History of Mechanism and Machine Science 28

Raffaele Pisano Danilo Capecchi

Tartaglia's Science of Weights and Mechanics in the Sixteenth Century

Selections from Quesiti et inventioni diverse: Books VII-VIII

Springer

History of Mechanism and Machine Science

Volume 28

Series editor
Marco Ceccarelli
Univ Cassino \& South Latium
Lab of Robotics \& Mechatronics
Cassino, Italy

Aims and Scope of the Series

This bookseries aims to establish a well defined forum for Monographs and Proceedings on the History of Mechanism and Machine Science (MMS). The series publishes works that give an overview of the historical developments, from the earliest times up to and including the recent past, of MMS in all its technical aspects.

This technical approach is an essential characteristic of the series. By discussing technical details and formulations and even reformulating those in terms of modern formalisms the possibility is created not only to track the historical technical developments but also to use past experiences in technical teaching and research today. In order to do so, the emphasis must be on technical aspects rather than a purely historical focus, although the latter has its place too.

Furthermore, the series will consider the republication of out-of-print older works with English translation and comments.

The book series is intended to collect technical views on historical developments of the broad field of MMS in a unique frame that can be seen in its totality as an Encyclopaedia of the History of MMS but with the additional purpose of archiving and teaching the History of MMS. Therefore the book series is intended not only for researchers of the History of Engineering but also for professionals and students who are interested in obtaining a clear perspective of the past for their future technical works. The books will be written in general by engineers but not only for engineers.

Prospective authors and editors can contact the Series Editor, Professor M. Ceccarelli, about future publications within the series at:

LARM: Laboratory of Robotics and Mechatronics
DiMSAT - University of Cassino
Via Di Biasio 43, 03043 Cassino (Fr)
Italy
email: ceccarelli@unicas.it

More information about this series at http://www.springer.com/series/7481

Raffaele Pisano • Danilo Capecchi

Tartaglia's Science of Weights and Mechanics in the Sixteenth Century

Selections from Quesiti et inventioni diverse: Books VII-VIII

Raffaele Pisano
Department of Physics
Lille 1 University Science and Technology
Villeneuve d'Ascq, France

Danilo Capecchi
Dipartimento di ingegneria strutturale e geotecnica
Roma La Sapienza University
Roma, Italy

ISSN 1875-3442
ISSN 1875-3426 (electronic)
History of Mechanism and Machine Science
ISBN 978-94-017-9709-2 ISBN 978-94-017-9710-8 (eBook)
DOI 10.1007/978-94-017-9710-8
Library of Congress Control Number: 2015941275
Springer Dordrecht Heidelberg New York London
© Springer Science+Business Media Dordrecht 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
Springer Science+Business Media B.V. Dordrecht is part of Springer Science+Business Media (www.springer.com)

Preface

Niccolo Fontana (1499-1557), better known as Tartaglia, is one of a loosely connected group of Italian scientists living between the middle of the fifteenth and the end of the sixteenth century, between Leonardo and Galileo. They all worked on what we call today statics, what they called the "science of weights", following the ideas of Archimedes' On the equilibrium of planes, Pappus' "Collection", Heron's Automata, the Pseudo Aristotle's Quaestiones mechanicae and Jordanus Nemorarius' De ratione ponderibus (thirteenth century). The first of them is Leonardo da Vinci, but his influence in that domain is very difficult to estimate. Most of the others have reproduced, translated, commented or as they said themselves "paraphrased" those texts. Niccolò Leonico Tomeo even published the Quaestiones twice, first in 1525 with an extensive commentary, and then in 1573, the original text alone in his edition of Aristotle's complete works.

In 1551, Girolamo Cardano dedicated the end of the first book of his De subtilitate to the equilibrium of the balance, mentioning works of Archimedes. In his Mechanicorum liber (1577), Guidobaldo del Monte tries to organize the study of the Pseudo Aristotle's simple machines, balance, lever, pulley, wedge, etc. in a Euclidean way, basing the demonstrations of their properties on "common notions" and "suppositions". Eleven years later, he gives in duos Archimedis aequeponderantium libros paraphrasis, as he presents it himself, a "paraphrase" of Archimedes on the "equilibrium of planes".

In Giovanni Battista Benedetti's Diversarum speculationum mathematicarum et physicorum (1585) we find a De mechanicis largely inspired by the Quaestiones. Three years later, Federico Commandino, published posthume Pappus's original text, Mathematicae collections; some years before, he had published De centro gravitatis (1565) referring to Pappus.

Bernardino Baldi translated into Italian Di Herone Alessandrino De gli automati (1589) and in his Mechanica Aristotelis problemata exercitationes (1621) is only loosely inspired by the Questiones. Francesco Maurolico largely comments the same text in his Problemata mechanica (1613) and in his Admirandi Archimedis
he published an Archimedi momentis aequalis corresponding to the "equilibrium of planes" (Maurolico 1685).

The aim of all these men is identical to that of Galileo: to describe the world mathematically. Nevertheless, their works are nowadays largely unknown, except to specialists, despite the fact that Galileo found there the first inspiration for Le mecaniche and for the rest of his work on statics. However, his genius soon outshined them. For historians, those texts contain the roots of that part of Galileo's work and they help them to understand his masterpieces.

Therein lies the reason why Raffaele Pisano and Danilo Capecchi have decided to publish a reproduction of two books of Tartaglia's Quesiti et inventioni diverse together with an English translation. In fact, books VII and VIII are the only ones concerning the "Science of Weights" in Tartaglia's work. The first six books of Quesiti are concerned with artillery and war science, the last one with arithmetic, geometry and algebra. He also published Jordanus Nemorarius's De ponderositate (1565).

The book opens on biographical sketches that, cautiously, are based only on official documents such as Tataglia's last will and testament, as well as on contemporary biographies written by some of the authors mentioned supra.

That first part of the book ends with a general presentation of Tartaglia's whole work.

The second part shows the connections of Tartaglia's science of weights, not only with the Italian group that we presented first but also with the Arabic tradition and with Simon Stevin.

The third part is a careful presentation of the scientific content of books VII and VIII of the Quesiti.

The reader is then well prepared to read Tartaglia's text, a difficult task indeed, but how fruitful!

This book, with its original texts and its translations, with numerous references to other original texts as well as to the secondary literature, will be a useful tool for all those who study this particularly rich period.

Acknowledgments

The genesis of such a lengthy book has deep roots (dating backing our early mechanics and Tartaglia research starting in 2004), and the result has been a long time in the making. Therefore, to all the directors and staff members of libraries and archives cited within the book, we express our profound appreciation for their collaboration.

We express our gratitude to Claudia Masotti for her warm and insightful homage to Uncle Arnaldo Masotti’s images. We also thank Paolo Bussotti (Berlin Alexander von Humboldt Foundation, Germany), Giuseppe Patera (Lille 1 University Science and Technology, France), Gérard Hamon (IREM Rennes, France, Lucette Degryse (University of Littoral Côte d'Opale, France), Giuseppina Ferriello (Nautical Institute, Italy), Romano Gatto (Basilicata University, Italy) and John Schuster (Sydney University, Australia) for their supportive readings, illuminating conversations and suggesting. Furthermore, we thank Caroline Duroselle-Melish (Harvard Printing and Graphic Arts Department, USA), Tricia Buckingham (Bodleian Oxford Libraries, UK), Marie-Lise Faget (Service Patrimoine Bibliothèque de Bordeaux, France), Hermann Hunger (Österreichischen Akademie der Wissenschaften, Austria), Luigi Pizzamiglio (Biblioteca Carlo Viganò e Fondo Tartaglia, Italy) and Giulio Vincenti and Laura Ferrari (Biblioteca, Palazzo dell'Arsenale, Torino, Italy) for their care and dedication in properly identifying the many manuscripts and their editions that are quoted in the book; and a special thanks to distinguished professor and friend Patricia Radelet-de Grave (Catholic University of Louvain-la-Neuve, Belgium) for her accurate Preface and suggesting.

Finally, of great importance, we address our acknowledgments to Marco Ceccarelli, Nathalie Jacobs, Anneke Pot, respectively, Springer book Series Editor, Springer Publishing Editor-in-Chief, and Springer Editorial Assistant for their fine work and positive reception of our project on the Tartaglia's Quesiti et inventioni diverse.

Remarks for the Reader

This book is devoted to the history and historical epistemology of science, in particular to the fields of geometry, mathematics, physics and Western civilization of the fifteenth to sixteenth centuries. The latter is mainly viewed as a branch of the combined history of science and foundations of sciences. We have conceived it as an integrated history and epistemology of scientific methods, combining epistemological and historical approaches to clearly identify significant historical hypotheses. We contend that such hypotheses should always be subject to epistemological interpretation by means of declared keys of investigations based on historical facts, scientific activities and original documents to trace their historical development. For, bibliographical references, the relationships between physics-mathematics and physics-geometry, and the role played by science in context are strongly stressed.

In order to recall Masotti's edition, both "Tartaglia 1554" and "Tartaglia [1554] 1959" are cited. In the References section both "de Nemore 1565" and "Tartaglia 1565 ", as editor, are listed for the reader's convenience. Both the names "Galileo" and "Galilei" are used to recognise their international adoption. The book is many pages long, so we have relied on numerous recalls of dates and names to help guide the reader to correct documents.

For the English translations of the Tartaglia's text we assumed as a model - with several technical variations - that of Stillman Drake (Drake and Drabkin 1969) and seldom Marshall Clagett (Moody and Clagett [1952] 1960; Brown 1967-1968; Clagett 1959). They were most helpful.

In order to make the reader comfortable reading in composite Latin, vulgare, Italian and English languages presented in the book, yet never losing historical rigour, we made some choices for multiple forms of names (e.g., Nicolo-NicolòNiccolò) and subjects (e.g., quaestio-questions-propositions). We conserved the original style of numeration to identify chapters (e.g., XIIII, XIX, etc.). About the terms "Jordani" ("Jordanus", "Iordanus") and "Iordani" (as one can often read in the secondary literature) and taking into account both Latin grammar and historical tradition (i.e, see Moody and Clagett [1952] 1960, p 173) in this book the reader will find both cited terms accordingly with specific case. We also precise that in the
secondary literature Opusculum [or Opvscvlvm] de ponderositate (de Nemore 1565) is usual to be read as both "Jordani Opusculum de ponderositate" and "Iordani Opusculum de ponderositate". By accordingly with specific case we used both terms.

We have dedicated one chapter to original texts. In order to present facsimile texts, transcriptions and translations to best advantage, our critical comments are reported in footnotes as well.

Introduction

The practice of science, as well as its history, has for centuries been a leading component of the scholarly work of both the Eastern and Western world. The results of these efforts have mainly depended on individual scientific and disciplinary ambitions that led to their technological innovations. Scientific traditions over the years and contributions by these scientists created a scientific framework in which to interpret celestial and terrestrial phenomena.

The development of astronomy, geometry, physics, mathematics, and science, generally speaking, is also a social phenomenon because it is influenced both by the needs of the labour market and by the basic knowledge of laws of nature. Therefore, the way in which science is framed changes according to modifications of the social environment and the attribute referred to as "know-how".

In the period considered in the book in Europe, a series of wars required new financial supports and new knowledge. Moving of soldiers from one country to another permitted the spread of know-how and competence in practices that were necessary for these people to be recruited: i.e., Tercio in Spain, Légion in France, and Regiment in England. For this reason, and among many social factors, the military literature of the sixteenth and seventeenth century was particularly rich (fortifications, strategy, weapons, etc.). The organization and production of gunpowder evidently created a bridge towards structured recruitments, army training and attack-defence strategies. Therefore, a certain body of knowledge started to spread within early military handbooks (constructions and maintenance of war machines, mathematical and geometrical rules for weapons, battle projects, Pythagorean tables, fortifications projects, measurements and devices, etc.) in which a minimum of mathematical (calculus) basic education was required. For that reason, the scientific education of soldiers and gunners played an important role within the art of war. In the beginning, this social dynamic was randomly undefined and only later became more structured. A prime example was one of the first organized English military education schools, Honourable Artillery Company (1087; 1537). The company built its first Armoury House in London at the site of the Old Artillery Gardens (1622). Consequently, mathematical education and early physical arguments were provided for Fire Master and Master Gunner abilities. The latter were
busy with deployment of cannon, as well as both practical and technological considerations: i.e., brass rather than iron cannonballs, geometrical dimension of a cannon's mouth, angle of fire, use of instruments (i.e., Tartaglia's quadrante). Traditions of families of Italian metalworkers such as Alberghetti, Gioardi, Morando, Borgognoni et al. were representative of this expertise. Thus, standards were evidently sought due to previous unsatisfactory productions of, for example, replicating a series of cannonballs. As a result, a basic but complex scientific and applied knowledge (mathematical, geometrical, physical) was required because, as is still the case today, education in the field of weapons requires more than simply expertise in artillery school (Promis 18081873, 1841; Jähns 1889-1891, Hall 1962, 1997; Henninger-Voss 2002). In our opinion, new advanced geometrization and mathematization of nature were, and still are, needed.

During the long period between the second half of the twelfth century and the first half of the sixteenth century, Italian cities-states were among the most advanced countries with respect to economic structure and development of science. Fundamental to the opening of new perspectives in the development of science was however the development and spread of mathematical knowledge. Starting in the thirteenth century in some Italian regions, an organized mathematical education was developed connected to the prevailing economic and social structure. The way in which mathematics education was structured in Italy between the thirteenth and the end of the fifteenth century is significant and paradigmatic to highlight the influence society can have on education. Mathematical education was organized around the so-called Scuole d'abaco (Abacus schools). Their heritage was influential for mathematical education and important mathematicians who lived in the late Middle Ages and in the Renaissance (Grant 1962; Koyré 1950; Lindberg 1976; Knobloch, Vasoli and Siraisi 2001; Harrison 2006). An emblematic case is that of Luca Pacioli (1445-1517) who, in turn, had a fundamental role in Leonardo da Vinci's (1452-1519) mathematical education (Bagni and D'Amore 2007). Furthermore the Abacus schools had connections with mathematicians such as Scipione dal Ferro (1465-1526), Niccolò Tartaglia (14991557), Gerolamo Cardano (1501-1576), Lodovico Ferrari (1522-1565), Rafael Bombelli da Bologna (1526-1572), who developed algebra and in particular studied the solutions of third and fourth degree equations. The relations among these mathematicians are significant from a scientific, social and anthropological point of view. The present book is concentrated on one of those mathematicians, Niccolò Tartaglia.

The writing of dialogues was not exclusive to Tartaglia. We have dedicated a section below to that topic (Chap. 4). Of further interest are his distinguished interlocutors, his honorando disciples, and anonymous personages such as a "pescatore" (fisherman), an "architettore" (architect), an "inzegnero" (engineer), and a "capo dei bombardieri" (artillerymen head), etc. Tartaglia's language was not only a way to write differently from the official scientific language at that time (Latin), but it was a tentative effort to establish a closer relationship between the traditions of scientists and the traditions of citizens, as well; quite correctly, Gosselin entitled his L'Arithmétique de Nicolas Tartaglia Brescian, Grand Mathematicien, et Prince des Praticiens (Gosselin [1578] 1613). In this sense, by including both amateurs and experts from other not necessarily scientific disciplines, he established clear evidence that the proposed "science-in-practice" would be subjected to sufficiently enquiring criticism from a wide-ranging set of perspectives. Thus, without using the current language of
scientists, Tartaglia chose a simpler form of communication that is the dialogue (as both Plato and Lucian did in the Renaissance) between a specialist and a practitioner. There is ample evidence; e.g., at the beginning of the Quesiti et invention diverse, within the dedicatory letter to Henry VIII, King of England:

> Which thought made me wish (although I lack that eloquence and polish of speech which is requisite to the hearing of your Majesty) that these questions or inventions of mine, with their replies and solutions, might be offered and dedicated - not as something necessary to your Majesty (for indeed even things of profound learning, set forth and explained in elegant and lucid style, could not add to your Majesty's high perfection; let alone these of mine, that are mechanical things, plebeian, and written, as spoken, in rough and low style) but only as new things - I offer them and dedicate them to you [...]
and in the General Trattato:
I am sure that many will be astonished why I wrote the above proportions, both in Latin, within the tradition of our ancient mathematicians, and vulgar, and vulgar and Latin together. ${ }^{2}$

The whole Quesiti et inventioni diverse, which is the main purpose of this book, is presented in the form of a dialogue; further, in Book IX (Tartaglia 1554, Pr. XXVIIXLII) an added method of communication appears, the epistolary. The questions among mathematicians evidently revolved around the problem of solution of the third degree equation; often, the tune echoed mediaeval disputes.

The book comprises ix chapters within four main parts.
At the beginning (Part I, Chap. 1) biographical sketches and philological-historical-epistemological reflections are reported.

In Chap. 2 (Part I) an historical account of Scientia de ponderibus and statics during ancient times and the Renaissance is presented.

We extensively analyse Niccolò Tartaglia's Books VII and VIII of the Quesiti et inventioni diverse (Part II, Chap. 3) from historical and epistemological standpoints. Particularly, this chapter is also devoted to historical epistemology of science presenting an integrated history and epistemology of scientific methods, which combine epistemological and historical approaches to identify significant historical hypotheses within the relationship between physics and mathematics (physical observations and theoretical mechanical modeling).

In Chap. 4 (Part III) we report on translations into English and transcriptions of the main works studied for our research.

Part IV is composed of two chapters. In Chap. 5, we list foreign editions of Quesiti et invention diverse as a component of the history. Bibliographical notes and alleged editions are commented. Finally, in Chap. 6, final remarks end the book. After the reference section, a list of main Quesiti accounts is presented.

We think that the composition of this book makes absorbing reading for historians and philosophers of science, as well as for scientists themselves.

[^0]Come fe dostris procedere uolendo redar uns quantita de fanti in figura Rbombica de
genice. Come fe poteris ordinar uns quantita de fanti, ouer un efferato in uns battaglis cornuta. acar. $50 . a l \mathrm{Ctefito.zo}$.
Come ron elicito uro offercito offefo dalle artegliarie nemichs, a reftringerfi infieme, ne manco a caminste fecondo doe fitrous. acar. s ial Quefito. i 1.
Come fe doneria procedere uolendo in un fubbito ridare una ordinanzs in forma qusdra di gente, in sun forms cunes fenzs defordinare La prima ordinanz4. acarte. s 2. al Qucfito.z $=$.
Con razion §e approus come che eglie poßibile a vitrouar col frequente fuudio modi di ordinar inn effercito quafidi che fattion, ouer autorita f noglia. asar. s3.C. © 54. Elfoggetto delli Qu ufiti del quintolibro.
Come ua fabricato il Boffolo per tor in difegno li fiti pacfi ec le piante delle cittì. 4 carte.s 5.
al Quefto primo
Come fo de proceler a, noler for in difegno in fito, ouer gaefe contenuto da linee reme. a cartc. 56.
al Quefito feconio
Com efe de procedere uolendo tor in difegno tr paefe contenato da lince corue ec rette. a carte. 9.0 . 60.
al Quefito.3.C.4.
Come fide procedere uolendo tor in dif cgno la pianta de mna citta. a car. 6 2.al Q.s. Come fo de procedere uolendo formar un Bofjolo per fo medefjmo © con puoco artefi-

a carte. 62 .al ©arfito.6.

ALLILETTORI,

Cbi Brama di ueder noue inuentioni,
Non tolte da platon, ne da Plotino,
Ne d'alkur altro Greco, ouer Latino,
Ma Jol da Larte, mijura, e Ragioni.
Iega di quefol le interrogationi,
Fatte da Pictro, Pol, Zvamn', e Martino
(Si come, loccores fera, e Mationo)
Et fincluncate, le rcponfioni.
Quidentr'interdara, se non m'inganno,
Demolti effeti affai pecculatiui,
La cuyfa propinqua del fuo damo,
Anchor de molti attio operatiai,
Se uedera effequir con puoc affanno
Neli’arte della guerra Profitiui.
Et molto defenjixi.
Con altre cofe di magno uslore,
Et inuentioni nell arte maggiore.

Tartaglia 1554, Quesiti et inventioni diverse, 3v. In the first lines, just after "ALLI LETTORI." (see image above) Tartaglia declares his main pedagogical originality promising to the readers - in form of a sonnet - that his inventioni do not belong to Plato or other Greek, or Latin thinker, but they derive from Art, measurement and Reasoning ["Chi Brama di veder nove invention, Non tolte da Platon ne da Plotino, Ne d'alcun altro Greco, over Latino, Ma sol da L[']arte, misura, e Ragioni."] (Ibidem).

Contents

Part I Biographical Sketches \& Science in Context
1 Niccolò Tartaglia and the Renaissance Society Between Science and Technique 3
1.1 Niccolò Fontana Called Tartaglia 3
1.1.1 Biographical and Scientific Sketches 4
1.1.1.1 The Roots 12
1.1.1.2 Tartaglia's Education 14
1.1.1.3 Arnaldo Masotti, Tartaglia's Modern Editor 17
1.1.2 Tartaglia's Conceptual Stream in the Renaissance 19
1.1.2.1 Mathematics: The Third Degree Equations 20
1.1.2.2 On the Geometry: Euclid's Elements 31
1.1.2.3 On the Arithmetics: Tartaglia's Triangle 35
1.1.2.4 On Physics: Ballistics 39
1.1.3 Physics and Architecture: On Ballistics \& Fortifications 49
1.1.3.1 On Ballistics \& Technical Instruments in the Nova Scienta 49
1.1.3.2 The Sesto Libro on Fortifications 71
1.1.3.3 The Gionta del Sesto Libro 75
1.1.3.4 The Gionta del Sesto Libro and Architecture 80
1.1.4 On the Opera Archimedis and Archimedis de insidentibus aquae 87
1.1.4.1 On the Opera Archimedis (1543) 87
1.1.4.2 On the Archimedis de insidentibus aquae (1543; 1565) 92
1.1.5 Contents, Former Pupils and Philological Notes 95
1.1.5.1 A Content of Quesiti et inventioni diverse 98
1.1.5.2 Scholars, Former Pupils, Correspondence and Commentaries in Quesiti and Around Tartaglia's Science 99
1.1.5.3 Philological Notes and a Historical Hypothesis 102
2 Ancient and Modern Statics in the Renaissance 113
2.1 The Background 113
2.1.1 The Scientia de ponderibus in the Middle Ages 114
2.1.1.1 The Roots in the Arabic Middle Ages 115
2.1.1.1.1 Thābit's Kitāb fī il-qarastūm 117
2.1.1.2 Continuation in the Latin Middle Ages 119
2.1.1.2.1 Jordanus de Nemore's Liber de ratione ponderis 122
2.1.2 Revival During the Age of Humanism 127
2.1.2.1 A Variety of Approaches to Mathematics 128
2.1.2.2 The Emergence of a New Type of Intellectual Technician: The Engineer 133
2.1.2.3 Leonardo da Vinci's Science of Weights 134
2.1.2.3.1 Powers: Gravity and Force 138
2.1.2.3.2 The Balance and Lever 143
2.1.2.3.3 The Inclined Plane Law 149
2.1.2.3.4 The Pulley, Block and Tackle 152
2.1.2.3.5 The Concept of Momento of a Force 156
2.1.2.3.6 The Law of Composition of Forces 159
2.1.3 Tartaglia's Legacy. A Transition between Science of Weights and Modern Statics 163
2.1.3.1 Statics in Italy During the XVI Century 164
2.1.3.1.1 Giovanni Battista Benedetti 166
2.1.3.1.2 Guidobaldo del Monte 170
2.1.3.1.3 Galileo Galilei 174
2.1.3.2 Stevin's Legacy. The Circulation of Statics in Europe 180
2.1.3.2.1 The Law of the Inclined Plane 182
2.1.3.2.2 Forces' Composition: The Rule of Parallelogram 185

Part II History \& Historical Epistemology Analyses

3 The Analysis of Books VII and VIII of Quesiti et inventioni diverse191
3.1 A Historical Epistemology Outline on Early Statics in Books VII and VIII 191
3.1.1 The Analysis of Book VII (1554) 193
3.1.1.1 The Aristotelian Mechanical Problems 194
3.1.1.1.1 The Accuracy of Balances 194
3.1.1.1.2 The Stability of Balances 196
3.1.1.2 The First Three Quesiti on Accuracy 198
3.1.1.3 The Last Four Quesiti on Stability 202
3.1.1.3.1 The Balance with Fulcrum Above the Beam 203
3.1.1.3.2 The Balance with Fulcrum Below the Beam 205
3.1.1.3.3 The Balance with Fulcrum Inside in the Beam 206
3.1.2 The Analysis of Book VIII 207
3.1.2.1 The Book VIII and Liber de ratione ponderis. A False Controversy? 209
3.1.2.2 The Liber de ratione ponderis 211
3.1.2.2.1 The Suppositions of Liber de ratione ponderis 212
3.1.2.2.2 The Propositions of Liber de ratione ponderis 218
3.1.2.3 The Structure of Book VIII 225
3.1.2.3.1 On the Roots of Notional Elements in Tartaglia's Corpus 225
3.1.2.3.2 The Definitions of Book VIII 227
3.1.2.3.3 The Petitions of Book VIII 229
3.1.2.3.4 The Propositions of Book VIII 231
3.1.2.4 The Proofs of Propositions 239
3.1.2.4.1 Propositions I-IV: Gravitas Secundum Situm 239
3.1.2.4.2 Propositions V-VI: Balance with Equal Weights and Arms 241
3.1.2.4.3 The Proposition VII: Balance with Equal Weights and Different Arms 248
3.1.2.4.4 Propositions VIII: Law of Lever 249
3.1.2.4.5 Propositions IX-XIII: Balance with Distributed Weights 250
3.1.2.4.6 Propositions XIIII-XV: Law of Inclined Plane 254
Part III Translations \& Transcriptions
4 Translation and Transcription 261
4.1 General Considerations 261
4.1.1 Quesiti et inventioni diverse (1554) 262
4.1.1.1 Tartaglia's Language 262
4.1.2 Philological Notes on Iordani opusculum de ponderositate (1565) 263
4.1.3 Book VII of Quesiti et inventioni diverse (1554) 265
4.1.3.1 The Facsimile and English Translation 265
4.1.4 Book VIII of Quesiti et inventioni diverse (1554) 284
4.1.4.1 The Facsimile and English Translation 284
4.1.5 The Italian Critical Transcriptions 348
4.1.5.1 Book VII (1554) 348
4.1.5.2 Book VIII (1554) 358
4.1.6 Iordani opusculum de ponderositate (1565) 390
4.1.6.1 The Facsimile and Critical English Translation 390
4.1.6.2 The Latin Critical Transcription 416
Part IV Circulation of Knowledge \& Conclusion
5 Foreign Editions of Quesiti et inventioni diverse 457
5.1 An Outline 457
5.1.1 Quesiti Foreign Editions 458
5.1.1.1 The Foreign Editions, 1547-2010 458
5.1.2 Bibliographical Notes 461
5.1.2.1 Uncertain Dates Around Partial and/or Alleged Quesiti's Editions 461
6 Conclusion 465
6.1 Concluding Remarks 465
References 467
Microfilm Tartalea 489
Main Quesiti Accounts 491
Index 493

Part I Biographical Sketches \& Science in Context

Chapter 1
 Niccolò Tartaglia and the Renaissance Society Between Science and Technique

> Ma poi fra me pensando un giorno, mi parve cosa biasimevole, vituperosa e crudele \& degna di non pиoса punitione appresso Iddio \& alli uomini a voler studiare di assottigliare tal essercitio dannoso al prossimo, anzi destruttore della specie umana \& massime de Cristiani in lor continue guerre.

(Tartaglia 1537, Epistola, 5rv, line 25).

In this section, biographical sketches and philological-historical-epistemological studies are reported. In particular, we present Tartaglia's study of mathematics, geometry, arithmetic, ballistics and fortifications.

1.1 Niccolò Fontana Called Tartaglia

Tartaglia produced crucial contributions to mathematics, physics, and to the application of architecture, scientific foundations of ballistics, criticism to Aristotle's lever, statics, the measurement of calibres and land surveying and fortifications. He discussed them principally in General trattato di numeri et misure (Venice, 15561560), Nova scientia (1537, III Books, 1550 with a Gionta to 3rd Book) and in Quesiti et inventioni diverse (1546,1554). He is also well-known for the resolution of third-degree equations and his discussions with Cardano and also as editor of the Italian translation of Euclid's Elements titled Euclide Megarense (Venice, 1543a). His contribution on science of weights-mechanics mainly concerns Scientia de ponderibus: Book VII recalls a question of Mechanical Problems, Book VIII is inspired by Book I of the Liber Jordani de Nemore de ratione ponderis, and is both an epitome and a paraphrase of it.

According to the title page of Quesiti et inventioni diverse, Tartaglia was 45 years old.

1.1.1 Biographical and Scientific Sketches

Niccolò Tartaglia ${ }^{1}$ was born in Brescia, and presumably (not historically proved) between the end of 1499 and the beginning of 1500, and died in Venice "[...] poor and alone [...]" (Masotti 1970-1980, 13, 259), during the night between the 13th and 14th of December 1557, "[. . .] in the Calle del Sturion near Ponte di Rialto.

In the Venezia notary's archive, a document (Filza 168.VII; N.119) exists. It includes his last will and testament (Boncompagni 1881) written on Friday 10th December 1557, by "Nicolai Tartalea Doctoris Mathematicarum" (Ivi). It notes the exact date of Tartaglia's death: "Obijt die Lune hora septima noctis. xiij xbris", that it is the hour (italic) seventh of night (midnight) on Monday 13 towards Tuesday 14 December.

In previous studies, Antonio Favaro (1847-1922) found a civil status certification (Archivio di Stato di Verona) attesting that the mathematician was 30 years old in 1529; thus, Tartaglia's date of birth was consequently inferred. ${ }^{2}$ Concerning the date of death, it is indicated in his testament (10th December 1557), as subsequently added on by the Venetian notary Rocco de Benedetti (fl. 1556-1582) who also edited the certificate:
MDLVII. Die Veneris Decimo m(ensi)s. Xbris [. . .] objt. Die Lunae hora septima Noctis. Xiij. Xbris supti. ${ }^{3}$

The original testament states:
I Nicolo Tartaglia Doctor of Mathematics [...] being now in bed diseased by a serious illness, list my personal belongings. ${ }^{4}$

He left his belongings to his heirs, including his publisher Curtio Troiano Navò, ${ }^{5}$ also called "Troian Navò librer all'insegna del Lion" (Ivi) and named "commissioner and executor of this my last testament [commissario et executor di questo mio ultimo testamento]" concerning his notes, manuscripts and latest books which

[^1]had not yet been sold. According to his testament, at the end of 1557 (Ivi) Tartaglia had Parts I and II of his General trattato di numeri et misure published by Curtio Troiano Navò (1537-1566); and in 1556 he already had Parts III and IV as well, which were posthumously published in 1660 . At this stage, Favaro (1882, 32-32) contested a publishing problem ${ }^{6}$ that concerned the title page and contents of the work: the replacement of the Parts III and IV belonging to the original title page and to the colophon, and other random pages with new pages (reporting dates, supposedly, 1556 or also 1557 , as effectively is written in the colophon of Part IV, would attribute the publishing to Comin da Trino, in 1557), having posthumously dated the manuscript as being published in 1560, as most surviving specimanuscripts show.

With regard to his legacy, Tartaglia wrote:
I have books [manuscripts] of my general trattato de numeri et misure (first) [part] 2.nd (second [part]) 3.rd (third [part]) and 4.th (fourth) part, and my Quesiti et invention diverse around four hundred copies [...] Idem I have around .60. books of the travagliata inventione et ragionamenti [. . .] Idem several books used for my research, [cost] estimated around one hundred [Italian] ducati [...] Idem I have around forty books of the nuova scientia [...] I have a collection of several books from Paris, which I am going to sell. ${ }^{7}$

The notary (1557, 16 December) upon request by the executor, Curtio Troiano Navò, first wrote up the inventory (Tonni-Bazza 1904b, 7-8, 297-298) regarding the books belonging to Tartaglia and the following day (17 December) wrote up the inventory concerning furnishings and belongings (Ibidem). In the following section, we present the early notary's quotation as regards books possessed by Tartaglia (Figs. 1.1 and 1.2):

[^2]
- 297 -
 **

Un altro documento, fin qui inedito. che pure esiste nell'Archivio di Stato di Venezia, è l'inventario dei beni posseduti dal Tartaglia (${ }^{1}$).

Il 13 dicembre 1557 , a soli ciuquantasette anni, il grande precursore di Galileo moriva.

Tre giorni innanzi egli avera dettato il suo testamento, il quale mette in evidenza lo stato di povertà in cui si trovava uno dei più benemeriti cultori della scienza, alla fine di una vita tutta dolorose vicende e consacrata alla scienza.

E il 16 dicembre, lo stesso notaio che aveva rogato il testamento, stese l'inventario dei libri; il di successivo l'inventario dei mobili e degli indumenti appartenuti al Tartaglia.

Codesto non breve inventario è lo sfondo di un quadro, a linee incerte, ma di cui il soggetto sconforta!

Sono i libri e le poche suppellettili appartenute all' insigne Maestro, che vengono elencate in una lunga litania, in cui troppo spesso si ripetono le parole - logoron, - strazzado ", - vecchissimon ; è una squallida abitazione povera ed angusta di uno dei quartieri più popolari della bella Venezia, che ci si presenta alla immaginazione nella sua fredda tristezza: e, fra questa desolazione, la figura del Grande ci appare ancor più severa e raggiante.

Ecco tale inventario:

Die Jovis XVI Decembris. In Domo habitationis in pacripti D. Troiani commissaris posita in confinio Sancti Salvatoris

Inventarium librorum omnium quondam dom: ${ }^{\text {ni }}$ Nicolai Tartalea Doctoris Matrematicarum quondam domini Michaelis Briscia factum ad instantiam domini Traimi Navò Bibliopolo ad insigne Leonis in Marzavia cius commissaris rigore sui teatamenti rogati penesme Notarium sub die decimo mensis Decembris. Et prima

167 . opere del Tartaia de numeri omisure parte prima et seconda
15L della terza parte
150. della quarta parte in foio
5. Recettaris de spicieri, doi guasti da sorzi in 12
2. Epistole tulis familiar d'Aldo in 8
8. Teentis di stampa d'Aldo in 8
2. Letere de diversi libro 6 in 8
(1) Atti lel veneto notaio Rocco de Benedetti, 1556-1558, volume primo, carta 357.

Fig. 1.1 The number of the works cited by Notary (Tonni-Bazza 1904b, pp 297-300; see also the document in Venezia as above cited: Filza, 168.VII; N.119; and Tonni Bazza 1900, 1904a)
2. Oribasi di stampa d’Aldo in 8 un rotto
2. Epistole de Tulio d'Aldo vulgar in 8
2. Hieronysmi Ragazzoni in epistolis Ciceronis in 8
2. De Auctoritate Pontificis
2. Ettiche del Figlinzzi in 8
4. Virgili d'Aldo in 8°.
4. Ricchezze della Lingua vulgar in foglio

1. $2^{\text {a }}$ parte dell'historie del Jonio in 4 strapazza
2. Consilia Boeris in 8
3. Hieronimi Vida in 16
4. Amoni in 16
5. Montan in Aphorismos in 8
6. libri del battizar in 8
7. Gioan Gierson in 16
8. Dialettiche Cesaris in 8
9. Gioan Forneli in medecina in 8
10. Qnisdem medendi ratio in 8
11. Ovedo die in i officis in 8
12. Floratis con com: ${ }^{10}$ a un li manca in fine in foio
13. Pratiche Farneli una imbrattà assai in 8
14. Iratiche del Valeriola in medicina in 8
15. Gian Batta Montan. in Artemp rimam Galleni in 8
16. Opera del Montan. in 8
17. Sacerdotalie in $4 .^{\text {to }}$
18. Lexicon in greco in foglio
19. Almanach uno ruinato in 4
20. Testamenti novi in 16
21. Dialogo della Sanità in 8
22. Suetonio vulgar in 8
23. Marco Marulo di fatti d'herenle in 8
24. Historia di Marco Ruffo p. ${ }^{\circ}$ in 8
25. Dialogo della musica in $4 .^{\circ}$
26. Motteti di Francesco Lupino in $4 .{ }^{\circ}$
27. Logica del Piccolomini in 8
28. prima parte della filosofia ciusdem in 8
29. Costantin Cesari vulgar in 8
30. Summa Conciliorum in 8
31. Epistole Ovidis con comento in foglio
32. Lasoni in artem peticam horatis in 8
33. P'almerin d'Inghiltera in 8
34. Marco Aurelio in $4 .{ }^{\circ}$
35. Opera del Mechiaveli in $4 .{ }^{\circ}$
36. Natalis comit um de horis in 8
37. cinsdem de venatione in 8
38. Ragionamenti del Caggio in 8
39. 15 libri di Euclide latino in 8
40. Dialogo dell'anor divino in 8

Una balla de libri da l'aris nominata nel testamento.

Fig. 1.2 The number of the works cited by Notary - Continued

The document also reports other belongings (Fig. 1.2bis):

In calce. Testes. Michael specularius ad insigne pomi aurei in marzaria quondam ser Symonis-Ser Octavianus de Ripa a coloribus insigne Rose in calle ab aquis testibus vocatis et rogatis.

Die Veneris XVII dicti. In domo habitationis defuncti posita in confinio Sancii Silvestri. Aliud inventarium rerum mobiliura suprascripti quondam domini Nicolai repertarum in eius domo. Et prima

In la sua Camereta 2 casse depente. In una cassa. Dieso camise tra vecchie e nuove da homo, quatro lenzuoli usadi. Doi strazze grande, sei fazzuoli da viso di tela grossa, 4 calaori piceli, 4 mantilli vecchi, sei brazza di tela in circa da entimelle, 4 entimelle usade 3 depente di negro, 5 tovaiuoli usadi. Un luti mela vecchia con do scuffie di bombaso, do fasse, cinque scarpete, una masseta del fil, una porcetera, una chiare, nove lire de fil de la grossa. La sua vesta ingraspata vecchia.

In altra cassa: Una vestizuola di mocaiaro vecchio fodrà di volpe vecchie. Un saggio di veludo vecchio. Un tabareto di panno negro vecchio. Una vestizzola fodrà di dossi pelai vecchissima. Una vestizzola strazzada di mocaiaro vecchissima fodrà d'Albertoni vecchi. 4 barette alla forestiera vecchie. Non so che privilegij di sue opere.

In un altra casseta:
4 pera di calzoni di panno vecchio scavezzi. Doi Ziponi di mocaiaro vecchi. Un Zipon d'ormesin di certo colore vecchio. Un Zipon vecchissimo di fostagno. Un Zipon con il casso mezo di vaso. Una vesta, et una vestina di ciambelotto usade. Una vesta usada, et una vesteta di moariaro strazza vecchia. Una vesteta di panno vecchio. Una strazza di sarza da donna. Una vesteta di mocaiaro vecchio, 3 calcete. Un mazzetto di strazze.

In una cassetta:

Do pera di scarpette di rassa. 4 colari di tela. 5 scuffie. Un rechin di bombaso. 3 para di scarpete, un mazzeto de cordette de tela.

In un banco da letto.
3 lenzuoli sporchi vecchi, 4 camise sporche vecchie, et na bona. Un saccho. Un mantil vecchissimo. Un pezzo de canevazza et duci fazzuoli da man vecchi. 12 tovaioli sporchi vecchissimi, 2 camisuole di bombaso, 4 scuffie sporche, et 2 pera di scarpete. Un intimella usada. 20 fazzoleti sporchi fra boni e cattivi.

In un forciereto. In un coffaneto coverto di cuore, drente cinque bossoli tra grandi, e piceli, in un di queli vi son 4 anneli per quel si vede d'oro uno scavezzo et una vera, et in un altre alcune piere et una capota dorada, un fiaschette picelo, et un pezeto de lapis. Un scritto di Giordan Zileti librer de D. 100 de di 12 Decembrio 1556. Un scritto de D. 74 de ser Santo Guerin librare sette di 29 Novembrio del 55 ed una sententia sette di 10 Marzo 1557 fatta sopra esse scritto. Un pesete de lin circa 8 enze. Una lettiera di negherà vecchia. 4 lenzueleti strazzadi vecchissimi. Doi cussineti di piuma con la sua intimela. Do coltre bianche usade bone. Un altra vecchia. Do cussini vecchi di piuma. Tre cavazzali de piuma beni. Un paiarizzo. Un letto di piuma vecchissimo. Un letto di piuma buono. Una carioleta de negherà col sue lette de piuma.

Fig. 1.2bis The belongings held by Tartaglia and cited by Notary (Tonni-Bazza 1904b, 299-300)

Una credenza de noghera con vasi, et altre bagaie con un pezze di banchal vecchissime. Panni vecchissimi vergadi della camera con 2 pezzi a torno il letto. Un tapedo vecchissimo strazzado. Un bancheto in foggia di scagno con sqnarzasoi drente. Un mortareto di bronzo. Un specchie. Una pezza di tela intorno al camin.Una balla de libri da Paris nominata nel testamento. Una foghereta di rame. Un trapie. Un banchetto con diverse cassellete con squarza foi. Una Zangola.

In cosina:
Una staiera, una fersora con una fersoreta, et un altra fersora col manego, do caene da fuogo, una gradela, un coverchieto da farsora di rame. Una saliera di legno, 4 cazze de ferro. Do lavezzi, una calderuola, una cazza, 4 secchi mezzani, una caldiera di rame de do secchi, do tamisi, do pitari da oio, 3 tondini de laton, 6 sculieri de laton rotti. Una rassaora, uno scolaor da pozzo, 18 tra scuole e piadene 2 quarte in una circa, 3 secchi de vin bianco. Una mezaruola. Do secchieti da vin. Una paleta. Do candelieri de laton. Un banco, 2 pignate, una tecchia, un intian, meza corba de carbon. Un banco e do scagni.

In Portegheto: Un Forcier con squarzafoi, un altro forcier con alcuni gotti. Un scagneto da magnar al fuogo. Un bancho con do banchi. Un scaldaleto picolo.

In magazen:
Cinque carra in circa di legna.
ser Aloysius Georgij sutor Eivalti in dorai Sancti Marci domini Joanis Lipomano.
ser Marius Brixiensis fo ser Ioanis lacobi Cozzerij in Briscia.
Domina Helena Zambelli quondam domini Hieronimi uxor ser Joanis aurisicis.
Domina Marieta uxor domini Benedicti Alexandri staierarij in presentis dominis penes domuni defunti.

Fig. 1.2bis (continued)

Among Tartaglia's unsold books and the collection of Parisian books, there is a quotation concerning 51 other books, for a final collection of 134 volumes, which according to the testament - was worth approximately one hundred ducati.

Therefore it seems noteworthy to us that Tartaglia, at the time of his death, was not in possession of either of the two Latin editions of Euclide that he used, which were in- f°, neither the edition edited by B. Zamberti [see 1505], nor G. Campano-L. Pacioli's edition [see edition of the 1509]. ${ }^{8}$

[^3]An early and very short biography on Tartaglia was written by Bernardino Baldi's (1553-1617). Nevertheless he referred to an oversight concerning the date of 1567 (since Tartaglia died in 1557):
1567. Nicolò Tartaglia Bresciano, of humble birth, studied mathematics and particularly Geometry \& Arithmetic with so much genius that he excelled with respect to other scholars of his time. He wrote Euclid's Elements in vulgare [Italian] language and also gave lectures in Venice on this subject. He wrote many works concerning the motion of heavy bodies, artillery shots [ballistics], fortifications, measurements by sight, \& other [scientific] similar things, and finally he wrote two huge volumes regarding all necessary aspects of Arithmetics and Geometry as both theory and practice. He was an adversary of Girolamo Cardano and disagreed with some of Cardano's works. He paid so little attention to language that it brings a smile to the face of those who read of his works. ${ }^{9}$

It is possible to find Tartaglia's biographical sketches and quotations on his science throughout history. We concisely report some of them below (Table 1.1). ${ }^{10}$

Table 1.1 Tartaglia's main biographies and references to his science in history

Date	Author	Source/Title	Refs.(folio/p)
1707	Baldi	Cronica de 'matematici ovvero Epitome dell'istoria delle vite loro	
1564	Castriotto-Maggi	Della fortificatione delle città	7r; 11v.
1581	Del Monte	Le Meccaniche dell'Illustrissimo Sig. Guido Ubaldo dè Marchesi del Monte	$5 \mathrm{v} ; 6 \mathrm{v} ; 8 \mathrm{v} ; 9 \mathrm{r}$.
1585	Benedetti	Diversarum speculationum Mathematicarum et Physicarum Liber	92-96; 105; 111-112; 114115; 148-151. In particular, he mentions the wrong Aristotelian assumption on free fall shared by Tartaglia, as well (168); and "bombardae diversas elevations (258-259).
1644	Torricelli	Opera Geometrica (Book II)	227.
1797-99	Cossali	Origine, trasporto in Italia, primi progressi in essa dell'Algebra; Scritti di Pietro Cossali.	96-158. In particular, he cites passages on the Book IX of Quesiti et invetioni diverse.

(continued)

[^4]Table 1.1 (continued)

Date	Author	Source/Title	Refs.(folio/p)
1810	Marini	Biblioteca istorico-critica di fortificazione permanente	XII. In particular, he cites Tartaglia as the first to publish innovations on fortifications with bastions.
1841	Di Giorgio Martini	Trattato di architettura civile e militare (by Carlo Promis)	Vol. I, Parte I, 248, footnote 1; Vol. II, Parte II, 5, 77-78, 88, 104; 151; 165; 207; 293. In particular he writes a short biography ("Memoria I", chap. XXVI, 69-71).
1854	D'Ayala	Bibliografia militare italiana e moderna	123; 155-156, 180.
1941-43	Uccelli	Enciclpedia storica delle scienze e delle loro applicazioni	Vol. I, 31-34
1891-00	Caverni	Storia del metodo sperimentale in Italia	Vol. I, 52-54
1880-19	Favaro	Lo Studio di Padova al tempo di Niccolo Coppernico; Le Matematiche nello Studio di Padova dal principio del secolo XIV alla fine del XVI; Intorno al testamento inedito di Niccolò Tartaglia pubblicato da D. B. Boncompagni; Per la biografia di Niccolo Tartaglia; Di Niccolò Tartaglia e della stampa di delle sue opere con particolare riguardo alla Travagliata Inventione; Niccolò Tartaglia e la determinazione dei specifici; Leonardo Da Vinci e Niccolò Tartaglia, in Scoprendosi il monumento a N. Tartaglia; A proposito della famiglia di Niccolo Tartaglia; Notizie storico-critiche sulla divisione delle aree	Many quotations.
1897	Vailati	Dal concetto di Centro di Gravità nella Statica di Archimede; Il principio dei lavori Virtuali da Aristotele a Erone d'Alessandria; Per la preistoria del principio dei momenti virtuali.	$101-112$ 113-128. In particular, he cites the lack of quotations (concerning De ponderibus) by Tartaglia (Quesiti, 1554) versus de Nemore (122, ft. 2); 225232
1919	Marcolongo	Lo sviluppo della meccanica sino ai discepoli di Galileo.	95; 98; 108; 112-113; 114, ft. 1 ; In particular he discusses the lack of quotations (concerning Elementa Iordani) by Tartaglia (Quesiti, 1554) versus de Nemore (95).
1914-33	Loria	Le scienze esatte nel'antica Grecia; Pagine di storia della scienza; Storia delle matematiche;	$\begin{aligned} & 193-194 ; 291-292 ; 592 \\ & 84-87 ; \\ & 287 ; 299 ; 302-306 ; 309-314 \end{aligned}$

1.1.1.1 The Roots

Due to some uncertainty of the information on Tartaglia's birth, the origin of his lineage is also unknown. He experienced a tragedy in 1512 when the French invaded Brescia during the War of the League of Cambrai. The militia of Brescia defended their city for 7 days. When the French finally broke through, they took their revenge by massacring the inhabitants of Brescia. By the end of battle, over 45,000 residents had been killed. During the massacre, some French soldier at Gaston de FoixNemours (1489-1512) sliced Niccolò's jaw and palate with a saber. Concerning this event, a suggestive autobiographical tale, with Signor Priore di Barletta as interlocutor, can be found in Book VI dei Quesiti et invetioni diverse ${ }^{11}$ (Tartaglia 1554, Q VIII). In the tale, Tartaglia's father is mentioned, and the author reports that he can remember hearing his name, "Micheletto Cavallaro", ${ }^{12}$ an employee riding horses for the postal service; he also reports the frightful battle (sack) of Brescia (19th February 1512) which made him an orphan, and which also caused him five serious wounds on face and head. Such injuries generated a temporary speech impediment, which seems be the origin of the surname Tartaglia (stammer). He was alone with his mother and two siblings, and they were impoverished (Fig. 1.3).

[^5]
S E S TO

Fimilmente netli baludurdiui íconuengono cofi großipezzzi,perche lipezzigroßifo= no (fecondo il mio parere) folamente per rovinar ic mura delle citta, er non per tirar nelle efferciti, e li pezzi ipicoli, e meggiani, fono per tirare nelle ordinanze, oucr nelli eßerciti, © non per rouinar le mura delle citta, percbe un pezzo piccolo, ouer un meggiano, à me mi pare effer di tanta faccione, per tirare in una banda de fantaria che uenilfc fotto d tal citta, quanto cbe faria un canon da. 50.0 ouer da. 100 . © forfi piu.
P. Quefta uoftra opinione non me difiace, perche un facro, er altri pezzi fimili, nel tempoche uorra uno di dettipezzi großià tirarlo due uolte, /e potranno tirare tre uolte, © for $/ i$ piu, e tanto offetto farra for $\beta 1 \mathrm{luno}$, quantol alero per caddunna uol ta. N. Cofie idacrederc, oltra che fariano dimolto menor ρ Pefa, etoccuparimno mant co luoco. P. Certamente penfando fopradi uoiftago ftupefatto, che non bauendo uoi mai tiratto, ne dilettato da tirare di arteg liaria, arcbbibufo, nc f/bioppo, ne e eferui gia mai effercitato, n ell' arte militare, ne praticato doue fe fortifich i alcuna cittst, oucr for $=$ tezza. Et cbe ui baftil animo non folamente di parlare, ma ditrattar di queste cofe. N. Ilnon $\dot{\text { eda }}$ marauigliarfi di quefo, percbel'occhio mentale ucde piu intrinfeca= mente nelle cofe generale, di quello, che fal occbio corporale, nelle particolarc. P. Di temi un poco, ue aricordati bauermi conofciuto, quando che io flantiunu a $\mathrm{Bref} / \mathrm{d}$ N. Mencariccordo Ω, quätunqueà quel tempo io fuffe molto piccolo, ev per tal $\beta=$ gnale uof ita Signoriastantiaus in qucll contrata, cbe e frali Carmini, © Santo Cbri foofolo, ouer Santa Cbiarra nuous. P. Voi diceti li uerita. Ditemianchors, come fe chimaua wofro padre. N. Mio padre bebbe nome Micbele. Et percbe la natura non glifu manco auard in dare à fus perfonagrandezza conneniente, di quello, cbe fu
 Ianatura fualguanto aurra, in dare alla perf ona di woftro padre grandezzaconuerien te, nanche con woie fata molto liberalle. N. Io me ne allegro, percbe Pe ffer di perfo nacofi piccolo, mi fateftimoniaza che ueramente fuii fuofiglio, percbe ancbor cbc il non mi lafciaffe al mondo, à me con un'altro mio fratello, ec due forelle, quafifaluo, cbe leffer per buona mecmorid de lui, mil baffabatur fentitoi dire da molticbe il conoffcus - praticaua, che eglier a buomods bene, della qual cof a molto pia me ne contento, © allegro di quallo baucris fatto fe mi baxucfe lafciato dimolta facolts con un triftono me. P. Cbeefercitio faceuauoftro padre. N. Mio padretencua un cauallo, O con quello correusalla pofta ad ifantria di Canallari da Bref/d, cioc portando letere della
 P. Dicbe coffatafec cbiamalus. N. Per Dio cbe iononfo, neme aricordo de altra fus cafats, ne cognome, faluo che fompre ilfentei ds piccolino cbiamar finplicemente Ni cbeletto Cauallaro, potrise effer cbe bsueffe bautso qualcbe altra cifata, ouer cogno $=$
 anni fciuel circca, ev cofircctai io, © un'altromio fratello (pocomaggior dime) er una mia forella (menora dime) infience con nostra madre ucdous, © liquidsdi bcni delld fortuna, con is quale, non poco dapoif fuffemo dalli fortunn conquaf)ati, cbe i ito lerlo raccontax /aria cofs longs, , Lqual cofa mi detedx penfare in aliro, che de inque $=$ viredi cbe cafatafecbiamafemio padre. P. Non fapendo di clec cijataficchimaffe

Fig. 1.3 Plates on speeches by Tartaglia around his childhood (Tartaglia 1554, VI, Q VIII, 68rv-69r, from line 18)

1.1.1.2 Tartaglia's Education

Concerning his childhood education cited above, it is important to note that in the National Archive of Verona (Archivio di Stato di Verona), where his testament (Bittanti 1871; Tartaglia 1554, Q XX) is preserved, Tartaglia mentions his brother with the surname "Fontana". ${ }^{13}$ As also emerges from the following passage from Quesiti, after the loss of his father, Tartaglia was left alone with his mother, conserving the memory of a difficult period in which he was also forced to abandon his studies due to a lack of money to pay the teacher (Tartaglia 1554, Book VI, Q VIII). Therefore, he learned the rest on his own which makes him twice as worthy of attention (Fig. 1.4).

[^6]
LIBRO

wifro padre, perche ue cbiamati cof Nicolo Tartaglia. N. Io ue diro, quatndo che li Frar cefi faccleggiorno Breffa (nel qual Iacco fu prefo la bona memoria del Magni fico mefficr Andrea Gritti(i quel tempo Proueditore) er fu menato in Franza, oltra che ne fu fualifata la cafa (ancbor cbe poco uifufe) ma piu, che efferdo io fuggito nel domo di Breffa inficme con miamadrc, er mia orelld, er molti altri buomini, © done ne della noffra contrata, credendonc in tal luoco effer falui ilmen della perfona, matal perficr ne ando falito, perche in talcbiefa, alla prefentia di mia madre mif fur datecin que ferite mortale, cioc tre fu la testa(che in cadauna la panna del cervello of uedeus) er due fula fazza, cbe cela barba non me le occultaffe, io pareris un mositro, frale quale und ue ne baucuad traukrfo la boced, ©r denti, la qual della majeld, e palato fupcriore me ne fece duc parti, er el medefino della inferiore:per la qual ferita, non folamenteio non poteus parlare (faluo, che in gorga, come fanno le gazzole) ma man cbe poteua manzare, percbe io non poteus moxere la bocces, nelle maffele in contoale cuno,per effer quelle (come detto) infleme con li denti tutte fractaffate, talmente cbe bijognatua cibarme folamente con cibiliguidi, ev con grande induftria. Ma piuforte che à mia madre, per non baker cofili modo dacomprar li unguenti (non cbeds twor medico) fu aftrettd à medicarme fempre di fus propria mano, or nos con iagguntiti, ma folamentecon el tencrminettate le ferite epoffo, ev tolfe tal effempio dalicant, cbe quando quellifitrouano feriti if \int anano Jolamente con el tenerfi netta la feritscon La lingua. Con la qual cautella, in termine di pocbi meli me riduffe à bon porto, bor
 tempo, che io non poteuaben proferire parole, ms /empre balbutaua nel parlare, per caufa di quella ferits à traucrfo dellı bocca, or denti(non ancbor ben cófolidata) por itche li putti della miacta con cbiconuerfaua, me impofero per fopra nome Tarts glid. Et percbe talcognome me duro moito tempo, per bona memoria di tal mia die fgratia, meapparfo de uolermi chiamare p Nicolo Tartaglis. P. Diche cts cratc noi iq quel tempo. N. De anni.i2.uel circa. P. Certansente la fu cof a molto crudele $̀$ ferire un putto di quella cta, auifandoui, cbe mimaraugliana di tal nof fro stranio co gnome, pche à me mipareua dinö buucr mai alduto ne fentito à nominar unatal cafa cain Breffa. N. La cofa sta precifamente, come bo narrato duofira Reuerentia. P. Cbe fu uoffro preccttore. N. Auanti, cbe mio padre moriffe, fuimandato als quantimefì a fola di leggere, ma percbe à quel tempo io era molto piccolo, cioe di eta de annicinque in/ci, nö me aricordo el nome di tal maeffro, uero $\dot{\text { é }}$, cbe effendopoi di etadianni. 14 .uel circa. Andei wolontarimmentecirca giorni. 25 . if fola de foriuere da uno cbiamato maffro Francef(co, nel qual tempo impardia farela. A.b.c.per fin al K. de lettra mercantefcs. P. Perchecofiper fins al. k.ev non piu oltra. N. Pere che li termini del pagamento (con el detto ntaffto) erano didarni el terzo anăati irat to, er un'altro terzo quando cbe apeua farcla detta. A. b. c.per fins al. .k. © al refo quando, cbe fapeuafare tutraladetts.A.b.c.e perche al detto termine won mitrous ust cofit danaride far el debito mio (e defiderofo de imparare) cercai di bavere alces ni difuoi Alphabeti compiti, er offempide lettera fcritti di fua mano, ©r piu non ki tornai, perche Oprade quelli imparail damiapoffa, er cofida quel giorno in quas,mid

Fig. 1.4 Plates on speeches by Tartaglia around his education (Tartaglia 1554, 69v-70r, from line 15)

$\begin{array}{lllll}5 & E & \text { S } & 0\end{array}$

70 piif fui, ne dindaida alewn'altro precettore, ma folamentein contpagnia di und figlia di pouerta, cbimata Induftria. Soprale opere de gli buominidefonticontinuamente mi fon trausglidto. Quanturgue dells etd d'arni uinti in qua fempre fiaftato da non poca cura fanigliare straniamente impedito. Et finalmente poi la crudel morte mi ba fatto refare nouamente poco men che folo. P. Non bauetif fatto poco, baucndo baumto cu ra famigliare a frequentar elfudio. SER V O. Signor, eglie fonato cinque bore. P. Qucfonostro ragionamento éfato molto piu longo del jolito, e pero uoglio fics ciamo fine, izi prego, che piu prefto, che poretti, me fatti quelli modelli, perche nolto de fiderodiuedergli. N. Non mancaro defolictudinc. P. Ditemi un poco, uolendo far queffi modelli, non defignarcti prima le fue piante. N. Senza dubbio della maga gior parte defignaro prima le fuc piante, o dapoi fopras quelle andaro eleunndo le fue cortine, e baluardi, fecondo, che occorrera. P. Havero molto accaro, cbe coz me bauereti defignate le dette piantc, fubito me le fatte uedere, er defigntele tutte pur fopra la pianta de Turino, perche ami me pare,che tal forma de Turino (come nel primcipio ue difi) non fi poffa megliorare. N. Faromolto uolentiera, er diquea fo in breue me ne ipediró, perche le piante fe defignarä prefo. P. Et quefo équel lo, cbe uoglio dire, che le ipedireti piu prefto. Et Peffe uoltetanto co intende la co/a fopra della pianta, quanto cbe fopraun modellode releuo. N. Co $f i c$, $₹$ f e pur uif f ra qualche particolarita, che nella pura piantanon $/ \mathrm{ipo}$ ofa dimofirare, cercarcmo de delucidarla con parole, © feper cafo con quelle non potro fodisfarc uoistra Signoris, La farcmo poide releuo. P. Alls buon'bora fa.

Il jine del fato Libro.

$$
s i
$$

Fig. 1.4 (continued)
Thus Tartaglia only learned half the alphabet from a private tutor, called Maestro Francesco Feliciano ${ }^{14}$ (da Lazise: fl 1500s), before funds ran out "[...] but by the time he reached " k ", he was no longer able to pay the teacher." ${ }^{" 5}$ Thus, he had to learn the rest for himself. Be that as it may, he was essentially self-taught and
[...] never returned to a tutor, but continued to labor by myself over the works of dead men, accompanied only by the daughter of poverty that is called industry. ${ }^{16}$

[^7]He and his contemporaries, working outside the academies, were responsible for the spread of classic works in modern languages among the educated middle class.

Finally, Tartaglia was a mathematician, an architect (designing fortifications), a surveyor (nowadays we can speak of topography, seeking the best means of defense or offense) and a bookkeeper from the Republic of Venice. He published many books, including the first Italian translations of Archimedes and Euclid, and an acclaimed compilation of mathematics. Maybe Tartaglia was one of the first to apply mathematics to the investigation of the paths of cannonballs (Capecchi and Pisano 2010a; Pisano 2007; Pisano and Capecchi 2010a). His work was later validated by Galilei's studies on falling bodies. He also published a treatise on retrieving sunken ships. His edition of Euclid in 1543, the first translation of the Elements ${ }^{17}$ into any modern European language, was especially significant. It is know that some current Latin translations (mostly taken from an Arabic source) contained errors in Book V, the Eudoxian theory of proportion, which rendered it unusable. Tartaglia based on Zamberti's Latin translation of an uncorrupted Greek text, and rendered Book V correct. He also wrote the first modern and useful commentary on the theory. Later, the theory was an essential tool for Galileo, just as it had been for Archimedes (Pisano and Bussotti 2012, 2015f).

An important collection of Tartaglia's works was studied and archived by Arlando Masotti, distinguished scholar. His works and archives constitute a great contribution to the history of science, among which the biography in the Dictionary of Scientific Biography (Masotti 1970-1980, 13, 158-262; see also in Italian, Dragoni, Bergia and Gottardi 2004, p 1408), the Archivio Niccolo Tartaglia, made up of card catalogues and historiographical binders divided by theme, photocopies, and of the Fondo Arnaldo Masotti, which today is preserved at the Biblioteca Centrale del Politecnico di Milano.

1.1.1.3 Arnaldo Masotti, Tartaglia's Modern Editor

Arnaldo Masotti (Fig. 1.5) was born in Milano (Italy) on November 18th 1902 and died on July 11th 1989. He attended "C. Cattaneo" a technical Institute (secondary school) within the physics-mathematics section. Then he studied Industrial engineering (1924, R. Polytechnic of Milan) and Applied mathematics (1926, R. University of Milano) delivering a dissertation in hydrodynamics. Mentored by Umberto Cisotti (1882-1946), he became a professor of rational mechanics at the Faculty of Architecture of the Polytechnic (1933). Despite his early works on hydromechanics based on his studies with Cisotti, subsequent works dealt with potential theory of electrostatics, electrodynamics, and thermo-electronics. Masotti worked intensely on the history of mathematics, rediscovering some Italian mathematicians such as Matteo Ricci (1552-1610), Bonaventura Cavalieri (1598-1647),

[^8]Maria Gaetana Agnesi (1718-1799) and Paolo Frisi (1728-1784). His works on Nicolaus Copernicus (1473-1543) and the monograph on "Mathematics and mathematicians in the history of Milan" (for the Foundation of Treccani Alfieri enciclopedia) are very early distinguished productions. Starting in the 1930s, he published works on astronomy and on Giovanni Schiaparelli (1835-1910). His wife, Giuseppina Biggiogero Masotti ${ }^{18}$ (1894-1977; see Marchionna 1978) was a professor of geometry at Politecnico di Milano. Masotti wrote several papers in Italian and International magazines. Just to mention the ardent interest in his and his wife's research, Archive for History of Exact Sciences, whose editor-in-chief at the time was Clifford Ambrose Truesdell (1919-2000), dedicated the entire volume n. 14 (ed. 1974-1975) to their works. Most of Masotti's life was devoted to Niccolò Tartaglia (1499?-1557) and Lodovico Ferrari (1522-1565) producing vast national and international literatures (e.g., see his contribution to Gillipise's Dictionary). The first "Commemoration of Niccolò Tartaglia" by Masotti was at Ateneo di Brescia in the afternoon of Saturday, 14 December 1957, at Palazzo Tosio. On that occasion, Masotti proposed the project of a commented new edition of the Tartalea corpus. After the first new edition of Quesiti (1959), in 1974, "Cartelli di sfida matematica" also apparead. ${ }^{19}$ In 1979, Ateneo di Brescia decided to prepare a new edition of Euclide Megarense. Masotti could not conclude his work (even though the work was in an advanced stage).

> It is precisely that initiative, which now comes to fruition, during the celebration of the 450th anniversary of the death of the great mathematician from Brescia, and is therefore right and proper that this volume of "Opere di Niccolò Tartaglia" is properly dedicated to Professor Arnaldo Masotti. ${ }^{20}$

It is thanks to the great competence and passion of Pierluigi Pizzamiglio that the edition of Euclide Megarense lives on.

[^9]Fig. 1.5 Inedited Arnaldo Masotti's image. Plate from the original portraits (Masotti archive) conserved by Madame Claudia Masotti, with her kind authorization, member of Masotti's family

(1954)

Masotti edited an edition of Quesiti et inventioni diverse (1554), published by the Ateneo di Brescia (Supplemento ai Commentari dell'Ateneo) in 1959 (Tartaglia [1554] 1959), Lodovico Ferrari and Niccolò Tartaglia, Cartelli di sfida matematica, facsimile reproduction (1547-1548) published by the same editor in 1974 (Masotti 1960b, 1962).

1.1.2 Tartaglia's Conceptual Stream in the Renaissance

Tartaglia produced crucial and important contributions to mathematics, physics, and fortifications: equations, scientific foundations of ballistics, criticism of Aristotle's lever, statics, the measurement of calibers and land surveying and fortifications. He discussed them principally in General trattato di numeri et misure (Venice, 1556-1560), Nova scientia (Venice, 1537) and in Quesiti et inventioni diverse (hereafter Quesiti)

Thanks to his mathematical studies at an early age, Tartaglia went to Verona ${ }^{21}$ (fl. 1516-1518) where he had a job as a teacher of the abacus at a school in Palazzo Mazzanti. In 1534 he moved once again to Venice ${ }^{22}$ to give public lectures in mathematics, e.g., at the Church of San Zanipolo. Venice would be the most important setting for his main scientific works. In fact, all of his studies were published in this city where he essentially spent all of his life. ${ }^{23}$

1.1.2.1 Mathematics: The Third Degree Equations

Generally speaking, the affair third-degree-equation dates back to Archimedes' Proposition IV in On the Sphere and Cylinder:

To cut a given sphere by a plane so that the volumes of the segments are to one another in a given ratio. ${ }^{24}$

Many succeeding authors worked on both geometrical and mathematical (after Algebra's invention) standpoints without a definitive solution.

Resolution of third degree equations (Tartaglia 1554, Book IX) and his subsequent controversy with Girolamo Cardano (1501-1576) (and Lodovico Ferrari (15221565)), surely represent one of the most significant subjects in history related to Tartaglia's name. Cardano knew of the innovations directly through Tartaglia himself (1539); then he published them in his Ars magna (1545). Generally speaking, the resolution (which at the end of the fifteenth century Luca Pacioli (Pisano 2013a) considered impossible with only the use of known calculations of the time) was studied and separately proved by both Scipione del Ferro and Tartaglia. Cardano and Ferrari improved the method. Book IX of Quesiti et invention diverse (Tartaglia Book IX, 1554; see also Demidov 1970) explains this procedure. It is known that the solution of third-degree equations (Santalo 1941; Pasquale 1957; Schultz 1984) was acknowledged in one of Tartaglia's poems (Figs. 1.6 and 1.6bis):

[^10]Quando cbel cubo con le cofe appreffo
Se agguaglia à qualcbe numerodifcreto
Troman dul altri difforention effo.
Dapoiterrai quefto per confueto
Che'l lor produstto fampreface equale
Al terzo cubo delle cofe neto,
El refiduo poi fuo generale
Delli lor lati cabi ben fottratti
Varra la tua cofa principale.
In el /econdo de coteftiatti
Quando cbe'lcubereftaffelui folo
Tu offeruaraiquef' ${ }^{\prime}$ iiricontratti,
Del numer faraidue tal part'a nolo
Cbe luna im Paltrafiproduca fobictto
Elterzo cubo delle cofein folo
Delle qual poi,per commun precetto
Torraililaticabi infemegionti
Et cotal $\int 0$ mma fara il tuo concetto.
El terzo poide queffinoftri conti
Se folue col fecondo fe ben guardi
Cbe per natura fon quafis congionti.
Queftitromai, er non con paßitardi
Nel milke cinquecenté, quatroe trents
Con fondamentiben fald'e gagliardi
Nella citta dal mar'intorno centa.

Fig. 1.6 Adapted from Tartaglia's poem solution of the third-degree equation (Cosa/cose refers to unknown variable/variables In brief: When the cube and its things ("cose") near. Add a new, discrete number. Determine two new, different numbers. By that one; this feat will be kept as a rule. Their product always equals, the same, to the cube of a third. Of the number of things ("cose") named. Then, the remaining amount. Of the cube roots subtracted will be our desired count. When a cube and its things near. Add to a new, discrete number. Determine two new, different numbers. By that one, then, generally speaking, the remaining amount of the cube roots subtracted will be our desired count. This is the solution in the poem, not the demonstration Tartaglia sent to Cardano. The last verse could allude to the fact that Tartaglia found the formula while he was in Venice). On roots in Tartaglia see Natucci (1956c)

L I B R

\$rarchefe, perche eglie Kormai tre giorni cb'io fon qua, or me rincreffe lo afettare tanto, ritornato che fia ui prometto dimoftrarui iltutro. M.H. Dapoiche baueti deliberato dauolere adogni modo caulcare per fina ì Vegeuene dal S. Marcbefs, wi uoglio dar una letter a da dar a fua Eccellentii, accio che quella fappia, cheuoi feti, ms nanti cbe ue parteti, Hog lio che mi moffrati laregola di quefti uostri capitoliscome che me bauctiproneffo. N. Iofon contento, ma uoglio che fappiatti, che per potermiari cordarc in ogni mia improuifa occorrentis tal modo operatiuo, io l'bo redutto in uno capitolo in rima,perche fe io non bauc ffe ufato questa cautella fecforme faria u/cito di mente, er quantunque tal mio dire in rima non fa molto terfo non mi bocurato, per= cbe mi basta che miferua à ridurne in memoria tal regola ogni uolta, cbe io il dica, il qual capitolo ue lo uoglio foriuere de mia mano, accio che fiati jocuro, che wi diatal iminentione giufta, ev tuond.

Quando cbel cubo con le cofe apprefo
Se agguaglia à qualche numero difcreto
Trollan dui altri differenti in effo.
Dapoiterrai quefoper confucto
Che'llor produtto /cmprefiag guale
Al terzo cubo delle cofeneto,
El refiduo poi fuogencrale
Delli lor laticubi ben fottratti
Varra la tua cofa principale.
In el fecondo de coteftiatti
QHando cbe'lcuboreftaff lui folo
Tu offeruaraiquefe Ialtricontratti,
Del numer faraiduc tal part' A uolo
Che l'una inP altrafi producs fobictto
El terzo cubo delle cofe in folo
Dellequal poi,per commun precetto
Torraililaticubi infiemegionti
Et cotal fomma fara il tho concetto.
El terzo poide queffinoftri conti
Se folue col fccondo feben guardi
che per natura fon quafic congionti.
Quefitrousi, © non con pafitardi
Nel mille cinquecente, quatroe trentd
Con fondamentiben fald' \dot{e} gagliardi
Nella cittadal mar'intorno centa.
2l qual capitolo parla tanto chiaro, cbe Jenz'altro cffcmpio credo chenofira Eccel lentia intender ailtutto. M.H. Come felo intendero, e l'bo quafi intefo per finsal prefente, andati pur, che, come fareti ritornato, ue faro poi wedere fel baucro intefon. N. Hor uof tra Eccellentia fe aricordimo ànon mancar della promeffa Fede, perdbs Je per mala forte quelha me mancaffe, sioc che me deffe fuors quefic capitoli, o fieis

Fig. 1.6bis Plates from original Tartaglia's poem (Tartaglia [1554] 1959, Book IX, Q XXXIIII, 120v)

Tartaglia studied the following equations (modern notation with all the terms positive) (Fig. 1.7):

Fig. 1.7 Plates from Tartaglia's reasoning on the third-degree equation (Tartaglia 1554, Book IX, Q 14, 101rv and Q 25, 106rv)

$$
x^{3}+p x^{2}=q \quad x^{3}+q=p x^{2}
$$

His studies is aimed at building new equations - as previously mentioned - having (in modern notation) roots in the following form:

$$
x=\sqrt{a}-b \quad x=\sqrt{a}+b
$$

Based on this and in modern terms, Tartaglia could also study the following type of equations:

$$
x^{3}+p x=q, \quad x^{3}=p x+q, \quad x^{3}+q=p x
$$

The events and reasons surrounding the origin of the matematica disfida (Masotti 1974a, b), which arose between 1547 and 1548 between Ferrari, who sought to defend his mentor Cardano, and Tartaglia are well known. The scientific dispute began with cartelli and six controcartelli in which 62 mathematical problems referring to Euclidean geometry were put forth and partially solved. Nevertheless,
a concise timeline with presumably historical discoveries related to the evidence of the rule for solving third-degree equations is here below:

Scipione del Ferro (1465-1526) in the 1510s (fl. 1520s) but never published.
Tartaglia's solution ${ }^{25}$ (Tartaglia 1535) since his methatical debate with Anton Maria del
Fiore, Ferrari's scholar. Tartaglia did not publish his solution.
Lodovico Ferrari (1522-1565) and his six "Cartelli" (Pamphlets) (1547-48) against Tartaglia

Tartaglia's Risposte (Replies) to Lodovico Ferrari, Venezia 1547 (1-4) and Brescia 1548 (5-6).

Let us see the main details (Tartaglia 1554, Qs. 20, 25, 26, 28, 29, 31-41).
Tartaglia, after great insistence, relayed the solution to Girolamo Cardano (25 March 1539) who, in addition to being a very famous doctor, was also an excellent mathematician (Bolletti 1958, pp 93-111). Fortunately, for Cardano, despite the fact that Tartaglia's solution was expressed in coded verses, his skills helped him to decipher the solution and publish it before Tartaglia. There is an interesting exchange between Cardano and Tartaglia (4 August 1539) (Tartaglia 1554, Book IX, Q 38; see also Di Pasquale 1975a, b, c), in Quesiti et invention diverse (Tartaglia 1554) not only regarding the solution of the superior degree equation but also geometrical topics. In this exchange, Cardano put forth a specific request concerning a geometrical problem (Fig. 1.8):

[^11]
N 0 :

QVESITO XXXVI. FATTO DALLA ECCELLENTIA de meffer Hleronimo Cardano con una fua lettera fatta alli 12.di Mazzo. 1539.

MESSER HIERONIMO. In rifposta de una wostra delli. 23° d'esprile, baunta non hievi Paltro, me ofer Nicolo san Ifimo, si rifpondexò fucmtamente d partita per partit a, é prima, quanto alla e'cufatione del eßer paítito, fenza andar à Vigeueno. Io non uoglıo faluo quéllo che woleti noi, me rincrefle Lbabbiati pigliato questa fatica per caufa dclla mua amictia fenza frut to alcuno.

Quanto d liopera che fia fornita per catbarui di fofpetto ue ne mando unat e tue La mando disligata che non bo noluto farla battere per effer troppo frefca,

Quanto al capitolo nostro er al mio cafo per uor afloleo ue ne ring ratio fingolarifimamente, of laudo il woftromgegno fopra tutti quelli cbe bo conofciusi, - me fato accaro pru cbe fe mi bauesti donato duc. 100 . wi conofco per mio antidfimo of ne bo falto proure of 'lyo trouata generaliffimo.

Quanto ol dubbro che not baucti cbenon at faccia flampare tai uostre inuentioni, la mia fede cbe ut bo data con girramento, ni douesa bastare, percbe li pe ditione del mo tibro non faceua niente a questa, perche Jempre cbe mi pare gis poffo fempre aggiongere, ma ue ho per ef cufo cho la dignita della cof a, nou u: laffa fondare fopra quello che un douetz fondare, cloć fopra la fede d' un gentillouomo *u fondati fopra una cofa che non ualmente, cıoe fopra al finir d'un libro al quale fi potria fempre agiongere capurulum nounm. ouer capitula nosa, of us e. 1000altri remedij, ma el ponto èqua chel non è mazor tradimento cloe à effer mancator di fede, むr fur difpracere d cbi ba fatto appiacere, ev fe me efperimentareti trouareti fe io ul farò amico, ouer nò, of fe banerò grato l' amicitua noSira, ef li piaceri che me baueti fatii.

Ueamilo anchora, if caramente ui prego cbe di queste mie opere ftampate per amore diquello che lihaflampate qual ne mandardi tuida uédere, che ge ue facciati fpazzer piu che poffibel fia per mio amore cbe, \sqrt{c} fuffero fampate a mie fpefe non ue ne diria parola perche fon piu caldo del bé di mea amici cloe del mio, non altro Dio da mal uiguardi in Millano all. I 2.di Marzo. 1539.

Hieronimus Cardanus Medicus totus uefter.
27 CO 10 . Honorandiffimo meffer Hteronimo bo riceputo una uostrainfieme con una delle sofi re, opere della quale ue ne ringratio, of quantunque al prefentenon babbia tempo di poterla uedere ordmarzamente come \sqrt{i} de, $\sqrt{2}$ per ef fer molto occupato nella if peditione d'Euclide, $\sqrt{2}$ per e/fer anchora mezzo amalato, nondimeno ut bo dato una occbiata cofi disltgata, è bo guardato quel wofiro modo di formar el rotto di quello refiduo cbe rimane nella estratione della radice cubanl. 23 , capi,alla carta_fognata, D. iüj. doue cbe noftra eccellentia uole cbe

Fig. 1.8 Plates from Tartaglia's reasoning on Cardano (Tartaglia 1554, Book IX, Qs. 36-38)

270

$\operatorname{L} I \in \mathbb{R} \mathbb{R}$

che fo metta quiel detto refiduo che ananza nella estratione delle vadice cube, fopra mna virgula per aumeratore, os di fotto di tal virgula quellá uole che fi ue mettael treppio del quadrato della radice per denommatore nella qual cofa softra eccellentia crra tanto de groffo cbe me ne flupifco, perche cadauno cbe baueffe folamente mezzo un'occhno lo porria uedere, ef fel non fuffeche, quella con: efficmpijl la na replycando io bancria givdicato che fulfe errore dis stampa, of che el fisel vero che tal vóstra regola fia falfifima je prio conofeere volendo cauar la Radice cuba propinqua de 24 la quale primaméte faria.2. © auãzaria. 16. elqual. 16 .partendolo per el treppio del quedrato del.2. (qual faria. 12 .) ne reni rà. $1 . \frac{1}{3}$ qual gionto cos la prima radice, cioè con. 2 . fara. $3 \frac{2}{3}$ © cof fecondo tal pofira regola la radice cu.propmquade. 24 faria. $3 \frac{1}{3}$ cofa molto rediculofa.per cheil cubode. $3 . \frac{2}{3}$ faria. $37 \frac{1}{72}$ cofa molto lontana dalla verita,delli qual cofa molto me ne rimerefce per botor uof ro non alcro Iddio da mal us guardi in Uenetia all. 27 . di OMazzo.1539.

Nicolò Tarsaglia turto voftro.

QVESITO XXXVIT. FATTO DA MAESTRO Maphio Poueiani già noftro difcipulo qual ftantiaua à Bergamo, con vna lettera de di.1o Luio. 1539.

M$\mathcal{A} E S T$ RO MATPHIO. Honorando meffer maeftro Saluti,ecc. Trego Doflra cucellentia mi uoglia cbiarre questa ragioncella, la quale io non la fone per pof fitone ne per altra vegola rijoluere. Hor grardati fe io fors pn cauallo, qual ragione dice à questo modo.

Egle sno che sorebbe comprar un pcße, é domanda quanto ne voity dellal?
 glio tanti denari della lira con quante once pefa tutto il peffe, ef cofia quel mer cato fu pefato il detto pefce qual montò joldi 8 . Se adimanda quante lire pefara tatto il pejce. Et ne degnareti do dormene amifo eo perdonatime fe ogni tratto ne dago disturbo con qualdibe chimiera di poco fugocerro u poteti accorgere che io dago poca opera alfendio.
-Ancbora ui bo da anil arue questo de nono, che tino mio a mico da Milano m^{\prime} 'ba critto come cbe il Midico Cardaro compone un'altra opera, in Algebra, fopra certi capiolinoiamente trouati, onde penfo che le fiano le cofe cbe glà me dice fta bawerli megegnate fic cbe mi dubito che ti nog lia gabbareno alcro à noimol to mi arico inavido, © off crom Bergamo alli. 10 .di Linio. 1339 .
N. 7 COLO. Thate fro Maphio cariffimo bo ricessuco ha noftra alla gutal bre remente rijpondo es dico cbe il detto peffe pefana once 珑. 2880. Lequal oncelc

Fig. 1.8 (continued)

N 0 N:

271
lefi.1. co a de once miltiplico. I.cofa.de once fra. $1 . c o f a$ de danari farà. y.cenfo dedanarida partir per. 30 . quat partendolo me ne uien. I cen 0, efomo de 30.0 gfoto tal rotto farà equale a danari, 96 .cioe a foldi. 8 fatto in danari, leuo li-rdeti dr fegaite el rapitolo trono la cofa ualer R2. 2880 . ev tante once pefana el detto peffe, come di fopra di $\sqrt[2]{ }$, むr anchora tärr danari fu posto la lira d̀ once. 30 .plira, oxde fucédo el conto mōtaria p̄ct faméte danari.g6. cioc̀ foldt.8.ch'è ll propofito.

Circa alla noua cbe me fcriueti baner intefo del Nedico Cardano da e Mibano, certamente ne hò riceuruto fastidio a/fas, perche s'eglè al uero che lui dice di woler dder fora capstoli nouamente ritrouati, el non può effer altramente d: quello cbe baixetidesto, e però̀ u prowerbio non mentiffe, qual dice. Quello cbe tu non woi che fí fappia nol der ad alcuno, fati attento fe insendereti altro fopra dequesto datimene awifo non al tro Iddio da nal uiguarde in Venetia alli. ig.di Lwio.IS39.

QVESITO XXXVIII. FATTO CON VNA LETTERA ciceputa alli.4.di Agofto. 1539.

MESSER HIERONIMO. Per auijo delnostro ben faare, \& de molte altre lettere quale ue bò fcritre ancbor non ue fiatrde gnato di nif criver-
 alli qualinon m b baveri rifpofio, er tralialtriquello di cubo equale à soje, enumero,eglté bers uero cbe hö intefo tal regola, ma quando che t cubo della terz z parte delle cofe eccede il quadrato della mita del numero, all bora non poffo farlifeguir la equatione, come appare, però haueria appiacere me foluessit iquefta. 1. cuboe egual $\dot{\alpha} 9 . c o$ e pix̀. 10 . © di quefto mi faresi fommo applacere.

Viprego anchora che mi roglaati mondarme quel uostro modo da defrivere
 me gh fona affaticato afla, ér mat bò potuto ritrouar mido da fa perla fare, offerendomi ancbara miper noife poffo, enagho.
Ve aufo anchora qualmente io mdrizzai da zosil Signor Don Diego de Men docia Ambafcatore della maest̀̀ dell' Imperatore, qual fe diletta di queffe fcien tie, qual penfonon ui davia muthle, © gli diff dell'altezza delle nirtù nostre, come meritati.

Quanto alla prof/matione della Radice, ef della formatione del fuo rotto,nel Li refidinidellinumert, che non fono cubi. Dico cbe ne fono due altre regole buone pofte nella decta opera, \& in quella non ui cafca errore, faluo cbe nel detto ef fempro de $\mathbb{Z} . c u b a$ 24, perche la JX .cuba del detto. 24 renera farebbe circa. 2 . $\frac{2}{4}$ ouer parlando puix precijamente faria. $2 \frac{20}{3} \frac{0}{7}$. non altro. Cbrisfo da mal ai
guardt:

Hieronymus Cerdanus medicus totus uefier. s NicOZO.

Fig. 1.8 (continued)

272

LIERO

NICOLO. Sto in fantafia dinon dar riposta a quefta, ficome cbe bofasto anchora alle altre due, pur si roglionfpondere, of farli intendere quello, che ho intefo di lui. Et dapoi cbe vedo, che va fofpettando foprala retta uia della regola del capitole dicofe, e numero, egual à cubo, noglio tentare jegli poreße cambiare lidati che ba in mane, cioe, remonerlo di tal uia retia, ©f farlo entrarc in qualcbe altra, da benche credo non ni (ard meggio, nondimeno al teatar non nuoce.

Meffer Hieronimo bo ricenuta vha voStra, rella quale me friueti qualmente basectintefo il capitolo de cubo, eguale à co [e, ef numero, ma che quarndo il cubo della rerz ${ }^{4}$ parte delle cofe, eccedcill quadrato della mità del numero', che al©bora mon posetifargli feguir la equatione, é che per tanto ne pregati, cbe ve dia vijolio questo capitolo de. 1. cubo, eguale à.g.cofe pixi. Io.

E per tanto ue rifpondo, es dico, che poi non bateti apprefa la buona uia per zijoluere tal capitolo, anzi dico, che tal nostro procedere è in tutta falfo, circa al darui questo capitolo, cbe me baueti mandato rifolto, ue dico, che molto me zincrefce di quello, cbe per fina à quest'bora vi bo dato, attento che bo intefo da perfone degne difede, che nor fet: per dar fuora on'alera opera in eslgebra, © che ve andati auantando per ©Millano bauer trouato nuoui capitoli in Algelera, ma ausertite, che (e not mancareti di fede a me, che certamente io non ni mancarò à uo! (per non effer mio costume) anz l wi prometto de attenderui pux di quello, che pi ho prome[ßo.

