‘indefinite.’ No doubt this captures some of Galileo’s intention 
in placing emphasis on the ‘choice of the questioner.’ But the relation between the 
variables here—between the number chosen and the comparison of the multitude 
with that number—is no mere matter of indefiniteness, and it later becomes the key 
to Leibniz’s considered definition.
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As is now recognized among commentators, Leibniz advances a syncategore-
matic analysis of the term ‘infinite’ rather than a categorematic one.34 To say that a 
class is infinite is not to assign it a single infinite number but to describe it in terms 
of logical relations among variables referring to finite numbers: the Fs are infinite 
iff for any n, there are more than n Fs. By contrast, a categorematic analysis of 
‘infinite’ would make reference to an infinite number: the Fs are infinite iff there 
is a number k of Fs such that k is greater than any finite number n. (The order of 
quantifiers is crucial of course.) This is not wholly an innovation by Leibniz. The 
distinction between categorematic and syncategorematic terms goes back at least to 
Priscian, and the use of this distinction in the analysis of the term ‘infinite’ predates 
Galileo and Leibniz by a few centuries.35 What is notable here for us is that Galileo 
clearly reveals his own interpretation of ‘infinite’ to be a categorematic one. When 
he writes of the multitude of quanti parts in a bounded continuum that they are so 
many as to correspond to any specified number ‘yet it is not necessary that they be 
infinite, since no specified number is infinite,’ he is expressly holding that for the 
multitude to be infinite it must correspond to an infinite number—the unmistakable 
signature of the categorematic account. What Galileo takes to define an intermedi-
ate status between infinite and finite is exactly what Leibniz later appropriates for 
his own syncategorematic analysis of ‘infinite’.

A last point is important to bring out in Leibniz’s account. Taking care with his 
statement of what is meant by saying there are infinitely many terms, very precise 
definitions of ‘finite’ and ‘infinite’ can be formulated. A class X is infinite if and 
only if for any number n, there are more than n elements of X. And by negation, 
then, a class X is finite if and only if for some number n, there are not more than 
n elements of X. What does ‘more than n elements of X’ mean? Here we draw 
upon Leibniz’s subscription to the idea that a number is an aggregate of unities, for 
instance, that 6 = 1 + 1 + 1 + 1 + 1+1 (cf. A VI, 3, 518). Leibniz is explicit about this 
when he defines ‘integer number’:

An integer number is a whole [totum] collected from unities. (LH XXXV, 1, 9, f. 7r-v)36

Each ‘integer number’ or natural number is then itself a class, indeed a whole, and 
it is open to compare other classes to it. It is also clear that Leibniz consciously 
intends for his definition of an infinite multitude to be understood in terms of com-
parisons with numbers taken as wholes composed of unities; for example, he asserts 

34 See Ishiguro (1990), Knobloch (1994, 2002), Bassler (1998), Arthur (2008), (2009) and (2013), 
and Levey (2008). In the present paper it’s worth noting that the same crossed-out passage that 
contains the denial of cardinal equality between the evens and odds, Leibniz begins: “There is a 
syncategorematic infinite or passive power having parts, namely, the possibility of further progress 
by dividing, multiplying, subtracting, or adding. And there is a hypercategorematic infinite, or po-
testative infinite, an active power having, as it were, parts eminently but not formally or actually. 
This infinite is God himself. But there is not a categorematic infinite or one actually having infinite 
parts formally” (GP II, 314–315). Translated by Look and Rutherford in Leibniz (2007, p. 53).
35 William Heytesbury may have been the first to defend a syncategorematic analysis of ‘infinite’; 
see sophisma xviii of his Sophismata, in Pironet (1994).
36 Quoted in Grosholz and Yakira (1998, p. 99 ).
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the existence of infinitely many bodies in this way: ‘Bodies are actually infinite, 
that is, there exist more bodies than there are unities in any given number’ (A VI, 
4, 1393/Ar 235).

It then remains only to define ‘more than n elements of X’. No appeal to Euclid’s 
Axiom that the whole is greater than the part is available here to license the claim 
that an infinite multitude contains more elements than unities in a natural number, 
since Leibniz rules out infinite wholes. The most natural route at this point is not via 
Euclid’s Axiom at all but by appeal to the standard of one-one maps in combination 
with the idea of a natural number as a totality of elements: there are more than n 
elements of X just in case there is no one-one map from X into the natural number 
n. This now allows us to state Leibniz’s definitions of ‘infinite’ in canonical terms: 
X is infinite iff there is no one-one map from X into any natural number.

Assiduous readers will note that Leibniz’s definition of ‘infinite’ is not the same 
as the definition suggested in our earlier discussion of Galileo. Whereas Galileo’s 
definition considers maps of all the natural numbers into classes—a class is infinite 
just in case there is such a map, and finite otherwise—Leibniz’s definition consid-
ers maps from classes into individual natural numbers. Dedekind’s definition takes 
yet another angle, considering maps from classes into themselves: a class is infinite 
just in case it can be mapped into a proper part of itself. All these definitions are at 
least conceptually distinct. Intriguingly, Galileo’s and Dedekind’s definitions turn 
out to be equivalent, while Leibniz’s definition turns out to be different, and weaker, 
if only barely so. And it is Leibniz’s definition that is now the standard definition of 
infinite in mathematics, while Galileo’s and Dedekind’s has come to be regarded as 
a special case called ‘Dedekind infinite’. But that is a story for another day.37
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There can scarcely be any question that the most important of Leibniz’s many math-
ematical contributions was his development of the calculus differentialis. Although 
his work in such fields as algebra, series summations, combinatorics, determinant 
theory, and other areas can be seen (retrospectively at least) as original and even 
groundbreaking, his efforts in these disciplines were not generally made public his 
day. In contrast, historians of mathematics routinely speak of a “Leibnizian tradi-
tion” in analysis that traces back to a series of published papers from the 1680s and 
constitutes a clear advance in European mathematics. Yet, although the infinitesi-
mal methods Leibniz introduced with his calculus were powerful new techniques 
opening a vast field of new results, these methods raised significant conceptual and 
methodological issues. The specific worry voiced by several of Leibniz’s math-
ematical contemporaries was that these new methods were fundamentally unrigor-
ous, so that they not only offended against criteria of mathematical intelligibility, 
but were also liable to lead to error.