Ancbora me pregath, che ni noglia mandare il modo da defcriuere in uno triā golo de lati diuerfi Geometricamente uno quadrato. Per moftrarai che bo fatto qui in Venetia qualcbe buon discipulo, uc auijo qualmente bo propofto quesio
 tul'broma Inglefe, ól l'altroé un meffer Znanantonio dı RuJconiqua di Uenctia é cadaino di lora d concorrentia dell'altro, la mattina feguente a buon'bora nni porto tal caja aflolto, er la nia del procedere dell' wno è molto differente di quel-
 foc cbe cadzuno di lora ui manda tal folutione fcritra de fua mano, lequale fona le inchiufe in व̈fta. © fenella rijolutione di meffer Ricardo, wi trouaren qualcbe uocabolo,onex parola mal proferta p non hauer la retta pnontia della imgua itas

Circe all'errore per quella commeffo, oser fatto doue che mfegnà formar il totto delli refidui, che ananzano nella eftratione della radice cuba, nelli numeri non cubise quella fe e cufa, er dice primamente cbe in la derta opera ve ne fono due altre regole buone, ma non duce in cbe capitolo, ouer à quante certe fiano.

Circa queffa particolarita nfondo cbro non bo guardata da quella uoltain qua altramente la detta uof tra opera, ne manco i^{\prime} bo fatta, anchora ligare ne mia co bo tempo di uederla al prefente per effer (comse piǹ nolte ho detro, e (cyitrs) orsupato, circa la tradustione di Euclide, e però non fo she rifpondere, de quelle at

Fig. 1.8 (continued)

Tartaglia's response arrived on 7 August 1539 with obvious merit for his solution.

Tartaglia begins by proposing 17 problems for Ferrari ${ }^{26}$ which involve using a compass with fixed opening (Tartaglia, Seconda risposta, Venice, 21 April 1547), [15-18], 53-56). Ferrari responds by solving these problems, adding that not only Tartaglia's problems but all of the Euclidean propositions can be solved by using a compass with fixed opening. ${ }^{27}$ The subject was translated into Latin and published by Cardano in De subtilitate (Cardano [1550] 1554, Book XV, 296-302; see also Id., 1934). ${ }^{28}$ Ferrari and Cardano's solution methods are too complex for Tartaglia, who introduces one of his future publications (Sesta Risposta, Brescia, 24 July 1548). In fact, Tartaglia goes back to the 17 problems and resolves them in General Trattato (Tartaglia 1556-1560, Part V, 63v-83v). Today both Ferrari and Tartaglia's merits in their conclusive and demonstrative procedures are recognized (Bortolotti 1935, 75-76). Most importantly, Tartaglia and Ferrari are recognized, thanks to the cartelli di sfida matematica, for creating a conclusive approach using a straightedge and compass with fixed opening (assigned at will) which became a public use.

After a long written diatribe, the two rivals faced each other in Milan on 10 August 1548. The outcome of this encounter was subject to opposing judgements (Masotti 1974a, b, c, pl XXXIV-XL). The fact that some problems discussed in Tartaglia and Ferrari's dispute concerned Euclidean geometry is noteworthy. These problems concerning plane geometry were quite significant (Masotti 1974, XXI-XXIII and footnotes 104-107) since they were always solved by using a straightedge and compass, the latter using the fixed opening technique (Ivi).

In Ars magna (1545) Cardano also published the solution to the fourth degree equation. It must be noted, however, that Cardano cites Tartaglia as author of the solution of the cubic equation and Ludovico Ferrari (1522-1565) as the person who discovered the solution to the fourth degree equation. Therefore, Cardano's error in regard to Tartaglia (which he avoided mentioning) was not keeping his promise not to divulge the secret of the solution. One can image that Tartaglia - with such a discovery - could have acquired a certain visibility in the academic and professional panorama. This occurrence engendered a series of disputes between the two mathematicians that lasted two years and a ferocious dispute between Tartaglia and Cardano's student, Ludovico Ferrari. Obviously, whatever the historical truth about such misdeeds is not what interests us. We note only that on the first page of Ars Magna (The Great Art) Cardano attributes (Baldi and Canziani 1999) the solution

[^12]of the cubic equation to Scipione del Ferro ${ }^{29}$ (ca. 1465-1526) - instructor of mathematics at the Medieval University of Bologna - a solution it seems he had already studied in 1515:

CARDANI MEDIOLANENSIS PHILOSOPHI AC MEDICI CELEBERRIMI

 OPERVMTOMVS QVARTVS; 2ro cowtunaxire

ARITHMETICA, GEOMETRICA, MVSICA.

CONTENTORVM HVIVS TOMI SERIEM Index Titulornon exbibet.
iditio vt cateris ellgantior ita et acciratior.

L V G D V N I,
Sumptibus Ioannis Antonil Hygvetan; \& Marci Antonil Rayavd.
M. $D C$. $L X 1 / 1$.

CVM PRIVILEGIO REGIS.

222 Artis Magnx,feu de Reg.Alg. eft, officio meo me fatisfacere debere. Asque vtinam cootingat illaftriore exemplo, animum meum erga omnes oftendere, qui eo animi candore funt, quo te in fladiofor noftri temporis fuife femper agaoui. Sed dabitur forfan occafio melior, effi non detur, hanc tamen, qualifcunque fit, periiffe mihi nolim. Vale. 5. Idus Lanuatias, X. D. xtv. Papix.

LECTORI.

Fig. 1.9 Plates on Cardano's speeches concerning the solutions of 3rd degree equation ("CAPVT PRIVM. De duabus equationibus in singulis capitalis. Haec ars olim a Mahomete, Molis Arabus filio initium fumpsit. [...]. Domum etiam ex primis, alia tria deriuatiua, a quodam ignoto viro inunenta legi, haec, tamen minime in lucem prodierant, cum essent alijslong. Utiliora nam cubi \& numeri \& cubi quadrati aestimationem docebant. Verum temporibus nostris, Scipio Ferreus Bnonoiensis, capitulum cubi \& rerum numero aequalium inuenit, rem sanè pulchram \& admirabiliem. Cum omnem humanam sublititatem, omnis ingenij mortalis claritatem ars haec superet, donum profecto coeleste, experimentum autem virtutis animorum, atque adeo illistre ut qui haec attigerit, nihil non intelligere posse se credat. Huius aemulatione Nicolaus Tartalea Brixellensis, amicus noster, cum in certamen cum illius discipulo Antonio Maria Florido venniset, capitulum idem, ne vinceretur, inuenit, qui mihi ipsum multis precibus exoratus tradit" (Cardano 1663, chap 1, cl-left, line 1; as we remarked above we avoided Latin accents)

[^13]In fact, as regards the formula that gave the solution to the cubic equation, both Tartaglia's version and Scipione dal (or del) Ferro's previous version were not immediately reducible since both contained a quadratic term that neither mathematician initially knew how to eliminate. It seems that Tartaglia was not able to overcome this obstacle before Cardano's publication of Ars Magna. Some maintain that this publication was justified both because 6 years ${ }^{30}$ had passed since Cardano's promise to Tartaglia and because Cardano was not expected to respect a promise based on a discovery belonging to del Ferro and not to Tartaglia. Tartaglia responded to such claims by Quesiti, where - in addition to the disputes with Cardano - he lists some others. Ferrari did the same in a pamphlet entitled "matematica disfida". In Cartelli an extreme value is proposed which seems to refer to Ferrari but Tartaglia solved it without sufficient proof (Masotti 1970-1980, p 259).

In the end the historical legend concerning an eventual plagiarism and other accusations directed to Tartaglia made his ascent into the academic world difficult even though his works, today, are impartially seen as a milestone in the history of mathematics and an important contribution to statics. Tartaglia stayed in Brescia for a period of time (1548-1549), teaching at S. Afra, S. Barnaba, S. Lorenzo and at the Accademy of Rezzato. In the last years of his life he had thriving scientific activities in Venice.

1.1.2.2 On the Geometry: Euclid's Elements

Concerning this subject, Tartaglia's calculation of the volume of a tetrahedron from the length of its sides and inscribing within a triangle three circles tangent to each other is very important. Not less important were the studies on the division of areas (see Cartelli against Ferrari) and on geometry of the compass (before Galilei's works) which he presented in his General trattato di numeri e misure. Tartaglia's work also possesses extraordinary cultural and scientific significance since he is also known for being an editor of classical geometry: he translated Euclid's Elements even if with the unhappy title Euclide Megarense (Tartaglia 1543a; see also: 1565-Euclid; 1569, 1585).

According to Tartaglia's biography (1567) by Bernardino Baldi (1553-1617), Tartaglia lectured on Euclid's Elements in SS. Giovanni e Paolo church (Venice, starting in 1536). In fact, he was mainly a teacher-researcher first in Verona as an Abacus' Master (starting in 1518) and then in Venice ${ }^{31}$ as a Pubblico lettore di Matematica (Lecturer of mathematics, 1536-1548).

Tartaglia's Euclidean translation is at the center of a renewed scientific debate within an extensive sixteenth-century movement of geometric revival and geometric practice (Masotti 1980a; Pizzamiglio 2007). At the time Euclide from Megara (fl. V-IV B.C.) was considered to be the author of Elements (Euclid from Alexandria (fl. 325-265 B.C.); see also Cuomo 2004) (Fig. 1.10).

[^14]

Fig. 1.10 Plate from the cover of Euclide Megarense by Tartaglia (Tartaglia 1543a. Pierluigi Pizzamiglio recently edited an excellent historical-critical work on Tartaglia's Euclide Megarense (Tartaglia 2007))

After the Willem van Moerbeke (1215-1286) edition, Archimedes was republished both in Opera Archimedis (Tartaglia 1543b), and in the final parts of some of Tartaglia's other works (Tartaglia 1551a, b, 1565a, b, c).

In a recent work (Pizzamiglio 2007) the editorial and didactic character of Tartaglia's Euclidean operation was reconstructed as an operation essentially within the field of teaching (Pisano 2013d). Based on the historiography on Euclid by Tartaglia (Pizzamiglio 2007), in the end, four main approaches can be found:

1. The precarious nature of the various integral or partial editions of Euclid's text (Thomas-Stanford, 21-31, ft 1-25) and the relative more or less ample comments.
2. Partial texts were present among the various contributions, which contained statements of the Euclidean propositions (Thomas-Stanford, 35-37, ft 26-33). Thus, only Euclid's problems and theorems were considered interesting. The demonstrations of the latter would have been elaborated by Theon and other Euclidean commentators (Pizzamiglio 2007). This could have depended also on the scholastic use of Euclidean manuals which left the instructor the choice of which geometric statements to demonstrate and which to consider simply as declarations of properties which were more or less evident. The fact that less lengthy texts cost less for students with limited means was also of considerable importance (Ivi).
3. The revival (Ivi) of the Tartalean text to meet the demands of new emerging classes in vulgare Italian instead of classical language. Tartaglia began (Ibidem) analogous editorial initiatives in vulgar national languages which, in the course of the sixteenth century, interested all of Europe (Thomas-Stanford, 41-45, ft 34-45).
4. The revival in non-classical language also favoured (Ivi) a noteworthy secondary literature in mathematics and geometry by way of amplification and elaboration (Thomas-Stanford, 49-62, fts. I-XXXVIII).

In brief, we provide a timeline of Euclidean subjects-editions in history concerning Tartaglia's lifetime ${ }^{32}$

Date Event
1505 After Giovanni Campano's edition, Bartolomeo Zamberti (fl. 15th-16th) 25 October (VIII Kalendas Novembris) 1505 published in Venice, with editor Ioannes Tacuinus (240 foli): Euclidis Megarensis philosophi platonicj, Mathematicarum disciplinarum Ianitoris. It included: Zamberti's translation from Greek to Latin of various works ${ }^{33}$ of an "Euclide Megarense, platonic philosopher", known, however, in the title as "Introducer to the mathematical disciplines" - a heading Tartaglia subsequently used. Zambetti's monumental Euclidean edition was plagiarized and reprinted in various editions which are not always easy to discern one from each other. ${ }^{34}$

[^15]1509 Luca Pacioli (1445c.-1517) published a re-release, revisited and corrected, of the medieval version of Campano by the title: Euclidis megarensis philosophi acutissimi mathematicorumque omnium sine controversia principis opera a Campano interprete fidissimo traslata. The text takes up a little more than half the width of the page, while the rest is reserved for the 129 geometric figures. Campano's Euclidean comments are re-used until Tartaglia's Italian translation which also used, as did many in this period, Zamberti's translation.
1528-1550 In 1528 in Vienna, in 1529 in Strasbourg, in 1534 in Paris and in Frankfurt, in 1536 in Writtenberg, in 1539 in Venice, in 1548 in Frankfurt, in 1550 in Paris l'Elementale geometricum ex Euclidis Geometria by Johann Voegelin (fl. 15th16th) is repeatedly reprinted.
1529 Giovanni Battista Politi (XV-XVI centuries) publishes (Siena Simone Nicolò de' Nardi editor) a booklet: Expositio super definitiones et propositiones quae supponuntur ab Euclide in Quinto Elementorum eius.
1532 Tartaglia asks for and obtains from the Venetian Senate 11 December 1532, a printing license and the concession of exclusive privileges for the translation and revision of Elements, as well as for the writings of Archimedes, Heron and Luca Pacioli (Archivio di Stato di Venezia: Senato, Terra, reg. 32, cc. 94r-v). However, in the end he will only able to produce editorial interventions on Euclid and Archimedes.
1534-1547 Tartaglia teaches in Venice ${ }^{35}$ at the Church of San Zanipolo, presenting Euclid ${ }^{36}$ and various books.
1543 In February 1543, Niccolò Tartaglia's translation of Euclid is published in Venice: Euclide Megarense philosopho, solo introduttore delle scientie mathematice. The Tartalean edition has three more editions in Venice: 1565-66, 1569 and 1585.
1546-1548 Between 1546 and 1548 Giovanni Battista Benedetti (1530-1590) studied Tartaglia's edition of the first four books from Euclid's Elements.
1554 Study in the form of a dialogue of scientific problems from ballistics is re-edited and widened to the fortifications of statics in the mathematics of Quesiti et inventioni diverse (1554), already edited by Tartaglia in a shorter form in 1546. A version from 1562 will be published posthumously.

Moreover, the geometry is included (Tartaglia 1554, Book IX) as well. The arguments concern triangles and squaring the circle (Tartaglia 1554, Book IX, Qs. 15, 32,38) as one of the main mathematical and historical problems proposed by ancient geometers. It is the challenge of constructing a square with the same area as a given circle by using only a finite number of steps with a compass and straightedge. More abstractly and more precisely, it may be asked whether specified axioms of Euclidean geometry concerning the existence of lines and circles entail the existence of such a square.

[^16]
1.1.2.3 On the Arithmetics: Tartaglia's Triangle

Other mathematical subjects Tartaglia studied are linked to his contributions to arithmetics: numerical calculations, extraction of roots, denominator's rationalization, combinatorial analysis and other methods to solve arithmetical and measurement problems. "Tartaglia's triangle" ${ }^{37}$ presented in General trattatto di numeri e misure (Tartaglia 1556-1560; see Fig. 1.11) aimed at finding a general formula for solving cubic polynomials. ${ }^{38}$ It is quite interesting that his handbook for arithmetics and physical measurements was entitled "Trattato" instead of the more common word "Summa", ${ }^{39}$ typical of the late Middle Ages so making clearer the novelties and purposes of the research. The same consideration could concern the word "Generale" which explains Tartaglia's didactic nature.

[^17]
LA SECONDA PARTE

DEL GENERAL TRATTATO DI

```
    - NVMERI, ET MISVRE DI NICOLO TARTAGLIA,
    NELLAQ,VÁLE IN VNDICILIBRISINOTIFICA LA
    FIV ELLEVATA, ET SZEGVLATIVA PARTE DELLA PRATICA
            Arihmactica, laqual črutteleregole, &c operationi pratioli
                delle progreffioni, radici, proporuiomi,
                    &s quancita irrationali.
```


Con prisilegio della antita di Papa Padolo IIII. Dclla Illue
firiffma Signoria di Venctia, \&s dell cocellentiffimo fignor Duca d'V rbino.

$$
\text { In VTincgia per Curtio Troiano de i } N \text { auso. }
$$

$$
M D \perp L I
$$

Appectio ded Autrore.
E ribugfowe

Fig. 1.11 Plate from General Trattato on Tartaglia's triangular method (Tartaglia 1556-1560, pt II, Frontispice. Pascal's Traité du triangle arithmétique (Treatise on Arithmetical Triangle) was published posthumously in 1665. Pascal collected several results then known about the triangle, and employed them to solve problems in probability theory. Recently for the 450th Anniversary of Tartaglia's death, Pierluigi Pizzamiglio organized a Colloquium (2007, December 13) at the Ateneo di Brescia (Italy). The proceedings mainly deal with Tartaglia's teaching and "General Trattato" (Pizzamiglio 2007; Gavagna 2007; see also Montagnana 1958)

LIBRO

[Til principio dinumeritriangolarilinoftriantichifilofofivogliono, che fia la vnitz, \&e
 dol'ordine de glieflempifiguratín margine formano vma figura uriansolare cquilatera.
 Imimente il principio ditutrilinusmeri quadrati vogliono che fia pur la vnita, \& dapoi quella il 4 .dapoitil 9. dapoill : 6.dapoisl a s. \&e cofirue tí quelli, che affettati fecondol'ordine, che in margine appar formino vma figura quadrata.
 Imimente il principio di rutuli numeri penthagonali vogliono che fia purla vnita, \& dapoiquella il s.poill a 2.poifil 2 a.poitil ss. \&s cofi turti quelli, che affertatifecondo iordine poffo in margine venghino in forms, oucr fir gura penthagomale.
 Imilmencell principio diturtilinumeri effagonali vogtiono che fia pur la vnita, \&c dapoi quella il 6 .dapoifil s. dapoifl a 8 .\&e cofi turtiglialtri, che affettati forto 2 vn ceno fuo ordine formino vna figura eflagonale, \&c cofi vamno procedendo nelii numeri fettagonali, or togonali, \&e altoriliquali per non effer materia molro al noftro propofiro, perche queffi nume-

Numcriquadrati. $\quad 25$

9000000000 00000000000 $=00000000000000$ 000000000000000

Numeripenthagonali, 12

12	00
0	000
00	0000
000	0000
000	0000
000	0000

Della penultima fpecie, atto, over paßionc del algorit bimo, cioc dellas

 pratica di numeri,decta progreflioni. Cap. VI.'SEguiala penultima feccie, atto, oucr paffione della pratica di numeri, chiamara progreffione, laSquale (per non effer materia molto nceelfaria a mercanti) fu pretermelfa nella prima parte detra regole negotiarie, abenche tal fpecic, oucr atto non fia molto accadente, over neceffiario nelle pratiche mercantile, nondimeno molec, \& molte queftioni nella general pratica dinumerr, \& anchera in quella di miffure occorrer poffono, che fenza faiuto, oucr fuffragio diral fpecie, \&e delie fuc ree ole laria impolfibile di poter rilolucre, \&e pero furno aftrettili noferiantichia ritrouar tal fpecas ron le fue convenientiregole, ma nantiche procediamo piu olera vog tio dichiarir, che cofa fia pregreflione.

> Cbe cofa fia progreSione.
$2 \mathrm{P}^{\text {Rogreffione nö } \text { ċaltro in queffoluogo, che vn certo ordine dipiu numerri, che l'uno va ecceden }}$ doil fuo anrecedenre egualmente di mano in mano talmente, che l'ultimo vien a effer maggiore di qual fi voglia delli intermedi, \&e il primo vien a effer î minimo di tal ordine.

Delle Ppecie delle progre ßioni aritbmetici principianti dals

kevnita detce continoue.
3
 E feecie delle progreflionifono molte, ma quelle che in quefto hibro tratrarintenco foo no due,cioe progreffioni Arithrnetici,\&e progreffioni Geometrici, ma prima diremo dd le Arichmerici,jequali principiano dalla vnita, \&e fi vanno augumentando, \&e dilatando continuamente in egual differentie, cioe feil fecondo termine eccede il primo in vna vnira medefimamente ill terzo cccede al fecondo pur per vna vnita, \& cofi il quarto cecede il terzo, \&k il quinto il quarto, \&ill fefto il quinto, \& cofiprocedendo di mano in mano, \& fimilomente fe il fecondo eccede ill primo per due vnita medefimamente al terao eccede if fecondo per due vnita, \&e il quarto cccede iltarzo, \& \& quinto cccede il quarto, \& coli vanno procedendo, \&e feil fecondo eccese

Fig. 1.11 (continued)

The General trattatto di numeri e misure (1556-1560) is composed of 740 folia (1480 pages total). It is perhaps the largest known comprehensive mathematical contribution produced in the sixteenth century, including arithmetic, geometry, mensuration, and algebra as far as quadratic equations. The work is divided into six main parts, four of them were printed before Tartaglia's death. A general panorama is:

I part	17 Books	On the arithmetics and practical arguments
II part	11 Books	Mainly on Tartaglia's triangle
III part	5 Books	On the geometric figures and unit measurements
IV part	3 Books ${ }^{40}$	On the theoretical geometry and Archimedean books
V part	3 Books ${ }^{41}$	On the compass-and-straightedge rules and on Euclidean problems by different methods of solution
VI part	96 pages	On the Algebra

The General trattatto di numeri e misure presents Tartaglia's arithmetic triangle (Part II) having coefficients of the first 12 line powers, that is until cu.ce.ce. (the cube of the quadrate of the quadrate), the calculation of expressions with radicals, the rules for extracting cube roots, quarters, fifths, etc. (Ivi). However, there are also Fibonacci and Luca Pacioli's congruent numbers, perfect Euclidean numbers, irrational numbers, the theory of proportions, descriptions, tables and many practical problems executed, and corrections of "errors in Summa by Pacioli and Cardano's errors" (Tartaglia 1556-1560, pp 41-42) (Table 1.2).

Table 1.2 Tartaglia's first six triangle lines

Line	Triangle	$(a+b)^{n}$
0	11	$(a+b)^{0}=1$
1	11	$(a+b)^{1}=1 a+1 b=a+b$
2	121	$(a+b)^{2}=1 a^{2}+2 a b+1 b^{2}$
3	1331	$(a+b)^{3}=1 a^{3}+3 a^{2} b+3 b^{2}+1 b^{3}$
4	14641	$(a+b)^{4}=1 a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 b^{3+} 1 b^{4}$
5	15101051	$(a+b)^{5}=1 a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3+} 5 a^{4}+1 b^{5}$
$[\ldots]$	$[\ldots]$	$[\ldots]$

[^18]Other reasonings on Quesiti in arithmetics and algebraic calculations are present, in particular in Book IX (Tartaglia 1554, Book IX, Qs 32, 36-38) where the rationalization of the denominator of a fraction (Ivi, Q 32) and the extraction of a cube root of a binomial are found (Ivi, Q 40):

1.1.2.4 On Physics: Ballistics

Tartaglia also presented contributions to the art of warfare in Nova scientia (Tartaglia 1537, Books I-II) and Quesiti et invention diverse (Tartaglia 1554, Books I-III). We should say that this subject is centred on the art of defence by means of fortifications that he regularly published in Quesiti (Tartaglia 1554, Book $V I$ and Gionta). The arguments presented by Tartaglia (Tartaglia 1537, 1554) are algebraic and geometrical and specifically concerning military artillery, cannonballs, gunpowder and other related subjects. The famous problematic argument on the trajectory of a cannonball (Barbin and Cholière 1987) and its maximum range, for any given degree-measure is dealt with in Quesiti (Tartaglia 1554, Books I-III; Tartaglia 1537, Books I-II; the theorem about 45-degree is clearly enounced in Book II, Pr. VIII, 28v (see also Pr. VII, 27v)). The Venetian period was still disciplinarily bitter. Consequently, Tartaglia was not able to formulate a modern theory of projectiles through, e.g., a correct mathematical interpretation (nowadays) of a parabolic trajectory. In effect, (see figures below), the path was curved but not parabolic. We know that Galileo could only be able to do this in 1609 (Galilei fl. 17th; Naylor 1976, 153-172). This involves a case-study on the trajectory of projectiles which Tartaglia had not yet sufficiently theoretically developed (see, for example, the following images); perhaps it was also not yet sufficiently theoretically developed by others at this time, who more or less based their reasoning on the medieval impetus theory. ${ }^{42}$ Particularly, Jean Buridan's ${ }^{43}$ medieval theory (Buridan 1509):

[^19]- The impetus varies with the speed of the projectile and with its mass. Paraphrasing Buridan, we can say, more speed impressed by the motor on the mobile, stronger the transmitted impetus.
- The impetus is a permanent quality different and distinct from the motion and the mass of the projectile. A characteristic of permanence dell'impetus might be weak by the movement, i.e., by the air resistance and the degree of inclination of the launch.

Buridano also attempts a more accurate reasoning of the impetus without, however, producing any formal and or mathematical language. It is quite probable that before 1607, Galilei had not yet clarified the theory on the composition of vertical and horizontal motion. This non-clarification was mostly likely due to a lack of sufficient experimental proof and the known caution with which Galilei avoided affirmations devoid of sensate esperienze; this was the case until he wrote his notes in the famous code $M s .72$, precisely on foglio $116 v^{44}(1609)$ in which he outlined the solution. It should be noted that in Galilei's time, typically Aristotelian motion was supported by the dichotomy of violent and natural motion (Drabkin 1938; Baliani 1998).

In Book VII of Quesiti, Tartaglia (1554) was able to produce noteworthy criticism ${ }^{45}$ of Aristotle. This distinct scientific significance also emerges from Tartaglia's ability to theorize on the curved trajectory of projectiles. This topic must have been of great interest to him since he developed reasoning and drawings (see images below) in Nova scientia (1537) and other similar graphic developments and details by way of dialogue-problems (see passage below) in the subsequent Quesiti et inventioni diverse (1554). The law of elevation at a 45° angle materializes between these two works where both, Nova scientia (Natucci 1956a) and Quesiti et inventioni diverse, refer to one (although partial) final curved projection (today we could say semi-parabolic curve) of the projectile. Therefore, in this case, he was confined to the division of motion into two parts: one part due to a virtù impressa, and one naturale, which had the property to overcome the initial force that, in time, became weaker and allowed the projectile to fall. However, this did not prevent Tartaglia from informing the reader of his correct idea of a curved trajectory for this type of motion; although with certain approximation according to which, in time and for certain cases, he himself tended to identify with a straight line (Fig. 1.12):

In effect, we should remark that the problem of the physical and mathematical knowledge of the projectile trajectory was complicated in this period. In fact, it was

[^20]S. DVCA. Cbeuoleteinferir per quefo. N. Primamente uoglioinferir que ffo, che tirando un pezzo allaclleuatione delprimo ponto, tiràramolto piu lontano di quello cbe far a fando aliuello, er tirandolo alla e elleuatione del fccondo ponto, tirara molto piu lontano di quello, cbe fara alla alleuatione del primo ponto, er cof alla alle uatione del terzo ponto tirara piu lonitano, cbe alla clleuatione del fecondo, © cof alla elleuation del quarto tirara anchors affai piul lontano di quello, che fard all a elleuation nedel terzo, e $\operatorname{\rho imilmente}$ alls elleuatione del quinto tirara alquanto piu, che alla elle uatione del quarto, er coff alla ultimacllcuations, cioć al /fffo ponto, con balla dipiont bo tirara alquanto piu, cbe alla ellcuation del quinto, ima poco pim, percbe la ragionms dimostra, che quefti due tiri, cio e tiratial quinto, e fofto ponto fono tanto nicini, om uer tanto poco differenti, cle ogni poco d'aumraggio, che fitrouafe nel quinto, ò per zigor di poluere, oucr per altro, al detto quinto, fe tiraris tato, quanto al \mid eflo, et for f f
 fenza dubbio al detto fettimo ponto tivara alquamto manco, cbe al detto foffo, ev colt allPotteno ponto tirar a a fai manco, che al detto fettino, © Pimilmente, al nono tirars molto manco, che all' othano, er cof al dccino urara molto manco, che al nono, ct cofi

Fig. 1.12 Plate from Tartaglia's Quesiti around the straight line trajectory and general law at 45degrees (Tartaglia 1554, Book I, Q I, 6v-7r. In total, see Ivi, Qs. I-II-III-VI, 5rv-14r. (Author's rounded parentheses). It must be noted that in almost all of the parts of Books I-II-III of Quesiti (Ivi, 5rv-40rv) there are considerations and figures on the semi-parabolic trajectory of projectiles to which the applications to war machinery and to artillery "squads" are added (Ivi, Q I, 5r). He had discussed these considerations in La Nouva scientia (Tartaglia 1537, 3rv-4rv))
known that a cannon ball in the air proceeded in a non-rectilinear ${ }^{46}$ way. However, the idea that an equation (of motion) of the second degree could indeed mathematically interpret the physical motion of a cannon shot along the trajectory was hardy mature for sixteenth century. It was also hardy for Tartaglia, as well, who, as we showed in the previous paragraphs, was versed in the mathematical study of higher-order equations. In addition to the theoretical problem there was also the practical problem of the military art of fortified defense and later that of the architectural design of fortification walls. ${ }^{47}$ Essentially, it was crucial to know that the curvilinear trajectory followed, for example, by a cannon ball in the air was one thing; the rectilinear distance that interjected itself between the cannon-artillery and the walls to hit was another. Such knowledge favored the artilleryman versed in the subject that, thanks to Tartaglia's discovery of the 45-degree elevation, prepared the shot with precision.

In order to improve the study around the trajectory and correlated piece ("pezzo") Tartaglia was interested in both theory and experience. His idea regarding the relationship between an inclined "pezzo" angle and the trajectory, nowadays, is considered a general law independent from technical and technological manufacturing. Therefore, Tartagalia stated a general law for any kind of "pezzo" paying attention to the practical and shared knowledge of his time. In his words (Fig. 1.13):

[^21]
P $\quad \mathbf{R} \quad \mathbf{I} \quad \mathbf{M} \quad \mathbf{O}$

7

dl undecimo, tirara amolto manco, cbe al decimo, er fimelmente al duodecizro, cioc al ultimo ponto tirara molto, e molto manco che al undecimo anci in tal ult ima clleuatio ne per rafon naturale la balla doucria retornar adare precifamente nella bocea di tad pezzo, ma per molti accidtrie che ui puo occorrere nel difcaig arff, tal balla nöo ui ritor nara cofi precife, mas bennon andara a dare molto lontana dal detto pezzo. S.D. Eglie cofa confonante quafitutto que tlo che bauetidetto, ma che voleti inferire per gucfo. N. Vog lio fecondariamente infcrir quefto, che noibabbiamo ritrouato in cbefpecie diproportione, ouce ordine unnno augumentando li dettitiri in ognielicua= tione, er non folamente a ponto per ponto della dettanostr a qua $_{\text {Ira, ma ancbora a } m i}$ nuto per maunto per fin alla ellenatione del feffo ponto, oner di.7 7 . minusti, © in ogni Forte balla, cioc dipiombo, ferro, oser di pictra. Et fimelmente chipoteffc ellicuare li pezzioltr alal detto fesio ponto (come fe fanno li mortari) baucmo anchor a ritrousto in cbe proportione andaranno calando lif woitivi, er non folanente \& ponto per pone to, ma ancbora (come detto) a minuto per minuto per final fine di tuttala (quadra, ciocper fin in capo detattili.12.ponti, oner. 144 . minuti. S. D. Quecofir rutto fe puo cauar detal noftra inuentions. N. El coftrutto de tal inuentione équesto, cbe perlanotitia de unfol tiro diqual β uoglia pe $<z o, p o f o$ formar uns tauola de tutti it tiri che tirara queital pezzo in ogniclleuatione, cioc a ponto per ponto, et a minutop minuto della noffra fquadra, la qual tawola fara di tall foffatiis, ower proprieta, cbe qua lüque ponala baueráa preffo dife, nö folamétefapriatirare, ma faprá far tirare ogni groffobombardero con talforte pezzidilontano quantipafaliparira (pur cbe non fla piu lontano del maggior tiro dital pezzo) er cbe non baucra la detta noftra tauo la, non potra imparare alcuna particolarita di tal inuentione, ma tal f ecretoreffara $f 0$ Lamentea preffo di colui cbe buseratal tawold, e non ad altri. S.D. Mo fic coluicbe bsuera tal uofitra tauola non uora tirare luimedefimo, ma vora far tirare aun'altra feconds perfona, non faraneceffario cbe tal feconda perfons impari tal fecreto. N. Non Signor Eccellentifimo, ancital fcconda perfona refara come reftano li garzoz nidi fpeciari de medicine, li quali conrinuasméte côponeno medicine, fecödo cbe gli uen gono or diatate dallinsedici, er tamen mai imparano a faper medicare. S.D. Quefta mipare uns cofa molto dura da credere, e tanto piu che nel noffro libretto (a me inti= tulato) woi diceti che mai tiraffi di artegliaria, ne di fchioppo, er colui che faungudi cio di una cefa, della quale nonksbbia uifto lo effetto, oucrifperientia, lamaggior par = te delle uolte fe ing anna, perche folamente 'l'occhio ¿quelio che ne rende ueratestimo nianza delle cofe immaginate. N. Eglie ben uero coe i! fenfoiferiore, ne dice la ucz rita nelle cofe particolare, ma non nelle uniwerfale, perche le cofe uniuerfale fono fot topofte folamente al intelletto, ev non ad alcun $/$ en $\sqrt{0}$. S.D. Bafta fe me farctiseder quefo(cofa che non credo) el me parera un miracoo. N. Tutte le cof c cbe accade no per natura, ouer per arte parcro de grande ammiratione, quando cbe di quelle non Fif ala caufa, ma prefto uoftra Eccellentia fo ne potracbiarire, facendone far laipe= rientia conan pezzo. S.D. Voglio andare per fina à Pefaro, fubito che fa riter= nato, certo la uog lio urdere.

Fig. 1.13 Plate from Tartaglia's Quesiti around the "pezzo" (Tartaglia 1554, Book I, Q I, 7r)

In our opinion, Tartaglia was both one of the first to use physical elements and mathematical interpretation (partially in contrast with the Aristotelian school and partially with the impetus theory) to investigate the physical law of the maximum range of the projectile and related path of the cannon balls. With few arguments (both in Nova scientia and Quesiti), he claimed that the maximum range of a projectile ${ }^{48}$ is attained when the firing elevation is 45 degrees. ${ }^{49}$ On the theoretical side, he argued his general law; and only later, he reasoned on Jordanus de Nemore's classical gravitas secundum situm demonstration. By following his discourse (Figs. 1.14, 1.15, 1.16, 1.17, and 1.18):

[^22]SVpposte adunque le fopradecte fuppofitione, adduco questa propofitione, e dico cbe ogni librato pefo partendo of idsffto, outè luoco della egualita, quel fifa piu le uc, © tanto piu, quanto piu fara Jontano dal detto luoco della equalita. Et per effeme piodi questa propofitione fla la thbra-a.b. (della figuraprecedente) girabile fopra el detto centro.c. con li duimedefimi corpi.a.ev.b. (equali) appefi, ouer congionti alle duc eftrcmita di ambi duili brazzidella dettalubra, ev fiamo nel medefino fito della squalita (come difopra fu fuppofto) bor dico, ebercmouando Puno, er l'altro de detti corpidal detto fito della equalita (ciociarbaffandone uno, ev cllcuando Paltro) Puno, ePaltro de quelli far a fatto piulcue fecondo ellwoco, ev tanto piu leui, quanto che pius faranno allontanati dal detto luoco della equalita. Et per dimoftrar quefto fia arbaffa to el corpo.a. (della detta figura precedente) per fina al poto.u. (come nella fotto frrit
 in fina al ponto.i. © fia divij) P uno, eP altro di duiz archi. a.u. © .i. 6 . in quante parti fiuoglia, equale bor poniamo Puno, el'saltro in trci parti cquali in li ponti. I.n.et.q.f. e dullitrciponti.n.I.i.fiano tirate letre lince.n.o. l.m.e.i. K equidifante al diance tro.b.a.lequale fegarano la linea.c. f. della direttione nellit trci ponti.z.y.x.finelmen te dalli trci ponti.q.s.u.fiano tirate le tre linec.q. p. s. r. ©.u.t.pur equidiftante afla medemalinea.a.b. le quale fegarano la medemalinea della direttione nelli tre ponti, e. . $\%$. Onde per queste cofe cof defofite ueniremo ad baucr diuifo tutto el decenjo 1. u. fatto dal detto corpo. d. nel difecnder in ponto. u.intrei decenfi, oucr parti equa= Ii, lequale fono.a.q.q.s.e- s.u. Et finclmente tuito el decenfo. i, 6.qual fariacel detto cor po.b.nel difcendere, ouer ritornarce al fuo primo luoco(cioc in ponto.b.) uerra à ef for diuijo in trei decenfi, ouer intre partrequali, le quali fono.i.l.l.n.er. n.b. er cadaus no dequefitre, ev tre partiai decenfi capiffe una parte della lines della dircttione, cioćel decenfo dal.a. al.g.pigha, oucr capiffe dalla linea della direttione la parte.c.e. lo decenfo. q-s.piglia, ouer capiffela parte, er.p- er lo decenfo. s.u.capiffe la parte.p. w. © perche la partc.c. e.e maggiore della a arte.e. . (come facilnente geometri sef fe puo prouare) onde (per la feconds fuppofitione) el decenfo.q. s. uerra à effer pius obliquo del decenfo.a. q. onde piuleue fara el detto corpo.a. (per la fuppofitione)ftan téquello in ponto.q diquello fara, ftante quello in ponto.a. Sumelmente perche la par te. p ₹. (della lines della direttione) è menore dells partc.e-. .el decenfo. s.u- (per la medefima feconda fuppofitione fara pin obliquo del decenfo.q. s. © confequentemen= te) per La prima fuppojitione piu leue fara el detto corpo.a. fante quello im ponto. s. di quello faraftante in ponto.q. Et tutto quefto, e per limedefimi modi fe demoftrard nella oppofita parte del corpo.b. cioe chel decenjo di quello dal ponto. i. al por.to. l. \dot{e} piu cbliquo di quello, cbe c cal ponto. L.al ponto.n. (per la detta feconda fuppofitione) percbe la parte, x. y.cbe capiffe della linea della direttione, é menore della parte y. z onde per la detta prima fuppofitione piu leue farael detto corpoftante quello in pon= to.i.di quello fara ftante quello in ponto.l. © per le medefime ragioni piu leue fara ftante quello in ponto.l. dıquello fara ftarte in ponto.n. © fimelmente pin leue fard रीăte in pöto.n. di quello faraftante in pöto, b. (fito della cqualita) cbe c'il propofito.

Fig. 1.14 Plate from Tartaglia's Quesiti around the general law at 45 degrees" ("Supposte adunque le sopradette suppositione, adduco questa propositione, \& dico che ogni librato peso partendosi dal sito, over luoco della equalita, quel si fa piu leve, \& tanto piu quanto piu sara lontano dal detto luoco della equalita. Et per essemepio di questa propositione sia la libra.a.b. (della figura precedente) girabile sopra el detto centro .c. con li dui medesimi corpi .a. \& .b. (equali) appesi, over congionti alle due estremita di ambi dui li brazzi della detta libra, \& stiano nel medesimo sito della equalita (come di sopra fu supposto) hor dico, che removando l'uno, \& l'altro de detti corpi dal detto sito della equalita (cioè arbassandone uno, \& ellevando l'altro) l'uno, e l'altro de quelli sara fatto piu leve secondo el luoco, \& tanto piu levi, quanto che piu saranno allontanati dal detto luoco della equalita". (Tartaglia 1554, Q II, 9r))

Pezzo elleuato alli,4s.gradi fopra al orizonte.

> Ma piu nel anno MD X XXII effendo per Prefetto in Vero na il Magnifico miffer Leonardo Iuftniano. Vn capo de bomberdie ri amiciffimo di quel noftro amico. Vene in cócorrentia con un altro (alprejente capo de bombardieri in padoa)er un giorno accadete che fra loro fu propofto il medemo che a noi propoffe quel no ftro amico, cioe a cbe fegno fi dou: \iint e affettare un pezzo de artegliaria cbe facef fe il maggior tiro che far po Jfa fopra un piano. Quel amico di quel no ftro amico gis condufe con una fquadra in maniil medemo che da noi fu terminato cioe come di Jopra bauemo detto e e de fignato in figuran

Fig. 1.15 Plate from Nova scientia around 45-degree elevation and bombardier's quadrant (Tartaglia 1537, 4r; as above cited, in Nova scientia Tartaglia canonically enounces his fundamental theorem (as general law) about 45-degree (Tartaglia 1537, Book II, Pr. VIII, 28v). We take this opportunity to remark - in our opinion and strictly based on original Tartaglia's reasoning both Nova scientia and Quesiti - an overstress in the secondary literature concerning an assumption according to which Tartaglia discovered - as a corollary - that ranges are equals for elevations as $45^{\circ} \pm \gamma$. Of course, Tartaglia never wrote about that in his works. Tartaglia only discussed without any physics-mathematical relation - on the possibility that a certain target can be fired by two different heights/elevations. An eloquent image is reported in Quesiti (Tartaglia 1554, Book II, 7v). This is different from the assumption that particular physical and technical conditions (i.e., dimension and weight of cannonball, equipment, etc.) allow to fire two subsequent shots so that initial velocities of the projectiles, in practice, have the same value)

Fa conclufone, che dotte énaggior uelocita nella balls tiratis xiolentemente per sere, in quella e emanco graxita, er cconucr fo, cioe cbe dout che in quelld e menor uclocita iui emaggior grauita in quell. S.D. Eglieil uero. N. Anchor dico, che done cbe in quella emaggior grauita, iui e maggior ftimulatione di quells in tirare lis detta balls verfoil centrodel mondo, cioe uerfola letra. S.D. Eglie cofacredibile. N. Hor per conchiuder il nostro'propofito, supponeremo che tutto il tranfito,ouicr wiaggioche debbia far, ouer che babbia fatto la balla tirasta dalla fopradetta colobrina fla tutta la lined.a.b.c.d. © fe po ßibile che in quello fia alcuna parte che fla perfettamente retti, poniamo che quella fiatutts la parte.a. b. la qual /ia diuifa in duc partic cguali in ponto .e.e percbe la balla tranfira piu ueloce per ilfpacio. a.e. (per la terza propofitione del primo, della noftranuoua fcientid) $)$ í quello fura per il pacio.e. b. A dungue la det $=$ ta balls andara piu rettamente, per le ragionidi Jopra adutte, per it §pacio a.e. di quel To fara per il Ppacio. e. b. onde la lines.a a e.far ia piu retta della. c.b. la qual cofa a inpof fibile, percbefe tutta la a. b. é fuppofas efer per fettamente retta, la mitade di quellis non puol effer ne piu ne men retta dell' altra mitade, © /e pur P unna mitade dara puu ret $=$ ta dell' altera feguits neceffarismente quell altr a mitsice non effer retta, e pero foguis ta de necefitu, la parte c. b noneffer perfettamente retta.

Ef f c pur alcuno baue feancboraopinione cbe la parte.a.c. fulfe pur pfettaméte rettes, tal opinionefe reprobara per fal/a,perli medefmimimodi, cuic, cioe diuidendo la detta parte.a.e.pur in due partiegualiin ponto.f. © per le medef fime ragioni di / opr a adate te, fera manifefol la parte. a.f.effer piu retta della parte.f.e. adunque la detta parte.f. r. de necefita non fara perfettamente retta, fimilmente che diuideffe anchora La. a.f. induc parti eguali, con le medefimeragionife manifefta la mita di quella uer 0 o.a.e ffir piur rettadi quella cbe ucr $\int 0$. F. © colichi diuide fje quella mita pur in altre duc parti vgualiill medefimo feguird, cioc la parte terminante in a. effer piur rettadel'altra, \mathcal{O} percbe queflo procedere e infinito feguita di necesßita che non folamente tuttd Lat. .b. noné perf fatamente retta, ma cbe alcuna minima parte di quellanon puo effer perfets tamenteretta, che cil propofito. Si uede adunque qualmente la balla tirata da dettaco Tobrina in tal ucfonon uas al cuna minima parte del fuo muto, oucer tranfito per lines perfettamente retta(u foif ca pur con qual grandif Sima uelocita f ifo glis) perche la uce
 retta, ucroe coe quanto puu us ueloce in jimiliuerfitanto piu col moto fuo feappros pinqua al moto retto, cioc alli andar per rettalines, tamen mai puo arriusr a $2 a /$ /cgno,

Fig. 1.16 Plate from Quesiti on trajectories (Tartaglia 1554, Book I, Q III, 11rv; Qs I-II-III-VI, $5 \mathrm{rv}-13 \mathrm{rv})$. Finally, as above cited, the trajectory of the projectile is - with some difference Aristotelian. In fact, Tartaglia remarks that, for non-vertical motion and from geometric standpoint, the trajectory (or part of it) cannot be entirely and solely rectilinear because the gravity. In his word: " N . Anchor dico, che dove che in quella maggiore gravita, ivi è maggiore stimulatione di quella in tirare la detta balla verso il centro del mondo, cioè verso la terra [towards Aristotelian centre of the earth]." (Tartaglia 1554, 11v (see also 11r)). Particularly, his fundamental geometrical reasons are: a) a non-vertical trajectory approaches more so to a rectilinear line as greater is the velocity of the projectile; b) for violent motion the velocity gradually decreasing (Ibidem)

S. DVCA. Cheuoletcinferir per quefio. N. Primamente roglio inferir que foo, che tirando un pezzo alla elleuatione delprimo ponto, tir aramolto piu lontano di quello cbe far a ftando a liuello, er tirandolo alla elleuatione del fecondo ponto, tirara molto piu lontano di quello, cbe fara alla clleuatione del primo ponto, er cofl alla cllex uatione del terzo ponto tirara piu lonitano, che alla clleuatione del fecondo, er cop alla elleuation del quarto tirare anchors affai piu lontano di quello, che fard alla elleuation nedel terzo, e jimilmente alls elleuatione del quinto tirara alquanto piu, che alla elle uatione del quarto, er coft alla ultimacllcuatione, cioć al fefto ponto, con balla dipiom bo tirara alquanto piu, cbe alla ellcuation del quinto, ma poco pia, percbe la ragionne dimostr a, che quefti due tiri, cioce tisatial quinto, e fofto ponto foro tanto nicimi, om vier tanto poco differenti, cbe ogni poco d'auantaggio, cbe fit trouafe nel guinto, ó per uigor di poluere, ouer per altro, al detto quinto, fe tiraria tãto, quanto al $f e$ fo, et forft piu. Et chipoteffe elleuar tal pezzo, come fe fanno limortari, cioc al fettimo ponto, fenza dubbio al detto fottimo ponto tirar a alquanto manco, cbe al detto fefto, er cojt
 molto manco, che all'ottauo, er cola al dacino urara molto manco, che al nono, ct coji

Fig. 1.17 Plate from Quesiti on inclined cannon for the maximum path and bombardier's quadrant (Tartaglia 1554, Book I, Q I, 6v; Ivi, Q I, 5rv-7rv)

LIBRO

PRIOR E. Quefte Speculatione molto me piace, ev è multo bella, ma non bo troppo ben intefa quefta ultima particularita che mi haneti detta, cioe cbe in dui fegni pofti in dui dinerfi lnogbi, nifi poffatirar, er dar de mira, e pero datime uneffempio fe poffible e in figura, percbe à mi me pare cbe tal co fa non fispoffibile. N I C O L O. Sis effempigratia 14 fotto feritta arteglia ria con le dui mire.c.ér.d.fecondo el propofito, cioe cbe la mirr.d. fia talmê te pin baffa della mira.c. cbe la no fralinea uifuale fegbiil tranfito, ouer viag gio qual debbe farla balla, er fia tutto ci tranfito, ouer uiaggio cbe babbia facto, ouer cbefaria la balla non tronando refiftentia) dimoto uiolente tutta la linea. b. i. k. I. m. ec la linea. m. n. fia parte del tranfito, oner niaggio cbe quella babbia fatto, ouer faria de moto naturale bor dico cbe fe la noffra linea uifuale (procedente per le iffremita delle due mire. c. ©. d.) Segbara el àt to tranfito, ouer niaggio b. i. K, l.m. n. er quello procedendo rettamente in infinito (perleragion di Jopra dảutte) eglie neceffario che la interfegbi tal tranfito, oner viaggio in duiluocbi, cioe uno nella parte rett a (oner men chre. ua). b. i. k. © laltro nella parte curua. k. 1. m. oner nel tranfito naturas le. m. n bor fupponamo cbe nella parte retta. b. i. k, la lafegbi in pointo. i. Er nella curua in ponto. I. (come nella figure appare concludo adurque cbe fe el fegno tolro de mira, fara in quala fi hoglia delle dette due interfecatio ni cioe in ponto. i. ouer in ponto. I', neceffariaméte la badledara precifamen te in brocea, e quando chel detto fegno fara pin in fuora della prima interfe catione cioe dal ponto. i.) per fin al ponto. K. tanto fiu alta fara la detta bot ta,ma quanto pin oitra al detro ponto. k. per final fonto 1. Farael detto fo gno tanto men alta fara la detta borta, ma quando cbe el detto fogno faffe per alquanto oltra al ponto. 1. tal botta nece fariamente dara de forto dal fegne, - quando tal fegno fara molto oltra al ponto. l. la detta balle non porta aris uare al fegno, come (per ragion naturale) credo cbe quella poffa facilmente comprendere. PRIORE. Comprendo che eglie troppo elsero, Etcer tamenie quefta è flata una bella fpeculatione, epero non исglio che piи иe af fatticatiper queftafera, diman de fera direti poiel reffante.

Fig. 1.18 Plate from Quesiti on cannonball (Tartaglia 1546, Book I, Q VII, 16rv)

Finally, history tells us that from the principles of conservation (inertia) and the composition of motion and from having understood that the speeds were proportional to the squares of times -through various hypotheses of heights (Drake 1973, 291-305) - Galileo wrote important notes in folio 116 v (shown below). ${ }^{50}$ On statics, the science of weights and mechanics, in general, we refer the reader to the following paragraphs in which our discussion is centered specifically on the aim of our book.

1.1.3 Physics and Architecture: On Ballistics \& Fortifications

The Book sesto together with Gionta, a sort of technical appendix, are presented in Quesiti before the topics of statics (Tartaglia 1554, Book VII and Book VIII). The topic addressed will not give explicit technical reasoning on the science of weights. In fact, it develops essentially according to geometric reasoning on the choice of materials and military strategies. In particular, it should be noted that in the study of fortifications, Tartaglia considers geometry to be of primary importance for the choice of buildings-materials (Tartaglia 1554, Book VI). Consequently, from the beginning (Ivi, Book VI, Qs I-III), Tartaglia dedicates a significant amount of space to the study of maps of some important cities such as Turin to emphasize how the geometric shape of the fortifications bears on their efficacy and therefore on the security of the besieged. His studies on military-guard and initial approaches to bastioned fortifications (Pisano 2013c; Hogg 1982) that traversed the history of science are of great importance. ${ }^{51}$

1.1.3.1 On Ballistics \& Technical Instruments in the Nova Scienta

According to previous historians, Tartaglia's first printed work was entitled Nuova scientia, inventa da Nicolo Tartalea B.[risciano] (Tartaglia 1537). The book is devoted to a discussion of ballistic arguments and correlated techniques-instruments of measurements (Crowley and Redpath 1996; Cuomo 1997, 1998; Guidera 1994) in order to search for a general law useful both (at that time to early) mechanical-ballistic (McMurran and Rickey 2011) theory and practical-weapon

[^23]science. The organization of the argumentation is (like in the Quesiti) very far from axiomatic ${ }^{52}$ structure, or by principles; only partially did he adopt Aristotelian forms; "Euclidean forms" appears more frequently in the Nova scientia; rather he seems to follow Archimedean tradition (Pisano 2008; Pisano 2009b; Pisano and Capecchi 2009). Thus no surprise for the novelty of science as "Nova".

The manuscript is composed of incipt, a usual dedicatory letter and four main books and deals with the theory and practice of gunnery. Nevertheless, his early mathematical studies applied to ballistics, particularly to the trajectories of cannonballs, and were explained in epistola dedicatoria (20 December 1537, Venice) as a preface to Nova scientia and addressed to Francesco Maria Feltrese della Rovere, Duke of Urbino and Captain of the Venetian Senate (Figs. 1.19 and 1.20):

[^24]

Fig. 1.19 Plate from Nova scientia - Frontespice (Tartaglia 1537. By frontespice and the curved path, the role played by his studies on trajectories in his aims is evident A summary of the main topics of the Nova scientia is important for our aim because some crucial arguments discussed are then reworked/represented by Tartaglia in his Quesiti. A recent edition of the Nova Scientia is published (Tartaglia 2013; on that see also Arend 1998))

Allo Inufriffrmo er Invictiffimo Signor Francefco Maria Feltren je dalla Roucre Duca Eccellentif Jimo di Vrbino 民 di Sora, Conte di Montefeltro, et di Durante.Signor di Sene gagha,gJ di Pefaro. Prefetto da Romarev del lo Inclito Senato Venetiano Dignif)s mo Gencral Capitano.

Epifola :

 ABITANDO IN VERONA Panno. M D XXXI Iaufrijfimo. S^{*} Duca mi fu adimandato da uno mio intimo er cordial amico Peritif \int_{1} mo bombardiero in cas fel uecchio (buomo atempato $£$ copiofo di mol te uirtu) dil modo de mettere a segno un pezzo de artegliaris al piu cbe puo tirare. Ea bencbe in tal arte io nö baueffe pratisc alcuma(per cbe in uero Eccellente Duca) giamai dij(cargbett artegliaria, archis bufo,bombarda, ne fchioppo) neente di meno (defiderofo di feruir $l^{\prime} a s$ mico glipromiff di darh in breue rikoluta rijpofta. Et di poi che bcbbi ben maficata ¡ ruminata tal materia, gli concluff, et dımoftrai con ragioni naturale, 尤 geometrice, qualmente bifognaua che la bocs ca dilpezzofeffe cllcuata talmente cbe guardafje rettamente a 45 . gradi fopra al orizonte, ¿ che per far tal cofa ijpedientemente bifor $g^{\text {na }}$ baucre una fquara de alcun metallo ouer legno jodo cbe babbia intercbiufo un quadrante con lo fuo perpendicolo come di fotto appar in dijegno, e ponendo por una parte della gamba maggiore diguello (cioe la parte b c.) ne l'axima ouer bocca dil pezzo djlic fa rettamens te per ll fondo dil uacuo della canna, alz ando poi tanto denanti i dete topezzo cbe il perpendicolo,b d. Segbilo lato curuo.e gf. (dil quadráa

Fig. 1.20 Plate from Nova scientia (Tartaglia 1537, Book I, 3r)

Below, we clearly provide some passages from Nova scientia regarding the aforementioned epistola dedicatoria where the spirit with which Tartaglia wrote his "operina", as Tartaglia himself cites his work in Nova scientia, can be inferred as well as some original innovations on trajectories of shots that will later be revisited in Quesiti.

Very important are the definitions of equally bodies and time as measure of the motion concerning natural and violent motions and related studies where Tartaglia argued about the influence of air - as opposition to motion (nowadays thinking of friction) - during the path made by a projectile:

First Definition. An equally [uniformly] heavy ${ }^{53}$ body is said to be a body which, according to the heaviness and shape of the matter, is not perceptibly influenced by air opposition during its motion. ${ }^{54}$

[^25]Definition IIII. Time is a measure of motion and of the state of rest; its ends are two instants. ${ }^{55}$
Definition VI. The natural movement of equally [uniformly] heavy bodies is the movement they accomplish from a higher place to a lower one perpendicularly and without any violence. ${ }^{56}$
Definition VII. The violent movement of equally [uniformly] heavy bodies is the movement they accomplish with effort either upwards or downwards, to the right or the left, and is caused by a moving power. ${ }^{57}$

After the definitions follow five hypotheses called by Tartaglia Suppositione (Tartaglia 1537, Book I, 11v). After the Suppositions and just before the Propositions and Corollaries (Ivi, 12r et s.) follow four sentences called Comune Sententie ${ }^{58}$ (common assumptions or axioms) by him (Tartaglia 1537, Book I, 11v-12r). The Comune Sententie do not refer to a particular magnitude of one kind such as, e.g., lines, angles, figures etc. (Pisano 2005-2008). In fact, although this part of the Tartalean context seems typically (and generally speaking) organized like a traditional Aristotelian/Euclidean structure (Definitions, Common notions and Propositions) the Comune Sententie did not play precisely the role of necessary elements of the theory typically, i.e., within axiomatic Euclidean ${ }^{59}$ organization of the theory (Ibidem).

The Definition IIII is addressed to a concept of measure that makes clear Tartaglia's empirical approach to the study of natural problems. Moreover, we want to remark - particularly important - his concept concerning heavy equally bodies. Certainly, it was not an original concept ${ }^{60}$ at that time. Recent studies have shown how already Archimedes had argued on the heavy equally bodies and bodies in equilibrium concerning studies of the lever (Pisano and Bussotti 2012; Capecchi and Pisano 2010a, b; Pisano 2007).

The following passage addresses his lack of experience in artillery, introduces the reader to the maximal range for projectiles of 45-degrees for all weapons and presents the genius intuition of using algebra and geometry together, to attempt

[^26](we would say today) the composition of horizontal and vertical motion in the visibly non-rectilinear trajectory of projectiles; In his words:

Epistle. When I dwelt at Verona in MDXXXI [1531], Illustrious Mr. Duke, I had a very close and cordial friend, an expert bombardier at castel vecchio (and aged man blessed with many virtues) who asked me about the manner of aiming a given artillery piece for its farthest shot. Now I had no actual practice in that art (for truly, Excellent Duke, I never fired artillery, arquebus, mortar, or musket), nevertheless (desiring to serve my friend) I promised to give him shortly a definitive answer. And after I had chewed over and ruminated on this matter, concluded et proved to him by natural ${ }^{[61]}$ and geometrical reasoning, how the mouth of the piece must be elevated in such a way as to point straight at an angle of 45 degrees avobe horizon, and to do this most expeditiously, you must have a square made of metal or hard wood that includes a quadrant with its vertical pendant, as appears below in the figure [...].

Nevertheless more during MDXXXII [1532], when the Prefect at Verona was the Magnifico [noble] Misser [Mr] Leonardo Iiustiniano [Giustiniano], A chief of bombardiers, who was very close to that friend of ours, [...] one day it happened that the two of them took up the same problem which our friend proposed to us, that is how a cannon should be pointed in order to shoot as far as possible over plain[${ }^{62}$]. [...].

And, you should know, Vostra Magnimita [Your Magnanimity] having once gone this matter, I thought seriously of a further trial, and I began (not without reason) to investigate the kinds of motions that take place in a heavy body [cannon ball]. I thus found that there are two such motions, the natural and the violent, and I found these to be totally contrary in events ["accidenti"] through their contrary actions ["effetti" and] similarly I also found by reasons evident to intellect, that it is impossible for a heavy body to move with natural motion and violent motion mixed together. I then (Mr Serenissimo ${ }^{[63]}$) with demonstrative geometrical reasons the quality [character] of the trajectories ["transiti"], or violent motions of heavy bodies according to the various ways in which they may be ejected or thrown violently [artificially by artillery] through air. [...].

There I found a new method of investigating quickly the heights, the hypotenusal (or diametral) distances, and also the horizontal distances of visible things. This is not completely a new thing, for indeed Euclid in his perspective shows it briefly, theoretically and in part. ${ }^{64}$

Continuing ahead in the letter, we can glimpse a sort of conscientious self-reflection on the fact that he is beginning to be aware of the danger of the general law that he was about to describe in the book: affirming that a law exists which is valid for all the pieces ("pezzi") produced -therefore, for everyone's use. Nevertheless, how would they have used such a law? It would have been used both by whoever was trying to defend himself and by he who was attacking, and therefore would have contributed to the elimination of human beings in either case. Here below, we provide interesting passages of this dedication in which a desire not to divulge this information emerges:

One day, however, I was thinking to myself, Very Magnanimous Duke, and it seemed to me that working toward the perfection of such an art, harmful to the neighbor or even

[^27]destructive for the human species \& especially for the Christians because of their continuous wars, was a reproachful, vituperative and cruel thing, worthy of heavy punishment by God and by men. For this reason, Oh Very Excellent Duke, not only did I completely postpone the investigation of such matters and begin to work on another subject, I also shredded and burned all the calculations and writings that I had annotated concerning such matters. I was very upset $\&$ ashamed about the time I had spent [working on] this subject, [also] I did not want to tell anyone of those particular things that remained on my mind (against my will), neither because of friendship nor reward (though I was asked by many people to do so) and this was because, had I taught them, it seemed to me that I would be making a big mistake. But now, seeing that the wolf [Turkish emperor Suleiman ${ }^{[65]}$] is anxious to ravage our flock while all our shepherds [Pope Paolo III, Imperator Charles V king of Spain, Francesco I king of France and la Venetian Republic] hasten to the defense, it no longer appears permissible to me at present to keep these things hidden. I have hence resolved to publish them partly in writing and partly by word of mounth [viva voce], to every faithful Christian, so that each may be better fitted in offense as well as defense. And I am very sorry, Very Magnanimous Lord, that I ever abandoned this study, since I am certain that if I had kept on without pause I should bave discovered things of more value, as 1 hope soon to do. But since the present is certain, Most Illustrious Lord, time is short, and the future is always doubtful, I want to speed first that which I now have; and to carry this out in part, I bave hastily composed the present Iittle work. And like every river tha flows to approach and unite with the sea, this will seek to approach and unite with your greatness, your Excellency being the greatest of mortals in warlike virtue. For just as the abundant sea, which has no need of water, does not disdain to receive a little stream, so I hope tbat your Excellency will not distai to accept this, in order that tbe expert bombardiers of tbis our most illustrious duca) dominion, subjected to your Excellency, in addition to tbeir fine and practical skill, may be better instructed by reason and able to carry out your mandates. And if in tbese tbree books I bave not fully satisfied your Excellency together with tbe said expert bombardiers, I bope in a short time to do so with the practice of the fourtb and if books, not indeed in print (for many reasons) but in writin or by word of mouth; to satisfy, in part, them and your Excellency, to wbom I devotedly recommend myself [to You].

Date in Venice, at the new houses in San Salvatore XX.
[20th] December, MDXXXVII [1537]
Your Excellency's bumblest D.S.
Nicolo Tartaglia Brisciano [Nicolò Tartalea from Brescia]. ${ }^{66}$
His words in the last lines of this passage, like a re-thinking, has to do with the last ballistic results obtained and only then proposed in the first three books of Quesiti (Tartaglia 1546, 1554).

Below we provide the first part of another epistola dedicatoria ${ }^{67}$ to King Henry VIII of England, which serves as a preface to Quesiti (Tartaglia 1554) (Fig. 1.21).

[^28]
$\mathcal{A L C L E M E N T I S S I M O , E T}$
 INVITTISSIMO HENRICO, OTTAVO, PERLADIO GRATIARE DE ANGLIA, DB FRANCIA, ET DEHIBERNIA, ETC.

NICOLO $2 A R T A G I I A$.

E Dimande, Quefiti, ouver Interrogationi Mafta Serenißima, er Illuftrißima, fatte da Saui, e Pruicnti Domandatori, fanno molte wolte confiderare allo interrogato molte cofe, e anchora conofcerne molte altere, le quale fenza efferne adimandato giamai barebbe cono/ciute, ne confiderate. Queftodico per me, qual mai fcei profeßtione, ouer dilettai de tirare di alcuna forte, Arteglisria, Archibufa, Bombarda, ne scbioppo, (ne manco tirarinterdo) er un fol quefito fattomid da un perito Bombardero, lanno M D X X X I. in Verons, mi fcec à quel tempo confiderare, Ev inueftigare fpeculatiuamente l'ordine, \approx proportione di tiri propingui, © lontani, fecondo le uarie clleuationi de tale macbine tormentarie, alle qual cofe giamai bascris pofto cura, fe tal Bombardero, con tal fuo quefito non mi bauefe in tal materia fueggiato. Ma piu fentendo io l'anno M DXXX X I 1. con quanto gran preparamente fi moueud Soliman Imperatorde Turcbi, per infeftare la nofira Chriftiana Religione, Compoßi con gran celeritì foprà à tal materia uns opcrina, er quella publicai. Acciocbe tai mie particolar inuentioni fi baveffeno à β perimentare, wedere, er confiderare fe di quelle fipoteus causre qualdbe buon cofirutto in beneficio er difenfion di quella, eq quantunque di tal cofa non me feguitaffe altro (per uari accidenti, ne manco io me ne curai, percbe tal guerra in fummo fi vifolfe,) nondimeno talmia operina, ha provocato uarie qualita di perfone, © miggior parte non uol gare, ma di fupremo, ev altoingegno) d̀trouagliarmi dinouo con altri usrij Quefiti, ouer interrogationi, © non folamente fopra àtal materia di Artegliarie, Balle, Salhitrio, O Poluere. Ma anchora fopra dinowo me hanno falto non folamente confiderare tai particolarita da loro adimandate, ma anchora conof cerne, ev ritrouarne (com'e detto) molte altre, lequale fenza tai fuoi Quefiti, ouer interrogationi, forfi giamai baueria conofciute, ne confiderate. Dapoi fra me penfando, che non puoco biafino merita quel buomo, qual, ouer per fcientis, ouer per fus indufiria, ouer per forte rilrora qualche notabil particolarita, ev shi folamenre iai jolo

Fig. 1.21 Plate of the Quesiti editions and dedicatory to Henry VIII King of England (Tartaglia $1546,1 \mathrm{r}$; see also 1554 , 1r, 4 rv. We note that it would not be prudent to homage the book to King of England, previously excommunicated (1533), so it is very probable that the essential reason of the dedicatory was an homage to the English gentleman and Tartaglia's pupil Richard Wentworth cited in the dedicatory letter to Quesiti (Tartaglia [1554] 1959, 4rv) and in the Books V and IX (Tartaglia 2010, 9). Some sources report that Wentworth is (eventually) the author of an Italian manuscript archived in England (Oxford Bodleian Library, Ms 584, UK), as well. It seems that Tartaglia is often cited. Then, if so and maybe, it might be the true reason of a dedicatory to the King of England as well)
> ne tiog lide effer poffefjore, perche fe tutiti noftri anciamil medefino baueffero offer: uato, poco dilli drimaliirrationalial prefente faresimo differenti adunque per non incorrere in queffo biafimo. Ho deliberato di nolere tai mei quefiii, ouer inuentioni mardar al tutto in thice,' E per dar principio ad effequire tal mio bon uotere, ne bo raccolto per al prefente unn parte da un mio memoriale nel qual fempre per bona memoria tuti li notabili, che me ueneuan fatti de mia man notaua, er quefta parte la bo diffribuita in nuoue liori diftintif fecondo la qualità dethe materie conforme de tai ouefiti. Dapoi uenendomi ad aricordare, cbe ragionasdo un giorno, con el noffro bonorando compare, meffer Ricardo Ventuorth, gentil'huomo di uoftra Sacra Mdefta, elqual predicandomi della Magnificentia, Magnanimità, Liberalità , Generofità, Humanità, or clementii di iupfra Altezzs, mi diffe anchora, quidinente uoftra Celfitudine fi diletana grans damente di tuttele cofe alia guerra pertimente. Il che penfando, nit ba datto ardire COzantinque in me non fia quella eloquentia, er ornato dire, che fo rechiederis alI'sdita diuoftra Serenitd') di donere tai mei Qaefiti, ouer interrogationi, conle fue rifolute rippofed quella offerire, e dedicare, non come cofa conveniente ì uoftra Subllmuta (perche in uero le cofe di profondißima dotrind, narrate, evepplicate con ellegante, © ter 0 oftile, non potriano aggiungere al primo gradodi uoftra altezza, non che quefte noffre, bhe fono cofe Mechanice, e plebee, © fimilmente dette, σ pronondatecon rozzo © baffofile.) Ma folimente come cofe nuose ì quella lé, fferifco, e de. dico, come $f i$ coftuons d fare delli primi frutti, che al principio di. fus ftagione uengono nitroutifi, liquali (Canchor cbe fiano alquanto immatturi, édi puoca foffantia, e men (apore) fempre fe fogliono apprefentare d̀ perfone Magnifiche of fignorile, non per la qualita della materia, ma per la nouita di quells, perche le cofenuoue naturalmente for ghono aggradire al intelletto bumano, of cio mi ha dato da credere, tai noftre inuentioni non douere à uoftra Clementia in'tutto dijpiacere anzi aggradirli alquanto, il che effendo (comedeffidero) mi darì animo di douere per lavenire piuoltra temtare, alli picdi della quate e profirato in terra con le man gionte, e capo cbino humilnente mi raccomando.

Fig. 1.21 (continued)
Finally, Tartaglia was overcome by a guilty conscience, typical of scientists involved in activities with important social repercussions. ${ }^{68}$

Here, Tartaglia also describes his instruments of measurement and calculation for the 45 degree elevation. We note that in Nova scientia, the studies on the elevation of a piece ("pezzo") at a 45-degree angle and related images are included within the aforementioned epistola dedicatoria (Tartaglia 1537, 1r-4v). In Quesiti the questione balistica (see above) appears more organized since it is inserted starting in Book I (Tartaglia 1554, Book I, from folio 5r). Below, we provide the images present in the epistola dedicatoria of the Nova scientia ${ }^{69}$ (Figs. 1.22 and 1.23)

[^29]

Fig. 1.22 Gunner's Square or Tartaglia's Quadrant (Tartaglia 1537, Book I, 3v. See also those presented in Quesiti (Tartaglia 1554, Book I, 5v)) and below in Nova Scientia (1537)

Fig. 1.23 Measuring-calculating heights by Tartaglia's Quadrant (Tartaglia 1537, Book III, 40rv. A similar argumentation and images will also be proposed by Galilei (1606, Appendice II; Id., 1640, pp 61-80))

> Beyond this, I made certain, by means of demonstrative geometrical reasons, that all shots with every kind of artillery, large and small, [whatever form they have] equally elevated above the plane of horizon, or equally oblique, or along the plane of the horizon, are similar to one another and consequently proportional, as are [their] distances also. ${ }^{70}$

Tartaglia found the elevation giving the greatest range to be 45°. Even if his proof was not satisfactory, he surely proposed a general law within the history of physics that was valid for every kind of gun. In fact, he inaugurated the scientific treatment of the subject. The argument was again studied, occupying two (Book I and Book II) out of nine books of Quesiti.

The Nova Scientia had a certain approval among those who practiced the art of the bombardieri (artillerymen) as can also be deduced from the dedication of the work (Ekholm 2010). It should be noted that Nova Scientia is a treatment that was published in a very peculiar period for the history of Renaissance mechanics and that of fortifications inferred by several cultural events of the beginning of the sixteenth century ${ }^{71}$: It is the
[...] first essay on ballistics [...] based firmly on the live, concrete experience of the facts and carried out with the aid of geometry and numerical calculation [...]. ${ }^{72}$

After the first 1537 edition, still three main volumes were published in 1550 where some reworked lines can be read (e.g., Book III), then posthumously in 1558 and in 1562 (reprinted ${ }^{73} 1583$ and 1606; see Tartaglia [1558] 1562, 1998). Particularly, after the second edition, a new book Gionta al Terzo Book was included in the following edition. According to the above-cited development his ballistic research (from Nova scientia to Quesiti et inventioni diverse) we note that Tartaglia found the right relationship between the range and 45° angle, even though his reasoning was too weak to demonstrate the accuracy of his intuition. His ability and interest in the study of trajectories is noteworthy since he seems to have understood that the

[^30]path is not entirely rectilinear. In this regard, we feel free to consider Tartaglia as one of the first to apply a scientific treatment to the subject. He informed the Duke of Urbino of the remarkable general result of his research:

All pieces of artillery, of any size, firing bullets which describe trajectories curved and of the same geometric shape. ${ }^{74}$

Therefore, this involves a theorem as a general proposition to demonstrate. Nevertheless, in addition to the law of the elevation of the cannon, it was also necessary to know - as Tartaglia correctly notes - how far away the target was. To this aim, he suggests a practical method to calculate con la vista and with two different types of "square ruler" with quadrants ${ }^{75}$ the distances that are impossible to measure directly between the artilleryman and the target (Fig. 1.24).

[^31]
della ombra retta, \&- la diuifione. 2 .il fecondo ponto, (f cofi dif correedo nelle al tre diusfoni della ombra retta e fimilmëte la diuifione prima della ombra uer fa fe dice il primo pöto della ombra uerfa e cofi la dimffione. 2 . Se dice il fecondo pöto della ombra uerfa, e心 cof dijcorrendo nelle altre diuifioni.Hor per cöpir q̆fto noftro istromẽto fopra la găba.b c.de fuorauia afjettaro le due laminette prefofate.m n.talmête che li dui forami fiano in retta linea ancora egualmen te diffäti dal piano.b c.et faro li dettiforami picoli che apena il raggio uifuale gli poffa andare, $-\frac{p}{}$ q̆lli ueder la fumita delle cofe apparëte, da poi fifaro un ferretto ppendicolarmëte in pöto.e.et aq̆llo gli atacaro il perpendicolo, ouer piombino.e o.zひ Sara compito il detto iffromento che čil propofito.

> Correttione del Authore.

C
Ia fcaduna cofa da poi, cheè faitta, fe la fufe da fare molto meglio fe faria, e p tanto dico che in luoco di alle due laminette pforate.m. of m.molto pire iuffaméte reffödera, er fervira facédo fare uno canaletto picollino, cö un pionino, accio atto, rella bandar de fotto della gäba.fb. qual vada rettamente dal
 Sopra il quadrato.g bi i e. ※ dapoi fatto il detto canaletto incollar la detta z_{a}^{a} ba al fuo luocoset da poi incollar una lifietina fortila del medefimolegno, nel-

Fig. 1.24 Plate from Nova scientia, first instrument: squadra a gnomone (Tartaglia 1537, Book III, $22 \mathrm{v}-23 \mathrm{r}$)

The first square in which from the apex of the right angle a plumb line descends is useful for keeping the instrument perpendicular and therefore for evaluating possible slants. Inside the right angle, there is also a small graduated ruler on the smaller side of the cross. This is for determining the vertical distances, i.e., elevations, far from the observer. The second instrument is used to determine horizontal distances far from the observer (Fig. 1.25).

$T \boldsymbol{R}^{\pi} \mathrm{Z}$:

31
to lo frritto quadretto del quallo ognimita del lato det fecödo, è dinifo folamẽte in fie parti, ma per accordarfe con quello che fe ha da dire, fupponeremo che ciafcaduno di quefti uaia per doi ponti. I numero di detti ponti per la ftretez za del ßpacio non ui fe fono potuti accomodar, ma bafta a faper che done finiffe il primo ponto dal.e.ver $\int 0 . b$. \int e gli pone.i. © doue finiße il \int econdo ui $f i g h i$ mette.2. © cofi pcedendo per fin in iz.elqual 12 .ponto uien a terminare nel angolo.b.del fecondo quadrato il medefimo fi debbe fare nell'altra mitta uerfo a.cioènel fin del primo ponto dal.e.uerfo.a.m. tterui. r. \&f in fin del fecondo. 2 * cofi andar pcedédo per finin 12 .ilqual 12 nien a fenire nel angolo.a, del $\sqrt{\text { Se }}$ condo quadrato, \& tutto quefto che fe é detto del lato a b. del detto fecondo quadrato fi debbe intendere \& fare in li altri tre lati.a c.c d.o.d b.del detto fecondo quadrato, cioé principi.r a numerar alli ponti di mezzo, cioè.g fh . del detto fecondo quadrato \& fenir nelli angolia b c d. \& bifogna aduertire, come difopra fu detto, che lidetti numeri di ponti uogliono eßer posti in quelli interualli che fono fra li lati del primo quadro, \& quelli del fecondo. oltra di quefto bifogna far una dioptra, oner trafguardo ilqual trafguardo uolende far de un pezzo folo el ji debbe tuor quella lamina di ottone,ouer di rame piana, es tirar in $\mathfrak{q} l l a$ (cö una rega iuftisfima) una linea retta longa quan to che è il diametro del quadrato del iftrométo qual in quefto cafo faria quăto cbe è dal.a.al.d.oner dal.b.al.c.ej quefta tal linea fuppono che fia la retta.lm \& qffa fia diuifa in due parti eguali in pöto.n:* ad angoli retti con un'altra retta linea a a qlla eguale laqual pögo fia la.o p.et fopra il pöto.n.faccio un cir coletto picolo,et unaltro simile é eguale a quello ne faa defcritto in cadaunz iftremita di quefte due linee, cioè fopra li pötill mio p.et di quefla figura cauarne fuora quattro brazza in croce perfetta, ma talmente che il corpo de cadau no di quefti quattro brazza fia al contrario del woftro contrapofito come di fotto fi uede in figura.

Fig. 1.25 Plate from Nova scientia, second instrument: squadra a traguardi mobili (Tartaglia 1537, Book III, 31rv)

It consists of a square positioned horizontally on a post and strips divided into twelve equal parts. In the center it is possible to move the alidade inserted at a right angle with appropriate paddles with slits.

Tartaglia describes these two instruments specifically designed for artillerymen. In Quesiti he describes a similar instrument for surveyors (Fig. 1.26).
talmente fabricata che la detto armilla. a.b. fia dital grandezza cbe ui poffa intrare fazzatamente quellaltee armilla, oner fatolina del foprs fcritto noffro iftromêio, ec che quellidui, ouer quatro brazzi, cioe.c,d.e f. b g.et.i k.fiano tal mente fabricaticbe daluna, e laltra banda dimoffrino ginftamente ligradi foprala prima lamma circulare gia fignati,et liduiprincipali, cioc.c d.et.e f. uoleno effer ditantalongberzache da luna er laltrabanda u[cijcanoalquan to fora delserchio della noftra prima lamma circulare, er nella iffremita de lune laltia de quefti dui brazzi ui fe faldale fopradette due Iamette, oиer figure quadrangole in alto ellenate dital altezza cbe fopra ananzano la altez za della f cat lina del noftro bofolo, et talmente largbe cbe fazzadoliuno bufe tino in mezzo di cadauna di quelle, cioe in quella parte cier fupercbia di fopra deldetto boffolo, uno rettamente oppofito d laltro; talmente cbe trafguardan do per li dettidui bufetini la noffra lined uifuale tranfifas precifamente fopra al centro del cerchio del detto noftro iftromento, é dapoi tal dioptra fi debbe con dulligétia incaffare fopra al detto nof Fro boffolo, cioe fopra à quella armilla oner fcatolinache intercbinde il detto buffolo, ilcke facendo il detto nofito iftromento ftara precifamente comedi fotto appare in figura, er la dioptra, oner tra \S §uardo, fara girabile, cioe cbe la fo potra girare per ogni nerfo a tormo à torno, é per quellidui bufettini cbe faranno in quelle due lamette quadrā gole in alto elleuate, fe potra tra $\int \AA$ guddar con uno occhio lifegni, é termini cbe fi uord uedere, come per lanenire peffempio fe moffrard, uero è che m luos co de quelli dui bufettini à mi me piace, et me pare ancbora pin fpediēte, due

Fig. 1.26 Plate from Nova scientia, third instrument: Bossolo (Tartaglia 1554, Book V, 56r [The reader should pay attention because the numbers reported in these pages are not ordered. It should be 60r])

Tartaglia uses the name, Bossolo, most likely derived from the fact that it is used somewhat like a compass (bussola). In fact, it can be maintained that the Bossolo is the predecessor of the grafometro a bussola (compass graphometer) with an internal circle. It has a large graduated metallic circle on the large circumference with a small compass in the middle and two alidades mobile amongst themselves at a right angle and can move around the same center for the final determination. Therefore, it is an application of the compass to topography. Consequently, it can be asserted that it was studied in order to provide an orientation rather than to measure angles.

In the General trattato he discusses another instrument for surveyors (Tartaglia 1560 , Parte III, Book III). We describe the surveyor's cross in the bottom right corner of the following illustration (Fig. 1.27).

Fig. 1.27 Plate from General trattato, Fourth instrument: squadro (Tartaglia 1560, Parte III, Book III, 24rv)

In addition to describing the instrument he writes: "[...] necessary land measurements called cross and how it is made and how to know if it is correct." (Tartaglia 1560, Parte III, Book III, line 4), he pauses at an interesting modification which he considers to be useful to apply to the instrument in question. In practice, Tartaglia suggests the addition of the two vertical visual planes to the two visual lines, with the alidade of two vertical slits tracing each other between their perpendiculars. Therefore, in addition to his mathematical, geometrical, architectural and statics capabilities, he was also well-versed in the techniques of instruments (Uccelli 1941-1943).

Below, we provide a passage in which the author expresses all of his "Archimedean" capabilities, pointing out the theories that he will use in his calculations, such as geometry and algebra.

Next (Signor humanissimo) I knew by Archimedean reasonings ${ }^{[76]}$ that the distance of the aforementioned shot elevated at 45 degrees above the horizon was about ten times the straight carriage of a shot made in the plane of the horizon: which is called point blank ["ponto in bianco"] by bombardiers, which such evidence, Excellent Duke, I found by geometrical and algebraic reasons that a ball shot toward a point 45 degrees above the horizon goes about four times as far in a straight line as it goes when shot in the plane of the horizon, or (as I said) at point blank [that is, to shot horizontally]. ${ }^{77}$

As already stated, since Tartaglia's studies on artillery in Nova scientia are also present in the Quesiti for the sake of completeness, we also note that the crucial points of Book I of the Quesiti improved some of the theses presented in previous Nova scientia. In the following we list only the differences between Nova scientia and Book I of Quesiti around the matter above cited:

1. According to Tartaglia, the trajectory of the projectile is - in some points - curved so little that it can be thought of as straight. In fact, he draws it as a straight line, then traces a curved branch and in the end, draws a descending rectilinear branch. (Tartaglia 1537, Book II, Prop VI). This vision will be revisited in Book I of Quesiti in which the trajectory essentially appears curvilinear (Tartaglia 1554, Book I, Qs. I-II-III-VI).

[^32]2. The angle of maximum range of the projectile is 45° (Tartaglia $1554, \mathrm{Q} \mathrm{I}, 6 \mathrm{rv}-7 \mathrm{rv}$).
3. In the trajectory a point to which the minimum speed of the projectile corresponds is possible obtained (Tartaglia 1537, 5rv-9rv).
4. A target can be hit with two different angles of elevation of the "pezzo" provided that they are complementary (Tartaglia 1537, 5rv-10rv).
5. The angles of elevation of the "pezzi" of artillery on the horizon are measured with the "squadra" (Both in Tartaglia 1537, 5rv-6rv and in Tartaglia 1554, Book I, Q I).
6. The ranges in function of their angles are presented for practice for artillerymen (Both Tartaglia 1537, 5rv-8rv and in various parts of Tartaglia 1554, Book I, Q I, 5rv-7rv, Book II, 35rv-36rv, Book III, 39rv-40rv).

The word point blank ("punto bianco, ${ }^{\text {" }}$)) was proposed by Tartaglia. He measured and calculated the elevation of a gun by means of a gunners' quadrant. In effect, if one thinks of an horizontal fire and considers the trajectory from F to D as proposed by Tartaglia in Quesiti (see Fig. 1.28), and if the distance EF is not too long, common sense suggests that the cannonball will not descend far from the cannon. From a strictly mathematical standpoint, this (horizontal) situation is called point blank (or blank point).

Fig. 1.28 Plate from Quesiti on the trajectory (out) of the cannon (Tartaglia 1554, Book I, Q III, 11 v ; see also Qs I-II-III-VI, 5rv-13rv)

In the following we describe Tartaglia's first corollary in Nova scientia where he defines his main ideas on natural and violent motion related to the trajectories of the projectiles (Fig. 1.29).

[^33]
PRIMO

6.dilcbe (per la prima fuppofitione) lo detto corpo andaria piu ueloce
 per lo spaciorcb.cof 1 per le medeme ragionilo detto corpo tranfiria piu ueloce p lo ppacioed, cbe per lo ppaciod da enper lo ppacio.fer che

 Se piu auantif fufe il principio di tal moto uiolente tanto piu nelli fes gucnti Jpacii andaria ueloce cbe é il propofito+ Quefto medemo fe ue rifica in cadauno cbe fia violentémente menato uerfo a un luoco da efJo odiato : cbe quanto piu je ua approfimando al detto luoco tanto piu ऽe ua atrijtando in la mente e ¢ piu cerca de andar tardigando.

Correlario. Primo.
Onde el fe manifefta qualmente vn corpo egualmente grane in lo principio dogni moto violente, va piu velociffimo, \& in fin piu tardilimo che in ognialtro luoco:\& quato piu ha uera a tranfire per piu longo fipacio tanto piu in lo principio dital mouimento andara velocifimo.
Fig. 1.29 Plate from Nova scientia on violent and natural motion (Tartaglia 1537, Book I, 15r)

The long arm may be laid in the cannon barrel. It was attributed to a shorter arm by a scale in the shape of a quarter circle, which was marked off with 12 points. For example, in order to fire at six points one should fire at 45°. In this sense, in order to fire horizontally, one obtains a punto bianco, that is, no useful points. Therefore, Tartaglia studied theoretical situations both inclined higher than 45° and inferior to 45°.

Later, the term point blank ("punto bianco") was also used in a Galilean didactic ${ }^{79}$ work, postumely entitled (by Antonio Favaro in Opere Nazionali di Galileo Galilei) Trattato di Fortificazione and concerning Galileo's teaching speech on military architecture where punto bianco is taught within a paragraph Delle diversità de' tiri (On several ways to shoot) (Fig. 1.30):

Fig. 1.30 Plates from Galilean manuscript on military architecture teaching (Galileo G, Ms. B. See also Ms. m. "DELLE DIVERSITÀ DE' TIRI. [. . .] il tiro che viene da alto a basso, quale si chiamerà inclinato; il tiro da basso ad alto che domanderemo elevato; ed il tiro paralello al piano, detto tiro a livello, o vero di punto bianco. E così nell'istessa figura il tiro $E F$ sarà l'inclinato, GH elevato, e CD a livello o di punto bianco. E chiamasi a livello, quasi che ad libellam; cioè in bilancio, e che non inchini più nell'una che nell'altra parte. E dicesi di punto bianco, essendo che, usando i bombardieri la squadra con l'angolo retto diviso in dodici punti, chiamando l'elevazione al primo punto, al secondo, terzo e quarto, tiro di punto uno, di punto dua, di punto tre e di punto quattro etc., quel tiro, che non ha elevazione alcuna, vien detto tiro di punto bianco, cioè di punto nessuno, di punto zero." (Galilei 1888-1909e, II, 92-93, line 17). In regard to analyzing the possible shots against inclined, elevated and point blank strengths, that is, at a zero degree elevation, he seems to follow an incorrect vision of the projectile trajectory since he draws rectilinear segments and not parabolic ones. (Pisano 2008, I, 225-231, 249; Pisano and Capecchi 2010a, b, 2012))

[^34]In the end, Tartaglia's re-examination (beginning in Nova scientia) of Aristotle's ${ }^{80}$ natural and violent motion contributed to creating the cultural background that allowed him to write Book I of Nova scientia on the dynamics of projectiles, ${ }^{81}$ and the subsequent Libri VI, VII e VIII of Quesiti on fortifications and the fundamental principles of the science of weights. In particular, his reasonings on the range of projectiles allowed him to write so many considerations on the geometry of fortifications (Book VI and its Gionta) showing himself to reader also to be a technician of architecture and military arts.

1.1.3.2 The Sesto Libro on Fortifications

In Quesito III of Book VI Tartaglia includes a sort of memorandum on the problems to solve within his arguments, or in his words, "quality over [or] condition" or "properties" most important to bear in mind for the design of a secure fortification (Table 1.3):

Table 1.3 The "qualità" [qualities] of fortification designs according to Tartaglia ${ }^{a}$

Qualità	Tartaglia 1554, Quesiti, Book VI
1. Recoil [colpi di rimbalzo] 2. Bastions and curtains [Baluardi e cortine]	Ivi, Q III, 65rv
3. Geometry of walls [Forma geometrica delle mura]	Ivi, Q IV, 66rv
4. Defense with ruined walls [Difesa con le mura rovinate]	Ivi, Q V, 66rv
5. Sentinels on walls [Sentinelle di guardia alle mura] 6. Fortification of roads and expense estimate [Fortificazione delle strade e stima della spesa]	Ivi, Q VI, 66rv

${ }^{\text {a }}$ The order follows the original order Tartaglia used

[^35]The first of the six qualities (in reality they are problems to address) appears to be particularly interesting, since it associates a type of physical to geometric skill also when studying the trajectories (even before Galileo) of recoil as, incidentally, Tartaglia had already argued on that in the Nova scientia.

Before proceeding with the analysis of Book VI of Quesiti, we think it useful to provide some reflections on the cultural and scientific context, from mechanical to astronomical new ideas (Kuhn 1957; Koyré 1961; Neugerbauer 1975; Radelet-de Grave 2007, 2009, 2012), related to the period when Tartaglia wrote his work on fortifications.

[^36]Essentially, when Tartaglia wrote Nova scientia he could count on the ancient writings on mechanics that were available for consultation and on other important publications which, however, did not directly concern the study of statics or, more generally, mechanical tradition (Aristotle, Heron, Archimedes); he also counted on the first achievements of military architectural plans.

We will now see in detail Book VI of the Quesiti entitled Sopra il modo di fortificar le Citta rispetto alla forma (Tartaglia 1554, Book VI; see recently Pisano 2013c). Before presenting his qualities, Tartaglia provided some examples of current problems at that time concerning the state of art of fortifications in Italy; his arguments are related to the third quality (Table 1.3). He cites the fortifications of Torino. He speaks of the map of Torino, for which, Tartaglia raises, in no uncertain terms, his objections to the fragility of the fortifications of the city (Fig. 1.31):

Abstract

L) ITB \boldsymbol{B} R \boldsymbol{O} đe Turino. N. Le cödicioni, qualita, ev particolaritts, cbe douria havere, ouer cbs potria adattarè, alla forma, er murado una citta,fiperreffiered quefitcompialliu gorofl colpidelle artegliaric, come ancbora per potere confacilita, rebatterc, er fendere in uarij modi linimici in ogni lor impetuofoaffalimento, eglie da credere,ct fiano molti. Na'quelie, ebe cofi per al prefente me heimagiarte, fono folanentef of O perche quefte fei ic poffono alterara, er natiarcinswerif e diverfil modi, fecond ec con ragione dimofirare dicedauna di quelle particolarmecrice fua ualuta) dicf.gnt La qual cofa non 1 puo farc cof a all' improuifo, anci ui $z o l$ tempo, ev non poco, e mafia me d̀ me, cbe nel operar manualenonfon molto ifperto. P. Ancbor, cbecofial ims prouijo non poßiatidefignare Le dette piante, ne fabricar materisimente li detti moz delli non poteti almen fotto brcuita narrarcla conditionese o propricta di quffenos Strefci imaginate particolarita, er dapoidefignarc con uofirs commoditaledette pia te, ouer modelli.- N. Le poffo dir f. P. Mo dittcli adurque confequentanctice $P_{\text {uns }}$ dietroP altra, percbe in offetto àmemipare, cbe faquasi impoßibile di poser taffarela forma de Turino de un folo noncbe de fec diffetti. N. La prinal cofs, che àme mipare;che doincria baucre la forma delle murrade wna citta, ouer cbe nifedon ueria farce, uolendo ì questi cempi fortificar quell a é quefla, cbe mai in contoalcano oc Fomo percotere, ouce tirare ppendicolarmente con le arreglisile, perche, ognimurds C- quanto pin uencratino, ouer forivamao bliquanichte, cioc in/gainzo, tanto menor nocimento faranno indetta cortinh, oucr mirrag lis. La caulać, che ogni cömuta per coffa fatta perpendicolarmente fopra duna muraglis comolio pist rijcentita in tatte le quamente, ouer :n fguinzo fopri alla medefima. P. Cretio qucsto sbe noi diccti, per che delle percufiomt fattecofiobliquamente, onerinfguinzo, la nsuraglia non riccue tulta la bottas ma folamentre parte di quell, la qual pirtecaito fars menore, quanto che pin obliquamente, ouer in \sqrt{g} uinzo tal balla forirs fopra à quilld. N. Adunqze La forma de Turino incorre in quefo errore,percbe cadaua delle fue quartro muraz glie, ouce cortine, che la circonde,fono affectate di tal /orte' come I wede nel fuo dife= gno) che linemicini potrannoagcholmente tirareperpendice darmente in cadann di quelle. P. Ruando, cbetal wostra opuipione fi poseffemandar ad ef fecutione in ogni cortina, el non fe potriancgare, cbe la noin fuffeuna cofa molto ingeniofa, er utile. Manonfolanente dubito, cherui non uc ing annath. Materngo, che tal cofa fla impofi bile, perche de quante cittabo pratticate, e viifemai, nc bo uifooalcuna (cbe batter β poffa) che in ogni fua cortind, non ui e poffa tirare perpendicolarnente con learte gliaric. N. Dapoi, che noi baveremo compito da narrare tutte quffenostre feims ginste qualita, oucr sonditioni, non folamente faro conofecere, ev ucderc à uofira Siz groria in figura (ouer con modelli) quaimente egtic gopibile dimndder at offtho tal

Fig. 1.31 Plate from Quesiti around qualities ("N. [Niccolò]. La prima cosa che à me mi pare, che doueria hauere la forma delle mura de una citta, ouer che ui se doueria fare, uolendo à questi tempi fortificar quella è questa, che mai in conto alcuno se doueria far pala de alcuna sua cortina, ouer muraglia, talmente, che li nemici ui potessono percotere, ouer tirare pendicolarmente con le artegliarie, perche, ogni muraglia cede molto piu facilmente alle cusioni delle balle, che feriscono pendicolermente sopra à quella, di quello fa à quelle, che gli feriscono obliquamente, cioe in sguinzo, \& quanto piu ueneranno, ouer feriranno obliquamente, cioe in sguinzo, tanto menor nocumento faranno in detta cortina, ouer muraglia. La causa è, che ogni communa percossa fatta perpendicolarmente sopra à una muraglia è molto piu risentita in tutte le parte di tal muraglia, di quello sara ogni altra molto maggiore, che percottera obliquamente, ouer in sguinzo sopra alla medesima. P. Credo questo, che uoi diceti, perche delle percusioni fatte cosi obliquamente, ouer in sguinzo, la muraglia non riceue tutta la botta, ma solamente parte di quella, la qual parte tanto sara menore, quanto che piu obliquamente, ouer in sguinzo tal balla ferira sopra à quella. N. Adunque la forma de Turino incorre in questo errore, perche cadauna delle sue quattro muraglie, ouer cortine, che la circonda, sono assettate di tal sorte (come si uede nel suo disegno) che li nemici ui potranno ageuolmente tirare perpendicolarmente in cadauna di quelle". (Tartaglia 1554, Book VI, Q III, 65v, line 17))

In this passage, Tartaglia correlated his discourse to the walls of the fortifications and weapons, particularly with recoils caused by enemies' shots: the walls must not only resist new artillery shots but when they are hit, the shots must be diverted. This is possible with the construction of oblique and not vertical perimeter walls. In this way, the shot reaches the target not "perpendicularly with artillery, because every wall cedes much more easily to the shots [...]". ${ }^{82}$

The second quality that he adds is also a "particularity" of fortifications, concerning the geometric shape of the curtains and bastions. The following passage considers how to find the best way and geometric shape (on the map) to then construct the perimeter walls of the city and those of the curtain (that is, the pieces of wall interposed between the bastions) to better prevent assailants from advancing too far and possibly being able to "find any place to be able to put their artillery". ${ }^{83}$ According to Tartaglia, Torino, in this sense, was lacking in this protection (Tartaglia 1554, Book VI, Q IV, 66r).

In order to demonstrate his ability to be thoroughly familiar with certain military aspects of the defense of Italian cities, he returns to the walls of Turin, emphasizing the lack both of this second quality and also of the third quality. In particular, it is precisely this third quality, strictly correlated to the second, which addresses the study of the geometric shape of walls and the minimum artillery needed for defense. Moreover, he allows his influential interlocutor, the Prior of Barletta, to denounce the precariousness of the situation of the defensive system of certain Italian cities (Tartaglia 1554, Book VI, Q V, 66rv).

A discourse on the possible ruins of walls as further defense is introduced in the fourth quality (Tartaglia 1554, Book VI, Q VI, 66rv).

In these passages Tartaglia maintains that if enemies succeed in penetrating the walls, for example, by breaking through, the same ruined walls could produce yet another obstacle to their advancement, thanks to the particular way of constructing them. (Otherwise, they could also favor the passage of the assailants). This involves a

[^37]rather well-known technique at the time, clearly also linked to the type of material with which the walls were constructed. ${ }^{84}$ Moreover, to the incredulity of the Prior, Tartaglia then hypothesizes three different ways of dealing with the problems. He also creates a "modelletto" ${ }^{\circ 5}$ to better explain the advantage of constructing walls with particularities innate in the previous qualities (Tartaglia 1554, Q. VI, Book VI, 66rv).

The fifth quality ${ }^{86}$ is dedicated to a study typical of military strategy: the distribution of sentinels along the perimeter walls. ${ }^{87}$ In regard to the Prior of Barletta's statement regarding the lack of adequate guards in Turin, but also in other Italian cities, Tartaglia undertakes a detailed discourse, indicating numbers of men useful for the armed defense of the walls when they are attacked from below or directly on the curtains (Tartaglia 1554, Book VI, Q. VII, 67rv; see also 74rv).

In the sixth and last quality ${ }^{88}$ of Book VI, Tartaglia discussed at length the fortification of roads, also incorporating the problem of those who came back to the city after working in the fields. Here (see also Appendix) he also includes estimates of the calculation of expenses, which in a city should be able to guarantee an effective organization of fortified defense, thereby also introducing a first approach to military economy (Tartaglia 1554, Book VI, Q VIII, 67rv).

1.1.3.3 The Gionta del Sesto Libro

The Gionta del sesto libro (hereafter referred to as the Gionta) is a very technical appendix, essentially founded on Euclidean geometry. It contains drawings and maps of the geometric shape of the fortifications. The Gionta is also, as the word itself suggests, an addition to Book VI of the Quesiti on fortifications. It is made up

[^38]of six problems in the style of a dialogue ${ }^{89}$ of Quesiti. In particular, from its content, we can also understand why Tartaglia seems to detect the need to add this topic to Book VI. In fact, from the beginning of the previous passage, as he makes his new interlocutor (the philosopher Marc'Antonio Morosini) say, he wants to better explore the qualities which were discussed in Book VI. Most likely, the then recent publications and constructions of new bastions would have suggested the necessity of elaborating on some techniques - as he himself writes "[...] which many were scandalized by [. . .]". ${ }^{90}$

Tartaglia, focusing at length on the matter with elegant reasoning, succeeds in convincing philosopher Morosini, his interlocutor in Gionta, of the importance of constructing perimeter walls whose geometric shape is not, for example, square and therefore having right angles (like those of Torino), but have the shape of a polygon with obtuse angles (Fig. 1.32).

[^39]
LA GIONTA DEL SESTO

LIBRO DI QVESITI, ET INVENTIONI DIVERSE

 DE NICOLO TARTAGLIA.Nella quale 1 I dimoftra un primo modo diredurcuna citta ineffugnabie $l e$, ev che non potra effer battutane danneggiata da nemici conle artegliarie, conaltere particolar fottilita.

QVESITO PRIMO FATTO DAL MAGNIFICO, C- Clarißimo Signor Marc' Antonio Morofini Dottor, © Pbilojopho Eccellentifimo.

IGNOR MARC'ANTONIO. Son molto defidero/o fier Nicolo di uedere in difegno, ouer in figura quelle pistre de fortificationi, che gia prometteftid imostrare al Prior di Barlet ta, cioe con quallic fci qualita, oucr conditioni, cbe nel woffro offio libro preponcte:perche tutte me paiono cofe ingenniofe, no pina dite, ne uedute, ne con/iderate d'aficuno altro, e \int ¢ posibel édipo terle mandar à effecutione(come credo) /ara cofa utilis Sima, mafime quella uostra ter z a qualita, oucr conditione, nella quale diceti, che noleti, bbe Ia forma delle mur a di una citta fit talmedte difpofita, cbe fe per forte lincmici delibes rafeno di darui la battag liag generalle, cbel non fitroui alcuna parte di quetha, cbe pof fa effer affaltata da nemici, che quelli non poßino effer fompre offici da quelli dille terra, al men da quattro bande con le artegliaric:il cbe potendoff fare, me parcris co fagrande, e pero quefatal qualita, ouer conditione haueris piu accaro di uedere de qual $/ \mathrm{f}$ uoglia delle altre cinque. N. Vofira Eccellentia, Siguor Magnifico, fa, cbe mi puo comandare, er per tanto non folamente le predette fei qualita moffraro in di= fegnò Voffra Magnificentia, ma molte altre inucfigate dapoi: percbe (come diccil
 di megliorarla, é di farla molto meglio. Ma bijogna notare, che tutte tai qualits, oner conditioni non ficonuengono in una medefima forma de fortificationc, anci par= te fe conuengono in una, er parte in un'altra: er percbe le forne de fortificare da me immaginate, er ritrouate fono molte, fecondo uarij, refectiid delle quale alcume $f i$ difor dono con baluardi, ev cauallieri, fecondo, che communamente $\hat{\beta}$ coftumanelle moder= ne fortificationi, ma fotto altraf forma. Altre poif difendono per altri uarij, © ing ce niofi modi, $P_{\text {uno }}$ molto piu ficuro, © di molto manco /pefa dell allro:Ma percbe a a 1 Ier moftrarc in difegno tutce le dette forme in untratto gencrariano confufione ì Vos fira Eccellentia, e pero li andaro moSrando à una per una, er uoglio convinciare dilla piu trifta, come coffumano li boregherinel moftrar le fuc merce, che tengono dauchs dere. Et quefto tal modo, oucr forma fara di maggior /pefa de tuttili altrripercbe fira

Fig. 1.32 Plate from Gionta (Tartaglia 1554, Gionta, Q I, 70v, line 1)

In the Gionta, Tartaglia elaborates on the third and fourth "qualities" on geometry and the composition of perimeter walls. In addition, having assured the reader of the basic elements of ballistics, he can now focus more on the shape of walls (Euclidean geometry) and on the best way to build walls to obtain the deviation for recoil; almost wanting to construct a field of applicability for his previous dynamic theory. With this aim, he examines the third "quality", giving a concrete example that he presents in an entertaining analogy:

N [Niccolò Tartaglia]. But since to show in the drawing all those forms into a sudden way should generate confusion at your Eccellency, so I will be showing them one by one, and I want to start from the more complicated, as the traders do, who want to sell their merchandise. [. . .]. ${ }^{91}$
At this point, a lengthy discourse ensues on the bastions and curtains in order "[...] to follow the modern use of strengthening [...]" (Tartaglia 1554, Gionta, Q I, 71r, line 27) and on the importance of the "parianette" 92 to be built with a certain thickness ("grossezza"), that are often built to absorb the energy of the cannon balls ("balle"). These arguments are just prior to Tartaglia's presentation of walls with obtuse angles for the drawings of which the ratio of scale mentioned above is associated with the idea of building walls having oblique rather than medieval vertical parameters.

[^40]

N [Niccolò Tartaglia]. Because I want too that, in the top of each curtain, many parianette are made, of joists planted and good planks, quite high over the height of a man, which parianette traverse the whole top of the curtain, but this crossing should not be orthogonal, but I want them to proceed with the outer part somewhat toward the city, and the inner part toward the country side as you see drawn in this figure. It is true that the parianette want to be somewhat more oblique than the figure for the same reasons that I say below. Being this made. I want from the side that looks towards the country of each of these parianette, a small earth embankment of such a size, which cannot be damaged by enemies with their artillery, under each such small embankment, I want there, a falconetto ${ }^{93}$ with 6 or 3 lbs balls [...]. ${ }^{94}$

We note that in the previous quotation the figure is actually to scale. This is a historically important point for the analyses of the Gionta and Tartaglia's science.

[^41]
1.1.3.4 The Gionta del Sesto Libro and Architecture

In Galilean Trattato di fortificazione, "Della scala" is in a short section on the relationship of scale (Galilei 1888-1909c, II, 102; Galilei Ms B; Galileo Ms m; see Pisano and Capecchi 2012). These are arguments about units of measurement and their proportionality ratio, highlighting a nontrivial problem. Consider, e.g., the case of a designer who, far from his own country, was going to draw a certain design in lands in which could not adopt his own units of measurement. Below, we present some images of the Galilean paragraph on scale from the two Ambrosian manuscripts (Fig. 1.33):

Fig. 1.33 Plate from Galilean wording on ratio (Galilei Ms B)

The Galilean manuscript is assuming the possibility of inserting what normally today one does and that Tartaglia had already done in his Quesiti (Tartaglia 1554, Book VI, Q I, 71rv). ${ }^{95}$ The plan of a fortress was draw on paper, showing to the reader, near it, a unit of measurement: it is a graphical scale. The graphical scale is

[^42]not autographically reported regularly in the Galilean manuscripts (Galilei Ms B, Ms m). For details on that, we refer to our forthcoming work (Pisano and Capecchi 2012). However, even earlier than Galileo, and differently from comments from some scholars, Tartaglia was already specifying the scale relationship of the figures on fortifications in Gionta del Sesto Libro. From scaled figura (Tartaglia 1554, Gionta, Q I, 71rv) we can also see the presence of the obtuse angle (Ivi, 72rv, line 3).

In addition to "fake doors" he also presents - as previously acknowledged in Book VI - protection and security of citizens returning from the country after work. The issue of the scale of measurement is also brought up in the following passage (Tartaglia 1554, Gionta, Q I) to which he adds considerations on the so-called "fake doors". This involves disguised entrances positioned along the external sides of the obtuse angle. Moreover, in reference to the scale of measurement problem, he informs the reader of the lack of "false doors" in the design since they are too small to include due to the chosen proportionality. (Ibidem, line 33).

During the dialogue, Tartaglia's interlocutor defiantly argues that even regarding the elegance of his fortifications, Tartaglia's response emphasizes a cautious attitude. That is to say, perhaps, given the historical period in which he lived, he felt the necessity to take a position from a technical standpoint even in regard to the beauty of fortifications (Tartaglia 1554, Gionta, Q I, 72rv).

Further, ahead, in the second problem, Tartaglia provides details regarding what he refers to as the "first shape" of the walls, which, however, with "falconetti", "bastions", "curtains" with obtuse angles and "false doors", appears to his interlocutor as rather elaborate (Ivi, Q II, 73rv, line 38). However this also seems to be a way to emphasize the originality sought.

The Quesito terzo of Gionta concerns the strade coperte with attention also paid to citizens' paths when returning home from the country (Ivi, Q III, 73rv, line 1).

In the Quesito quarto and Quesito quinto Tartaglia focuses on the geometric motivation of the choice of the obtuse angle of the bastion and on the difficulty of fortifying with right and acute angles. The reason is of a strictly military nature. The protruding, angular shape (which will be perfected in the following years as an angular bastion), allows for protection without dead angles. To this aim, artillery for tiri di fianco, tiri di rovescio e tiri di infilata is placed along the sides of what Tartaglia refers to as a "baluardo", thereby obtaining a defensive system of fuoco incrociato effective enough for short to medium distances from the curtain. In particular, the following passage which addresses these details is of a geometric nature; Tartaglia references Euclid's Elements several times (Fig. 1.34).

2AGIONTADEL

Jatifarameglio y.Mag. boportato in difegno un modelletto di tal forte angolo fortia ficato, qual equefo Jotto fritto, cioc l 'ang olo.a. . P angolo terreo contenato dalle due cortine, retto, ouct acuto, Et. b. élo cauallero fatto Jopradi qucllo, © lo triangolo.c. di.e.cilitaglio, outer finufdura a dearpa, dell' angolo, oucr cantont, cbe era apparente difopradella foffa, cbe gia contencua le due cortinn, et la lines.a. .e éil restante dellian golo contenusto pur dalle detec due cortine, il quale uiende eßere alto, quanto calte la fof fas cioe la lines.a.e. debbe eßer eguale alla dettea alte z z d della foffa, la qual foßsanon uc la bo uoluta defgnare, accio meglio fineds il tutto, l' uno, e P altro baluardo Jono. F. C.g.Et lidui cauallerettifono. b. © .i.le qual cof dif cnderaño honoratamente tal ppe cie diangolo, © lo faratho gagliardo, e- forte, uero $\dot{\text { e }}$, cbe io laudarci, cbe fopra \dot{a}
 metteße piu prefo pe pzzi piccoli, cbe grofi, cioc facri, ouer falconettida. 6. ©r mets

teruene tanto piu numero. S.M. Me piace afaiquefta wofraopinione, pur petjo, cbeconffer ando ben questa cof auif critroucra molte cof da poterui opponcre, ept ro yoglio cbe rimettemo à difputar meglio qucfia uoftra opinione ì un'altra fith 87. Conie pare air uofira Mdegnificentiar

Co, QVESITO SESTO EATTO DAL MEDESIMO Ax, ploght in Magnifico, O Eccellentifimo Dottor, sighor mata) (heno wive Marc'Antonio Morofini.

S
IGNOR MARC'A NTONIO. Nel Sesio Quefito del uosiro Seflolio bro, noidiceti, che a woler fortificar uns citta, che fidebbe dar tal forma allemue

Fig. 1.34 Plate from Gionta on geometrical reasoning (Tartaglia 1554, Gionta, Q VII, 77r, line 1)

As a final consideration about Quesito quarto, we note that Tartaglia - as briefly above stated - cites Euclid ("commune scientia"), by referring to his Libri. In particular, for one of Euclid's axioms he writes, "for the converso modo of the fifth petition of our Euclid"; that is, he cites the axiom by associating the words "converso modo" and putting it in the form of a petition. Moreover, he also refers to a military architect, Cesare Napolitano Zotto, from whom he is supposed to have had the inspiration for his ideas on angular bastions (Tartaglia 1554, Gionta, Q IV, 75r).

The Quesito sesto is dedicated specifically to the methods of constructing walls. The considerations however always refer to information already given in Book sesto on the defensive system based on walls ruined by artillery shots. That is to say, the walls that fell due to such shots should not allow assailants to use the ruins as a passage to cross the walls and enter the city. Therefore, it is necessary to correctly choose the type of material and build the walls so that the ruins fall in such a way that they do not facilitate passage. In this regard, Tartaglia specifies that the foundations of the walls are never referred to, only the higher part which is more susceptible to fire from "cannonerie". Also citing the qualities shown in Book sesto (Ivi, Q VI, 76rv).

To this aim, in the following passage of Quesito sesto, Tartaglia suggests a structural remedy as well as one involving the type of material. Today we could say one based on the science of constructions, the other on that of materials. He suggests wall construction in an oblique manner and facing the internal part, that is, toward the city. In this way, the ruins that ruin the assailants' shots will fall into the city and therefore the attackers will not be able to use them as a sort of ladder. Let us see his reasoning on the structural remedy (Ibidem, line 18) (Fig. 1.35).

SESTO HBRO

N. Ancieglictuttoal contrario Signor Magnifico, cbe delle fue particolarita nons gli ne bo altr a Pecial cognitione, cbe quello, cbe mi fu narrato in parole dals. Priop di Barletta, quaf in fine del ottano Qerfirodel mio offto libro, perche gis mif uii in Thoco, che potef/suedere realmentels piazza di Jopra, ne ninnco quells da b_{4} Jo de ale cun baluardo, © la caulf d di quefto fu dame narrata al detto Signor Priore nel primo, Oranchora in fine del ottatuo Quefito del detto no/fro fefzolibro, eglie ben uero, che bo comprefo, come fas fatta Puna, el'altra piazza, per uigor de un difegno retratto da un baluardo de una cittamaritimu, el qualéquefto. S, M. Seti fato per marc. N. Son facto fins à lio signor Magnifico, quando, che la Illuftrijima Signoris ua ${ }^{\text {b }}$ Profar cl marc, e̛ non pinolira. S. M. Come caluaftiadunque il ritratto dital bas

Txardo da tal citta maritima. N. Tal ritratto nonfu da me catuato, ma mi fu dato da win mio difcipulo Pittore eccellente. S. M. Sapeti come fiti, oner come fis fatta 1 is piazza da bafo di tal baluardo, e altri imili.. N. Di ueduta non ui faprei dire, ne diquesio, ne manco de altri jimiľ, come di opra ho detto.ma diro bene, come iftimo, che fala fatta. Penfo, che tal piazza dabaffo fia fatta in uoltii opra, de großi, er gat gliardi pilafironi, e che la intrata di andar, er condur le artegliaric in tal piazzada
 $z a$ dif opra fano fatte per dar luce alla detta piszza ds bafo. S.M. Voi non bacueti in tutto mal penfato, ma molto me marauig glio di woi, ebe non uc/fati dilettato de anda re à uederc minutamente cai particolarits. N. Non bo tempo Signor Eccellentip. di andar ì cercar di wedere tai cofe, © maflime, cbe io nö mic curo, ne tengo conto di que! le cofe, cbe molti le fanno fare, anchor, cbe fano da me ignorate (come cbe nel /upplia mento della noftra tr duag liatt inuentione da me fu anchor detto) mas olamente di quel le cofe che niuno le fanno effequire moltome diletto, es curo ditrouare. Io non uo die rescle quarnio fuffe uno de dettibaluardi qua in Venctia,er appreffo della mis fätids,

Fig. 1.35 Plate from Gionta on the material used (Tartaglia 1554, Gionta, Q VII, 77r, line 1)

Concerning his consideration on the choice of materials, Tartaglia suggests stone and mortar for the weak (high) part of the curtain and earth for the rest of the walls. ${ }^{96}$

In the Quesito settimo, the last in Gionta, to conclude his discourse, Tartaglia presents concrete examples, citing some defensive systems of the "maritime" city of Venice, to which he associates the figure of a bastion done by one of his students whose name is not given. In his words "image not mine, but given to me by one of my excellent Painter disciples". ${ }^{97}$ A sort of summary ends Book sesto and Gionta (Fig. 1.36):

[^43]
IA GIONTA DEL SESTO EIBEO

che non lo andaffe qualcbe wolta d uedere, ma non con altro mio maggior difconzo: S.M. Credo, che हlatimolto occupato nel effercitio uosiro. Dimane fon per andare alla willa, doue faro alquanti giorni, per certe mic occorrentie. In questo mezzo pres pararetiquelle altre forme de fortificationi, accio fiano in ordime alls tornata mia. Et masime quelld, cbe preponetincl. 7 . Quefito del uoftrofofol Libro, cioc dif fare quet noftro particolar ingegno di accommodar do ogni cortina, che ficuramente potri iefer guardata, oe difefa da. 25 -ouer. 30 . Fanti al puu, contra à ogni grandiPimo aßalimenz to, che confeale la noleffeno fcalare. Et preparate anchoraquel modo de fortificar el paefe atorno de una citta (some, cbe preponeti nell'ottatho Quefito) talmente, che quel lidellacitts poffono ficur amente andare à laworare, fominare, er raccoglierequaftat. to, cbe fia atto à dar l uiuereà quelli della citta, perche fon molto defiderofo de ueder tal uoftra inuentione, perche la me par cofa granda d farlo con cofi pocaf $f 6(\sqrt{1}$, comedi cetti. N. Faro Signor Magnifico.

> Fine della Gionta del feforo Libro delli Quefiti, © Inuentioni diuerfede Nicolo Tartaglia.

CON gratia, er priuxlegio datp Ithustrifimo Senato Veneto, cbe niuno ardifat, ne prefuma di fampar, ne far fampare la prefente Gionta,ne flampate altrone wena dere, ne far uendere in Venetia, ne in alcuno altro luoco, ò terradel Dominio Vez neto, per annidiece, Jotto pena de duc.300. © perdere le opere in qual $/$ inoglia lo co,cbe faranno trouate, elterzodella qual pens pecuniaris fis applicsta all'ay/ge nale, o unterzo fia del Magiftrato, done fo farala efecutione, e P Paltroterzofis del denonciante, © le opere fano del prefence Autore, come cbe nel prixilcgio β conticne.

Fig. 1.36 Plate from the end of the Gionta ("[... S.M.]. Dimane son per andare alla uilla, doue staro alquanti giorni, per certe mie occorrentie. In questo mezzo preparareti quelle altre forme de fortificationi, accio siano in ordine alla tornata mia. Et masime quella, che preponeti nel. 7. Quesito del uostro sesto Book, cioe di fare quel uostro particolar ingegno di accommodar à ogni cortina, che sicur amente potra esser guardata, \& difesa da. 25 . ouer. 30 . fanti al piu, contra à ogni grandisimo asalimento, che con scale la uolesseno scalare. Et preparate anchora quel modo de fortificar el paese atorno de una citta (come, che preponeti nell'ottauo Quesito) talmente, che quel li della citta posseno sicuramente andare à lauorare, seminare, \& raccogliere quasi tamto, che sia atto à dar il uiuere à quelli della citta, perche son molto desideroso de ueder tal uostra inuentione, perche la me par cosa granda à farlo con cosi poca spesa, come di ceti. N. Faro Signor Magnifico. Fine della Gionta del sesto Libro delli Quesiti, \& Inuentioni diuerse de Nicolo Tartaglia" (Tartaglia 1554, Gionta, Q VII, 77v, line 2))

1.1.4 On the Opera Archimedis and Archimedis de insidentibus aquae

1.1.4.1 On the Opera Archimedis (1543)

It is known that during the Middle Ages/early Renaissance Archimedean ideas were known within Abacus schools (Pisano and Bussotti 2013a, 2015a, b, c; Grendler 1995; Clagett 1964-1984). In fact, they involved practical studies of geometric problems and the measurement of surfaces: e.g., let us think of practical measurements and calculations of pieces of breads-surfaces. We also know that only three authentic translations (by Moerbeke) were produced and we can presume that they were not widely read. Particularly, one of these copies concerned the priest Andreas Coner (fl XVI century). In Pietro Barozzi’s (1441-1507) library, bishop in Padova, Coner read and copied many of Moerbeke's diagrams (Codex O) thereby creating his own personal but partial version (Codex M). It contained mechanical Archimedean works (fl. second half of the fifteenth century):

```
The quadrature of the parabola
The two books on the equilibrium of planes and with Eutocius of Ascalon's (fl. 480-fl. 540)
comments
The first book of on the floating bodies
Measurement of a circle
```

Later, Luca Gaurico (1475-1558) used this Codex M to publish a treatise on the quadrature of the circle entitled Tetragonismus idest circuli quadratura per Campanum Archimedem Syracusanum atque Boetium mathematicae perspicacissimos adinuenta (Archimedes 1503; Gaurico's preface in Epistola, 2rv and Camapano's Conclusia as low as 3r) (Fig. 1.37):

Tetragonifnus ideft circuliquadraturaper Ra tbecmaticaeporípicaciflimos adisuenta.

Fig. 1.37 Plate from the first page of the Tetragonismus (1503) (Archimedes 1503. In the Opera archimedis syracusani (Tartaglia 1543b) see also by Tartaglia: Archimedis siracusani tetragonismus (Tartaglia 1543c, 19v-29r), Archimedis syracusani liber (Tartaglia 1543d, 29v31r) and Archimedis de insidentibus aquae (Tartaglia 1543e, Book I, 31v-[36r]))

Gaurico's text is the first known printed version of Archimedean works. It seems quite certain that in 1543 Tartaglia knew this codex/Moerbeke's version (Codex M), or had a copy of it.

Tartaglia's Opera Archimedis Syracusani philosophi et mathematici ingeniosissimi per Nicolaum tartaleam Brixianum (mathematicarum scientiarum cultorem) multis erroribus emendata, expurgata, ac in luce posita, multisque necessariis additis, quae plurimis locis intellectu difficillima erant, commentariolis sane luculentis et eruditissimi aperta, explicata atque illustrata existunt. Appositisque manu propria figuris quae graeco exemplari deformatae ac depravatae erant, ad rectissimam Symetriam omnia instaurata reducta et reformata elucent concerns the earliest version from Greek of some of the main works of Archimedes and was published by Tartaglia in Venice (Tartaglia 1543b). It includes the following Archimedean books:

The quadrature of the parabola.
The two books on the equilibrium of planes and without Eutocius of Ascalon's (fl. 480-fl. 540) commentary (i.e, see Archimedes 1881).

The first book on the floating bodies
Measurement of a circle (Fig. 1.38). ${ }^{98}$

[^44]

Fig. 1.38 Plate from Opera Archimedis on the contents (1543) (Vigano Library Collection Archive)

The Opera Archimedis by Tartaglia reflects of a way of working on ancient scholars, which was typical of Tartaglia's time. Today there are still differing opinions among historians ${ }^{99}$: for example, on the language and allusions to the "deformatae" figures, typical of the Greek language. Therefore, since Tartaglia was not a man of classical culture, his Opera Archimedis was in Latin and from the title page, it seems that he was really the translator. Moreover, in 1560, Tartaglia himself discussed important Archimedean documents during his stay in Verona. ${ }^{100}$

He was interested in sharing his significant knowledge of the matter. Therefore, from the quote we can deduce that he found (and then possibly produced the Latin version) the text On the Sphere and Cylinder by Archimedes from Siracusa (fl. III B.C.). This attitude was typical of Tartaglia in other works, as well. For example, in Quesiti et inventioni diverse, beginning in the initial passages, he explained to the reader his skilled background on Greek and Latin Mechanical problems (Tartaglia 1554, Q I, Book VII, 78r; Q XLII, Book IX, 126v). We would also like to point out that he (with respect to Codex M) did not include Eutocius' comments. Clagett's studies showed many important results, e.g., the glaring of errors of the Codex M reported in Tartaglia's edition without comments and corrections. In this way he formulated the hypothesis that Tartaglia had utilized Codex M (or a copy of it) for his Archimedes and maybe also Gaurico edition (Heath 2001, XXVIII; Clagett 1964-1984, 556-571). On the other hand, we should give scientific justification to Tartaglia for deleting the second book On the floating bodies from his editorial job. In fact, it is known that Moerbeck's version was full of nonsense and difficult passages. Thus Tartaglia, being a very good mathematician, avoided publishing it. ${ }^{101}$

[^45]
1.1.4.2 On the Archimedis de insidentibus aquae (1543; 1565)

In another occasion, within Ragionamento Primo of the Ragionamenti sopra la sua Travagliata inventione (Tartaglia 1551a; see also Natucci 1956b) Tartaglia stated:

Where in vulgare language is claimed that insidentibus aquae by Archimedes was an important subject $\&$ of an intellectual interest (Fig. 1.39). ${ }^{102}$

Fig. 1.39 Plates from Ragionamenti sopra la sua Travagliata inventione (1551a) (Viganò Library Collection Archive. For the image on the left: "RAGIONAMENTI DE NICOLO Tartaglia sopra la sua Travagliata inventione. Nelli quali se dechiara uolgarmente quel libro di Archimede Siracusano intitolato. De insidentibus aquae, con altre speculatiue pratiche da lui ritrouate sopra le materie, che stano, \& chi non stano sopra lacqua ultimamente se assegna la ragione et causa naturale di tutte le sottile et oscure particularità dette et dechiarate nella detta sua Trauagliata inue [n]tione $\operatorname{co}[\mathrm{n}]$ molte altre da quelle dependenti". For the image on the right: "AL MAGNIFICO ET GENEROSO SIGNOR CONTE ANTONIO LANDRIANO. NICOLO TARTAGLIA Ragionandomi vostra Signoria questi giorni pasati, Magnifico Signor Conte, di sopra di Archimede Siracusano, da me data in luce, \& massime di quella parte, che è intitolata, De insidentibus aquae. quella me notifico esser molto desiderosa di trovare, \& di vedere l'original Greco dove che tal parte era stata tradotta. Per la qual cosa compresi, che vostra Signoria ricercava tal originale per la oscurita del parlare, che nella detta traduttion latina si pronontia. Onde per levar questa fatica a vostra Signoria di star a ricercare tal orognal Greco (qual forsi più oscuro \& incoretto lo ritrovai della detta traduttion[]latina) ho dechiarata, \& minutamente dilucidata tal parte in questo mio primo ragionamento, il qual ragionamento a quello ofeerisco, \& dedico, alla bona gratia della quale molto mi raccoma[n]do. In Venetia alli.5.di mazz[ggi]o. 1551." (Tartaglia 1551a))

[^46]Nevertheless, as cited in the previous paragraph, the Opera Archimedis only included Book I of the Archimedis de insidentibus aquae (Tartaglia 1543b, 31v[36r]). Therefore, firstly a Latin translation of On the floating bodies (Book I) along with three other Archimedean works was published (Tartaglia 1543b). Secondly, Book I was also published within Travagliata Inventione (Tartaglia 1551a). Thirdly, Book II - together with Book I and in the same essay - was published postumo after Tartaglia's death by Curtio Troiano as Archimedis de insidentibus aquae (Tartaglia 1565c-insidentibus) in which his Latin replaced the lost Greek text (Loria 1914). According to Rose, his translation was essentially a transcription of Moerbeke's translation (Rose 1975, 152-154; see also Biagioli 1989).

On this point, Heath took up the following philological study:

Abstract

It is next necessary to consider the probabilities as to the MSS. used by Nicolas Tartaglia for his Latin translation of certain of the works of Archimedes. [...] But it is established, by a letter written by Tartaglia himself eight years later (1551) that he then had no Greek text of the Books de insidentibus aquae, and it would be strange if it had disappeared in so short a time without leaving any trace. Further, Commandinus in the preface to his edition of the same treatise (Bologna, 1565) shows that he had never hoard of a Greek text of it. Hence it is most natural to suppose that it reached Tartaglia from some other source and in the Latin translation only*. The fact that Tartaglia speaks of the old MS. which he used as "fracti et qui vix legi poterant libri," at practically the same time as the writer of the preface to C was giving a similar description of Valla's MS., makes it probable that the two were identical; and this probability is confirmed by a considerable agreement between the mistakes in Tartaglia and in Valla's versions (Fig. 1.40). ${ }^{103}$

[^47]

DE INSIDENTIBVS

$$
\mathrm{A} Q \mathrm{~V} \text { AE. }
$$

LIBER PRIMVS. bera
CVMTATVILEGIO.

V E N E, T I I S,
APVDCVRTIVMTROIANVM.
M D L X V

ARCHIMEDIS

de insidentibvs
A QVAE.
蛙
LIBER SECVNDVS.

VENETIIS,
APVD TROIANVM CVRTIVM.
M D L X V

Fig. 1.40 Plates from Archimedis de insidentibus aquae, Books I-II (1565) (Tartaglia 1565cInsidentibus)

Both Books Archimedis de insidentibus aquae contain propositions concerning how water/boats work in relation to the displacement and density of the objects in the water. Particularly, Book II seems to be considered a mature work. It presents a study on the stable equilibrium positions of floating right paraboloids of various shapes and densities. The study is restricted to a case-study concerning the base of the geometrical paraboloid figure when it is positioned either entirely above or entirely below the fluid surface, or completely-partially submerged. On this point, Tartaglia adopted an interesting mathematical Archimedean method to bring up a floating boat concerning a recent sunken ship where the sea was somewhat shallow. It was reported in the section Regola Generale da sulevare con ragione e misura non solamente ogni affondata nave, ma una torre solida di metallo (Tartaglia 1551b) (Fig. 1.41):

Fig. 1.41 Plates from Archimedis de insidentibus aquae on a method for floating boats (Tartaglia, Regola Generale with Ragionamenti I-III and Supplimento 1551b, 7r (left), 6v (right). See also Tartaglia, Regola Generale with Supplimento and Ragionamenti I-II 1562, 4v (right), 5v (left)))

1.1.5 Contents, Former Pupils and Philological Notes

As previously said, Quesiti et Inventioni diverse was published in Venice in 1546 and then again in Venice in 1554. A posthumous edition was published, again in Venice in 1562 (Tartaglia 1546, 1554, 1562; see also Chasles 1881, 195; see Chaps. 5 and 6). It was re-edited in other languages even though they were partial translations.

The Quesiti is a collection of nine books written in Italian (vulgare), each of which discusses a specific topic: from the application of mechanics to military arts to (nowadays) topography, from studies of fortifications to those on the equilibrium of bodies. The text was dedicated to Henry VII, King of England (1457-1509). Tartaglia was 45 years old, according to the title page of the Quesiti (Figs. 1.42 and 1.43).

Figs. 1.42 and 1.43 Plates from Quesiti, 1546 (left) and 1554 (right) (Tartaglia 1546, 1r, 1554, 1r and see also 4 r)

In the proceedings of the International Congress of historical sciences of 1904, one of Tartaglia's letters (without a date, signature, or place) was published and discussed, in which the author referred to an imminent publication. This was presumably the 1546 edition of the Quesiti since the document was found in the Tartalea pamphlet of 1546 (Tonni-Bazza 1904b, 295-296). As previously expressed, Quesiti also contain autobiographical information on Tartaglia's childhood (Tartaglia 1554, Book VI, Q 8). Every Book has one or more interlocutors with whom, in the form of a dialogue, Tartaglia speaks. At times, these are anonymous characters, "capo dei bombardieri" (Tartaglia 1554, I, Qs 20-21) "un fiorentino" (Ivi, Book IX, Q 5) an "architettore" (Ibid, Q 12) but frequently, the name of the character is given: Francesco Maria della Rovere (1490-1538), Duke of Urbino and expert on fortifications, Gabriele Tadino (ca. 1480-1543) Knight of Rodi, Prior of Barletta and artillery expert, Don Diego Hutardo de Mendoza (1503-1575), ambassador to Carlo V in Venice; among the mathematicians Gerolamo Cardano (15011576) stands out. Some are also Tartaglia's students: the architect Giovanni

Antonio Rusconi (1520-1587), the mathematician Maphio Poveiani and the English gentleman Richard Wentworth.
Below, Italian bibliographical notes (see also below Chaps. 5 and 6) are presented (Table 1.4):

Table 1.4 Quesiti et invention diverse ${ }^{\text {a }}$ in Cd-Rom, Brescia

Cd 1, Vol I	Cd 2, Vol 2	Cd 3, Vol III
Nova scientia,	Euclide Megarense	General Trattato
Quesiti e invention diverse, Cartelli		3 Volumes
di sfida matematica, Travagliata		Opere del
inventione,	famosissimo Nicolo'	
Opera Archimedis,	Tartaglia, (Venetia	
Archimedis de insidentibus aquae,	1606)	
Jordanus Nemorarius,		
Tutte l'opere d'arithmetica		

Details

Nova Scientia
Venezia 1537
Venezia 1550
Venezia 1558
Venezia 1583
Quesiti et inventioni
Venezia 1546
Venezia 1554
Venezia 1562
Cartelli di sfida matematica (1547-1548),
[Giordani 1878; see also Tartaglia 1876]
Travagliata inventione
Regola generale, Venezia 1551
Details Details

Euclide Megarense General Trattato
Venezia 1543
Venezia 1565-1566
Venezia 1569
Venezia 1585
Brescia, 2007

TOMO I: La prima parte, Venezia 1556
TOMO II: La
seconda parte,
Venezia 1556
TOMO III: La terza
[-sesta] parte,
Venezia 1650
Opere del
famosissimo Nicolò
Tartaglia, Venezia
1606

Ragionamenti I-III e Supplimento, Venezia 1551
Regola generale con Supplimento e Ragionamenti I-II,
Venezia 1562
Opera Archimedis,
Venezia 1543
Archimedis de insidentibus aquae, Venezia 1565
Jordanus opusculum Nemorarius, Venezia 1565
Tutte l'opere d'arithmetica, Venezia 1592-93
${ }^{\text {a }}$ See also: L'Archivio Tartaglia by Arnaldo Masotti, Biblioteca Centrale del Politecnico di Milano. Documentazione, Tartaglia's biography; Riproduzione delle opere, some of original Tartaglia's pages; Trascrizioni di opere, some e-reproductions; Piano dell'opera, by Pizzamiglio; Tutte le opere, reproduction by Pizzamiglio (4 Cd-Rom)

1.1.5.1 A Content of Quesiti et inventioni diverse

In the following, by means of Tables 1.5 and 1.6 , we present a list of arguments a mò of Content: La nuova edizione dell'opera "Quesiti et inventioni diverse de Nicolo Tartaglia brisciano, Riproduzione in facsimile dell'edizione del 1554, by Masotti, Commentari dell'Ateneo di Brescia, Tippgrafia La Nuova cartografica, Brescia (Tartaglia 1554).

Table 1.5 An Index of the Quesiti and most notable interlocutors cited

Book	Number of Questions	Argument	Main Notable Interlocutors
I	30	On artillery shots	Francesco Maria della Rovere (Ivi, Qs 1-3) Gabriele Tadino (Ivi, Qs 4-17)
II	12	On ball dimension artillery	Gabriele Tadino (Ivi, Qs 1-7)
III	10	On gunpowder	Gabriele Tadino (Ivi, Qs 1-8)
IV	13	On firearms and tactics of infantry	Gabriele Tadino (Ivi, Qs 5-13)
V	7	On recording of topographical data	Richard Wentworth ${ }^{\text {a }}$ (Ivi, Qs 1-7)
VI	8	On requisites of fortifications	Gabriele Tadino (Ivi, Qs 1-8)
Gionta	7	On fortifications	Marc'Antonio Morosini Ivi, Qs 1-7
VII	7	On equilibrium of balances	Don Diego Hutardo de Mendoza (Ivi, Qs 1-7)
VIII	42	On theory of centres of gravity	Don Diego Hutardo de Mendoza (Ivi, Qs 1-42)
IX	42	On arithmetic, geometry and algebra (cubic equation)	Gerolamo Cardano (Ivi, Qs 31-36; Qs 38-40)

[^48]- Book I-II-III. These involve a series of studies on the ballistics of projectiles already seen in Nova scientia (Tartaglia 1537). In these writings, in addition to the interesting theoretical considerations on the speed of projectiles and their range (Tartaglia 1554, Book I, Q 1), are the applications of battle machinery and "squadre" of artillerymen.
- Book IV. Here, Tartaglia studies the tactics of the "squadre" of infantry from a mathematical point of view, for example, proposing a "[...] square battle of people [...]" (Ivi, Book IV, Q 1) rather than the construction "in wedge over triangular form" (Ivi, Book IV, Q 5).
- Book V. Surveying and the problems regarding it is the subject of this book. He is dedicated to finding a solution to such problems, even specifying the instruments (for example a compass) and methods of measurement.
- Book VI. Differently from the other Libri, here a character of Tartaglia emerges "that appears to us as a technician. The Quesiti show scholars of various branches of the technology of the time: ballistic technology, practical geometry, military architecture" (Tartaglia 1554, XXXIV). Moreover, he also worries about producing new systems of fortification like the "parianette" (a sort of planks) placed on the curtain for defense against recoil.
- Book VII. On equilibrium of balances (see Chap. 3).
- Book VIII. On theory of centres of gravity (see Chap. 3).
- Book IX. Tartaglia certainly attained fame for his mathematical procedures (and controversy) and in this Book important studies are collected such as the algebraic solution of cubic equations that "[. . .] at the end of the XV century Luca Pacioli judged 'impossible' with the means of the times -in the first half of the sixteenth century was achieved independently by Scipione del Ferro and Niccolò Tartaglia [...]" (Ivi, XXIII).

1.1.5.2 Scholars, Former Pupils, Correspondence and Commentaries in Quesiti and Around Tartaglia's Science

In the following tables, we present former pupils, scholars, letters cited in the Quesiti; furthermore we make quite complete summary of most important works (in context) where the Quesiti and Tartaglia are cited (Tables 1.7 and 1.8).

Table 1.6 Main scholars and Tartaglia's pupils cited ${ }^{\text {a }}$ in the Quesiti (1554)

Scholars cited	Quotation
1 - Signor Iacomo de Achaia	(Ivi, Book I, 23rv, Book II, 35v)
2 - M. Alberghetto di Alberghetti	(Ivi, Book I, 25r-27v)
3 - Magnifico M. Bernardo Segreo	(Ivi, Book II, 33v)
4 - Signor Giulio Savorgnano	(Ivi, Book II, 34r)
5 - M. Zanantonio di Rusconi	(Ivi, Book II, 34r-35v)
6 - Hieronimo from isle of Cipro	(Ivi, Book III, 41v-42v)
7 - Conte Hieronimo from Piagnano	(Ivi, Book IV, 43r-46r)
8 - M. Richard Ventworth*	(Ivi, Book V, 54v-63v, Book IX, 126v)
9 - Maestro Francesco Feliciano	(Ivi, Book IX, 98r, 99v-100r)
10 - Fra Raphaelle from S. Zorzi in Verona	(Ivi, Book IX, 98r)
11 - Maestro Maphio from Mantova*	(Ivi, Book IX, 98v)
12 - Maestro Alovise Pirovano from Milano	(Ivi, Book IX, 99r)
13 - Maestro Alessandro from Venetia	(Ivi, Book IX, 100r)
14 - Maestro Antonio Veronese	(Ivi, Book IX, 101r)
15 - Maestro Zuanne de Tonini da Coi	(Ivi, Book IX, 101r, 103v, 106r-107r,
	110r, 111v)
16 - M. Bernardin Dona from Zano	(Ivi, Book IX, 101v)
17 - Frate Ambrosio from Ferrara	(Ivi, Book IX, 102r)
18 - Maestro Alessandro Venetiano	(Ivi, Book IX, 102r)
19 - Maestro Anton Maria Fior	(Ivi, Book IX, 102v)
20 - Magnifico Zuanbattista Memo	(Ivi, Book IX, 103r)
21 - Hieronimo Trivisano	(Ivi, Book IX, 105r, 109r, 112v)
22 - M. Zuantonio Libraro from Hieronimo Cardano	(Ivi, Book IX, 113r)
23 - Maestro Maphio Poveiani from Bergamo*,	(Ivi, Book IX, 122r, 126r)

Legenda: *: qualified Tartaglia's former pupils, i.e, in terms of "Honorando", "nostro discepolo" ${ }^{\text {a }}$ We only consider the names which have been cited by Tartaglia. For sake of brevity we avoid reporting on general quotations like "A head of gunneries", "etc
${ }^{\text {b }}$ Probably from Verona. Tartaglia added: "Zenero de Maestro Francesco Feliciano" (Tartaglia [1554] 1959, 101r)
${ }^{\text {c }}$ Here Cardano is called " [. . .] un messere Hieronimo Cardano, Medico \& delle mathematice lettor pubblico inMilano, adi. 2. Genaro.1539"." (Ibidem)
${ }^{\mathrm{d}}$ It is not historically clear if it is Maphio from Bergamo or Maphio from Mantova. In effect the term "from Bergamo" is never cited in the title of Quesito XXXVII. "Maphio Poveiani, already our former pupil [. . .] in Bergamo" is cited, only

Table 1.7 The letters cited in the Quesiti ${ }^{\text {a }}$

Destinatary	Date	Source
1 - to Giovanni di Tonini from Venezia	$3-3-1537$	$($ Ivi,113v-114v)
2 - to Hieronimo Cardano from Venezia	$18-2-1539$	$($ Ivi,118r-121v)
3 - to Hieronimo Cardano from Venezia	$23-4-1539$	$($ Ivi,124r-124v)
4 - to Hieronimo Cardano from Venezia	$27-5-1539$	$($ Ivi,125r)
5 - to Maphio Poveiani from Venezia	$19-7-1539$	$($ Ivi,125v)
6 - to Hieronimo Cardano da Venezia	$7-8-1539$	(Ivi,126r-127r)
7 - to Maphio Poveiani da Venezia	$24-4-1540$	(Ivi,129v-130r)

a'Tartaglia 1554; see also archive at the Biblioteca di Brescia "Carlo Viganò"

Table 1.8 The main circulations and commentaries around Quesiti and Tartaglia's science

Date	Author	Work	Country $^{\mathrm{a}}$
1533	Benedetti	Resolutio omnium Euclidis problematum	
1567	Nuñez	${\text { Libro de Algebra en artithmetica y } \text { geometria }^{\mathrm{c}}}^{1568}$ Pérez de Moya	Obra intitulada fragmentos mathematicos $^{\mathrm{d}}$

${ }^{\text {a }}$ The country/region of the city cited in the frontespice is reported, only. Of course, the circulation of Tartaglia's science quoted in the book would be in the author's country, as well, we suppose
${ }^{\mathrm{b}}$ Benedetti 1533, [In Dedication (pages without numbers)] 4v
${ }^{\text {c}}$ Nuñez 1567, 324r, 332r, 333v, 334rv
${ }^{\text {d Particularly, Tartaglia's General Trattato (Tartaglia 1556-1560, Part III, 1r, Part IV, 17v-22v, }}$ Part V, $22 \mathrm{v}-23 \mathrm{v}$) was an evident source of inspiration for his Obra intitulada fragmentos mathematicos in several parts (Pérez de Moya 1568, 1, 61, 77-79). Tartaglia also made use of a previous reasoning belonging to van Ringelberg's Ad mathematicen (Ringelberg 1531-1532, 485. Cfr.: Céu Silva 2013, 5-6)
${ }^{\mathrm{e}}$ Bombelli 1572 [A gli Lettori (pages without numbers)] 3r, 51, 53, 57, p 58, p 65, p 66. See also all indirect quotations to Ferrari(-Tartaglia) controversy
${ }^{\mathrm{f}}$ Pérez de Moya 1573, 5, 28; see also (respectively) Tartaglia 1556-1560, Part III, 1r, Part V, 7v. The Tratado de Geometria also includes contents of the Obra intitulada fragmentos mathematicos; i.e., Tratado de Mathematicas (Pérez de Moya 1573, Libro II, 50, 53, 57, 58-64, 248; see also (respectively) Tartaglia 1556-1560, Part IV, 1r, Part III, 14v, 11v-12r, Part V, 13r-16r, 21r) ${ }^{\mathrm{g}}$ Clauvius (1574), Scholion, Problem 8-Proposition 28, Book VI, 219v. On Clavius see also Knobloch 1990, 2002; Giard and Romano 2008, 51-98

Table 1.8 (continued)

1.1.5.3 Philological Notes and a Historical Hypothesis

Favaro (Favaro 1881, pp 32-35) provided an editorial-philological reasoning about Tartaglia's Part I and Part II of the General Trattato (at the end of 1557), because the latter were cited in his testament and edited by Curzio Troiano (dei) Navò (1556). Tartaglia also possessed (as cited in his testament) various copies of Parts III and IV, which are supposed to have been published only in 1560. A question arises: why in 1560 ? According to Favaro (Ibidem) the matter was an editorial hindrance typical of the XVI century, in which Parti and Colophon were replaced, thereby exchanging original dates
and parts with those of editions in progress. In this regard, a discussion on the dates of Quesiti et Inventioni Diverse was also brought about at the beginning of the last century ${ }^{104}$:

> Tartaglia, as we can see, when responding to Castrioti, is delighted that their single studies on fortifications lead to results that conform; and this, Tartaglia says, will be seen in Book dei quesiti fatto da me nuovamente nel sesto Book. Quesiti et inuentioni diverse had already been published for the first time in 1546, but in 1554 a reprint occurred [...] with the appendix to the sixth book which Tartaglia alludes to [...]. Here, other problems that the Magnifico e Clarissimo sig. Marc'Antonio Morosini dottore e Philosopho Eccellentissimo suggested to him appear. Castrioti does not appear; even though topics contained in the « discorsi » with him are involved, and in his letter, Tartaglia promises a risposta partichulare et generale. ${ }^{105}$ (particular and general response). ${ }^{106}$

Problems tied to permits and nulla osta from religious institutions should also be considered.

Based on previous research of one of us (RP) dated back since 2005, we propose four observations for reader's convenience are proposed. An historical hypothesis ends this section.

First observation. A 1546-edition is web-published in ECHO-Cultural Heritage Online Archive by Max Planck Institute for the History of Science (MPIWG) of Berlin. Thanks to an extraordinary digital job provided by MPIWG - and with respect to Pisano's philological research (until 2013) - we have hunbly recognize that in this edition the Books II-III-IV-V-VI-VII, and thus the Gionta to Book VI lack as well. One, e.g., can only discover the existence of a Book VI on fortifications from the Content (Fig. 1.44a) and at the end of the manuscript, only (Trataglia 1546, 133r).

[^49]
QVESITI,ET INVENTIONI DI,

 VERSE DE NICOLO TARTALEA BRISCIANO.> IN NOVELIBRI DESTINTI. CONLATAVOLADICIOCHE SECONTIEN NELOPRA.
Sos

Libro Primo.

DElli Tiri er effetti delle artegliarie fecondo le fue uarie ellenationi, er fecondo la uaria pofition delle mise, ©゚ altre fue particolarita.
©Libro Secondo.
Della differentia che occorre fra $l i$ Tiri © efficti fatticó Balla di Piombo di Ferro, ouer di Pietra con altre particolarita circa la proportione peso, - mifura delle dette balle.
© Libro Terzo.
Delle ßpecie di falmitrii er delle uaric compofitioni delle Polvere, er altre particolarita.

ILibro Quarto.
Del modo difaper ordinar hEffercu in battaglia, in uarie \& dinerfe for, me, con altre particolarita.
©Libro Quinto.
Del modo di mettere rettamente in dijegno con el Boffolo li Siti, Paefi, er le piante delle citta,

> Libro Seffo.

Del modo del fortificar le Citta a quefti tempi per oniare alli nigoroficol, pi delle Artegliarue per uig or della forma-
Libro Settimo.

De alcuni'dubii che moner fe poffono fopra li Principii delle Queftioni mecanice de Ariftotele.
\mathbb{T} Libro Ottano.
Della Scientia di Pefi in generale, er in particolare demonftratinamente. ©Libro Nono.
Del modo di fapere concludere, oner rifoluere uarii Cafi foriliin Arithmes tica, in Geomecria;e in la Pratica Speculatiua di Algebra.

Fig. 1.44a Plate from Quesiti (1546) from ECHO-Cultural Heritage Online ("Tartaglia, Niccolo, Quesiti et inventioni diverse: Libro 1, Quesiti 1-7; Libro 8; Libro 9, 1546." The Collection Browser of the Archimedes Project. Permanent (retrieved on 2010) URL: http://echo.mpiwg-berlin.mpg.de/ MPIWG:YFRAG0Z1)

The Biblioteca di Brescia "Carlo Viganò" has also 1546-edition. This time the Content (Fig. 1.44b) appears at beginning of the manuscript (folio 3r) (Table 1.9).

QVESITI, ET INVENTIONI DI, VERSE DE NICOLO taRtalea BRISCIANO.
 IN NOVELIBRI DESTINTI。 CONLATAVOLADICIOCHE SECONTIEN NELOPRA.

 23
Libro Primo.

DElli Tiri \&r effetti delle artegliarie jecondo le fue uarie ellenationi, er fecondo la uaria pofition delle mire, é altre fue particolarita.
\mathbb{C} Libro Sccondo.
Della differentia cbe occorre fia li Tiri σ effitti fatticô Balle di Piombo di Ferro, ouer di Pietra con altre particolariza circa la proportione pefo, ev mifura delle dette balle.

Libro Terzo.
Delle 乃pecie di faimitrï e- delle uarie compofitioni delle Polucre, er altre particolorita.
©Libro Quartoc
Del modo difaper ordinar heffercius in battaglid, in narie \& dinerfe for? me, con altre particolarita.

CLibro Quinto.
Del modo di mettere rettamente in aijegno con el Bofolo li Siti, Paefi, er le piante delle Citta.

> ©Libro Sefto.

Del modo del fortificar le Citta a quefti tempiper oniare alli nigoroficols pi delle Artegliarie per uigor della forma.
(Libro Settimo.
De alcuni dubii che moner fe poffono fopra li Principii delle Queftioni mecanice de Arijtotele.
(LILbro Ottano.
Della Scientia di Pefi in generale, ev in particolare demonftrativamente,
©Libro Nono.
Del modo di fapere concludere, over rifoluere uariil Cafi fotiliin Aritbme? tica, in Geometria; é in la Pratica Speculatina di Algebra.

Fig. 1.44b Plate from Quesiti (1546) from Biblioteca "Carlo Viganò" (Cd's Tartaglia edition (Tartaglia 2000, Cd-I).)
Second observation.
Table 1.9 Tartaglia's Quesiti covers (and/or part of) main known editions-reprints

In Venetia Ruffinelli Editor (1st)	In Venetia de Bascarini editor (2nd)	In Venetia Navò editor(?) (3rd)	In Venetia ${ }^{\text {a }}$ Manassi editor (4th)
1546	1554	$\begin{aligned} & \text { ca. } 1562 \\ & (\text { not }>1566) \end{aligned}$	

Mariano d'Ayala (1808-1877) in Dizionario Militare Francese Italiano cites " 1528 " as the first date of Quesiti's publication (d'Ayala 1841, 27; see also 1854, 155). Until now, within our research we have found no historical proof of that.

Third observation. A full 1554-edition of Quesiti (Book VI et Gionta included), is archived by Biblioteca "Carlo Viganò" (Tartaglia 2000, Cd-I); a commentary edition was published by Arnaldo Masotti (Tartaglia [1554] 1959) (Fig. 1.45):
$\begin{array}{llllll}\mathbf{A} & \mathbf{T} & \mathbf{E} & \mathbf{N} & \mathbf{E} & \mathbf{O}\end{array}$
D I
$\begin{array}{lllllll}\mathbf{B} & \mathbf{R} & \mathbf{E} & \mathrm{S} & \mathrm{C} & \mathrm{I} & \mathbf{A}\end{array}$

NICCOLÒ TARTAGLIA
Jow. 44253
QUESITI
ET INVENTIONI DIVERSE

RIPRODUZIONE IN FACSIMILE DELL' EDIZIONE DEL 1554
EDITA CON PARTI INTRODUTTORIE DA

del quarto centenario della morte di niccolò tartaglia

BRESCIA

Fig. 1.45 Plate from the cover of Quesiti et inventioni diverse de Nicolo Tartaglia brisciano (1554) edited by Arnaldo Masotti (1959)

A similarly full 1554-edition has been web-published in ECHO-Cultural Heritage Online Archive by MPIWG, ${ }^{107}$ as well. We note that the two mentioned editions are different for an overlay image only, folio 72 v . In the following are the Contents of Quesiti 1554-edition (Figs. 1.46 and 1.47):

NEl primo libro fi tratts, dellitiri er effetti delle artegliaric, fecondo le fue use rie elleuationi, 已 fecondo la uaria pofition delle mirc con altri fuci frani accizenti. 4 Car .5 Nel feconio fi manifeftala differentia, che occorre fralitiri, © effeti fatti con balle di piombo, di ferro, oner di pietra, cons altre fotilita circa la proportion pefo er mifara delle jette balle.
Nel tertio fe notifica lefpecie di (alnitri, er le uaric compofitioni dec̈e poluere ufasa ds nofiri antichi e moderni perimentatori. acar. 73
Nel quarto fida el modo di faper ordinar li efferciti in battaglia fottourrie or duterfe forme, con un modo di faper tramutar in un fubito unta ordunanze in forms quidradi gente, in una forma curea fenza defordinar la prima ordinarza © altre. a dar. 43
Nel quinto libro fe infegna il modo di mettere rettamente il difegno con el Boffolo, lifini, Paefi, el le piante delle Citti, con el modo de fabicar il detto Boffolo in dui modi . a carte. 55
Nel fofolibro finarra, il modo, cbe fi doueria offeruar nel fortificar le Citt a a quefit tem pi per oxiar alli uigorofi colpi delle arteglaarie per xigor della forma. ecar. 64
Nella gionta del detto fefto lubro fi mofra dui modi de fortificar una Citri, lano di quali per fela redufe ine β pugnabile, et cbe non potra effer battutane daneggiata danemici colle artegliarie, ne potra effer minata, ne ipite le fofe, et Paltro fara tale, che ruxina dogh le mura fi fara quafi piu forte che con le nura, cö altre parricolarita. a car. 7 z Ne! fettimo libro fi manif ffts alcuni dubbij, che mouer fi poffeno fopra li principij delle queftioni Mecanice de Ariftotile, per acuir li pelegrini ingegni. acar. 7 s
Nei ottauo libro fit tratts della fcientia di pefi demoffratiumente, per mezzo della qual fcentia non folamente fi puo conofcere ev fapere la forza de i'buomo, manchora trouar modo, di augumentar quella con artificiof iffrumenti in infinito. a car. s_{3}
 ftioni in Aritbmetica, in Geometris, er in la Pratica peculatius del'arte Magns, detta Algebras er almucabala, uolgarmente detta la Regola della co 1 , © masime fopra le Regole de cofe e cubi equali a numero, dal prefente Autor ritrosate, \mathcal{V} fimel mente de cenfi e cubi Or altri fuoi edderenti, li quali da fapienti erano giudicati imposibili.

Fig. 1.46 Plate from the Quesiti (1554), Vigano Library (The Gionta book is evident in both of the Contents (Figs. 1.46 and 1.47))

[^50]
LAPRESENTE ORERA E DT Hijs innoue libri, is contionertis di dafcard doro fammariamente di forto finarrs.

N
 ric ellenationi, ev fecondo is uaril pofinion dedte matice con alkri fuci Prani acdisemi.
 pionbo,di ferro, outrdi picirs, wets altre fotilita dires ls proportion pefo or aiffars delle Iette balle.
dur. 3
 nofiri antick or noderni ρ Perimentitori.
acs. 73
Ne! guarto fids el noobs di faper onierar $l i$ s sfercititia batteglia fottoxaric O dierrfe

Nd q winto abro fe infegns il moio di mettere rellemente il difegno con il Boffole, if fit,
 a carte.ss
 pi per ouiar aîi migorgif colpidelle artegliarie per wigor della foma. ac car. 64
 par feis reduffe inefpugnabile, tt de non potra effer batiatsut daneggiate danexici cöle artegharie,ne parra offer minata, ne ipite le foffe, et istiro fard tale, sbe rwina
 Nel fatimo tibro finarifflid alcunt dusbij, che mover fipoffeno foprali prixipij delle queffioai Mecanice de Arifotile per actar li pelegrian ingegri. dcar. 2 e

 trouar mado, di sugantentsr quetla con artifaciofigitrumetati in infinitio. \& car. 63
 fitoni in Aribmettica, is Geometria, ov in la Praties ßpecalativa de !'stre Magns,
 feprat le Regole de cofse cabi eguli a nootero, dal prefente Awtor ritrouste, O fivel mente de cernfe ecubi O altri fuoi edderenti, li quali de fapierti eraso giulicati inposiblic.

ACAY.98

Fig. 1.47 Plate from the Quesiti (1554), Max Planck web edition

Fourth observation. In Gionta to Book VI, Tartaglia's interlocutor (Marcantonio Morosini) cited "[...] altre

IA GIONTA DEL SESTO EIBRO

cbe non lo andaffe qualcbe volta a wedere, ma non con altromio magglor difconzo: S.M. Credo,cbe Jatimolto occupato nel ef \int ercitio uostro. Dimarc fon per undere alla will, doue farro alquanti giorni, per certe mic occorrentic. In quetto mezzo pree pararetiquelle altre forme de fortificationi, accio fino in ordine alls tornata mia. Et maxßime quella, cbe preponctincl. 7. Qucfito del noftro/f/to Libro, cioc di fare guel wofiro particolar ingegno di accommodard ogni cortina, ebe ficiramente potra afjer
 to, che con féle la wolefferiofcalare. Et preparate anchora quel modo de fortificerel pacfe atorno de unacitta (come, cbe preponctincll'ottatio Q Qefito) talmente, cbe gred lidellacitts po /fono ficuramente andare à lavorare, fanimarc, er ractog lierequifita to, che fla atto à dar el nivere à quelli della citte, perche fon molto defiderofo de weder tal uofirs inuentione, percbe lame par co/a grands dfarlocon cofi poca/pe(a,comedi cati. N. Faro Signor Magnifico.

Fine della Giontadel foflo Libro delli Queflit, O Inventioni
diuerfede Nicolo Tartaglis.

CON gratia, e prialegio datl? ituatr ifiomo Senato Veneto, cbe niwno ardijet, ne prefina diftamparr, nef far fampare la prefente Gionta, re flampate alerowe wena dere,ne far uenderc in Venetig, ne in alcuso altro luoco, ó terra del Dominio Ves neto, per anni dicce, jotto pena de duc.joo. © perderc le operrein qual β aog lia 10 co,cbe faranno trowate, elterzodella gual penspocuniaris is applicata a ${ }^{\circ} \mathrm{Ar} / \mathrm{ge}$
 del denonciante, C le operc fanodel prefence Aatore, come cbe nel priailegio conticne.

Fig. 1.48 Plate from Quesiti (1554) end page of Gionta (Tartaglia 1554) forme de fortificazioni" [that is other kinds of fortifications], which Tartaglia should address "[...] accio siano in ordine alla tornata mia [of Marcantonio Morosini]":
[... S.M.]. Dimane son per andare alla uilla, doue staro alquanti giorni, per certe mie occorrentie. In questo mezzo preparareti quelle altre forme de fortificationi, accio siano in ordine alla tornata mia. Et masime quella, che preponeti nel. 7. Quesito del uostro sesto Book, cioe di fare quel uostro particolar ingegno di accommodar à ogni cortina, che sicur amente potra esser guardata, \& difesa da. 25 . ouer.
30. fanti al piu, contra à ogni grandißimo aßalimento, che con scale la uolesseno scalare. ${ }^{108}$
[...]. CON gratia, \& priuilegio dall'Illustrisimo Senato Veneto, che niuno ardisca, ne presuma di stampar, ne far stampare la presente Gionta, ne stampate altroue uendere, ne far uendere in Venetia, ne in alcuno altro luoco, ò terra del Dominio Veneto, per anni diece, sotto pena de duc. 300 \& perdere le opere in qual si uoglia lo co, che saranno trouate, el terzo della qual pena pecuniaria sia applicata all'Arsenale, \& un terzo sia del Magistrato, doue se fara la essecutione, \& l'altro terzo sia del denonciante, \& le opere siano del presence Autore, come che nel priuilegio si contiene (Fig. 1.48). ${ }^{109}$

[^51]
An Historical Hypothesis.

Based on the previous passage, one can hypothesize that the Gionta should - or could - have had a sequel. In fact,
(a) Tartaglia concludes his Gionta by writing down notes regarding its sale for 300 ducati veneti (Tartaglia 1554, Gionta, 77v, line 16).
(b) The Gionta does not appear in (the previously cited) editions of 1546 of Quesiti.
(c) In the 1546-edition (both in the above cited archive), one can read a quotation regarding Book $V I$ on fortifications, only.
(d) Thus, the editor included Gionta in 1554-edition, at the last minute, just after Book VI on fortifications.
(e) He called it "La Gionta del Sesto Libro".
(f) But, it was a separated-previous booklet, so for typographical and "requisitione" arrangements he was obliged to report the final notes (at the end of Gionta) concerning the cost of the book. ${ }^{10}$
(g) Finally, by considering Tartaglia's date of death, and by considering that Gionta is lacking in the 1546 -edition, then the Gionta should be a booklet written before the Quesiti edition of 1554 and after the Quesiti edition of 1546 .

From both pure historical and historical epistemology standpoints, this means that Tartaglia - during his lifetime research on arithmetics and geometry - surely wrote about fortifications, as well. Further, by considering his advancements in the science of weights (Book VII and Book VIII), his correlated-interdisciplinary studies on fortifications (Pisano 2008, 2013c; Pisano and Capecchi 2009, 2010a, 2012) also be of great interest within the history of mechanics (Mach [1883] 1974) not simply as a separate part. In effect, previous reasoning is based on final notes in the end of the Gionta; being in the original text, they can be considered historical sources.

In conclusion, in order to have a general idea of the publication of the Gionta and its data, the following list concerns the main works available:

> Nova Scientia
> Quesiti et invenzioni diverse Contro Cartelli di matematica disfida Travagliata invention (Regola generale)
> Ragionamenti I - III e Supplimento
> Opera Archimedis

Venice 1537, 1550
Venice 1546, 1554
Venice 1547-1548
Venice 1551
Venice 1551
Venice 1543

[^52]
Chapter 2
 Ancient and Modern Statics in the Renaissance

> Forza, dico essere una virtù spirituale, una potenzia invisibile, la quale per accidentale esterna violenza ̀̀ causata dal moto e collocata e infusa ne' corpi i quali sono dal loro naturale uso retratti e piegati, dando a quelli vita attiva di maravigliosa potenzia; costrigne tutte le create cose a mutazione di forma e di sito; corre con furia alla sua desiderata morte e vassi diversificando mediante le cagioni.

(da Vinci, Ms A, 34v)

Statics is the science of equilibrium. The term appears in the Latin version (translated by Snel) of Simon Stevin (1548-1620) most famous textbook, Tomus quartus mathematicorum hypomnematum de statica (Stevin 1605, p 5). This work can be considered the hinge between ancient and modern statics. Ancient statics was the science of equilibrium of weights; modern statics is the science of equilibrium of forces. In ancient Greece statics was part of mechanics, the science of transportation of bodies by means of machines. In the Middle Ages and first Renaissance, statics was known as scientia de ponderibus (science of weights); its main object was the study of principles of equilibrium for heavy bodies suspended from a balance. Presently, statics is part of mechanics, which is the general science studying equilibrium and motion of bodies and their assembly, of any kind.

Hereinafter we will use the term scientia de ponderibus to indicate ancient statics - more precisely the ancient statics of Middle Ages and Renaissance - and simply statics to indicate modern statics.

2.1 The Background

Scientia de ponderibus (science of weights) is the name given by the medieval schoolmen to the discipline that treats the equilibrium of heavy bodies with particular reference to those hanging from a balance. The Scientia de ponderibus was different from Greek mechanics, both for the scope - Greek mechanics placed transportation of weights, instead of their equilibrium, at the centre - and for the
methodology - Scientia de ponderibus charged only to the theoretical foundations of equilibrium and not applicative aspects. The Scientia de ponderibus was also different (i.e., see Pellicani s.d.) the mechanics of the early XVI century, the centrobaric, a discipline developed in the wake of the rediscovery of Archimedes, which was concerned mainly with the mathematical problems (Dijksterhuis 1957) of determining the geometric centres of gravity of plane figures and solids.

2.1.1 The Scientia de ponderibus in the Middle Ages

In the western Middle Ages, the science of weights was classified as subalternatescience, following the Aristotelian tradition which identified astronomy, optics, and music as the more physical of the mathematical sciences (Aristotle 1984, Physics, II, 2, 194a; on Aristotle's physics see also Philoponus 1993). They are mixed sciences (XVII century terminology), i.e. sciences with ranges both in physics and mathematics, and which are subordinate to mathematics. To these three sciences Aristotle had added a fourth, mechanics (Aristotle 1984, Posterior analytics I, 9, 76a; Aristotle 1984, Metaphysics M, 3, 1078a; Aristotle [1936] 1955b, Problemata mechanica, 847a). Physics - the subalternate science - can demonstrate that things are so (demonstrations quia) while mathematics,- the subalternating science - demonstrates why (propter quid) they are so. As a rule, the subject matters of the subalternating and subalternate science are not the same; if they were exactly the same, one would have a single science and not two separate sciences. Therefore, for example, the subject of geometry is geometrical lines, whereas the subject of optics is visual lines (Euclid 1945). Since a visual line is naturally associated to a geometrical line, optics falls under geometry (Bussotti and Pisano 2013). Geometry, then, can be used to study optics, but only the aspects that can modelled by it; a large portion of optics remains, which is the object of physics alone (Pisano and Casolaro 2011).

Apart from astronomy (De Pace 2009; Kesten 1945), the subalternate-sciences that attracted the greater attention by mathematicians were geometrical optics and mechanics. They were structured on the basis of the Euclidean model, based on definitions, suppositions (principles) and propositions (theorems). The main difference with respect to the Euclidean model was that some of the principles rather than being purely geometric, related to the physical world. They were the translation into mathematical terms of what belonged to physics. In the Aristotelian circles, this translation appeared unproblematic; mathematicians, instead, did not exhibit the same level of tolerance as the Aristotelian philosophers, and doubted the evidence of the principles, often assigning them the status of postulates.

Recent studies (Machamer 1978; Lennox 1985; Biener 2004-2008) have highlighted the role of the subalternate-sciences matured within Aristotelian scholarship, which provided a mathematical interpretation of the physical world quite similar to that proposed by Archimedes. In truth, these studies remain at a superficial level; for example, they do not explain why the subalternate-sciences,
once they have passed into the hands of professional mathematicians, assume a structure different from what they had in the hands of philosophers. Nevertheless, mainly they do not study in depth what professional mathematicians, and not philosophers, actually did. One of the main concerns of philosophers was to preserve the homogeneity of demonstrations, particularly in mathematics and physics. But in the treatises of science classified as subordinate (including the Archimedean ones, which will see their diffusion in the XVI century), there was no trace of this purism, and statements about the physical aspects, such as heaviness, were intermixed with statements about geometry with no concern to maintain the homogeneity of the demonstrations (Capecchi 2014a, b, c)

2.1.1.1 The Roots in the Arabic Middle Ages

The scientia de ponderibus saw its birth in the Arabic land; its status of a distinct scientia first appeared in Abū Naṣr Muḥammad ibn Muḥammad Fārābī’s (ca. 870950) Kitab ihsa’ al-‘ulum (The Book of Enumeration of the sciences). In particular, he definitively distinguished between science of weights and sciences of devices (or machines). In his classification of knowledge, Abū Naṣr Muḥammad ibn Muḥammad Fārā̄̄̄̄̄ (hereafter Al-Farabi) took six distinct sciences: language, logic, mathematics, nature, metaphysics and politics. The mathematics were divided into seven topics: arithmetic, geometry, perspective, music, science of weights and sciences of machines or devices. ${ }^{1}$ These last are defined as follows:

> As for the science of weights [emphasis added], it deals with the matters of weights from two standpoints: either by examining weights as much as they are measured or are of use to measure, and this is the investigation of the matters of the doctrine of balances (umūr al-qawl fi l-mawāzīn), or by examining weights as much as they move or are of use to move, and this is the investigation of the principles of instruments (uṣūl al-ālāt) by which heavy things are lifted and carried from one place to another.
> As for the science of devices [emphasis added], it is the knowledge of the procedures by which one applies to natural bodies all that was proven to exist in the mathematical sciences. . in statements and proofs into the natural bodies, and [the act at] locating [all that], and establishing it in actuality. The sciences of devices are therefore those that supply the knowledge of the methods and the procedures by which one can contrive to find this applicability and to demonstrate it in actuality in the natural bodies that are perceptible to the senses. ${ }^{2}$

Al-Farabi's setting was never seriously challenged, although there were different nuances in subsequent classifications (Schneider 2011). Some scholars divided the science of weights into science of balances and science of weight lifting; for

[^53]example, Ibn Sina (980-1037). Al-Isfizārī (1048-1116) and al-Khāzinī (1115-1130) singled out the theory of centers of gravity from the science of weight (Abattouy 2008, 103). Particularly interesting is Abu 'l-Fath al-Rahmân al-Xâzini (fl. XII century) from Merv (Persian Greek). His The Book of the Balance of Wisdom (Khanikoff [1858] 1982) is one of the most important works on arabic-Islam idrostatics (Mieli 1938; Gibb and Bowen 1951; Nasr 1977; Jaouiche 1971, 1976).

The new science of weights was characterized by a strong deductive system, in which components of qualitative physics were formulated more geometrico. The most common historical point of view is that the science of weights originated from interplay of Aristotelian physics and the physical-geometrical approaches by Archimedes and probably Euclid, on the equilibrium of bodies. Now we did not find studies on the role played by Aristotelian conception about subalternate-science in the development of Arabic science, to contrast this point of view. Surely an important role should be assigned to Heron's writing which spread throughout the Islamic lands (Heron Alexandrinus 1893, 1899-1914; Brugmans 1785; Ferriello 2005).

From a methodological point of view, the majority of treatises in the science of weights followed what is often called dynamical or more properly kinematical approach, in which the equilibrium is seen as a balance of opposing forces and the movement, virtual or real, has an important role. In these treatments the Aristotelian dichotomy between the natural and forced, upward and downward, motions, disappears for they are considered on the balance, in which the weight is also the natural cause of lifting other weights. The pure geometrical approach, like the one carried out by Archimedes, is certainly uncommon, so that some historians do not even consider it as part of the science of weights.

The production of Arabic texts developed from the IX to the XII centuries (Giusti and Petti 2002). First, there was a phase of recovery and digestion of the works of Greek origin (Gutas 1998). Besides the translations of Aristotle's theoretical works, Physics and On the Heaven, available since the IX century, Islamic scholars surely had access to Mechanics by Pappus and Heron written in Greek. Also circulating were two treatises on the balance attributed to Euclid (Euclid's book on the balance and De ponderoso et levi). It seems instead that of Archimedes' mechanical works, only that on floating bodies was known, while regarding the Aristotelian Problemata mechanica, it can be stated with certainty that only a partial epitome was known (Abattouy 2006).

The analysis of the general significance of the Arabic medieval science of weights shows that this tradition did not represent a mere continuation of the traditional doctrine of mechanics as inherited from Greeks. Rather, it means the emergence of a new science of weights recognized very early in Arabic learning as a specific branch of mechanics, and embodied in a large scientific and technical corpus. Comprehensive attempts at collecting and systematizing (as well as updating with original contributions) the mainly fragmentary and unorganized Greco-Roman mechanical literature that had been translated into Arabic were highly successful in producing coherent and orderly mechanical systems.

The main Arabic texts on the science of weights are listed below in Table 2.1; for further information see (Abattouy 2008, 94-95).

Table 2.1 Arabic treatises on the science of weights

Kitāb fī il-qarastūm by Thābit ibn Qurra ${ }^{\mathrm{a}}$

The treatise on centres of gravity, by al-Qūhī and Ibn al-Haytham, two most important mathematicians of X-XI centuries. Irshād dhawī al-'rfān ilā șinā áa al-qaffān (Guiding the learned men in the art of steelyard), by al-Isfizari. ${ }^{\text {b }}$
al-Kāzinī's Kitāb mĪzān al-ḥikma by al-Kāzinū's Kitāb mĪzān al-hikma. ${ }^{\text {c }}$

It is probably the first Arabic text about the steel yard. It exists into four manuscripts in Arabic: one conserved in London, one in Kraköw and another in Beirut. The first manuscript was edited, translated into French and commented on by Khalil Jaouiche (Jaou 1976). The second, while in Berlin, was edited and translated into German by Eilhard Wiedmann (Wiedmann 1911), and subsequently studied by Mohammed Abattouy (2001). The third one was studied by Knorr (Knorr 1982). A fourth partial copy was recently found in the archives of the Laurentiana Library in Florence (Abattouy 2008, 94).
It survived only on al-Kāzinī's Kitāb mĪzān al-hikma (The Book of the balance of wisdom).

A fundamental treatise written about 1050-1110. Here different Arabic and Greek traditions are reported, together with a unified mechanical theory.
An encyclopedia of mechanics completed in 1121-1122, well kown as the Book of the balance of wisdom. A source of information about theoretical and practical knowledge of medieval mechanics. It is known in the West by Khanikoff's partial translation
(Khanikoff [1858] 1982).