1  The Traditional Standard of Mathematical Rigor

As traditionally conceived, a mathematical demonstration must begin with first 
principles that are transparently true and proceed deductively to the derivation of 
theorems. The first principles take the form of definitions, axioms (i.e., general 
principles applicable to any science whatever) and postulates, or principles specific 
to a given science. Aristotle famously declared that the first principles upon which 
demonstrative sciences depend must themselves be indemonstrable and known by a 
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kind of immediate, non-inferential understanding ( Posterior Analytics 72b 19–21).1 
Of course, not just any first principles are permissible in mathematics, for the obvi-
ous reason that the security of the derived theorems can be no greater than that of 
the principles from which the theorems are derived. The result is Aristotle’s famous 
requirement that the first principles of demonstration must be “true, and primitive 
and immediate and more familiar than and prior to and explanatory of the conclu-
sion” ( Posterior Analytics I.2, 70b 21–23).

This general model of rigorous mathematical demonstration persisted well be-
yond classical Greek mathematics. Indeed, seventeenth-century philosophers and 
mathematicians were practically unanimous in their acceptance of the traditional 
ideal. Philosophically-minded mathematicians who disagreed about nearly every-
thing else could at least be united in the opinion that mathematical demonstrations 
must take into consideration only things that are clearly conceived and proceed 
deductively by truth-preserving inferences from definitions and axioms that cannot 
be doubted. Thus, such diverse figures as Descartes, Pascal, Hobbes, Wallis, and 
Barrow (who could agree on essentially nothing else) were unanimous in holding 
that the objects of mathematical investigation must be the sorts of things that are 
evident to reason.2

The requirement that rigorous demonstrations must be concerned only with 
things that can be clearly conceived had an obvious corollary in ancient mathemat-
ics, namely that infinitary methods are to be banished as essentially unrigorous. 
The basis for this banishment is obvious. Aside from failing the test of clear intel-
ligibility, the infinite famously threatens paradox, and classical mathematics is thus 
developed with a very strong finitistic bias. As a result, the incomprehensibility of 
an (actual as opposed to potential) infinite was taken to be perfectly in keeping with 
proper mathematical theory and practice. Indeed, Aristotle declared that “In point of 
fact [mathematicians] do not need the infinite and do not use it” (Physics IV.7, 207b 
30), and this attitude persisted until well into the seventeenth century.

Although the traditional account of rigor forbids the appeal to any actual infi-
nite, it did license the use of a potential infinite. This familiar distinction allows the 
assertion that, for any given positive magnitude, a smaller one may still be taken; 
but it does not permit one to conclude that there exists a magnitude smaller than 
any given positive magnitude. The “exhaustion”proofs of classical Greek geometry 
make use of this idea of a merely potential infinite, by showing that the difference 
between a sought result and a sequence of approximations can be made less than 
any given magnitude.

1 The Aristotelian account of demonstrative knowledge is summarized and analyzed in Hankinson 
(1995). Aristotle’s treatment of first principles is aptly summarized in Heath’s commentary to the 
Euclidean Elements, (Euclid [1925] 1956, 1: 117–123).
2 On Descartes’ conception of rigor, see Bos (2001, Chap. 15); Pascal’s conception of rigorous 
proof is articulated in his essay “L’esprit géométrique” in Pascal (1963, pp. 348–359); Hobbes’s 
account of demonstration is summarized in the first of his Six Lessons (1656); Wallis’s conception 
of rigor is outlined in the first three chapters of his Mathesis Universalis in Wallis (1693-1699, 1: 
17–24); Barrow’s approach is summarized in the fourth of his Lectiones Mathematicae (Barrow 
1860, 1: 63–76).
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The canonical formulation of exhaustion proofs was set out by Archimedes, who 
proceeded by constructing sequences of approximations that systematically con-
verge on the sought result.3 The logical form of an exhaustion proof can be set out 
as follows. We seek a magnitude, which we can call µ. To begin, we construct a 
sequence an of rectilinear approximations less than µ such that

Next, we construct a sequence An of rectilinear approximations greater than µ such 
that

The sequence an gives successively better approximations to the sought value “from 
below”, as when a sequence of inscribed polygons approximate the area of a cur-
vilinear figure; and the sequence An gives ever-better approximations to the sought 
value “from above”, as when a sequence of circumscribed polygons approximate 
the area of a curvilinear figure. When both sequences satisfy the condition that the 
difference between each successive approximation and the sought value is reduced 
by more than half as we move from term to term of the sequence, then they both 
“compress” the desired value between two sequences that converge to a common 
limit. The proof can then be completed with a pair of reductio ad absurdum argu-
ments, showing that the result could be neither greater nor less than the common 
limit µ, to which the compressing sequences converge.

The method of proof by exhaustionwas the standard for rigorous demonstration 
in the seventeenth century, but it was also regarded as cumbersome, prolix, and in-
capable of generality (Whiteside 1960–1962, pp. 330–335). In many cases exhaus-
tion proofs were used to confirm or establish results that had been achieved by other 
methods, but exhaustion itself seemed poorly suited to the task of uncovering new 
results. A central drawback in the method lies in the inherent difficulty of construct-
ing sequences of rectilinear approximations that can be systematically improved 
and shown to converge. In all but the simplest cases, generating such sequences is 
a difficult task, and it becomes significantly more difficult as the curves get more 
complex. In his Géométrie of 1637, Descartes argued that a class of curves much 
broader than that countenanced by ancient geometers should be recognized as truly 
geometrical, on the grounds these could be defined through criteria that enabled 
“precise and exact” determination.4 But extending the exhaustion method to cover 
these more complex curves makes the application of the technique all but hopeless: 
exhaustion finds a straightforward application to the case of simple “compass and 
rule” constructions, and the method generalizes fairly easily to conic sections, but 
any further extension of the method faces serious technical obstacles. Small won-
der, then, that seventeenth century mathematicians began to rely upon infinitesimal 

3 On the Archimedean method of exhaustion, see Dijksterhuis (1987, pp. 130−134).
4 On Descartes and the question of what counts as properly geometrical, see Bos (2001).
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considerations in the solution of important outstanding problems, even as they paid 
lip service to the classical ideal of rigorous demonstration.