[^54]
2.1.1.1.1 Thābit's Kitāb fī il-qarastūm

Thābit's contribution is for sure the most relevant for Arabic mechanics. Moreover, it influenced mostly Latin medieval mechanics; for this reason, it deserves a short account. The Kitāb fì il-qarastūm was composed of a prologue followed by eight
propositions and finally a comment. They all relate to the karaston, that is the steelyard or Roman balance, which is a straight-beam balance with arms of unequal length. It incorporates a counterweight, which slides along the calibrated longer arm to counterbalance the load and indicates its weight. The most important postulate Thābit assumed is the following:

PROPOSITION I. The ratio of two distances covered by two mobiles in two [equal] times is equal to the ratio of the force of the mobile [passing] the plane distance to the force of the other mobile. ${ }^{3}$

Based on the postulate, Thābit can prove the law of the lever, which is given as follows:

PROPOSITION III. Since this is manifest now, then I propose [the following with respect to] every line which is divided into two different segments and imagined to be suspended by the dividing point and where there are suspended on the respective extremities of the two segments two weights, and the proportion of the one weight to the other, so far as being drawn downward is concerned, is inversely as the proportion of the lines. [I say that in these circumstances] the line is in horizontal equilibrium. ${ }^{4}$

The proof of proposition III, has to relay on the following comment Thābit makes just before its enunciation:

We have already said [emphasis added] that in the case of two spaces which two moving bodies describe in the same time, the proportion of the power of the motion of one of the body to the power of the motion of the other is as the proportion of the space which the first motion cuts to the other space. And point A with the motion of the line has already cut AT and point B with the motion of the line has already cut arc $B D$, and this in the same time [See Fig. 2.1]. Therefore, the proportion of the power of the motion of point B to the power of the motion of point A is as the proportion, one to the other, of the two spaces which the two points describe in the same time, evidently the proportion of arc BD to arc AT. This proportion has already been shown to be the same as the proportion of line GB to line AG. ${ }^{5}$

Fig. 2.1 Equilibrium of the balance according to Thābit (Redrawn from Moody and Clagett [1952] 1960, 94)

[^55]Thābit clearly affirms that the 'power of motion' of the point B of the longest arm of the balance is greater than that of the point A, or more generally that the power of motion of a point of a balance is directly proportional to its distance from fulcrum. To note that displacements are measured according to the arcs of circles that weights describe in their motion; this is not peculiar to Thābit, but can be found also in the works by al-Isfizari (Capecchi 2012a, b, 71) and by Galilei himself (Galilei 1649, 164). Thābit justifies his affirmation by saying "We have already said" (Moody and Clagett [1952] 1960, 92) which can only refers to Proposition I. Nevertheless this induces, at least for modern readers, a serious interpretation of the problem (Butterfield 1957). Indeed Proposition I when adapted to weights seems to make sense only for downward motions, but in the previous passage, Thābit is considering both upward and downward motions. One could overcome this difficulty by assuming that if a weight suspended from one side of a balance moves upward it could move downward too the same distance in the same amount of time, when the rotation of balance is imagined to revert and then one can always make reference to a possible downward motion. The same problem occurs in Galileo's demonstrations about equilibrium with the use of the concept of momento (hereafter also moment) (Galilei 1612).

2.1.1.2 Continuation in the Latin Middle Ages

The very expression scientia de ponderibus was derived from the Latin translation of al-Fārābī’s Ih!s.ā' al-'ulūm. Translations of this text were due both to Gerardo da Cremona and Dominicus Gundissalinus in the XIII century. Gundissalinus in his treatise borrowed from al-Fārābī the concept of mechanics as a subalternate science, stemming form Aristotle's division for analogous sciences. He reproduced al-Fārābī's characterization of the sciences of weights and devices, called respectively scientia de ponderibus and sciencia de ingeniis. The reason for this verbatim acquisition depends on the fact he could not rely on any scientific category in this field in Latin. Even the antique Latin tradition represented by Boece and Isidore of Sevilla (VIII AD) could not furnish any useful data.

In the Latin Middle Ages, various treatises on the Scientia de ponderibus circulated. They were Latin translations from Greek or Arabic between XII and XIII centuries, referred to in the following Table 2.2.

Table 2.2 Latin treatises on the science of weights

Liber Archimedis de insidentibus in humidum or Liber Archimedis de ponderibus

Archimedis insidentibus in aquae and Aequiponderanti.

Liber karastonis

A short treatise on the construction of Roman scale. Translated from a Greek origin (Moody and Clagett [1952] 1960, 64-75). The law of the lever, attributed to Euclid, Archimedes and other is taken for granted (sicut demonstratum est ab Euclide et Archimede et aliis, Moody and Clagett [1952] 1960, 66). Basing on it the laws that regulate the balance of a 'rod equipped with weight divided into unequal parts and loaded at the ends are determined. The problem is to find the position of the point of suspension given a certain tray so that it has equilibrium with no weights added, or vice versa given the point of suspension to find the weight of the tray.
Translated from an Arabic version attributed to Thabit, it would result from a Greek original which with many doubts can be traced back to Euclid. It consists of nine suppositions and some theorems. The version reported in (Moody and Clagett [1952] 1960) reports only five suppositions, but it is probably incomplete. Interesting the first theorem, not so much for its demonstration, but for the fact that it was assumed as a principle by Thabit in his Kitāb fī il qarastūm: "Of bodies which traverse unequal places in equal times, that which traverses the greater place is of greater force". ${ }^{\text {a }}$
According to (Moody and Clagett [1952] 1960, 3637) the text cannot be attributed to Archimedes, despite the medieval claims. It would come for the first part from Latin sources of the eighth century (Isidore of Seivelle), for the second part from Arab sources of the twelfth century. The text is different from the others in content since it is not centred on the equilibrium of the balance but simply arises the problem of assessing the weight of bodies immersed in a medium. Interesting is the revival of the golden crown of the famous problem solved by Archimedes (Moody and Clagett [1952] 1960, 40-53).
This is the translation by William of Moerbeke of the works of Archimedes on the equilibrium of the planar and floating bodies. They had no particular success in the Middle Ages, both for the difficulties intrinsic in the mathematics, and for the inaccurate translation of the concepts by Moerbeke.
It is the Latin translation by Gerardo da Cremona of Thābit's Kitāb fī il-qarastūm. None of the Arabic extant copies seem to be the direct model for Gerard's translation (Moody and Clagett [1952]

Table 2.2 (continued)

	1960, 88-117). Arabic manuscripts are quite dif- ferent from the Latin one. The order of proposi- tions, indeed not numbered, in the Arabic versions is different from the Latin one. The texts of propo- sitions are virtually the same as those in the Liber karastonis, except for secondary aspects. The texts of explanations are instead very different; shorter and much less satisfactory than those of the Latin version. The Latin version was repeatedly copied and distributed in the Latin West until the XVII century, as it is documented by several extant
manuscript copies. Further, the treatise was used as	
textbook in the quadrivium, together with works by	

a"Corporum que temporibus equalibus loca pertranseunt inequalia, quod maiorem pertransit locum maioris esse virtutis" (Moody and Clagett, [1952] 1960, 26-27)

Starting from these treatises, medieval scholars developed their own science of weight. The first texts written directly into Latin are those attributable to various ways to Jordanus de Nemore, a famous mathematician of the XIII century. ${ }^{6}$ We report them below with the names that have been attributed (Moody and Clagett [1952] 1960):

Elementa Jordani super demonstratione de ponderibus	Version E	Hereinafter version E or Elementa		
Liber Jordani de ponderibus cum	Version P	Hereinafter version P or commento		
Liber de ponderibus				
Libor Jordani de Nemore de ratione			\quad Version R \quad	Hereinafter version R or
:---				
ponderis				

Moody and Clagett ([1952] 1960) with certainty attribute the version E to de Nemore and consider possible the attribution of version R. More uncertainty is the attribution of version P, the less refined. Brown (1976) considers the Elementa

[^56]ascribable to de Nemore but seems to opt for a different assignment for the Liber de ratione ponderis. ${ }^{7}$

De Nemore's treatises were the object of comments up to the XII century. Worthy of notice are some commentaries of XIII and XIV centuries, referred below with the name assigned to them by Moody and Clagett (Moody and Clagett [1952] 1960) and Brown (Brown 1976) (Table 2.3).

Table 2.3 Some commentaries of Jordanus de Nemore tradition

Corpus Christi	It contains a variant reading of the proof of the law of lever, of some interest, though controver- sial (Brown 1976, 570-647).
Aliud commentum of Elementa	Some passages of this text are of particular interest in that they testify a work of research regarding the principles of mechanics, somewhat distinct from that carried out by de Nemore (Brown 1976, 164-347).
	End of XIV century. A short work where three
Questiones super tractatum de ponderibus.	
By Biagio Pelacani of Parma (c. 1316-1465)	
questions were raised. Contains comments on	
Tractatus Blasi de ponderibus. By Biagio	various treatises of the science of weights (Moody and Clagett [1952] 1960, 232).
Pelacani of Parma	It is an independent text divided into three parts. The first two mainly refer to De ponderibus and
	De canonio, without new arguments. The third part refers to the Liber Archimedis de
	insidentibus in humidum (Moody and Clagett
[1952] 1960, 238-279).	

2.1.1.2.1 Jordanus de Nemore's Liber de ratione ponderis

Of the three versions ($\mathrm{E}, \mathrm{P}, \mathrm{R}$) attributed to Jordanus de Nemore that denoted by R or Liber de ratione ponderis, is the most complete. It is quite a complex treatise, ideally divided into four parts with 7 suppositions (principles) and 43 (or 45 according to the manuscripts) propositions (theorems) of the science of weights. The first part has a theoretical aim and collects the suppositions and the most interesting propositions, among which the proof of the laws of the lever and inclined plane; the second and third parts are more technical and concern the solutions of some of the problems of the balance, with arms endowed or not with

[^57]natural weight. The fourth part is about various issues, among which the fall and breaking of bodies. The version P assumes the same suppositions (7) and 13 propositions, the first seven coinciding with the propositions of the first book of version R, the other with other propositions of the second book. The version E is the shorter; it has the same suppositions but only 9 propositions corresponding to the first nine propositions of version P. All versions use two, not independent, fundamental laws:

1. The first law assumes the concept of gravity position for which the efficiency of a weight to descend or its resistance to be raised depends on the kinematic constraints to which it is subject. The law states that the effectiveness and strength are the greater the closer the path (made possible by constraints) to the vertical.
2. The second law has a precise mathematical expression and says that "what can raise a weight p at height h, can lift a weight p / n at a height $n h$, or vice versa a weight $n p$ to the height $h / n "$. In other words, the discriminant magnitude is the product $p h$, as requested by the modern principle of virtual displacement.

The first law is presented by de Nemore as a principle, it could have been derived by Aristotle's considerations in his Problemata mechanica on the amazing properties of the circle, but could also have origins in everyday experience of practical mechanicians; de Nemore says nothing about it. Weights are considered both as active elements, which push down and as passive elements, which offer resistance to be raised. The second law has a logical status that does not appear clear from the reading of texts. According to our interpretation, as argued later on, it is a theorem proved from simple principles. The weight in this case is considered only as a passive element.

Jordanus de Nemore only uses the first law to demonstrate propositions of a qualitative nature, such as the demonstration that the lever $a b$ of Fig. 2.2 with unequal arms and equal weights tilts on the side of a. The rationale is that the path $a g$ of a is closer to the vertical than that $b f$ of b.

Fig. 2.2 Balance with unequal arms and equal weights (Redrawn from de Nemore 1565, 5r)

Note that the use of the first law can lead to errors. This occurs in versions P and E when studying the equilibrium of the angular lever of Fig. 2.2. In the version P , de Nemore' reasoning is muddled; in version E the reasoning appears clear and consistent. Unfortunately, the result is wrong (Duhem 1905-1906, 121). In order to show his reasoning, in the following plate (See Fig. 2.2bis) from version E (de Nemore fl. 13th) and a description (See Fig. 2.3) are reported.

Fig. 2.2bis Plate from Jordanus de Nemore's Elementa Jordani super demonstratione de ponderibus (or De ratione ponderis, versione E) (de Nemore 13th, 4r). The manuscript (and with permission) of the Oxford Bodleian Library in our possession is not numbered: we proposed an order based on the copy received.

Fig. 2.3 Equilibrium of the angular balance (Redrawn from de Nemore 13th, 4r. See Fig. 2.2bis)

Consider the angular balance-or-lever acf (Fig. 2.3) at whose ends two equal weights a and b are suspended symmetrically with respect to the vertical $c d$. Fixed a vertical segment em, weight b passes after covering the arc $f m$; weight a instead passes the same vertical $c d$ by covering a shorter arc f. It is clear from figure that the path $f h$ is closer to the vertical than the path $f m$, and then the gravity position of a is greater than that of b. As a result, there should be no equilibrium and the angular lever should rotate anticlockwise. ${ }^{8}$

Actually, things do not go this way and the angular balance remains in equilibrium. De Nemore will correctly prove this fact (R version) in which the angular lever is studied with the use of the second law without making any reference to the concept of gravity position (de Nemore 1565, 6rv).

One more case where the concept of gravity of position is used, this time successfully, is in the study of the balance with equal arms and weighs, which is the object of proposition II:
[PROPOSITION II] When a horizontal position is gained [for a balance of equal arms], then, if equal weights are suspended [from its extremities], the balance will not leave the horizontal position; and if it is moved from the horizontal position, it will revert to the horizontal position. If instead unequal [weights] are suspended, [the balance] will fall on the side of the heavier [weight] until it reaches the vertical position. ${ }^{9}$

[^58]Fig. 2.4 Equilibrium of the balance with equal weights and arms (Redrawn from de Nemore 1565, 4r)

The first part of the proposition, equal weights hanging from a balance with equal arms are equilibrated in the horizontal position, rather than being taken as a postulate, is demonstrated in the same manner as Thabit did, arguing that the two weights are moving with the same obliquity, so they have the same gravity of position and equilibrate themselves. The second part is proved by showing that when the balance assumes a position different from the horizon, the gravity of position of the weight that is lower (b in Fig. 2.4) is less than the weight that is higher (c in Fig. 2.4) because in a virtual rotation of each arm of the balance, the higher c is lowered more than the lower b, when passing equal arcs. So its gravity of position is greater and the balance returns horizontally:

Let it now be supposed that the balance is tilted down on the side of b, and up on the side of c [Fig. 2.4]. I say that it will revert to the horizontal position. The descent from c toward the horizontal position is indeed less oblique than the descent from b toward e. Assume indeed equal arcs, as small as you please [emphasis added], $c d$ and $b g$; and draw the lines parallel to the horizontal $c z l$ and $d m n$, and also $b k h$ and gyt, and draw, vertically, the diameter frzmakye. Then $z m$ will be greater than $k y$, because if an arc, equal to $c d$, is taken in the direction of f, and if the line $x r s$ is drawn transversally, then $r z$ will be smaller than $z m$, what is easy to show. And since $r z$ equals $k y, z m$ will be greater than $k y$. Since because any arc you please, which is beneath c, takes more of the vertical than an arc equal to it, taken beneath b, the descent from c is more direct than the descent from b; and then c will be heavier in the most elevated position, than b. Therefore, [the balance] will revert to the horizontal position. ${ }^{10}$

[^59]Note that a part of the secondary literature considered usually de Nemore's assumption of arcs "as small as you like" (Ivi) the adoption of reasoning about infinitesimals. ${ }^{11}$ According to them de Nemore did not make the passage to the limit and then he "failed" (Ivi) to notice that in the limit, for infinitesimal arcs, vertical displacements of c and b are equal, then the gravity of their positions are equal, then equilibrium is indifferent. Actually things are not so, as will be explained in Sect. 3.1.2.4, Proposition VI, of the present book.

However, de Nemore's failure can hardly be blamed since his way of reasoning was still maintained long after infinitesimals were introduced. In his criticism to Lagrange, Joseph Louis François Bertrand (1822-1900) and Carl Gustav Jacob Jacobi (1804-1851), two important mathematicians of the XIX century, would have subscribed to de Nemore's position to assume finite arcs. ${ }^{12}$ The error of de Nemore in this case would have been to consider the gravity of position of the two heavy bodies, c and b, as both moving downward. If he had assumed a congruent motion according to which when one weight raises the other falls, he would have found equality of gravity of positions for c and b.

However, the reduction to infinitesimal motion, according to the modern view, ${ }^{13}$ would lead to an evaluation of the gravity of position different from that proposed by de Nemore. If the motion on a given circle with infinitesimal displacements is assumed; gravity of position is maximum at the horizontal position of the balance and is zero in the vertical position; in an intermediate position, the gravities of the weights are equal and the balance is in equilibrium. Nevertheless, if circles of different radius are considered, the infinitesimal displacements do not attribute the greater gravity to the weights that are on the larger circle. Considering finite displacements instead enables this attribution. The concept of gravity of position, although interesting and suggestive, seems to take more than a simple infinitesimal reinterpretation in order to be adopted by modern statics.

2.1.2 Revival During the Age of Humanism

In XV century Italy there was a sparkling situation for economic, social and political conditions, on the one hand and cultural achievements on the other hand.

[^60]A situation, which then would be established in the rest of Europe (Garin 1993, 2008; Tenenti 1990). Regarding cultural aspects, besides emergence of the culture of the middle class, which played an important part in accounting calculations, geography, economics and financial technique, the emergence of the humanist movement should be highlighted. ${ }^{14}$ This was made possible by the new social and economic conditions, offering new perspectives on the world, which on one hand allowed the members of the middle class to be able to devote time to study and on the other hand allowed the courts to play a more or less disinterested activity of patronage.

The XV century records a check on growth in the development of science and the publication of scientific papers. The check existed of course for the science of weights too. In this case it also depended on the fact that the discipline, formulated axiomatically, had reached its complete internal maturity and only the proposition of new problems could have lead to an evolution. Although until the early years of the XVI century no new major scientific treatise was written, ${ }^{15}$ except the Summa de arithmetica, geometria, proportioni et proportionalità (Pacioli 1992) and De divina proportione (Pacioli 1509a) ${ }^{16}$ by Luca Pacioli (c. 1445-1517), it must be said that in this period the foundations of a major renovation were laid down, with the breaking of the spirit of the scholasticism system and the repudiation of the principle of authority, particularly that of Aristotle, the rediscovery of Plato and Pythagoras and the valorization of mathematics which was the premise for the new philosophy of nature (van Ophuijsen 2005; Vanderputten 2005), of the second half of the XVI century.

2.1.2.1 A Variety of Approaches to Mathematics

At the end of the Middle Ages, mathematics was taught essentially at universities and at abacus schools. In the history of the universities (De Ridder-Symoens 1992), mathematics was taught in the quadrivium (arithmetic, geometry, astronomy and music) of the faculties of arts that, while maintaining their autonomy, were instrumental to the training of future physicians and theologians. ${ }^{17}$ The medical faculties of the early Renaissance were usually those in which mathematics had

[^61]more space. ${ }^{18}$ Medicine was, in fact, connected to the study of astrology, which required the students to have rudiments of Ptolemaic astronomy and early cosmology (Duhem 1913-1959) and then knowledge of elements of geometry and arithmetic. Professors of these subjects were the masters of liberal arts of the quadrivium, whose teaching and research many of the mathematical works of the XV century are connected. However, the place occupied by mathematics was still marginal ${ }^{19}$ and the level of mathematical knowledge was, except for some teachers, limited to what was indispensable for the exercise of astrology. In fact, it did not cover the study of many Greek classics that at the time were already available in Latin translations from Arabic of the XII century. However not to be forgotten is that, for instance, Galileo was nurtured at a university and by a shared knowledge as clearly exposed in his correspondence (Galluzzi and Torrini 1975-1984). The University of Padova in particular was an important centre for training in science (Favaro 1883). Among its students in the XV and XVI centuries the following people should be noted: Paolo da Pozzo Toscanelli (1397-1482), Leon Battista Alberti (1404-1472), Francesco della Rovere alias Pope Sixtus IV (1414-1484), Giovanni Pico della Mirandola (14631494), Pietro Bembo (1470-1547), Nicolaus Copernicus (1473-1543), Francesco Guicciardini (1483-1540), Girolamo Cardano (1501-1576?), Bernardino Telesio (1509-1588), Torquato Tasso (1544-1595), Roberto Bellarmino (1542-1621), Paolo Sarpi (1552-1623), Giovanni Domenico Campanella called Tommaso Campanella (1568-1693), William Harvey (1578-1657).

Different considerations hold for the schools of abacus. They were born in the XIII century with the spread of Liber abaci (Fibonacci 2004; Giusti 2002) by Leonardo Pisano's also called Fibonacci (1170-1250; see Pisano and Bussotti 2013a, Pisano and Bussotti 2015a; Ulivi 2002). Some of these schools were subsidized by the municipalities, some others by private organizations or individuals. The practical mathematics that emerged from the abacus treatises of XIV and XV centuries had so many characteristics that quite clearly distinguished it from the traditional Euclidean axiomatic-deductive mathematics. The main features of the abacus treatises were the use of the vernacular, mercantile writing, a great amount of examples and the presence of important drawings for illustrative purposes. The treatises on the abacus had different quality levels, which reflected the skills of teachers who had drawn them up: some were very simple and neglected those parts of mathematics (algebra, practical geometry, speculative arithmetic) that were not immediately applicable in the art of the merchant. Others, however, showed a certain organic quality, aesthetically cured, mainly in the miniatures illustrating the drawings, and treatment of some algebraic problems, which involved the solution of quadratic and higher degree equations (Ciocci 2011, 266-271). Even

[^62]mathematical textbooks used by the artists had characteristics similar to those of the schools of abacus, where, however, drawings and operational rules prevailed over theoretical aspects.

Piero della Francesca, Michelangelo Buonarroti (1475-1564), Niccolò Machiavelli (1469-1527), Leonardo da Vinci (1452-1519) and Alberti were influenced by the mathematrics of this environment. Most studies of the history of science, including mechanics, focus on the influence of Euclidean and Archimedean mathematics and neglect that of abacaus mathematics, which should not have been small, especially in view of its non-axiomatic approach (Pisano 2013a, b, d; Pisano 2009a, b, c).

With the Renaissance in the XV century (Laird 1986, 1987; Laird and Roux 2008), medieval mathematics is joined by the new mathematics, or rather the rediscovered ancient Greek mathematics to which the humanist movement gave a great contribution. The essential role of Italian humanism in the Renaissance of mathematics during the XV and XVI centuries was well documented in (Rose 1975). Many humanists returned from their travels to Byzantium with codes of Apollonius, Ptolemy, Pappus and Heron written in Greek. In the early XVI century, within a few decades, many revisions and translations of classics were delivered. Some of the most important were: the De expetendis et fugiendis rebus (1501) by Giorgio Valla (1447-1500), a rich encyclopaedic anthology of Greek scientific texts, ${ }^{20}$ a new translation of Euclid (Venezia, 1505) led by Bartolomeo Zamberti (fl. second half XV c.), the first Archimedean texts published (Venezia 1503) by Luca Gaurico (1476-1558), the editio princeps of Euclid's Elements (Basel, 1533), the translation of Apollonius' Conic sections (Venezia, 1537) by Giovanni Battista Memmo (1503/1504-1579), the Italian translation of Euclid and the publication of several works of Archimedes (Venezia 1543) presented by Niccolò Tartaglia (1499/ 1500-1557), and the editio princeps of Archimedes with Greek and Latin text (Basel, 1544). It was however a non-Italian humanist, Johannes Müller von Königsberg, whose Latin toponym was Johannes Regiomontanus (1436-1476), the first to embark on a complete restoration of mathematics and astronomy (Pisano and Bussotti 2012) based on his acquaintance with Italian classicists and humanists related to Basilio Bessarione (1403-1472). In effect, the scientific knowledge spread by humanists during the Renaissance depended on the scientific aptitudes of translators and many other factors related to circulation of information:

> As we have seen, the starting point for this renaissance of mathematics was the correction of Greek mathematical texts, to be undertaken by those who were expert in both the Greek language and astronomy. To make the refurbished traditions of Greek mathematics available to mathematicians generally, Regiomontanus from at least 1461 was engaged on a series of Latin translations. But by 1471, this means of communication was revolutionised by Regiomontanus' discovery of the new invention of printing. Through printing, an

[^63]astonishingly rapid and accurate dissemination of texts and translations become possible that had been inconceivable in an age where manuscripts represented the sole means of circulating the written word. In its fusion of mathematics, Greek and printing Regiomontanus' publishing Programme of 1474 marks the formal beginning of the renaissance of mathematics. ${ }^{21}$

Thus, the reacquisition of mathematical techniques was rather slow. What the humanist movement had since carried on was of a meta-mathematical character and concerned the new role that mathematics acquired within the philosophy of the Platonic and Pythagorean schools of thought. Important to this purpose was the role played by Luca Pacioli, who was at the same time a teacher of abacus and magister theologiae, which allowed him to mediate the culture of technicians and learned men. The biblical-metaphysical idea inspired ${ }^{22}$ Luca Pacioli in his dedicatory letter (Fig. 2.5) to Guidobaldo da Montefeltro (1472-1508). It regarded a book of nature that - later resumed by Galileo Galilei $(1564-1642)$ as well - was written in geometrical characters.

[^64]

 crat cuncta componds iti, hon fas di toncrariancre giadicido oicaqud doc fin qua oxle ODarto.
 lente) non acadcua por connumerationc ox luthlita ficgue intogni jocroina (panaca per cke porfuader

 fefloxe ocuocamente ald fericomands, La qual lo omnipototte oio fecondoogrifuob bon ocídorioli

 Z̈nidbmatice: \%Ecomcric. Epiltola.

Ulom animaducterem 3 Sluffriffime p :inceps imenfap poledincesac marimas vilitatts quas cr bïe fdientig affcguimur:quc grid marbe' mata noftri Duifiplanas poffurs appdlarc: fireac partice z Tbeozice enimo vomandontar, Conftituinouum boc volamépzo ingconi noftri tennitate componoremarime in cozum vium ac voluperacm edcre qui virutum sdoaffeari diknt. In quo (vece fabraipro indice facile peripi di poteft) parias diacfalig EIr ithmetice Efcometric proposionis at Asoporionalitatis partco plarimum ncceffarias:cum in pari:tum in 2 2ecorica collegimus:firmuifimǎag rationibas z canonbbas perfcctitif misfubiccumus:cr antiquis 7 recentilue podofopbis cuiulamgespa riaindabitata fundamenta. Euarnobscm notr immonito libai timlas. Summa Inribmetice Acometric proportionum z propostionalitatum Dicanur. Clif antcomnia ftudainne cractamín beaiffemodifacultatibas parim tradcre qucmadmodû cr ondinanilima curs Kcricbaad odficiter intucri licet. Denum qua temposikus noftria verba propzis madtofeos ob rari
 paront(nonignanus ftlo dogmntiosi.Eloquio ficcromiano tefalicntem doqucritic viduy adiriopoz

 dentir zopeinicapplicaripofic. Etpaino quis non Dico Doctua: ifd multo minus $\tilde{\Phi}$ mediocritcr trudituo fit:qur non poripiac vidcat quantum bercant quantumq3 ncceffria fint. aifrologicaung

Fig. 2.5 Plate from the initial part of the dedicatory letter by Pacioli (Pacioli 1494, Summa, 3r; see also 4r. Source: Max Planck Institute for the History of science-Echo/Archimedes Project)

Let all created beings be our mirror, as no one will be found to be constituted but as number, weight and measure, as said by Salomon in the second book of the Sapientia. ${ }^{23}$

2.1.2.2 The Emergence of a New Type of Intellectual Technician: The Engineer

Regarding economic aspects of the times, the emergence of a middle class of which the merchant was a key element should be emphasized. The middle class had long since conquered a great economic and social weight and had acquired the consciousness of its social role and the possession of a culture, independent of universities and various humanist circles. The evolution of the economy and society was strongly influenced by three fundamental technological discoveries: circumnavigability of the earth, gunpowder, and printing. The possibility to circumnavigate the globe was perhaps the most important discovery leading to a boost in the economy of many nations. It also entailed the development of navigation techniques with invention of the compass, the representations of geographic maps, the improvement of astronomy for navigation using the stars, and the crafting of ships, which no doubt provided a stimulus to the improvement of many applied sciences (Singer 1954, II-III).

The spread of modern artillery based on the propellant effect of gunpowder was important, especially for the development of new mechanics (Costabel 1973; Crombie 1957; Dugas 1950). Knowing what causes the beginning of motion, and its sequel, was considered important by commanders of the armies and therefore also by states. This was true especially since the XVI century, when artillery had become extremely effective. The development of artillery had as a natural consequence the development of defensive techniques. This gave birth to the bastioned fortresses, first appearing in Italy and then becoming a real battleground for numerous national and foreign armies. Perhaps even more than artillery, fortress design mobilized engineers and architects, leading to the development of methods of construction and a better understanding of the strength of materials (Pisano 2009a, b, c, d; Pisano and Capecchi 2008, 2009, 2010a, b, 2012, 2013).

The emergence of the engineer as an intellectual technician, seen as a new kind of technician in some way educated in sciences, is a characteristic feature of the XV century and the first half of the XVI. Indeed this is perhaps the main feature of science, where the reduced creativity (real or apparent) of 'pure' scientists, was counterbalanced by the great creativity of "applied" scientists. A short list is sufficient to give an idea of the dimension of the phenomenon: Mariano di Jacopo, called Taccola, (1381-1458), Leon Battista Alberti, Francesco di Giorgio Martini (1439-1501), Leonardo da Vinci, Vannoccio Vincenzio Austino Luca Biringuccio also known as Vannuccio, Biringuccio (1480-1539), Francesco de’ Marchi (1504-1576), Giovanni Battista Bellucci (1506-1554), and Daniele Barbaro (1513-1570).

[^65]Although there was no public funding to encourage scientists to devote their efforts to the study of technical applications and to improvement of their knowledge, a common ground arose, particularly in Central and Northern Italy. A link between engineers and scientists emerged, at least in part, through the creation of some technical centres in the courts of the principalities which had been set up. This was the case of the Medici's court in Florence, but also, and perhaps more importantly, the court of Milan under Francesco Sforza with its very rich library. Another important centre was Urbino. Here among others the presences of Francesco di Giorgio Martini (1480-1490), who translated Marcus Vitruvius Pollio's (ca. 80-70 BC - after 15 BC ; see Mussini 2003) De Architectura into Italian, ${ }^{24}$ which although questionable from a philological point of view, made this author known to all technicians ${ }^{25}$ and Piero della Francesca (1415-1492), one of the greatest mathematicians and painters at that time (Grendler 1955), are to be reported.

2.1.2.3 Leonardo da Vinci's Science of Weights

It is not easy to understand how the science of weights may have influenced the training of technicians. Certainly, some basic aspects on the working of the lever and the block and tackle needed for the construction of building and industry machinery was available independently of mechanics treatises. There was a long tradition of transmission of technological knowledge from antiquity that found concrete expression in the regular use of construction machinery designed during the Hellenistic era. There is however no doubt that when a certain culture of mathematics and drawing began to spread, a precise knowledge of the basic laws of mechanics, which could be acquired with limited scientific knowledge (Capecchi and Pisano 2008), gave the opportunity for the design of machines at the work table (Lefèvre 2004).

In the hands of technicians, the theoretical medieval science of weights could evolve toward a more mature discipline, in the attempt of its application to situations required by the technology of the time (Pisano and Bussotti 2014d, 2015e). This possibility of evolution was widely exploited by a man who is today universally regarded as the engineer of the XV century par excellence: Leonardo da Vinci (Marcolongo 1932; Galluzzi 1988; Pedretti 1978, 1998). In the following, we will expose how the science of weights will be transformed in his hands. The choice of studying Leonardo is partly motivated by the fact that the studies conducted so far on him, not always exhaustive, have shown the great theoretical significance of his writings, but it is also motivated by the fact that now we have access to a complete set of Leonardo's works (Pisano 2013). His many interests were considered in the early 1400s by Taccola (Knobloch 1981) who was interested in the

[^66]writings of mechanics and military technics. In more recent times Giambattista Venturi published, in 1797, a famous essay on the scientific work of Leonardo da Vinci (Venturi 1797). In the years 1880-1940 da Vinci's notebooks were published in facsimile and nearly all the manuscripts were printed with a diplomatic transcription ${ }^{26}$ and translation in different languages, resulting in approximately a thousand drawings and propositions. However, an organic edition is still lacking, with the happy exception presented by Arturo Uccelli who edited with a critical transcription ${ }^{27}$ nearly all the mechanical writings, ordering them according to a criterion inspired by Leonardo himself (da Vinci 1940).

Between 1482 and 1499 Leonardo da Vinci ${ }^{28}$ was in the service of the Duke of Milan. During his service he also advised on architecture, fortifications and military matters and worked as a hydraulic and mechanical engineer and became interested in geometry. He read Leon Battista Alberti's De re adificatoria on architecture (ca. 1450) and Piero della Francesca's De prospectiva pingendi on perspectives studies. He illustrated Pacioli's Divina proportione ${ }^{29}$ (1498) and worked with him. Leonardo studied Euclid and Pacioli's Summa and began his own research on geometry, sometimes giving mechanical solutions. In 1499 Leonardo left Milan together with Pacioli; in 1506 he returned there for a second period. Again his scientific work took precedence over his painting and he was involved in hydrodynamics, anatomy, mechanics, mathematics and optics. In 1513 Leonardo accepted an invitation from King Francis I to enter his service in France (Gillispie 19711980, VIII, 199-244).

Leonardo da Vinci is a difficult subject to be confined within a fixed frame and it is difficult to give a full account of the opinions of historians on Leonardo's role in science in general and mechanics in particular. One goes from an enthusiastic vision of the early XIX century, especially on the side of historians of science educated in literature, to a more mature appreciation of Duhem and finally to a

[^67]fierce criticism by Clifford Ambrose Truesdell (1919-2000) who minimised (Truesdell 1968, 1-29) both the originality and the contribution to the subsequent science development of Leonardo's work and George Sarton (1884-1956) who affirmed (Sarton 1953, 11-22) that the development of mechanics would have been the same without Leonardo. Eduard Jan Dijksterhuis (1892-1965) eventually considered studying Leonardo as being of interest not for his contributions to science, but for the opportunity offered by his copious notes that were written to follow the maturation of various scientific concepts (Dijksterhuis 1961).

A better understanding of the history of mechanics and a different conception of history of science with a trend to greater contextualization of the work of scientists has certainly contributed to this change of opinions. Today there is a phase of stagnation on the studies of Leonardo as a scientist, probably due to the concerns aroused by the latest criticisms and the concern to approach a job seemingly titanic at first glance. It is with reverential awe and humility that we have set about the study. One of the difficulties in reading Leonardo's texts is that they consist largely of scattered notes, often repeated with slight variations, sometimes with inconsistencies. Although attempts were made to reach a chronologically consistent order, different scholars have not yet obtained results sufficiently shared, also because Leonardo had the habit of putting his own hands to the manuscripts and editing them with continuous additions and deletions. The only valid criterion is the search for logical consistency and the persistence of certain statements over others. Arturo Uccelli (da Vinci 1940), Roberto Marcolongo (1862-1943; Marcolongo 1937), Pierre Maurice Marie Duhem (1861-1916; Duhem 1906) and others, among which we want to name at least Edmondo Solmi (1874-1912; Solmi 1908), attempted to find the source of the thought of Leonardo da Vinci. The enterprise is difficult because in the XV century they were not particularly generous in quotations; Leonardo specifically names only: Aristotle (384 BC - 322 BC), Archimedes, Euclid (ca. 323 BC-286 BC), Abū 1 Hasan Thābit ibn Qurra' ibn Marwān al-Sābi' al-Harrānī (826-901), Jordanus de Nemore (fl. XII or XIII ${ }^{\text {th }}$), Biagio of Parma (c. 1365-1416), Albertus Magnus (1193/1206-1280) also known as Albert the Great and Albert of Cologne, Albert of Saxony (ca. 1316-1390), Alberti and perhaps Richard Swineshead ${ }^{30}$ (fl. 1340-1354). Moreover, it is also difficult to understand the influence of Leonardo on posterity because it seems that he had not made his works known, except to a very restricted circle. We have set ourselves an easier task in trying to decipher Leonardo's thought by framing it within his time on the basis of medieval texts of mechanics known to us but maybe not to him. Stating that Leonardo's claims are original with him is perhaps misleading and at best uninteresting, since we are convinced that he was not an isolated genius, but probably a representative engineer with beliefs common to others (Favaro 1916).

[^68]

Fig. 2.5bis Plate from the studies on gravity and force (da Vinci, Codex Arundel, 37r)

The science of weights in the hands of Leonardo became a discipline similar to modern statics, closer to that of Simon Stevin, a century after, than to that of Guidobaldo del Monte (and even Galileo). In addition, del Monte proposed restoring Greek mechanics (Stevin 1955) limiting the study to simple machines, the lever, an axle with a wheel, the wedge, the screw and the inclined plane. ${ }^{31}$

2.1.2.3.1 Powers: Gravity and Force

Before moving on to analyse the more technical contributions of Leonardo to mechanics we should make a clarification of the meaning of certain terms, including: power, gravity and weight. The following quotes give a first idea:

Gravity is an accidental power, which is created by motion and infused into bodies out of their natural site. ${ }^{32}$
[...] Gravity, force and accidental motion (material motion), together with percussion are the four accidental powers, by which all the evident work of mortal beings have their origin and their death. ${ }^{33}$

In this passage, Leonardo da Vinci refers to the four powers (with a modern language, forces). Regarding the gravity, it can be said that Leonardo married the traditional Aristotelian school thesis considering it as the tendency of bodies to reach their natural place (Duhem, I, 16-17). For Leonardo gravity is caused by motion (Fig. 2.6):

[^69]

Irmane Comaety Fink nato mives Pualdan hiow o : hforga

f

to maturasis efon poforomn fopep flopa compo pи 20wnon(s) wheni 「apal p, turimuo fono

If moto witheie molh nolfere ond fols
iferthe mafless Trifolyanmoto © (furto nn) cos Anifo
1 (mito willevito

- fosgenevata ta

Itume tin it. Fillum) ${ }^{\circ} \mathrm{p}$ - Anifole sifus To ode tinog: traday primatio
ang mate whilemin numfers inceni to eniffrustit. tow gramin Climph fonom itin nom. Conme H
Gia ofronforeta far pofof Ahme

civallosa itmpruvnno neqmplu jofo

 hym Tom hints eas numbe ofenorto mas eqn roropinita himly of cowto má

Fig. 2.6 Plate from the studies on gravity (da Vinci, Codex Arundel, 205r)

No element has in itself gravity or levity if it does not move. The earth is in contact with the air and water and has in itself neither gravity nor levity; it has not stimulus neither from the water nor from the surrounding air, unless by accident, which originates by motion. And this teaches us the leaves of herbs, born above the earth, which is in contact with the water and the air, which do not bend if not for the motion of air or water. ${ }^{34}$

To this statement, a bit cryptic for a contemporary, Leonardo adds an explanation:
Gravity is an accident created by the motion of the lower elements into the upper. ${ }^{35}$
That is, a body shows its gravity if, following an upheaval of the underlying parts, an imbalance of the upper parts is determined. More problematic is the interpretation of the term force (Stinner 1994). On the purpose, quite clarifying was the following famous quotation, which is interesting from a literary point of view also, as a very effective example of scientific prose, in which someone wanted to see the influence of the neo-Platonic philosophy of universal animation (Fig. 2.7).

[^70]

Fig. 2.7 Plate from the studies of the equilibrium of weights and of impact ("percossa") (da Vinci, Ms. Af. lv)

Force I say is a strong spiritual virtue, an invisible power, caused by accidental external
violence of motion and located and instilled into bodies, which are moved from their
natural habit [the rest] and determined by giving them active life of wonderful power:
constrains all created things to change form and site, runs with fury to her desired death
and comes diversifying through the causes. Slowness makes it great and swiftness weak, it
comes into being from violence and dies for freedom and the greater the sooner is it
consumed. Drives away in a rage what is opposed to her decay; she wants winning, to
kill by its causes any constraints and winning, it kills herself. It becomes stronger where it
finds a stronger contrast. Nothing will move without its. The body from which it originates
does not change form or weight. ${ }^{36}$
It seems to define the impetus of scholastic conception, which is generated in the bodies by the motion transmitted to it by another body, for example by the hand that launches a stone.

Leonardo distinguishes between natural gravity and accidental gravity. The former is the ordinary one and is invariant; the latter is not clearly defined or at least is not defined in a unique way. According to Duhem (Duhem 1906, I, 114-115), the schoolmen used this term as a synonym of impetus and Leonardo, following the ideas of Albert of Saxony who assumed the natural gravity concentrated in the centre of gravity, would consider also the accidental concentrated in a point, named the centre of accidental gravity:

Each body has three centres of figure, one of which is a natural centre of gravity, the other of the accidental gravity and the third one of the magnitude. ${ }^{37}$

In other cases, Leonardo seems to give a different meaning to the accidental gravity. For instance (cfr. Marcolongo 1937, 64) the centre of accidental gravity coincides with the centroid of a system, composed by accident of many components. This description could be compatible with the other, because in the forced motion, by accident, actions are focused on the accidental centre, so in the case of weights joined by accident all motion behaves as if the centre of gravity were a point that is the centre of gravity of no body. As regards the term "weight", Leonardo uses it as in the modern Italian, to indicate either a heavy body, or the weight of a heavy body. When a body is constrained, the weight is often understood as power, a measure of the effectiveness of gravity according to site. For example, a weight of three pounds that slides on an inclined plane with a ratio between height and length of 2:3,

[^71]weighs two lbs. Leonardo speaks of weight also to indicate the tension of ropes, designed as a portion of the weight carried by them, considered as the portion of the weight supported.

2.1.2.3.2 The Balance and Lever

Leonardo da Vinci, instead of the term lever (lieva), prefers balance - sometimes scale - which for him does not necessarily have equal arms. The lieva is thus to indicate the balance arm placed where resistance is located, while the contro-lieva is the other arm to which power is applied. Note that Leonardo avoids separate treatments of the lever, balance and wheel and axle, as done by del Monte (Renn and Damerow 2010a), considering all of one type, as defined by the balance. Of course, da Vinci knows the law of the lever. He does not report, however, demonstrations of it but merely terms. The applications of Leonardo are of such richness that they have a theoretical value in themselves because they both offer new issues, which could only be imagined by an engineer and not a mathematician or a humanist, and because the proposed solutions, although not supported by experiments, are very stimulating. One of the innovations in the texts of Leonardo da Vinci compared to the traditional science of weights is the use of forces (modern term) applied to the arms of the balance or lever by means of ropes connected to weights with the use of pulleys which modify the direction of application.

In order to understand da Vinci's use of quantitative expressions, the mathematics of time based on proportions must be taken into account. Here the determination of an unknown term was not immediate and instead of writing a simple algebraic equation, as we would do today, it required algorithms now obsolete, including that of the three simple steps derived by the treatise of the abacus. According to the use of this treatise, Leonardo da Vinci often exposes his results, not with propositions having general character, but with numerical examples. They have the function to exemplify the general laws for it is not difficult to imagine that the chosen numbers could be replaced by other numbers. It would therefore represent the need for Leonardo da Vinci to move from his geometrical language based on arithmetical proportions to an early algebraic language which is not formalized enough because of the difficulties in deposing of efficient algebraic rules.

> Even with the rule of three one can say: in arms $a b$ and $b f$ that are 2 and 3 , who exchanges suspended weights according to the proportions, they will resist to the descent one of; thus the 5 , weight placed in the arm of two spaces resists to weight of 2 placed in the 3 spaces. So you will say for rule of 3 : if the 2 of $a b$ located in f would change in 6 and f, which would as to change 5 of $b f$ placed, it would be 9 and so inversely, knowing the weight a and looking for weight $f{ }^{38}$

[^72]In the following passage, Leonardo da Vinci proposes a rule much more complex to calculate the counter-weight:

> RULE TO FIND A COUNTERWEIGHT TO A GIVEN WEIGHT IN ONE OF THE ARMS OF THE BALANCE. Multiply the number of times the arm $[b]$ of the counterweight contains the other arm $[a]$ by the number of the given weight $[p]$, then divide the weight $[p]$ with this result $[q]$, and multiply the result by the number of weight $[p]$. This result will give the searched counterweight $[r]$ to the given weight. ${ }^{39}$

Basically if p is the weight, a the length of the lever, b that of the counter-lever, r the counterweight, Leonardo performs the following calculations: multiply the weight p by the ratio of the lengths of the arms getting the result $q=p \times b / a$; divide then p by the result q and multiply again by $p: p: q \times p$ and obtain $a / b \times p$, which is not difficult to verify to be the correct value of the counterweight (r). Marcolongo (Marcolongo 1937, 31-32) argues that the previous quotation was written before 1500, subsequently Leonardo would have given up this complicated rule for the simpler rule of the three. In addition to the relationship between forces in the lever, Leonardo also knows that between displacements:

That proportions that the length of the lever will have with its counter-lever, this same
proportion you will find in their weights and similarly in the slowness of motion and in the
path made by each of their ends when they arrive to the permanent height of their pole.4
Leonardo also knows how to handle balances with more weight hanging from them (cases also considered by Thābit and de Nemore) and thus addresses the case of balances whose arms are endowed with weight, by concentrating it in their centre of gravity.

Of interest is Leonardo's comment on the triangular balance, the Equilibra, proposed by Leon Battista Alberti (Alberti 15th, Alberti 1973; Di Pasquale 1992).

[^73]

Fig. 2.8a Leon Battista Alberti Alberti Equilibria (Alberti 15th, Ms 422.2, 10r. With Permission of the President and Fellows of the Harvard College Copyright. The Houghton Library. The Harvard University Cambridge, MA, U.S.A.)

Fig. 2.8b Leon Battista Alberti, Equilibria (Alberti 15th, Ms 422.2, 10v. With Permission of the President and Fellows of the Harvard College Copyright. The Houghton Library. The Harvard University Cambridge, MA, U.S.A.)

Fig. 2.8c The triangular balance according to Leonardo da Vinci (Redrawn from da Vinci, Codex Arundel, 66r)

Although Alberti suggests building the Equilibra with a rod connecting the ends of a wire longer than the rod and suspended in the middle point (see Fig. 2.8a), Leonardo considers from a theoretical point of view the Equilibra as a balance with equal arms with the fulcrum located at the top With this balance one can determine a weight P of any one value with a fixed known counterweight p. With reference to Fig. 2.8c the following relation of proportionality holds true: $a b: b c=P: p$.

Leonardo da Vinci argues that in reality things do not go that way because of the weight of the rod:

> Battista Alberti says in a work titled Ex ludi rerum mathematicarum: that when the balance $a b c$ will have the arms $b a$ and $b c$ in double pro-portion, with weights suspended from its ends, that dispose it such way, they are in the same proportion of arms, but converse, that is, the more the weight the smaller the arm [See Fig. 2.8c]. ${ }^{41}$
> [...] Which the experience and reason show to be a false proposition, because he puts the opposite weights 2 vs 4 in a balance, which in itself weighs 6 pounds, it is 7 vs 2 , and so the balance will remain at rest with equal resistance of arms. And here he wandered, for not to mention the weight of the beam of the balance which is unequal in weight. ${ }^{42}$

It must be said that Leonardo is not consistent and when he uses Alberti's Equilibra he does this without taking into account its own weight. Leonardo da Vinci is not

[^74]exempted from the examination of the equal arm balance and weights, which had been and would be a key paradigm of the science of weights. His conclusion is the same as de Nemore; when the arms are horizontal, the balance is in a stable equilibrium configuration and resumes its configuration if moved so
[...] balance with equal arms and weights removed from the site of equality will make unequal arms and weights, so necessity constraints it to acquire again the lost equality of arms and weights. ${ }^{43}$

Here it is not entirely clear why Leonardo speaks of unequal arms, unless he wants to consider, as shown in some of his drawings, and differently from the medieval science of weights, the descents of weights converging toward the centre of the earth.

The circular balance instead is for Leonardo da Vinci in a state of neutral equilibrium, because of polar symmetry. The indifference changes into stability, however if two consistent weights are added:

CIRCULAR BALANCE. This circular scale [See Fig. 2.9] for it be of uniform gravity, to any lines around its pole, does not completely make the office which would do the common scale, i.e., that which, when moved from the site of equality, it returns there by itself. But this, having heavy weights equally distant from its centre, being removed from the site of equality, it itself does return there. But I think it would return, if the weights attached to it largely overcomes the weight of that wheel. ${ }^{44}$

Fig. 2.9 Equilibrium for the circular balance (Redrawn from da Vinci, Codex Atlanticus 1018 [new numeration])

Bilancia circulare

[^75]
2.1.2.3.3 The Inclined Plane Law

The equilibrium of weights posed on inclined planes was studied by Heron, Pappus and de Nemore. Only the latter had obtained a correct solution.

Leonardo da Vinci, as happens in the school of Jordanus de Nemore, does not typically consider a single inclined plane but two opposing planes, on each of which two weights are arranged connected by a rope that passes over a pulley disposed at the intersection of the planes. He does not always refer to the law of the inclined plane in the same way. Generally speaking he correctly states that the effectiveness of the weight decreases with the obliquity, using a term and a concept typical of the school of de Nemore: the term obliquity to mean the inclination of a plane from the vertical and the concept of gravity of position according to which the effectiveness of a weight varies with the obliquity. The problem is that Leonardo does not always measure obliquity in the same way. Sometimes he measures it as the ratio between base and height, sometimes as the ratio between length and height of the plan; this way, as well known today, is the correct one. Leonardo provides an explanation of the different efficacy of weights disposed on an inclined plane, stating that the weight that moves on the more oblique plane undergoes a greater resistance (da Vinci 1940, p 109). Therefore, Leonardo seems to consider the effectiveness of the weight determined by the effectiveness of the constraints and not by the variation of gravity, which often he claims to be invariable.

In the following passage, the obliquity is clearly measured by the ratio between the base and the height, in this way the effectiveness of the weights depends on the cotangent of the angle formed by the inclined plane with the horizontal. Leonardo da Vinci did not realize that in this case, when the plane becomes vertical, one faces a relationship between a finite value and zero.

If the weights a, b [See Fig. 2.10] do not push toward the centre of the world, for they are separated, their combined centre tends to the centre of the world, as the central line nm teaches us passing through the proportions of weights 2 and 4 and for the proportions of the basis of triangles 2 and 4 ; but the site of them has no proportionate spaces, because in the same obliquity a weight may be high and the other low and [the obliquity] will not vary in this situation; the double ratio of the weights will vary in height. ${ }^{45}$

[^76]Fig. 2.10 Equilibrium of two weights on an inclined plane by Leonardo da Vinci (Redrawn from da Vinci, Ms G, 77v)

The reading of the following passage seems to show that this time obliquity is measured by the ratio between the length and height of the inclined plane, if for obbliqua it means the inclined plane.

The equality of declinations in accord with the equality of weights. If the proportion of weights and the obbliqua [enphasis added] where will they stay will be the same but inverse, the said weight will remain the same in gravity and in motion. ${ }^{46}$

Fig. 2.11 Second casestudy concerning the equilibrium of two weights on an inclined plane (Redrawn from da Vinci, Codex Atlanticus, 981b [new numeration])

Unfortunately, examination of Fig. 2.11 next to the quotation does not allow this interpretation and in this case also the obliquity should be understood as the ratio between the base and height. In the third case-study, Leonardo asserts quite clearly that the obliquity can be measured 'correctly' by the ratio between length and height of the plane, with the following Fig. 2.12 commented with a few words. The balance will be to weight $a b$ as weight $c d .{ }^{47}$

From Fig. 2.12 (see below), is indeed clear how the weights, given by the two prisms of the same thickness, are proportional to the length of the inclined planes. Marcolongo $(1937,54)$ saw in this figure, an analogy with Stevin's modelling of weights on the inclined plane by means of a necklace. On the basis of the above and other passages not reported, it can thus be stated with certainty that Leonardo did not possess the law of the inclined plane, except for the observation derived from daily experience

[^77]Fig. 2.12 Third case-study: concerning the equilibrium of two heavy prisms on an inclined plane (Redrawn from da Vinci, $M s H, 81 \mathrm{v}$)

that the effectiveness of the weight decreases with the obliquity, and it is also possible that the results he shows are simply uncritical replication of current views of the time.

Finally, one more case-study should be reported that relates to motion rather than the equilibrium of the inclined plane, but which still gives information even for the equilibrium case (See Fig. 2.13):

Fig. 2.13 Fourth case-study concerning the motion of a sphere on an inclined plane (Redrawn from da Vinci, $M s A, 52$ r)

ON MOTION. The spherical body will take by itself a motion the faster the more the contact with the site is farther from the vertical passing through its centre. As much as $a b$ is longer than $b c$, so the ball will fall slower for its line $a b$, and as much slower, as the part o is less than m, because being p the pole of the ball, the part m, being over p, would fall with faster motion, if it there were not but the small resistance which the counterweight o makes [Fig. 2.13b]. And without this counterweight the ball would descend on the line $b c$ the sooner the more o is close to m, i.e. if the part o enters $m 100$ times, [the ball] would descend faster than one hundredth of his time than when the part o is missing; $m n$ is the line from the centre and p is the pole where the ball touches its plane, and the more the space $n p$, the faster its way. ${ }^{48}$

[^78]In the previous passage, Leonardo asserts that the ball moves with the greater velocity the greater the ratio between the segment o and the segment m (the sum of which is the diameter of the sphere), and that the part o opposes the descent. This analysis seems intermediate between those by Pappus of Alexandria ${ }^{49}$ (ca. 290 AC - ca. 350) and by Heron of Alexandria. The idea that we should consider p as a pole is Pappus's, of whom, however, the idea that a force different from zero is necessary to make the ball roll on a horizontal plane is not taken up. The similarity with the analysis of Heron is evident from Fig. 2.13^{50} (on the left) where it is shown how much the left side exceeds the right one. This is not the only point where Leonardo seems to refer to Heron's Mechanica (Heron Alexandrinus 1893, see also: Id., 1900, 1999), normally considered to be unknown in the West at least until the XVIII century. One can then make a reasonable guess that the text of Heron was not completely unknown and that Leonardo has become aware of it either directly or indirectly.

2.1.2.3.4 The Pulley, Block and Tackle

Leonardo considers in depth a subject that was completely ignored by the Middle Ages science of weights; i.e. pulleys and the assembly of pulleys or block and tackles. They were commonly used in machines for lifting weights for military and civil constructions (Knobloch 2004), so it is no wonder that Leonardo considered them. He however knows also the rule that connects power to resistance; this information could have been obtained from his reading regarding traites concerning mechanics, or other available sources. ${ }^{51}$

The pulley is seen by Leonardo da Vinci sometimes as a mere device to divert the action of a tight rope, other times as a circular lever. The following comments are interesting:

[^79]I call circular scale the pulley or the wheel, with which water from wells is drawn, with which it will never be raised more weight than the weight of the drawn water. No heavy body will lift by means of the circular scale with the strength of its sheer weight more weight than its own. ${ }^{52}$
The circular scale, said pulley, being of such relevance in mechanical instruments (maximum in transmutations of forces), is not to be neglected; for with it the power of the motor of said machine is increased, as seen in the block and tackles, where the power grows as much as the number of pulleys. Thus we will define its nature and power, and before will show as the strings without motion support the weight due to the supported heavy bodies, and this we will call natural weight, then we will say of motion, varying the weight supported by the strings and we will name this weight accidental weight, i.e., forces, which grows the more the more the [motion] is faster, but the natural weight never varies. The power of the engine varies with the resistance of moved thing and the air which condenses and resists, as the air in fat of watches. ${ }^{53}$

For assemblies of pulleys, the block and tackles (See Fig. 2.14), Leonardo da Vinci refers laws both for forces and displacements:

THE ROPE, which passes among the pulleys, is named in two ways, the part that gives cause to motion which is fixed to the winch, is named arganica, and that which is fixed to the superior pulley and which makes the pulleys neither falling nor slipping is called ritenente. ON MOTION. The longer the motion of the arganica rope, that moves the weight, which is not the motion of the weight which by means of block and tackles, by this rope is moved, the larger the number of wheels that are in the block and tackle.
ON TIME. The larger the number of wheels, which forms the block and tackle, the faster the motion of the arganica rope than that of the ritenente rope.
ON Weight. The larger the number of wheels of block and tackle, the greater the supported weight than that which supports. ${ }^{54}$

[^80]

Fig. 2.14 An example of a large block and tackle (Redrawn from da Vinci, Ms A, 52r)

If you want to know the weight [the force] of the rope that supports the latest pulley, always multiply the applied weight at the bottom by the number of pulleys, and what this multiplication gives, be the number of pounds that the last rope receives of said weight attached at the bottom. Let thus, may the attached weight be 4 , so you say: 4 pounds times 4 pulleys is 16 numbers, and then say: 4 times 16 is 64 , and the rope it supports 64 pounds for the 4 applied by at the bottom, and if they were 6 pulleys, you would say: 4 times 6,24 , and 4 times $24,98,{ }^{55}$ and this the weight that the last rope of 4 pounds attached at the bottom sustains. ${ }^{56}$

No explicit rule is proposed but examples sufficiently clear are made, as typical in the mathematics of abacus. The explanation of the operation of the block and tackle sometimes seems that proposed in Problemata mechanica which calls for the law of lever (Aristotle [1936] 1955b, 852b, 367-370), sometimes that of Heron who assumed a constant stress in the ropes which encircles the pulleys and thus the whole weight lifted is given by the resultant of all the rope forces of the block and tackle. This type of reasoning is reported in the following quotation:

[^81]Fig. 2.15 Model
concerning the evaluation of the power necessary to lift a given weight by means of a block and tackle (Redrawn from da Vinci, Ms A, 62r)

If you want to supply the block and tackle of 4 ropes, which block and tackle has to lift 20 pounds [Fig. 2.15]. I say that the wheel l will support 10 pounds, and the wheel k will support 10 , which are transferred to they higher supports, that is, o takes 5 pound from l and p also takes 5 from l, and 5 from k, and this same k will take 5 from q. And whoever wanted to win the 5 of q, put 6 into the counterweight x, and putting the last place 6 against 5 of each of the 4 ropes that support 20 pounds, not supporting itself more than 5 pounds, the one pound more that I put in the rope $q x$, find no resistance in the opposed ropes equal to it, all wins and all moves. ${ }^{57}$

Note that Leonardo distinguishes motion from equilibrium and to obtain motion the power should be a little greater than the resistance; in the previous quotation 6 vs 5 . Quite interesting is the Fig. 2.16. This is a situation that actually occurs in practice when the pull of the rope is relatively low compared to the friction.

Fig. 2.16 Behaviour of a block and tackle for the effect of friction (da Vinci, Codex Arundel, 96r. On the friction in Leonardo da Vinci's studies see also the Banco for studies on friction (da Vinci, Codice Arundel, 40v-41r; da Vinci, Ms L 11v; see also Pisano 2009a, b, c, d, 2013a))

[^82]Leonardo also poses other problems in block and tackles, such as the way the stress in the rope varies with motion, the location where the rope is more stressed and thus where it breaks more easily, the effect of the diameter of the ropes on the effectiveness of the pulleys, the load carried by the supports of the pulleys. His comments are not always flawless, but are notwithstanding interesting to any readers, and are perhaps the most interesting of Leonardo's contributions to block and tackle theory.

2.1.2.3.5 The Concept of Momento of a Force

In presenting some of Leonardo's quotations, because of the uncertainty of dating, we attempted a rational reconstruction. According to this reconstruction Leonardo would have developed the idea of potential arm in his study on the equilibrium of levers, introducing the concept, if not the term of moment of a force. The potential arm of a lever for Leonardo da Vinci is both the distance between the line of action of a power from the fulcrum and the imaginary-material arm, orthogonal to the power, which could replace the real arm. Then he would have extended this concept to the study of the composition of forces. It is however possible, that there were not two distinct phases and the idea of potential arm was driven by the need to solve the problem of the composition of powers. Notice that Leonardo da Vinci to indicate what we commonly call force uses terms like power and weight, so we will do the same in the following.

The first time the idea of potential arm appears, according to our reconstruction, is in the study of the balance in which weights are suspended through pendants. In this situation, Leonardo assumes that the weights tend toward the centre of the world and then the pendants are not vertical but convergent (Fig. 2.17):

Fig. 2.17 Balance with converging pendants (Redrawn from da Vinci, Ms A, 62r)

Leonardo da Vinci is not explicit but everything suggests that the potential arms are those marked with an and $a m$ (See Fig. 2.17). The closer the balance is to the centre of the world d, the shorter they are.

Each of the arms of the balance is double; one of which is real, the other potential and they are located in different places with ends distant from each other. ${ }^{58}$

[^83]The real arms are always longer than the potential arms and the longer the closer to the centre of the world.

The real arms are not in the same proportion between them as the potential arms, but the more different the closer to the centre of the world. ${ }^{59}$

Subsequently the idea of potential arm, although not explicitly named, is used in the study of equilibrium of an angular balance. In the following quotation the rule of angular balance is worded clearly enough and makes clear that equilibrium is determined by weights and their distances from the fulcrum measured horizontally.

RULE OF THE ANGULAR BALANCE. The angular balance is a balance for which the conjunction of its arms is angular; the pole being located in the angle. Arm means where the centre of suspended weight falls. The distances of the opposite ends of the angular balance from the central line of the pole have always the same proportion of the lengths of the arms of the balance, but with inverse order. Let us consider the angular balance cef [See Fig. 2.18] the pole of which is in the corner e; the opposite extremes f and c, have their distances from the central line ab in the same proportion of the length of the arms c and f, but converse: i.e. the smallest arm has its end farther from the centre as much as it is smaller than the greatest. And so the distance of the greatest arm from the central line, is as lower as its arm is greater than the lowest. Here the portions of circles are not equal to the motion of the arms, but in the distances from the central line. ${ }^{60}$

Fig. 2.18 Leonardo da Vinci's angular balance (Redrawn from da Vinci, Codex Arundel, 32v)

[^84]Notice the particular type of angular balance studied by da Vinci, made up of two arms with uniform section endowed with weight. The weight of the arms is concentrated in their centre of gravity; equilibrium requires inverse proportionality between the weights and the distances of their centres of gravity from the vertical line passing through the fulcrum. The idea for the study of this particular kind of balance is likely to have derived from Leon Battista Alberti's Equilibra.

Leonardo da Vinci continues his analysis of the angular balance extending the concept of potential arm to the case of straight levers in which weights are applied obliquely by means of ropes. Probably the most explicit statement regarding the introduction of the term potential arm occurs in some pages from which the drawings (See Fig. 2.19) are obtained. In particular, for the first drawing Leonardo da Vinci writes:

This is told the true end of the arm of the balance, the connection of which with the line of the rope, loaded by the weight, will be made according to the right angle as you can see in s with $m a$ and similarly in $p n$ with $n a$ (spiritual arm). ${ }^{61}$

Fig. 2.19 Instances of potential arms in varius kinds of lever (From top to bottom and left to right: da Vinci, redrawn from Ms H, $40 \mathrm{r}, 50 \mathrm{v}, 39 \mathrm{v}, 39 \mathrm{v}$)

[^85]These figures (see Fig. 2.19) leave no doubt that at least from a certain period Leonardo considered the effectiveness of a power in order to equilibrate a balance, or more generally of a rigid body constrained to a point, a 'circonvolubile', determined only by the value of the powers and the distance of its line of action from the fulcrum. This is also the opinion of Duhem (1905-1906, I, pp 24-25) who however balances his positive opinion with the statement that Leonardo's mechanical writings there are not essential ideas, which were not present in the writings of the mathematicians of the Middle Age. ${ }^{62}$ Duhem certainly refers to the fact that the idea of potential arm was contained de novo in the writings of Jordanus de Nemore. The latter in Liber de ratione ponderis ${ }^{63}$ (de Nemore 1565, 6r) studied the case of an angled lever with equal weights, arguing and demonstrating that equilibrium is achieved when the two weights are at the same distance measured horizontally from the fulcrum. In another point, de Nemore also stated that the parameter determining the balance of a body is given by the horizontal distance measured from the fulcrum (de Nemore 1565 , 10v). One could go further back and climb up to Heron and Archimedes who knew the law of angular balances (Capecchi 2012a, 53). However, Leonardo in our opinion has gone much farther. The argumentation of de Nemore on the angular lever, only referred to weights hanging from the balance, was based on the analysis of their descent and ascent. He could hardly have carried out his argumentation in the case of weights suspended from inclined ropes.

In common expositions of the history of mechanics, this discovery of Leonardo is often attributed to Giovanni Battista Benedetti in his Diversarum speculationum mathematicarum physicarum et liber (Benedetti 1585; see also Favaro 1900). This attribution can find a partial justification in the fact that Benedetti proved his result, albeit not entirely convincingly, and that the text of Benedetti had a wide circulation while Leonardo da Vinci's has remained hidden to most.

2.1.2.3.6 The Law of Composition of Forces

Probably the most important of Leonardo da Vinci's contributions to statics concerns the rule of composition-decomposition of a force along two given directions. The problem to be solved was to find the tensions of two inclined ropes supporting a weight. To remove any ambiguity, the forces of the ropes also were associated with weights.

[^86]Da Vinci, besides formulating the rule, also correctly proved it. This fact is normally not recognized by historians and even Duhem suggested only as a possibility that Leonardo understood the rule; only Marcolongo asserted his priority with no doubt. ${ }^{64}$ The analysis of texts has however led us to believe that in this case Marcolongo's analysis is correct and actually Leonardo recognized the rule of weight distribution in two ropes supporting a weight. There are of course, as typical in Leonardo, situations in which the rule is loosely worded, and sometimes wrongly. But, although there are no certain dating criteria, the analysis of the manuscripts shows a long series of examples with a lot of correct arguments that can leave no doubt that Leonardo reached a conscious knowledge of the rule of composition of forces (Capecchi 2012b).

The following quotations start from the intuitive finding that the weight distribution depends on the obliquity of the ropes.

ON WEIGHT. If two ropes converge to support a heavy body, one of which is vertical the other oblique, the oblique one does not sustain any part of the weight. But if two oblique ropes would support a weight, the proportion of weight to weight would be as the obliquity to obliquity. For ropes that descend with different obliquity from the same height, to support a weight, the proportion of the accidental weight of the ropes is the same as that of the length of these ropes. ${ }^{65}$

From these passages it could be deduced that by the term obliquity Leonardo refers to the slope rather than to the length of the ropes - see the final part of the previous quotation - while the accidental weight could be understood as the tension of the ropes. The statement is patently incorrect, but one could think that Leonardo had become confused and meant to speak of the inverse ratio of obliquity, which is still wrong but at least the tendency is correct. The analysis of the following passage (See Fig. 2.20) shows however, that Leonardo's statement is not a typo, because he clearly states that the weight is divided into proportion of the angles formed by the ropes with the vertical, which is clearly false:

Fig. 2.20 A wrong instance of decomposition of forces (Redrawn from da Vinci, Ms E, 71r)

[^87]Let us consider two lines concurring in the angle which sustains the weight, if you draw the perpendicular which divides this angle, then the weights [tensions] of the two ropes have the same ratio as that of the two angles generated by the above division. If between the two lines $a c$ and $e c$, which form the angle c, from which the weight f is suspended, the perpendicular dc is drawn that divides this angle into two angles $a c d$ and $d f e$, we say that these ropes will receive the weight in proportion equal to that of the two angles they form and equal to the proportion of the two triangles. And the perpendicular that divides the angle of this triangle will split the gravity suspended in two equal parts, because passing through the centre of such gravity. ${ }^{66}$

It is difficult to understand how Leonardo could pesent so clearly wrong examples. Perhaps he is thinking of a weight hanging from the middle of a rope in which the greater the obliquity - i.e. the angle they form with the vertical - the larger the tensions in the rope.

Marcolongo (1937) argues, however, that these wrong results date back to the years before 1508, when Leonardo had not yet reached his final idea, which is well expressed in the passage:

For the 6th and 9th [propositions], the weight 3 [See Fig. 2.21] does not split into the two real arms of the balance in the same proportion of these arms, but in the proportion of the potential arms. ${ }^{67}$

Fig. 2.21 A correct instance of decomposition of forces by Leonardo da Vinci (Redrawn from da Vinci, Codex Arundel, 1v)

[^88]Here Leonardo asserts, without proving it, that the suspended weight is supported by tensions b (left) and c (right) having inverse ratio to the potential $\operatorname{arms} a b$ and $a c$, i.e.: $b: c=a c: a b$. The relation, correctly, allows us to find the ratio of tensions in the two ropes.

In other passages, Leonardo proves the asserted relation and also indicates the way to evaluate the absolute value of the tension in each rope. He introduces the terms: potential lever and potential counter lever (See Fig. 2.22). The potential lever corresponds somewhat to the potential arm; the potential counter lever is the horizontal segment connecting one support of a rope to the vertical from the suspended weight. The reading of the following quotation is useful to illustrate the use of these terms. The potential lever associated to the arm $f m$ is $f e$, the potential counter lever is $f a$.

Fig. 2.22 Example of a potential lever and potential counter lever (Redrawn from da Vinci, Codex Arundel, 7v)

Here the weight is sustained by two powers, i.e. $m f$ and $m b$. Now we have to find the potential lever and counter lever of the two powers. The lever $f e$ and the counter lever $f a$ will correspond to the power $m b$. The appendix $e b$ is added to the lever $f e$, which is connected with the engine b; and the appendix $a b$ is added to the counter lever f a, which sustains the weight n. By having endowed the balance with the power and the resistance of engine and weight, the proportion between the lever $f e$ and the counter lever $a b$ should be known. Let $f e$ be $21 / 22$ of the counter lever $f a$. Then b supports 22 when the weight n is $21 .^{68}$

[^89]Attention is centred on the rope $b m$ with the aim to find its tension. A similar argument can be repeated for the rope fm . Basically Leonardo imagines the rope fm as 'solidified', i.e. as a rigid beam hinged at f. According to his embryonic concept of moment of a force, Leonardo asserts the validity of the following relation: b : $n=f a: f e$, where b is the tension of the rope $b m$ and n is the suspended weight. He gives as an example $f a: f e=21: 22$; for $n=21$ it results $b=22$.

The previous quotation deserves some comments. First: the idea to solidify the rope anticipates what is commonly called the solidification principle, according to which if a body is in equilibrium its state is not perturbed by adding additional constraints. This principle has been used to study deformable bodies by many scientists, including Stevin, Lagrange, Cauchy, Louis Poinsot (1777-1859) and Duhem.

2.1.3 Tartaglia's Legacy. A Transition between Science of Weights and Modern Statics

At the beginning of the XVI century there was in Italy a broad debate on the role of mathematics in the natural sciences as a result of the increasing use of mathematics in applications and the fact that mathematicians were beginning to give a distinct form of knowledge to their discipline; debate which became even more pressing in the second half of the century. While almost no one denied the fundamental role of mathematics in itself, not everyone agreed on the status of knowledge in regard to the physical world. The importance of the role of mathematics was certainly carried out by supporters of Platonist instances, which in addition to their diffusion through the humanist circles, found their support from a professional mathematician, Luca Pacioli, whose Summa (Pisano 2009a, 2013a) was read and appreciated by all the major mathematicians of the early XVI century, Tartaglia, Cardano, Giovanni Battista Benedetti (1530-1590), Federico Commandino (1509-1575). There were, however, even within Aristotelism advocates of the use of mathematics in physics, some who made reference to the Aristotelian theory of subalternate-sciences.

The second half of the XVI century saw the dissemination of Archimedean mathematical (and mechanical) work, which deeply modified the approach to mechanics. Though Archimedes work was influential everywhere, its stimulus was different in different regions. In the Northern school, formed by Benedetti, Tartaglia, Cardano, Archimedes texts received less attention than Jordanus de Nemore or Problemata mechanica. The contrary holds for the centre school, formed by Commandino, del Monte, Bernardino Baldi (1553-1617) and the southern formed by Francesco Maurolico (1494-1575), Nicola Antonio Stigliola (1546-1623) and Luca Valerio (1553-1618) (Gatto 1988, 1996, 2006; Galileo 2002; Nastasi 1985) (Table 2.4).

Table 2.4 Heron, de Nemore, Archimedes' texts published in Italy during the XVI century

	Title	Author
Heronian		
1501	De expetendis et fugientis rebus	Valla
1521	Di Lucio Vitruvio Pollione de architectura libri dece	Cesariano
	traducti de latino in vulgare affigurati	
1550	De subtilitate	Cardano
1575	Spiritalium liber	Commandino
1588	Mathematica collectiones	Commandino
1589	Gli artificiosi et curiosi moti spirituali	Aleotti
1589	Automata.	Baldi
1581	Pneumatica	Baldi
1592	Spiritali di Herone Alexandrino, ridotte in lingua volgare	Giorgi
Nemorean		
1533	Liber de ponderibus.	Apianus
1546	Quesiti et inventioni diverse.	Tartaglia
1565	Jordani opusculum de ponderositate	de Nemore
Archimedean		
1543	Opera Archimedis.	Tartaglia
1544	Archimedis Syracusani philosophi ac geometrae	Cremonensis
	excellentissimi Opera	
1551	Archimedis de insidentibus aquae (into Italian)	Tartaglia
1558	Archimedis opera non nulla	Commandino ${ }^{\text {a }}$
1570 ?	Momenta omnia mathematica (published 1685)	Maurolico
1565	Archimedis De iis quae vehuntur in aqua libri duo	Commandino
1588	In duos Archimedis aequeponderantium libros paraphrasis	del Monte

${ }^{\mathrm{a}}$ Archimedes 1558
${ }^{\mathrm{b}}$ Archimedes 1565

2.1.3.1 Statics in Italy During the XVI Century

The medieval science of weights was not sufficient for the needs of the XVI century, because it was confined to a small number of cases, and because it was founded on principles not always shared. In the text of Jordanus de Nemore, Liber de ratione ponderis, the most advanced, except for various types of scales, only the inclined plane case is reported. Nothing is said about pulleys or aspects regarding situations of practical interest, such as for example, the horizontal transport of weights, which had also been addressed in the Aristotelian Problemata mechanica. Regarding the laws of equilibrium formulated in the Liber de ratione ponderis, only those of the lever were unanimously accepted while that of the inclined plane was not known or was not shared. Leonardo da Vinci, Girolamo Cardano, Guidobaldo del Monte, Stigliola, offered alternative solutions, unfortunately not correct.

The reworking of the science of weights carried out by the engineers of the XV century, including that of Leonardo da Vinci, was not sufficient to meet the new requirements of mathematical rigor and development of general laws that would have allowed going beyond the rigid schematism of the medieval statics. This
demand was picked up by a new generation of engineer-scientists, with a greater mathematical and philosophical training.

The first representative of this new generation was Niccolò Tartaglia. He gave a clear place to mechanics and introduced many ideas. In ballistics he asserted that the trajectory of a projectile is curved everywhere and nowhere, i.e., there are both straight and circular paths. He also stated that the maximum range of a projectile is obtained by firing with an inclination of 45° and that any intermediate distance may be covered by firing with two different angles. Moreover, he made clear, against the Aristotelian thesis, that the air is an impediment and does not aid motion. He was the ultimate champion of the science of weights adding mathematical rigour to traditional presentations. Starting from a manuscript of de Nemore's Liber de ratione ponderis in his possession (de Nemore 1565), he wrote an important section, the book VIII, of his treatise Quesiti et inventioni diverse where he revisited in a more organic way Jordanus de Nemore's theory. Nevertheless mainly Tartaglia was the first to use mathematics as the fundamental theoretical tool in the study of mechanical and physical problems, as it will be manifest in the subsequent chapter. Tartaglia, although according to the Aristotelian epistemology conceived mathematical objects as abstracted from matter, assumed that conclusions derived from mathematics are 'true' and should necessarily be verified from an empirical point of view. It that were not the case it would not depend on mathematics but on experience, which was not well exploited.

After Tartaglia, and somehow their heirs, Giovanni Battista Benedetti, Guidobaldo del Monte and Galilei follow. Benedetti made (Maccagni 1967) important contributions to the analysis of natural motion of bodies (see also Borelli 1686a, b; Drabkin 1964). In statics, he made clear and universally known that the effect of a force depends on the distance of its line of actions from the fulcrum, results that now historians call the law of static moment.

Guidobaldo del Monte attempted the restoration of Greek mechanics in the spirit of Pappus Alexandrinus, whose work was published by Federico Commandino, basing it on an Archimedean mechanical approach (Palmieri 2008). He attempted however, a synthesis with the Aristotelian approach of subalternate-science in which physical aspects were clearly present. For example, when studying the balance, he treats of a physical body and not simply a geometrical figure, giving substance also to the fulcrum, which for Archimedes was a simple geometrical point. Del Monte's mechanics was not only a science of the principles of equilibrium of weights on a balance. It was rather a science of machines, Greek meaning; and, even if the equilibrium was crucial as well, the role of the displacement of bodies was examined.

Galileo, well known as the founder of modern dynamics (Drake 1990; Grant 1965, 1996; Grant and Murdoch 1987), also made fundamental contributions to statics, somehow managing to reconcile the medieval science of weights, with references to kinematics, with Archimedes' mechanics, purely geometric. However, it was not a true synthesis because he flanked medieval methodologies alongside Archimedean ones without making a decisive choice of field, while expressing a preference for the Archimedean approach.

Below we list a few details about the contribution to statics of the authors mentioned above, highlighting the legacy of Niccolò Tartaglia, whose contribution has been and will be studied in depth in other chapters.

2.1.3.1.1 Giovanni Battista Benedetti

Giovanni Battista Benedetti received his first and only systematic education in philosophy, music and mathematics from his father. Though never mentioned by Tartaglia, Benedetti was nevertheless one of his pupils for a short time. In mechanics, his chief work was the Diversarum speculationum mathematicarum et physicarum liber of 1585 (Benedetti 1585). The book deals largely with questions of dynamics; there were however fundamental contributions to statics. Here a concept of static moment of a force, more precisely defined than Leonardo's, is referred to. Though the Diversarum speculationum mathematicarum et physicarum liber may be considered a commentary on the Problemata mechanica, Benedetti's approach was essentially Archimedean. He criticised both Tartaglia and de Nemore for their kinematic analysis.

The Concept of Static Momento

In Diversarum speculationum mathematicarum et physicarum liber (Benedetti 1585, Chapter 3, section De mechanicis, 141-167) Benedetti made considerations of quantitative character about the effect of a force - associated to a weight attached to a rope or a muscle - on an arm of a balance, however inclined, obtaining the result that it is proportional to the distance of the line of action of the force from the fulcrum and to the force itself. This was at the time an already known result, but Benedetti for the first time formulated this fact as a general law, that now historians call the law of static moment. The main difference between Leonardo and Benedetti's static moment laws does not so much concern the generality of the law but the reference, for Benedetti, to a proof, or at least an intuitive justification.

First Benedetti's argument is developed for the not problematic case of vertical forces:

From what we have already shown it may easily be understood that the length of $\mathrm{B} u$ [Fig. 2.23], which is virtually perpendicular from centre B to the line of inclination Fu, is the quantity that enables us to measure the force of F itself in a position of this kind, i.e., a position in which line $\mathrm{F} u$ constitutes with arm FB the acute angle $\mathrm{BF} u .{ }^{69}$

[^90]Fig. 2.23 Evaluation of the static moment of a weight (Redrawn from Benedetti 1585, 142-143)

Then the argument is referred to forces or weights, which act along inclined directions, an argument that- even if unequivocal - in substance does not appear entirely convincing.

To understand this better, let us imagine [Fig. 2.24] a balance boa fixed at its centre o, and suppose that at its extremities two weights are attached, or two moving forces, e and c, in such a way that the line of inclination of e, that is $b e$, makes a right angle with $o b$ at point b, but the line of inclination of c, that is $a c$, makes an acute angle [Fig. 2.24, on the left] or an obtuse angle [Fig. 2.24, on the right] with oa at point a Let us imagine, then, a line ot perpendicular to the line of inclination $c a$. [...]. Imagine, then, that $o a$ is cut at point i, so that oi is equal to ot, and that a weight is suspended at i, equal to c and with a line of inclination parallel to that of weight e. But we assume that the weight or force c is greater than e in proportion as bo is greater than ot. Obviously, then, according to Archimedes, De ponderibus, boi will not move from its position. Again, if in place of oi we imagine ot rigidly connected [in the same line] with $o b$ and subjected to force c acting along line $t c$, the result will obviously be the same, bot will not move from its position. ${ }^{70}$

[^91]

Fig. 2.24 Evaluation of the static moment for inclined forces by Benedetti (Redrawn from Benedetti 1585, 143)

Benedetti's Criticisms of Tartaglia

Benedetti knew Tartaglia's work very well, considering that for some time he was his pupil, and was surely influenced by him. Though only one generation younger, Benedetti's approach to mechanics is very different from Tartaglia's. As Tartaglia, he assumes mathematics at the foundation of mechanics, but he has a different cultural background; different because he received an education in philosophy, different because he became acquainted with Archimedes' mathematics and physics (Drachmann 1967-1968), also thanks to Tartaglia's editorial work. Benedetti is completely outside Aristotelianism. He fights against Aristotle in all his physical assumptions: on the existence of voids; on the law of fall of heavy bodies, on the nature of forced motion and so on. He is also outside the medieval science of weights, which interests him only for marginal aspects. From Archimedes he derived a greater attention to rigour in mathematical proofs but he also renounced the important resource that Tartaglia had: the algebraic calculus to solve geometrical and mechanical problems.

In Chapter VII of the section De mechanicis, Benedetti refers some criticisms toward Tartaglia's consideration on the science of weights (that, he specified, were partially "[...] taken from a certain ancient writer Jordanus [...]" (Benedetti 1585, VII, 148). Benedetti's criticism refers both to general assumptions and to defects in the exposition of the matter. He criticizes ${ }^{71}$ in particular the proof of Tartaglia's Propositions III-IIII of the Quesiti et invention diverse (Tartaglia 1554, Book VIII, Qs XXX-XXXI Propositions III-IIII, 87rv-88rv), commenting that Archimedes had proved it more properly (Archimedes 2002, Book I, Propositio VI, 192-194).

[^92]More important, for us, is the criticism about Proposition V (Tartaglia 1554, Book VIII, Q XXXII, Proposition V, 88v-89rv) on the equilibrium of the balance with equal arms and weights in the Quesiti et invention diverse. Differently from Tartaglia (and de Nemore) who considers the tendency of both the two weights hanging from the opposite sides of the balance to go down, he assumes the congruent situation for which while one weight descends the other ascends. In such a case, he notices, the path along the vertical is the same for the two weights, so the balance is in equilibrium whichever its inclination is:

Fig. 2.25 Equilibrium of balance with equal weights and arms according to Tartaglia (Redrawn from Tartaglia 1554, Book VIII, Q XXXII, Proposition V, 90 v)

And in the second part of the fifth proposition he [Tartaglia] fails to see that no difference in weight is produced by virtue of position in the way in which he argues. For if body b must descend on arc $i l$, body a must ascend on arc $v s$, equal and similar to arc $i l$ and placed in the same way. Therefore, just as it is easy for body a to ascend on arc $v s$ it is easy for body b to descend on arc vs. And this fifth proposition is the second proposed by Jordanus [de Nemore 1565, Quaestio secunda, 3v-4r]. ${ }^{72}$

One more criticism, that will be made again by Guidobaldo del Monte, concerns the cause for which the tendency to descend of a body suspended from a hinged rod decreases with its inclination. According to Benedetti the cause of this fact is the greater resistance the weight receives from the rod and the fulcrum - mechanical cause. ${ }^{73}$ According to Tartaglia (and de Nemore) it depends on a lower facility of

[^93]descent as a kinematic constraint. Other criticisms seem to us simply a way to quibble to show his superiority. As when Benedetti criticizes Tartaglia for having considered as parallel the lines of the descents of heavy bodies, while he himself in some situation does the same, or when he blames Tartaglia for not having considered the resistance due to medium on motion (virtual) of weights hanging from a balance.

2.1.3.1.2 Guidobaldo del Monte

Guidobaldo del Monte attended the university of Padova in 1564 as along with a companion Torquato Tasso (1544-1595). He studied mathematics with Federico Commandino and was a teacher of Bernardino Baldi. He was one of the greatest mathematicians and mechanicians of the late XVI century. In 1577 he published the Mechanicorum liber (del Monte 1577, 2010, 2013), translated into Italian vulgare by Filippo Pigafetta in 1581 as Le mechaniche (del Monte 1581). The book had an enormous editorial success and was read throughout the whole XVII century.

Del Monte's Criticisms of Tartaglia and Jordanus de Nemore

Del Monte was one of the major critics of the approach of Jordanus de Nemore and Niccolò Tartaglia. According to him those of de Nemore and Tartaglia, are not valid demonstrations and goes so far as to say that de Nemore should not even be counted among the true mathematicians. Bernardino Baldi went still further and considered as paralogisms the demonstrations of de Nemore (Baldi 1621, 32). Del Monte, like Benedetti, knew Tartaglia's work very well and does not share his position. Like Benedetti, and differently from Tartaglia, he individuates the lower tendency to go down of heavy bodies suspended from a more inclined arm in the greater resistance the weight receives from the rod and the fulcrum (mechanical cause). Other criticisms, very often repeated, concern the approximation adopted by Tartaglia for the lines of descent of heavy bodies.

Criticisms of del Monte must be placed in his time to be understood. As noted in the introduction of this section, scholars of mathematics of the period, particularly those of Centre and South Italy, could not fail to be charmed by the elegance and rigor of geometry as it was revealed by the recently published Greek translations of Euclid and Archimedes. Archimedes, flanking his mathematical theory, developed a consistent mechanical theory with the same standards of rigor.

It was therefore natural to accept the argument of Archimedes in mechanics and reject those by de Nemore. Although to a modern observer, the full refusal of de Nemore seems unjustified because the Liber de ratione ponderis has an Euclidean approach based on definitions, axioms and theorems: it is certainly the ancient text in which the Euclidean approach is extended further outside geometry, in the wake of subalternate sciences. It is overall a very modern text. Del Monte, however, could hardly accept to reason with concepts such as gravity of position, which remained a bit undefined.

Given that de Nemore's and Tartaglia theses were then quite common in Italy, del Monte somehow felt the need to re-establish the truth, by writing the Mechanicorum liber Archimedis aequeponderantium and the Mechanicorum liber (del Monte 1577) that can be seen as the natural completion of the work of spreading Archimedes' mechanical thought. The hostility towards the approach of de Nemore also led del Monte to refuse the correct proof of the inclined plane for the incorrect one by Pappus of Alexandria. However one can show that del Monte was not as strict an Archimedes' follower as normally accepted. His mechanics is less abstract than Archimedes', and if he refused the concept of gravity of position because of its physical pregnancy, he contaminates the Archimedean approach. For instance he gives a material consistence to the fulcrum of the lever (which for Archimedes was a simple geometrical point), which is also capable of delivering forces; he gives a physical definition to the centre of gravity; he used the concept of muscle force. Although the Mechanicorum liber on the one hand had given up the fertility of de Nemore's approach, based on the concept of gravity of position and a law of virtual work, playing in some way a conservative role, it expanded the scope of mechanics. The medieval science of weights, in which attention was focused on demonstrating the law of the lever, is led back to the Greek tradition of mechanics as a science of machines, influenced in this by the Problemata mechanica, but especially by Heron's approach, then known only through the work of Pappus of Alexandria just translated by Commandino (1588; see also Id., 1970).

The Balance with Equal Weights and Arms

In order to show del Monte's way of reasoning, below we report a summary of the way he studies the equilibrium of the balance with equal arms and weights. Proving this balance is in a position of indifferent equilibrium is a crucial point for him. In fact if that could not be the case the whole Archimedean building of centrobaric would collapse, because the fourth proposition of Archimedes' Aequiponderanti (Archimedes 2002, 191), according to which two equal weights have their centre of gravity in the middle of the segment joining them, would be false. Indeed if and only if the balance with two equal weights is in an indifferent situation of equilibrium its fulcrum - the middle point - coincides with the centre of gravity of the two weights and Archimedes' proposition is verified. Del Monte's strategy to defend the Archimedean centrobaric is twofold. In the first step he 'proves' that Tartaglia and de Nemore's result, for which the balance will revert to its horizontal position when disturbed (stable equilibrium) is false. The proof is carried out by provisionally accepting the concept of gravity of position but assuming the convergence of the lines of descent of heavy bodies (that for de Nemore were parallel to each other). From Fig. 2.26 it is clear that the weight in E has a greater gravity of position than the weight in D (its descent is less oblique, for the angle between the line of descent ES and the path of E - the tangent in E to the circle FBGA - is less than the angle of LS and the descent of D); thus the balance rotates until it will reach the vertical configuration FS (unstable equilibrium). After having falsified de Nemore's results on his own ground, in the second step del Monte leaves the concept of gravity of
position to show that also the last result is false. It indeed could be true if the two weights were isolated, but they are joined and they contrast each other so that their motion will tend to be along the line EK and DK (parallel to CS) which are intermediate between ES and DS. The motion however does not occur because C is constrained and the horizontal configuration is of indifferent equilibrium.

Fig. 2.26 Equilibrium of balance with equal weights and arms according to del Monte (del Monte [1581] $1615,34)$

ON BALANCE. [...]. If the weight placed at E is heavier than the weight placed at D , the balance DE will never remain in that position, as we have undertaken to maintain, but it will move to FG. To which we reply that it makes a great deal of difference whether we consider the weights separately, one at a time, or as joined together; for the theory of the weight placed at E when it is not connected with another weight placed at D is one thing, and it is quite another when the weights are joined in such a way that one cannot move without the other. For the straight and natural descent of the weight placed at E , when it is without connection to another weight, is made along the line ES; but when it is joined with the weight D , its natural descent will no longer be along the line ES, but along a line parallel to CS. For the combined magnitude of the weights E and D and the balance DE has its centre of gravity at C, and, if this were not supported at any place, it would move naturally downward along the straight line drawn from the centre of gravity C to the centre of the world S until C reached S. [...] But if the weights E and D are joined together and we consider them with respect to their conjunction, the natural inclination of the weight placed at E will be along the line MEK, because the weighing down of the other weight at D has the effect that the weight placed at E must weigh down not along the line ES, but along EK. The same is true of the weight at E; that is, the weight at D does not weigh down along the straight line DS, but along DH , both of them being prevented from going to their proper
places [...]. Thus the descent of the weight at D will be equal to the rise of the weight at E , and the weight at D will not raise the weight at E . From which it follows that the weights at D and E , considered in conjunction, are equally heavy. ${ }^{74}$

It is one thing, he says, to consider the weights in D and E separately, in which case they would move toward the centre of the world S along DS or ES respectively, the other is to consider them together, so their centre of gravity would move to S along CS, while the weights in D and E along DH and EK, as shown in Fig. 2.26. But since C cannot sink, the weights remain at their place, D and E.

Del Monte claims to have verified empirically the indifference of equilibrium. And if the result of some scholar does not correspond to his theory it is because the experiment was not well executed and there were differences between the ideal and real situations (Thorndike 1923-1958). The following excerpt from the Italian version of the Mechanicorum liber, clearly expresses del Monte's ideas:

Abstract

[...] that being the balance supported in its center by gravity it still remains wherever it is, which effect in particular has no longer been expressed by anyone, save only by the author. Indeed so far it was considered false, and impossible to put by all our predecessors; who with many reasons have endeavored to prove not only the opposite, but also have said for sure, that experience shows the scale never stops except when it is equally distant from the horizon. This thing is contrary to all reason, first, to be the demonstration of such fourth proposition as clear, simple, and true, and I do not know, how it can be contradicted, and then the experience which the author did with very finely balances, right on purpose to clarify this truth, one of which I have seen in the hands of the Illustrious Mr. Vicenzo Pinello, ${ }^{75}$ sent to him by the author himself, which supported from the center of its gravity,

[^94]
Abstract

moved in any position and then left, stops at every point it comes left. It is true, in making this experience, that we must not striving so to rage, for it is something very difficult, as the author says above, to make a scale, which is supported precisely in the middle of its arms at the center of its own gravity. ${ }^{76}$

2.1.3.1.3 Galileo Galilei

Galileo Galilei was born in Pisa in 1564 and died in Arcetri (Florence) in 1642. In Pisa he undertook the study of mathematics under the guidance of Ostilio Ricci (1540-1603), a pupil of Niccolò Tartaglia. In 1638 he published Discorsi e dimostrazioni matematiche sopra due nuove scienze (Galileo 1638; Koyré 1996; Drake 1999, 2000; Galilei 1914; Banfi 1966).

The contribution Galileo provided to statics is far less decisive than that to dynamics, nonetheless it is important. Though there may be doubts on the originality of some of his writings, it is certain that no one before him had formulated and solved his own problems with extraordinary clarity. Differently from Benedetti and del Monte he does not disdain the science of weights and maintains for some important respects its kinematic approach. In his first important writing in statics, Le mecaniche, ${ }^{77}$ which is related in part to del Monte's Mechanicorum liber, Galileo prevalently adopts an Archimedean approach (Galilei 1585; 2009a, b) and presents an elegant proof of the law of lever, based on purely geometrical arguments. He then reduces all the simple machines to the lever, including the inclined plane (Palmieri 2011) which escaped Guidobaldo del Monte. Nevertheless, the Archimedean approach is flanked by the kinematic approach both for the lever and inclined plane laws. The kinematic approach will become dominant for the problem of equilibrium in the subsequent works: Discorso intorno alle cose che

[^95]stanno in su l'acqua e scritture varie, printed in 1612 (Galilei 1612 in Galilei 18881905, IV) and the already cited Discorsi e dimostrazioni matematiche sopra due nuove scienze.

The Galilean Concept of Momento

In Le mecaniche ${ }^{78}$ Galileo introduced a concept and a term, that of moment (momento), that will be of great fortune and adopted, at least in Italy, until the early nineteenth century. The concept, formulated in Le mecaniche, was taken up and elaborated in the Discorso intorno alle cose che stanno in su l'acqua (Galilei 1612):

Abstract

Moment for mechanics, means that virtue, that force, that effectiveness with which the motor moves and the mobile resists [emphasis added], virtue which depends not only on the simple gravity, but on the speed of motion, from the different angles of the spaces over which the motion is made, because a heavy body makes more impetus in a very inclined space than in one less inclined. The second principle [the first was that equal weights with equal speed have equal forces and moments] is, that the moment and the force of gravity is increased by the speed of motion so that absolutely equal weights, but combined with unequal velocities, are of force, moment and virtue unequal, and the fastest is more powerful, according to the proportion of its speed to the speed of the other. Of this we have very suitable example in the balance with unequal arms, where absolutely equal weights do not press and are not equally strong, but that which is at the greatest distance from the centre, around which the balance moves, sinks and rises the other, and it is the motion of the ascending fast, the other slow: and such is the force and virtue that the speed of motion gives to the mobile that receives, and it can compensate as much weight is added to the other mobile; so that if one arm of a balance were ten times longer than the other, in order to move the balance around his middle, the end of that passed ten times more space that the end of this, a weight placed at the greater distance can sustain and equilibrate another ten times heavier than it is, and this because, moving the balance, the lower weight will move ten times faster than the other. ${ }^{79}$

[^96]From the reading of passages quoted above it is clear that Galileo espoused the view that the downward velocity of a heavy body increases its efficacy or force do go down while the upward velocity increases its resistance to be lifted. His conception is rather uncommon in statics and differed from del Monte and Benedetti's who instead believed that there was no increase of 'force' due to velocity, but only a greater velocity due to lower resistance of constraints. It also differs from Tartaglia's who equally saw an increase of gravity but justified because of a virtual - determined by the kinematics - not real velocity. Galileo specified that moment is also the resistance to gain speed. ${ }^{80}$ Therefore, the equilibrium is not from the equality of two trends to go down, but from the balance of the impetus to go down and the resistance to go up, both increased by the speed.

In Le mecaniche, after having proved the law of the lever according to Archimedes and similarly to what he will do in the first day of the Discorsi, Galileo examined the equilibrium of the lever using the concept of moment. The principle he invoked for the equilibrium is the equality of moments. He stated that this principle could be deduced from the Problemata mechanica (Galileo [1612] 1888-1905, IV, 275). Nevertheless, that is probably a rhetorical artifice only and he more simply took his inspiration from the science of weights tradition and perhaps from Tartaglia.

About the origin of Galileo's concept of moment many pages have been written; for a historical reconstruction philologically based, reference can be made to Paolo Galuzzi (Galluzzi 1979). It seems, however, that a reconstruction based on similarity of concepts is of more interest to us. This obviously can lead only to demonstrate the possibility and not the need - but even an accurate historical reconstruction is not necessarily conclusive. There is no doubt that the concept of moment in Galileo has some similarities with that of gravity position in de Nemore, and that some of its connotations are also present in the Aristotelian Problemata mechanica. It seems, however, that apart from these rather general similarities Galileo could have found some more specific ideas in the writings of Tartaglia and Benedetti. The idea that led Galileo to express the moment as proportional to the (virtual) velocity could have come from the proposition IV of Book VIII of Quesiti et inventioni diverse (Tartaglia 1554, Book VIII, Q XXXI Propositione IIII, 88 rv) which says that the gravity of the position of a heavy body, suspended from a lever, grows linearly with its distance from a fulcrum. As the speed increases linearly with distance, it is natural for a reader of Tartaglia to imagine the gravity of position (and then the moment) as proportional to speed. From Benedetti, Galileo

[^97]may have drawn the idea that in the study of the equilibrium of heavy bodies one must consider motions congruent with each other. In the case of the balance, the congruence of the motions implies that when a weight drops the other raises. From this Galileo's idea to consider moment proportional to speeds even in the case of upward motion would have come up (see Benedetti above).

Inclined Plane Law

Today the inclined plane is seen as a conceptual model different from that represented by the lever and essentially not reducible to it. The inclined plane is representative of virtual displacement laws, it is somehow its geometric representation; the lever is representative of the virtual velocity laws (Capecchi 2004; Pisano 2015b; Pisano and Drago 2013) In the past however, things were not seen this way. That the inclined plane had its peculiarities was understood by Aristotle who did not treat it and by Heron who treated it apart from the other machines. However, after Pappus of Alexandria had reduced it to the lever, the difficulties in the study of the inclined plane seemed to vanish. In the Renaissance the problem reappeared because some scholars did not accept Pappus' solution, considering it both logically unconvincing and empirically inadequate. For example, it featured an infinite value of the force required to lift a weight on a vertical plane, and this is patently absurd. Other scholars did not accept it because in contrast with de Nemore' solution, whose demonstration seemed more consistent, though the principles adopted could appear not very obvious.

With Galileo the reductionist project, started with Pappus and strongly supported by Guidobaldo del Monte, to reduce all simple machines including the inclined plane to the lever, was perfected. Note that Galileo's attempt to reduce the inclined plane to the lever was accepted not because verified empirically - with the conceptions of experiment (Rogers 2005) of the times also the results of Heron or Cardano were verified - but because he finally presented a rigorous reasoning and employed reasonable assumptions. Moreover, Galileo's result along with that of de Nemore coincided with that of Stevin more or less of the same period, very elegant and based on different assumptions. Note also that if the reasoning of Galileo was corroborated by the result of de Nemore and Stevin, the reasoning of de Nemore and Stevin was corroborated by that of Galileo and from now on the problem of the inclined plane was considered definitively solved by all mathematicians.

In the section devoted to the mechanics of the screw, Galilei (1649) showed how the inclined plane can be reduced to the lever and furnished a simple mathematical law. The proof reproduces what he had reported in De motu (Galilei [1590] 18881905, I, 297-298), differing mainly for the use of the word moment instead of gravitas.

The present Speculation hath been attempted by Pappus Alexandrinus in Lib. 8. de Collection. Mathemat. but, if I be in the right, he hath not hit the mark, and was overseen in the Assumption that he maketh.
[...]. Let us therefore suppose the Circle AIC, and in it the Diameter ABC, and the Centre B, and two Weights of equal Moment in the extreams B and C; so that the Line AC being a Leaver, or Ballance moveable about the Centre B, the Weight C shall come to be sustained by the Weight A. But if we shall imagine the Arm of the Ballance BC to be inclined downwards according to the Line B F, but yet in such a manner that the two Lines AB and BF do continue solidly conjoyned in the point B , in this case the Moment of the Weight C shall not be equal to the Moment of the Weight A, for that the Distance of the point F from the Line of Direction, which goeth accord ing to BI, from the Fulciment B unto the Centre of the Earth, is diminished: But if from the point F we erect a Perpendicular unto BC, as is FK, the Moment of the Weight in F shall be as if it did hang by the Line KF. ${ }^{81}$

Fig. 2.27 Galilean inclined plane law (Redrawn from Galilei [1649] 1888-1905, II, 181)

See therefore that the Weight placed in the extream of the Leaver B C, in inclining downwards along the Circumference CFLI, cometh to diminish its Moment and Impetus of going downwards from time to time, more and less, as it is more or less sustained by the Lines BF and BL.
[...]. If therefore upon the Plane HG the Moment of the Moveable be diminished by the total Impetus which it hath in its Perpendicular DCE, according to the proportion of the Line K B to the Line BC, and BF, being by the Solicitude of the Triangles KBF and KFH the same proportion betwixt the Lines KF and FH , as betwixt the said KB and BF , we will conclude that the proportion of the entire and absolute Moment, that the Moveable hath in the Perpendicular to the Horizon to that which it hath upon the Inclined Plane HF, hath the same proportion that the Line HF hath to the Line FK; that is, that the Length of the Inclined Plane hath to the Perpendicular which shall fall from it unto the Horizon. So that passing to a more distinct

[^98]Figure, such as this here present, the Moment of Descending which the Moveable hath upon the inclined Plane CA hath to its total Moment wherewith it gravitates in the Perpendicular to the Horizon CP the same proportion that the said Line PC hath to CA. And if thus it be, it is manifest, that like as the Force that sustaineth the Weight in the Perpendiculation PC ought to be equal to the same, so for sustaining it in the inclined Plane CA, it will suffice that it be so much lesser, by how much the said Perpendicular CP wanteth of the Line CA: and because, as sometimes we sce, it sufficeth, that the Force for moving of the Weight do insensibly superate that which sustaineth it, therefore we will infer this universal Proposition, that upon an elevated plane the force hath to the weight the same proportion. ${ }^{82}$

The key assumptions to demonstrate the law of the inclined plane are:
(a) For static purposes, moving on the inclined planes like to NO or GH is the same as moving on the circumference described by the lever arms BL or BF (see Fig. 2.27)
(b) The effectiveness of a heavy body on an angled lever is determined by the horizontal distance from the fulcrum.

The second assumption is an accepted theorem of statics, but the first has a logic status not completely clear. It indeed appears quite intuitive, at least after its formulation, because to study the equilibrium it seems sufficient to verify that also very small displacements cannot occur. In this way the displacements at the extremity of the lever and on the inclined plane are the same, the two kinds of constraints are locally equivalent and can be replaced the one with the other. But this intuitive character stems more from empirical than logical considerations; it would be then a postulate which could even not be accepted. Moreover the first assumption has a kinematic connotation, which makes it closer to the science of weights approach than the Archimedean's.

[^99]
2.1.3.2 Stevin's Legacy. The Circulation of Statics in Europe

Mechanics in the XVI century developed mainly in Italy. In the XVII century, things began to change and the dominance, for that which concerns the science of balance too, went to France, the Netherlands and England. In this process, is appropriate to mention a very important transitional figure: Simon Stevin. A contemporary of Galileo, and therefore a man of the XVI century, he is not Italian. In an ideal temporal representation of the evolution from the science of weights to the modern statics, fairly regular in truth, the presence of Stevin marks a net-discontinuity (Pisano and Gaudiello 2009). He transformed the science of equilibrium of weights into a science of equilibrium of forces for which he proposed a composition rule. The very Latin word for statics ${ }^{83}$ (a neologism from status), while giving a unique name to a discipline, also demarcated areas, emphasizing its main reference to equilibrium. Statics is distinct from mechanics, which also deals with motion, but is also separated from the science of weights, as statics is centred because it also deals with forces and not weight only.

Simon Stevin (1548-1620) was for some years book-keeper in a business house at Antwerp; later he secured employment in the administration of the Franc of Bruges. In 1583, he entered the University of Leiden. From 1604 Stevin was an outstanding engineer who advised on building windmills, locks and ports. Author of many books, he made significant contributions to trigonometry, mechanics, architecture, musical theory, geography, fortification, and navigation. He introduced the use of decimals in mathematics in Europe (Struik 1981).

Stevin wrote important works on mechanics. Mainly dealing with equilibrium they are his books De Beghinselen der Weegconst (The elements of the art of weighing) (Stevin 1586a) and De Beghinselen des Waterwichts (The elements on the weight of water) (Stevin 1586b) both published in 1586 into Flemish language. Although he undertook his mathematical work earlier in his life, Stevin collected together some of his mathematical writings and edited and published them during

[^100]the years 1605 to 1608 in Wiskonstighe Ghedachtenissen ${ }^{84}$ - mathematical memoirs, in Latin Hypomnemata mathematica - (Stevin 1605-1608b; see also 1955). As a custom of the times, he did not quote his predecessors with the exception of Archimedes, Commandino and Cardano but in the last case only to criticize his (wrong) result for the inclined plane. Assessing Stevin's contribution to the history of mechanics is not simple because his ideas were originally written in Flemish and thus read by few. When they were translated into Latin and later, again into French language (Stevin 1634) by Girard the state of mechanics had already changed. He is indeed, in any case, the founder of statics in the modern sense.

Stevin's major work, Tomus quartus mathematicorum hypomnematum de statica (Stevin 1605) is divided into five books, plus an Appendix and some Additions to the Flemish edition of 1586. The approach is of Euclidean type, in the sense that for every book there is a different topic, first there are definitions, then postulates and finally theorems that are linked together. In the first part of the first book (Stevin 1605, Book I) Stevin demonstrates the law of the lever, with an argument similar to that used by Galileo in Le mecaniche. Starting from a continuous prismatic body with geometric considerations in the wake of Archimedes, he finds the law of inverse proportionality between weight and arm length. In the second part of the same book, Stevin gives his famous demonstration of the law of the inclined plane, determining the value of the force parallel to the slope enough to maintain a heavy body in balance. Stevin extends his result to the case where the uplifting force is not parallel to the inclined plane. Gilles Personne de Roberval (1602-1675) found Stevin's proof not satisfactory and gave a much more convincing proof (de Roberval 1636). Basing on the law of the inclined plane generalized to a force of any direction, with a rather complex argument that is developed with many theorems and corollaries, Stevin puts the groundwork for the proof of the rule of the parallelogram of forces which is satisfactory if the generalized law for the inclined plane is accepted. In the Additions Stevin considers and devises demonstrations for pulleys and treats with some generality the case of forces applied by means of ropes in a section called Spartostatica. In this section statics has already became the science of equilibrium of force - modern meaning - and no longer of weights. It contains the wording of the rule of the parallelogram, which is a rule of composition of forces, even though it is presented as a way to determine the tension of two ropes which sustain a weight (Stevin 1605). This change of attitude is a fundamental Stevin's contribution to modern statics, and it does not matter if the rule of composition of forces is given an imperfect proof; it is however a rule which works. In the final part of the Spartostatica Stevin considers for the first time fundamental arguments that can be conceived only in the new frame of reference based on forces, i.e. the funicular polygon, the weight sustained by more than two ropes in the plane and out of plane. It is worth noticing however that Stevin never uses the terms force or

[^101]power. This holds good also when it is clear that he is concerning with a muscle force; as well as when in his drawings he shows the images of human hands sustaining or lifting a weight. The reading of Stevin's mechanical work offers a much more modern view than that of Guidobaldo del Monte (del Monte 1577) and Galileo (Galilei [1649] 1888-1905, II). The approach of Archimedean kind is equally rigorous, but less verbose. Unlike Galilei, Stevin does not bother to set up statics on a single principle, that of lever. He uses the Archimedean geometric proof for the lever, but when he relies on the law of the inclined plane he uses an empirical principle, in part still controversial, that of the impossibility of perpetual motion.

2.1.3.2.1 The Law of the Inclined Plane

Although he declares his opposition to the kinematic approach for which the equilibrium of a body depends on its possible motion, in the proof of the law of the inclined plane Stevin seems to contradict himself by deducing the equilibrium from the impossibility of motion. He considers a chain that wraps around the inclined plane, as shown in Fig. 2.28, which is accurately described:

Fig. 2.28 Equilibrium of the necklace wrapped around an inclined plane by Stevin (Redrawn from Stevin 1605, 34)

PREPARATION. Let consider around the triangle ABC a necklace of fourteen equal globes, like E, F, G, H, I, K, L, M, N, O, P, Q, R, D, so that they ca rotate around their centres and that there are two globes on the side BC and four on the side BA, so that as the line is to the line, the number of globes is to the number of globes. Let $\mathrm{S}, \Gamma, \mathrm{V}$ be three fixed points, on which the line, or the lace, could slide. And the two parts above the triangle be parallel to its sides AB, BC; so that the whole should rotate freely and without friction on the said sides $\mathrm{AB}, \mathrm{BC} .{ }^{85}$

[^102]The proof is conducted by reduction to the absurd. Suppose, says Stevin, the necklace is not in equilibrium and moves to reach equilibrium. Since the relative configuration of the necklace cannot change, if it is not equilibrated in one configuration it is not equilibrated in any other configuration. Thus perpetual motion would occur, which is absurd. The necklace is so in equilibrium:

It is not possible that a given motion has no end. ${ }^{86}$
Thus a comparison of weights of the necklace that rely on the two opposing inclined planes (see Fig. 2.28) immediately gives the law of the inclined plane according to which two heavy bodies on two inclined planes are equilibrated when their weights are proportional to the length of the planes. Notice that Stevin considers the negation of the perpetual motion as unproblematic, but does not assume it explicitly as a principle of statics, though it is as fundamental for his mechanics at least as the law of the lever. The simple justification for this is that probably Stevin did not want his book to appear too new by introducing since from the beginning a non-standard statement. Stevin pretends to extend the law of the inclined plane to cases where the force to uplift the load is not parallel to the inclined plane. To this purpose, he concentrates his attention on a prism sliding on the plane.

In corollary V to the law of the inclined plane reported in the second half of the first book (Stevin 1605, p 36) it is easy for Stevin to show that the ratio between the weight M of the prism (Fig. 2.29), i.e. the force to lift it, called the direct uplifting, and the force E needed to move it on the inclined plane, called the oblique uplifting, is equal to the ratio of the segments LD and DI identified by the intersection of the ropes with the prism (because $M: E=\mathrm{AB}: \mathrm{BC}=\mathrm{LD}: \mathrm{DI}$).

Fig. 2.29 Uplifting forces for various directions (Redrawn from Stevin 1605, 36)

[^103]In corollary VI (Stevin 1605, 36-37) Stevin considers a horizontal uplifting measured by weight P (see Fig. 2.29). Imagining a rotation of ninety degrees, the horizontal uplifting becomes vertical and the plane ABC turns into a tilted plane whose slope is as NL of the triangle NCB. Following this rotation the ratio between direct and oblique upliftings is equal to that between the segments DO and DI. Stevin believes that this relationship is maintained even when the rope carrying the load P is effectively horizontal. At this point, he can say that in the vertical, in the inclined and in the horizontal directions the values of the 'forces' necessary to keep the prism in balance are proportional to the length of the segments DL, DI, DO, intercepted by the ropes on the prism, to conclude (improperly) that this fact applies to all directions. Stevin's argument is interesting only for its strong rhetorical value, at least for the generalization to the case of any direction. The belief of the reader is made possible by the choice of a prism as the body to be lifted. It should be stressed however, that even if the reasoning cannot convince us the result is correct.

Below Stevin's proof of Consectarium (corollary) VI follows, to allow the reader to judge the lawfulness of the reasoning:

Let BN be conducted cutting AC and extended to N , and the same DO cutting in O the extension of LI, so that the angle IDO be equal to the angle CBN, and then the uplifting P be applied along DO, taking the column in its position (with weights M and E balanced); then as LD is homologous to BA in the triangle BAC and DI with BC , it follows that BA is to BC as the weight on BA is to the weight on $\mathrm{BC}[\ldots]$. And also DL is to DI as the weight belonging to DL is to that to DI , i.e. M to E. Similarly the three lines LD, DI, DO being homologous to the three segments $\mathrm{AB}, \mathrm{BC}, \mathrm{BN}$, then BA is to BN as the weights that belong to them, and also LD to DO will be like the weights that belong to them, i.e. M to P. Because this proportion is not valid only at that elevation as DI perpendicular to the axis, but for all sorts of angles. ${ }^{87}$

[^104]Fig. 2.30 Uplifting forces for a generic direction (Redrawn from Stevin 1605, 37)

Stevin extends his result to non-cylindrical bodies, for example the sphere of Fig. 2.30. Stevin claims that the ratio between the direct uplifting M (the weight of the sphere) and the oblique uplifting P is as DL to DO, with LC orthogonal to the inclined plane, i.e.:

$$
M: P=\mathrm{DL}: \mathrm{DO}
$$

For similar triangles, it also holds good the relation:

$$
M: P=\mathrm{EC}: \mathrm{OE}
$$

EC, OE are the sides of the triangle OEC. A modern reader can easily see that Stevin's result is in fact correct, as the weight of the sphere is balanced by the tension of the rope and the constraint reaction orthogonal to the plane AB.

2.1.3.2.2 Forces' Composition: The Rule of Parallelogram

The demonstration of the rule of the parallelogram for composition of forces is carried out by Stevin with a long series of theorems and corollaries (about twenty) that leave the modern reader a little upset (Capecchi and Drago 2005). This happens also because as each theorem and corollary is proved with rather slender mathematical reasoning, very close to the modern sensibility, it is difficult to understand the reason for Stevin's prolixity. A part of this difficulty might be overcome by assuming that Stevin's objective originally was not to formulate the rule of composition, of which perhaps he did not understand the full extent, but only to make a series of comments on the way weights can be lifted. In fact, the explicit formulation of the rule of the parallelogram is in the section of the Additions named spartostatica.

Fig. 2.31 Uplifting forces for a punctiform support by Stevin (Redrawn from Stevin 1605,39)

Consider the prism (See Fig. 2.31) with direct and horizontal upliftings applied to its centroid. Stevin assumes that the ratio between the direct and horizontal upliftings is the same as that of the segments DL and DO. Stevin does not pause to justify the lawfulness of the replacement of the inclined plane with the fixed point G.

Reading between the lines it can be understood that since for every inclination of the rope the intercept with the side of the prism provides the 'force' necessary to maintain the equilibrium whichever is the inclination of the inclined plane, the inclined plane can be replaced with a constraint that performs its essential function, i.e. to offer a support to the prism.

By means of the following Theorem 12, Propositio 20, Stevin extends his result to the case where the fixed point and the upliftings are applied anywhere in the axis of the prism.

12 THEOREM. 20 PROPOSITION. If in the axis of the prism there are a fixed point and a movable point, which could be maintained in any disposition by means of a direct uplifting, the line of direct uplifting is to the line of inclined uplift as the direct uplifting is to the oblique uplifting. ${ }^{88}$

The result of Stevin, namely the determination of the force necessary to support the prism constrained to a fixed point could have been extended quite easily to the case of a body of any shape to get a rule of equilibrium as efficient as the vanishing of the static moments. But Stevin does not do it.

The next step - basically the definitive one - consists in the consideration of the situation of following Fig. 2.32 for which Stevin states the following theorem:

18 THEOREM. 27 PROPOSITION. If a column is maintained in equilibrium by two
oblique uplifting as the line of the oblique uplifting is to the line of the direct uplifting,
so each oblique uplifting is to its direct uplifting.

[^105]Fig. 2.32 Equilibrium of a column supported into two points (Redrawn from Stevin 1605,49)

Notice that if points E and F have the same distance from the centre of gravity of the prism the vertical upliftings I and K will be the same, so LE and FM have the ratio of G and H. Indeed from theorem XVII the relations can be written:

$$
\begin{gathered}
\mathrm{LE}: \mathrm{NE}=G: I \\
\mathrm{OF}: \mathrm{MF}=K: \mathrm{H},
\end{gathered}
$$

which if $I=K$ can be combined to give:

$$
\mathrm{LE}: \mathrm{FM}=G: H .
$$

From this result, it is very easy to arrive at the parallelogram Rule of the additions. To get the rule of the parallelogram from Theorem 18 (Stevin 1605, 48) it suffices to consider the case where the two points E and F (see Fig. 2.32) coincide with each other and with the centroid of the prism as shown in the following Fig. 2.33:

Fig. 2.33 Reconstruction of the application of parallelogram of forces rule according to Stevin

In this case it can be affirmed that the proportion between segments FQ, EL, EM is the same as the weight, and inclined upliftings (Stevin 1605, Corollary III, 35) of the Additions; but this is the rule of the parallelogram. In order to prove this it is enough to consider that the whole uplifting, i.e., the weight of the prism, in Fig. 2.33 is given by $I+K=2 I=2 K$, which is proportional to $2 \mathrm{NE}=2 \mathrm{OF}$.

Chapter 3
 The Analysis of Books VII and VIII of Quesiti et inventioni diverse

Abstract

[. . .] Signor Clarisimo parte di questa scientia [of weights] nasce, ouer deriua dalla Geometria, \& parte dalla Natur al Philosophia: perche, parte delle sue conclusioni se dimostrano Geometricamente, \& parte se approuano Physicalmente, cioe naturalmente.

(Tartaglia 1554, Book VIII, Q I, 82v)

Abstract

We analyse Niccolò Tartaglia's Books VII and VIII of the Quesiti et inventioni diverse. The discussion is organized both from historical and epistemological points of view. Particularly, we will focus on the reasoning proposed by Tartaglia against the arguments of the Aristotelian Problemata mechanica on the accuracy and stability of a balance - with large or small arms, and fulcrum below or above - (Book VII) and concerning the principles of the science of weights (Book VIII). The latter arguments are discussed, taking into account de Nemore's corpus on the science of weights for exploration of the structure of the shared knowledge of early modern statics, aiming to discuss alternative frameworks, and so distinguishing between individual and shared structures in the literature belonging to early modern mechanics. In this sense, this chapter is devoted to historical epistemology of science, presenting an integrated history and epistemology of scientific methods, which combine epistemological and historical approaches to identify significant historical hypotheses within the relationship between physics and mathematics (physical observations and theoretical mechanical modeling; i.e., on a classification of the two sciences see Ampère 1834).

3.1 A Historical Epistemology Outline on Early Statics in Books VII and VIII

Niccolò Tartaglia's studies of the science of weights cannot be understood unless without an exploration of the structure of the shared knowledge of early modern statics. Particularly, it is not possible to know his definitive cultural background
with certainty because reliable biographical information about his reading and shared literatures is too weak. Tartaglia's education (see Chap. 1), probably not that of a self-taught man as he would have us believe, was very much influenced by Aristotelian physics and could not be alien to the discussions then in progress on the nature of subalternate-science. It is not certain that he knew the impetus theory, at least up to 1540 . As a teacher of abacus, first in Verona then in Venice -cities where there was a thriving printing industry- Tartaglia was in the ideal situation to come into contact with new scientific publications. Because of his profession, he had a wide experience with algebra and developed application of geometry and algebra to various practical problems.

Tartaglia knew Euclidean geometry, considering that when he wrote the first edition of Quesiti et invention diverse in 1546 he had already published an important Italian translation of the Elements (Tartaglia 1543a), which had an enormous editorial success throughout Europe. It is reasonable that he also knew the Conic sections of Apollonius, published in 1534 (Ekhalm, 189) by his friend Giambattista Memo ${ }^{1}$ (d. 1536). As for Archimedes's writings, we know that translations of his works had been published already in 1543. About the texts of the science of weights, we cannot be certain of our speculations on his readings. It is likely that he had early access to the Latin edition of the Problemata mechanica (Leonico Tomeo 1525, 1530) by Niccolò Leonico Tomeo (14561531), professor at the University of Padova. Thus, it reasonable to think that he read Liber Iordani Nemorarii viri clarissimi, de ponderibus propositiones XIII (Jordanus 1533) edited by Petrus Apianus (1495-1552) who reproduced the Liber Jordani de ponderibus and added an interesting commentary. Following this point of view, we think that he probably also knew Biagio Pelecani of Parma's works Tractatus Blasi de ponderibus (Moody and Clagett [1952] 1960, IV; see also Crombie 1959, 101) between the science of weights of Northern Europe and Italy. He also knew the two medieval texts: the Liber Euclidis de ponderoso et levi - published as an appendix to his Elements's edition (Tartaglia 1569, 316r) - and the Liber Archimedis de insidentibus in humidum, or Liber Archimedis de ponderibus. Nevertheless mostly he was in possession since 1539 (Laird 2000, 16) of a manuscript of the Liber de ratione ponderis that Curtio Troiano Navò published after Tartaglia's death.

Tartaglia's Books VII and VIII on science of weights established the long-term development of mechanical knowledge concerning instruments and conceptual streams built on this theoretical framework, centring on the role of shared knowledge, of physical and mathematical objects.

[^106]
3.1.1 The Analysis of Book VII (1554)

Book VII of the Quesiti et invention diverse was inspired by the Aristotelian Problemata mechanica, in particular because of those problems/questions that today are normally known as the first and second and are related to the accuracy and stability of balances. Aristotelian mechanics ${ }^{2}$ was of considerable importance in the Renaissance; by its nature it was able to mobilize people of different backgrounds, humanists involved in the physical and philosophical aspects and mathematicians and engineers involved in its theoretical and technological content. However the interest was mainly philosophical for it stimulated discussion about the role of mathematics in physics. There is agreement that the Problemata mechanica as such remained without direct influence from the decline of Hellenistic science until the Greek revival of the Renaissance. Latin writers of the Middle Ages who encountered the Greek text were insufficiently impressed by it to continue the discussion. The beginning of the XVI century saw two important Latin translations by two humanists. The first was due to Vittore Fausto (14801511), but the most largely circulating copy was the second translation by Tomeo ${ }^{3}$ (Leonico Tomeo 1525, Leonici Thomei 1530). When Tartaglia wrote Quesiti et inventioni diverse (1546) he had most probably read only Leonico's version because that of Vittore Fausto was practically unknown in Italy. For this reason as far as we know - the following references to Problemata mechanica mostly will came from Leonico Tomeo ${ }^{4}$ (1456-1531).

Book VII concerns a dialogue developing in a day between Tartaglia and Diego Hurtado de Mendoza (1503-1575), an aristocrat and humanist who was the Spanish ambassador to Venice from 1539 to 1546, and to Rome from 1547 to 1552 (Drake and Drabkin 1969, 104). Mendoza asks seven questions to which Tartaglia gives answers. The first three questions concern the accuracy of balances, the last four the stability for various positions of the fulcrum. The book was studied in depth in (De Pace 1993) for aspects regarding relations between physics and mathematics.

[^107]
3.1.1.1 The Aristotelian Mechanical Problems

3.1.1.1.1 The Accuracy of Balances

In the first problem Aristotle wants to explain why larger balances are more accurate than smaller ones:
[Problem 1] First of all then a difficulty will arise as to what happens to the balance; why, that is, larger balance are more accurate than smaller ones? ${ }^{5}$

Tartaglia will question this conclusion but, for the moment, we do not and consider it as a physical truth. Aristotle wants to explain the physical fact he asserts by means of mathematical argumentations; thus assuming mechanics as a subalternate science in which physics is subalternate to geometry. In fact mechanical problems
[...] are not altogether identical with physical problems, nor are they entirely different from them, but they are common both to mathematical and physical speculations, for the why is demonstrated by mathematical speculations, but the object is demonstrated by physics. ${ }^{6}$

In the following, we report some of Aristotle's reasoning (See Fig. 3.1). He refers the balance to the circle, and the problem of accuracy to the fact that forces applied to points of the circle are the more efficient the farther from the centre they are. The geometrical reasoning consists in showing that, with the same tangential (vertical) displacement, farther points remain closer to the circle; for physical reasons it can be conjectured that they suffer less resistance in the motion, and the applied forces are more effective (Capecchi 2009, 2012a):

Fig. 3.1 Motions according and against nature in the circle (Redrawn from Aristotle 1525, 27r. See also Problemata Mechanica 848b in Aristotle 1955c, 849ab, 343)

[^108][Continued from Problem 1] The origin of this is the question why that part of the radius of a circle which is farthest from the centre moves quicker than the smaller radius which is close to the centre, and is moved by the same force. The word quicker is used in two senses; if a point covers the same distance as another in a shorter space of time we call it quicker, and also if it covers a greater distance in an equal time. But in our case the greater radius describes a greater circle in equal time; for the circumference outside is greater than the circumference inside. The reason is that the radius describing the circle is performing two movements. Now whenever a body is moved in two directions in a fixed ratio it necessarily travels in a straight line, which is the diagonal of the figure which the lines arranged in this ratio describe. ${ }^{7}$
From what has already been said the reason why the point more distant from the centre travels more quickly than the nearer point, though impelled by the same force, and why the greater radius describe the greater arc, is quite obvious. Why also greater balances are more accurate than smaller ones, is clear from these considerations. ${ }^{8}$

After "proving" the greater accuracy of larger balances, Aristotle comments on

 some other physical facts, i.e., that a large balance does tilt for a small weight added to one arm while a smaller balance does not.[Continued from Problem 1] Now the extremity of the balance scale must move at a greater rate under the influence of the same weight, inasmuch as it is further from the cord, and consequently in small balances some weights must make no impression on the senses, but in large balances the movement must be obvious; for there is nothing to prevent a quantity from moving too little for it to be observed by the senses. But in a large balance the same weight makes the movement visible. Some movements are obvious in both cases, but are much more obvious in larger balances, because then the extent of the swing is much greater for the same weight. This is how sellers of purple arrange their weighing machines to deceive, by putting the cord out of the true centre, and pouring lead into one arm of the balance, or by employing wood for the side to which they want it to incline taken from the root or from where there is a knot. For the part of the tree in which the root lies is heavier, and a knot is in a sense a root. ${ }^{9}$

[^109]
3.1.1.1.2 The Stability of Balances

The Aristotelian problem 2 is related to what is today known as the problem of stability. It concerns balance having their fulcrum either above or below their beam.
[Problem 2] Why a balance fixed from above by a cord, when after the beam has inclined the weight is removed, the balance ascends. If, however, it is supported from below, then it does not ascend but rest? ${ }^{10}$

The explanation of the two cases is quite simple and convincing, even though no reference to a declared mechanical law is stated.
[Continued from Problem 2] It is because, when the support is from above (when the weight is applied) the larger portion of the beam is above the perpendicular. For the cord is the perpendicular. So that the greater weight must swing downwards until the line dividing the beam coincides with the perpendicular, because the greater weight is in the raised part of the beam [See Fig. 3.2]. ${ }^{11}$

Fig. 3.2 Equilibrium of the balance with fulcrum above (Redrawn from Aristotle 1525, 30v)

[^110][Continued from Problem 2] If, however, the support is from below, the opposite result; for now the portion of the beam which is lower than the perpendicular dividing it is more than half, consequently it does not return to its place, for the part rising above is lighter (Fig. 3.3) ${ }^{12}$

Fig. 3.3 Equilibrium of the balance with fulcrum above (Redrawn from Aristotle 1525, 331r. See also Problemata Mechanica 850ab in Aristotle 1955c, 850ab, 351)

If the balance is supported from above, the horizontal position is a stable equilibrium position, for if the balance is removed from the horizontal position it recovers its position; while if the balance is supported from below, the horizontal position is an unstable equilibrium position, for if the balance is removed from the horizontal position it does not return to its place. The geometry serves to prove that in the two cases the axis cuts the beam of the balance into two different parts. One further physical argument says that the larger part pushes down the smaller part.

Fig. 3.4 Overturning of the balance with fulcrum below

Notice that the explanation holds good only if the beam of the balance is considered as a heavy body. With a weightless beam, stability and instability persist respectively for the two positions of the fulcrum, but to prove that calls for more sophisticated theoretical tools than Aristotle's, for example the concept of static moment. When the balance is removed from the horizontal position the weight suspended from the more elevated arm has a greater distance from the fulcrum if it is above and then a greater static moment than that of the other weight and the balance recovers the horizontal position. The contrary occurs when the fulcrum is below. We want to stress that Aristotle is scarcely accurate, or even not correct, in

[^111]describing what happens for balances with fulcrum below. He says that if one arm is pressed down it does not recover the horizontal position. Actually, what occurs is that the balance rotates until it is completely reverted and has become a balance with the fulcrum above (See Fig. 3.4).

In order to stress the relevance of the weight of the beam in Aristotle's discourse, we refer to the figures drawn by Walter Stanley Heet to illustrate Problem 2, which makes evident the role of the balance beam (See Fig. 3.5).

Fig. 3.5 Instance of balances with a two-dimensional beam by Aristotle (Redrawn from Aristotle 1955c, 850a, 349 (left); 850ab, 351 (right). See also Aristotle 1955c, 349, 351)

Why is it that small forces can move great weights by means of a lever, as was said at the beginning of the treatise, seeing that one naturally adds the weight of the lever? For surely the smaller weight is easier to move, and it is smaller without the lever. Is the lever the reason, being equivalent to a beam with its cord attached below, and divided into two equal parts? For the fulcrum acts as the attached cord: for both these remain stationary, and act as a centre. But since under the impulse of the same weight the greater radius from the centre moves the more rapidly, and there are three elements in the lever, the fulcrum, that is the cord or centre, and the two weights, the one which causes the movement, and the one that is moved; now the ratio of the weight moved to the weight moving it is the inverse ratio of the distances from the centre. Now the greater the distance from the fulcrum, the more easily it will move. The reason has been given before that the point further from the centre describes the greater circle, so that by the use of the same force, when the motive force is farther from the lever, it will cause a greater motion. ${ }^{13}$

3.1.1.2 The First Three Quesiti on Accuracy

In the first three Quesiti of the Book VII (Tartaglia 1554, Book VII, Qs I-III, $78 \mathrm{r}-80 \mathrm{v}$) Tartaglia explicitly references the Aristotelian text and the proof (discussed in three parts ${ }^{14}$) concerning accuracy of the Aristotelian balance is in the last fourth Quesito (Tartaglia 1554, Book VII, Qs IV-VII, 80v-82r).

[^112]In the first Quesito, to his interlocutor Don Diego Hurtado de Mendoza Imperial Ambassador in Venezia, who claims to be acquainted with the Problemata Mechanica both in Latin and Greek (Tartaglia 1554, Book VII, Q I, 78r), Tartaglia replies that
[Quesito I] N. It is quite a while since I saw these [Problemata Mechanica], particularly the Latin. ${ }^{15}$

Probably - as above noted - he referred to Leonico Tomeo's translation. In his reading he has found some weaknesses that, to be clearly identified, ask for an understanding of the principles of the science of weights:
[Quesito I] N. Sir, should you wish me to explain them to you properly, many of the problems would require that I first explain to your Excellency the principles of the science of weights. ${ }^{16}$

Immediately after Tartaglia expresses consideration about the role of mathematics and physics in the Aristotelian text:
[Quesito I] N. It is true that he proves each of his problems partly by physical reasons and
arguments and partly by Mathematical. But some of his physical arguments may be
opposed by other physical reasoning, and others can even be shown to be false through
Mathematical arguments (by means of the said science of weights). And besides that, he
omits or remains silent about a problem of no little importance concerning the balance,
because (so far as I can judge) one cannot assign the cause for that problem by physical
reasoning, but only through the science of weights. ${ }^{17}$
He first notices, though not explicitly, ${ }^{18}$ that Problemata mechanica belongs to the subalternate-science tradition because part of the reasoning is physical (coming from empirical observation of natural facts), part mathematical. Then he asserts that Aristotle makes both wrong references to empirical facts and errors in mathematical reasoning and at least an omission. The wrong references and errors are with respect to the accuracy of balances, the omission to the case of balances with fulcrum centred in the axis. In substance Tartaglia "dares" to contrast some Aristotelian ${ }^{19}$ positions "frankly" as Raffaello Caverni (1837-1900) will point up (Caverni 18911900, I, 53-54). Actually, we think, more than a question of bravery, it was a selfsponsoring affair. He as a teacher of abacus wanted to show the nobleness of the matter he was skilled on, not against Aristotle himself, but the Aristotelian philosophers of the universities. This would have yielded a larger number of students to him and a greater profit (Cuomo 1998).

[^113]To Mendoza who asks how can he distinguish between physical and mathematical argumentations, Tartaglia replies:
[Quesito I] N. The physicist considers, judges, and determines things according to the senses and material appearances, while the mathematician considers and determines them not according to the senses, but according to reason, all matter being abstracted-as your Excellency knows that Euclid was accustomed to do. ${ }^{20}$

Entering the merit of the accuracy of balances, Tartaglia notices that Aristotle's position would be correct for an ideal balance, deprived of any imperfections. However, for real balances Aristotle's position is generally not true as a matter of fact; indeed normally smaller balances are more accurate than larger ones.
[Quesito I] N. [...]. But next, wishing to consider and test that statement materially and with physical arguments, as he does at the end, by the sense of sight and with a material balance. I say that by this sort of argument the problem is not generally verified, and even that the opposite occurs; that is, smaller balances are found to be more sensitive than larger ones. That this is true in material balances, experience makes manifest; for if we have a worn ducat and want to see by how many grains it is too light, using a large balance such as one of those used to weigh spices, sugar, ginger, cinnamon, and such materials, we shall get a poor result; but if we use one of those small balances employed by bankers, goldsmiths, and jewellers, no doubt we can be quite certain of the result. This is just the contrary of that which was concluded in this problem; for here, small balances are more sensitive than large ones because they more thoroughly and more subtly show the difference of weights. ${ }^{21}$

Therefore, Tartaglia opposes to Aristotle a more reliable physical argument than his, and explains why the correct mathematical argumentation worked out by Aristotle may be falsified by experience. It depends on the fact that smaller balances are often made with a greater accuracy and suffer less of the matter impediments.
[Quesito II] N. [...] I say, Sir, that the cause that the larger and smaller balances do not behave as the author concludes and proves has its roots in the difference between the material parts or members of which they are composed, which parts or members are the two arms and the pivot (that is, the axis or center on which the arms turn in both cases). For the said arms and pivot in the larger scale or balance are much more gross and bulky than in the smaller. And since the arms of those scales or balances are to be considered mathematically, that is, apart from all material, they are considered and assumed to be as simple lines, without breadth or thickness; and the pivot or axis [of support] is assumed to be a simple indivisible point. ${ }^{22}$

Thus, mathematicians do not accept demonstrations made on the strength of the senses and questions which have already been proved with mathematical arguments should not be subject of physical argumentations, which are less certain:
[Quesito I] N. [...] And for this and other reasons, the mathematician does not accept or consent to proofs and demonstrations made on the strength and authority of the senses in matter, but only those made by demonstrations and arguments abstracted from all matter. Consequently, the mathematical disciplines are considered by the wise not only to be more

[^114]certain than the physical, but even to have the highest degree of certainty. And therefore those questions which can be demonstrated with mathematical arguments cannot be suitably proved by physical arguments. Likewise those which have already been demonstrated by mathematical arguments (which are the most certain) should not be subjected to attempts to certify them still better by physical arguments, which are less certain. ${ }^{23}$

Tartaglia, since the beginning, switches to criticize the remarks added by Aristotle to the solution of the first problem, i.e., that it can happen that a small weight makes a large balance to rotate but not a small one:
[Quesito I] N. [. . .]. He [Aristotle] also adds this other conclusion, and in this form: And certainly there are some weights which manifest themselves in both sorts of scales (that is, the large and small), but much more in the larger, a far greater tilting being made there by the same weight. ${ }^{24}$

Tartaglia criticised open face ("[...] a viso aperto [...]"25) Aristotle's remarks concerning the physical nature, which are not generally true because they often are not verified in practice:
[Quesito I] N. [. . .]. Now if we consider, judge, and test this conclusion as physicists that is, by the strength and authority of the sense of sight-then, as was said of the other, it will certainly suffer no less opposition in the said material scales than will the other [conclusion], and for the same reasons. ${ }^{26}$

Nevertheless, Aristotle's remarks are wrong from a mathematical point of view also, because they are not even verified for ideal balances. In such a case large and small balances behave equally: indeed if one adds a weight as small as he likes on one of the arms of a balance with the size one wants, this tilts until it reaches the vertical position:
[Quesito I] N. [...]. And similarly if we consider, judge, and test it as mathematicians (that is, apart from any matter), this conclusion will still be false, because every sort of weight placed in any sort of scale will make it tilt continually until it comes to the last and lowest place it can. And all this is demonstrated in the said principles of the science of weights. ${ }^{27}$

A further comment on the role of mathematics follows:
[Quesito I] N. [. . .]. Your Excellency is not mistaken, for in fact all those things that are known by the mind to be true, and particularly by abstraction from all material, should reasonably be verifiable in matter also by the sense of sight; otherwise mathematics would be wholly vain and useless and devoid of profit to man [emphasis added]. And if it happens that they are not verified in the aforesaid scales or in large and small balances, as questioned, then it is to be believed and even held for certain that all this proceeds from the disproportionality and inequality of the material parts and members that make one scale differ more than another from balances considered apart from all matter. ${ }^{28}$

[^115]The arguments based on mathematics not only are always correct, but the results are also true, otherwise mathematics would be useless, it would be a sterile discipline. When things do not add up, it means that the physical objects that are being studied are too far from the mathematical objects. To get a grip on tying mathematical reasoning to the physical facts, Tartaglia proposes to apply mathematical reasoning to physical models that are very well constructed; he does not pose instead the inverse problem of making richer the geometric model in order to be able to grasp reality in a more satisfactory manner.
[Quesito I] So if we want to defend and save this problem of Aristotle - that is, make it verified in matter and in every kind of balance or scale, large or small - it is necessary to make all the parts or members of each balance uniform, in such a way that all are equally applicable to those considered apart from all material. This done, we shall not only verify sensibly in matter this problem of his for material scales and balances, but will also verify those other two conclusions he adds at the end. ${ }^{29}$

Continuing in the second Quesito:
[Quesito II] N. [...]. Since the arms of those scales or balances are to be considered Mathematically, that is, apart from all material, they are considered and assumed to be as simple lines, without breadth or thickness; and the pivot or axis [of support] is assumed to be a simple indivisible point. Such a scale or balance, as much as possible, would be given as in fact despoiled and naked of any sensible material, as is considered by the mind, and would doubtless be agile and responsive far beyond all material scales or balances of the same size, for it would be completely free of any material hindrance. ${ }^{30}$

That is, Tartaglia believes that embodiment in matter can invalidate geometrical reasoning. Clearly, in this passage a conception of matter which resists formal, mathematical treatment is at work. Tartaglia makes no allusions to the philosophical underpinning of the conception, but it was a basic tenet of the larger framework of scholastic and Renaissance hylomorphism. Although Tartaglia himself was not educated at a university and made sparse contact with the philosophical tradition of his time, a conception of matter similar to the one he invokes can be traced through the philosophical tradition back to the works of Aristotle. It is interesting to note that Tartaglia believed that the mismatch between mathematical arguments and running machines can be minimized by building machines that are as uniform as possible, but he did not believe the mismatch can be entirely eliminated (Biener 2008, 74).

3.1.1.3 The Last Four Quesiti on Stability

The Quesiti IV-VII of Book VII concern the stability of balances with equal arms and weights. Before beginning to analyse the last four Quesiti, brief remarks on the general aims and structure of reasoning proposed by Tartaglia are necessary.

[^116]Tartaglia mainly presents his reasoning (Tartaglia 1554, Book VII) basing on the following three physical circumstances:

1. Balances with fulcrum above the beam for which the horizontal position is asserted to be a stable equilibrium position (Ivi, Qs IV-V).
2. Balances with fulcrum below the beam for which the horizontal position is asserted to be not stable equilibrium position (Ivi, Qs V-VI).
3. Balances with fulcrum inside (centred) in the beam for which the horizontal position is asserted to be a stable equilibrium position (Ivi, Q VII).

These three physical circumstances appear to be always very important. In fact, at end of Book VII, Tartaglia (by means of his interlocutor Mendoza) remarks two main reasons which moved him to study these cases since:
(a) - Aristotle omitted the above cited 3rd case concerning the balance with the fulcrum in the centre. In his words:
[Quesito IV] S.A. [...] at the beginning of our reasoning, that Aristotle omitted, or was silent on, a question about balances of great relevance and inquire. ${ }^{31}$
and (b) - common sense really would justify the idea that the balances with longer arms are sharper than the balance with shorter arms; an emblematic and antiAristotelian situation that
[Quesito VI] S.A. [. . .] these two parts [cases with fulcrum above or below] almost, our mind grasps for a natural reason [e.g., common sense] without any proof. ${ }^{32}$

Moreover, in order to justify that the Aristotelian subalternate science is not sufficient in itself to the purpose, Tartaglia emphasized the third case-study as the most complex one:
[Quesito VII] S.A. [...] the cause of this seems to me father removed from common sense than for the two usual cases. ${ }^{33}$

But, he claims, it is first necessary to become aware of the science of weights. In his words:
[Quesito VII] N. I have told your Excellency that in order to demonstrate the cause of this effect, it will be necessary for me first to define and explain to your Excellency some of the terms and principles of the Science of Weights. ${ }^{34}$

3.1.1.3.1 The Balance with Fulcrum Above the Beam

In the following we report the figure and commentaries ($Q s$ IV-V) by Tartaglia who discusses the first case of Aristotelian reasoning on balances. In order to justify our previous hypotheses concerning that case, a Latin version of the Problemata

[^117]mechanica was read by Tartaglia. It could have been Leonico Tomeo's formulation; we note how the following Tartaglia's figures (See Fig. 3.6) are substantially quite similar to two figures reported by Leonico Tomeo (Aristotle 1525).
[Quesito IV] S.A. But if I well remember you also said, at the beginning of our reasoning,
that Aristotle omitted, or was silent on, a question about balances of great relevance and
inquire. Now tell me what question is this. N. If your Excellency remember his second
problem, where he [Aristotle] asks, and consequently proves, the why when the fulcrum is
above the scale, and one of his arm is moved by some weight, or pushed downward,
removed or taken off the weight, the scale raises again and returns to his first place. And
when that fulcrum is below the scale, and similarly one of his arm is carried by some
weight, or pushed downward, when the weight is removed the scale neither raises nor
returns to its first place (as it does for the other case) but remains below, i.e. beneath. Now I
say, he was silent and mitted one more problem, which here is much more suitable, much
more speculative of any of the other problems, which is that. Why when the fulcrum is
precisely inside the scale, and one of the arm of is, by any weight, loaded, or pressed down,
removed that weigh, the scale again raises to its first place, like as the scale with the fulcrum
above. S.A. That looks to me a nice problem, and much farther from our intellect that the
two mentioned before and I will appreciate very much to understand the cause of that
effect; but I before want you to clarify me a doubt, which persists in my mind about the
above cited problems, which is this. ${ }^{35}$

Fig. 3.6 Balances with fulcrum above according to Tartaglia (Redrawn from Tartaglia 1554, Book VII, Q V, 81r. It should be compared with Fig. 3.2)

[Quesito V$] \mathrm{N}$. To - proof the first part of such a question let consider the balance $a b$ the cord of which be the point c (which is quite above the said balance $a b$ as shown in the figure) and its arm ad be pressed down by the imposed weight e, as shown in the figure. Now I say that if the weight e is taken away, the arm $a d$ will raise and return to its initial position, i.e. the point k and the other arm $d b$ will descend up to the point l. That occurs for in lowering the arm $a d$, more than one half of the beam $a b$ is raised, beyond the vertical nm through the cord c which is called line of direction. That is the raised part $d b$ becomes the greater the one half of the beam $a b$ the lesser the remaining depressed part $a g$. By removing

[^118]the weight e the part $a g$ (less strong) is pressed from the grater raised part $d b$ until the line of direction becomes orthogonal to the beam $a b$ and splits it into two equal parts in the point d^{36}

Tartaglia's proof is approved by his interlocutor Mendoza who claims that it is similar to that of Aristotle, but better exhibited (Tartaglia 1554, Book VII, Q V, 81v). Nevertheless, we should remark that Tartaglia's demonstration, being similar to Aristotle's, is only valid if the beam of the balance is weightless. The concept of gravity of position would have been capable of justifying the stability also for a weightless beam, but Tartaglia does not use that.

3.1.1.3.2 The Balance with Fulcrum Below the Beam

In the following the second part of the proof is reported where Tartaglia confirms the Aristotelian arguments (See Fig. 3.7).
[Quesito VI] N. [...]. Let $a b$ be the scale which has the cord (i.e. that point, or fulcrum, above which it rotates) rather below, i.e. below the beam $a b$ as shown below in point c and for the imposition of the weight e its arm $a d$ is pulled down, as it appears in the figure. I say, that who tooks away the said weight e the arm would not return to its original place, i.e. the point k (as, in that it does with the fulcrum above) but will remain so inclined at the bottom, and the cause of that depends on the fact that when the said arm ad goes down, more than one half of the whole beam, or balance $a b$, is transferred beyond the perpendicular. nm . passing through the cord c, so that the whole part $a g$ brought down, gets to be much more than one half of all the balance $a b$ as d is to g and the raised part $g b$ becomes lesser of that half, as d is to g The raised portion $g b$ less than the lowered part $a g$ is then to be weaker, less powerful of it, and therefore, not sufficient to make it to ascend to its initial position in k as in the previous case. Rather it will remain inclined at the bottom, and will keep the other part at the top. ${ }^{37}$

Fig. 3.7 Balances with fulcrum below according to Tartaglia (Redrawn from Tartaglia 1554, Book VII, Q V, 82v. It is compared with Tomeo's
Figure (Aristotle 1530 in Leonici Thomei 1530, 30; see also: English Translation by Walter Stanley Hett: Aristotle, Mechanical Problems. Nicolao Leonico Thomaeo interprete, Venise, 1525))

[^119]Note that as Aristotle, Tartaglia also assumes that the balance with the fulcrum below, when removed from the horizontal position, remains where it was left; i.e., according to modern nomenclature the horizontal position would be of indifferent equilibrium. We have already noticed that this is not true and the balance makes a complete rotation to assume a stable configuration with the fulcrum that passes from below to above. We do not believe that a clever and practical man, as surely Tartaglia was, did not recognize this fact; more probably he preferred to not discuss the fact whose explanation would have required more sophisticated theoretical tools than those he had.

3.1.1.3.3 The Balance with Fulcrum Inside in the Beam

Tartaglia's interlocutor, Mendoza, presents the case with the fulcrum inside the beam, for which he has no difficulty in accepting as a matter of fact that the horizontal position is a stable equilibrium position:
[Quesito VII] S.A. Now let us come to the third part, which is still lacking here, that is, how it comes about that, when the support of a scale is precisely in its centre, neither above nor below, but in the centre, as is the case with most of our ordinary scales, and one of the arms is pushed down either by some weight or by our hand, and the weight or hand is then removed, this arm immediately ascends again and returns to its original place, as does the arm of a scale whose support comes from above. For in fact the cause of this seems to me farther removed from common sense than for either of the two usual cases. ${ }^{38}$

Tartaglia had also presented the stability of the balance as a matter of fact. Actually, we doubt that he and Mendoza could think that. Indeed, most experiences with the balance having its fulcrum inside the beam show that it remains where it is left and does not recover the horizontal position unless stimulated to do so. Thus, Tartaglia could not have derived its position from physical facts. More simply he is presenting the position of de Nemore's Liber de ratione ponderis (de Nemore 1565).

In the following, some comments on this text will be referred to. Here for the sake of completeness we report what de Nemore says for the balance under consideration:
[Second Question]. When a horizontal position is gained [for a balance of equal arms], then, if equal weights are suspended [from its extremities], the balance will not leave the horizontal position; and if it is moved from the horizontal position, it will revert to the horizontal position. If instead unequal [weights] are suspended, [the balance] will fall on the side of the heavier [weight] until it reaches the vertical position. ${ }^{39}$

[^120]Notwithstanding he accepts the matter of fact that Mendoza finds it strange and asks for explanations. This is Tartaglia's reply:
[Quesito VII] N. I have told your Excellency that in order to demonstrate the cause of this effect, it will be necessary for me first to define and explain to your Excellency some of the terms and principles of the science of weights. [...] N. So far as it concerns simply the demonstration of this particular, it will be quite short; however, if your Excellency wants to learn in an orderly manner all the principles of the science of weights, that will be quite lengthy return, your Excellency. ${ }^{40}$

In addition, with the request of an exposition of the principles of the science of weights, book VII ends.

At this stage, it is of some interest to briefly compare Tartaglia's considerations with Alessandro Piccolomini's reasoning upon the sensitivity of the balances. Tarataglia having reported and approved Aristotelian theses regarding a small mass placed on one arm of a balance (thus being an eventual previous equilibrium/configuration) Piccolomini is not perturbed and comments:

> And if what we have said should seem inconvenient to someone, that is nothing of little weight can be put on a small balance, that not only its motion is not clear, but that really it does not move: we could say against it, and conclude with reason because there was something placed over the balance that before there was not, it is necessary that such a thing, either it is of any weight (and it is false), or that the weight has no tendency to descend, which of course is false. Who doubted thus must be answered, that many things for mathematical demonstration and imagination conclude but actually they do not occur. ${ }^{41}$

In other words Piccolomini suggests that the mathematical reasons make abstracts from natural matter, thus it is no wonder that what is proved by it may not correspond to the real behaviour of bodies.

3.1.2 The Analysis of Book VIII

In the literary form of dialogue adopted by Tartaglia, Book VIII contains a discussion between Tartaglia and Mendoza that develops the day after Book VII is registered. It aims to expose the science of weights in an indisputable way.

[^121]Book VIII is the only book of the Quesiti et invention diverse which has a structure quite similar to that of the Nova scientia (Tartaglia 1537), since Tartaglia did not dare to break the long tradition of a deductive modelled science typical of Euclid's Elements: e.g., an Arabian science of weights during the tenth century A.D., de Nemore's writings of the thirteenth century and up to Apianus' edition of the sixteenth century.

Book VIII strongly stresses the arrangement of the notional elements of the theory and the role played by Principij primi, Propositioni, Suppositioni, Petitioni (Tartaglia 1554, Book VIII, 83rv-86rv) considered so important by Tartaglia to be discussed before entering the science of weights.

Tartaglia begins Book VIII by stressing the importance of structuring the science of weights by means of (indemonstrable) principles and (demonstrable) propositions.

> [Quesito III] N. To proceed in an orderly fashion, we shall today define only some terms and ways of speaking that occur in this science, ${ }^{42}$ in order that your Excellency will more easily apprehend the fruit of the understanding of this. Then, tomorrow, we shall proceed to state the principles of that science, that is, those things which cannot be demonstrated in the science ${ }^{43}$; for as your Excellency knows, every science has its indemonstrable first principles, which, being conceded or assumed, afford the means to discuss and sustain the whole science. Then we shall go on by setting forth various propositions or conclusions concerning the science; and part of these we shall demonstrate to your Excellency by geometrical arguments, and part we shall test by physical reasons, as I said before. And after this, your Excellency, you shall put forward those doubts or questions that occur to you concerrning things mechanical, and especially the admirable effects of the said material instruments that augment the strength of a man; and by the things said and tested in the science of weights, all will be clarified. ${ }^{44}$
and shortly after specifies the meaning he is giving to principle:
[Quesito XXI] N. Some say that the principles of any science should be called dignities ["dignita"], because they prove other propositions but cannot be proved from others; some call them suppositions, because they are supposed to be true in the given science; others prefer to call them petitions, because, if we wish to debate such a science and sustain it with demonstrations, we must first request the adversary to concede them. For if he does not concede them but denies them, the entire science would be denied, nor could one debate differently. And since this last opinion pleases me somewhat more than the other two, let us call them petitions and set them forth in the form of requests. ${ }^{45}$

The book was not very innovative, as the many texts on the science of weights of de Nemore's traditions from XIV to XVI centuries were not innovative. Its importance lies in its more precise mathematical formulation and the adoption of a unifying principle to assess equilibrium. Indeed, in de Nemore's tradition, up to Tartaglia, there were two principles in the science of weights:

[^122]> 1- What can raise a weight p at height h, can lift a weight p / n at a height $n h$, or vice versa a weight $n p$ to the height $h / n "$. A form a virtual displacement principle; the equilibrium is based on the equality of the product $p h$.
> 2- The greater the efficacy of a weight (the gravity of position) the more its motion partakes of the vertical. The equilibrium is based in the equality in the gravity of position. ${ }^{46}$

Tartaglia only uses the second one: equality in the gravity of position.
The book was however quite a leading book. Though it was criticized by Benedetti (Benedetti 1585) and del Monte (del Monte 1577, 1615; see also del Monte 2013), its influence could be found in Galileo's Le mecaniche, half a century later (Galilei 1649). This influence is evident in the adoption by the two scientists of a similar unifying principle of mechanics: the equality of positional gravity for Tartaglia and the equality of moment for Galileo. Besides being criticized by Benedetti and Cardano from a technique point of view, Tartaglia was accused of plagiarism for having not cited his source, i.e., de Nemore.

3.1.2. 1 The Book VIII and Liber de ratione ponderis. A False Controversy?

Before presenting Book VIII, some considerations of ours upon the relationship between the debated controversy Tartaglia-(Jordanus-) Ferrari-Cardano and the proof of the inclined plane within Book VIII are reported.

In Chap. 1 we already presented the details of the famous quarrel between Tartaglia and Cardano on priority for the cubic equation solution. In the developments of the dispute, Ludovico Ferrari, a Cardano pupil, published a series of letters defending his teacher. In one of such letters Ferrari retorts against Tartaglia the accusation of plagiarism, by assuming that he has taken the entire de Nemore's treatise without citing it:

> Since more than a thousand errors of the first books of this your work, you have also placed in the eighth book Jordanus's propositions as your own, without any mention of him: what screaming theft. And making demonstrations of your head, which mostly do not conclude, you make Illustrious Signor Don Diego Mendozza to confess with great shame some things, that I certainly (because I in part know his great doctrine), which he would not say for all the gold in the world. ${ }^{47}$

Here we remark that Ferrari, most surely, knew only a part of de Nemore's work, that part edited by Apianus in 1533 (de Nemore 1533) and some fragments, but he did not know the Liber de ratione ponderis (version R); nowadays we know that it

[^123]was in possession of Tartaglia (see Chap. 1) in a more complete form, containing the proof of the inclined plane law ${ }^{48}$.

To this I reply that in this case I just have to confess I do the demonstration with my head, and demonstration (as you know) is of much greater consideration, doctrine, and are more scientific and more difficult of pure proposition. Because every mathematical proposition, without its demonstration is deemed worthless for every mathematician, because the offer is easy, and every ignorant may know a proposition, but not prove it.
If, therefore, you concede me the most learned, most respected, most scientific of these propositions, and confirm that it is mine, as it is, and what it is not dishonest to say these propositions to be mine, and as my order has no relationship with that of Jordanus, and each time one composes a work with a different order than that of another author even if the substance, or the content, were almost the same, without any criticism can he call his this work, because the ability of man to compose depends more on the order than on the difficulty of the subject. Now tell me, how many parts Johannes Regiomontanus removed from the Almagest of Ptolemy, without mentioning the author, but to have exposed them in a way, or order different from that of Ptolemy, it is e permitted to attribute such a thing to him. But how many more particularities took your Lord Hieronimo Cardano from Frate Luca [Pacioli], and Giorgio Valla and inserted them in his practice of Arithmetic [...]. Secondly for having largely expanded of Definitions, Petitions, and Propositions, and having he purpose to extend it much more in the future if death does not stop my drawings. Third for demonstrations are mine and not of Jordanus, you could say I had to refer to the Author the little part that I borrowed from Jordanus. I answer that if I mentioned him I had to accuse him of no small obscurity in propositions, as in the demonstrations, as any intelligent person can understand, what did not seem useful to me. ${ }^{49}$

[^124]Tartaglia's defence consists substantially in sustaining the idea that in a mathematical treatise the manner of exposition is at least as important as the content. Moreover, that it is not sufficient to present a list of theorems; their proof is most important. The first claim is justified with the example of Regiomontanus (Regiomontanus 1972) and Cardano himself, who wrote important treatises working out matter drawn from other authors. The second claim is less convincing because, since the time of the ancient Greeks, exposition of a correct theorem was considered fundamental; its proof was only a painstaking job. It must be confessed however that in Tartaglia's time things were seen differently by some mathematicians, and the proof of a theorem was considered fundamental.

Drake and Drabkin (1969, 24), in some way, justify Tartaglia's argumentations. They think that Tartaglia cannot be blamed for having not named de Nemore. They think that because the science of weight and the role played by de Nemore were already well known and because in the edition of Euclid's Elements of 1543 Tartaglia named Jordanus de Nemore as the founder of the science of weight (Tartaglia $1569,4 \mathrm{v}$). A controversial ${ }^{50}$ argumentation was acceptable only if Tartaglia had hidden the possession of a copy of the Liber de ratione ponderis where the theorems are effetely proved with sufficient rigor.

In order to allow the reader to judge the controversy himself, we present below the main topics of de Nemore's Liber de ratione ponderis, followed by an analysis of Tartaglia's Book VIII.

3.1.2.2 The Liber de ratione ponderis

As already argued in previous sections, three texts on the science of weights attributed to de Nemore are:

1. Elementa Jordani super demonstratione de ponderibus		
(hereafter Elementa)	version E	1229
51 2. Liber Jordani de ponderibus (cum commento) (hereafter Liber de ponderibus)	version P	1533
3. Liber Jordani de Nemore de ratione ponderis (hereafter Liber de ratione ponderis)	version R	1565

On our side here we only concentrate on the third one, making reference to the Liber Iordani de ratione ponderis or simply Liber de ratione ponderis in the

[^125]Tartaglia's version posthumously published by Curtio Troiano as Iordani Opusculum de ponderositate Nicolai Tartaleae or simply Iordani opusculum (de Nemore 1565).

The Liber de ratione ponderis ${ }^{52}$ is quite a complex treatise presenting

- 7 Suppositions ("Suppositio")
- 43 Propositions ("Quaestio")

Hereinafter, we present and comment the principles, the main arguments assumed by de Nemore and finally the exposition-and-proof of a few propositions as - in our opinion - to be the most representative of the way of arguing within de Nemore's corpus of science of weights. Particularly:

- Proposition I, which gives fundaments of the science of weights.
- Proposition VI, which refers to the law of lever.
- Proposition X, which refers to the law of inclined plane.

3.1.2.2.1 The Suppositions of Liber de ratione ponderis

The first part of the Liber de ratione ponderis as proposed in Tartaglia's Iordani opusculum version (de Nemore 1565) concerns Suppositions and fundamental theorems (Propositions) about the science of weights. It starts with seven fundamental Suppositions as reported in the following Table 3.1:

Table 3.1 Jordanus de Nemore's Suppositions ${ }^{a}$
Number Proposition

I The movement of every weight is toward the centre and its strength is a power of tending downward and to resist to the contrary motion, and we can understand its strength or power from the arm length or from its velocity which is determined by the length of the balance arms. ${ }^{\text {b }}$
II That which is heavier descends more quickly.
III It is heavier in descending, to the degree its movement toward the centre is more direct.
IV It is heavier according to position in that position where its path of descent is less oblique.
V A more oblique descent is one which, in the same space, partakes less of the vertical.
VI One weight is less heavy according to position, than another, if it is caused to ascend by the descent of the other.
VII The position of equality is that of equality of angles to the vertical, or such that these are right angles, or such that the beam is parallel to the plane of the horizon
${ }^{\text {a }}$ de Nemore 1565 , 3r. The translations are ours. For the Latin original version see Transcription Chapter below. We note that the Suppositions are grouped in the first page, while the propositions are presented and discussed in several pages
${ }^{\mathrm{b}}$ According to Clagett (Moody and Clagett [1952] 1960) the emphasized part is due to Tartaglia.

[^126]The logical status of de Nemore's Suppositions cannot be framed easily in a unique scheme. Some look like principles (contemporary meaning) of empirical character (Supposition I, Supposition II), some look like definitions (Supposition $\mathrm{V})$. The Supposition I is the most complex. It contains:
(a) A principle in the contemporary meaning, i.e. an assumption about facts (Omnis ponderosi motum esse ad medium).
(b) A definition (that of 'virtus') (virtutemque ipsius esse potentia ad inferiora tendendi virtutem ipsius et motui contrario resistendi).

Suppositions III, IV, V and VI introduce the gravity of the position concept.
In Supposition III de Nemore makes a generic assertion, for which a body weighs the more, the more directly it goes towards the centre of the world. He implies that 'heaviness' depends not only on the body, but also on its possible, or virtual, motion. In Supposition IV the meaning of Supposition III is specified, with introduction of the locution gravitas secundum situm - gravity according to position (de Nemore 1565 , 3 r, see also arguments on that, 4rv) a body is heavier than another, by position, when its descent is less oblique.

It is then stated precisely when a motion is less or more oblique in Supposition V: a direction is more oblique than another when it is closer to the horizon. This is in clear contrast to the modern use of the term obliquity, but which is coherent with de Nemore's ideas for which the reference direction is the vertical one.

Supposition VI on the one hand can be seen as a definition of 'less heavy', on the other hand it describes a factual situation, the rising of a less heavy body caused by a more heavy body. We note that Supposition VI makes it clear that de Nemore would consider a weight to be able to raise another weight and then to act as a motive power. However, in de Nemore's treatise it is never explicitly stated that both weights suspended from the end of a balance tend to go down. It appears that as a body is pushed up it loses its heaviness. It is not clear if this corresponds to de Nemore's philosophical conception or if it is simply due to his difficulty in quantifying the tendency of bodies to move downwards.

The same holds for Supposition VII, which on the one hand can be seen as a definition of equilibrium and on the other hand as a factual situation representing equilibrium.

In de Nemore's Suppositions there are some keywords which deserve a special comment because their meaning is not so easy to grasp:

- Gravis
- Ponderosus
- Velocitas
- Virtus
- Gravitas Secundum Situm

For sake of brevity, we only comment the last two keywords virtus ${ }^{53}$ and gravitas secundum situm, which have a particular importance for our aims.

[^127]The epistemological interpretation of virtus is quite a delicate subject. One is tempted to associate virtus with force. There are, however, reasons not to do this. The most important is that virtus, besides the tendency to go downward, represents the resistance to go upward. In the De ponderoso et levi, the term virtus is connected to velocity, at least for the motion according to nature:

Bodies are equal in virtue when their motions are equal in equal times and equal spaces in the same air or water. ${ }^{54}$

Nothing is instead said for the motion against nature.
The Supposition I, which explicitly asserts that the weights are not free but are suspended from a balance, proposes a method to evaluate the virtus: virtus is measured [calculated] by velocity.

De Nemore does not explain what causes the virtus, but his use of a unique term for both motions against and according to nature, should indicate he is thinking of a unique cause. A modern term to translate virtus could be heaviness, but this would create ambiguities. For this reason in what follows, virtus will often not be translated, or in some cases, it will be translated as strength or force.

Concerning the concept of gravity of position, it can be said that there is widespread agreement among historians (Clagett 1952; Duhem 1905) that it is partially derived from Problemata mechanica, as evident from the Suppositions, particularly from Supposition III (Table 3.2). Moreover, this conclusion would be also supported by the preface of Liber Jordani de ponderibus (version P). In fact, this preface does not start directly with the Suppositions - as the other treatises attributed to de Nemore do - but presents an ample discussion from which we refer to the outstanding points:

It is therefore clear that there is more violence in the movement over the longer arc, than over the shorter one; otherwise the motion would not become more contrary (in direction) Since it is apparent that in the descent (along the arc) there is more impediment acquired, it is clear that the gravity is diminished on this account. But because this comes about by reason of the position of the heavy bodies, let it be called positional gravity in what follows. For in reasoning in this way about motion, as if the motion were the cause of heaviness or lightness, we conclude, from the fact that a motion is more contrary (in direction) that the cause of this contrariety is more contrary - that is, that it contains a greater element of violence. For if a heavy body descends, this occurs by nature; but that its descent is along a curved path, is contrary to its nature, and hence this descent is compounded of the natural

[^128]and the violent. But since, in the ascent of a weight, there is nothing due to its nature, we have to argue as we do in the case of fire, because nothing ascends by nature. For we reason concerning the ascent of fire, as we do concerning the descent of a heavy body; from which it follows that the more a heavy body ascends, the less positional lightness it has, and therefore the more positional gravity. ${ }^{55}$

Besides the consideration of motion along an arc of a circle with different radii, one should make note of the explicit introduction of the locution gravitas secundum situm (See Figs. 3.8a and 3.8b).

[^129]
OPVSCFLYMDE

Quaftio Secunda .

Quum zquilibrisfuit pofitio sequalis zequis ponderibus appenfis $a b$ zqualitate non difcedet $: \& f$ fi a reetitudine feparatur, ad xqualitatis fitum reuertetur. Síuero in xqualia appendantur, ex parte grauioris ufque addirectionem declinare co getur.

Figura a Nicolao de Tartaglijs inftruffa.

A
Equilibris dicitur quando à centro circumuolutionis brachia regule fant iqualia. Sit ergocentrum a, , σ regula b, $a_{c}, c_{2} a p=$ penja b, © c, perpendiculum f, a. Cin cunduEfo igitar criculo per b, if c, in mediocuius inferioris medietatis. fit e,maniféstmm quoniam defcenfus tamb,quàm c, e, per circunferétiam. circuliuerfuse, © cum aque obliquas fit binc inde defcenfus, qua fint aque ponderofa, non mutabit alterutrum . Ponaturitem quod fubmittatur ex parse b, 心 afcendat ex par tec, dico quoniam redibit ad squalitatem : if enim minus obliquas defcenfus a, ad aqualitatem, quàm a, b, nerfuse. Sumantur erim forfum ar cus aquales, quantumhibst paruiqui fint $c, d, \cdots b, b, \notin d u d i s l i n e i s ~ a d e-$ quidiFantiam equalitatis, qua \int int, $c, 2, l, \leftrightarrow d, m, n .1 t e m b, K, b, 6 y, t$, di mittatter orthogonaliter defcendens diametram qua fit $f, 2, m, a, K, y, c$, crit quiòd $2, m$, maior $K, y, q u i a f i m-$ pto uerfus f, arcu ex eo quod fit aqua lis c, d, è duCla ex tranfuerfo linea $x, r, s, e r i t t r, 2$, minor $2, m$, quòd fatile demonstrabis. Et quia $r, 2$ est aqualis K, y, erit $2, m$, maior K, γ. Quia igitur quilbet arcus fub c, plus ca-
 *v ideo in altiori fitu grauius erit c, quìm b, redibit ergo ud aqualitatem.

Fig. 3.8a Plates from Iordani opusculum de ponderosidate on the Gravitas secundum situm (de Nemore 1565, 3v. Note that a figure is remarked as "Figura à Nicolao constructa [Figures drawn by Niccolò Tartaglia]". See also below transcriptions and translations, Chap. 4)

$$
\text { PONNEROSTTATE. } 4
$$

Sit item b, grauius, quim c, © ponantur aqualiter, quia ergo ntrobique ef aque obliquius defcenjus pazet, quia b, defcéditi. Ponatur etiams b;inferixs, ut liber, ©f, c superius: di co quòd etiam in boc fitu erit grawins b, dimittant enim dire ita linee $c, d, \notin b, b$, © contingentes crrculü fint $b, 1, c, m$, , σ fit arcus c, z, fimilis, © aqualis, ev in eodem fith cum arcu b,e,quem Ǵ linea c, m, contis get. Et quia obliquitas arcuam b, e_{3}
 wel c, z,est angudus d, c, z, ef obliquitas arcus, c, e, eft in angulo d, c, m, arque proportio anguli d, c, z, ad angulum $d, c, m, e f t$ minor qualibet proportione, qua eft inter maiorem, \& mnorem quarntutatem. Minor ét erit,quàm ponderis b_{3} ad pondust. Quomodo ergo plus addat b, fuper c, quàm obliquitas super obliquitantem graxius erit b, in boc fitw, quaim $c_{0} b_{\text {ac }}$ rationem non definet b, defcen dere, or,, , afcendere, sfque f, e, q.

> Quaftio Tertia.

Figura à Nicolao confitulaz.

Omne pondus in quamcunque partem difcedae ab zqualitate fecundum fitum fit leuius.

BVpra enim locum aqualitatis duo loca fignentur fuper. \uparrow infra, ćrab omnibus arcus refecentur ab inferiore aquales, ut libet parni, ef qui est jubloso aqralitatis plus capiet de dirceio.

Fig. 3.8b Plates from Iordani opusculum de ponderosidate on the Gravitas secundum situm (de Nemore 1565, 4r)

The gravity position concept is a crucial one, but it is not easy to word. In fact, for downward motion, with a little forcing, the gravity of position can be represented by the product of the weight (p), considered as a force, and the (virtual) velocity of sinking (v), mathematically $p v$, that is it is essentially what the Arabic mechanics did (Capecchi 2011). It is difficult to say whether de Nemore would recognize himself in this representation. In effect, he never gives a mathematical expression to gravity of position. For him it remains a qualitative concept, defined by the more or the less, which is useful to prove certain assertions but not to furnish mathematical laws. When he needs a mathematical law he used a different approach.

3.1.2.2.2 The Propositions of Liber de ratione ponderis

In the following Table 3.2 we present the propositions of the Liber de ratione ponderis in the Tartaglia's Iordani Opusculum version (de Nemore 1565) and, particularly, we comment Proposition I:

Table 3.2 Jordanus de Nemore's propositions ${ }^{\text {a }}$

Number	Proposition
I	Among any heavy bodies, the strengths are proportional to the weights.
II	When the beam of a balance of equal arms is in the horizontal position, then, if equal weights are suspended from its extremities, it will not leave the horizontal position; and if it is moved from the horizontal position, it will revert to it. But if unequal weights are suspended, the balance will fall on the side of the heavier weight until it reaches the vertical position.
III	In whichever direction a weight is displaced from the position of equality, it becomes lighter in position.
IV	When equal weights are suspended from a balance of equal arms, inequality of the pendants by which they are hung will not disturb their equilibrium.
V	If the arms of the balance are unequal, then, if equal weights are suspended from their extremities, the balance will be depressed on the side of the longer arm.
VI	If the arms of a balance are proportional to the weights suspended, in such manner that the heavier weight is suspended from the shorter arm, the weights will have equal positional gravity.
VII	If two oblong bodies, wholly similar and equal in size and weight, are suspended on a balance in such manner that one is fixed horizontally onto one arm, and the other is hung vertically, and so that the distance from the axis of support to the point from which the vertically suspended body hangs, is the same as the distance from the axis to the mid point of the other body then they will be of equal positional gravity.
VIII	If the arms of a balance are unequal, and form an angle at the axis of support, then, if their ends are equidistant from the vertical line passing through the axis of support, equal weights suspended from them will, as so placed, be of equal heaviness.
IX	Equality of the declination conserves the identity of the weight.
X	If two weights descend along diversely inclined planes, then, if the inclinations are directly proportional to the weights, they will be of equal strength in descending.

[^130]Proposition I and the law of virtual displacement.
Proposition I is the most important proposition of the Liber de ratione ponderis because from it nearly all other propositions - as typical of a deductive axiomatic structure - can directly be proved. Its delicacy is highlighted by the fact that different accounts of it are given as shown in Table 3.3. The statements of versions E and version P are substantially the same version (also in the Latin language) but differ from that of version R in two important aspects (Ivi):

1. Versions E and P refer to the relation between weight and velocity rather than to weight and virtus.
2. Versions E and P explicitly consider both the downward and upward motions.