In fact, we can see interesting evidence of this in Leibniz’s writings from the 
1670s, where he sought a general method for solving problems of tangency and 
quadrature that will retain the “apagogical” nature of exhaustion while serving as 
a method of discovery. In a brief note from 1674 entitled “On the use of inscribed 
and circumscribed [figures] not only for demonstration, but also for discovery” he 
declared that “The apagogic method, by for instance inscribed and circumscribed 
[figures] has thus far been used by geometers only for the purpose of demonstrating 
things that have been discovered by other means. I began to consider whether or 
not this very general method might not also be a principle of discovery, so that it 
comprehends everything else, since everything discovered by other methods can be 
demonstrated by this one” (A VII, 5, 113). The search for a general method of this 
sort ultimately led Leibniz to the infinitesimal calculus, which we can now consider.

2  Leibnizian Calculus and the Infinitesimal

In 1684 Leibniz published his first paper on the calculus, which bore the title “A 
New Method for Maxima and Minima, as well as Tangents, which is not Impeded by 
Fractional or Irrational Quantities, and a Remarkable Type of Calculus for Them” 
(GM V, 220–226).5 As the title suggests, this Leibnizian paper promises a new ap-
proach to problems of maxima and minima, one that will overcome the difficulties 
that had plagued earlier attempts to study complex curves involving fractional or 
irrational powers, and to do all of this with a simple calculus or routine procedure 
that can be applied systematically to all manner of problems.

The history of the calculus is well enough known that I do not need to repeat it in 
any detail, but it is important to draw attention to the conceptual difficulties posed 
by the infinitesimal. The great power of the Leibnizian calculus is that it reduces 
the inverse problems of constructing tangents and determining areas to a simple 
algorithmic procedure based on the comparison of increments between quantities 
x and y in an “analytic” equation representing a curve. Leibniz’s general approach 
is to examine the behavior of such a curve when infinitesimal increments dx and 
dy are introduced. Replacing x and y with (x + dx) and (y + dy) yields a new equa-
tion that can be manipulated by treating the infinitesimals dx and dy as positive 
quantities obeying the ordinary rules for such operations as addition, multiplica-
tion, subtraction, division, or extraction of roots. Yet, at need, these infinitesimals 
can also be discarded by taking them to be effectively zero. The result is a method 
for constructing tangents, determining quadratures, finding arc length, and solving 

5 The key papers on Leibniz’s calculus are collected in Leibniz (1995). Roero (2005) has an over-
view of Leibniz’s early publications on the calculus. See Parmentier (1995) for an account of 
Leibniz’s calculus in the context of his mathematical “optimism.”
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a wide variety of other problems, regardless of the complexity of the curves studied 
or the nature of the equations that define them.

It should be clear from the start that there is something rather puzzling going on 
here. The differential increments dx and dy appear to have contradictory properties, 
depending on the needs of the moment. Whenever we need to subtract, divide, or 
raise a variable to a power, the increments are assumed to be positive; yet when we 
want to discard terms containing such quantities, they are tacitly assumed equal to 
zero. This puzzling duality of the infinitesimal sets the stage for a “logical” objec-
tion to the calculus differentialis, namely that it depends upon inconsistent assump-
tions. A second kind of criticism is a “conceptual” or “metaphysical” complaint to 
the effect that infinitesimals are not clearly conceivable or definable, thereby violat-
ing the standard criterion of rigorous demonstration.

Proponents of the Leibnizian calculus sought by various approaches to allay 
these concerns; some announced that differential increments were quantities greater 
than zero, yet less than any finite magnitude. Others declared an infinitesimal to 
be a magnitude bearing the same ratio to a finite magnitude that a finite magnitude 
bears to an infinite magnitude6. The first characterization of infinitesimals seeks to 
situate the infinitesimal between something and nothing, thereby giving it a sort of 
“hybrid” existence that can be taken as alternately a positive magnitude or zero. 
This second way of thinking about infinitesimals attempts to capture their appar-
ently inconsistent properties: as ratios of positive magnitudes, infinitesimals remain 
greater than nothing; but as ratios of finite to infinite, they are less than any positive 
quantity (since positive quantities can always be expressed as ratios of finite mag-
nitudes). Aside from the conceptual difficulties posed by infinitesimal increments 
such as dy or dx, the Leibnizian calculus uses higher-order differentials such as dy2 
or dx2. As products of two infinitesimal quantities, second-order differentials appear 
to be greater than zero, yet less than any infinitesimal of the first order, and indeed 
this is how they were typically characterized both by Leibniz and his associates.

Although the new calculus opened vast new areas of mathematical research and 
offered a very general means to solve problems that had previously been attacked 
on a piecemeal basis, its procedures offended quite grossly against the traditional 
standard of mathematical rigor. Whatever virtues one might claim for them in the 
solution of problems involving tangency, quadrature, arc-length determination, 
maxima, or minima, the fact remains that infinitesimal magnitudes are surely not 
the sort of thing anyone can claim to conceive clearly. Magnitudes that hover be-
tween something and nothing are surely difficult to conceive; and the mere fact that 
we have a notation involving terms ‘dx’ or ‘dy’ doesn’t mean that we have anything 
like a guarantee that there really are things denoted by or answering to our notation. 
The result, not surprisingly, is that the new calculus faced objections from “tradi-
tionalist” opponents, who charged Leibniz and his associates with violating obvious 
criteria of geometric rigor.