Table 3.3 The different accounts of Proposition I

Version E	Version P
The proportion of the velocity of descent,	Between any two heavy bodies, the proper
among heavy bodies, is the same as that of	velocity of descent is directly proportional to weight, taken in the same order, but the
the weight, but the proportion of descent and proportion of the descent to the contrary ascent of the contrary movement of ascent is the is the inverse proportion.	inverse. ${ }^{\text {a }}$

Version R
Among any heavy bodies, the strengths are proportional to the weights. ${ }^{\text {c }}$
a"Inter quaelibet duo gravia est velocitas in descendendo proprie, et ponderis eodem ordine sumpta proportio, descensus autem, et contrarii motus, proportio eadem sed permutata" (Moody and Clagett [1952] 1960, 155).
b"Inter quaelibet gravia est velocitas in descendendo et ponderis eodem ordine sumpta proportio, descensus autem, et contrarii motus, proportio eadem sed permutata" (Moody and Clagett [1952] 1960, 128).
c"Inter quaelibet grauia est virtutis et ponderis eodem ordine sumpta proportion" (de Nemore $1565,3 \mathrm{r}$)

Considering an epistemological point of view, one could say that substitution of the term strengths in version R with the term velocity was made to allow a unitary treatment of upward and downward motions, because the concept of strength is effetely independent from the versus of motion. However, a reading of the text does not confirm that point, because, as in versions E and R, the velocity and weight are related directly also here. We conjecture that de Nemore was unsatisfied with the previous versions, but, at the same time, his rephrasing was not completed for unknown reasons. In the following we see the proof of Proposition I as proposed in version R (See Fig. 3.9):

Fig. 3.9 Displacements of bodies in Jordanus de Nemore's Proposition I (Redrawn from de Nemore 1565, 3r)

Proposition I

Among any heavy bodies, the strengths are proportional to the weights.
Consider weights $a b, c$, of which c is the lighter and $a b$ descend to d, and let c descend to e. In the same way let $a b$ be raised to f, and c to h [Fig. 3.9]. I then say that the proportion of the distance $a d$ to the distance $c e$, is as the weight $a b$ is to the weight e, indeed the velocity of descending is as great as the strength of the heavy body. But the strength of the compound is composed of the strengths of its components. Let a then be equal to c, so that the strength of a is the same as that of c. If instead the ratio of $a b$ to c is less than the ratio of the strength to the strength, the ratio of $a b$ to a will similarly be less than the ratio of the strength of $a b$ to the strength of a, and therefore the ratio of the strength of $a b$ to that of b will likewise be less than that of $a b$ to b, for (proposition) 30 of fifth book of Euclid (Tartaglia 1543a, b, c, d, e, 104-105), what is absurd. Therefore the ratio of weights will be both greater and less than the ratio of strengths. Since this is absurd, the proportion must be the same in both cases, hence $a b$ is to c, as [the distance] $a d$ is to [the distance] $c e$, and conversely as [the distance] $c h$ is to [the distance] $a f{ }^{56}{ }^{5}$

[^131]The first part of the above passage proves Proposition I as formulated in version R ; the second part proves what is added in versions E and P . The text makes quite a direct reference to Suppositions I and II and an indirect reference to Supposition III, by assuming vertical paths of weights instead of circular. According to Suppositions I and II, de Nemore can assume that virtus grows with weight; he goes ahead and assumes also the additivity with respect to weight. Additivity is assumed explicitly:

But the strength of the compound is composed of the strengths of its components. ${ }^{57}$
It is assumed implicitly when de Nemore affirms that the strength of the portion of $a b$ equal to c equals that of c; this means also that posit $c=a$, the residual part of the virtus is that of $a b-c=b$.

The final part:
[...] hence $a b$ is to c, as [the distance] $a d$ is to [the distance] $c e$, and conversely as [the distance] $c h$ is to [the distance] af. ${ }^{58}$
is a simple corollary and - by relating strength and velocity - states the proportionality between weight and velocity for the downward motion:
[...] hence $a b$ is to c, as [the distance] $a d$ is to [the distance] $c e,[\ldots] .{ }^{59}$
and the inverse proportionality for upward motion:

$$
[\ldots] s \text { [the distance] } c h \text { is to [the distance] af }[\ldots] .^{60}
$$

The proof consists of a reductio ad absurdum. If one supposes, says de Nemore (de Nemore $1565,3 \mathrm{r}$), that the proportionality between strength and weight be not direct but the ratio of weight to weight is less than the ratio of strength to strength. Then, with p (.) that means strength, using a modern notation, it follows:

$$
\frac{(a+b)}{a}<\frac{[p(a+b)]}{p(a)}=\frac{[p(a)+p(b)]}{p(a)}
$$

De Nemore continues by adding that for Proposition 30 of the Vth book of Euclid's Elements ${ }^{61}$ it is also valid that

$$
\frac{(a+b)}{b}>\frac{[p(a)+p(b)]}{p(b)}=\frac{[p(a+b)]}{p(b)} .
$$

[^132]Shortly, at the same time the ratio of weight to weight is both less and greater than the ratio of strength to strength, which is absurd; then the assumption that the ratio of weight to weight is less than the ratio of strength to strength should be denied.

The proof appears clearly circular to a modern reader and then inconsistent, because it assumes what is to be proven (Brown 1967, 208). The fact that de Nemore did not consider additivity and proportionality as equivalent notions, as they would be for modern mathematicians, is probably due to his lack of familiarly with the algebraic calculus.

The conclusion that weight and velocity (space) are proportional is too hasty, probably because de Nemore had modified the enunciation of Proposition I in versions E and P to arrive quickly at R and he may have not finished his work, deferring the discussion of the ratio of strength to velocity to a subsequent (not yet existing) proposition.

Concerning upward motion, de Nemore's text leaves one still more bewildered because of its terseness. Indeed, upward motion is only mentioned in the final sentence: "hence $a b$ is to c, as [the distance] $a d$ is to [the distance] $c e$, and conversely as [the distance] $c h$ is to [the distance] af" (de Nemore 1565, 3r) where $c h$ and $a f$ are upward motions.

Now, if the proof of Proposition I (See Fig. 3.10) leaves one unsatisfied, its conclusion is, however, clear. In the downward motion velocities, or equivalently distances, covered in an assigned time $a d$ and $c e$, are proportional to weights $a b$ and c respectively; in the upward motion, distance covered in an assigned time, $a b$ and $c h$, are inversely proportional to weights $a b$ and c respectively. We repeat that these conclusions, particularly the one concerning upward motion, makes sense only when the weights are thought to be suspended from the arms of a balance, where the weight which sinks from one side raises the weight on the other side. Moreover, if the sinking weight which acts as a motive power, is deemed unchanged, at the same distance and with constant velocity, the result of Proposition I can be formulated by asserting that what can raise p at one height h can raise p / n at one height n / h. This is a particular expression of the law of virtual displacements (Pisano 2015b; Capecchi 2011).

Fig. 3.10 Plate from de Nemore 's Proposition I in a manuscript of the XIII century (de Nemore, 13th. Ms. Auction F. 5.28, 125v-133r. The Oxford Bodleian Library, U.K)

Based on the virtual work law (Pisano 2015b) implicit in Proposition I, it was not difficult for de Nemore to give proofs of the law of the lever and of the law of the inclined plane. As they are very similar for the sake of space we report only the proof regarding the lever:

Proposition VI

If the arms of a balance are proportional to the weights suspended, in such manner that the heavier weight is suspended from the shorter arm, the weights will have equal positional gravity.
Let the balance beam be $a b c$ [See Fig. 3.11], as before, and the suspended weights a and b; and let the ratio of b to a be as the ratio of $a c$ to $b c$. I say that the balance will not move in either direction. For let it be supposed that it descends on the side of b; and let the line dce be drawn obliquely to the position of $a c b$. If then the weight d, equal to a, and the weight e equal to a are suspended, and if the line $d g$ is drawn vertically downward and the line $e h$ vertically upward, it is evident that the triangles $d c g$ and $e h c$ are similar, so that the proportion of $d c$ toce is the same as that of $d g$ to $e h$. But $d c$ is to $c e$ as b is to a; therefore $d g$ is to $e h$ as b is to a. Then suppose $c l$ to be equal to $c b$ and to $c e$, and let l be equal in weight to b ; and draw the perpendicular $l m$. Since then $l m$ and $e h$ are shown to be equal, $d g$ will be to $l m$ as b is to a, and as l is to a. But, as has been shown, a and l are inversely proportional to their contrary (upward), motions. Therefore, what suffices to lift a to d, will suffice to lift l through the distance LM. Since therefore l and b are equal, and $l c$ is equal to $c b, l$ is not lifted by b; and consequently a will not be lifted by b, which is what is to be proved. ${ }^{62}$

Fig. 3.11 The proof of the law of lever in the Proposition VI (Redrawn from de Nemore 1565, Quaestio sexta, 5r)

[^133]The proof is clear enough, except for some prolixity when showing the similitude of triangles. For the sake of brevity, de Nemore substantially claims that,
> if we suppose the balance is not equilibrated and rises on the left, but this is impossible (absurd) because, for Proposition I, a weight a in d is equivalent to a weight b in l symmetric to b, and the balance should behave as a balance with equal arms and weight, which is in equilibrium because of the symmetry of the configuration.

Finally let us note that the equilibrium is proved in an indirect way. The weight a is not compared directly with weight b but is reduced to the weight l equivalent to it, hanging from the same side of the balance. At this point we make the comparison between weights on the opposite side of the balance, and the equilibrium is deduced from reduction to the absurd.

3.1.2.3 The Structure of Book VIII

3.1.2.3.1 On the Roots of Notional Elements in Tartaglia's Corpus

Just before focusing on the chore of studying Book VIII, and after his criticism of Aristotelian accounts on balances of Book VII (Tartaglia 1554, Book VII) Tartaglia - on request by his interlocutor Mendoza - argues on the logical status of his science of weights:
[Question I] Sir Ambassador [Mendoza]. Now, Tartaglia, I want you to start explaining in due order that Science of Weights of which you spoke to me yesterday. And since I know that it is not a simple science in itself (there being no more than seven liberal arts), but rather that it is a subordinate science [emphasis added] or discipline, I want you first to tell me from which others it is derived. ${ }^{63}$

Tartaglia replies, asserting that the science of weights, as well as mechanics, is a mixed science, as he has already argued and more in depth in Book VII:
[Question I] N. Sir, part of this science is derived from geometry and part from natural philosophy; for part of its conclusions are demonstrated geometrically and part are tested physically, that is, through nature. ${ }^{64}$

According to Tartaglia, to proceed in an orderly fashion, it is necessary to follow the approach of a geometer. The first step is to establish the meaning of some terms and ways of speaking, i.e., to give definitions:
[Question III] N. To proceed in an orderly fashion, we shall today define only some terms and ways of speaking that occur in this science, in order that your Excellency will more easily apprehend the fruit of the understanding of this. ${ }^{65}$

[^134]In this part of Book VIII, by introducing definitions Tartaglia is closer to Euclid's approach to science than Aristotle's. Euclid indeed used to distinguish clearly between definitions, petitions, and principles. Aristotle (like de Nemore) considered both definitions and evident assertions as principles.

Moreover, Tartaglia does not distinguish the nature of definitions as typical in the scholasticism between real (which, in the form given to them by Aristotle, state the essence of definendum) and nominal (whereby the definition of a thing is furnished by already known terms and concepts) ${ }^{66}$ and mixes both of them.

After the definitions, the principles of the science should be introduced, i.e.:
[Question III] N. [...]. Then, tomorrow, we shall proceed to state the principles of that science, that is, those things which cannot be demonstrated in the science; or as your Excellency knows, every science has its indemonstrable first principles, which, being conceded or assumed, afford the means to discuss and sustain the whole science. ${ }^{67}$

There are different ways mathematicians assume principles according to Tartaglia (1554, Book VIII, 84v). We collected them in the following Table 3.4. Of these ways Tartaglia declares to prefer the last way and decides to assume his principles as petitioni.

Table 3.4 Different ways to assess a principle in a science

Dignità (as Greek axiom)	Suppositioni (as Hypotheses)	Petitioni (as Postulates)
"[...] they prove other	"[...] they are supposed to be	"[...] if we wish to debate such a
propositions but cannot be	true in the given science"."	science and sustain it with demon- proved from others".
Strations, we must first request		
Self-evident and accepted by all for all sciences.	Statements which are self-	evident.
Statements requested to be accepted by the adversary even if		
he does not share completely them.		

${ }^{\text {a }}$ Tartaglia (1554, Book VIII, Q XXI, 84v)

Based on previous notes concerning the lack of a strictly axiomatically ${ }^{68}$ organization of the theory in Tartaglia's Quesiti (see Chap. 1) the interpretation of Table 3.4 may be questionable, at least for the meanings we have attributed to dignità and supposition (Ibidem). In the Middle Ages dignità (dignity) ${ }^{69}$ often meant common principles, i.e., self-evident principles common to all sciences. From here Drake and Drabkin's choice to translate dignità with Greek axiom

[^135](Drake and Drabkin 1969, 116). However, in the Euclide Megarense Tartaglia uses the term dignità as equivalent to Suppositioni:

Before we proceed far away we have to notice that the first principles of each science cannot be known by demonstration, and no science must prove his principles, because this would lead to a process with no end. But such principles are known by the intellect through senses, for the beginning of any our knowledge comes form senses, and by means of them [the first principles] the whole science is proved and sustained; and they are said principles of that science for they prove others and cannot be proved by others in such a science; and these first principles of science are called petitions by some; others say dignities, namely suppositions. ${ }^{70}$
and this creates some embarrassment in judging the meaning he gives to the term in the Quesiti et invention diverse. In the Nova scientia Tartaglia introduced the term commons sentences, to indicate shared suppositions (Tartaglia 1537, Book I, 11v-12r; see Chap. 1).

In the mathematics and philosophy of the Middle Ages, Suppositioni is used in two ways, both of which consider them as necessary foundations:

1. The first way treats Suppositioni as propositions that are self-evident.
2. The second way, following Aristotle in his Analytica posterior, qualifies them as hypotheses, i.e., propositions that are accepted both by the supporter (magister) and the opponent (disciple) and could possibly be justified by a superior science. ${ }^{71}$

3.1.2.3.2 The Definitions of Book VIII

The following Table 3.5 reports the Definitions of Book VIII of Quesiti et inventioni diverse, compared with those of the medieval treatises on the science of weights that Tartaglia knew.

[^136]Table 3.5 Tartaglia's Definitions versus Medieval Tradition
Tartaglia's Definitions Medieval Definitions

I Bodies are said to be of equal size when they occupy or fill equal spaces. ${ }^{\text {a }}$
II Similarly the bodies are said to be of different or unequal size when they occupy or fill different or unequal spaces, and greater means that which occupies more spaces. ${ }^{\text {c }}$
III [...] a heavy body is understood and assumed that power [virtus] which it has to tend or go downward, as also to resist the contrary motion which would draw it upward. ${ }^{\text {f }}$

IV Bodies are said to be of equal virtus or power when in equal times they run through equal spaces. ${ }^{\text {h }}$
V Bodies are said to be of different virtus or power when in different times they move through equal spaces, or when in equal times they traverse unequal intervals. ${ }^{j}$
XII A body is said to be more or less heavy in descent than another when the straightness, obliquity, or pendency of the place or space where it descends makes it descend more or less heavy than the other, and similarly more or less rapidly than the other, though both are simply equal in heaviness. ${ }^{1}$
XIII A body is said to be positionally more or less heavy than another when the quality of the place where it rests and is located makes it heavier [or less heavy] than the other, even though both are simply equal in heaviness. ${ }^{\mathrm{m}}$
XIV The heaviness of a body is said to be known when one knows the number of pounds, or other named weight, that it weighs. ${ }^{\text {o }}$
XVII The descent of a heavy body is said to be more oblique when for a given quantity it contains less of the line of direction, or of straight descent toward the centre of the world. ${ }^{\text {q }}$
${ }^{\text {a}}$ Tartaglia (1554, Book VIII, Q IIII, Definition I, 83r)
${ }^{\mathrm{b}}$ De ponderoso et levi, Supposition I (Moody and Clagett [1952] 1960, 27)
${ }^{\text {c }}$ Tartaglia (1554, Book VIII, Q XV, Definition XII, 84r)
${ }^{\mathrm{d}}$ De ponderoso et levi, Supposition II (Moody and Clagett [1952] 1960, 27)
${ }^{\mathrm{e}}$ De ponderoso et levi, Supposition III (Moody and Clagett [1952] 1960, 27)
${ }^{\mathrm{f}}$ Tartaglia (1554, Book VIII, Q VI, Definition III, 83v)
${ }^{\mathrm{g}}$ Iordani opusculum de ponderositate (de Nemore 1565, 3r)
${ }^{\text {h }}$ Tartaglia (1554, Book VIII, Q VII, Definition IIII, 83v)
${ }^{\mathrm{i}}$ De ponderoso et levi, Supposition IV (Moody and Clagett [1952] 1960, 27)
${ }^{\mathrm{j}}$ Tartaglia (1554, Book VIII, Q VIII, Definition V, 83v)

Table 3.5 (continued)
${ }^{\mathrm{k}}$ De ponderoso et levi, supposition V (Moody and Clagett [1952] 1960, 27)
${ }^{1}$ Tartaglia (1554, Book VIII, Q XV, Definition XII, 84r)
${ }^{\mathrm{m}}$ Tartaglia (1554, Book VIII, Q XVI, Definition XIII, 84r)
${ }^{\mathrm{n}}$ Iordani opusculum de ponderositate (de Nemore 1565, 3r)
${ }^{\circ}$ Tartaglia (1554, Book VIII, Q XVII, Definition XIIII, 84r)
${ }^{\mathrm{p}}$ De insidentibus in humidum, Definition V (Moody and Clagett [1952] 1960, 41)
${ }^{\mathrm{q}}$ Tartaglia (1554, Book VIII, Q XX, Definition XVII, 84r-84v)
${ }^{\mathrm{r}}$ Iordani opusculum de ponderositate (de Nemore 1565, 3r)
Tartaglia's definitions, as typically at that time, are partly of nominal type and partly of real type (in modern terms). The former ones give a name to the association of other names, and the latter define the essence of the object to be defined. For example, consider the previous Definition III (see Table 3.6). It concerns the term/concept virtus (power); analyzed according to the modern conception of an axiomatic theory, then it does not appear as a definition of nominal type. In fact, it is composed of three different sentences, 1,2 , and 3 , as in the following:

Table 3.6 Tartaglia's Definition III

Definitions III	Elementary propositions	Epistemological interpretation
$[\ldots]$ a heavy body is understood	1. A body tends to go downward.	As postulate
and assumed that power [virtus]	2. There is a cause for it, a which it has to tend or go downward, as also to resist the	power (virtus).
contrary motion which would draw it upward. ${ }^{\text {a }}$	I call this cause a power (virtus).	As an axiom

${ }^{\text {a }}$ Tartaglia (1554, Book VIII, Q VI, Definition III, 83v)

Tartaglia certainly did not follow this reasoning. He considered Definition III of real type which serves to define virtus in its essence, trying to make clear, with the help of intuition, its meaning.

Definitions IV and V seem to refer to attributing the modern term velocity to the word virtus. Thus, it rightly seems a nominal definition like:

$$
\text { velocity } \equiv \text { virtus }
$$

Nevertheless, in this case, for sure we do not want to replace virtus with velocity since the meaning of the definition changes. The association between velocity and speed is indeed a characterization of virtus as defined in Definition III. It is a postulate.

3.1.2.3.3 The Petitions of Book VIII

In the following (Table 3.7), we present a comparison between Tartaglia's Petitions and de Nemore's Suppositions in his Iordani opusculum de ponderositate (de Nemore $1565,3 \mathrm{r}$) as already collected in previous Table 3.1 (see also Table 3.4).

Table 3.7 Tartaglia's Petitions versus Nemore's Suppositions

	Tartaglia's Petitions
IWe request that it be conceded that the natural movement of any heavy and ponderable body is straight toward the centre of the world. ${ }^{\text {a }}$	
II \quadLikewise we request that it be conceded that that body which is of greater power should also descend more swiftly; and in the contrary motion, that is, of ascent, it should descend more slowly - I mean in the balance. ${ }^{\text {c }}$	
III It still it be conceded that a heavy body	

It is heavier in descending, to the degree III its movement toward the centre is more direct. ${ }^{f}$

It is heavier according to position in that IIII position where its path of descent is less oblique. ${ }^{\text {h }}$

A more oblique descent is one which, in V the same space, partakes less of the vertical. ${ }^{\text {j }}$ positionally when, by the descent of that other on the arm of the balance, a contrary motion would follow in the first; that is, the first would thereby be elevated toward the sky; and conversely. ${ }^{\text {i }}$
VI Also we request that it be conceded that nobody is heavy in itself. ${ }^{\text {k }}$

VII

de Nemore's Suppositions

The movement of every heavy body is I toward the centre [of the world] and its strength is a power of tending downward and to resist to the contrary motion, and we can understand its strength or power from the arm length or from its velocity which is determined by the length of the balance arms. ${ }^{\text {b }}$
What is heavier descends more speedily. ${ }^{\text {d }}$ II that that body which is of greater power should also descend more swiftly; and in the contrary motion, that is, of ascent, it should descend more slowly - I mean in the balance. ${ }^{\text {c }}$
III It still it be conceded that a heavy body in descending is so much the heavier as the motion it makes is straighter toward the centre of the world. ${ }^{\text {e }}$
IIII Also we request that it be conceded that those bodies are equally heavy positionally when their descents in such positions are equally oblique, and that will be the heavier which, in the position or place where it rests or is situated, has the less oblique descent. ${ }^{\text {g }}$
V Similarly we request that it be conceded that that body is less heavy than another

One weight is less heavy according to VI position, than another, if it is caused to ascend by the descent of the other. ${ }^{1}$ The position of equality is that of VII equality of angles to the vertical, either these are right angles, or the beam is parallel to the plane of the horizon. ${ }^{\text {m }}$
${ }^{\text {a }}$ Tartaglia (1554, Book VIII, Q XXII, Petition I, 84v)
${ }^{\mathrm{b}}$ de Nemore (1565, Supposition I, 3r)
${ }^{\mathrm{c}}$ Tartaglia (1554, Book VIII, Q XXIII, Petition II, 85r)
${ }^{\text {d de Nemore (1565, Supposition II, 3r) }}$
${ }^{\text {e }}$ Tartaglia (1554, Book VIII, Q XXIIII, Petition III, 86r)
${ }^{\mathrm{f}}$ de Nemore (1565, Supposition III, 3r)
${ }^{\text {g }}$ Tartaglia (1554, Book VIII, Q XXV, Petition IIII, 86v)
${ }^{\text {h }}$ de Nemore (1565, Supposition IIII, 3r)
${ }^{\mathrm{i}}$ Tartaglia (1554, Book VIII, Q XXVI, Petition V, 86v)
${ }^{\mathrm{j}}$ de Nemore (1565, Supposition V, 3r)
${ }^{\mathrm{k}}$ Tartaglia (1554, Book VIII, Q XXVII, Petition VI, 86v)
${ }^{1}$ de Nemore (1565, Supposition VI, 3r)
${ }^{\mathrm{m}}$ de Nemore (1565, Supposition VII, 3r)

3.1.2.3.4 The Propositions of Book VIII

Let us now examine the propositions. Those of Tartaglia are fourteen, those of de Nemore ten. They are compared in the following Table 3.8.

Table 3.8 Tartaglia propositions versus de Nemore's Quaestio

	Tartaglia's Propositions	de Nemore's Quaestio	
I	The ratio of size of bodies of the same kind is the same as the ratio of their power. ${ }^{\text {a }}$	Between any heavy bodies, the strengths are proportional to the weights. ${ }^{\text {b }}$	I
II	The ratio of the power of heavy bodies of the same kind and that of their speeds (in descent) is concluded to be the same; also that of their contrary motions (that is, of their ascents) is concluded to be the same, but inversely. ${ }^{\text {c }}$		
III	If there are two bodies simply equal in heaviness, but unequal positionally, the ratio of their powers and that of their speeds will necessarily be the same. But in their contrary motions (that is, in ascent) the ratio of their powers and that of their speeds is affirmed to be inversely the same. ${ }^{\text {d }}$		
IIII	The ratio of the power of bodies simply equal in heaviness, but unequal in positional force, proves to be equal to that of their distances from the support or centre of the scale. ${ }^{\text {e }}$		
V	When a scale of equal arms is in the position of equality, and at the end of each arm there are hung weights simply equal in heaviness, the scale does not leave the said position of equality; and if it happens that by some other weight [or the hand] imposed on one of the arms it departs from the said position of equality, then, that weight or hand removed, the scale necessarily returns to the position of equality. ${ }^{f}$	When a horizontal position is gained [for a balance of equal arms], then, if equal weights are suspended [from its extremities], the balance will not leave the horizontal position; and if it is moved from the horizontal position, it will revert to the horizontal position. If instead unequal [weights] are suspended, [the balance] will fall on the side of the heavier [weight] until it reaches the vertical position. ${ }^{\text {g }}$	II
VI	Whenever a scale of equal arms is in the position of equality, and at the end of each arm are hung weights simply unequal in heaviness, it will be forced downward to the line of direction on the side where the heavier weight shall be. ${ }^{\text {h }}$		

Table 3.8 (continued)

VII If the arms of the scale are unequal, and at the ends of them are hung bodies simply equal in heaviness, the scale will tilt on the side of the longer arm. ${ }^{\text {k }}$
VIII If the arms of the balance are proportional to the weights imposed on them, in such a way that the heavier weight is on the shorter arm, then those bodies or weights will be equally heavy positionally. ${ }^{m}$
IX If there are two solid rods or beams of the same length, breadth, and width, hung on a balance in such a way that one is horizontal and the other vertical, with the distances equal from the centre of the balance to the point of suspension of the latter and the centre of the former, then they will be positionally equally heavy. ${ }^{\circ}$

X If a solid rod or beam of uniform breadth thickness, substance, and heaviness in every part, and [if] its length is divided into two unequal parts, and at the end of the shorter part there is hung another solid or heavy body which makes the said rod, beam, or balance stay parallel to the horizon, then the proportion of the heaviness of that body to the difference between the heaviness of the longer part of the rod (or beam or staff) and the heaviness of the shorter part will be as the ratio of the length of the whole rod, beam, or balance to the double of the length of its shorter part. ${ }^{\text {s }}$

In whichever direction a weight is III
displaced from the position of equality, it becomes lighter according to position. ${ }^{1}$ When equal weights are suspended [with IV wires] from a balance, inequality of the wires will not determine a perturbation of their equilibrium. ${ }^{\text {j }}$
If the arms of the balance are unequal, V then, equal [weights] suspended [from their extremities], a swinging on the side of the longer [arm] is determined. ${ }^{1}$ If the [length of the] arms of a balance are VI proportional to the weights suspended, and the heavier weight is suspended from the shorter, the weights will be equally heavy according to position. ${ }^{\text {n }}$
If two oblong bodies, wholly similar and VII equal in size and weight, are hung from a balance so that the one be disposed horizontally and the other comes down vertically, so that the distance from the centre [of the balance] to extremity that descends is the same as the distance to the midpoint of the other, in this position [the two bodies] will be equally heavy. ${ }^{\text {p }}$ If the arms of a balance are unequal, and VIII form an angle at the centre of rotation, then, if their ends are equidistant from the vertical line passing through the centre, equal weights suspended fin this position will weigh equally. ${ }^{q}$
When there is a beam of a balance with XI uniform weight and thickness and the weight is assigned, by dividing it into unequal parts and an assigned weight suspended from the shorter part maintains the equilibrium, then the portion of the arms of the balance on each side of the fulcrum will be known. ${ }^{\text {r }}$

Table 3.8 (continued)
XI If the proportion of the heaviness of a solid suspended at the end of the shorter part of a similar rod (beam or balance) divided into two unequal parts, to the difference between the heaviness of the longer part and that of the shorter, shall be as the ratio of the whole length of the solid rod or staff to the double of the length of its shorter part, such solid rod (beam or staff) will necessarily be horizontal. ${ }^{\text {t }}$
XII If there is a solid rod, beam, or staff, as in the two preceding [propositions], which is similar and equal in thickness, breadth, substance, and heaviness in every part and of which the heaviness as well as the length is known, and if it be divided into two unequal parts which are also known, it is possible to find a weight which, when suspended at the end of its shorter part, will make the said solid rod, beam, or staff stay horizontal. ${ }^{\text {u }}$
XIII If you shall have a rod, beam, or staff, as often was said above, of which the length, as well as the heaviness, is known, and also a heavy body of which the weight is known, it is possible to determine the place at which the said rod, beam, or staff must be divided in order that the said heavy body, when hung at the end of the shorter part, will cause the rod, beam, or staff to remain parallel to the horizon. ${ }^{\text {w }}$
XIIII The equality of obliquity [slant] is an equality of weight [according to position]. ${ }^{x}$
XV If two heavy bodies descend by paths of different obliquities, and if the proportions of inclinations of the two paths and of the weights of the two bodies be the same, taken in the same order, the power of both the said bodies in descending will also be the same. ${ }^{\text { }}$

But if the lengths of the arms are given XII the weight will be known. ${ }^{\text { }}$

Equality of declination conserves the IX identity of weight. ${ }^{\text {y }}$

If two weights descend along diversely X oblique paths, then, if the inclinations are directly proportional to the weights, they will be of equal strength in descending. ${ }^{\text {aa }}$
${ }^{\text {a }}$ Tartaglia (1554, Book VIII, Q XXVIII, Proposition I, 87r)
${ }^{\mathrm{b}}$ de Nemore (1565, Quaestio I, 3r)
${ }^{\text {c }}$ Tartaglia (1554, Book VIII, Q XXIX, Proposition II, 87r-88r)
${ }^{\mathrm{d}}$ Tartaglia (1554, Book VIII, Q XXX, Proposition III, 88r)
${ }^{\text {e}}$ Tartaglia (1554, Book VIII, Q XXXI, Proposition IIII, 89r.)
${ }^{\mathrm{f}}$ Tartaglia (1554, Book VIII, Q XXXII, Proposition V, 89v)
${ }^{\mathrm{g}}$ de Nemore (1565, Quaestio II, 3v)

Table 3.8 (continued)
${ }^{\mathrm{h}}$ Tartaglia (1554, Book VIII, Q XXXIII, Proposition VI, 91rv)
${ }^{\text {i }}$ de Nemore (1565, Quaestio III, 4v)
${ }^{\mathrm{j}}$ de Nemore (1565, Quaestio IV, 4v)
${ }^{\mathrm{k}}$ Tartaglia (1554, Book VIII, Q XXXIIII, Proposition VII, 92v)
${ }^{1}$ de Nemore (1565, Quaestio V, 4v)
${ }^{\mathrm{m}}$ Tartaglia (1554, Book VIII, Q XXXV, Proposition VIII, 93r)
${ }^{\text {n }}$ de Nemore (1565, Quaestio VI, 5r)
${ }^{\circ}$ Tartaglia (1554, Book VIII, Q XXXVI, Proposition IX, 93v)
${ }^{\mathrm{p}}$ de Nemore (1565, Quaestio VII, 5v)
${ }^{\mathrm{q}}$ de Nemore (1565, Quaestio VIII, 6r)
${ }^{\mathrm{r}}$ Tartaglia (1554, Book VIII, Q XXXVII, Proposition X, 94v)
${ }^{\text {s }}$ de Nemore (1565, Quaestio XI, 7r)
${ }^{\text {t}}$ Tartaglia (1554, Book VIII, Q XXXVIII, Proposition XI, 95r)
${ }^{\mathrm{u}}$ Tartaglia (1554, Book VIII, Q XXXIX, Proposition XII, 95v)
${ }^{\mathrm{v}}$ de Nemore (1565, Quaestio XII, 7v)
${ }^{\text {w }}$ Tartaglia (1554, Book VIII, Q XL, Proposition XIII, 96rv)
${ }^{\mathrm{x}}$ Tartaglia (1554, Book VIII, Q XLI, Proposition XIIII, 96v)
${ }^{\mathrm{y}}$ de Nemore (1565, Quaestio IX, 6v)
${ }^{\mathrm{z}}$ Tartaglia (1554, Book VIII, Q XLII, Proposition XV, 97r)
${ }^{\text {aa }}$ de Nemore (1565, Quaestio X, 7r)

In the following Table 3.9 we make explicit the correspondences between Tartaglia's and de Nemore propositions.

Table 3.9 The correspondence of Tartaglia's propositions and de Nemore's questions

Tartaglia	I, II, III,	IIII	V, VI		VII	VIII	IX		X	XI	XII	XIII
XIIIII	XV											
de Nemore	I	II	III IV	V	VI	VII	VIII	XI	XII	IX	X	

Note the replacement by Tartaglia of the first questions with three propositions and elimination of the proposition corresponding to de Nemore's VIII. This absence is not explained by Tartaglia.

Finally, we showed how Tartaglia uses as the only principle the active one based on the concept of gravity of position. However, this, as shown above on de Nemore's Liber de rations ponderis leads to erroneous results for the angular lever. Tartaglia, who certainly knew the correct result, avoided facing the problem (see Figs. 3.12a, 3.12b, 3.13a, and 3.13b).

PRIMA SVPPOSITIO.

MNIS ponderofi motumeffe ad medium uirtutemq́; ipfius effe potentia ad inferioratendendi nirtatem ipfius, fue potentia poffumus intelligere iongitudinembrachij libra, aut uelociter eins quem probatur ex longitadine brachij libra, \& motui contrario reliftendi. Secunda : Quòd grauius eft uelocius defcendere. Tertia: Grauius effe in defeendendo quanto eiufdem motus admedium reatior. Quar$t a$: Secundum fitum grauius cffe cuius in eodé fitu minus obliquas defcenfus Quinta: Obliquiorem autem defcenfum in ea dem quantitate minus capere de directo Sexta : Minus graue aliud alio fecundum fitum, quod defcenfum alterius fequitur contrario motu. Septima: Situm eqqualitatis effe x qualitatem angulorum circa perpendiculum, fiue rectitudi nem angulorum, fiue ẹque diftantiam regula fu perficiei Orizontis.

Quxftio Prima.

Inter qualibet grauia eft uirtutis, \& ponderis codem ordine fumpta proportio.

1Int pordera a, b, c, leuius c, defcendat q; a, b, in d, er c, ine . Itaque ponatur a, b, jurfim in f, es c, i, b. Dico ergo quod que proportio a, $d, a d, c e$, ficht a, b, pon deris ad c.pondus, quanta enim uirtus ponderofi tanta defcendendu uelocitas : at que compofitisirtus ex uirtu tibus componentium componuntur. Sit ergo a, equale c. Oих igitur uirtus a,eadem ei, c. Sit igitur proportio a, b, ad c, minor quam uirtutis ad uirtutem. Erit fimiliter proportio a, b, ad a, minor proportio quim nittutts a, b, ad uirtutem $a_{\text {, ergo uirtutis }, \text {, } b \text {, ad uirtutem } b \text {, minor pro }}$ portio quàm a,b, ad b. per $30 . q u i n n t$ Euclidis quò eff in conueniens. Similium igitur ponderu:t minor, os maior proportio, quim uirtutum. Et quia boc inconuenicns erit, utrobique cadem ideo $a, b, a d c$, ficut $a, d, a d c_{2}, e_{,}$人 $e_{,}, 0 \pi$ trario ficut c b ad a f

Fig. 3.12a Plate from the initial reasoning around gravitas secundum situm by de Nemore (de Nemore 1565, Quaestio I, 3r)

0 TTRVO
 87 QVESITO. XXVIII. PROPOSITIONE

PRIMA.

SIGNOR AMBASCIATORE. Hor feguitatiTarraglia quefenofire propofitioni, ouer conclufioni confequentemente l'unadrieto all altra, er fotto breuit. NICOLO.

I
 la lor potentia éuns medefima. S. A. Datemi uno effempto. N. Sianolidui corpi.a.b. ©-.c. de uno medefimo genere, er fia.a.b. maggiore, er fa la potentia del corpo.a.b.la.d.e.er quell. de corpo.c.l..f. Hor dico che quella proportione, che $\dot{\text { c }}$ dal corpo.a.b.al.corpo.c.quell. medefima e della potentia.d.e. alla potentia.f. Et fe poßia bilecं effer altramente (per l'auerfario)/fa che ls proportione del corpo.a.b.al corpo. c. fiamenore di quelladells potentia.d.e. alla potentia.f.Hor fa delsorpo.a.b. (maga giore) comprefo una parte egusleal corpo.c.menore, quale fia la parte.d. © perche lauertu, ouer potentia del compofito é compofta dalla uertu di componenti. Siaudun= que la uertu, ouer potentia della parte.a.la.d.e la uertu, ouer potentia del refiduo.b de neceßita Jara la refante potentia.e.et perche
 la parte.a.é tolta equalal.c.la petentia.d.(per il conuerfo della. 7 . diffinitione) fara eguale alla potentia.f.e la proportione de tutto il corpo: a.b.alla fua parte.a. (per la feconda parte della. 7. del quinto di Euclide) (ara, f come quell. del medefimo corpo. a. b.al corpo.c. (per effer.a. (gual al.c.) © fimilmente laproportione dells potentia.d.e.alla potentia.f.fara, \mathcal{f} come quella della detta potentia.d. c. alla fua parte.d. (per effer la.d.egual alla.f.) Adunque la proportione de tuttoil corpo.a.b.alla fua parte. a. fara menore di quella di tutta la potentia.d.e. alla fua parte.d. Adunque euerfamente (per la.30. del quinto diEuclide)la proportione del medefimo corfo.a.b. al refduo corpo.b. fara maggiore di quella ditutta la potentia.d.e. alla reftante potentia. e. la qual cofa faria inconueniente, or contra la opinion dell'auerfario, il qual uol cle la proportione del maggior corpoal menore famenore, diquella della fua potentia alla potentia del detto menore. Rdunque deftrutto l'oppofito rimane il propofito. S. A. Sta bene,seguitati. N IC.

Q.VESITO. XXIX. PROPOSITIONE SECONDA.

LA proportione della potentia di corpi grauide uno medefimo genere, ev quella della lor uelocita(ncllidefcenfi) foconchiude effer una medefima, anchor quelo

Fig. 3.12b Plate from the initial reasoning about the gravitas secundum situm by Tartaglia (Tartaglia 1554, Book VIII, Quesito XXVIII, Proposition I, 87r)

Quxatio Dicima .
Si per dinerfarom obliquitatum uias duo pondera defcendane.fiantq́; declinationum, \& ponderum vna proportio eodemordine fump:a vaa erit utriulque uirtus in deicendendo.

SIt linea a, b, c, equed flans orizonti, wु fuper a eam ortbogonal ser ereclax fic b, 1 ,a qua defien dant binc, inde linea d, a, d, c, fit $\dot{;} ; d, c$, matoris ablaquitatis proporsone igii-r declinationum dico non angulorum, fed lmearnm ifque ad equedifinn tem re'ecationem, in qua equaliter /umunt de dire
 fit e,ad b.ficut $d, c, a d a, d$. Dico ea pödira effe rnius uirrutis in boc fitk, fit enim d, k, linea vnius abliquit atis cion d,', ve pondusfaper eam. ergo equa le eft e, que fit 6 . Si igitur pofibile eft, defcend at c, in t, © trathat h, in m, fit q; $6, n$. aquale $h, m, q u o d$ etiam equale eft e,l, © tranfest per 6. 心b, perpé
 © tunc fuper $6, b y, n, z, m, x, *$ uper l, t, erit e, r, quia igutur proportion,, ad $n, 6$, (icut ad $d, 6, d, y$, propter /imulitudinem trimgnloram, \& ideo ficut $d, b, a d d, k$, ev quia fimiliter $m, x, a d m, b, \sqrt{i}$ ut d, b, ad d_{2}. Erit propter aquale proportion.alitaté per turbxta m, x, adn n z. ficut d, $K, a d d, x$, む~ boc oft ficut 6, ad b fed quis roe, non fufficit attollere 6, in n, nec juficict attollere m, in m, fic ergo man bonnt.

Quxftio Vndecima.
Quam fit refponfa librę vnins ponderis, \&grosficiei pertorum: \& ipfa in pondere data fuper inzqualia diuidatur, atque ex parte breuiore dependeat xquabiliter pódus datum, erunt \& portiones \& regulx, qux funt a ceatro exanuinis fimiliter datz.

Fig. 3.13a Plate from reasoning around gravitas secundum situm applied to the inclined plane by de Nemore (de Nemore 1565, Quaestio X, 7r)

Abstract

© 禜 F 玉 9 （ 97

che fe pigliaremo fotto dild．ev al．e．due partiequali nelld uid，ouer lined．4．b．Hor po niamo，che l＇und flala parte．d．e．et laltrala．e．g．Dico，che perle dette parti equali cas pirs equalmente del diretto，cioe della limed．d．c．la qual cofa fe notificard in quefto mo
 do，dalli duiponti．e．er g．fano tiratele duc lineceie．b．e．er．！． perpendicolare foprala lined．a．c．et dalli dui ponti，ouer luo cbi．d．ev．e．le due linee．d．k．er．e．m．perpendicolare fopre lemedefine．e．b．ev．g．l．le qual due perpendicolare，cioc．\＆． k．ev．e．m．Jaranno fra loro equali，percbe adunque il detto corpo ponderofo，f fefendo riel ponto．d．come nel ponto．e．in quantita，oiucrdefcenfe equali，capira，equalmente del direta to，faradi unamedefima grduitain qual $/ \mathrm{L}$ uoglia de quelli，fe condo elfito；ch＇cill propofito．S．A．E uc bo intefo，feguia tate pur．N．

QVESITO XLII．PROPOSITIONE XV．

SE dui corpigraui defcendano per uie de diurrfe obliquita，ev che la proportioa ne delle declinationi delle due ue，，ov dellag grauita de detticorpi ßia fatta una mes defima，tolta per el medefimo ordine．Anchora la uirtu de luno ，e laltro de detti dut corpigraui，in el defcerpderefara una medefima．S．A．Quefta propofitione mi par belld，epero datime anchora un effempio chiaro，accio cbe meglio mipiaccia．N．Sia Ia linea．a．b．c．e equidifante al orizonte，en fopra di quella fa perpendicolarmente e $=$ rettalalinea．b．d．© dal ponto．d．de fcendano de qua，er de la le due uie，ouer linee．d．a： ©－．d．c．er fala．d．c．di maggior obliquita．Per la proportione adunque delle lor dea clinationi，non dico delli lor angoli，ma delle linee per fina alla equidiffante refecatio－ ne，in la quale equelmente fummemo del diretto．Sia adüque la lettera．e．fuppofta per un corpograue posfo fopra la linea．d．c，ev un＇altro la lettera．b．Jopra la linea．d．d． －Ja la proportione della fimplice grauita del corpo．e．alla fimplice grauita del cor po．b．ficome quella della．d．c．alla．d．a．Dicol idettidui corpi graui effer intai ptiti，os ser liochi diuna medefims uirtu，ouer potentid．Et per dimoftrar quefor，tiro la．d．K． di quella medefina obliquita，cb＇éla．d．c．er imagino un corpo graue fopra di quella equalea corpo．e．el qual pongo fal la lettera．g．ma che flain diretto con．e．b．cioe ea qualmente diftanti dalla．c．k．Hor fe poß ßibel é（per lauerfarrio）che li detti dui corpi e．ev．b．non fano diunamedefima，ev equaluirtu in tailuocbi，adunquie luno fara di insggior nirtu，ouer potentia detl＇altero，poniamo adunque，che．e．乃a di maggior uira $t u$ ，ddunque quello fard atto d difcenderc，\odot ．Imelmente d far afcendere，cioe d tirare infufo el corpo．b．Hor poniamo（fe posibel é）che il detto corpo．e．defcenda per find in ponto．l． $\begin{gathered}\text { c che faccia afcendercil corpo．h．per finin ponto．m．© faccio，ouer che }\end{gathered}$ fegno la．g．n．equale alla．b．m．la quale anchoralei uien d̀ effer equale alla．e．l．Et dal po to．g．tivola．g．b．e．la qual $/$ ara a perpendicolare foprà la．d．b．b．per effer lidettitre pona ti（ouer corpl）g．b．e．fuppofti in diretto，er equalmente distantidalla．K．c．ev fimele mente dal ponto．L．．jatiratala，l． 1 requidiffante alla，c．b．qual jarapur perpendicolare BB

Fig．3．13b Plate from reasoning around gravitas secundum situm applied to the inclined plane by Tartaglia（Tartaglia 1554，Book VIII，Quesito XLII，Proposition XV，97r，see also Quesito XLI， Proposition XIIII，86v）

Before going into the validity of the proof of Tartaglia's 15 propositions, we want to stress his ideas. Of the two possible principles of statics he found in de Nemore's writings two possible principles of statics, one based on the concept of gravity of position, the other on the capability of a weight to lift another, Tartaglia made a choice and decided to base his mechanics only on the gravity of position. This notwithstanding, he maintains traces of de Nemore's ideas, i.e., in order to state the equilibrium of a lever - or an inclined plane - he considers the equivalence of weight disposed on the same side and not on the opposite. Table 3.8 (above) compares Tartaglia's and de Nemore's propositions.

3.1.2.4 The Proofs of Propositions

3.1.2.4.1 Propositions I-IV: Gravitas Secundum Situm

Tartaglia's demonstrations of gravitas secundum situm are contained in the first four propositions (Tartaglia 1554, Book VIII, 87r-89r) and mainly consisted of clarification of the statement of de Nemore's Proposition I (de Nemore 1565, 3r) which, in any case, still remains largely unfulfilled.

In the first four (Quaestio) propositions Tartaglia undertakes to 'demonstrate' that the gravity of position of a weight, suspended from the end of the arm of a balance is directly proportional to the length of the arm, as well as the weight itself. Particularly:
I. The first Proposition ${ }^{72}$ proofs that the power of bodies of the same kind is proportional to their volume (and therefore to their weight).
II. The second Proposition ${ }^{73}$ proofs that speed is proportional to power for downward motion and inversely proportional to power for upward motion. For the transitive properties we have thus that the speed of ascent or descent is inversely or directly proportional to the weight. ${ }^{74}$
III. The third Proposition ${ }^{75}$ repeats the second one for weights with different gravity of position.
IV. The fourth Proposition ${ }^{76}$ proofs that the gravity of position of a weight on a scale is proportional to its distance from the fulcrum, and of course to the weight itself.

The proofs of these four propositions follow the same logic. In the following, we report Tartaglia's reasoning on the demonstration of Proposition I; we only brief reference the others (See Fig. 3.14).

[^137]Fig. 3.14 Relation between the ratio of sizes (A, B, C) and powers ($\mathrm{D}, \mathrm{E}, \mathrm{F}$) (Redrawn from Tartaglia 1554, Book VIII, 87r)

In Tartaglia's words:
The ratio of volume of bodies of the same kind is the same as the ratio of their power. [...] N. Let there be the two bodies $a b$ and c of the same kind; let $a b$ be the greater, and let the power of the body $a b$ be [represented by the line] $d e$, and that of the body c [by the line] f. Now I say that that ratio which the body $a b$ bears to the body c is that of the power $d e$ to the power f. And if possible (for the adversary), let it be otherwise, so that the ratio of the body $a b$ to the body c is less than the ratio of the power $d e$ to the power f. Now let the greater body $a b$ include a part equal to the lesser body c, and let this be the part a, and since the force or power of the whole is composed of the forces of the parts, the force or power of the part a will be d, and the force or power of the remainder b will necessarily be the remaining power e; and since the part a is taken equal to c, the power d (by the converse of Definition 7) will be equal to the power f, and the ratio of the whole body $a b$ to its part a (by Euclid V.7, 2) will be as that of the same body $a b$ to the body c (a being equal to c), and similarly the ratio of the power $d e$ to the power f will be as that of the said power $d e$ to its part d (d being equal to f). Therefore [by the adversary's assumption] the ratio of the whole body $a b$ to its part a will be less than that of the whole power $d e$ to its part d. Therefore, when inverted (by Euclid V.30), ${ }^{77}$ the ratio of the body $a b$ to the residual body b will be greater than that of the whole power $d e$ to the remaining power e, which will be contradictory and against the opinion of the adversary, who wants the ratio of the greater body to the less to be smaller than that of its power to the power of the lesser body. Thus, the contrary destroyed, the proposition stands. ${ }^{78}$

In Proposition I (Tartaglia 1554, Book VIII, 87r) Tartaglia assumes bodies of the same material but different size, so there is no doubt on the meaning of the proposition. He takes for granted, even if not explicitly stated in his petitions, that a heavier body has more power than a lighter. Tartaglia essentially reproduces the framework of proof of Proposition II by de Nemore, in the process making it clearer. Nevertheless, there are still some points not acceptable to a modern reader. Without specifying exactly what it is and how to measure the power of a body, Tartaglia accepts additivity: the power of a body is given by the sum of the power of its parts. Like de Nemore, he does not notice, however, that in this way he takes for granted what he wants to prove. A modern reader is baffled by the almost miraculous demonstration such as Tartaglia's, as will that of de Nemore. There is the impression that with this way of reasoning one can prove anything, for example, that beauty is proportional to size.

[^138]Tartaglia's proof of his Proposition II (Tartaglia 1554, Book VIII, 87r-88v) is based on the same reasoning. This time things are slightly clearer because the third and fourth definitions and second petition, connect somehow power and speed; in particular they suggest that there is a higher speed if there is a higher power. The first part of this proposition, that bodies fall down with speeds proportional to their size, is proved with arguments similar to that used in Proposition I. It assumes additivity of speed with power and demonstrates proportionality. In order to demonstrate the inverse relationship between power and speed, Tartaglia assumes that the resistance to upward motion is proportional to the power of the body. So that power that will barely fit in the other arm to lift the body $a b$, will be sufficient to lift faster the body C and the relationship of speed of c to $a b$ is that of $e d$ to f (See Fig. 3.15).

From Propositions I and II follows the proportionality (direct or inverse) between weight (size) and speed. The logical status of Proposition III is not clear; to a modern reader it seems an immediate consequence of Proposition II, however, a demonstration is proposed by following exactly the arguments of Proposition I.

In Proposition IIII (Tartaglia 1554, Book VIII, 89r) Tartaglia aims to quantify the concept of gravity of position, at least for bodies connected to the arms of a balance. The proof again follows the same line of argument, with some more difficulty. Tartaglia seems to make the assumption that the sum of distances corresponds to the sum of weights; which looks very strange to us.

3.1.2.4.2 Propositions V-VI: Balance with Equal Weights and Arms

Hereinafter we report an epitome of Tartaglia Proposition V (Tartaglia 1554, Book VIII, $89 \mathrm{v}-90 \mathrm{v}$) corresponding to Quaestio II of de Nemore (de Nemore 1565, 3v4 r) where he proved that a balance with equal weights and arms has the horizon as position of stable equilibrium, i.e., the balance recovers its horizontal position when removed from it for any reason. This proposition has been carefully considered before and after Tartaglia, and its conclusion, in Thabit's footsteps (Capecchi 2011) that the balance returns to its horizontal position when removed (stable equilibrium) was according, to the various authors, confirmed or denied. For instance:

- Tartaglia agrees with de Nemore.
- Benedetti claims (Benedetti 1585, 148) for unstable equilibrium (balance assumes the vertical position under perturbation of the horizontal one).
- del Monte (del Monte 1615, 36) is for indifferent equilibrium (balance stays where it is left).

This last position is that accepted by modern mechanics.
The problem could not be solved empirically in the Middle Ages and the Renaissance for various reasons: the use of systematic experiments to verify a theory was not established, the presence of imperfection (inequality on masses, friction) made any conclusions difficult, etc.

Tartaglia's reasoning reproduces quite exactly that of de Nemore. Below an extended quotation:

For the second part, let there be also the scale $a c b$ of equal arms, and at its extremities let there also be hung the two bodies a and b, simply equal in heaviness, which scale by the reasons adduced above will stand in the position of equality as appears in the figure. Now the arm $a c$ having been driven down by hand or by the imposition of some weight on the body a, if we take away the hand or weight, the arm will rise again and return to its first position of equality. ${ }^{79}$

The proof consists in showing that, in a balance removed from its horizontal position (Fig. 3.15), the weight that is lower than a has a gravity of position lower than that of the weight that is higher than b. Consequently, as b prevails over a, the balance rotates to recover the horizontal position.

And to assign the immediate cause of that effect, let there be described about the centre c the circle aebf for the journey that the two bodies will make in rising or falling with the arms of the scale; and draw the line of direction $e f$, and divide the arc $a f$ into as many equal parts as you like (say, into four parts at the three points ${ }^{80} q, s, u$; and into as many parts divide the arc $e b$ at the three points i, l, n; and from the said three points i, l, n draw the three lines $n o, l m$, and $l k$ parallel to the position of equality, that is, [parallel] to the diameter or line $a b$, which [three lines] shall cut the line of direction $e f$ at the three points x, y, z. Similarly, from the three points $q, \mathrm{~s}, u$ are drawn the three lines $q p, s r$, and $u t$, also parallel to the same line $a b$, which shall cut the same line of direction ef at the three points w, ρ, k. And now let the body a be depressed by hand (or by the imposition of some other weight) to the point u, and the other body b (opposite to that) will be found to be raised with contrary motion to the point i. Now with things arranged this way, we have come to divide the whole descent $a u$ made by the body a in descending to the point u into three equal descents or parts, which are $a q, q s$, and $s u$; and similarly the whole descent $i b$ which the body b would make in descending or returning to its original place (that is, the point b) will come to be divided into three equal descents or parts which are $i l$, $l n$, and $n b$; and each of these three-plus-three partial descents includes one part of the line of direction; namely, the descent from a to q partakes of or contains the part $c w$ of the line of direction, and the descent $q s$ contains the part $w j$, and the descent $s u$ contains the part $j d$, and the other descent that remains to the said body a, that is, the descent $u f$ contains the line or part de. Likewise the descent of the body b from the point i to the point l contains the part $x u$ of the same line of direction, and in the descent from the point l to the point n it contains the part $y z$, and from the point n to the point b it contains the part $z c$, and all these parts are unequal; that is, the part $c z$ is greater than $z y$, and $z y$ is greater than $y x$, and $y x$ than $x e$; and similarly the part $c w$ is greater than the part $w j$, and $w j$ than $j d$, and $j d$ than $d f$, and all this can be easily proved geometrically; and also the part $d f$ can be proved equal to the part $e x$, and $j d$ to $x u$, and $w j$ to $y z$, and $c w$ to $z c .{ }^{81}$

[^139]
2 \& 8 R 0

detta linea della direttione, cioc, che la parte. D. $\%$ é menore della parte.y.z. Onde per Le ragionidi fopra adutte, el detto corpo.b. Fara elleuare il detto corpo.a. ©' afcendée re nel ponto.q.er luidefcenderanel ponto.n.nel qual ponto.n.el medefimo corpo. b. fi trouara pur pia graue anchora,fecondo ilfito del corpo.a. perche il defeenfo dal.q. in. s.é piu obliquo del def fenfo dal ponto. n. nel ponto. b.per effer la parte.z.c.maggio re della parte. שe.p.E pero(per le ragioni di Fopra adutte) el detto corpo.b.fara re: afendere il detto corpo.a.al ponto.a. (fwo primo, ev condecente luoco) ©r luimede/ß mamente def cendara nel ponto. b. pur fuo primo, - condecenteluoco, cioe nel fito delia equalita, nel qual fito lidettidui corpife trouaranno (per le ragioni aduttenclla prima parte diqueffa) ea gualmentegraui /ccondo el fito, er perche fono anchora fimplicemente egualmentegraui, fecon feruarano nel detto luoco, come di Jopra fu det= to, e' approuato, che cil noftro propofito.
S. A. Quefta e fata una bells demositratione, mafe ben me arricordo, uoidiceffianchorfopra Ia detta prima gueftion Mecbanica de Ariffotie
 le, che quetle fue due conclufloni, cbe lui ui aduce in fine eser falfe. N. Eglieiluero. S.A. Par che ragione. N. La ragione di tal particolarita, outer oppofitioni fe uerificae vannonella fequente propofitione, mediante alcuni correlarij, cbe dalle cofe dette, ש゙ dimostrate nella precedente $/ \frac{1}{2}$ manifefiano, delli quali il primo iquefto.

CORRELARIO.

DAlle cofe detto, et dimostrate di fopra,fe manifefta quilmente un corpograuc in qual / inoglia parte, cbe luife parta,oucr remoui dal fto della equalita lui fi fa
 da tal fito, effempigratia. El corpo.a.fitrouara effer piuleue nel ponto.u.chinel po to.s. et nel pöto.s.piu cbe nel pöto.q.e nelponto. q. che nel ponto.a. fito della equali= ta,p caufa della uärieta di def cenf, cioe, che luro ipiu obliquo dell'altro, cioc el def cen

 fo.a.q.perche la parte.p.er. i menore della parte.e..c.e per le medefime ragıoni /t manifefta del corpo.b.cioe, che quello fara piuleue nel poto.i.che nel pöto.Le nel pa to.l.che nel ponto.n.ev nel ponton.sherel ponto.b.fito della equalita.

CORRELARIO SECONDO.

ANcbora per le cofe dette, ev dimosirate fe manifefta, che remuouendofli lidethi

Fig. 3.15 Plate related to an application of the gravitas secundum situm concept to the balance with equal weights and arms (Tartaglia 1554, Book VIII, 90v)

Fig. 3.15 (continued)
[Proposition V. See Figs. 3.15]. Whenever a scale of equal arms is in the position of equality, and at the end of each arm are hung weights simply equal in heaviness, the scale [...] departs from the said position of equality, then [...] the scale necessarily returns to the position of equality. ${ }^{82}$

Now to resume our proposition, I say that the body b standing at the point i comes to be positionally heavier than the body a standing at the point u (as appears in the figure), because the descent of the body b from the point i to the point l is more direct than the descent of the body a from the point e to the point f (by the second part of the fourth petition), because it partakes more of the line of direction. That is, the body b in descending from the point i to the point l partakes the part $x y$ of the line of direction, and the body a descending from the point u to the point f partakes the part $d f$ of the line of direction, and since the part $x y$ is greater than the line or part $d e$, the descent (by definition 17) from the point u to the point f will be more oblique than that from the point i to the point l. Whence (by the second part of the fourth petition) the body b in that position will be positionally heavier than the body a. And being thus heavier, when the imposed weight or hand is taken away from the body a, it will (by the converse of the fifth petition) make the said body a re-ascend with contrary motion from the point u to the point s, and it will descend from the point i to the point l; and it will come to be found still positionally heavier than the body a, because the said body a standing at the point s will have the descent $s u$ more oblique than the descent \ln of the body b because it partakes less of the line of direction; that is, the part ρw is smaller than the part $y z$. Whence for the reasons adduced above, the body b will raise the body a to the point q, and b will descend to the point n, at which point n the same body b will yet be found appositionally heavier than the body a because the descent from q to s is more oblique than the descent from the point n to the point b, the part $z c$ being greater than the part $k \rho$. And hence (by the reasons adduced above) the body b will make the body a re-ascend to the point a (its first and proper place) and will itself descend to the point b (also its first and proper place), that is, to the position of equality, in which position the said two bodies will be found (for the reasons adduced in the first part of this proposition) equally heavy positionally. And since they are also simply equally heavy, they will remain in the said place, as was said and proved above; which is our purpose. ${ }^{83}$

[^140]In order to evaluate the gravity of position of the two bodies, Tartaglia assumes virtual rotations of the balance from a tilted position, for instance $i u$ (See Fig. 3.15) that makes the weight at the ends of the balance arms to descend. In a first clockwise virtual rotation, body b moves from position i to position L ; in the vertical direction the body moves from x to y. In a second anti-clockwise virtual rotation body a moves from u to f, in the vertical direction from w to $f ; a$ simple geometrical argument shows that $x y$ is greater than $w f$ if the arcs il and $u f$ are assumed to be of equal length. This means that $i l$ partakes more of the vertical than $u f$, consequently gravity of position of b is greater than that of a and the balance is pressed to rotate clockwise, for example up to $l s$. Repeating the reasoning, it can be proved that also in this position the gravity of position of b is greater than that of a and the balance continues to rotate until it reaches the horizontal position.

De Nemore in his Quaestio II (de Nemore 1565, 3v-4r) proved that, though the gravity of position of the weight a in the lower position is lower than that of the weight b in the higher position, this difference is as small as you like and any finite weight added to a will cause the balance to assume the vertical position. Tartaglia carried out the same argumentation but in a separate proposition (Proposition VI) which asserts that a balance with equal arms and different weights will tilt on the side of greater weight to reach the vertical position.

Mendoza argues that this proposition has been proved false for the previous proposition; that is for a balance with equal arms it is possible to achieve equilibrium with different weights:
[Proposition VI] S.A. If this is true, it is to be believed, or rather thought certain, that, if one should impose on the body a, pressed down, another little body which equated in heaviness that difference by which the upper body exceeded positionally the heaviness of the lower, then each would remain in the place where it was. ${ }^{84}$

Tartaglia replies by showing that, if it is true that the gravity of position of b is smaller than that of a (being a and b equal), then the difference is as small as you like. The proof is carried out, as in de Nemore, by showing that the angle that the path a and b makes with the vertical differs by a quantity as small as you like (See Fig. 3.16).

[^141]Fig. 3.16 Comparison of contingency angles (Redrawn from Tartaglia 1554, Book VIII, Q XXXIII, Proposition VI, 92v)

The path of a and b is represented in Fig. 3.16 by the arcs of the circle, respectively $a f$ and $b f$. They form with the vertical lines from a and b the angles $h a f$ and $d b f$, which with a nomenclature of the time are known as mixed-angles. The two mixed angles differ by a quantity as small as you like; then the obliquities and the gravities of position of a and b differ by a quantity as small as you like. Consequently if a weight as small as you like but of finite value p is added to a, the gravity of position of $a+p$ will be greater than that of b. For example:
[Q XXXIII, Proposition VI]. N. Let there be, for example, the same scale $a b c$ of the preceding proposition, at the ends of which are hung the bodies a and b, equal in simple heaviness; and let the hand depress the body a and lift the body b as shown in the next figure. I say that in this position the body b is positionally more ponderous or heavy than the body a, and that the difference between the heaviness of these two bodies is impossible to give or find between two unequal quantities. And to demonstrate this proposition I draw two straight lines, $a h$ and $b d$, perpendicularly to the centre of the world, and I also draw two lines $a l$ and $b m$ tangent to the circle described by the arms of the scale at the points a and b. I describe also a part of the circumference of a circle touching the same circle $a c b$ at the point b, this being a similar and equal circle, $b z$, such that the arc $b z$ is similar and equal to the arc $a f$ and similarly placed (that is, in position), and the line $b m$ which touches or is tangent to this. since the obliquity of the arc $a f$ (by what was said about the third petition) is measured by means of the angle contained by the perpendicular $a h$ and the circumference $a f$ at the point a, and the obliquity of the arc $b f$ is measured by the angle contained by the perpendicular $b d$ and the circumference $b f$ at the point b, the body b in that position will be as much heavier than the body a as the said angle (contained by the perpendicular $b d$ and the circumference $b f$ at the point b) will be less than the angle contained by the perpendicular $a h$ and the circumference $a f$ at the point a. And since the angle $h a f$ is precisely equal to the angle $d b z$, and the said angle $d b z$ is as much greater than the angle contained by the said perpendicular $b d$ and the circumference $b f$ at the point b as the angle of contact of the two
circles $b z$ and $b f$ at the point b, and since this angle of contingency ${ }^{85}$ is more acute than any of the acute angles made by straight lines (as proved by Euclid III.16), then the difference or ratio between the angle haf and the angle contained by the perpendicular $b d$ and the circumference $b f$ at the point b is less than any difference or ratio you please which can occur between any large and small quantities. And thus (by the third petition) the difference of the obliquity of the descent $a f$ and the descent $b f$, and consequently the difference of positional heaviness of the two bodies a and b, is less than any you wish between two unequal quantities. therefore any small corporeal quantity that is added, the body a will necessarily be heavier in any position than the body b, and hence it will not cease to descend continuously as far as the line of direction, that is, to the point f; and thus it will continue to raise the body b as far as the line of direction, that is, to the point $e .^{86}$

At this point Tartaglia and Mendoza take up again the discussion of Book VII about the difference between mathematical and physical argumentations, to conclude that from a mathematical point of view Aristotle's assertion that a large balance is more sensible than a smaller one is simply nonsense (Laland and Brown 2011) because any balance, whatever its dimension, will tilt to the vertical position for whichever small weight - a grain of poppy seed - added.

Notice that Tartaglia's reasoning is almost the same as that of de Nemore in the Liber de ratione ponderis, but for a modern reader it is perhaps clearer. Not so much for the things that are written in Proposition VI, but for those that are not written in Proposition V.

Further, when, in Proposition V (Tartaglia 1554, Book VIII, 89v-91r) Tartaglia considers the circumference of Fig. 3.15 he merely said that it was divided into arcs of equal length and not also into arcs as small as you like. Therefore, there is no chance of guessing a passage to the limit. To develop his argument Tartaglia just needs the argument that an angle of contingency is always larger than an arbitrary acute angle (Tartaglia 2007, 59r). The measure of the angles of contingency was discussed at length by the pioneers of Calculus, among them Gottfried Wilhelm von Leibniz (1646-1716) and Leonhard Euler (1707-1783). The paradox of these angles resided in the fact that, comparing them with angles between straight lines (ordinary angles), they should all be considered equal to each other and zero; while they could be

[^142]

[^143]considered different if compared with each other, as it appears intuitive if the angle is interpreted as an extension. It is the same paradox that occurs when the infinitesimals of mathematical analysis are compared with real numbers, in which case they are treated as zeros, while it is possible to establish a hierarchy when comparing among them: infinitesimals of first order, second order, third order, etc.

3.1.2.4.3 The Proposition VII: Balance with Equal Weights and Different Arms

Proposition VII, for which a balance with equal weight and different arms (See Fig. 3.17) tilts on the side of longer arms, has no interest in itself. It is however important to understand the role that mathematics plays in mechanics in the Middle Ages: physics is subordinate to mathematics in mechanics; physics explains the how, mathematics the why. To Mendoza who asserts that proposition VII results from physical argument, Tartaglia replies that he wants to assign the cause of the effect. And the cause is given by the greater gravity of position of the weight hanging from the longer arm; i.e., a mathematical reason.

> QUESTION. XXXIIII. PROPOSITION VII.
> N . Let there be the rod or scale $a c b$, with the arm $a c$ longer than $c b$. I say that if bodies simply equal in heaviness were hung at the two points a and b, the scale will tilt on the side of a. Because when the perpendicular $c f g$ (that is, the line of direction) is drawn, and the two quarter circles, which shall be $a g$ and $b f$, are traced on the centre c, and when two tangent lines $a e$ and $b d$ are drawn from the points a and b, it is manifest that the angle of tangency $e a g$ is less than the angle $d b f$. Hence the descent made along $a g$ is less oblique than the descent made along $b f$. Therefore (by the third petition) the body a will be heavier than the body b in this position; which is the purpose. ${ }^{87}$

Fig. 3.17 Balance with equal weights and different arms (Redrawn from Tartaglia 1554, Book VIII, 92v)

In effect, physics seems to be subordinate to mathematics in mechanical sciences. Physics collects and explains the phenomena (how), mathematics interprets them and gives a result (why). In fact, from the previous passage we can read that when Mendoza asserts that Proposition VII (Tartaglia 1554, Book VIII, 92v) results from physical argument, Tartaglia replies that he wants to assign the cause of the effect. The cause is given by the greater gravity of position of the weight hanging from the longer arm; i.e., a mathematical interpretation.

[^144]
3.1.2.4.4 Propositions VIII: Law of Lever

With the use of Proposition IIII (Tartaglia 1554, Book VIII, 89r), demonstration of the law of lever should be immediate; it would suffice to argue that the two weights hanging from arms of lengths inversely proportional to them are equal in gravity of position and therefore balanced. Tartaglia, however, prefers instead of the equilibrium of opposing tendencies to consider the equivalence of weights that tend to move in the same direction (See Fig. 3.18).

Abstract

QUESTION. XXXV. PROPOSITION VIII. If the arms of the balance are proportional to the weights imposed on them, in such a way that the heavier weight is on the shorter arm, then those bodies or weights will be equally heavy according to such position or site. Let as before the bar or balance acb and the weights a and b hung thereon, and let the ratio of b to a be as that of the arm $a c$ to the arm $b c$. I say that this balance will not tilt to either side. And if (for the adversary) it is possible for it to tilt, let us assume it to tilt on the side of b and to descend obliquely as the line $d c e$ in place of $a c b$, and [let us] take d as a and e as b; and the line $d f$ descends perpendicularly, and the line $e h$ rises similarly. Now it is manifest (by Euclid I. 16 and I.29) that the two triangles $d f c$ and $e h c$ have equal angles. Whence (by Euclid VI.4) they will be similar, and consequently will have proportional sides. Therefore the ratio of $d c$ to $c e$ is as that of $d f$ to $e h$; and since the weight b is to the weight a as $d c$ is to $c e$ (by our assumption), the ratio of $d f$ to $e h$ will be as the weight b to the weight a. Hence, if we take from cd the part $c l$, equal to $c b$ or $c e$, and consider l equal in heaviness to b and descending along the perpendicular $l m$, then, since it is manifest that $l m$ and $e h$ are equal, the proportion of $d f$ to $l m$ will be as the simple heaviness of the body b to the simple heaviness of the body a, or as the simple heaviness of the body l to the simple heaviness of the body d, because the two bodies are supposed to be the same, and similarly the bodies b and l (the heaviness of the body 1 having been assumed equal to that of the body b). ${ }^{88}$

Fig. 3.18 Equilibrium of the lever with different arms by Tartaglia (Redrawn from Tartaglia 1554, Book VIII, 93v)

Hence I say that the ratio of all $d c$ to $l c$ will be as the heaviness of the body l to that of the body d. whence if the said two heavy bodies, that is, d and l were simply equal in heaviness, standing then in the same positions or places at which they are presently assumed to be, the body d would be positionally heavier than the body l (by the fourth proposition) in that ratio which holds between the whole arm $d c$ and the arm $l c$. And since the body l is simply

[^145]
Abstract

heavier than the body d (by our assumption) in the same ratio as that of the arm $d c$ to the arm $l c$, then the said two bodies d and l in position of equality would come to be equally heavy, because by as much as the body d is positionally heavier than the body l, by so much is the body l simply heavier than the body d; and therefore in the position of equality they come to be equally heavy. Hence that power or heaviness that will be sufficient to lift the body a from the position of equality to the point at which it is at present (that is, to the point d) will be sufficient to lift the body l from the same position of equality to the place where it is at present. Therefore if the body b (for the adversary) is able to lift the body a from the position of equality to the point d, the same body b would also be able and sufficient to lift the body l from the same position of equality to the point where it is at present, which consequence is false and contrary to the fifth proposition [...]. Thus, the adversary's position destroyed, the thesis stands. ${ }^{89}$

Therefore in Proposition VIII, Tartaglia confronts the lever with weights e and d to the lever in which the weights are d and $l=e$, on the same side (See Fig. 3.18). Through his Proposition IV he argues that they are equally heavy for position and D (See Fig. 3.18) may be replaced by l arriving at a balance with equal arms ($l c=e c$) and equal weights, and as such, in equilibrium for Proposition V (not commented here). Note that Tartaglia like Thābit and de Nemore does not refer to the symmetry. At the end of his Proposition VIII Tartaglia refers to the demonstration of Archimedes (Medonza speaks of that as well), stating that since the matter of his treatise is quite different from the Archimedean, he has considered demonstrating the law of lever with other principles as more appropriate. In his words:
S.A. This is a very pretty proposition, but it seems to me (if I recall correctly) that Archimedes ${ }^{90}$ of Syracuse has a similar one, and I believe he does not prove it in this way of yours. N. Your Excellency is right. Indeed, of this proposition he makes two, and these are the fourth and fifth in that book of his wherein he deals with the centres of gravity of heavy bodies. ${ }^{91}$

3.1.2.4.5 Propositions IX-XIII: Balance with Distributed Weights

Propositions IX-XIII (Tartaglia 1554, Book VIII, 93v-96v) are essentially of practical nature and mostly take up again de Nemore's considerations. There are however some interesting new statements of Tartaglia's that are worthy of being commented. The object of the propositions is a balance with distributed weight. Proposition IX concerns the situations shown in the following Fig. 3.19.

[^146]

Fig. 3.19 Balances with distributed weigh by Tartaglia (Redrawn from Tartaglia 1554, Book VIII, Q XXXVI, Proposition IX, 94r)

Bodies $A D$ or $D A$ are such that their centre of gravity is as far as that of body $B G$ from the fulcrum C; the weights of $A D$ and $B G$ are equal. The proposition says that this assembly is in equilibrium. Tartaglia proves this proposition in two ways. The first way is in the Archimedean tradition and is the same adopted as that by de Nemore; it is based on the observation that the body $a d$ is equivalent to a weight equally heavy applied in its centre of gravity. As the centres of gravity of $a d$ and $b c$ are equally far from the fulcrum c, the proposition is proved.

Fig. 3.20 The discrete model of the balance of the previous figure (Redrawn from Tartaglia 1554, Book VIII, Q XXXVI, Proposition IX, 94v)

The second way is Tartaglia's; it uses the result of Proposition IV, implicitly assuming additive properties for the gravity of position of heavy bodies located on the same side of the balance. Before carrying over any considerations, Tartaglia changes the system of Fig. 3.19 with that equivalent to Fig. 3.20. As all bodies are equal, their gravity of position is represented by their distance from the fulcrum. So the gravity of position for h and k are respectively represented (are proportional to) by $e c+f c$ while the gravity of l and m are represented by $2 c b$. As for construction $e c$ $+f c=2 b$, equilibrium is assured. In his words:

[From Q XXXVI, Proposition IX]

This proposition can also be demonstrated in another way (which is more suitable because it depends on its own principles rather than imported ones). It is manifest that, when two simply equal bodies, h and k, are suspended, the one at the point e and the other at the point f, and two others which shall be l and m, equal to them, are hung at the point b, these weights, I say, will weigh equally at those points, because the ratio of the weight l to the weight k is as that of the arm $b c$ to the arm $f c$ (by the fourth proposition); for the body l will be positionally as heavy at the point d as where it is at present, that is, at the point b (since $c d$ is equal to $c b$ by assumption). Therefore, by the said proposition, this ratio will be that of the positional heaviness of the body l to the body k, which will be that of the arm
$d c$ or $b c$ to $c f$; and for the same reasons this ratio will be that of the heaviness of the body m to the heaviness of the body h positionally, that is the ratio of the same arm $c d$ or $b c$ to the arm $c e$. Therefore the positional heaviness of both the bodies l and m, together, to the positional heaviness of the other two bodies h and k, together, will be as the double of the arm $c d$ or $b c$ to the two arms $c e$ and $c f$ together. And since the said two arms $c e$ and $c f$, together, are precisely as much as the double of the said arm $c d$ or $b c$, it follows also that the heaviness of the said two bodies l and m is equal to the positional heaviness of the two bodies h and k; which is the purpose. ${ }^{92}$

Fig. 3.21 Balance with a beam uniformly heavy (Redrawn from Tartaglia 1554, Book VIII, Q XXXVII, Proposition X, 95r (above), our modelling (bottom))

Proposition X (Tartaglia 1554, Book VIII, 94v-95r) says that for the situation of Fig. 3.21 of a uniformly heavy rod $a d$ suspended from the fulcrum c with a weight f hanging from a, if there is equilibrium the proportion holds in modern notation:

$$
l: 2 x=q: p
$$

where q is the weight of f, l the length of $\mathrm{AB}, x=\mathrm{AD}$ and p the weight of the part of the rod with length $l-2 x$. The proposition is proved following Archimedean arguments.

Proposition XI (Tartaglia 1554, Book VIII, 95rv) is the converse, i.e., if the previous relation is satisfied then equilibrium follows. The proof is very simple and carried out with reduction to the absurd.

Proposition XII (Tartaglia 1554, Book VIII, $95 \mathrm{v}-96 \mathrm{r}$) is not a theorem but rather a problem. The purpose is to evaluate the weight f so that the balance of Fig. 3.21 will be in equilibrium, all other parameters being assigned. The problem is solved by applying the rule of three to proportion 3.1.

Proposition XIII (Tartaglia 1554, Book VIII, 96rv) is still in the form of a problem. The purpose is to evaluate the position of the fulcrum for equilibrium. The problem is similar to the others.
[QUESTION. XL. PROPOSITION XIII]
[...]. N. To illustrate this problem, let us assume that there is a rod, beam, or staff as the above, 10 feet long and weighing 40 pounds (as in the preceding was assumed). And let us assume also that there is a body weighing 80 pounds. I say that it is possible to

[^147]determine the place at which the rod may be divided so that the said heavy body, when hung at the end of its shorter part, will make the rod stay parallel to the horizon. And any such problem may be solved by ratios; nevertheless, it may be more easily solved by Algebra, the shorter part of the rod being a matter of feet, a co, whence the longer part is 10 minus co. I double the shorter part (that is one co), which gives 2 co, and subtract these two co from the whole length of 10 feet. There remains 10 minus 2 co, and this will be the difference between the longer part and the shorter. To find the weight of this difference, I multiply it by 4 (because, the whole rod weighing 40 pounds, each foot comes to weigh 4 pounds). Multiplying by 4 , as I said, the result is 40 minus 8 co . And since the ratio of the whole rod (which is 10 feet) to the double of its shorter part (which double is 2 co) is as the weight of our heavy body (which is 80 pounds) to the weight of the above difference, which is 40 minus 8 co. Hence by Euclid VII. 20 the product of the first [term], or 10 feet, into the fourth, which is 40 minus 8 co (which would be 400 minus 80 co), will equal the product of the third, which is 80 pounds, into the second, which is 2 co (which will be 160 co). Thus we will have 160 co equal to 400 minus 80 co; and restoring the parts by rule we shall find the co to be $1+2 / 3$. ${ }^{93}$ Hence $1+2 / 3$ feet will be the shorter part of the said rod or beam, whence the longer will be $8+1 / 3$ feet; which was our problem. ${ }^{94}$

Tartaglia however solves it by using the mathematics of abacus, introducing for the first time in book VIII the use of algebra. This is a quite important subject because for a long time the use of algebra will be substantially proscribed in the name of the purity of Greek geometry. Therefore, Tartaglia represented a sort of cultural bridge between classic algebra and algebra used in mechanics (at that time). ${ }^{95}$

As typical of the Abacus school (Pisano and Bussotti 2013b, 2015a) the problem is solved by means of an example. A rod 10 feet long and weighing 40 pounds, with a weight f of 80 pounds assigned. The quantity to be searched, i.e., the unknown, is the distance from f to c, which following the use of time is named $\cos a,{ }^{96}$ shortened as $c o$. The weight of the part of length $l-2 x$ (See Fig. 3.21, bottom one) is

$$
(10-2 c o) \times \frac{40}{10}=40-8 c o
$$

Use of the previous proportion gives

$$
10: 2 c o=80: 40-8 c o
$$

[^148]which according with Euclid VII 20^{97} gives
$$
400-80 \mathrm{co}=160 \mathrm{co}
$$

The equation in co has the solution

$$
c o=400: 240=1+\frac{2}{3} .
$$

3.1.2.4.6 Propositions XIIII-XV: Law of Inclined Plane

Proposition XIIII (Tartaglia 1554, Book VIII, 96v-97r) asserts that the gravity of position does not change if a body moves on an inclined plane (See Fig. 3.22). To this proposition, already proposed by de Nemore (de Nemore 1565, Quaestio X, 7r), is usually assigned two functions. On the one hand it says that we are considering lines of descent of heavy bodies as parallel to each other. Indeed only in this case will the inclined plane and the lines of descent conserve the same angle, i.e., the same obliquity. On the other hand it asserts that the gravity of position, which is constant along the plane, is determined by the ratio between the length of the plane and the height. Tartaglia does not however make a step that would seem natural, to explicitly state that the gravity of position is inversely proportional to the obliquity. The lack of this step is critical because in the proof of the law of the inclined plane, Tartaglia actually uses that assumption.

Fig. 3.22 Equilibrium on the inclined plane (Redrawn from Tartaglia 1554, Book VIII, Q XLII, Proposition XV, 97v; see also de Nemore 1565, Quaestio XXI, 7rv and the following Figs. 3.23 and 3.24)

[^149]The proof of the law of the inclined plane is introduced in proposition XV.

[QUESTION XLII. PROPOSITION XV]

If two heavy bodies descend by paths of different obliquities, and if the proportions of inclinations of the two paths and of the weights of the two bodies be the same, taken in the same order, the power of both the said bodies in descending will also be the same. Then let the letter e [See de Nemore's figures below: 3.23 and 3.24] represent a heavy body placed on the line $d c$, and the letter H another on the line $d a$, and let the ratio of the simple heaviness of the body e to that of the body h be the ratio of $d c$ to $d a$ I say that the two heavy bodies in those places are of the same power or force. And to demonstrate this, I draw $d k$ of the same tilt as dc, and I imagine on that a heavy body, equal to the body e, which I letter g, in a straight line with $e h$, that is, parallel to ck. [...] Also the ratio of $m x$ to $n z$ will be as that of $d k$ to $d a$; and (by hypothesis) that is the same as that of the weight of the body g to the weight of the body h, because g is supposed to be simply equal in heaviness with the body e. Therefore, by however much the body g is simply heavier than the body h, by so much does the body h become heavier by positional force than the said body g, and thus they come to be equal in force or power. And since that same force or power that will be able to make one of the two bodies ascend (that is, to draw it up) will be able or sufficient to make the other ascend also, [then], if (for the adversary) the body e is able and sufficient to make the body h ascend to m, the same body e would be sufficient to make ascend also the body g equal to it, and equal in inclination. Which is impossible by the preceding proposition. Therefore the body e will not be of greater force than the body h in such place or position; which is the proposition. ${ }^{98}$

The proof is developed as in the case of the lever, bringing the equilibrium to an equivalence of weights located on the same side with respect to the vertical. Nevertheless the reasoning is less strict, because it asserts without explanation that two heavy bodies h and g, located on planes $d a$ and $d k$ with different slopes and different positions, are equally heavy when they have weights inversely proportional to their inclinations. In effect, Tartaglia is authorized to affirm that the gravity of position is related to the obliquity; we can also concede that he is authorized to say it is inversely proportional to it, but in no place has he justified that the obliquity should be measured by the ratio of the height and the length of the inclined plane, as assumed in Proposition $X V$ (it could also and coherently be measured by the ratio between the horizontal projection of the plane and its length). Raffaello Caverni, who seems however to not know that the Liber de ratione ponderis, considers improperly Tartaglia's demonstration as the first truly exemplary proof, of higher value than that of Jordanus de Nemore (Caverni 1891-1900, IV, 321-232). Appreciation for Tartaglia's proof is found also in Arnaldo Masotti (Tartaglia 1953, XXXV).

In the following - with respect to Tartaglia's reasoning above discussed - two plates from the proof/reasoning of inclined plane law by de Nemore (1565) are presented.

[^150]

Figura i 2 Nicolao conflructa.
Quod fi portiones datz fuesint, \& pondus datum erit.

C
Vma cnim we pramifjum eft d, pondus cü tota n, r, fit ad eius dimidiom, ficut tota $a, c, a d b$, c. $c u ̈$ int a, b, \&f b, c, data , (i) ducatur
 a, c, in fuum dimidinm, ut prius, c'pro ductum dividatur per b, c, exibit pon dusd, \& tota a, c, detralfaergoas c, relinquitur pondus d,datum.

Quzfio Tertiadecima.

Si uero pondus datum fuerit, \& pars cui appenditur data,totum quoque datum erit.

Fig. 3.23 Plate from the proof of inclined plane law by de Nemore (de Nemore 1565, Quaestio XI, 7v)

$\boldsymbol{l} \quad \mathrm{B} \quad \mathrm{O}$

fopra lamedefima.d.b.ev dalli tre ponti.s.m.e. fiano tirate le tre perpendicolari.n. z.m.x.eঠ.e.r. Et perche la proportione della.n.z.alla.n.g.é \hat{A} come quella, chéé dalls d.j.alla, d.g.e peroficome anchora guella della.d.b. alld. d. k. (per effer li detti tre triangoli fimili.) Simelmente la proportione della.m.x. alla.m.h.h è fi come quella, che é dalla detta.d.b.alla.d.a. (per effer lidettidui triangolifimili.) Anchora la propore tione della,m.x.alla,n.z. fara ficome quella della. d. k.alla.d.a.er quella medefina (dal prefuppofito)e dalla grauita del corpo.g. alla grauita del corpo. b. perche il detto corpo.g.fu fuppofto effer fimpliceme te, egualmente.graue con el corpo.e. adunque tanto quanto, che il corpo.g.e jimplicemente piu graue del corpo.b.per altro tanto il corpo. h. uien à effer pius graue per uigor del fito del detto corpo.g.e pero ρ uengono ad egualiar in uirtu, ouer potentia, er per tanto quclla uirtu, ouer potentia, che fara atta i far af cendere luno de dettidui corpi, cioe àtirarlo in fu fo, quella medefima fara attid, ouer fofficiente à fare af cendere anchoral'altro, adunque fel corpo.e. (per lauerfario)è atto, er fofficiente à far afcendereil corpo,h.per fin in. m.elmedefimo corpo.e.farid da' dunque fofficiente d̀ far afcendere anchora il corpo g.à lui equale, er inequate declinatione, la qual cofa
 éimpoßibile per la precedente propofitione, adug: que il corpo.e.mon fara de maggior uirtu del corpo.h.in talifiti, ouer luochi, che ciil propofito. S.A. Quefta éftatauna bella fpeculatione, or me é piacefta afdai. Et per che uedo effer horatarda, non uoglio, cbe procedati in altro per boggi.