6 The locus classicus for such characterizations of the infinitesimal is L’Hôpital (1696).
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These objections have been discussed at length in the recent literature on Leib-
niz, and I do not need to go over them in any detail.7 It suffices for my purposes to 
mention the objections raised Michel Rolle in 1700. In league with the Abbé Jean 
Gallois and the Abbé Thomas Gouye, Rolle made the case against the “new system 
of the infinite” in a session of the Académie Royale des Sciences in July of 1700. 
In doing so, Rolle endorsed the classical ideal of rigorous demonstration with the 
remark:

We have always regarded geometry as an exact science, and also as the source of the exact-
ness that is spread throughout all the other parts of mathematics. We see among its princi-
ples only true axioms: and all theorems and all the problems proposed here are either solidly 
demonstrated or capable of solid demonstration. And if it should happen that any false or 
less certain principles should slip in, they must at once be banished from this science.
But it seems that this character of exactitude no longer reigns in geometry, ever since we 
became entangled in the new system of the infinitely small. (Rolle 1703, p. 312)

Rolle extended this criticism of the intelligibility of the foundational concepts of 
the calculus with objections intended to show that it actually produced errors when 
applied to specific cases.8 The defense of the new methods was not taken up by 
Leibniz himself (who would have been overjoyed to return to Paris but was con-
strained by circumstances to reside in Hanover). Instead, Pierre Varignon served as 
the chief defender of the calculus, though he remained in steady epistolary contact 
with Leibniz himself.

Leibniz’s reply to such criticisms was to insist that, when properly understood, 
his calculus does not require truly infinitesimal magnitudes. The general strategy he 
pursued was to propose that any apparent commitment to the reality of infinitesimal 
magnitudes could be sanitized by regarding the infinitesimal as a sort of “useful fic-
tion” that is harmlessly introduced into derivations without undermining the rigor 
of the underlying reasoning. In a letter published in the Journal des Savants in 1701 
he declared:

[T]here is no need to take the infinite here rigorously, but only as when we say in optics that 
the rays of the sun come from a point infinitely distant, and thus are regarded as parallel. 
And when there are more degrees of infinity, or of infinitely small, it is as the sphere of the 
earth is regarded as a point in respect to the distance of the sphere of the fixed stars, and a 
ball which we hold in the hand is also a point in comparison with the semidiameter of the 
sphere of the earth. And then the distance to the fixed stars is infinitely infinite or an infinity 
of infinities in relation to the diameter of the ball. For in place of the infinite or the infinitely 
small we can take quantities as great or as small as necessary in order that the error will be 
less than any given error. In this way we only differ from the style of Archimedes in the 
expressions, which are more direct in our method and better adapted to the art of discovery 
(GM IV, 95–96).

Leibniz’s apparent admission that the infinite need not be taken “rigorously” caused 
some of his associates and defenders of the calculus—notably Jean Bernoulli, Vari-
gnon, and the Marquis de L’Hôpital– to request a clarification of his views.

7 See Goldenbaum and Jesseph (2008) for an overview of objections to the Leibnizian infinitesi-
mal raised by his contemporaries. Mancosu (1996, Chap. 6) deals with some of these objections 
as well.
8 See Mancosu (1996, pp. 168–176) for more on Rolle’s objections.
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The result was a very important letter from February of 1702 in which Leibniz 
set out his “fictionalist” reading of the infinitesimal, noting that although infinitely 
small magnitudes cannot be real, nevertheless “everything in geometry and even 
in nature takes place as if they were perfect realities” (GM III, 93). As Leibniz 
recounted the events in a late letter to Pierre Gangicourt, “[w]hen our friends were 
disputing in France with the Abbé Gallois, father Gouyé and others, I told them 
that I did not believe at all that there were actually infinite or actually infinitesimal 
quantities; the latter, like the imaginary roots of algebra (√-1)  were only fictions, 
which however could be used for the sake of brevity or in order to speak universal-
ly…. But as the Marquis de L’Hôpital thought that by this I should betray the cause, 
they asked me to say nothing about it, except what I had already communicated in 
the Leipzig Acta” (Leibniz 1768 3: 500–501).

It is tolerably clear that Leibniz was a committed fictionalist about infinitesi-
mal magnitudes by 1702. His view of infinitesimals as “useful fictions” seems to 
have taken shape in the mid 1690s, although there are certainly traces of it as early 
as the 1670s, and a forthright statement of the fictionalist position seems to have 
come from Leibniz’s pen only in the aftermath of the dispute in the Académie des 
Sciences over the foundations of the calculus.9 The question to consider is whether 
fictionalism can be squared with traditional notions of rigor: i.e., whether there can 
be a rigorous theory of fictions.

3  Fictionalism and the Question of Rigor

Philosophically, the recourse to fictionalism poses something of a problem for the 
Leibnizian account of rigorous demonstration. Leibniz never voiced serious reser-
vations about the traditional standard of mathematical rigor, although he did remark 
“excess of scruple” might hinder the art of discovery and deny us its fruits.10 Indeed, 
Leibniz’s own account of demonstration seems to go further than the traditional 
demands that the first principles of mathematics be clearly conceived, since he held 

9 The literature on the Leibnizian understanding of infinitesimals is extensive. The most complete 
study is Bos (1974), which distinguishes two Leibnizian approaches to the infinitesimal: one rely-
ing upon exhaustion, the other involving the Leibnizian “law of continuity”, intended to provide a 
theoretical basis for Leibniz’s fictionalism. Ishiguro (1990, Chap. 5) reads Leibnizian fictionalism 
as adopting a “syncategorematic” view in which infinitesimal terms do not denote and play the role 
of logical fictions. This interpretation has been endorsed and extended by Arthur (2008), Knobloch 
(1994, 2002), and Levey (2008). Precisely when Leibniz committed to the fictionalist approach is 
a subject of some scholarly disagreement. Levey (2008, p. 107) declares that Leibniz “abandoned 
any ontology of actual infinitesimals” in the 1670s, and both Arthur and Knobloch accept variants 
of this timeline. I have argued elsewhere (Jesseph 1998) that Leibniz’s correspondence with Wallis 
and Jean Bernoulli in the 1690s betrays serious reservations about the reality of infinitesimals (in 
opposition to Bernoulli) but also a disinclination to take them as “nothing” (contrary to Wallis). 
Nothing I say here depends upon settling this specific issue.
10 This remark appears in Leibniz’s response to the criticisms of the calculus voiced by Bernard 
Nieuwentijt (GM V, 322).
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that all demonstrations must ultimately terminate in identities, and even traditional 
axioms or postulates could ultimately be demonstrated. This rather extreme view 
is expressed in a late essay on the “Metaphysical basis of mathematics”, where 
Leibniz claimed that “demonstrations are finally resolvable into two kinds of inde-
monstrables: definitions or ideas, and primitive propositions or identities, such as A 
is A, anything whatever is equal to itself, and a great many others of this kind” (GM 
VII, 20). Or, as Leibniz put the matter in a somewhat different context “[Geometers] 
are agreed upon axioms and postulates, upon whose truth the rest [of geometry] 
depends. We accept these, both because they satisfy the mind immediately and be-
cause they are proved by countless experiences; nevertheless, it would be an aid to 
the perfection of the science to prove them. This was attempted of old for certain 
axioms by Apollonius and Proclus and recently by Roberval… I am convinced that 
the demonstration of the axioms is of great assistance to true analysis or the art of 
discovery” (GP IV, 354).

Given this (or any other reasonable conception of rigorous demonstration), sim-
ply declaring infinitesimals to be fictional does not, by itself, do anything to show 
that inferences based upon such fictions are truly rigorous. This point can be easily 
enough illustrated by an example. Suppose that, in the interest of advancing number 
theory, I define the number p to be the largest prime number, i.e. the greatest finite 
integer with only trivial divisors. Given p, I have a quick and easy solution to the 
twin prime conjecture: since there are only finitely many primes up to and includ-
ing p, there are only finitely many primes of the form n, ( n + 2). Moving along, I 
find a simple (albeit non-constructive) counterexample to the Goldbach conjecture: 
since p is the greatest prime, 2p + 2 is an even number that cannot be expressed as 
a sum of two primes. I have now settled two famous outstanding conjectures in 
number theory with elementary proofs, so the prospects for tremendous advances 
in this field must seem very bright indeed. If someone objects to the viability of 
these results, I will reply that p is simply a fiction: I do not really believe that there 
is a greatest prime, but I find the supposition useful for simplifying number theory 
and proving new results. And who can doubt that this fictional prime p has greatly 
simplified and expanded number theory?

The obvious problem here is that assuming the existence of p is to assume some-
thing that is demonstrably inconsistent. And, in general, the recourse to fictionalism 
is insufficient on its own to make a demonstration employing such fictions truly 
rigorous or convincing. To vindicate fictionalism, the introduction of a fictional 
entity must be accompanied by some kind of guarantee to the effect that indulging 
in the fiction does not require anything inconsistent and will never lead to error. 
Thus, a central task for Leibniz’s fictionalism about infinitesimal magnitudes is to 
show that their introduction is essentially harmless in the sense that it does not yield 
a contradiction.

There seem to be two strategies that might reconcile Leibniz requirements for 
rigorous demonstration with his doctrine of the fictionality of the infinitesimal. The 
first of these is a “syntactic” or “proof theoretic” strategy that would attempt to show 
how any derivation that invokes infinitesimals could, in principle, be re-written in 
the form of an Archimedean exhaustion proof. Pursuing this strategy would involve 
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showing that any appearance of an infinitesimal quantity like dx in the course of 
a demonstration could be replaced by a more complex expression involving se-
quences of approximations that compress or converge to the sought result. In the 
end, this approach would take the fictionality of the infinitesimal as amounting to 
the claim that a symbol like ‘dx’ is simply a placeholder for a much more elaborate 
line of reasoning that makes reference only to finite differences of finite quantities. 
Put somewhat more formally, this strategy would seek to show that for any axioms 
O for “ordinary” analysis and axioms I governing infinitesimals, whenever O ∪ I ⊢ 
φ and ‘φ’ does not contain infinitesimal terms, we have a means to construct a proof 
of from O alone, that is, O ⊢ φ.

A second strategy would be a “semantic” or “model-theoretic” approach that 
seeks to show that, even if reference to infinitesimals cannot be eliminated from 
analysis, we can still have confidence that the use of infinitesimal magnitudes will 
never lead from truth to falsehood. This line of justification would try to show 
that any formula that is provable using infinitesimals (but does not itself contain 
infinitesimal terms) is nevertheless a semantic consequence of standard axioms of 
geometry. Here, the idea is that, taking O and I as axioms for “ordinary” and “in-
finitesimal” analysis, in any case where O ∪ I ⊢ φ, we are guaranteed that O ⊨ φ. 
To make this sort of strategy work, Leibniz would have to offer something like a 
proof of the principle that adding infinitesimals to the standard geometry yields a 
model-theoretic conservative extension of standard geometry.

I do not wish to indulge in the anachronism of attributing to Leibniz a clear 
understanding of our proof-theoretic and model-theoretic concepts, and I certainly 
doubt that these two sorts of strategies were clearly separated in his mind. I do, 
however, think that we can see glimpses of them in two very different ways that 
Leibniz tried to accommodate the infinitesimal within the framework of classical 
geometry. The first of these appears in Leibniz’s Arithmetical Quadrature of the 
Circle, Ellipse, and Hyperbola, written in 1675–6; the second is in his “Note on 
the Justification of Infinitesimal Calculus by that of Ordinary Algebra” which he 
forwarded to Varignon in 1702 in the context of the dispute in the Académie. I now 
turn to a brief consideration of these texts.

3.1  Leibniz’s Arithmetical Quadrature of the Circle

The pace of Leibniz’s mathematical research in the 1670s is really quite remark-
able. He arrived in Paris in 1672 on a diplomatic mission for the elector of Mainz 
and had essentially no mathematical training.11 After a few years, he had mastered 
the cutting-edge mathematics of his day, and around 1675 he produced the lon-
gest mathematical treatise he ever wrote, On the Arithmetical Quadrature of the 
Circle, the Ellipse, and the Hyperbola. The work was never published in Leibniz’s 

11 Hofmann (1974, p. 2) aptly characterizes the state of Leibniz’s mathematical knowledge upon 
his arrival in Paris as “deplorable.”