Fine del ottano libro.

Fig. 3.24 Plate from the proof of inclined plane law by Tartaglia (Tartaglia 1554, Book VIII, 97v)

Part III Translations \& Transcriptions

Chapter 4
 Translation and Transcription

In this first section we provide some information and background on a selection of writings by and about Niccolò Tartaglio. We have focused on translations into English and Italian, as well as Latin transcriptions of Books VII and Book VIII of the Quesiti, and Iordani opusculum by de Nemore. Furthermore facsimile texts are added for readers and our critical comments can be found as endnotes to the chapter.

4.1 General Considerations

For English translations we assumed as a model that of Drake (Drake and Drabkin 1969). The language is however adjusted in many places and portions neglected there have been translated here, as well.

For Italian critical transcriptions we made a few changes from the original text; most of them are simply typographical adjustments, such as the resolution of "s", and the substitution of "u" with "v" when appropriate. We also corrected some misprinting, which mostly derived from a difficult reproduction of the 1546 edition. We avoided reporting italic style as in the original text, when not necessary. Further, we unify the spelling of words, by adopting the most used form. For example, of the two forms "lun" and "l'un" (the one) we changed everywhere the first with the second, because it is more often used.

The editions by Masotti (Tartaglia [1554] 1959) and Drake (Drake and Drabkin 1969) were of some help.

4.1.1 Quesiti et inventioni diverse (1554)

As an opening anthology, an English translation, a critical Italian transcription and a facsimile are reported for Books VII and VIII of the Quesiti et inventioni diverse, 1554 edition (Tartaglia 1554), the first containing the Gionta to Book VI. The text of Books VII and VIII of the first Quesiti edition of 1546 (Tartaglia 1546) is essentially similar to that of 1554. It mainly differs in typographical adjustments, as for example "horizonte" (1546) versus "Orizonte" (1554). Moreover, the 1546 edition uses full names for Tartaglia and his interlocutor's while in the 1554 edition the initial only are appended before the corresponding dialogues.

4.1.1.1 Tartaglia's Language

Tartaglia's writings have always been accused of crudeness. A typical example is the following sentence by Bernardino Baldi:

He paid so little attention to the goodness of the language that he sometimes moves to laughter the reader of his things. ${ }^{[1]}$

The assessment changes a little over centuries, with appreciations by some scholars. For example, Durante writes:

His [Tartaglia] language is full of lombardismi [from Lombardy], even if it's a thousand miles from the dialect. But he lags in the choice of language, because in the mid-sixteenth century the Court language [that which refers to Tartaglia] was out-dated by the Florentine model. ${ }^{[2]}$

In addition:
[On writings by unlearned authors]. Tartaglia uses with security a robust northern Italian. ${ }^{[3]}$

In a detailed study on Tartaglia's language, Mario Piotti concludes:
The choice of the vernacular by the sixteenth-century mathematician Tartaglia is not due to his ignorance of Latin, but to precise theoretical reasons. The language of Tartaglia, accused of dialectal tendencies since the sixteenth century, by the analysis conducted on his works (the Nova scientia and Quesiti et invention diverse), is proved to be a strong northern Italian of middle level that cannot be attributed to semi educated experiences. The scientific specialization of the vernacular is just incipient and appears, besides the lexicon, from which Tartaglia tends to eliminate the more popular terminology in favour of the model Greek Latin, in some textual and syntactic choices. (Piotti 1998, cover; our translation).

Tartaglia's language is not always the same however; it shows an evolution and refinement at least up to the Quesiti et invention diverse, so much so that some have speculated the advice of lettered men, which was not uncommon at the time (Piotti 1998, 34-35).

Tartaglia wrote his first work, Nova scientia (Tartaglia 1537) in the form of a treatise; forms of writing scientific texts were more widespread at the time, thus the choices not seeming to have been objects of reflection. Very different is the
situation of the Quesiti et invention diverse for which he chooses the form of a dialogue, less common, even though it is rich in tradition (i.e., Platonic dialogues). Usually Tartaglia's dialogue is cold, with a distinction of roles: on one hand the other, the scholar, on the other hand the teacher, Tartaglia. However, there is a disconnect of pieces of that dialogue that are not strictly relevant from the technical aspect, which makes the discussion a little less rigid; they continually remind us that we are not in an academic setting. Moreover the controversies, referred to in Book IX, with some opponents, such as the mathematicians Antonio Maria de Fiore (or Florido, 16th century), Giovanni de Tonini da Collio (fl. 16th) and especially Cardano, inserts his science into a social context. Tartaglia introduces completely new original terms, in part derived from the Latin:

Abstract

Lexical neologisms: altimetric scale, alternate angle, angle of contingency, outer angle, square battle of people, square battle of land, bi-angle, calculation, to become congruent, coastal, to raise to cube, curve, diopter, fundamental, granite, isoperimetric, line of direction, line of sight, levelled, place of equality, great merlon, right shadow, oblique shadow, horizontal, at white point (point-blank), cube root, square root, residual, to bevel, bevel, fulcrum, to sight, sight, triplication.

Semantic neologisms: opening, ell, concave, design, to contribute, contribution, contingency, curtain, demonstratively, dependence, dissimilar, to lift, lifting, flask, fortifier, fraction, thrower, to trigger, intermediate, irrationality, irresolvable, hand, mechanics, minute, rear sight, obliquely, petition, place, power, principle, quadrant, rule, reflect, retreat, scale, transit, speed. ["Lexical neologisms: scala altimetria, angolo alterno, angolo della contingenza, angolo esteriore, battaglia quadra di gente, battaglia quadra di terreno, biangolo, calcolazione, congruire, costiero, cubicazione, curva, diottra, fondamentale, granito, isoperimetro, linea della direzione, linea visuale, livellato, luogo dell'egualità, merlone, ombra retta, ombra versa, orizzontale, di punto in bianco, radice cuba, radice quadrata, residuale, smussare, smussatura, sopravanzare, sparto, traguardare, traguardo, triplicazione. Semantic neologisms: apritura, braccio, concavo, concezione, concorrere, concorso, contingenza, cortina, dimostrativamente, dipendenza, dissimile, elevare, elevazione, fiasca, fortificatore, frazione, gettatore, innescare, intermedio, irrazionalità, irresolubile, lancetta, meccanico, minuto, mira, obliquamente, petizione, piazza, potenza, principio, quadrante, regola, riflettere, ritirata, scala, transito, velocità." (Piotti 1998, 174-175; our translation)].

4.1.2 Philological Notes on Iordani opusculum de ponderositate (1565)

The Iordani opusculum de ponderositate derives from a witness of a manuscript currently referred to as the Liber de ratione ponderis (called version R and) attributed to Jordanus de Nemore; it was the first printed edition. Some considerations about existing manuscripts of Jordanus' text can be found in Moody and Clagett (Moody and Clagett ([1952] 1960), Clagett (1959) and Brown (19671968). According to Moody and Clagett (Moody and Clagett ([1952] 1960), 175-190), Iordani opusculum de ponderositate reproduces a good enough version, but there are printer's errors and some figures are not very good. It was printed by Curtio Troiano on Tartaglia's behalf after his death, with the addition of part of the

Liber Archimedis de ponderibus and some determinations of specific weights. Duhem said he saw the manuscript owned by Tartaglia and that Tartaglia had made very few corrections to it (Duhem 1905-1906, I, 135). The main difference between the manuscript and the printed version was disappearance of the subdivision into four books. Apart from Tartaglia's adding of some figures, the manuscript was simply reproduced by the printer, who was not a technician; he explains typos both for the text and figures. The complete title of the book: Iordani opusculum de ponderositate, Nicolai Tartaleae studio correctum, novisque figuris auctum, makes explicit reference to the addition of figures by Tartaglia. They are indicated by Curtio Troiano (or Tartaglia) as "Figura à Nicolao constructa" and represent Tartaglia's attempts to make his manuscript readable.

In the following a partial (until folio 7 v , useful for our aims) facsimile and English critical Iordani opusculum's translation is presented; a complete critical Latin transcription is reported, as well. For the English translation we partially drew inspiration, where possible, from (Moody and Clagett ([1952] 1960), 175-227), though a more faithful translation has been carried out. In the critical Latin translation - as above cited - we resolved some shortenings, modified " u " in " v " and vice versa, "ij" in "ii", where necessary, following the contemporary standard rule of transcription, as well. Both in the English translation and in the Latin transcription, the page number of the original printed version is reported in braces. Please pay attention that in order to present unproblematic reading, only for English transcripts, we replace minuscule letters with capitals concerning demonstrations and technical arguments.

4.1.3 Book VII of Quesiti et inventioni diverse (1554)

4.1.3.1 The Facsimile and English Translation

Libro Settimo Delli

 QVESITI，ETTINVENTIONIDIVERSE， DE NICOLO TARTAGLIA．Sopra gli principij delle Queftioni Mechanice di Ariftotilc．

QVESITO PRIMO FATTO DAL ILLVSTRISS． Signor Don Diego Hurtado di Mendozza，Ambafciator Cefarco in Venetia．

IGNOR AMBASCIATORE．Tartaglia，dapoi，che noi deßimo uacatione alle lettioni di Euclide，ho ritrouato cofe nuoue foprale Mathematice．N．Che cofabaritrouato uoftra Signoria．S．A．Le Queftioni Mechanice di Ariftotile，Grece， er Latine．N．Eglie tempo affai，che iole uidi，maßime Latie ne．S．A．Cbe ue ne pare．N．Benißimo，©゙ certamente le fo no cofe futtilifime，ev di profonda dottrima．S．A．Anchora io le bo fcorfe，or intefo di quelle la maggior parte，nondimeno me resta molti dubbij for pra di quelle，li quali uoglio，che me li dichiarati．N．Signore，uifono dubbij afdii，cbe àuolergli à fofficienza delucidare，à me farianeceffario prima à dechiarare à uoftra Signoria li principij della fcientia dipef．S．A．A me mipare，che Ariftotile dimoz ftriil tutto，fenza procedere，ouer intenderesteramente lafcientia dipefi．N．Eglie ben uero，che lui approua cadauna de dette queftioni，parte con ragioni，ev argomenti naturali，er parte con ragioni，er argomenti Mathematici．Ma alcuni di quelli fuoi argomenti naturali，conaltri argomenti naturaliuif puolopponere．Et alcuni altri con argomenti Mathematici（mediante la fcientia dipefidettadifopra）fe poffonore probar per fal／f．Et oltra di questo lui pretermette，ouer tace una qucstoonefopra dele le libre，ouer bilanze dinon poca importanza，ouer β peculatione，σ quefto é proce \boldsymbol{f}_{2} fo（per quanto poffo conflderare）perche di tal queftione，non f puo deignar la caufa perragion naturale，ma folamente con la dettafcientia dipefi．S．A．Non credo，che quefio fla la uerita，cioc，che alcuna fua argumentatione patifca oppopitione，perche Ariftotile non fu uu＇ocha，ne manco credo，che luibabbia pretermefjo，ouer taciuto queftione alcuna fopra delle libre，che fla de importantia．N．Anci eglie troppoelue ro，pche uolēdo cöfiderare，giudicare，et dimofirarela caufa della fua prima come naturale，cioe cö ğtli ultimi argomĕtinaturali，cbe lui aduce fopra le libre oucr bi lăce materialc．Medefimamẽte cŏaltriargométi naturali（come difopra dißı）f puo ap
 Et uolēdo poi cofiderare，er giudicaretal Queftione，ficome Mathematico，び co ar gomĕti Mathematici ρ p puo medefimamente li detti fui argomenti reprobar per falf， mediantela fcientia di pefidettadifopra．S．A．Come fe confiderano，er giudicano

$$
\begin{gathered}
{[78 \mathrm{r}]} \\
\text { THE SEVENTH BOOK OF THE } \\
\text { QUESITI, ET INVENTIONI DIVERSE, } \\
\text { BY NICOLO TARTAGLIA. } \\
\text { On the principles of the Questions of Mechanics of } \\
\text { Aristotle. } \\
\text { FIRST QUESTION RAISED BY EXCELLENCY. } \\
\text { Sir Don Diego Hurtado de Mendoza, Imperial Ambassador } \\
\text { in Venice. }
\end{gathered}
$$

SIR AMBASSADOR: Tartaglia, since we took a vacation from the reading of Euclid, I have found some new things relating to mathematics. N. And what has your Excellency found? S.A. Aristotle's Questions of Mechanics in Greek and in Latin. N. It is quite a while since I saw these, particularly the Latin. ${ }^{[4]}$ S.A. What did you think of them? N. They are very good, and certainly most subtle and profound in learning. S.A. I, too, have run through them and I understood most of them; yet many questions remained with me, which I should like to have more fully explained. N. Sir, should you wish me to explain them to you properly, many of the problems would require that I first explain to your Excellency the principles of the science of weights. S.A. It appears to me that Aristotle proves everything without using, or so much as knowing about, the science of weights. N. It is true that he proves each of his problems partly by natural reasons and arguments and partly by mathematical. ${ }^{[5]}$ But some of his natural arguments may be opposed by other natural reasoning, and others can even be shown to be false through mathematical arguments by means of the said science of weights. And besides that, he omits or remains silent about a problem of no little importance concerning the balance, because (so far as I can judge) one cannot assign the cause for that problem by natural reasoning, but only through the science of weights. S.A. I do not believe this is true, i.e., that any of his arguments can be contradicted; for Aristotle was not a stupid. Nor do I believe that he omitted anything or was silent on any problem of importance concerning the balance. N. Yet it is only too true; for if, as a natural philosopher, one wishes to consider, judge, and prove the cause of his first problem, using natural arguments that he adduces for the material balance or scale, then one can equally prove with natural arguments (as I said before) that things are quite the opposite of what he concludes or assumes in that problem. And if one wishes then to consider and judge this problem as a mathematician, Aristotle's arguments can similarly be proved false by means of the science of weights. S.A. How are things judged and considered as natural and how as mathematical [?]

I I B R O

N. Elnaturale röfidera, giudica, et determina le cofe, fecödo el fenfo, en apparčtiadI quelle in materia. Ma el Mathematicole confidera,giudica, vั determina,non fecon do el fenfo,mafecondolaragione(aftrate da ognimateria fenfibile) come che V.Sig. fa,che coftuma Euclide. S. A. Circa di queftononfo che rifpondere, percheionon me arricordo cofa all improuifo il foggetto dital fua prima gueftione, e pero ditime, come,cbe quella parla, e゙ dice. N. La dice, er parlaprecifamente in queftaforma. Percbe caufa le maggior libre, ouer bilanze, fono piu diligente delle menore. S.A. Ben? che uoletidire fopradi tal quefione. N. Voglio dir quefto, che fumen= dola, ouer confiderandola, ficome Mathematico(cioe astrata da ogni materia) fenza alcun dubbio tal queftione é uniuerfalmente uera, fi per le ragioni dalui adutte per audanti, come, che per molte altre, che nelld fcientia dipefi addur fe potria. Perche quel la linea, che con la fua mobile iftremita piufs allontana dal centrod'un cerchio, moue= sta dauna medefima wirtu, ouer potentia(is tal fua iftremita)piu facilmente, er con maggior celerita, oucr preftezza faramoffa,jpenta, ouer portata, diquella, che cö la dettafuaiftremitamenfe alluntanaradal detto centro, er per tal ragionele libre, 0 . uer bilanze maggiori, fe uerificano effer piu diligente delle menore. Ma uolendo poi conjiderare, er approuare tal queftione inmaterid, v con argomenti naturali, cos the, che in ultimo lui confidera, ơ approua, cioe per el fenfo deluedere in iffe libre, ouer bilanzemateriale. Dico,che con faiforie de argomentinon fouerifica generalis stente tal queftione, anzi fe trouarafeguir tutto al contrario, cioc le libre, ower bilan ze menori effer piu diligente delle maggiori, ercbe questo fa el uero netle libre, ouer bilanze materiale, la fperientia lo fa manifefto:perche fe deuno ducato fcar fo uoremo fapere de quanti graniluifa fcarfo, con una libra, outer bilanza granda, cioe con una de quelle, che adoprano lifpecialiper pefarßpecie, zuccaro,zenzero, ecanella, eral zre co ρe imile, malamente fe ne potremo cbiarire, ma coninna diquelle librette, ouer Gilincette piccole,cbe oprano li bancheri,orefici, er gioieleri, fenza dubbio fe ne po tremo totalmente certificare. Per il che feguitarid tutto al contrario, di quello, che is tal queftione feconchiude, ơ dimoftra, cioe, che taíbilancette piu piccole flano piu di Ligente, delle piu grande, percbe piu diligentemente, ouer fottilmente dimoftrano la differentia di pefl. Et la caufa diquefto inconueniente non procede da altro, cbe dalla materia, perche le cofe costrutte, ouer fabricate in quella, mai ponno effer soff precie faintente fatte, come, che cort la mente ulingono iniaginate fuora di effa materid, per il che talbor fe uien à caufar in quelle alcuhieffetti molto contrarij alla aragione. Et pern qtresto, ov altri fomilirefpetti, el Mathematico non accetta, ne confente alle dimoftras tioni, ouer probationi fatte per uigor, ov autoritadifenfi inmaterías, ma folaměte d. quelle fatte p denostrationi, et argomèti aftratidarogni materiaferflbile. Et p questa caufa, le difcipline Matbematice. non folamente fono giudicate dalli fapienti effer pin certe delle naturale, ma quelle effer anchora nel primo grado di certezza. Et pero quetle e g̣ueftioni, che con argomenti Mathematici fe poffono dimoftraire, non é cofa conueniente ad approbarle con argomesti naturali. Et fimelmente quelle, che fon no gia dimoftrate con argomenti Mathematici (che fono piu certi) non éda tens tare, ne da perfuaderfide certıficarle meglio conargomentinaturali, li quali fono

[78v]
 B O OK

N . The natural philosopher considers, judges, and determines things according to the senses and material appearances, ${ }^{[6]}$ while the mathematician considers and determines them not according to the senses, but according to reason, all matter being abstracted - as your Excellency knows that Euclid was accustomed to do. S.A. On this I can say nothing, because at the moment I do not recall the subject of [Aristotle's] first problem. Please tell me what it says. N. It is worded precisely so: Why large balances or scales are more accurate than small ones. ${ }^{[7]}$
S.A. Good; what would you say about this problem [?] N. Considering it as a mathematician, in abstraction from all matter, I should say that without doubt the statement is universally true, whether for the many reasons prefaced by Aristotle or for many others that may be brought in from the science of weights. For that line whose moving extremity is farther from the center of a circle, being moved by a given force or power at that extremity, is more easily moved, driven, or carried, and with greater speed, than another at its extremity less distant from the center. And for that reason, larger scales or balances are found to be more accurate than smaller ones. But next, wishing to consider and test that statement materially and with natural arguments (as he does at the end) by the sense of sight and with a material balance, I say that by this sort of argument the problem is not generally verified, and even that the opposite occurs; i.e., smaller balances are found to be more accurate than larger ones. That this is true in material balances, experience makes manifest; for if we have a damaged ducat and want to see by how many grains it is too light, using a large balance such as one of those used to weigh spices, sugar, ginger, cinnamon, and such materials, we shall get a poor result; but if we use one of those small balances employed by bankers, goldsmiths, and jewelers, no doubt we can be quite certain of the result. This is just the contrary of that which was concluded in this problem; for here, small balances are more accurate than large ones because they more thoroughly and more subtly show the difference of weights. And the cause of this contradiction stems simply from matter; for things constructed or fabricated thereof can never be made as perfectly as they can be imagined apart from matter, which sometimes may cause in them effects quite contrary to reason. And for this and other reasons, the mathematician does not accept or consent to proofs and demonstrations made on the strength and authority of the senses in matter, but only those made by demonstrations and arguments spoiled from all matter. Consequently, the mathematical disciplines are considered by the wise not only to be more certain than the natural, but even to have the highest degree of certainty And therefore those questions which can be demonstrated with mathematical arguments cannot be suitably proved by natural arguments. ${ }^{[8]}$ Likewise those which have already been demonstrated by mathematical arguments (which are the most certain) should not be subjected to attempts to certify them still better by natural arguments, which are

$\begin{array}{lllllll}S & E & T & T & \text { I } & 0\end{array}$

mencerti. S. A. A me mi pare che luiuoglia, in tal prima queftione, che quetla resti ottimamente cbiarita(come éll uero) per le ragioni, evoargomenti per auanti adutti, ©゙ dimoftrati,le quale ragioni, oucr argomenti fono tutti Mathematici, or non natua rali , perche parte de quelli fe uerificano per la. 23. del Sefto di Euclide, er parte per Lquarta delmedefimo. N. Voftra Signoria infieme con lui dice lauerita, che tal que ftione émanifeftaper le fue ragioniadutte per auanti, ov questo medefimo anchora 10 difopra lo affermai,perche tai antecedentifono fati da lui dimeftrati conargomenti Matbematici, ind in fine de tai buone argomentationi, uifottogionge due altre cone clufioni, la prima delle quale dice precifamente in quefta forma. Et certamente fono alcuni pefi, li quali poftirelle piccol libre, non fonomanifestial fenfo, er nelle grande fonomanifesti. La qual conclufione, uolendola confiderare, giudicare, ev approuare, fi come naturale, cioe per uigore, or autorita del fenfo del wedere, nelle libre materids le, fenza dubbio tal fua conclufione patiffe oppofitioni affai, perche nelle dette libere; ouer bilanze materiale, la maggior partedelle uolte fe trokara feguir tuttoal contra* rio, cipe che fono alcuni pefo, liquali pofti, nelle libre, ouer bilanze grande, non fe fa* ganno con alcuna inclinatione manifefti al fenfo deluedere. Et netle bilanzette piccole fe manifestaranno, cioc che faranno inclinatione wiffile, ov tutto questo, la pperiens tialo manifefta. Perche fe foprauna di quelle fopradette bilanze grande de Speciali, ui fara posto un grano di formento, Egliecofa chiara, che nella maggior parte diquetle, non fard alcuna uifibil inclinatione. Et millamaggior parte diquelle picicolette che ufa noli Banchieri, faranno inclinationemolto euidente. Ma uolendo poi confiderare, giudicare, ev dimoftrare tal fua queftione, ouer conclufione, fl come Mathematico, cioe fuorade ognimateria, fenza dubbio tal fuä concluflone faria falfa, perche ogni piccol pefo pofto in qual fe uoglia libra fara inclinar quella continuamente per fine all'ultimo, ouer piu baffoluoco, che inclinar fe poffa, ev tutto quefto nelli principij dela la cientia dipefì Voftra Signoria, lo faro manifefo. Dapoilui fottogionge ancbors queft'altra conclufione, ev dice in quefta forma. Et certamente fono alcunipeff, li quali fonomanifefti nell'una, ©r l'altraforte de libre(cioe nelle maggiori, er nelle me nori) ma molto piu nelle maggiori, perche molto pu granda inclinatione, uien fatta dal medefimo pefo nelle maggiori. La qual conclufione, uolendolo confiderare, giudicare, *r approuare, ficome naturale (come fu detto dell'altra)cioe per uigore, er autorits del. fenfo del uedere, nelle dette libre materiale, certamente quefta non patira men opz pofitioni del̉ altra, per le medefime ragioniin quella adutte. Et fimilmente, uolédo poi confiderare, giudicare, ov dimoftrare tal concluflone, come Matbematico, cioc fuors de ognimateria medefinamente tal fua concluflore faria falfa, percbe ogni forte dipe fo pofto in qual fi uogliaforte de libra, fara inclinar quelld de continuo per finad tass to cbe quella fia gionta all'ultimo, ouer piu baffoluoco,che quella inclinar fipoffa, \boldsymbol{w}° tutto quefto, nellidettiprimcipij della fcientia di pefl dimostratiuamente à quella β if fara manifefto. S.A. Anchor che tuttequeste uoftre oppopitioni, \mathcal{O}° argouentinaturali; babbiano del uerifimile non poffo credere, che il nenue fas altre ragioni, evargoz menti, fi naturali, come Matbematici da poter difendexe, er faluarc, tal fua questione infieme con quell altre due conclufoni, Anciciho fermia opinione che chiftudiaffecons

[79r]
 SEVENTH

less certain. S.A. It seems to me that you wish this first problem [of Aristotle] to be given the greatest clarity of truth by reasons and arguments adduced and demonstrated in advance, which reasons or arguments are all mathematical, and not natural, for part of them are verified by Euclid VI. $23^{[9]}$ and part by the fourth book of Euclid. N. Your Excellency well says, with Aristotle, that that problem is made manifest by the reasons he prefaced [to the problem], and I myself affirmed this before, because such antecedent arguments are proved mathematically by him. But at the end of those good arguments, he adds two other conclusions, the first of which is precisely this: "And certainly there are some weights which, placed in the small balance, are not manifest to the senses, and in the larger balance are manifest. ${ }^{[10]}$ Which conclusion when considered, judged, and tested as natural - i.e., by the strength and authority of the sense of sight in material scales - will doubtless suffer much opposition; for in such material scales or balances the exact opposite will be found to occur most of the time. I.e., there are some weights which, placed in large scales or balances, make no tilting manifest to the sense of sight, but which will do so in little balances (i.e., will make a visible tilting); and all this is shown by experience. For if, on one of those great spice scales mentioned above, there shall be placed a grain of wheat, it is obvious that on most of them it will make no visible tilting, while on most small bankers' balances it will make a quite evident tilting. But since we wish to consider, judge, and demonstrate this problem or conclusion of Aristotle's as mathematicians, i.e., without any material, doubtless the conclusion will be false, since every little weight placed in any scale will make it continually incline to the last or lowest place it can go. And all this I shall make manifest to your Excellency in the principles of the science of weights. Aristotle also adds this other conclusion, and in this form: "And certainly there are some weights which manifest themselves in both sorts of scales (i.e., the large and small), but much more in the larger, a far greater tilting being made there by the same weight" ${ }^{[11]}$ Now if we consider, judge, and test naturally this conclusion, i.e., by the strength and authority of the sense of sight-then, as was said of the other, it will certainly suffer no less opposition in the said material scales than will the other [conclusion], and for the same reasons. And similarly if we consider, judge, and test it as mathematicians (i.e., apart from any matter), this conclusion will still be false, because every sort of weight placed in any sort of scale will make it tilt continually until it comes to the last and lowest place it can. And all this is demonstrated in the said principles of the science of weights. S.A. Although all these objections and natural arguments of yours are probable, I cannot believe that there are not other arguments and reasons, both natural and mathematical, by which [Aristotle's solution of] this problem can be saved and defended together with his two additional conclusions. Indeed, I am of the firm opinion that anyone who would study this

L 1 B R 0

diligettid Joprad talmaterid, ritrouaria tutte ğle particolaritd materiale, che fonocabl fa, che tal queftione, er'röclufioninö, fe'uerificano in materia, come che l'autor cöchiu de, et dice. Et dapoi che quelle fuffeno ritrouate, et conofciute, tĕgo che Saria cofafacile ì rimediarli, er fare che fe uerificafeno in materia precifamente, come che l'autor propone. N. Vofira Signorianon é di uana opinione, perche in effetto tutte quelle cofe che nella mente fono conofciute uere, er maßime per dimoftrationi aftratte da $0=$ gni materia, ragioneuolmente β i debbono ancbora uerificare al /enfo deluederc in mae teria(altramente le Mathematice fariano in tutto uane, er dinulo giouamento, oucr profitto all'buomo, e fe per cafo quelle non fe uerificano, comc che nelle fopradette lis bre, ouer bilance maggior, er menor, e fato detto, ev diputato. Eglie da credere, anci da tener per fermo, che il tutto proceda dalla diproportionalita, ev inequalita delle parti, ev membri materiali, dalli qualiuengono compofte, cioe che le dette parti, ơ memibri del'una piu fe difcoffano, ouer allontanano da quelle confiderate fuora de ogni materia, di quetlo che fanno quelli dell'altra. Eper tanto uolendo difendere, er faluaa re tal queftione Aristotelica, cioe far chequella fempre fenerificbiin materia, evin ogni qualita de libre, ouer bilance figrande, come piccole. Bijogna agguagliar le dette parti, ouer membri dicadauna di quelle, talmente che quelli fano egualmente diftanti da quelle confiderate fuora de ogni materia fenfibile. Ilche facēdononfolamente fe ue. sificaratal fua queftione al fenfo in matcria, cioe nelle dette libre, ouer bilance materia le, ma anchora je uerificaranno quelle altre due conclufioni, che fottogionfe in fine. S. A. Io ho accaroo che la mia opinione fe fa uerificata.

QVESITO SECONDO FATTO CONSEQVEN: temente dal medefimo illustrißimo Signor Don
 Dicgo Ambafciator
 Cefarco.

SIGNOR AMBASCIATORE. Mapernon baucr troppobenintefote ragioni da uoi allegate, uorria cbe un'altra uolta, er ptu chiar amente me le repli cafti. N. Dico Signore, cbe ld caufa cbe le fopradette libre, ouer bilance maggiore, © menore, non rippondeno fecondo che l'autor conchiude, © dimoftra, non procede d'altro, che dalla inequalita delle parti, ouer membrimateriali, dalli qualiuengono com pofte, le quai parti, ouer membrt, fono liduibracci, er anchorail fparto (cioc quel axis, ouer centro, fopra del qual giranoli detti bracci in cadauna de loro, percbe li detti bracci, שJ Parto nelle libre, ouer bilance maggiore fono molto piu großi, $ల$ cor pulentidi quelle delle menore. Et perche li braccidi quelle libre, ouer bilance cbe uenie gono confiderate, come Mathematico, cioc fuorade ogni materia, fono confiderati, et fuppofti, come fimplice linee, cioe fenzalarghezza, ne groffezza, ev l/parto, ouer axis di quelle uien confiderato, er fuppofto un finplice ponto indiuifibile, le qual forte de libre, oucr tilăce. Quădo che poßıbil foffe à darne una cofir realmente /pogliata, er nuda de ognimateriafenfibile, come che con la mëte uengono conjideratesjenza alcua
$[79 \mathrm{v}]$
B O O K
matter diligently would discover all the special properties of matter which give rise to [the effects mentioned in] that problem as well as those conclusions that are not verified materially, as the author [Aristotle] concludes and says. And once these were discovered and known, I think it would be easy to remedy them and to make everything verifiable in material precisely as the author proposes. N. Your Excellency is not mistaken, for in fact all those things that are known by the mind to be true, and particularly by abstraction from all material, should reasonably be verifiable in matter also by the sense of sight; otherwise mathematics would be wholly vain and useless and devoid of profit to man. And if it happens that they are not verified in the aforesaid scales or in large and small balances, as questioned, then it is to be believed and even held for certain that all this proceeds from the disproportionality and inequality of the material parts and members that make one scale differ more than another from balances considered apart from all matter. So if we want to defend and save this problem of Aristotle - i.e., make it verified in matter and in every kind of balance or scale, large or small - it is necessary to make all the parts or members of each balance uniform, in such a way that all are equally applicable to those considered apart from all material. This done, we shall not only verify sensibly in matter this problem of his for material scales and balances, but will also verify those other two conclusions he adds at the end.

SECOND QUESTION CONSEQUENTLY RAISED
by the same your Excellency Sir Don
Diego Imperial Ambassador.

SIR AMBASSADOR. I am glad to hear my opinion confirmed. But since I did not entirely understand your reasons, I should like them repeated more clearly. N. I say, Sir, that the cause that the larger and smaller balances do not behave as the author concludes and proves has its roots in the difference between the material parts or members of which they are composed, which parts or members are the two arms and the fulcrum (i.e., the axis or center on which the arms turn in both cases). For the said arms and fulcrum in the larger scale or balance are much more gross and bulky than in the smaller. And since the arms of those scales or balances are to be considered mathematically, i.e., apart from all material, they are considered and assumed to be as simple lines, without breadth or thickness; and the fulcrum or axis [of support] is assumed to be a simple indivisible point. Such a scale or balance, as much as possible, would be given as in fact despoiled and naked of any sensible material, as is considered by the mind, and would

S E T T I M O
 80

dubbio quella faria dgilijima, er diligentijima fopra à tutte le libre, ouier bilance mas teriale, diquella medefimagrandezza,perche quella faria totaimente libera da ogni material impedimento. Et per tanto conchiudendo dico, che quanto piule parti, outr membri di una libra, ouer bilanza materiale, fe aceoftano, ouer appropinquano alle parti, ouer membri della non materiale (qual é la originale, oucr ideale di tutte le mate riale) tanto fara piu agile, \mathbb{V} diligente di quelle che men ui feaccostaranno, ouer ape propinquaranno(di quella medefimagrandezza•)Et perche le parti, ouer membridé quelle bilancette, che adoprano li Bancheri, er Gioieleri (difopraallegate) molto piu fe accoftano, ouer appropinguano alle parti,ouer membri delladetta fua ideale, di quetlo che fanno le parti, ouer membridi quelle libre, ouer bilance maggiori, che ado pranoli ispeciali (difopra allegate) perche li brazzettidelle dette bilancette piccole fono fottilißimi, er quatlidelle grande fono piugroßi. Onde li fottilip pul feaccoffano alld fimplice linea (quale manca de larghezza, er groffezza) di quello fanno li piu gro $\langle i$, ev corpulenti, שల Rmilmente il parto, ouer axis delle dette librette, ouer bilante cette piccole, ipiccolino, er fottile, ơ quello delle grande, \dot{e} piugrande, or groffo. Onde il detto ßparto delle dette bilancette piccole piufe accosta, ouer appropinqua al fparto della fua ideale (qual é un ponto indiuifbile) di quello fail fparto delle dette bia lance grande per efer piu grande, ě groffo. Et quefte éla principal caufa cbe le fopra dette librette, ouer bilancette menori, fe dimoftrano al fenfo piu diligente delle mage giori,cofa totalmente contraria alla fopra allegata A riftotelica quefione.

QVESITO TERZO FATTO CONSE
quentemente dalmedefimo iluffrißimo
Signor Don Diego Ambafcia tor Cefarco.

SIGNOR AMBASCIAT ORE. Benin che modo Apuo difendere, \mathbf{U} faluare tal fua queftione, cioc far che quella fe uerifichi al fenfo in materia fecone Lo che luipropone, ouer conchiude. N. Bifogna fondarfef oprale libre, ouer bilana ce ideale, cioe Jopra quelle che uengono con/iderate con la mente aftratte da ogni matea rid, er uedere in cbe cofale maggiore fano differente dalle menore, la qual cofa effen do offruata nelle libre, ouer bilance materiale fara difefa, er faluatatal quefione Ari fotelica, cioe che quella fenpre fe uerificara al fenfo nelle dette libre materiale. S. A. Non se intendo parlatime piu cbiaro. N. Dico Signore, che à iuler difendere, er faluaretal queftione, bifogna fondarfe, ouer regger β perle libre, ouer bilance idede le, cioe per quelle, cbe conla mente uengono confiderate fuora de ognimateria, er nedere in che cofa le maggiori flano differente dalle menori, fopra la qual cofa cone fiderando, er guardando, je trouara, che le dettelibre, ouer bilance maggiori, ness fono differente dalle menori, eccettoche nella longhezza di fwoi bracci, ev in tuta te le altre cofe ece agguagliano, perche anchor che li bracci delle libre maggiori fiaa no piu longhi de quelli delle menori, tamen non fono ne piu großi, ne piu fottia li de guelii, perche, , \mathfrak{l} nelle maggiori, some nelle menori, formo confiderati,

[80r]

S E V E N T H

doubtless be agile and responsive far beyond all material scales or balances of the same size, for it would be completely free of any material hindrance. And thus I say in conclusion that the more the parts or members of a material scale or balance resemble or approach the parts or members of an immaterial one (which is the original or ideal of all material ones), so much the more agile and responsive will it be than those which less resemble or approach this, the sizes being the same. And the parts or members of those small scales used by bankers and jewelers, as mentioned above, much more resemble and approach the parts or members of their said ideal than do the parts or members of those larger scales or balances used by merchants; for the little arms of the smaller balances are very thin, and those of the larger ones are gross. Wherefore the fulcrum of the smaller balance much more resembles and approaches to its ideal fulcrum, which is an indivisible point, than does the fulcrum of the large balance by reason of its gross size. And this is the principal reason why the aforementioned small balances are sensibly more accurate than the large ones, which is completely contrary to the Aristotelian view in the problem under discussion.

THIRD QUESTION CONSEQUENTLY RAISED

by the same Excellency

Sir Don Diego Imperial Ambassador.
SIR AMBASSADOR. In which way can you defend, and save his question, that states that in nature what he proposes occurs, or concludes? N. One must base on ideal scales, or balances, i.e., on these which are considered by the mind spoiled from any matter, and see in what are the larger differs from the smaller, which being observed in the real scales, or balances, the Aristotelian question will be defended, and saved, i.e., that it always occurs with the senses in those real balances. S.A. I do not understand, explain it to me more clearly. N. I say Sir, who wants to defend, and save that question, must be based, or stand on ideal scales, or balances, i.e. those which are spoiled of any matter with the mind, and see in what are the grater different from the smaller, and considering, and looking upon which, if you find that those greater scales, or balances, are no different from the smaller but in the length of their arms, and all the other things are equal, because even if the arms of the greater balances are longer than those of the smaller, they are neither bigger, nor the more subtle of them, because, both in the greater and smaller, they are considered,

E 1 B R 0

come Implice innee, le quale martiano dilarghezza, er groffezza, e pero in largbeze zé, © ' groffezza non ui e alcuna differentia. Et Imilmente li β Parti, ouer axidelle liz bre, ouer bilance maggiori fono equali alli §arti, ouer axidelle menori, perche finelle maggtori, come nelle menorifono confderati, come fimpliciponti, liquali pontiper efa fer tuttiindiuifibili, fono equali, le qual cofe efendo diligentemente offeruate nelle lis bre, ouer bilance materiale, cioe che le maggiore non fano differente dalle menore, ece cette cbe nella longhezzadifuoi bracci, ma che in larghezza,et groffezzafianoegua li,eve cofli ior parti materialifenza dubbio in quelle, non folamente feucrificara al fenfo quello, che Ariftotile nella detta fua quefione conchiude. Ma ancbora fe uerifica ranno, quelle altre due conclufioni che ui jottogionfe in fine. (Anchor che in aftratto, cioe fuora de ognimaterid,ambedue falfe fano, come che per li principij della fcientia dipeflà V.S.faro manifefo.) Et flano le dette libre, ouer bilance diche qualita, mate= rid,ecr conditionfi uoglia, pur che offeruimo la detta egualitanella groffezza di detti bracci,e erpartiloro. S.A. Certamenteche quefouoftrodiforfo me piace afjai.

QVESITO QVARTO FATTO CONSE*
 quentemente dal medefimo illuftrißimo Signor Don Diego Ambafciator Cefareo.

SIGNOR A MBASCIATORE. Ma feben mearicordo noidicestiane chora nel principio del noftro ragionamento, che Arriftotile pretermette, ouer ta ee una queftione fopra delle dettel hbre dinon pocaimportantia, ouer fpeculatione, bor ditemi, che queftione équefta. N. Se v.s.ben fe aricorda della fua feconda queftione, in quells lui moterrogatiusmente adimanda, ev confequentemente dimoftra, perche cals fa quando che il/Parto /cra di fopradella libra, é che l'uno di braccidiquclla da quale che pefo fla portato, ouer ßpinto à baffo, remoffo chefla, ouer leuato uia quel tal pefo, Ia detta tibra di mono reafcende, er ritorna al fuo primo luoco. Et feil detto β parto è di Sotto della detta libra, er che medefimamente l'uno di fuoi bracci fa da qualche pefo pur portato, ouer β pinto d̀ baffo remoffo, ouer leuato die fla uia quel tal pefo la dettali branon reafeende, ne ritorna al fuo primo luoco (come che fa nell'altra poftione) ma gimine dif otto, cioe à $b_{1} \int$. Hor dico, che lui pretermethe, ouer tace un'altra queftio $n c$, che in quefol luoco fe conuencria, dimolta maggior β pcculatione di cadauna delle foe pradette, la qual $q u e f t i o n e$ équefta. Perche caufa quando cheil ßarto è precifamente in effa libra, et che C undi braccidi quella fa da qualche pefo portato, ouer urtato à baf fo, remoffo, ouer lenato che fa uia quel tal pefo, la detta libradi nuoucreafeende al fuo primo luoco, β icome che fa anchora quella, cbe ba il β parto di fopra da lei. S. A. Quefta mi pare uns bella queftione, © moltopiuremota dal noftrointellettonatu* rale che le dxe fopradette, ev molto haueroaccaro ad intender la caula di tal effettos maprimanog lio cbe me chiariti un dubblos che melhamente me intona Jopra delle Sopta allegate quefioni, il quale é quefo.

Qtefito

[80v]
 B O OK

like simple lines, which lack of width, and thickness, and thus there is no difference in width, and thickness. And similarly the fulcra, i.e. axes, of scales, or of the greater scales are equal to the fulcra, i.e. axes, of the smaller, because in the greater as in the smaller they are considered as simple points, which points being indivisible, are equal to each other. If these cares are diligently observed in real scales, or balances, i.e., that the greater are not different from the smaller except for the length of their arms, but that in width, and thickness are the same, and so their real fulcra undoubtedly them, not only will be verified with senses what Aristotle concludes his question, but also those two other conclusions that he added in the end will be verified (Although in the abstract, that out of all matter, are both false, such as that for the principles of the science of weights I will manifest to V.S.). And those scales, or balances of any quality, material, and condition you want, when they comply with the said equality in the thickness of their arms and fulcra. S.A. Certainly, this your speech pleased to me very much.

FOURTH QUESTION CONSEQUENTLY RAISED
by the same Excellency Sir
Don Diego, Imperial Ambassador.

SIR AMBASSADOR. But if I well remember you also said, at the beginning of our reasoning, that Aristotle omitted, or was silent on, a question about balances of great relevance and inquire. Now tell me what question is this. N. If your Excellency remember his second problem, where he [Aristotle] asks, and consequently proves, the why when the fulcrum is above the scale, and one of his arm is moved by some weight, or pushed downward, removed or taken off the weight, the scale raises again and returns to his first place. And when that fulcrum is below the scale, and similarly one of his arm is carried by some weight, or pushed downward, when the weight is removed the scale neither raises nor returns to its first place (as it does for the other case) but remains below, i.e. beneath. Now I say, he was silent and mitted one more problem, which here is much more suitable, much more speculative of any of the other problems, which is that. Why when the fulcrum is precisely inside the scale, and one of the arm of is, by any weight, loaded, or pressed down, removed that weigh, the scale again raises to its first place, like as the scale with the fulcrum above. S.A. That looks to me a nice problem, and much farther from our intellect that the two mentioned before and I will appreciate very much to understand the cause of that effect; but I before want you to clarify me a doubt, which persists in my mind about the above cited problems, which is this.

S ETTTMMO
 81

QVESITO QVINTOFATO CONSEQVENTE= temente dal medefimo illustrifimo Signor Don Diego, Ambafciator Cefarco.

SIGNOR AMBASCIATORE. Doue fe trous unalibra, ouer bilanza materiale, che il fuo ßarto 1 adi fopra, ouer difotto di quells, anci à me mi pare, che il detto ßparto in tutte fla precifamente ineffelibre, come, che nella noftra terza question fefuppone, er non difopra, ne manco di fotto. N. Anchor, che di tal forte bilance non \mathfrak{f} faccia, ouer fitrouiel non refta pero, chelnon fene poteffe fare. S.A. A me mi pare una materid, à mouer queftione foprà cöfe, che non fi costumano, ne f: troumo ineßere. N. Il tutto $i f a$ Signore, perche tuttili artificiofi iftromenti, che per augumentare le forze del huomo fe oprano, in qual/ uoglia arte Mechanica fere ferifcono à una delle fopradettetre /pecie de libre, ouer bilance, et cop in ogni dubbio, oucr queftione, che fopra ad alcuno de tai iftromenti nafcer poteffe, uolendone conofce re, ouer afignare la intrinflea caufa. Eglie neceffario prima uenir a quella fortelibra, ouer bilanza, alla qual piufe referiffe quel tal iftromento, ov dalla detta libra, ouer bi lanza.fe uienal cercbio,per la mirabil uirtu, er potentia del qnale ferifolue il tutto, come, che nella fcientia dipefififaramanifefto. S. A. Effendo adunque cofe di tana. taimportantia, uoglio, cheme replicati, ev dimoftratifiguralmente cadauna de det te tre $Q u c f$ fioni, ouer parti a una per una : perche le uoglio ben intendere, ov comine ciati alla prima. N. Per dimoftrar in figura la prima parte dital Queftione. Siala libra. a. b.el ßparto della quale fa el ponto.c. (qual parto ßıa alquanto di fopra dele la detta libra, a.b.come nella figura appare) er fla che per laimpofitione del pefo.e. cl fuo brazzo. a. d. fia da quel tirato a baffo, come che di fotto appare in detta figu ra:hor dico, che chilcuaffeuia el detto pefo.e.tal brazzo.a.d. reafcendaria, $\boldsymbol{e r}^{\circ}$
κ

retornariaal fuo primo, er condecenteluoco, elqual luoco faria nel ponto, ouer ßito.k. © cofl laltrobrazzo. d. b. defeendaria per fina al ponto, ouer fito.l. © tutto quefto procede: percbenel trapportar el detto brazzo. a. d. a baffo, piu dele. la mitta di tutto el fufo della detta libra. a.b. Je uien a trasferrirf/ in alto, cioe oltra la perpendicolar.n.m.pafante per ilßarto.c.la qual perpendicolar \int e cbiama
[81r]
SEVENTH
FIFTH QUESTION CONSEQUENTLY RAISED
by the same Excellency Sir Don Diego, Imperial Ambassador.

SIR AMBASSADOR. Where is a scale such that its fulcrum is above or below it? To me it appears that the fulcrum in all the scales be exactly inside them, as supposed in your third problem. Neither above, nor below. N. Though such balances are not used or found its does not mean we cannot speak about the. S.A It looks to me a matter, a problem, over unusual things, which do not exist. N. All is made, Sir, for all the artificial instruments used to increase the force of men, in whichever mechanical art, refer to one of the three named species of scales, or balances. And equally any doubts, or questions, that about these instruments will raise, if one want to known, or to assign, the intrinsic cause, it is necessary to come first to the type of scale or balance to which mainly that instrument is referred to, and from the said balance one comes to the circle, from whose marvellous strength and power all is explained, as in the science of weights will be shown. S.A. For being the things of such relevance, I want that you repeat and demonstrate any of the all three problems, one by one, for I want well understand them, and start by the first. N. To demonstrate with a figure (See Fig. 4.1) the first part of such a problem les us consider the scale $a b$ whose fulcrum be c (which fulcrum be over enough of the said scale $a b$, as it appears in the figure) and let for the imposition of the weight e its arm $a d$ be pressed down as it appears in the figure. I now say that if the said weight e is removed the arm $a d$ will raise and

[Fig. 4.1]
return to its first place, and let such a place be the point, or site, k and similarly the other arm $d b$ will descend up to the point, or site l, and all this occurs because to carry the arm $a d$ downward, more than one half of the beam of the scale $a b$ is transferring upward, i.e. farther from the perpendicular $n m$ passing through the fulcrum c, which perpendicular is called

1 I B R O

la limed detla direttione, cioe, che la parte.b. d. g. in alto etleuata uien deffer tane to piudella mita de tutto el fufto.d.b.quanto che e dal.d.al.g.er lareftante parte.a.g. ridutta albaffouien deffer tanto manco della mita ditutto el detto fufto.a.b. quanto che é dal detto ponto.g.al ponto.d.perche ddunque tal parte. 6.d.g. in alto elleuatae molto maggiore del restante brazzo:d.g.al baffo trasferto, leuandofe uid el detto pea fo.c.la detta parte.a.g. (piu debole)uien à eßer urtata, © Fpinta dall'altra maggior parte.b.d.g.in alto clleuata(per effer dilei piu potente) per fin àtanto, che la detta $l \boldsymbol{l}$ nea detla direttione cafchi perpendicolarmentefopra el detto fufto, ouer libra.d.b. evo che fegbiquello in due parti equali in ponto.d. S. A. Queftaragion équaff fimiled

QVESITO SESTO FATTO CONSEe quentemente dal medefimo Illuftrißimosignor Don Diego Ambafciator Cefareo.

SIGNOR AMBASCIATORE. Hor feguitati ld fecondd parte. N. Per dimoftrare la feconda d uoftra Signoria. Pongo /ia la libra.a. 6. la qual habe bia il 乃parto(cioe quel ponto, ouer polo,fopra del qual leigira)alquanto di fotto, cioe difotto dal fufto.a.b. come difotto appar in ponto.c. $\begin{gathered}\text { fla anchor, che per la impofla }\end{gathered}$ tion del pefo.e.el fuobrazzo.a. d. jad da quel tirato d baffo, come che di fotto netla figu radppar, hor dico, che chi leuaffe uia el dettopefo.e.tal brazzononreafcenderia neri tornaria al fuo primo luoco, cioe in ponto. k. (come, che fa in quella, che hail /parto di Sopra)marcftaria cofi inclinato d̀ baffo, er la caufa di quefto procede, perche nel tra fportarfe el detto brazzo.a.d.al baffo piu dellamitta ditutto el fufto , ouer libra.a.b.

-iuien $\dot{\text { drass ferire drio à quetlo, oltra la linea delladirettione, cioc oltrala perpendie }}$ colar.n.m.qual paffa per il β parto.c.talicke tutta la parte.a.g. al baffo riduttd, uiend effer tanto piu della miitta di tuttala libra.a.b. quanto,che e dal.d.al.g. שo la parte,g. b.in alto elleuata kien à reffare tanto mento della detta mitta, quanto, che é dal detto.d. al detto.g.per effer adanque la elleuata parte.g.b.dimenor quantita della inelinata.a.* g. uien à effer piu debole 2 ouer.men potente dilcis pero,non éatta, ne fofficiēte à pos

$$
\begin{gathered}
{[81 \mathrm{v}]} \\
\text { B O O K }
\end{gathered}
$$

the line of direction, i.e that the raised part $b d g$ becomes greater than one half of the whole beam $a b$ for the part from the point g to the point d, and the reaming depressed part $a g$ becomes less of the one half of the whole beam $a b$ for the part form the point g to the point d. Thus, because the raised part $b g d$ is much greater of the remain depressed arm $a g$, by removing the weight e the part $a g$ (weaker) is hit and pushed by the greater raised part $b d g$ (being more powerful of it) until the line of direction falls perpendicularly over the beam, i.e. scale $a b$, and cuts it into two equal parts in the point d. S.A. This reason is quite similar to Aristotle's but clearer and better illustrated.

SIXTH QUESTION CONSEQUENTLY RAISED
by the same Excellency Sir Don Diego, Imperial Ambassador.

SIR AMBASSADOR. Now continue for the second part. N. To demonstrate the second part to your Excellency let assume the scale $a b$ have its fulcrum (i.e. that point or pole about which it turns) quite below, i.e. beneath the beam $a b$, as shown below, in point c, and also let that because of the weight e its arm $a d$ be pushed down, as it appears in the figure below [See Fig. 4.2].

[Fig. 4.2]

Now I say that if that weight e were taken away such arm neither would mount again nor return to its first place, i.e. the point k (as that which has the fulcrum above does) but would remain so tilted, below, and the cause of this comes for in carrying below the arm $a d$ more than one half of the whole beam, or scale $a b$, is transferred behind, after the line of direction, i.e. after the perpendicular $n m$ which passes trough the fulcrum c, so that the whole part $a g$, pushed down, becomes more than one half of the whole scale $a b$, according to $d g$, and the raised part $g b$ becomes the lesser than of the said half according to $d g$. Thus, because the raised part $g b$ becomes lesser that the tilted [part] $a g$ it becomes weaker, i.e. less powerful, and as such it is neither able, nor sufficient to stri-

S E T T Y M O 82

 terlaurtare, ơ" sforzare à farla afcendere al fuo primo luocoin. k.come fece nella paf fata, anci quella restaracofinclinata al baffo, er la reteneralci cofi in aere clleuata, che ceil propofito: S. A. Queste due partiquafi, che il noftro intelletto le apprende per ragion naturale, fenzaaltra dimoftratione. N. Coflé signore.
QVESITO SETTIMO FATTO CONSEQVENTEMEN= te dal medefimo Illustrißimo Signor Don Diego, Ambajciator Cefarco.

SIGNOR AMBASCIATORE. Hor feguitatimola terzaparte, quale diceti, che manca in quefo luoco, cioe doue nafce la caufa, che quando el/parto de una libra fara precifamente nel mezzo di effa, cioene difotto, ne di fopra,manelmez zo di quella, come, che fono tutte le libre, outer bilance, che communamente fe oprano, ©r che l'uno di brazzi di quella fa da qualche pefo(ouer dalla noftra mano) urtato $\overline{\text { dे }}$ baffo, leuado, che fia uia quel tal pefo(ouer mano) immediate tal brazzo riafcende, et ritorna al fuo primo luoco.fi come che anchor fa glla libra, qual tie il 乃parto di fopra da effa libra. Perche in effetto la caufa diquefo ultimo effetto mi par molto piu remo ta dal noftro intelletto de cadauna delle altre due. N. Ebo detto à uoftra Signorid, che à uoler dimostrare la caufa di tal effetto à me è neceßario à diffinire, ev dechiari* re prima à uoftra Signoria alcunitermini, er principij dellafcientia dipeff. S.A. So no cofa longa questi principü, che ui bijogna dechiarare. N. Per quăto a/petta à uo ler demoftrare fimplicemente quefta particolarita fara cofa breuißima, uero \dot{c}, che quando, cloe uoftrafignoria uoleffe intenderc ordinariamente tutti li principij di tal fcientia, ui daria da dire affai. S. A. Benfa, cbe uoglio intendere il tutto ordmariame te,come $/ i$ de. N. L'bora étardasignoreper far quefto effetto. S.A. Ben andati, © ritornati dimane da mattina. N. Ritornaro Signore:

> Il fine del fettimo Libro.

SEVENTH

ke it, and force it to mount up to its first place k, as it does in the past case, instead it will remain so tilted and lowered, and [the lowered part] will remain up, which is the purpose. N. That is so, Sir.

SEVENTH QUESTION CONSEQUENTLY RAISED by the same Excellency Sir Don Diego, Imperial Ambassador.

Sir Ambassador. Now let us come to the third part, which is still lacking here; i.e., how it comes about that, when the support of a scale is precisely in its center, neither above nor below, but in the center, as is the case with most of our ordinary scales, and one of the arms is pushed down either by some weight or by our hand, and the weight or hand is then removed, this arm immediately ascends again and returns to its original place, as does the arm of a scale whose support comes from above. For in fact the cause of this seems to me farther removed from common sense than for either of the two usual cases. N. I have told your Excellency that in order to demonstrate the cause of this effect, it will be necessary for me first to define and explain to your Excellency some of the terms and principles of the Science of Weights. S.A. Is this something lengthy, these principles you must explain? N. So far as it concerns simply the demonstration of this particular, it will be quite short; however, if your Excellency wants to learn in an orderly manner all the principles of the Science of Weights, that will be quite lengthy. S.A. You know very well that I should like to learn the whole thing, and in proper order. N. It is getting rather late to accomplish this. S.A. Well, you may go, then, and return tomorrow morning. N. I shall return, your Excellency.

The end of the seventh Book.

4.1.4 Book VIII of Quesiti et inventioni diverse (1554)

4.1.4.1 The Facsimile and English Translation

LIBRO OTTAVO DELLI

QVESITI, ET INVENTIONI DIVERSE。 DE NICQLO TARTAGLIA.

Soprala ScientiadiPcfo

QVESITO PRIMO FATTO DAL ILLVSTRISS. Signor Don Diego Hurtado di Mendozza, Ambafciator Cefarco in Venetid.

IGNOR AMBASCIATORE. Hor uoria Tartaglid, che me incomenciastià dechiarire ordinariamente quella fciena tia de peff, di che me parlaftihiari. Ma,perche conofco tal/cien tianon effer femplicemente per fe(pernon effer le arte liberale, faluo che fette) ma fubalternata, uoria cbe prima me dicefti, da chefcientia, ouer difciplina quelladeriui, ơ nafci. N. Signor Clarifimo partediqueftafcientia nafce, ouer deriua dalla Geos metria, er parte dalla Natural Philo op ophia:perche, parte delle fue conclufonife dimo frano Geometricamente, eop parte fe approuano Phyficalmente, cioe naturalmente. S.A. E иe ho intefocirca questa particolarita.

QVESITO SECONDO FATTO CONSEQVEN: temente dilmedefimo Illustrißimo Signor Don Dicgo Ambafciator Cefarco.

SIGNOR AMB ASCIATORE. Ma ditime anclioras, che coftruttofipuo cauar di tal fcientia. N. Li coftrutti, che dital fcientia /ipotriano cauare, fas riaquafi impoßibile à poterlì̀ uoftra Signoria iprimere, ouer connumerare, nondiz meno io ue referiro quelli, che per al prefente d me ono manifefti. Et per tanto dico, che primamente per uigore dital fcientia, eglie poßibile à conofcere, ơv mijurare con ragione la uirtu, er potentia di tuttiqueftitftromenti Mechanici, che da noftriantia qui fonoftati ritrouati, per augumentare la forzade del'buomo, nel elleuare, condurre, ouer ßpingere auantiognigraue pefo cioc in qual fenoglia grandezza, che quelli fiano conftituidi, ouer fabricati, fecondariamente per uirtu di tal /cientia, non folamente eglie poßibile di poter con ragion conofcere, ev mijurare fimplicemente la forza de l'huomo, ma anchora eglie poßibile di trouar el modo di augumentar quellain infini= to, ש゙ in uarij modi, er cofin qual fi uoglia modocglie pofible à conofcere l'ordime, - proportione di tal augumentatione, come, che in fine con uarii iftromenti Mechae nicid Voftra Signoria faro conofacre, er uederc. S. A. Queito baucro molto accaro.

[82v]
THE EIGHTH BOOK OF QUESITI, ET INVENTIONI DIVERSE, OF NICOLO TARTAGLIA.
On the Science of Weights
\title{ FIRST QUESTION RAISED BY EXCELLENCY }
Sir Don Diego Hurtado of Mendoza, Imperial ambassador in Venice.

SIR AMBASSADOR. Now, Tartaglia, I want you to start explaining in due order that science of weights [emphasis added] of which you spoke to me yesterday. And since I know that it is not a proper science in itself (there being no more than seven liberal arts), ${ }^{[12]}$ but rather that it is a subordinate science, ${ }^{[13]}$ I want you first to tell me from which other science or discipline it is derived. N. Sir, part of this science is derived from Geometry and part from Natural Philosophy; for part of its conclusions are demonstrated geometrically and part are proved physically, that is, by nature. S.A. I now understand you for this point.

SECOND QUESTION CONSEQUENTLY RAISED
by the same Excellency Don Diego, Imperial Ambassador.

SIR AMBASSADOR. But also tell me what construct can be drawn from that science. N . The constructs which can be drawn from that science would be almost impossible to express to your Excellency, or to enumerate; nevertheless, I shall repeat those which are manifest to me at the moment. Hence I say that first, by the power of this science, it is possible to know and to measure by reason the strength and power of all those mechanical instruments that were discovered by the ancients to augment the strength of a man for raising, carrying, or driving forward all heavy weights, in whatever size they are constituted or fabricated. Second, by virtue of that science it is possible not only to be able to know and measure by reason the strength of a man, but also to find how to augment this infinitely, and in various ways, and thus it is possible to know the order and proportion of such augmentation in any manner, as finally, by means of various mechanical instruments, I shall make your Excellency see and know. S.A. I would like this very much.

$$
\begin{gathered}
\text { O ir T A V. O } \\
\text { QVEITO TERZO. FATTO CONSEs. } \\
\text { qucntemchtcdalmedefimo lluftrifimoSignor } \\
\text { Don Diego Ambafcia } \\
\text { tor Cefarco. }
\end{gathered}
$$

SIGNOR AMBASCIAT ORE. Horfeguitati, comeni parecirca àtal fcientia. N. Per procedere regolatamente, boggi diffiniremo folamente alcuni termini, ev modidi parlare occorrenti in queftafcientia, accio che il frutso della intel ligentia diquella, V.S.piu facilmente apprenda. Dimane poi dichiariremo It prmapij dital fcientia, cioe quelle cofe che intal fcientia non fa poffono dimoftrare, perćbe (co me che V.S. (a) ogni fcientia bali fuoi primi princpij indemoftrabili, li quali effendo do conceßi, ouer fuppoftiper lor meggio fidifuta, ©゙ foftenta tutta la fcientia, dapos quefto andaremo preponendo uarie propofitioni, ouer conclufioni fopra di tal fcienm tid, er parte de quelle dimostraremo ¿ V.S. con argomenti Geometrici, ev parte ap= prouaremo coin ragioninaturali, come difopra dißi. Et dapoiquesto, V.S. preponera tuttiquei dubbij, ouer queftioni che a quella gli parera, nelle cofe Mecanice, ov maßi= me fopra li mirabili effetti delli fopradetti iftromenti materiali cbe augumentano la forza dell'huomo, che per le cofe dette, er"approbate, nella detta fcientia de peff, tutte ferefolueranno. S.A. Quefto uoftroprocedere cofiregolatamentemolto mi prace.

QVESITO QVARTO FATTO CONSE quentementedal mede/imo illuftrißimo Signor Don Diego Ambafciator Cefareo.

sIGNOR AMB ASCIATORE, Hor feguitate adunquele dette diffinia tioni confequentemente. N.

QVESITO. HII. DIFFINITIONE PRIMA.

LI corpife diconodigrandezza eguali, quando che quetlioccupano, ouer empis noluochi eguali. S.A. Datemiqualche material efempio. N. Efempigra tia, doi corpiphericigettati, ouer prontati in una medefima forma, ouer informe ca guale, fe diriano eguali di grandezzza, anchor che fuffeno di materia diucr $/ a$, cioe che $^{\text {r }}$ Puno fufe di piombo, er. l'altro di ferro, ouer di pietra, ev cof fidebbe intendercits qual / Enoglia altra diuerjfta di forma. S.A. E ue bointefo; feguitati. N.

QVESITO. V. DIFFINITIONE II.

SImilmente li corpi fe dicono di grandezza diuer ℓ, ouer ineguali, quando che queतli occupano, oucr empino luochidiuerf, ouer ineguali. Et maggiore fc ine tende quello, che occupa maggior luoco. S. AMBASCIA, E ue bo intefo, feguitati. N1C.
[83r]

EIGHT

THIRD QUESTION CONSEQUENTLY RAISED by the same Excellency Sir Don Diego, Imperial ambassador.

SIR AMBASSADOR. Now proceed as you wish about this science. N. To proceed in an orderly fashion, we shall today define only some terms and ways of speaking that occur in this science, ${ }^{[14]}$ in order that your Excellency will more easily apprehend the fruit of the understanding of this. Then, tomorrow, we shall proceed to state the principles of that science, that is, those things which cannot be demonstrated in the science ${ }^{[15]}$; for as your Excellency knows, every science has its indemonstrable first principles, which, being conceded or assumed, afford the means to discuss and sustain the whole science. Then we shall go on by setting forth various propositions or conclusions concerning the science; and part of these we shall demonstrate to your Excellency by geometrical arguments, and part we shall test by physical reasons, as I said before. And after this, your Excellency, you shall put forward those doubts or questions that occur to you concerning things mechanical, and especially the admirable effects of the said material instruments that augment the strength of a man; and by the things said and tested in the science of weights, all will be clarified. S.A. This orderly procedure of yours suits me very well.

FOURTH QUESTION CONSEQUENTLY RAISED
 by the same Excellency Sir Don
 Diego, Imperial ambassador.

SIR AMBASSADOR. Therefore go on with the said definitions, in order. N.
QUESTION. IIII. FIRST DEFINITION.
Bodies are said to be of equal size when they occupy or fill equal spaces. ${ }^{[16]}$ S.A. Give me some material example. N. For instance, two spherical bodies cast or shaped in the same form, or in equal forms, will be said to be of the same size even though of different materials, as when one were of lead and the other of iron or of stone. And the same is to be understood of any other variety of form. S.A. I understand; go on. N.

QUESTION. V. DEFINITION II.

Similarly bodies are said to be of different size or unequal when they occupy or fill different or unequal spaces, and greater means that which occupies more space. ${ }^{[17]}$ S.AMBASCIA. I understand; proceed. NIC.

$2 \quad 1 \quad B \quad R \quad 0$
 QVESITO. VI. DIFFINITIONE TERZA.

1A uertud'un corpograue fe intende, er piglia per quella potentia, che luibada tendere, oucr diandareal bafo, eva anchora da refifere al moto contrario, cioe 2 che il uoleffe tirar infufo. S.A. Quindo cbe non uidico altro /eguitati,perche col mio tacere, e ue dinoto baucrui intefo, ev che debbiatifeguitare. N..

QVESITO. VII. DIFFINITIONE QVARTA.

LI corpi fe dicono de uertu, outer potentia, equali, quando cbe quelliin tempiegua li dimoto peritranificono facij equali.

QVESITO. VIII. DIFFINITIONE QVINTA.

LYeorpife dicono de uertu, ouer potentiadiuerfa, quando che quelli in tempidia uer β, pertranfifcono di moto, β pacijeguali, ouer che in tempi guali pertranfon fcono interualli ineguall.

QVESITO. IX DIFFINITIONE SESTA.

LA uertu, ouer potentia de corpidiuerf, quella fe intende effermaggiore, la qua le nel pertranfire uno medefimo fpacio fumme manco tempo. Et menor quelld cbefumme piu tempo, oueramentequella che in tempi cguali pertraniffemage gior pacio.

QVESITO. X. DIFFINITIONE SETTIMA.Vellicorpi fe dicono effere diuno medefimo genere, quando che fono di egual grandezza,e̛" che fono anchoradiegualuertu, ouer potentia.

QVESITO. XI. DIFFINITIONE OTTAVA.

Q
Vellicorpi fedicono effere de diuerf generi, quando che fono diegual grane dezza,o゙ cbe non fono di egual uerth,ouer potentia.

QVESIto. XII. DIffinitione NONA.

Q
Velli corpi fe dicono effre fimplicemente eguali in grauita, liquali fono reale
mente di egnalpefo, ancbor cbe fufeno dimateris diuerfa.
QVESITO. XIII. DIFFINITIO
NE DECIMA.

[83v]
 B O OK
 QUESTION. VI. THIRD DEFINITION.

The strength of a heavy body is understood and assumed that power which it has to tend or go downward, as also to resist the contrary motion which would draw it upward ${ }^{[18]}$ S.A. When I say nothing to you, continue, for by my silence I denote that I have understood and wish you to continue. N.

QUESTION. VII. FOURTH DEFINITION.
Bodies are said to be of equal strength or power when in equal times they run through equal spaces. ${ }^{[19]}$

QUESTION. VIII. FIFTH DEFINITION.

Bodies are said to be of different strength or power when in different times they move through equal spaces, or when in equal times they traverse unequal intervals. ${ }^{[20]}$

QUESTION. IX. SIXT DEFINITION.
The strength or power of different bodies is assumed to be greater in that which employs less time to traverse the same space, and less in that which employs more time; or [greater in that] which in equal time traverses greater space. ${ }^{[21]}$

QUESTION. X. SEVENTH DEFINITION.
Those bodies are said to be of the same genus when they are of equal size and also of equal strength or power. ${ }^{[22]}$

QUESTION. XI. EIGHT DEFINITION.
Those bodies are said to be of different genus when they are of equal size and are not of equal strength or power.

QUESTION. XII. NINTH DEFINITION.
Those bodies are said to be simply equal in heaviness which are actually of equal weight, even though they were of different material. ${ }^{[23]}$

QUESTION XIII. DEFINITION
TENTH.

O T T A V O
 84
 V
 N corpo fe diceeffere finplicemente piu graue d'un' altro, quando che quello èrealmeite piu ponderofo di quello, anchor che fufe di materiadiuce $\int a$ a.

QVESITO. XIIIL. DIFFINITIONE XI.

VNcorpofe dice effere piug graued'un'altro fecondo la pecie, quando che la fou ftantia material di quello e ptu ponderofa della foftantia material del' altro, com me che čil piombodel ferro, é altri finili.

QUESITO. XV. DIFFINITIONE XII.

VNeorpo fe dice efere piu, ouer men graue d'un'altro nel defcendere, quando che la rettitudine, obliquita, ouer dependentia del luoco, ouer 乃pacio doue dew fcende lo fadefeendere piu, ouer men graue dell'altro, © \sim imilmente piu, ouer menuca loce del'altro, anchor che fano ambidui implicemente egualiin grauita.

QVESITO. XVI, DIFFINITIONE XII.

VN corpo $\rho \mathrm{f}$ dice effere pin graue, ouer men graue d'un'altro, fecondo il luoco, ouer fito, quando che la qualita delluoco doue cbe lui feripofa, é giace, lo fa effere piugraue del'altroanchor che fufeno fimplicemente egualmente \&raui.

QVESITO. XVII. DIFFINITIONE XIIII.

TA grauitad'un corpo fe dice efferenota, quando che ilnumero delle libre, che lui pefane fa noto,ouer altra denomimation de pefo.

QVESITO, XVIII. DIFFINITIONE XV.

LI bracci de una libra, ouer bilancia fe dicono effere nel fito, ouer luocodelle ce qualita, quando cbe quelliftanno cquidiftanti al piano dell'Orizonte.

QVESITO. XIX. DIFFINITIONE XVI.

LA lineadella direttione cunna linearetta imagimata uenireperpendicolarmene teda alto al baffo, ev paffareper ilfarto, polo, ouer aßble ogni fortelibra, ouer bilancid.

QVESITO. XX. DIFFINITIONE XVII.

PIu obliquo fe dice ffrie quel defcenfo, d'un corpograve, il quale in und medeffer ma quantita, capijfe manco dellalinea della direttiones, oucramente del deffenfo.
[84r]

EIGHT

A body is said to be simply heavier than another when it is actually more ponderous, even though it were of different material.

QUESTION XIV. DEFINITION XI.

A body is said to be specifically heavier than another when its material substance is more ponderous than the material substance of the other, as is lead than iron, and other similar materials. ${ }^{[24]}$

QUESTION. XV. DEFINITION XII.
A body is said to be more or less heavy in descent than another when the straightness, obliquity, or pendency of the place or space where it descends makes it descend more or less heavily than the other, and similarly more or less rapidly than the other, though both were simply equal in heaviness.

QUESTION. XVI. DEFINITION XIII.
A body is said to be positionally more or less heavy than another when the quality of the place where it rests and is located makes it heavier [or less heavy] than the other, even though both are simply equal in heaviness. ${ }^{[25]}$

QUESTION. XVII. DEFINITION XIV.
The heaviness of a body is said to be known when the number of pounds, or other named measure, that it weighs is known. ${ }^{\text {[26] }}$

QUESTION. XVIII. DEFINITION XV.
The arms of a scale or balance are said to be in the position of equality, or place of equality, when they stand parallel to the plane of the horizon. ${ }^{\text {[27] }}$

QUESTION. XIX. DEFINITION XVI.
The line of direction is a straight line imagined to come perpendicularly from above to below and to pass through the fulcrum, pole or axis of any kind of scale or balance.

QUESTION. XX. DEFINITION XVII.

The descent of a heavy body is said to be more oblique when for a given quantity it partakes less of the line of vertical direction, or of straight descent.

2 I \quad R 0

retito uerfoil centro del mondo. S. A. In quefta non ue intendo troppo bene . epero datemi uno effempio. N. Per effemplificare quefta diffinitione fa il corpo.a.er it retto defcenfo di quello uerfo il centro del mondo fa la linea. a.b. Ẽ fia anchora li dea fcenfl.a.c.e̛.a.d. ev de queftiduinefia fignati ledue quantita, ouer parti.a.e.er.a.f. eguale, ov dalli dui ponti.e ©r.f.flano tirate le due linec.e.g. ©r.f.b. equidiftanti al piatuo del= I'Orizonte, e perche la parte.a.b.i menore della parte.d.g.il defcenfo.a.f.d.fe dird effer piu obli quo del defcenfo.d.e.c.perche lui capiffe manco del defcenfo retto, cioe della linea.a.b.in una me d:finn quantita. Et queftomedefomo of debbe ins $=$ tendere in tuttilidefcenfl che poteffe farcil dete to corpo.a. (ouer altro pimile) ftante appefo al al bracciodialcuna libra, cioe che quel defcenfo fe dira effer piu oblequo, cbe per lo medefimomo do capira manco della linea della direttione, in
 unamedefima quantitade defcenfo. S.A. E ue bo intefo dfofficientia, e pero feguitati fe baueti altra cofa da diffinire. N. Signore quefta ć la ultima cofa che babbiamo da diffinire fopra à quefta materia. Dimane poi dichiariremo li principÿ di quefta fcientia, fccödo la promeffa. S.A. Alla bon'bord.

QVESITO. XXI. FATTO CONSE=
quentemente del medefimo Illuftrißimo Signor Don Diego Ambafciator Cefarco.

5IGNOR AMBASCIATORE. Hor fegtitati Tartaglia questi uoftri principij. N. Liprincipij dequal finoglia fcientia alcuniuogliano che fiano det tidigntasper cbe quelliapproudno altri, ev loronon ponto.effere approudti da altri, alcuni le chiamano fuppofltioni, perche fe fuppongono per ueri in detta fcientia, altri piacque cbiamarli petitioni,perche uolendo difputare tal cientia, or quella foftentare con dimoftrationi, bifogna prima adimandar eall'auerfario la conceßione de quelli, perche felui nonli uoleffe concedere (ma negare) faria negatatutta la fcientia, ne ui occorreris à difputarla altr amente. Et perche quefta ultims opinione mi piace alqnanto to piu delle altre due, pettioni le chiamaremo, ev cofl anchora in forma de petitioni li proferiremo.

QVESITO. XXII. PETITIONE PRIMA.

ADimandamo chene fa conceffo, ebe ilmouimentonaturale de ogni corpo pont. derofo, e grane farcttamente uerfoil centro del mondo. S. A M B. Quefto non \dot{c} da negarc.
$[84 \mathrm{v}]$
B O O K
toward the centre of the world. ${ }^{[28]}$ S.A. I do not understand this very well; therefore give me an example. N. To exemplify this definition, let there be the body a, and its straight descent toward the centre of the world shall be the line $a b$; and let there be also the descents $a c$ and $a d$; and of these two, let there be two designated equal quantities, or parts, ae and af [See Fig. 4.3]. From the points e and f, draw the two lines $e g$ and $f h$ parallel to the plane of the horizon. Since the part $a h$ is less than the part $a g$, the descent afd will be said to be more oblique than the descent aec, because it contains less of the straight descent, that is, of the line $a b$, in a equal quantity. And the same is to be said for all descents that could be made by the body a, or any similar body, hung from the arm of any balance. That is, that descent will be

[Fig. 4.3] said to be more oblique which, in the above way, contains less of the line of direction in a equal quantity of descent. S.A. I have sufficiently understood; therefore proceed, if you have anything else to define. N. Sir, this is the last thing that we have to define concerning this subject. Tomorrow we shall explain the principles of this science, according to our promise. S.A. It was time.

QUESTION. XXI CONSEQUENTLY RAISED

by the same Excellency Sir Don Diego, Imperial ambassador.
SIR AMBASSADOR. Now, Tartaglia, continue with your principles. N. Some say that the principles of any science should be called dignities ["dignita"], because they prove other propositions but cannot be proved from others; some call them suppositions, because they are supposed to be true in the given science; others prefer to call them petitions, because, if we wish to debate such a science and sustain it with demonstrations, we must first request the adversary to concede them. For if he does not concede them but denies them, the entire science would be denied, nor could one debate differently. And since this last opinion pleases me somewhat more than the other two, let us call them petitions and set them forth in the form of requests.

QUESTION. XXII. FIRST PETITION.
We request that it be conceded that the natural movement of any heavy and ponderable body is straight toward the centre of the world. ${ }^{[29]}$ S.A. This is not to be denied.

OTTAVO
 QTESITO XXIII PETITIONE If.

SImelmente adimandamo, che na fla conceffo quel corpo,eb'c' dimaggior potentia debbia ancboradijcendere piuuelocemente, et nellimoticontrarï, cioe nelli afč̈a f,afeendere piu pigramente, dico nella libra. S.A. Datime uno ef empio materide fopradi quefta petitione,fe uoleti, cbe ue intenda. N. sia,effempi gratia, le due lia bre.a.b.c.©.d.e.f.equali, cioe, bbe li dui brazzi.a.b.e.e.b.c.fano equali allidui braz
 3.a.ui fla appefo il sorpo,a, poniamo de libre due in grauita, ev nella iftrenitade l'afo tro brazzo, cios in ponto.c.non ui Ja alcuna altra grauita, er cof nells iftrcmita del brazzo.e.d.ai fia appefo el corpo.d,poniamo di una libra fola in grauita, er nelldia
 dui corpi, cof icongionti elle cuati con la mano im alto egualmente, come che di fotto ap. parin figura;hor adimando, che eme fla conceffo, lafciando andare cadauno de dettidui corpi cof in alto ellenatische il corpo.ai (per effer piu grauk) difcenda piu uelocsa

mente al bafo det corpo.d. cioe, che il detto corpo.a. fumaramanco tempo \& pertran freil curuo β pacio.a.g.di quello fara all detto corpo.d o pertranfire il curuo β patio.d. b.li quali pacij̈ uengono ì efer equali, perche li brazzide dette libre fono egusli dal prefuppojito, e peroli dettidui ßpacij, ouer defcenficurri, uengono deffer circöferen tie di cerchij equali. Et ciconuerfo, quando, che lidetti corpijarăno difcefinel fuo in= mo,ouer pub bafjo luoco,cioel'uno in ponto.g. שr 'altro in ponto.b. daimando, che me fia conceffo, cbe quella uirtu, oucr potentia, la qual offendo appefa nell'altro brazzo della libra in ponto.c.farr atta ad elleuare el detto corpo.a.per fin al liroco, doue, che al prefente fe ritrona nella figurafuperiore, quella medefima fia attta adalleuar piu ue locemente il corpo.d.effeido appefa mell'altro brazzo della fua Libra, cioe in pöto. F. S.A. Questouiconcedo, perche lafperientia ne rende buona teffimoniăza. N. Ma woftra S!gnoriafappia, cbe quello, cbe hakemo detto, © adumandato dellidettidui cor pi,delli quali 'uno 'ímplicemente piu potente dell' 'altro, il mededimo adimandamo de dui corpi implicemente egualiin potentia ma inequali per uigor della lor pofftiones ouer jico nel brazzo de unamedefimalibra, effempigratia, _(enel brazizo.arb, deflas
[85r]

EIGHT
 QUESTION XXIII. PETITION II.

Likewise we request that it be conceded that that body which is of greater power should also descend more swiftly; and in the contrary motion, that is, of ascent, it should ascend more slowly-I mean in the balance. ${ }^{[30]}$ S.A. Give me a material example for this petition if you wish me to understand it. N. For example, let there be the two equal scales $a b c$ and def [See Fig. 4.4], with the two arms $a b$ and $b c$ equal to the two arms $d e$ and $e f$, and their fulcrums or centres b and e; and at the extremity of the arm $b a$ let there be hung the body a, say, of two pounds weight; and at the extremity of the other arm, that is, at the point c, let there be no other weight. And at the extremity of the arm $e d$ let hang the body d, say, of a single pound weight; and at the extremity of the other arm, that is, at the point f, let there be no other weight. And let the two said bodies, so conjoined, be elevated by hand to equal heights, as appears below in the figure. Now I request that it be conceded to me that, when both the said two elevated bodies are released, the body a (being heavier) will descend more swi $[-]$

[Fig. 4.4]
ftly than the body d; that is, the body a will take less time to run through the curved space $a g$ than will the body d to run through the curved space $d h$, which spaces will be equal because the arms of the scales are assumed equal, whence the said two curved spaces or descents are circumferences of equal circles. And the converse happens when the said bodies shall have descended to their lowest places, that is, one to the point g and the other to the point h. I ask that it be conceded that the strength or power which shall be hung at the other arm of the scale at the point c, in order to elevate the said body a to the place where it is presently shown in the figure, will be able to raise the body d more swiftly when hung from the other arm of its scale at the point f. S.A. This I concede, because experience gives me good evidence of it. N. But your Excellency knows that what we have said and supposed of the two said bodies, of which one is simply more powerful than the other, we suppose of two bodies simply equal in power [in weight] but unequal by strength of their position or placement on the arms of the same balance. For example, on the arm $a b$ of the

\boldsymbol{L} I B R 0

libra.a.be.ue fla appepoliduicorpi.a.er.d.cguali implicemente in porentid, cioe, luno in ponto.a. © l' altro in ponto.d. come difotto appar in figura, anchor,che fano fomplicemente egualmente potenti,nondimeno il corpo.a. in tal poftione per la. 73* diff initione fedira effer piul graundel corpo.d. come per lauenire fe fara manifefto, perche in quefol luoco non R puo aßignar la ragioue per le cofe dette, ma per latenie re fe propara el corpo.a.in fimel fito effer piu graue del corpo.d. epero.effendo quelll elleuati luno in pöto.e.ev laltro in potto.g.er dapoii éédoambidul abandonati, dico; .cbe il corpo.ardifédera piu ueloce del corpo.d. ©́ é coucr $\int 0, e f \int$ endo luno, el'altro di fcefinelli loro infimi luocbi, cioc luno in ponto.f.e laltroin ponto.b.quella potentid she fars atta in ponto.c.ad elleiuarc il corpo.a.dal ponto.f.per fina al ponto.e:quelld A!cdefima fara atta ad elienare nel medeformo lupco, molto piu kelocemente il corpo.d,

dal ponto.b.per fial ponto.g. S. A. Ançora quefta é cofa cbiara, mauoria intena dere due cofe da woila primaé, cbe worid intenderc aperche nonfingeti la foprafcrittd figura de libra, con quille fue due tazzette appefe luna da un capo, ev laltra da laltro (come nelle material libre fi coffuma) per imponeruili pef, ouer campioni in Luna, e nell'altra le cofe, che fe banno da ponder areila feconiddé, cBe ioria fapere fé quefto ef fempio de librafidebbe intendere di quelle, che hanno il tor parto di fopra, ouer di guelle, cbol'bannodi fotto, oucr di quelle, cbe nonl'batino, ne di Jopra, ne di fotto, ma ineffelibre proprie. N. Circaalla prima, rifondo, cbe la puralibra fe intende per quella puralögbezza, cbe fcrma quelli dui briazziluno di qua, laltero dila dal Parto, - fianoli detti brazziequali tra lore, ouer inequali, ov quelle due tazzette, che dice Y. S. non fono parte delia libra, ma ui fe aggiongono per commodita del ponderiante, per imponervili campioni, épef,che badaponderare, /icome cb'é ancbora la fella dun cauallo, la quale noné parte del cauallo, ma una cofa aggionta per cömodita dico lui, cbe lha da caualeare, perche meglio \cap uede, oco comprende uno cauallo nudato della fua jella, cbe cö lafelld, et Imelméte una libra nudata di quelle fue due tazzette; che con le tazzette.fenza tazzette la eßemplificamo. Circa alla fcionda particolari ts, dico, cbe la prefente libra, erfimelmente tutte quelle, che per lauenir A proponera (non fecificando altro) fidebbono intendere di quelle, cbe bannoil ffarto in lor mes defmescome nelle wateriale ficostuma. S.A. Euc bointefosfoguitati, N.

B O OK
balance $a b c$ [See Fig. 4.5] let there be hung the two weights a and d, simply equal in power, that is, one at the point a and the other at the point d, as appears below in the figure. Although they are equally powerful, nevertheless the body a in that position (by the thirteenth definition) will be said to be heavier than the body d, as will later be made manifest. For at this time the reason cannot be given for the things said, but later it will be proved that the body a in such a position is heavier than the body d. Nevertheless, these being raised, one to the point E and the other to the point g, and both then released, I say that the body a will descend more swiftly than the body d; and conversely, if both have descended to their lowest points, that is, one to the point f and the other to the point h, the power that, at the point c, will be able to elevate the body a from the point f to the point e will be able, in the same place, to elevate much more swiftly the body d.

[Fig. 4.5]
from the point h to the point g. S.A. This is also clear, but I should like to hear from you two things. First, I wish to know why you do not draw the above figure of the scale with its two small cups hung one from one end and one from the other (as is usual in actual scales), where we place weights and samples of things to be weighed. Second, I should like to know if this example of the scale should be understood of those that have their fulcrum above, or of those that have it below, or of those having it neither above nor below, but in the scale itself? N. As to the first, I shall reply that by the ideal scale is intended the mere length that forms the two arms on both sides of the fulcrum, whether such arms are equal or unequal, and that those two small cups of which your Excellency speaks are not part of the scale, but are added for the convenience of the weigher in placing the weights and samples that are to be weighed-just as the saddle is not part of the horse, but something added for the convenience of him who must ride. ${ }^{[31]}$ And just as a horse is better seen and recognized bare of saddle than with saddle, so is a balance denuded of those cups seen better than with them; thus without cups we illustrate it. As to the second matter, I say that the present scale, as well as all those we shall later propose (unless we specify otherwise), should be understood to have the fulcrum within, as is usual with actual balances. S.A. I understand; proceed. N.

0 T T $\boldsymbol{T} \boldsymbol{\nabla} 0$

QVESITO. XXIII. PETITIONE III.