D. M. Jesseph198

lifetime and its first appearance in print came in 1993 in an edition prepared by 
Eberhard Knobloch. The remarkable feature of this treatise is that in it Leibniz of-
fers a rigorous foundation for the theory of infinitesimal magnitudes, at least in the 
application to a class of problems involving conic sections. Others have discussed 
the Arithmetical Quadrature at length,12 and my treatment of the issues will be cor-
respondingly brief. It is nevertheless worthwhile to consider the general approach 
that Leibniz undertook to show that infinitesimal reasoning can be replaced by strict 
Archimedean exhaustion proofs in a variety of contexts.

We should begin by noting that even as early as the mid-1670s Leibniz was pre-
pared to hedge his bets on the reality of infinitesimals and endorse something very 
much like his later fictionalism. As he put it in the Arithmetical Quadrature, “Nor 
does it matter whether there are such quantities in nature, for it suffices that they are 
introduced as fictions, since they allow the abbreviations of speech and thought in 
the discovery as well as demonstration” (Leibniz 1993, p. 69). This fictionalism is 
grounded in Leibniz’s argument to the effect that any proof involving infinitesimal 
magnitudes can be re-written in the form of a classical exhaustion procedure.

The fundamental theorem in Leibniz’s attempt to show the eliminability of in-
finitesimals is the sixth proposition of the Arithmetical Quadrature, which he char-
acterizes as “most thorny” and one whose “reading may be omitted if one does not 
want the greatest rigor” in the demonstration of other results (Leibniz 1993, p. 28). 
Leibniz’s reasoning relates to the construction in the figure (see Fig. 1). Regret-
tably for contemporary readers, his notational conventions are prone to engender 
confusion: the y axis is horizontal across the top and the x axis is vertical toward the 
bottom, while the subscripts are placed to the left rather than the right in the labels.

Leibniz argues as follows: Let A 1C 2C 3C etc. be a circular arc. We then construct 
the points of intersection of the tangents at pointsiC with the horizontal axis, yield-
ing 1T, 2T, 3T, etc. Next, we define an auxiliary curve 1D, 2D, 3D, etc. by pairing the 
ordinates 1B, 2B, 3B, etc. corresponding to the points 1C, 2C, 3C, etc. in the circular 
arc with the abscissae 1T, 2T, 3T, etc. Then we take the secants joining successive 
points 1C, 2C, 3C, etc. in our division of the circle and extend them to cut the hori-
zontal axis at the points 1M, 2M, 3M, etc. Finally, we take perpendiculars from these 
points and pair them with the ordinates 1B, 2B, 3B, etc. to generate another curve 
through the points 1N, 2N, 3N, etc. The two new curves are then used to define cur-
vilinear areas whose exact measure is determined by rectilinear approximations in 
the style of Archimedes, including the complex reductio proofs. The original case 
of the circle can then be extended by considering other conic sections (notably the 
ellipse and hyperbola), that admit of an analogous treatment.

Knobloch characterizes this approach as equivalent to showing “the integrability 
of a huge class of functions by means of Riemannian sums which depend on inter-
mediate values of the partial integration intervals” (Knobloch 2002, p. 63). Arthur 
(2008, p. 24) deems the method “extremely general and rigorous”, and his opinion 
is shared by Levey, who holds that Leibniz’s “technical accomplishments in quad-

12 See Arthur (2008), Knobloch (2002), Levey (2008) for accounts of the treatise and its role in 
Leibniz’s mathematics.
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ratures far outstrip the original reaches of the method of exhaustion” (2008, p. 119). 
Although I agree that Leibniz’s procedure can show the eliminability of infinitesi-
mals from a large class of problems, it nevertheless falls short of a completely gen-
eral method that could apply to any curve representable by an analytic equation. 
The problem is that the construction of the auxiliary curves requires that we have a 
tangent construction that will apply to the original curve. This is readily available in 
the case of the circle, and tangents to conic sections and other well-behaved curves 
are also constructible with classical methods. However, one great strength of the in-
finitesimal calculus is that it enables algorithmic solutions to problems of tangency 
for a wide variety of curves; yet the procedure in the Arithmetical Quadrature could 
only be made fully general if we already had a solution to the general problem 
of tangent construction. In fact, Leibniz’s approach here suffers from the kind of 
limitations that seventeenth century mathematicians routinely found wanting in the 
method of exhaustion: it is perfectly rigorous, but limited in its scope of application.

Indeed, the attraction of the infinitesimal calculus is precisely that its algorithmic 
procedure is not (to use Leibniz’s phrase) “impeded by fractional or irrational quan-
tities” and can be applied more generally. My conclusion is that, although Leibniz’s 

Fig. 1  Based on Leibniz, De Quadratura Arithmetica, Prop. 6
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investigations in 1675–1676 could show how conic sections and other well-behaved 
curves could be handled without recourse to infinitesimals, he himself understood 
that there were limitations to what could be achieved with these methods. Indeed, I 
suspect that he set aside the Arithmetical Quadrature without publishing it because 
he had turned his attention to more powerful methods that he would introduce in the 
1680s in what he called “our new calculus of differences and sums, which involves 
the consideration of the infinite”, and “extends beyond what the imagination can 
attain” (GM V, 307).

Some further evidence of this hypothesis can be seen in Leibniz’s remark in his 
November, 1674 fragment “On the use of inscribed and circumscribed [figures] not 
only for demonstration, but also for discovery.” He stated in this piece that in order 
for the exhaustion method to apply generally “it is obvious that we require that the 
area of any polygon could be obtained by some rule or summary procedure, or more 
briefly and generally, that some general method of approximation could be obtained 
by an analytic calculus” (A VII, 5, 114). Having despaired of finding a means of 
converting the method of exhaustion into a general calculus applicable to any curve 
defined by an analytic equation, Leibniz turned his attention elsewhere.

Thus, the attempted “proof-theoretic” argument to the effect that infinitesimals 
can always be eliminated by re-casting an infinitesimal argument in the form of an 
exhaustion proof came up short of the mark. In retrospect, this is precisely what one 
would expect: a fully general argument for the elimination of infinitesimals in the 
style of Cauchy or Riemann would require the apparatus of sequences, series, and 
convergence conditions that would make talk of infinitesimal elements dissolve into 
statements about inequalities. But this sort of machinery is clearly lacking from the 
argument in the Arithmetical Quadrature. The question remains whether Leibniz 
had any better luck with a “model theoretic” argument to show that infinitesimals 
would never lead from truth to falsehood, and I now turn to a consideration of an 
example of this approach.

3.2  The Justification of the Infinitesimal Calculus by that  
of Ordinary Algebra

Leibniz’s important letter to Varignon of February, 1702 includes an enclosure that 
purports to justify the infinitesimal calculus by means of the “calculus” of what 
Leibniz termed “ordinary algebra.” The idea here is that the algebra of ordinary 
finite quantities offers a method that can be used to show that appeal to infinitesi-
mals never leads us from truths to falsehood. So, rather than attempt to show that 
any proof that employs infinitesimal can be rewritten in the classical form, Leibniz 
undertook to show that the introduction of infinitesimals is ultimately harmless and 
could be underwritten by general algebraic principles. I reproduce Leibniz’s reason-
ing in its entirety (See Fig. 2):

Let two straight lines AX and EY meet at C, and from points E and Y drop EA and YX 
perpendicular to the straight line AX. Call AC c and AE e; call AX x and XY y (as in Fig. 2. 
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Then since the triangles CAE and CXY are similar, it follows that ( )x c c
y e
−

= . Consequently, 
if the straight line EY approaches the point A ever more closely, always preserving the same 
angle at the variable point C, the straight lines c and e will obviously diminish steadily, yet 
the ratio of c to e will remain constant. Here we assume that the ratio is other than that of 
equality and that the given angle is less than half a right angle.
Let us now consider the case where the straight line EY reaches A itself; it is manifest that 
the points C and E will fall on A, that the straight lines AC and AE, or c and e, will vanish, 
and that the proportion or equation ( )x c c

y e
−

= will become x c
y e= , supposing that this case 

falls under the general rule ( )x c c
y e
−

= . Nevertheless, c and e will not be absolutely nothing, 

since they still preserve the ratio of CX to XY, or the ratio between the entire radius and the 
tangent of the angle at C, the angle which we assumed to remain always the same as EY 
approached the point A. For if c and e were nothing in an absolute sense in this calculation, 

then in the case when the points C, E, and A coincide, c and e would be equal, since one 
zero equals another, and the equation or proportion ( )x c c

y e
−

= would become 0 10
x
y = = ; that 

is, x = y, which is an absurdity, since we assumed that the angle is not half of a right angle. 
Hence c and e are not taken for zeros in this algebraic calculus, except comparatively in 
relation to x and y; but c and e still have an algebraic relationto each other. And so they are 
treated as infinitesimals, exactly as are the elements which our differential calculus recog-
nizes in the ordinates of curves for momentary increments and decrements. Thus we find in 
the calculations of ordinary algebra traces of the transcendent differential calculus and the 
same peculiarities about which some scholars have scruples. (GM IV, 104–105)

Fig. 2  Leibniz’s Justification 
of Infinitesimals by “ordinary 
algebra” Enclosed in a letter 
to Varignon 2 February, 1702 
(GM IV, 102–104)
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The aim of this passage is tolerably clear: Leibniz thought that he could show how 
to introduce infinitesimals by considering a case where two increments “vanish” 
even as the ratio between these increments remains.13 The ratio that remains must 
be one of quantities greater than nothing (on the dubious assumption that the ratio 
of zero to zero is that of equality), but this is not to say that the related quantities are 
real, because the entire argument occurs in the context of a claim for the fictionality 
of the infinitesimal. So, it seems that the infinitesimal here is introduced as some-
thing like a Hilbertian “ideal element” that arises when we consider limit cases and 
seek what Leibniz termed “the universality which enables [the calculus] to include 
all cases, even that where the given lines disappear.” He insisted that “it would be 
ridiculous not to accept [these ideal or limit cases] and so to deprive ourselves of 
one of [the calculus’] greatest uses” (GM IV, 105). Indeed, in a subsequent letter to 
Varignon, Leibniz summed up his view with the declaration that “to tell the truth, 
I am not myself really persuaded that it is necessary to consider our infinities and 
infinitesimals as anything other than ideal things, or as well founded fictions” (GM 
IV, 110). Leibniz frequently drew an analogy between such “ideal” elements as 
infinitesimals and the “imaginary” roots of negative numbers in algebra. The notion 
at work here is that, just as fictional quantity such as √-1 can be used to find the 
solution to a problem in trigonometry, we can also employ infinitesimal increments 
such as dx to arrive at solutions to geometric problems, and in both cases we need 
not worry about being led into error.

But what confidence can we have that such reasoning does not lead to error? In 
Leibniz’s opinion, the guarantee can be found in what he termed the “law of conti-
nuity.” This law is not a mathematical principle, but rather a general methodological 
rule with applications in mathematics, physics, metaphysics, and other sciences. In 
a 1713 letter to Christian Wolff concerning the “science of infinity” and published 
in the Leipzig Acta eruditorum, Leibniz referred to the law as “first proposed in 
Pierre Bayle’s Nouvelles de la République des Lettres, and applied to the laws of 
motion” (GM V, 385). The law states that “with respect to continuous things, one 
can treat an external extreme as if it were internal, so that the last case, even if it 
is of wholly diverse nature, is subsumed under the general law of the other cases” 
(GM V, 385).14 The law of continuity thus permits seemingly paradoxical expres-
sions: rest is motion, but the limiting case of ever-slower motions; a straight line is 
a circle, but the limiting case of circles of ever-greater radius; a point is a line, but 
the limiting case of ever smaller lines, etc. Writing to Varignon in 1702, Leibniz 
spoke of the law as “taking equality for a particular case of inequality, and rest for a 

13 One might note, in passing, that this is precisely the kind of argument that Newton attempts 
when he bases his method of fluxions on “ultimate ratios of evanescent increments.” The connec-
tion between Leibniz and Newton on this issue is explored in Arthur (2008).
14 This is but one of several statements of the law. The original appearance to which Leibniz refers 
is in the Nouvelles de la république des lettres in July of 1687 (GP III, 53–54). In a manuscript 
known as Cum prodiisset… written around 1701, Leibniz stated the law as holding “In any pro-
posed continual transition ending in any terminus, it is permitted to formulate a general reason-
ing in which the last terminus may be contained” (Leibniz 1846, p. 40). See Schubring (2005, 
pp. 174–186) for an interpretation of the role of the law in Leibniz’s mathematics .
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particular case of motion, and parallelism for a case of convergence, etc. supposing 
not that the difference of magnitudes that vanish is already equal to nothing, but that 
it is in the act of evanescing, and the same of motion, which again is not absolutely 
nothing, but something on the point of being nothing. And if someone is not content 
with this, we can make him see, in the style of Archimedes, that the error is not at 
all assignable and cannot be given by any construction” (GM IV, 105).

The acceptability of fictional or ideal infinitesimals is therefore supposed to be 
guaranteed by the following sort of reasoning: having established some ratio or 
inequality holds for every finite increment of two quantities x and y, the law of con-
tinuity guarantees that this ratio or inequality holds even as the quantities evanesce. 
The derivative, thus understood, is a ratio between two evanescent increments of 
the ordinate and abscissa of a curve, whose relationship is given by the equation de-
fining the curve and which determines the slope of the tangent throughout the curve. 
Likewise, the integral will be an “inverse tangent” construction, built up as the lim-
iting case of approximations whose difference from the area enclosed by the curve 
evanesces. It is here that we can see the outlines of the “model-theoretic” strategy 
for vindicating the fictional infinitesimal. The introduction of the fiction is licensed 
by the law of continuity, and Leibniz held that this law would guarantee that any 
result obtained by using the fictional elements such as dx or dy would still be true 
in classical, finitistic mathematics. Leibniz’s reference to Archimedean procedures 
thus seems intended as a means of justifying the law of continuity by claiming that 
any supposed error can be made to vanish.

Unfortunately for Leibniz, there is a good deal more work required to keep the 
law of continuity from delivering false results. As is clear from his argumentation 
in the justification of the calculus by ordinary algebra, Leibniz had no qualms about 
evaluating the expression 0 0 as 1, and similar difficulties beset his understanding 
of the law of continuity. Consider, for instance, the following supposed application 
of the law of continuity: take 0 < x < 1 and let x tend toward 0. As x gets smaller, the 
inequality x2 < x holds for all positive values of x on the way to zero; thus, applying 
the law of continuity, we seem entitled to conclude that 02 < 0. These and similar 
difficulties can only be overcome by sharpening the formulation of the law of con-
tinuity in ways that specify when a “passage to the limiting case” is permissible. 
Doing that, however, would again require something very much like developing 
the apparatus of sequences, limits, and convergence conditions familiar from the 
later “rigorizations” of the calculus due to Cauchy and Riemann. Thus, his attempt 
to base the fictional infinitesimal on principles drawn from ordinary algebra left 
Leibniz still short of the desired goal.

4  Conclusion: What is the Leibnizian Standard of Rigor?

Let me hasten to a conclusion. I claim that Leibniz clearly committed himself to the 
notion that infinitesimals are fictions that are “ideal” from the mathematical point of 
view and need not be taken as genuine mathematical entities. In his embrace of the 
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fictional infinitesimal, Leibniz cautioned that an excessive reliance on the tradition-
al criteria for rigorous demonstration might impede mathematical progress, on the 
grounds that the results obtained by the calculus were sufficiently important that it 
would be irrational to demand that they be derived by the strict proof procedures fa-
miliar from classical geometry. Thus, although he gave lip service to the traditional 
notion that all of mathematics must rest on clearly evident first principles, Leibniz 
seems to have thought that actually working out these foundational principles was 
a matter that could be postponed to another, bleaker day. Moreover, when he un-
dertook to justify the infinitesimal, either by showing that it could be eliminated in 
favor of exhaustion proofs, or by showing that recourse to such “ideal” elements 
would never lead us astray, Leibniz’s efforts fell consistently short of the mark. In 
the Arithmetical Quadrature Leibniz’s attempt to eliminate infinitesimal methods in 
favor of Archimedean exhaustions failed to achieve the desired generality, while in 
his “Justification of the Infinitesimal Calculus by that of Ordinary Algebra”, his ar-
gument makes recourse to a continuity principle that needs some significant sharp-
ening to avoid inconsistency.

Still, there can be little doubt that Leibniz had unshaken confidence that his 
calculus could be adequately justified, even if he could not carry out the justifica-
tion himself. He never—so far as I know—suggested that the calculus offered only 
a method of approximation and not a means to demonstrate exact results. Nor did 
Leibniz embrace anything like a mathematical instrumentalism, regarding a math-
ematical theory as either false or meaningless, but acceptable because it reliably 
delivers correct results. In the end, Leibniz appears as an irrepressible mathematical 
optimist. Convinced that everything—but especially the realm of pure mathemat-
ics—was rationally structured, Leibniz declared to Varignon that everything worked 
out as if infinitesimals were “perfect realities”, even if the truth of the matter is that 
there are no such things. A benevolent God, after all, would not strongly incline 
hard-working mathematicians to accept the calculus as true only to disappoint them 
with some nasty contradiction in their later results. In fact, I suppose that Leibniz 
would have embraced D’Alembert’s famous dictum regarding the foundations of 
the calculus, which he is said to have repeated to his students some decades after 
Leibniz’s death: “Allez en avant, et la foi vous viendra.”
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