ANcbora adimandamo, cbe ne fia conceffo un corpo graue effer in el difeendere tanto piu graue, quanto tbe il motodi quello é piu retto al centro del mondo. S. A. Datime anchora uno qualcbe material effempio fopra à quef' 'altra petitione fe uoleti,cbe ui intenda. N. Sia,eßempi gratia, il corpo graue.a. © poniamo, cbe le quattrolimee.a.b.a.c.c.d.a e. .fano quattro luochi, ouer β pacij da poter defcendere ed detto corpo.a. © poniamo anchora, cbe la lined. a.b.fasil rettißino, ev perpendicoa lar defeenfo uerfo il cërro del mondo, onde la linea.a. dueneria ad eßer piul retta uer fo ildetto centro del mondo della linea.a.e. e- per tanto in quefo cafo adimandamos chene fia conciffoildetto corpo.a.e ef)er piugrauenel difoendere per la lizes. a.d. cbe per la lined.a.e.epere efer(come detto) piur rettadi quella al centro del mondo, or for melmente per la linea.a.c.defeendere piu graue, cbe per la lines.a.d.per effer tal linea a.c.piurettaal centro del mondo della detta tinea.a.d.e cof qiuanto piusel detto cor po.a. ©e andara accoffando alla detta linea. 4. b. nel fiwo defectaderc fo fuppone tanto piugrave defendere, perchequel tranfito, ouer defcenfo, ebe forma piu acuro angolo conla lines.b.a. in ponto.a. fe intende efer piur retto al centro del mondo, di quello;cbe lo forma men acuto: Onde per la limed.a.b. ikien ìdijecederce piugraue, che per qual /i uogliadtro ucrfo.

Et quefto, cbe bauemo detto, © adimandato dal fopradetto corpo. a. feparato da ognilibra, ilmedefimoadimandamo de quelli, cbe def cendono appef al brazzo di qualche libra. Effempigratia,fia anc bora el detto corpo.a. appefo al brazzo della Libra.a.b.c. girantef opraal β parto, ouer centro. b. outramente al brazzo della tibra a.d.e.girante fopraalfparto, ouer centro. d. © fia el perpendicoler def.enfo uerfoil eentro del módo la linea retth.a.f. © el defcenfo, che faria el detto corpo.a, cö el braz zo.a. b.della libra.a.b.c. fopraelcentro.b.la limea curua.a. g. Etel defeenfo, che faria elmedefimo corpo.a.con rl brazzo.a.d.della li'ra.a.d.e. Sopra el centro.d. la linea curua,a.b. Hor dico, ©r adimando, che ne fa conceffo tldetto corpo.a. effer piu graue nel defcendereper il defcenfo.aib. chep el defcenfo.a g. per effereel detto defeenfo a.h. piu retto al centro del mondo del defécenfo. a.8.perche el detto defenfo. a.b.
[86r]
EIGHT
QUESTION. XXIIII. PETITION III.
It still it be conceded that a heavy body in descending is so much the heavier as the motion it makes is straighter toward the centre of the world. ${ }^{[32]}$ S.A. Give me some material example of this new petition, if you want me to understand it. N. For example, let there be the heavy body a, and assume that the four lines $a b, a c, a d$, $a e$ are four places or spaces by which the said body a can descend [See Fig. 4.6], and let us also assume that the line $a b$ is the straightest and perpendicular descent toward the centre of the world. So that $a d$ will be more direct toward the centre of the world than the line $a e$, and hence in this case we request that it be conceded that the said body a is heavier in descending by the line $a d$ than by the line $a e$ (because as said, the former goes more directly than the latter to the centre of the world), and similarly is heavier in descending by the line $a c$ than by the line $a d$, because the line $a c$ is more direct to the centre of the world than the line $a d$. And thus the more the said body shall approach the line $a b$ in its descent, it is assumed so much the heavier in descent, because that trajectory or descent which forms the more acute angle with the line $a b$ at the point a is understood to be more direct toward the centre of the world than one which forms a less acute angle. Whence it comes to descend most heavily along the line $a b$ of any direction. ${ }^{[33]}$

[Fig. 4.6]
And what we have said and requested of the said body a separated from any balance, we request of those [bodies] which descend when hung from the arm of any scale. For example (Fig. 4.7), let there be also the body a hung onto the arm of scale $a b c$ that turns on the fulcrum or centre b or onto the arm of scale ade that turns on the fulcrum or centre d; and let the perpendicular descent toward the centre of the world be the straight line $a f$; and the descent which the said body a would make with the arm $a b$ of the scale $a b c$ on the centre b will be the curved line $a g$. And let be the curve $a h$ the descent which the same body a will make with the arm $a d$ of the scale $a d e$ on the centre d. Now I request it to be conceded that the said body a is heavier in descending by the descent $a h$ than by the descent $a g$, because the said descent $a h$ is more direct toward the centre of the world than the descent $a g$, the descent $a h$

$2 \boldsymbol{1} \boldsymbol{1} \boldsymbol{1}$

forma piu acuto angolo con la linearaf. (qual $c^{c}{ }^{\prime}$ angolo.b.a.f. delld contingentia) d quello fa lo decenfo.a.g.

S.A Euebointefo benifimo, er tal petitione nonéda negare, e epero feguitati nela
Palitra, N.

QUVESITO. XXV. PETITIONE IIII.

ANcbors adimandamo,cbe ne fia conceffo quetli corpi effer equalmente graui, fecondo el fito, ouer poffitione, quando che li tor def cenflin taiffitiono egualmé se obliqui, ev piu graue efer quello, cbe nel fuo fito, ouer luoco doue fe ripofa, ouer gis cebail defcenjo manco obliquo. S. A. Ancboraquetsauié a effer manifeftaper quello fudettonella precedente, ${ }^{\circ}$ anchorajopra la fcconda petitione,e pero feguitati. N.

QVESITO. XXVI. PETITIONE V.

SImelmente adimandamo, cbe ne fla conceffo quel corpo effermen graue dun altro
fecondo el fto, oucr luoco, quädo che per el defcéfo di quello altro, nell'altro braz zo della librain luif cguitail moto contrario, cioc, che da luiuien elleuato infufo uerfo. il cielo, © č conuerfo. S.A. Quefta écofa troppo cbiara da concederc. N.

QVESITO. XXVII. PETITIONE VI.

ANcbora adimandamo, cbe ne fa conceffo, niun corpo effer graue in fe medefle mo. S.A. Queftauosira petitione non intendo. N. Cioc, che l'acqua nella «cqua, il uino nel wimo, l'olio nelolio, or P'aere nel aere non ef)ere di alcuna grauita.
 guitati. N. Noncié altracofa da adimandare à. v. S.diman, piacendo à Iddio, ine traremo nelle propofitioni. S. A. Saranno propofitiont affai. N. Non troppo ßgnore. S. A. Credeti, cbe le F_{p} diremo dimane. N. No credo Signore, che le β pe

[86v]
B O OK
forming a more acute angle with the line $a f$ (which is the angle baf of tangency) than that made by the descent $a g$.

[Fig. 4.7]
S.A. I understand you very well, and that petition is not to be denied. Now go on to the next. N .

QUESTION. XXV. PETITION IIII.
Also we request that it be conceded that those bodies are equally heavy positionally when their descents in such positions are equally oblique, ${ }^{[34]}$ and that is the heavier which, in the position or place where it rests or is situated, has the less oblique descent. S.A. This also is manifest by what was said of the foregoing, and also of the second, petition; therefore proceed. N .

QUESTION XXVI. PETITION V.
Similarly we request that it be conceded that that body is less heavy than another positionally when, by the descent of that other on the arm of the balance, a contrary motion follows in the first; that is, the first is thereby elevated toward the sky; and conversely. ${ }^{[35]}$
S.A. This is quite clearly to be conceded. N.

QUESTION. XXVII. PETITION VI.
Also we request that it be conceded that nobody is heavy in itself. S.A. I do not understand this petition of yours. N. I mean, that water in water, wine in wine, oil in oil, and the air in air have no heaviness. S.A. I understand, and this is something that may be conceded because experience makes it manifest; hence go on. N. There are no more petitions to be requested to your Excellency. Tomorrow, God willing, we are going to enter the propositions. S.A. There will be propositions enough. N. Not too many, Sir. S.A. Do you think we can get through them tomorrow? N. I doubt, Sir, that we can finish them tomorrow and the next day. S.A. Well, you may go, and return early tomorrow.

0 T TA \boldsymbol{O}
 87 QVESITO. XXVIIf. PROPOSITIONE

PRIMA.

SIGNOR AMBASCIATORE. Hor feguitatiTariaglia queficuofire propofitooni, ouer conclufioni corfequentemente l'unadrieto all altra, ev fotto breuit. NICOLO.

LA proportione dell. grandezza di corpi de un medefimogenere, or quelladela la lor potentia èuns medefima. S.A. Datemi uno effempto. N. Sianolidui corpi.a.b. ©.c. de uno medefimo genere, or fia.a.b. maggiore, er fia la potentia del corpo.a.b.La.d.e.er quell. de corpo.c.l.l.f. Hor dico che quella proportione, che cidal corpo.a.b.al.corpo.c.quells medefima é della potentia.d.e.alla potentia.f. Et fe poßia bilé effer altramente (perl'auerfario) fla che Ls proportione del corpo.a.b.al corpo. c. fiamenore, di quelladells potentia.d.e.calla potentia.f. Hor fla del sorpo.a.b. (maga giore) comprefouna parte egusle al corpo.c.menore, quale fiala parte.d. © perche lauertu, ouer potentia del compofitoce compofta dalla uertu dicomponenti. Siasdun= que la uertu, ouer potentia della parte.a.la.d.e - la uertu, ouer potentia del refiduo.b denece Pitadara la reftante potentid.e.et perche
 la parte.a.e tolta egualal. c.la petentia.d.(per il conuerfodella. 7 . diffinitione) fara equale alla potentia.f. © la proportione de tuttoil corpo: a.b.alla fua parte.a. (per la feconda parte della.: 7. del quinto di Euclide) fara, f come quell. del medefimo corpo.a. b.al corpo.c. (per effer.a. eguslal.c.) © Pimilmente laproportione dellds potentia.d.c.alld potentia.f.f ara, ρ is come quella della detta potentia.d. c. alla fua parte.d. (per effer la.d.egual alla.f.) Adunque l.s proportione de tuttoil corpo.a. b.alla fua parte. a.fara menore di quella di tutta la potentia.d.e.alla fuaparte.d. Adunque euerfamente (per la. 3 o. del quinto di Euclide) la proportione delmede $\mathrm{Im}_{\text {mo corfo.a.b. al refiduo }}$ corpo.b. fara maggiore diquella ditutta la potentia.d. e. alla reftante potentia. e. la qual cofa faria inconueniente, é contrala opinion dell'auerfario, il qual nol che la proportione delmaggior corpoalmenore famenore, diquclla della fua potentia alla potentia del detto menore. Rdunque defirutto l'oppofitorimane il propofito. S. A. Sta bene,feguitati. N IC.

Q.VESITO. XXIX. PROPOSITIONE SECONDA.

LA propertione della potentia di corpi grauide uno medefimo genere, er quella della lor uelocita (nelli def (cnnfi) foconchiude effer una medefima, anchor quelo
[87r]

EIGHT
 QUESTION. XXVIII. FIRST PROPOSITION.

SIR AMBASSADOR. Now continue, Tartaglia, with your propositions or conclusions in order, one after another, and briefly. NICOLO.

The ratio of volume of bodies of the same kind is the same as the ratio of their power. ${ }^{[36]}$ S.A. Give me an example. N. Let there be the two bodies $a b$ and c of the same kind; let $a b$ be the greater, and let the power of the body $a b$ be $b e$, and that of the body c be f [See Fig. 4.8]. Now I say that that ratio which the body $a b$ bears to the body c is that of the power $d e$ to the power f. And if possible (for the adversary), let it be otherwise, so that the ratio of the body $a b$ to the body c is less than the ratio of

[Fig. 4.8] the power $d e$ to the power f. Now let the greater body $a b$ include a part equal to the lesser body c, and let this be the part a; and since the strength or power of the whole is composed of the strengths of the parts [emphasis added], ${ }^{[37]}$ the strength or power of the part a will be d, and the strength or power of the remainder b will necessarily be the remaining power e; and since the part a is taken equal to c, the power d (by the converse of definition 7) will be equal to the power f, and the ratio of the whole body $a b$ to its part a (by Euclid V.7) ${ }^{[38]}$ will be as that of the same body $a b$ to the body c (a being equal to c), and similarly the ratio of the power $d e$ to the power f will be as that of the said power $d e$ to its part d (d being equal to f). Therefore the ratio of the whole body $a b$ to its part a will be less than that of the whole power $d e$ to its part d. Therefore, when inverted (by Euclid V.30), ${ }^{[39]}$ the ratio of the body $a b$ to the residual body b will be greater than that of the whole power $d e$ to the remaining power e, which will be contradictory and against the opinion of the adversary, who wants the ratio of the greater body to the less to be smaller than that of its power to the power of the lesser body. Thus, the contrary destroyed, the purpose stands. S.A. Very good; continue. NIC.

QUESTION. XXIX. SECOND PROPOSITION.

The ratio of the power of heavy bodies of the same kind and that of their speeds (in descent) is concluded to be the same; also that

1 I B R O

Ia dellitor moticontrarij(cioe dellilor afcenfi) fe conchiude effer la medefima,tratraf mutatiuamente. S.A. Effemplificatemital propofitione. NIC.

S$1 a$ anchoralidui corpi.a.b.e.c.de uno medefimo genere, ev di grandezza diucr. fa, er fallo.a.b.maggiore, © Ra la potentiadel.a.b.la.d.e.e del.c.la.f. © per= che il corpo dip potentia, ouer grauita maggiore (per la fconda petitione) defcende pius uelocemente, fia adunque la uelocita nel defeender del corpo.a.b.la.g.h. ©V quella del corpo.c.la. k.bor dico, che la proportione della potentia.d.e. alla potentia.f.e quelld della uelocita.g.b. alla uelocita. k.effer una medefina, er quella dellilor moti contrarij effer quella medefima, ma trafmutatiuamente, cioe che la proportione della uelocita del corpo.a.b.alla uelocita del corpo.c.nel moto contrario (cioe nell'afendere) effer, fi come quella della potentia.f.alla potentia.d.e.ouer, come del corpo.c.al corpo,a.b. la qual cofa fe dimofira per llmedefmo modo, che fu dimoftrata la precedente, cioc fe la proportione della potentia.d.e.alla po tentia.f.fon é(per l'auerfario) ficome quel ladella uelocita.g.b.alla uelocita.k. neceffa riamente la fara maggiore, ouer menore, hor poniamo che laflamenore, della potena tia.d.e.neaßignaremo la parte.d.eguale al= la.f.ev cofidella uelocita'g.b.ne afignares mola parte.g.eguale alla. K. er arguiremo, come nell a precedëte, dicēdo che la pportio
 ne di tutta la potentia.d.e.alla fua parte.d. fara(per la feconda parte della.7. del quin= io di Euclide) fi come quella della medefimapotentia.d.e alla potentia.f. (per effer la d.er.f.eguale) er fmilmentela proportione de tuttala uelocita.g.b.alla fus parte.g.* effer, fi come quella della medefima.g.b.alla. k. Adunque la proportione dituttala po= tentia. d.e.alla fua parte.d.fara menore di quella di tutta la uelocita.g. b.alla fua pare te.g. Onde (perli. 3 o. delquinto di Euclide) la proportione ditutta la medefima pos tentia.d.e.al fuo refidno.e.baucra maggior proportione, che tutta lauclocita.g.b.al fuorefiduo.b. la qual cofa faria contrala opinione dell'aucrfario qual fupponé, cbe la proportione della maggior potentia all. menore effer menore di quella della maggior uelocita alla menore.Et con limedefimiargomentife procederia quando che quel fupe poneffe che la proportione della maggior potentia alla menore fulfe maggiore di quel la della maggior uelocita alla menore, diftrutto adunque l'oppofito romanc il propofs to, bor per la feconda parte della noftra conclufione, dico, cbe la proportione della uee locitadelli defenfi, ē dellicontrari moti, cioc delli a/cenfide detti corpi e una medefi= ma, matrafmutatiuamente, cioe che la proportione della uelocita del corpo.a.b. effen do da qualche altrauertu impofta nell' altro braccio della libra in alto elleusto (ponias mo per fin allalnea della direttione) alla uelocita del corpo.s.dalla medefima uertu, pur inalto elleuato per fin alla medefima lineadella direttione fara, ficome quella dela la uelocitat, k alla uslocita.g.b,ouer della potentia.f, alla potentia, d.e,ouer del core
$[87 \mathrm{v}]$
B O O K
that of their contrary motions (that is, of their ascents) is concluded to be the same, but inversely. S.A. Illustrate this proposition for me. NIC.

Let there be, again, the two bodies $a b$ and c of the same kind but different size, and let $a b$ be the larger, and let the power of $a b$ be $d e$, and that of c be f [See Fig. 4.9]; and since the body of greater power or heaviness descends more swiftly (by the second petition), let the speed in descent of the body $a b$ be $g h$ and that of c be k. Now I say that the ratio of the power $d e$ to the power f is the same as that of the speed $g h$ to the speed k, while that of their contrary motions is the same but inversely; that is, the ratio of the speed of the body $a b$ to the speed of the body c in contrary motion (that is, in ascending) is as that of the power f to the power $d e$, or as that of the body c to the body

[Fig. 4.9] a. This is demonstrated in the same way as the foregoing, that is if the ratio of the power $d e$ to the power f is not (for the adversary) as the ratio of the speed $g h$ to the speed k, it will necessarily be greater or less; assume it be less. Of the power de assume the part d equal to f, and similarly of the speed $g h$ assume the part g equal to k; and as in the preceding we will argue that the ratio of the whole power $d e$ to its part d will necessarily be (by Euclid V.7, ${ }^{[40]}$ as the ratio of the same power $d e$ to the power f (because d is equal to f) and similarly the ratio of the whole velocity $g h$ is to its part g as that of $g h$ to k. Therefore the ratio of the whole power $d e$ to its part d will be less than that of the whole velocity $g h$ to its part g. Therefore (by Euclid V.30), ${ }^{[41]}$ the ratio of the whole power $d e$ to the residual e will be greater than that of the whole speed $g h$ to the remaining h, which will be against the opinion of the adversary, who wants the ratio of the greater power to the less to be smaller than that of the greater speed to less. Thus, the contrary destroyed, the purpose stands. ${ }^{[42]}$ Now for the second part of our conclusion, I say that the ratio of the speeds of the descents and of the contrary motions (that is, of the ascents) of the said bodies is the same, but inversely; that is, the ratio of the speed of the body $a b$ in being raised by some other strength imposed on the other arm of the balance (say, to the line of direction) to the speed of the body c raised also by the same strength to the same line of direction will be as that of the speed k to the speed $g h$, or of the power f to the power $d e$, or of the bo[-]

$\begin{array}{lllll}0 & T & T & \text { V } 0\end{array}$

po.c, al corpo.d.b. perche quantaucrtu, ouer potentiaba uncorpograue per defcetsa dereal baffo, tantane ba anchora per refiftere al moto contrario, cioe à cbe il uoleffe tirare, ouer à leuarc in alto adunque la potentia del corpo, a, b, perrefiftere à che il uo Leffeclleuarein alto, faratanto quanto la fopradetta.d.e.e qu quella del corpo.c.fara tanto quanto la opradetta. f. Adunque quella uertu cbe nella altro braccio della libra Sarsattaad ellecuarc cople a pena il detto corpo,a,b.ptr fin alla lineadella direttione, quella medefima fara atta ad elleuare il detto corpo.c.tanto piu uelocemente(per fin alla dettalineadella direttione) quanto che la fuarefifentia fara proportionalmente menore di quella del corpo.a.b.ש゙ perche la detta refifentiad del detto corpo.c. etans tomenoredellarefifentiadel corpo.a.b. quanto che la fua potentia.f.della potentia. d.e.'Adunque la uelocita del corpo.c. (nel moto contrario) alla uelocita del corpo.a. b. fara, if conse la potentia.e.d.alla potentia.f.ouer come che il corpo.a.b.al corpo. c. cbe il propofito.

CORRELARIO.

DA qui femaniffftaqualmente la proportione della grandezza dicorpidiuno medefimogenere, © quella della lor potenia, ev quella della lor uelocita nelli lor defcenfi efer una mede/ima. Et fimilmente quella della lor uelocita nelli moti contrarij, ma trafmutatiuamente. S. A MBASCIATORE. E uebointefo; feguitati pur. NICOLO.

QVESITO XXX. PROPOSITIONE III.

SE faranno dui corpi Implicemente eguali digrauita, ma inegualiper uigor del fito, ouer pofitione, la preportione della lor potentia, ě quella della lor uelocia ta neceffariamente fara una medefima. Ma nelli lor moticontrarii, , cioenelliafceo= fi, la proportione della lor potentia, er quella della lor uelocita fe afferma efferla medefina, matrafmutatiuanente. S. A MB A S CI A. Fatemi la dimofiratione di quefto. NICOLO.

SIAN O Lidmi corpia.ev.b. fimplicemente egualidigrauita, er fid la libra. c. d. ilcui centro, outr §parto il ponto. e. © fla nella ftrema parte del braze zo.e.c.cioc in ponto.c.appefo, © foftentato il corpo.a.e © in uno altro luoco piu proe pinquo al /partonelmedefimo brazzo, hor fain ponto.f.ui fa foftentato ilcorpo.b. Età ben che queftidui corpi fano fimplicemente egualidi grauita, nondimeno (per. la quarta petitione) il corpo.a. fara (per uigor del luogo) piu graue del corpo.b. percbe ild defcenfo di quetlo qual fia lo.c.b. e manco obliquo del defcenfo del corpo.b, qual βa lo.f.g. (perla terza, é quarta petitione) effendo adunque il corpo.a. piu grauc, fccondo il fito del corpo.b. Jara ettom piupotente, er effendo piu potente (per la feconda petitione) nelli defcenfi defendera piu uelocemente del corpo.b. © nelli moti contrarly, cioenelli afcenfipiu tardamente. Dico adunque che la proportione della lor uelocitancllidefenficfjer fintilc à quella della loro potertida,er quelladelli los
[88r]

EIGHT

dy c to the body $a b$. For that strength or power that a heavy body has by descending, it has also for resisting the contrary motion against anyone who wants to draw it or lift it up. Therefore the strength of the body $a b$ to resist whatever would raise it will be as much as the said $d e$, and that of the body c will be as much as the said f. hence that strength which, on the other arm of the scale, will be barely able thus to elevate the said body $a b$ to the line of direction will be able to raise the said body c so much the more swiftly to the line of direction as its resistance shall be proportionately less than that of the body $a b$. And since the said resistance of the body c is as much less than the resistance of the body $a b$ as the power f than the power $d e$, thus the speed of the body c in contrary motion will be to the speed of the body $a b$ as the power $d e$ to the power f, or as the body $a b$ to the body c; which is the purpose.

COROLLARY.

From this it is manifest how the ratio of the volumes of bodies of the same kind, and that of their powers, and that of their speeds in descent, is one and the same ratio. And similarly that of their speeds in contrary motion is the inverse ratio. ${ }^{[43]}$ S.A. I understood this; continue. NICOLO.

QUESTION XXX. PROPOSITION III.

If there are two bodies simply equal in heaviness, but unequal positionally, the ratio of their powers and that of their speeds will necessarily be the same. But in their contrary motions, that is in ascent, the ratio of their powers and that of their speeds is affirmed to be the same but inverse. S.A. Give me the proof of this. NICOLO.

Let there be the two bodies a and b [See Fig. 4.10], simply equal in heaviness, and the balance $c d$, whose centre of fulcrum is the point e; and at the end of the arm $e c$, that is, at the point c, let there be hung and sustained the body a, and at another place closer to the fulcrum on the same arm, say, at f, the body b is sustained. And though these two bodies are simply equal in heaviness, nevertheless (by the fourth petition) the body a will be positionally heavier than the body b, because its descent will be $c h$, less oblique than the descent of the body b, which is $f g$ (by the third and fourth petitions). Hence the body a, being positionally heavier than the body b, will also be more powerful; and being more powerful, it will (by the second petition) fall more swiftly than the body b in descents, and in the contrary motion, of ascents, it will rise more slowly. I say therefore that the ratio of their speeds in descents is similar to that of their powers, and that of their

I $\quad \mathbf{I} \quad \mathrm{B} \quad \mathrm{R} \quad 0$

ro afcenfleffer pur la medefimd, matrafmutatiuamente, et per dimoftrarlaprimapar te, fia la potentia del corpo.a. la.l. or guclla del corpo.b.la.m. © la uclocita del corpo a. (nellidefcenfi)la.n.er quelladel corpo.b.la.o. Dico che la proportione della uclociz ta.in.alla uelocita. o.effer, f come quella della potentia. l. alla potentia.m. la qual cofafe dimostra, \cap icome la precedente, cioc fe poßibil fuffe, che la proportione della potene tia.l.alla potentia.m. (per l'auerfario) poteffc effer menore di quella della uelocita.n. alla uelocita.o. fumendo della potentia. l.la parte.p.eguale alla.m.ev dells uelocita.n.la parte.q.equaie alla.0.er arguendo, come nella precedente, cioe che la proportione di tutta la potentia.l. alla fua parte.p. (per la.7.del quinto di Euclide) fara menore di quella di tutta la uelocita.in. alla fua pirte.q. Onde (per ld.30.del quinto di Euclide) la proportione dellamedef ma potentia. l. all'altra fua parte, ouer refiduo.r.bauc= ra maggior proportione di quello, che baucra tutta la uelocita.n.all'altra fua par te, ouer reflduo.s.la qual co fa faria inconueméte, et cons tra la opinione dell'auer $\int a=$ rio, qual fuppone che la pro parclone della maggior po= tentia alla menore, effer me nore di quella dellamaggior uelocita,allamenore, び il medefimo inconueniente fes
 guirta quando che l'auerfario, fupponeffe che la proportione della potentia, l.ala la potentia.m. fuffe maggiore di quella della uelocita.n.alla uelocita. o. distrutto adun quel'oppofito rimane il propoflto. La feconda parte fe rifolue, ouer arguijfc, β come nella precedente, cioe che quella potentid, che nell'altro brazzo della libra(poniamo im ponto.d.) faraatta ad cllcuarc il corpo.a.per fin alla linea della dircttionc, cioc ins ponto. k. quella medejina fardatta ad clicuare tanto pix uelocemente il corpo.b.per fo na al ponto. 1. quanto che la potentia del detto corpo.b. (qual'ćla.m.) èmenore dells potentiadel corpo.b. (qual'éla.l.) perche quanto che la potentiad'un corpo é menore tanto men refifte al moto contrario, *r econucrfo, adunque la uelocita del corpo.6. $\mathbf{4}$ guella del corpo.a. (nelli afcenfl) fara, fl come quella della potentia. l. alla potentia.m. cbe \dot{c} il fecondo propofito. S. A MB. Queftać stata ajJai bella propofitione, ms feguitati pur. NIC.

Quefito

[88v]
B O OK
ascents is also the same, but inversely. And to demonstrate the first part, let the power of the body a be l and that of the body b be m, and let the speed of the body a in descents be n, and that of the body b be o. I say that the ratio of the speed n to the speed o is as that of the power l to the power m, which is demonstrated as in the preceding, that is if the ratio of the power m (for the adversary) to the power f is less (for the adversary) than the ratio of the speed n to the speed o, by assuming the part p of the power l equal to m, and s of the speed n the part q equal to o; and arguing as in the preceding that the ratio of the whole power l to its part p will necessarily be (by Euclid V.7) ${ }^{[44]}$ less than the ratio of the whole velocity n to its part q. Therefore (by Euclid V.30), ${ }^{[45]}$ the ratio of the same power l to the residual r will be greater than that of the whole speed n to the remaining part or residual s, which will be unconvincing and against the opinion of the adversary, who wants the ratio of the greater power to the less to be smaller than that of the greater speed to less. And the same holds true when the adversary would assume the ratio of the power l to the power m would be grater than the ratio of

[Fig. 4.10] the speed n to the speed o. Thus, the contrary destroyed, the purpose stands. ${ }^{[46]}$ The second part is resolved or argued just as before; that is, that that power which in the other arm of the scale (assume at the point d) will be able to lift the body a to the line of direction, that is, to the point k, will be able to raise the body b to the point i as much more swiftly as the power of the body b (which is m) is less than the power of the body a (which is l), because by whatever amount the power of a body is less, by that much less it resists contrary motion, and conversely. Therefore the speed of the body b (in ascents) will be to the speed of the body a as the power 1 is to the power m; which is the second purpose. S.AMB. This is a very pretty proposition, but proceed. NIC.

0 TT\&
 89
 QVESITO XXXI. PROPOSITIONE IIII.

LA proportione della potentia di corpi/amplicemente equaliin grauitd, ma inee quali per uigor delfito, ouer pofitione, er quella delle lor difantic dal parto, cuer centro dells librase approuano effer equali. S. A. Datime uno effempio. N.

CIano li dui corpi.a.ev.b.della figura precedente $\operatorname{Impplicemente~equaliin~grauita~}$ - fa la libra. c.e.d.el centro, ouer parto della quale fa el ponto.i.e effa appeso el corpo.d, in ponto.c.e ev lo corpo.b.nel ponto.f.comenella figura precedente appsa re. Dico, che la proportione della potentia del corpo.a. (quale fa la.l.) alla potentia del corpo.b. (quale figla.m.) efferflmile à quella, cb'e dalladiftantid, ouer brazzo.e. calla ditsantia, ouer brazzo.e.f. $\begin{gathered}\text { r tutto quefto flapproua fecondo lordine della pre }\end{gathered}$ cedente, cioe, fe la proportione della diftantia, outer brazzo.c. e. alla difsantia, oute Brazzo.f.e.non é (per lauerfario,flcome quella,cb'édalla potentia.l.alla poteutia.m.
 nore fla del brazzo, ouer diftantia.c.e.maggiore cauato el brazzo, outer ditatantia.e. f.menore dalla banda uerfo.e.quale fal la.c.x. - dalla potentia.l. ne fla callatala para te.p.equal alla.m. A dunque per la. 7. del quinto di Euclide)la proportione di tutta la distantia, ouer brazzo.e.c.alla fua parte.c..x.bakera menor proportione, di queklo, cbe baueratutta la potentia. Lalla fua parte.p. Onde per la. 30 . del quinto di Euclide) la proportione del brazzo, ouer distantia.c.e.alla restante diftantid, ouer brazzo.e. x.bauera maggior proportione digucllo haucra la potentia.l.alla refante potčtia.r. la qual potentia.r.uerria ad effer la potenzadel medefimo corpo.b. Fante nel ponto x.la qual coofa faria inconkeniente, percbee, fel la proportione della maggiore diftantia dalfarto allimenore (per lauerfario) bauera maggior proportione, cbe lamaggior potentia alla menore, quefto doueriafeguircin ognipoftione, e t tamen fe uede occora rere al contrario,cios, che la proportione della diffantia.c.e .alla diftantia.e. x. faria maggiore di quella della potentia.l. llla potentia del corpo.b.nel jito, ouer luoco, doa ue.x.diftrutto adunque lo oppofito rimane il propofito.

CORRELARIO.

DAlle cope dette, ew dimoftrate, fe manifoftanon folamente la proportioste delle diftantie dal β partonel brazzo della libra, er quella delle potattie di corpi fm plicementi equaliingrauita, in taiftit, ouer tuochi, er Imelmente la uelocita de quelli
 oßeruano la medefinta, perche qual proportione édalbrazzo.e.c.al brazzo.e.f.fala edal curuo defcenfoce.b. al curuo defcenfo.f. g.er アmelméte del caruo affenfo. c.k.al curuo affenfo. .i.pche lidette de fcenf, er afcenfi uengono de efer cadduno de loro la quarta parte della circonferentia de dui ceochij. delli quali el fomidiametro del maga giore uerria λ efer el brazzo, ouer diftantia.e.c.e el del menore el brazzo, ouer diftë tiasef. S.A. Anchor quefaci fata unabella propofitione foguizati. N.
[89r]

E I G H T
 QUESTION XXXI. PROPOSITION IIII.

The ratio of the power of bodies simply equal in heaviness, but unequal in positional strength, proves to be equal to that of their distances from the fulcrum or centre of the scale. S.A. Give me an example. N.

Let there be the two bodies a and b of the preceding figure, simply equal in heaviness, and let the scale be ced, whose centre or fulcrum is at the point e; and let there be hung the body a at the point c and the body b at the point f, as shown in the preceding figure. I say that the ratio of the power of the body a, which is l, to the power of the body b (which is m) is like that of the distance or arm ec to the distance or arm ef; and this is proved according to the order of the preceding, that is if the ratio of the distance, or arm, $c e$ to the distance, or arm, $f e$ is not (for the adversary) as that of the power l to the power m, it will necessarily be greater or less; assume it be less. Of the greater arm, or distance $c e$, be subtracted the arm, or distance $c e$, from the side of c, and let it be $c x$, and from the power l let be subtracted the part p equal to m. Then (by Euclid V.7), ${ }^{[47]}$ the ratio of the whole distance, or distance, $e c$ to its part $c x$ will be less that that of the power l to its part p . Therefore (by Euclid V.30), ${ }^{[48]}$ the ratio of the arm, or distance $c e$ to the remaining distance, or arm $e x$ will be greater than that of the power l to the remaining power r, which power r is the power of the same body b standing at point x. This will be unconvincing because if the ratio of the greater distance from the fulcrum to the less (for the adversary) is greater that the greater power to the less, this could occur in any position, and the same holds true in the contrary case, namely when the ratio of the distance $c e$ to the distance $e x$ will be greater that that of the power l to the power of the body b, in the position x. Thus, the contrary destroyed, the purpose stands. ${ }^{[49]}$

COROLLARY.

From the things said and demonstrated not only is manifest the sameness of the ratio of the distances from the fulcrum along the arms of the scale, and that of the powers of bodies simply equal in heaviness in such sites or places, and likewise of their speeds in descent; but also both their descents and their ascents observe the same [rule]; for the ratio of the arm $e c$ to the arm $e f$ is that of the curved descent $c h$ to the curved descent $f g$, and likewise of the curved ascent $c k$ to the curved ascent $f i$. For the said descents and ascents are in each case one-fourth the circumference of the two [respective] circles, of which the radius of the larger is that of the arm or distance $e c$, and of the smaller, that of the arm or distance $e f .{ }^{[50]}$ S.A. This also has been a pretty proposition. Continue. N .

 QVESITO XXXII. PROPOSITIONE V.

QVando, che la pofitione de una libra de brazziequalif fanel fito della equalie ta, e̛ nella iftremita de l'uno, e โaltro brazzoui fano appefi corpi Pmplicea mente equali in grauita, tal libra non fe feparara dal detto fito della equalita, ev fe per cafo la fia da qualcbe altro pefo in luno de detti brazzi impofto feparata dal detto foe todella eq:alita, oueramente con la mano, remoffo queltal pefo, ouer mano, tallibra de neceßuta ritornara al detto fito della equalita. S. Λ. Quefta equella Quefione, delld quale uoi dite, che manca Arifotile nelle fue QueftioniMechanice. N. Coßi Signore. S.A. Molto baro à caro à intendere la caula di tal effetto, e perofeguitae te. N. Sia effempigratiala libra.a.c.b.el centro della quale fia il ponto.c.e C- fia el ${ }^{6 r a z z o . a . c e \text { equale al brazzo.b.e.er stia nel fito delld equalita, come fe prepone. Et }}$ che nella iftremita de luno, e laltro brazzo uifis appefo uno corpo(poniamo el cor* po.a.ev.a)ll quali corpifano /implicemente equaliin grauita. Dico,che la detta lia bra(per la impoffione de detti corpi)non fe feparara dal detto firodella equalita, er fe pur quellafuffe feparata dal detto ßito, òper la impofixione di qualche altro pefo, ouer con la mano, remoffo che fa quel tal impofto pefo,ouer mano, tal librade neceßi ta ritornara al detto fito della equalita. La prima parte cimanifefta,perche lidettidxi corpifono /mplicemente diequal graxita (dalpre fuppofio) et fimelmëte fono equalonente grauipar uigor del fito, per la quarta petitione (per effer li Toro def cenfl equalmente obliqui) e pero effendo quellifi per nigor del fito, corxe che fimpliceméte tuna cqual greuita, e potentia, e pero niun de loro fara atto à poter clleuarl'altro, cioc à farlo afen dere di moto contrario, epero restarannonel mex defimo fito della equalita. S.A. Quefo ue credo ev ue lo baucria lasgamente conceffo fenza altra
 demonftratione, per effer cofa naturale. Ma jeguitatila feconda parte, la qualme pare molto piu afirata, ouer lontana dal no firo intelletto naturale dell'altra. N. Per la fe condapartefla pur anclorala libra.a.c.b.de braz ziequali. et nella iftremita de quelii fano pur op= pefiliduicorpi.a.et.b.fimplicemente equali ingra wita, la qual librap le ragionidi fopra adutteftara nel fito della equalith, come di fotto appar if figura.

TIOR effendo pinto cl brazzo.a.c.al baffo con la mano, ouce per la impofitio ne di qualcbe altropefo ofopra el corpo.a.remoffo uia la mano, ouer quel tal pefo, el brazzo dital librarcafcendera, e̛ ritornersal fuo primo luoco detla zquali= ta, er per afignar la caufa propinqua di tal effetto, fadefcritto fopra el centro.c. el cerchio.a.e.b. .f per el uiazzo, cbe fariano li detti dui corpialzando, ouer arbafando li brazzi della detta libra, © fia tirata la linea della direttione, quale fa la.e.f. © Ola

$[89 \mathrm{v}]$
B O O K
QUESTION XXXII. PROPOSITION V.

When a scale of equal arms is in the position of equality, and at the end of each arm there are hung weights simply equal in heaviness, the scale does not leave the said position of equality; and if it happens that by some other weight [or the hand] imposed on one of the arms it departs from the said position of equality, then, that weight or hand removed, the scale necessarily returns to the position of equality. ${ }^{[51]}$ S.A. This is that problem which you told me Aristotle omitted in his Questions of Mechanics. ${ }^{[52]}$ N. So it is, Sir. S.A. I look forward to hearing the cause of that effect; therefore go on. N. Let there be, for example, the scale $a c b$, the centre of which is at the point c [See Fig. 4.11], and let the arm $a c$ equal the arm $b c$, and let it be in the position of equality as assumed. And at each extremity let there be hung a body (the bodies a and b) which are simply equal in heaviness. I say that the said scale, by the imposition of the said bodies, will not leave the position of equality; and if it is separated from that position of equality either by the imposition of some other weight or by hand, that imposed weight or hand being removed, the scale will of necessity return to the position of equality. The first part is manifest because the said two bodies are simply

[Fig. 4.11]

[Fig. 4.12] equal in heaviness (by assumption), and similarly they are equal positionally heavy by the fourth petition (their descents being equally oblique. Hence, being equal in weight and power both simply and positionally), neither of them will be able to raise the other, that is, to make it ascend with contrary motion; and so they will rest in the same position of equality. ${ }^{[53]}$ S.A. This I believe and would have conceded it freely without any demonstration, it being a natural thing. But go on to the second part, which appears to me much more abstract, or remote from our natural intellect, than the other. N. For the second part, let there be also the scale $a c b$ of equal arms, and at its extremities let there also be hung the two bodies a and b, simply equal in heaviness, which scale by the reasons adduced above will stand in the position of equality as appears in the figure [See Fig. 4.12].

Now the arm $a c$ having been driven down by hand or by the imposition of some weight on the body a, if we take away the hand or that weight, the arm will rise again and return to its first position of equality. ${ }^{[54]}$ And to assign the immediate cause of that effect, let there be described about the centre c the circle aebf for the journey that the two bodies will make in rising or falling of the arms of the scale [See Fig. 4.13]; and draw the line of direction $e f$, and divide the arc $a f$ into as many equal parts as you like (say, into four parts) at the three point.

0 T T $\boldsymbol{T} \boldsymbol{V} 0$

-. \int.u.erin altre tante fla anchor diuifo P'arco.e.b.nelli trei ponti.i.l.n. © dafli detti trei pont.in. L.i.fano tirate le tre linee.n.o.I.m.eס.i.i.kequidiftante al fito della equan lita, cioc al diametro, ouer lined.a. b. le quale fogaramnola lined.e.e.f. della direttione ne It tre ponti. \boldsymbol{z} y.x. Simelmente dallitre ponti.q.f.u.fiano tirate le tre linee.q.p.f.r.eru.t.pur equidiftante alla medefima linea.a.b.le quale fegaranno la medefinalinea del la direttione.e.f.nelli trei ponti.O.e.p.Et dapoi Raarbaffato con la mano il corpo.d. (ouer con la impofitione diqualche altro pefo) per fin al ponto. u. © laltro corpo.b. (à queloppofito) in tal poftione fe trouara effer affefode moto contrario per fin at ponto.i. Onde per quefte cofe cof idipofite ueniremo ad bauce diuifo tutto el defcenfo a.u.fatto dal detto corpo.a.nel difcenderc in ponto.u.intre defcenf, ouer parti equa li,le qualef fono.a.q.q.f.f.e.f.u.e fimelmente tutto el defcenfo.i.b. qual faria il detto corpo.b.nel difendere, oucr ritornare al fuo primo luoco(cioc in ponto.b.) uerra ad eßer diuifo in trei defcenf,ouer in tre partiequalile quali ono.i.L.L. n. é.n.b. © cadauno de queftitre, ev tre partiai defenficapiffe una parte della linea dela direttiou ne, cioc il def fenfo dal.a.al.q.piglia, ouer capiffe della linees delad direttione la parte.e.
 - laltro defcenfo, che reftà̀ defcendere al detto corpo.a. ciosel defcenfo.u.f. capife la limed, ouer parte. $\%$.f. Et fintelmente el defcenfo del corpo.b. dal ponto.i. al ponto.I. capife della medefima linea della direttione la purte. x.y. OV nel defecnfo dal ponto.l. al ponto.n.capife la parte.y.z.e dal ponto.n.al ponto.b.capifel la parte.z.c.et tut te quefe partifono fra loro inequale, cioc la parte.c.z.e' maggiore della.z.y. © la.z. y.della.y.x. © la.y.x.della.x.e.e Imelmente la parte. c.e er. © maggiore della para
 mente Geometrice / Ip po prouare, © Imelmente fe puo prouare, la parte. y.f. effere equale dla porte.e.x.er la parte.Y.p.alla parte.x.y.e-la parte.p.ש.alla parte.y.zerlaparte.e..c.alla parte.z.c. Hor per tornare al noffropropofito. Dico,che ilcon po.b.ftante quel nel ponto. i. uien à effer piu graue, fecondo il fito del corpo. a. Stante quello in ponto. u. (come difotto appar in figura) perche il defcenfo del detto corpo b. dal ponto. i.nel ponto. L. i piu retto del defcenfo del corpo.a. dal ponto. u. nel ponto f. (per la feconda parte della quarta petitione) perche capiffe piu della linea della die rettione, cioe, cbe nel def fendereil detto corpo.b. dal ponto i. nel ponto. I. Lui capifec, ouer piglia della lineed delladirettione, la parte. x.y.evil corpo.a. nel difeendere dal ponto. u.nel ponto.f.lui caperis della detta linea della direttione, la parte. y.f.f.e pere che laparte.x.y.émaggiore dellalined, ouer parte.q.f. (per la. 17. diffnitione) piu obliquo fara il defcenfo dal ponto. u. al ponto.f.di quello dal ponto. i.al ponto.l. Onde (per la feconda parte della quarta petitione)il corpo.b.in tal pofitione fara piu graa ue fccondo ilf fio del corpo.a. e β endo adurque piu graue, leuando uia lo impofto pefo, ouer la mano dal corpo.a. (per il conuerfo dell. quinta petitione) tui fara reafcendes re dimoto contrario il detto corpo. a.dal ponto.u.al ponto.f. © lui defcendera dat ponto. i.nel ponto. I. nel qual ponto. L. . wi uenira à trouarfe anchora piugraue del det to corpo.a. fecondo elfto, percbe ildetto corpo.a. fante nel ponto. f. bauers il dee feenfo.f.u.piu obliquo del defcenfo.l. n. del corpo. b. perche capiffe men parte della
[90r]

EIGHT

q, s, u; and into as many parts divide the arc $e b$ at the three points i, l, n; and from the said three points i, l, n draw the three lines $n o, l m$, and $i k$ parallel to the position of equality, that is, to the diameter or line $a b$, which [three lines] shall cut the line of direction $e f$ at the three points x, y, z. similarly, from the three points q, s, u are drawn the three lines $q p, s r$, and $u t$, also parallel to the same line $a b$, which shall cut the same line of direction $e f$ at the three points w, ρ, k. And now let the body a be depressed by hand (or by the imposition of some other weight) to the point u, and the other body b (opposite to that) will be found to be raised with contrary motion to the point i. Now with things arranged this way, we have come to divide the whole descent $a u$ made by the body a in descending to the point u into three equal descents or parts, which are $a q, q s$, and $s u$; and similarly the whole descent $i b$ which the body b would make in descending or returning to its original place (that is, the point b) will come to be divided into three equal descents or parts which are $i l, \ln$, and $n b$; and each of these three-plus-three partial descents includes one part of the line of direction; namely, the descent from a to q partakes of or contains the part $c w$ of the line of direction, and the descent $q s$ contains the part $w j$, and the descent $s u$ contains the part $j d$, and the other descent that remains to the said body a, that is, the descent $u f$ contains the line or part $d e$. Likewise the descent of the body b from the point ito the point l contains the part $x u$ of the same line of direction, and in the descent from the point l to the point n it contains the part $y z$, and from the point n to the point b it contains the part $z c$, and all these parts are unequal; that is, the part $c z$ is greater than $z y$, and $z y$ is greater than $y x$, and $y x$ than $x e$; and similarly the part $c w$ is greater than the part $w j$, and $w j$ than $j d$, and $j d$ than $d f$, and all this can be easily proved geometrically; and also the part $d f$ can be proved equal to the part $e x$, and $j d$ to $x u$, and $w j$ to $y z$, and $c w$ to $z c$. Now to resume our proposition, I say that the body b standing at the point i comes to be positionally heavier than the body a standing at the point u (as appears in the figure), because the descent of the body b from the point i to the point l is more direct than the descent of the body a from the point e to the point f (by the second part of the fourth petition), because it partakes more of the line of direction. That is, the body b in descending from the point i to the point l partakes the part $x y$ of the line of direction, and the body a descending from the point u to the point f partakes the part $d f$ of the line of direction, and since the part $x y$ is greater than the line or part $d e$, the descent (by definition 17) from the point u to the point f will be more oblique than that from the point i to the point l. Whence (by the second part of the fourth petition) the body b in that position will be positionally heavier than the body a. And being thus heavier, when the imposed weight or hand is taken away from the body a, it will (by the converse of the fifth petition) make the said body a re-ascend with contrary motion from the point u to the point s, and it will descend from the point i to the point l; and it will come to be found still positionally heavier than the body a, because the said body a standing at the point s will have the descent $s u$ more oblique than the descent \ln of the body b because it partakes less of

\& 18 R 0

detta linea della direttione, cioe, che la parte.D.叉. é menore della parte.y.z. Onde ptp le ragioni di fopra adutte, el detto corpo.b. fara elleuare il detto corpo.d. జ' afcendee re sel ponto.q.e- luidefcenderanel ponto.n.nel qual ponto.n.el medefimo corpo. b. $_{\text {. }}$ fi trouara pur pia graue anchora, fecondo il fto del corpo.a. perche il defcenfo dal.q. in.s.épiu obliquo del defcenfo dal ponto.n.nel ponto.b.per effer la parte.z.c.maggio redella parte.er.a.E pero(per le ragioni di fopra adutte) el detto corpo.b.farare e afcendercil detto corpo.a.alponto.a. (fwoprimo, er condecente luoco) © luimedef mamente defcendaranel ponto.b.pur fuo primo, vr condecenteluoco, cioc nel fito della equalita, nel qual fito li detti dui corpife trouaranno (per le ragioniaduttenella prima parte diquefta) ea gualmente graui fecondo el fito, erperche fono anchora fimplicemente egualmentegraui, fe con feruarano nel detto luoco, come di fopra fudet= to, or approuato, che ci il noftro propofito. S. A. Quefta \dot{c} fata una belld demsostratione, mafe ben me arricordo, woi dicefti anchor fopra Ia detta prima gueftion Mechanica de Ariftotie
 le, che quelle fue due conclufioni, cbe lui ui aduce in fine eßer falfe. N. Eglieiluero. S.A. Per che ragione. N. La ragione di tal particolarita, ouer oppofitioni fe uerifica rannonella feguente propofitione,mediante alcuni correlarij, che dalle cofe dette, vr $^{\prime \prime}$ dimestrate nelle precedente fi manifeftano, delli quali il primo é quefto.

CORRELARIO.

DAlle cofedetto, et dimostrate difopra,fe manifefta qualmenteun corpogratue in qual fi uoglia parte, cbe luife parta,ouer remoui dal fito delld equalita lui ρf fa piu leue, ouer leggiero fecondo el fito, ouer luoco, er tanto pis, quăto piu fara remoßo datal fito, effempigratia. El corpo.a.fitrouara effer piuleuenel ponto.u.chinel po to.s et nel pöto.s.piu che nel pöto.q. © nel ponto.q.che nel ponto.a. fito della equali= ta,p caufa della uarieta di defcenf, cioe, che luno '́piu obliquo dell' altro, ciocel defcen: fo.u f.uié à eßer piu obliquo del defcéfo.f.r.perche la parte.f.y.della direttione, ème. nore della. \%. D.et cofi el defcëfo.f. u. uié de eßer pin obliquo del defcéfo.q.s. pche la parr
 fo.a.q.perche la parte.D.ev.e menore della parte.ev.e. er perle medejime ragioni jt manıfefta del corpo.b.cioe, cbe quello fara piu leuenel poto.i.che nel pöto.l.e゙ nel po to.l.che nel ponto.n.ev nel ponto.n.chenel ponto.b. fito delld equalita.

CORRELARIO SECONDO.

ANcbora per le cofe dette, er dimosirate fe manifefta, che remuouendofili dettix dui corpi dal derio firo della equalita, sioc luno igiufozet laltro infufo; anchor

[90v]
 B O O K

the line of direction; that is, the part ρw is smaller than the part $y z$. Whence for the reasons adduced above, the body b will raise the body a to the point q, and b will descend to the point n, at which point n the same body b will yet be found appositionally heavier than the body a because the descent from q to s is more oblique than the descent from the point n to the point b, the part $z c$ being greater than the part $k \rho$. And hence (by the reasons adduced above) the body b will make the body a re-ascend to the point a (its first and proper place) and will itself descend to the point b (also its first and proper place), that is, to the position of equality, in which position the said two bodies will be found (for the reasons adduced in the first part of this proposition) equally heavy positionally. And since they are also simply

[Fig. 4.13] equally heavy, they will remain in the said place, as was said and proved above; which is our purpose. S.A. This was a pretty demonstration, but, if I recall correctly, you said also, of the first mechanical problem of Aristotle, that those two conclusions of his that he adduces at the end are false. ${ }^{[55]}$ N. So they are. S.A. For what reason? N. The reason for this objection will be verified in the next proposition, through some corollaries that are manifest from the things said and demonstrated in the above, of which the first is this.

COROLLARY.

From the things said and demonstrated above, it is manifest how a heavy body, whenever parted or removed from the position of equality, becomes positionally lighter, and the more the more it is removed from that position. For example, the body a will be found lighter at the point u than at the point s, and more at s than at the point q, and at q than at the point a, the position of equality, by reason of the various descents being one more oblique than another. That is, the descent $u f$ becomes more oblique than the descent $s u$ because the part $f w$ of the vertical is less than $w f$ and so the descent $s u$ is more oblique than the descent $q s$ because the part $w \rho$ is less than the part ρk and the descent $q s$ is more oblique than the descent $a q$ because the part ρk is less than the part $c k$ and for the same reasons is manifest for the body b, that is, that it will be lighter in the point i than in the point l and in the point l than in the point n and in the point n than in the point b place of the equality.

SECOND COROLLARY.

Also by the things said and demonstrated, it is manifest that the said two bodies being removed from the position of equality, that is, one downward

OTMA $\boldsymbol{T} 0$

91
chel'uno, e $l_{\text {altro ffa fatto piu leue fecondo il fito, tamen in ogni pofitione men leue } \beta} \beta$ trouara queillo che fara in alto elleuato di quello, che fitrouara al baffo oppref) Co' $^{\prime}$ quefto é manifefto per la argomentatione difopra adutta, cioc che il corpo.b.nel 乃ito, eucr ponto.i.effer piu graue del corpo.a.nel jito, ouer ponto.u. ©r cofinelli altri fiti fuperiori fitrouara piu graue del corpo, ainelli fitionferiori, fimili. S.A. E ue ho intefo, feguitati. NICOLO.

QVESITO. XXXIII. PROPOSITIONE VI.

QVando che la pofitione d'una libra de braccieguali fa nel /ita delliegualita, wr che nella iftremita dell' uno c' l'altro brazzo iil fannoappefl corpi fimplicemes zeineguali digrauita, dalla parte doue fara il piugraue fara sforzata d declinare per in alla linea della direttione. S. A. A me non pare cbe queftauoftra propofitione pof fa effer univerfalmente uera, er quefto uoglio che uoi medefimoil confefati, perche uoi fapeti chenel Correlario precedente baucti concbiufo, ebe remouendofl li dettidui cor pi.a.er.b. (dalla figurd della precedente própofitione)dal fto della egualitas cioe l^{\prime} 'up noingiufo, © P' 'altro in fufo, anchor che l'uno 'l' altro fla fatto piu leue, ouer leggero, fecondo il fito, tamers in ogni pofitione men lene fitrouara quello; che fara in alto elle uato diquello, che fitrouar equello, che fara a baffo inclinato. N. Eglie il uerosis gnore. S.A. Se quefto évero, eglie da credere, anci da tener per fermo, che chi impo neffe fopraal corpo.a. ̀ baffoinclixato, wn'altro corpetto qual in gratuita fuffe equale è guella differentia, che il corpo elleuato è piu grauce, fecondo il fito del corpo ì bafjo inclinato, cbe cadatuno de loro reftaria nel proprio luoco douc fl trouaffe, er accio me= gliome intendiati, woi fapeti cbe il corpo.b. della figura della precedente propoßtione, frante elleuato per fin al ponto.ì (come in quello appare) or il corpo.a. i baffo inclina so per fin al ponto.s. noi approuaftiil dette corpo.b.in tal fito effer piugraue del cor po.d. N. Signore eglic il uero. S.A. Adunque concbiudo che chi imponeffe intal fito un'altro corpetto fopra alcorpo.a. qual fufe precifamente ditanta grauita, quan to, che céla differëtia, che éfralidetti dui corpi.a.ev.b, in tal pofitioneli detti dui cor pireftariano fermi, er fabili in tal pofatione, perche in tal fito fe trouariano egualmen te potenti, cioc il corpo.b.non faria Jofficiente à far resfcendere il detto corpo.a.al fon to dells egualita, per effer il detto corpo.a. (per uigor diquel corpetto aggionto) tana tograwe e potente quanto lui, cioe che per quel tanto che il detto corpo.b. épiupotena te, ouer graue per uigor del fito del corpo. 4. per quel tanto fara piugraue il detto con po.a.del detto corpo.b.per uigore della grauitadi quel fimplice corpetto aggiontoui fopra,perilche il detto corpo.b.noni fara atto à farreafcendere il detto corpo.a.al $\rho \mathbf{j =}$ to della egualita, or manco il corpo.a. fara atto d potere piu elleuare il detto corpo.b. del fito.i.e peroluno él'altro deneceßitanon fe potra partire dital fuo luoco, cioe il corpo.a.conla gionta di quell'altro corpo,non potrareafcendere al fito della egualis ea,nemancopotra defendere alla tinea della direttione, cioe al ponto.f.come fecome chiude nella uostra propofitione, er pur il detto corpo.a.infleme con quell'altracora petto aggiorto, fariafimplicemente pingrane del corpo.b.e per tanto norpgoteti nes

[91r]
 EIGHT

and the other upward both are made positionally lighter, and yet the one that is lifted up is found to be less light than that which is pressed down; and this is manifest by the argumentation adduced above. That is, the body b at the point i is heavier than the body a at the point u, and so at the other higher points it will be heavier than at the corresponding lower points. S.A. I understand; continue. NICOLO.

QUESTION. XXXIII. PROPOSITION VI.
Whenever a scale of equal arms is in the position of equality, and at the end of each arm weights simply unequal in heaviness are hung, it will be pressed downward up to the line of direction on the side where the heavier weight shall be. S.A. To me it does not appear that this proposition of yours can be universally true, and I think you have confessed this to me yourself, since you know that in the preceding corollary you have concluded that if the two bodies a and b (in the figure for the foregoing proposition) are removed from the position of equality, that is, one downward and the other upward, then, although both are made positionally lighter, yet in every position that one which is lifted up will be less light than that which is pressed down. N. True. S.A. If this is true, it is to be believed, or rather thought certain, that, if one should impose on the body a, pressed down, another little body which equated in heaviness that difference by which the upper body exceeded positionally the heaviness of the lower, then each would remain in the place where it was. That you may better understand me, you know that, the body b of the figure in the preceding proposition being lifted to the point i (as shown there) and the body a being depressed to the point u, it was proved by you that the body b was heavier than the body a in that position. N. Sir, this is true. S.A. Therefore I conclude that, if one should add to the body A in that position another small body of precisely as much heaviness as the difference between the said two bodies a and b in that position, the two bodies would remain fixed and stable in that position; for in that position they would be equally powerful. That is, the body b would not be sufficient to cause the body a to re-ascend to the position of equality, the said body a being (by the strength of that added little body) as heavy and powerful as it [b]. Indeed by the amount that the body b is positionally more powerful or heavier than the body a, the body a is heavier than the body b by strength of the simple heaviness of that little body added to it; whence the body b will not be able to make the body a re-ascend to the position of equality; and still more difficultly will the body

L I B R O

gare cbe tal uoftra propopitione non β fa falfa in quanto al generale, eglie ben uero, che Se lagrauita diquel corpetto che fufec aggionto jopraal detto corpo.a fuffe maggiore della grauts, nella quale il corpo.b.e piugraue per uigor delf fto del corpo.a. feguiria quello che nella detta uoftra propofitione fe conchiude, ev fe per cajo tal grauitadicor petto fufe menore di detta differentia, tal corpo.b. Faria afcendere ildetto corpo.a. in un'altro fito pius alto del ponto.u. fecondo che piu, ouer men farrfezaffe la grauita di tal corpetto della detta differentia cbe éfralorv peruigor del fito. N. Queffa oppo pitione di v.S. certamente é molto ppeculatiua, er bella, nondimeno aucrtifco quella, che feben il corpo.b.in tal fito.i.fapiu graule del corpo.a.nel fito. un.la differentia di quefte due grauita ine guale e tanto piccols, ouer minima, cb'eglie impo sibile d potere ritrouare una col piccola, ouer mimima differentia fra due quantita ineguale. S. A. Questo che bauetideto mi parc una cofa moltoabforda dadíre, ev manco da credea re,perche effendo la quantita continua diuifibile in infinito, eglie una materiad̀ uoler dire, che il fa impo Sibile à dare un corpettino ditanta poca quantita, er grauita, quan to che è la differentia cbe é fra la grauitadel corpo.b.nel fitoi.i. © quella del corpo.a. nel fito.u. N. Signore la ragione équella che ne chiarife le cofedubbiofe, ơ che ne difcerne iluerodal falfo. S.A. Eglicil uero. N. S'eglie il uero, nanticbe V.S. dia afoluta fententia alla mia propofitione quells afooltiprima le mie ragioni. S.A. Sea guitati, er ditecio,che ui parc. N. Siaeffempigratia, lamedefima libra.a.b.c.della precedente propofitione, nelle iAtremita, della quale fano pur appef li dui corpi.as 6.egualifimplicemente in grauita, er Ra abbafato con la manoil corpo.a.e ef elleuato il corpo.b.come di fottoappare in figura. Dico che in tal fto, il corpo.b.é piu pondea rofo, ouer graue per uigor del fito del corpo.a.e cbe la differentia cbe e ifrale grauitade questi dui corpi, eglie imposibile a poterla dar, ouer trouar fradue guantitaine= guale, er per dimofit ar questa propofitione. Tiro le due rette linee.a.b.e.b.b.d.pere. pendicolare uerfo il centro del mondo, evtiro anchora le due limec.a.l.e. ©.m.m.contin gente il detto cercbio,chedefcriue li brazzi della libra, 'luna nel ponto.a.e̛ P'altra nel ponto.b. Et defcriuo anchora una parte de una circonferentia d'kn cerchio, contim gentc ilmedefimo cercbio.a.e .b.in ponto. b.la qual fa pur d'un cerchio finile, erce guale al medefimo cercbio.a. e. b. la qual parte pongọ che fa la.b.z.tal cbe Parco.b. z.uiende effer fimile, © eguale all arco.a.f.C' ancbora fmilmente pofto, cioe nelme= definofito, ouer luoco, erla lined.b.m.cbe continge, ouer toces quello, er perche la obliquita dell'arco.a.f. (per quello che fu detto Joprala terza petitione) uien mifuraa ta, oucr confiderata per meggio dell? angolo contenuto dalla perpendicolar.a.b. er dal la circonferentia.a.f. in ponto.d. © la obliquita dell'arco.b.f. uien mifarata, ouer corfiderata per meggio dell'angolo contenuto dalla perpendicolar.b.d. © dalla circonferentia. b.f. in ponto.b. adunque il corpo.b.in tal fito ueneria ad effertanta pin grane del corpo.a. guanto che il detto angolo(contenuto dalla perpendicolar.b.d. © dalla circonferentia.b.f.in ponto.b.))ara menore dell'angolo contenuto dalla pera pendicolar.a.b.eV daild circonferentia.a.f.in ponto.a. © perche il detto angolo.b.d. f.e. precifamente eguale all'angolo.d.b.z.e̋ lo detto angolo.d.b. z.uien adeffer tanto erggiore dell'angolo contenito dalla detta perpendicolare,b.d.e dalla circoinfereas

[91v]
 B O O K

a be able to raise the body b from the position i so neither can leave its place; that is, the body a with that other body added cannot re-ascend to the position of equality, nor can it descend to the line of direction, that is, to the point f, as concluded in your proposition. yet the said body a together with that other little body added to it would be simply heavier than the body b, so you cannot deny that your proposition is in general false; though it is true that, if the heaviness of that little body that was added to the body a were greater than the heaviness by which the body b was positionally heavier than the body a, what is concluded in your proposition would follow. And if it happened that the heaviness of that little body were less than the said difference, the body b would make the body a ascend to another place higher than the point u, according to the greater or less deficiency in heaviness of that little body with regard to their said difference in positional strength. N. This objection of yours, Sir, is certainly a very pretty speculation. nevertheless, I note that although the body b in that place i is heavier than the body a in the place u, yet the difference of those two unequal heavinesses is so small or minute that it is impossible to find so small or minute a difference between two unequal quantities. S.A. What you have just said seems to me a quite absurd thing to say and not to be believed. Indeed because a continuous quantity being infinitely divisible, it is a quibble to say that it is impossible to have a body of so little quantity and heaviness as is the difference between the heaviness of the body b at the place i and that of the body a at the place u. N . Reason, Sir, is the means of clarifying doubts and distinguishing the true from the false. S.A. Very true. N. If this is true, then before your Excellency forms an absolute opinion of my proposition, hear first my reasons. S.A. Go on and say what you like. N . Let there be, for example, the same scale $a b c$ of the preceding proposition, at the ends of which are hung the bodies a and b, equal in simple heaviness; and let the hand depress the body a and lift the body b as shown in the next figure. I say that in this position the body b is positionally more ponderous or heavy than the body a, and that the difference between the heavinesses of these two bodies is impossible to give or find between two unequal quantities. And to demonstrate this proposition I draw two straight lines, $a h$ and $b d$, perpendicularly to the centre of the world, ${ }^{[56]}$ and I also draw two lines $a l$ and $b m$ tangent to the circle described by the arms of the scale at the points a and b. I describe also a part of the circumference of a circle touching the same circle $a c b$ at the point b, this being a similar and equal circle, $b z$, such that the arc $b z$ is similar and equal to the arc $a f$ and similarly placed (that is, in position), and the line $b m$ which touches or is tangent to this since the obliquity of the arc af (by what was said about the third petition) is measured by means of the angle contained by the perpendicular ah and the circumference af at the point a [emphasis added], ${ }^{[57]}$ and the obliquity of the arc $b f$ is measured by the angle contained by the perpendicular $b d$ and the circumference $b f$ at the point b, the body b in that position will be as much heavier than the body a as the said angle (contained by the perpendicular $b d$ and the circumference $b f$ at the point b) will be less than the angle contained by the perpendicular $a h$ and the circumference $a f$ at the point a. And since the angle haf is precisely equal to the angle $d b z$, and the said angle $d b z$ is as much greater than the angle contained by the said perpendicular $b d$ and the circumference

0 T \boldsymbol{O} A V O
 92

Eid.b.fin ponto.b. quantoche él' angolo della contingentia delli dui cerciji.b.z.e-.b. f. in ponto.b. er perche il detto angolo della detta contingentia i acutißimo de tutti liangoliacutide liste rette (come per ladecimafeftadel terzo di Euclide facilmente flpuo approuare) adunquela differentia, ouer proportione, che cafca fra l'angolo. b.a.f. ש゙ l'angolo contenuto dalla perpendicolar.b.d. ev delld circonferentia.b.f. in ponto.b. ' menore diqual / ulugha differentia, ouer proportione, cbe cafcar poffa fra qual fuoglia maggiore, ev menor quantita, er cof(perla terza petiticne) ladiffee rentia dellao obliquita del defcenfo.a.f.er del defcenfo.b.f. $\begin{array}{r}\text { r confequentemente la dife } \\ \text { en }\end{array}$ ferentia della dettd grauitadellidettidui corpi.a. er.b. fecondo il fito è menore, del guale finoglia fra duequantita ineguale, epero ogni piccola quantita corpores, che fla aggionta fopra il corpo.a.neceffariamentein ogniffro fara piugraue del corpo.b. e peronon ceffars di defcendere continuamente p fin alls linea dircttione; cioe puigor fin al ponto. f. er cofl continuamente quello andara elleuando il corpo.b. per fin alls detta linea delladirettione, cioe per fin al ponto.e.ev. fequefto feguiria in tal fito, cos me che nelld fottofcritta figura appare tanto piu feguirianel fito della equalita, nel qual fito, ouer lnocononuic, ouer faria alcuna differentia, puigor del fto,nep pigor delli ior defcenfl, cioeche in tal fita fariano egualmente graii, epero ogni piccola quantita dipefo permimima, cbe fia, che ui fa impofo dalluna delle bande di qual ρ noglia libra (cioe granda; ouer piccola de brazzieguali) immediate fara declimare meceffariamente guells da quetla medefima banda, ouer brazzo, ơ continuaratal fus declinatione (per le ragionidi fopraadutte) per fin alla linea della direttione, cioe per fin al ponto. F. I qual cofa faris contra ì quetlie due conclufioni, che adduce Arie ftotile foprala fus prima queftione Mecanica, delle quale altrauoltame parlai cons Voftra Signoria, detle quale inl'una dice, che fono alcuni pef, li qualiimpofti nela le piccole libre, non fe fanno manifefticon alcuna inclunatione al fenfo, 0 che nele ic grande libre fe fanno manifesti, la qual concluflone, fumendola Mathematican mente, cioc aftratta da ogni materia, faria fal/ $ß$ ßima (per le ragioni di fopraadutte) perche finelle piccole, comenelle grande libre, da quella bandedoue fara pofto quel tal pefo(per piccol che pla) Jarasforzata- declinar per fina alla dettatinea della diz rettione, e pero nella declinatione delld piccold, ev in quella della granda, non fara proportionalmente alcuna differentia, percbe in luna, e l'altria la declinatione fara per fina allalinea della direttione, il medefimo feguiria dell'altra fua conclufione; cios quando dice, che fono alcuni peff, li quali fono iwanifefti in luns, wr l'altra fortede libre, cioenclle maggiori, שr nelle menori, ma molto piu nelle maggiori, laqual conclufone (perle ragioni di fopra adutte) faria pur falfa, perche, come detto in luna, er l'altra fara declinare il brazzo della libra per fina alla linea detha direttionc. S. AMBASCIAT ORE. Quefte uoftre ragioni, 心r argoz menti fono ottimi ćbuoni, nondimeno nelle libre naturale, ouer materiale il ft uede pur feguire la maggior parte delle solte, come che Rriftotile conchiude, $\underset{\text { co dices. }}{ }$ perche fe fopra qual fi nogha libra (cioc grandd, ouer piccola) ui fara posto un no grano, ouer femenza di papazero, o altra fimile piccola quantita, sare libre fe ritrouaracbe per f poca graulta, facciano inclinatione fenfibile, of of pur uije neriv

[92r]

E I G H T

$b f$ at the point b as the angle of contingency ${ }^{[58]}$ of the two circles $b z$ and $b f$ at the point b, and since this angle of contingency is more acute than any of the acute angles made by straight lines (as proved by Euclid III.16), ${ }^{[59]}$ then the difference or ratio between the angle haf and the angle contained by the perpendicular $b d$ and the circumference $b f$ at the point b is less than any difference or ratio you please which can occur between any large and small quantities. And thus (by the third petition) the difference of the obliquity of the descent $a f$ and the descent $b f$, and consequently the difference of positional heaviness of the two bodies a and b, is less than any you wish between two unequal quantities. Therefore any small corporeal quantity that is added, the body a will necessarily be heavier in any position than the body b, and hence it will not cease to descend continuously as far as the line of direction, that is, to the point f, and thus it will continue to raise the body b as far as the line of direction, that is, to the point e and if this would take place in the position that is shown in the figure, it would happen so much the more at the position of equality, in which position there neither is nor will be any difference of positional heaviness of the descents, that is, in that position they would be equally heavy, and so any small quantity of weight, however minimal, that should be imposed on either side of any scale (that is, with equal arms, whether large or small) will immediately tilt the scale down on that side, and the arm will continue its declination, for the reasons adduced above, as far as the line of direction, that is, to the point f. now this would be contrary to those two conclusions which Aristotle adduces concerning the first of his mechanical problems, of which I spoke with your Excellency once before. In one conclusion he says that there are some weights which, imposed on little scales, do not make themselves manifest to our senses by any tilting, while on large scales they do make themselves manifest. This conclusion, looked at Mathematically, that is, abstracted from all matter, would be quite false (for the reasons adduced above), because a small balance as well as a large one will be strength to tilt down on that side where such a weight is placed, however small it be, and to tilt as far as the line of direction. Thus in the tilting of small and large there will be no proportionate difference, and in one as in the other the tilting will continue to the line of direction. The same would follow as to his other conclusion, that is, when he says that there are some weights which are manifest in both sorts of scales, large and small, but much more [manifest] in the larger, that conclusion would also be false (for the reasons adduced above), for, as remarked, in both they will make that arm of the scale decline as far as the line of direction. S. AMBASSADOR These your reasons and arguments are fine and good; nevertheless in actual or material scales it is seen that for the most part things happen as Aristotle says and concludes. For if on any scale you please (large or small) there is placed a grain of poppy seed or some other small quantity, few are the scales that will make a sensible tilting from so little heaviness. And if some

$\boldsymbol{L} \quad \mathrm{B} \boldsymbol{R} \mathbf{O}$

troudry alcana che faccit alcun fenfibile fegno de declinatione, tamen nos procedere per fina alla detta linea della direttione,er non folamenteil detto gran de papauere nionfaryattod farla declimare per fin alla dettslinea della direttioncalcund librs, m m

nanche ungran di formento, qual émolto piu ponderofo, er tutto queffola ferientia lo manifeffa. Si chenon fo che ni dire, perche da una banda per le uoftre ragioni, ©' ar gomenti, uedo, © comprendo che noi diceti iluero, ev dath'altra trouo per iperientis feguir tutto al contrario. N. Iltutto procede Signor, dalla materia, percbenelle lia
 pone un ponto indiuifibile e et nelle libre materiale, tal β parto, outr a β is ha ρ cmpre qual cbe corporal groffezza in fe, la qual groffezza, quanto e maggiore tanto men diligéa tereduffe la detta lubra, vo Imilmentelibrazzidelle libre imaginate (cioc ideale) fe fupponganolinee, "cioefenza larghezza, ne grofezza, er nelle libre materiale tai brazzi Oono dialcun metallo, oucr di legno, li qualibrazziquanto piu fono corpulene ti, e egro Sitanto men ditigente reducamo tal libre. S.A. E we bo intefo, f cguitalifc be wetialtra propofitione de adure circa à quefamateria. NIC.

QVESITO. XXXIIII. PROPOSITIONE VIY.

SElibrazzidella librafaranno inequali, et cbe nellaiftremita di cadauno de quelli vi \mathcal{R} ano apptif corpifmplicementec guali ingrauitadalla bandadel piulogobras zotal libra fara declimatione. S. A. Qutfia $\dot{\text { ćcofa atarale. N. Anchor chela facofand }}$ turale nolendo procedere rettamente, bijognd及 Bignar la caufaditaleffetto. S.A. Seguitati. N. Sialauerga,oucrlibra.ac.e.b.et failbraz zo.a.c.,piu longo del.c. b. Dico cbe efendo ap: peßcorpifomplicementc e guali iangrauita, nell l_{i} dxiponti.a.e.b.tallibradeclinaradalts para 8edel.a. Percbeef Sendo tiratala perpendicolae
 ze.c.f.s. (cioe la limes delledirettione)et efen

$$
\begin{gathered}
{[92 \mathrm{v}]} \\
\text { B O O K }
\end{gathered}
$$

were found which will make some sensible sign of tilting, it does not go so far as the line of direction. And not only will the said grain of poppy seed fail to make any scale tilt as far as the line of direction, but [See Fig. 4.14]

[Fig. 4.14]
so will a grain of wheat that is much more ponderous. And all this is demonstrated by experience. So that I do not know what to say, since on the one side, by your reasons and arguments, I see and understand that you speak the truth, and on the other I find by experience that the opposite happens. N. Sir, all this comes about from matter, because in the scales considered by the mind, apart from all material, the fulcrum or axis is assumed to be an indivisible point. But in material scales that fulcrum or axis has always some corporeal thickness of its own, and the greater that thickness is, the more it reduces the sensitivity of the scale. Likewise the arms of the imagined (that is, ideal) scales are assumed to be lines, without breadth or thickness, but in material scales the arms are of some metal or of wood, and the bigger they are, the more they reduce the sensitivity of the scale. ${ }^{[60]}$ S.A. I understand. Continue if you have further propositions regarding this matter. NIC.

QUESTION. XXXIIII. PROPOSITION VII.

If the arms of the scale are unequal, and at the ends of them are hung bodies simply equal in heaviness, the scale will tilt on the side of the longer arm. ${ }^{[61]}$ S.A. This is a matter of nature [a physical matter]. N. Although it is natural, if we wish to proceed correctly, we must assign the cause of this effect. ${ }^{[62]}$ S.A. Go ahead. N. Let there be the rod or scale $a c b$, with the arm $a c$ longer than $c b$ [See Fig. 4.15]. I say that if bodies simply equal in heaviness were hung at the two points a and b, the scale will tilt on the side of a. Because when the perpendicular $c f g$ (that is, the line of direction) is drawn, and

[Fig. 4.15]

- T T R F O 95

 do circimate le diut quarte parte de circuli, foprael eentro.e.le quale flato. a.g. er.6. f.er effendo dutte dal ponto.d.e..b.due lince contingente, le quale flano.a.e.e.b.b.d. Eglie manifefto langolo.e.a.g. della detta contingentita, effer menore de langolo. d. b. f.e pero manco obliquo éildefcenfo fatto per.d.g. del defeenfo fatto per. b. f, epero (per la terzapetitione)piu graut (arail corpo.a, del corpo.b, in tal fto, \&b' il proe pofito. S. A. E uc bo intefosfeguitati. N.
QVESITO. XXXV. PROPOSITIONE VIII.

SElibrazzidetha librafaranno proportionali alli pefiin quells impofit, talmena te,cbe nel brazzo piu corto fisappefoil corpo piu granc, quelli tai corpi, ouerpefficianno equalmente graui.fcoondo tal poftione, oucr fito. S.A. Datime uno ef fempio. N. Sia come primalaregola,ower libraad.c.b.er uifanoappef.a.e.e.b.et fisla proportione del.b.al.a.flcomedel brazzo.a.c.albrazzo.b.c. Dico,che tallia branon declinara in alcuna parte di quella, er fe posibil fuße (per lauerfario)che de* clinar poteffe, poniamo cbe quella declinidalla parte del b. © cbe quella difcenda, er tranfifca in obliquo, f come fa la lineda.d.c.e.e.in luoco della.a.c.b. © © attacsatoui.d.co me.a.e.e.e.come.b.er la linea.d.f.defcenda orthogonalmente, שల fimelmente afcende lace.e.b. Hor eglie manifefo(per la.16.ev.29.del primodi Euclide) che li duitriango li.d.f.c.er.e.b.c.e eßer de angoliequali. Onde perld.4. del feftodi Euclide) quelli faa ranno /imili, ě confequentemente de latiproportionali, daunque la proportione del d.c.al.c.e.e éficomedel.d.f.al.e.b.e percbe f ic come del. d.c.al..ce.e.cofie dal pefo.b. al pefo.a.(dal prefuppofito) adunque la proportione dal.d.f. al.e.i.b. arraficome dal pea fo.b. al. pefo.a.fia adunque dal.c.d.dectiol la parte.c.l.equale alRa.c.b. ouer alla. c. e. ér fia pofto. l. equaleal.b.in grauita, ev defcenda el perpendicolo. I. m. Adunque pera cie eglie namifefo la.l.m.e: la.e.b.effer equale, la proportione delld. d. f. alla.l.m. Jarafi come delle fimplice grauita del corpo.b. alla fimplice graui= as del corpo. a . outr della fimplice grauita del corpo.l. alla fimplice grauita del cora po d. (percbe lidui corpi.a. U.d. fono fuppoftiuno medefimo) er fomelmente el core po.b.e.l.l.per effer fuppofa la grauitadel. L. equale alla grauitadel. b.) eper tanto dicosobe la proportione di tuttala.d.c.alla.I. e. Sara fi come la grauita del corpo.l. ellagrauita det corpo.d. Onde fe li detti dui corpigraui, cioc.d.e er.l. fuffeno Pimplice zente equaliingrauita, ftanti poi in limedefini fiti, oucr luochi, doue, che al prefen te uengono fuppoffiell corpo.d. .aria piu graue del corpo.l. fecondo elfito (per la.4epropofitione in tal proportione, qualé di tutto ilbrazzo.d.c.al brazzo.l.c..e-per cbe il corpo.ié คmplicentente (dal prefuppofito) piugraue del corpo.d.fecondo lame defima proportione (cios, if come la proportione del brazzo.d.c.al brazzo.l.c.adun que li dettiduicorpid.e. I.nel fito delia equalita ueneranno ad effere equalmente graui, percbe per tanto quanto il corpo.d.é piu graut del corpo.l. per uigor del fito, ouer luoco, per quel medefimo el corpo. L.e'pmplicemente piu graue del corpo.d. pe so nel detto fito della equalita uengono à restare egualmente graui. Adunque guella potentia, ouer gratita, che fara jufficiente ad elleuare il corpo.a. dal jiro della equalia sd, el ponto, doue cbe al prefintee (cioe per fin al ponto,d.) quellamesdefima farafofe

[93r]

E I G H T

the two quarter circles, which shall be $a g$ and bf, are traced on the centre c, and when two tangent lines $a e$ and $b d$ are drawn from the points a and b, it is manifest that the angle of tangency eag is less than the angle $d b f$. Hence the descent made along $a g$ is less oblique than the descent made along $b f$. Therefore (by the third petition) the body a will be heavier than the body b in this position; which is the purpose. S.A. This I understand; continue. N.

QUESTION. XXXV. PROPOSITION VIII.

If the arms of the balance are proportional to the weights imposed on them, in such a way that the heavier weight is on the shorter arm, then those bodies or weights will be equally heavy according to such position or site. ${ }^{[63]}$ S.A. Give me an example. N . Let as before the bar or balance $a c b$ [See Fig. 4.16] and the weights a and b hung thereon, and let the ratio of b to a be as that of the arm $a c$ to the arm $b c$. I say that this balance will not tilt to either side. And if (for the adversary) it is possible for it to tilt, let us assume it to tilt on the side of b and to descend obliquely as the line $d c e$ in place of $a c b$, and [let us] take d as a and e as b; and the line $d f$ descends perpendicularly, and the line $e h$ rises similarly. Now it is manifest (by Euclid I. 16 and I.29) ${ }^{[64]}$ that the two triangles $d f c$ and $e h c$ have equal angles. Whence (by Euclid VI.4) ${ }^{[65]}$ they will be similar, and consequently will have proportional sides. Therefore the ratio of $d c$ to $c e$ is as that of $d f$ to $e h$; and since the weight b is to the weight a as $d c$ is to $c e$ (by our assumption), the ratio of $d f$ to $e h$ will be as the weight b to the weight a. Hence, if we take from cd the part $c l$, equal to $c b$ or $c e$, and consider l equal in heaviness to b and descending along the perpendicular $l m$, then, since it is manifest that $l m$ and $e h$ are equal, the proportion of $d f$ to $l m$ will be as the simple heaviness of the body b to the simple heaviness of the body a, or as the simple heaviness of the body l to the simple heaviness of the body d, because the two bodies are supposed to be the same, and similarly the bodies b and l (the heaviness of the body 1 having been assumed equal to that of the body b). Hence I say that the ratio of all $d c$ to $l c$ will be as the heaviness of the body l to that of the body d. whence if the said two heavy bodies, that is, d and l were simply equal in heaviness, standing then in the same positions or places at which they are presently assumed to be, the body d would be positionally heavier than the body l (by the fourth proposition) in that ratio which holds between the whole arm $d c$ and the arm $l c$. And since the body l is simply heavier than the body d (by our assumption) in the same ratio as that of the arm $d c$ to the arm $l c$, then the said two bodies d and l in position of equality would come to be equally heavy, because by as much as the body d is positionally heavier than the body l, by so much is the body l simply heavier than the body d; and therefore in the position of equality they come to be equally heavy. Hence that power or heaviness that will be sufficient to lift the body a from the position of equality to the point at which it is at present (that is, to the point d) will be

I : B \quad O

ficiente ad elleuare il corpo.L.dal medefimo fito della equalita alluoco, doue che al pre fente $\dot{\text { e. Adnnque felcorpo.b. (perlanerfario)è atto ad ellenare } l l}$ corpo.a. dal fito della equalita per fin al ponto.d.el medefimo corpo.b. Aaria ancboraatto, e fofficiente ad ellenare il corpool. dal medefimo fito della equalita per fin al ponto, doue che alpre fente $\dot{\text { e }}$ el qual confequente éfalfo, ev cone tra alla quinta propofitione, ciocel corpo b. (qual c fupposto equale in grauita al corpo.l.)elleuariail detto corpo. I. fuora del fito della equalita, in fitiequali, cioe ce gualmente diftanti dal centro.c. la qual com fa éimpoßibile per la dettaquinta propofitione, diffrutto adunque l'oppofito, rims ne ilpropofito. S. A. Questa $\dot{\text { cimuafa }}$ fai bella propofitione, ma elme pare,fe bé me arricordo, che Arcbimede Syracufano
 en ponga una Imile, ma el non mi pare, che luila dimoffri per queforo nofiromodo. N. Voftra Signoria dicela uerita, anci di tal propofitione, lui ne fa due propoftion ni,er queftefono la quarta, er quinta di quel libro, doue tratta delli centri delle cofe grauc, e̛ in effetto tai due propoftioni luile dimostra fuccintamente per lifuoi prins cipī da lui per auanti pofti, or demostrati, ev perche tai fui principï, ouer argomen ti.nonfe conuegnariano in quefto trattato, per eßer materia alquäto diuerfa da quelia ld, ne apparfo in questo lioco de dimoftrare tal propofitioni con altri principij, ouere argomentipiu conuenienti in quefoluoco. S.A. Euc ho intefofeguitati. N.

QVESITO XXXVI. PROPOSITIONE IX.

SE faranno due folide uerghe, traui, ouer bafoni di una annile, eั equal longber za,larghezza,grofezza,er granita, er che fano appefi in una libra talmente obe luno ftia equidiftante al orizonte, ev laltro dependi perpendicolarmente, ev tala mente anchora, che del termine del dependente, 0 ' del mezzo dell'altro fla una medé fima diftantia dal centrodella libra, fecondo tal fito, ouer pofitione ueneranno à eßere equalmente graui. S.A. Non ue intendo, e pero datime uno effempio. N. Effemw pigratia.Siano li termini dellibrazzidella libra.b.e e.d.e illparto, oucr centro dì quella il ponto.c.ev ui fano attaccati li dui Folidi imili. © equali, come detto, delli quali luno ui faattaccato jecondo lordine del brazzo detla libra, cioc equiditantae mente al orizonte qual fa.f.e.del qual il fuo ponto dimezzo fia el ponto.d. σ Ialtró fia attaccato pendente perpendicolarmentequal fa.b.g. © failtermine del fuo at= taccamento il ponto.b. ©r fache la diftantia del ponto. b.al ponto. c. (centro della lie bra)flatanto, quanto ch'e dal ponto dimezzode laltro folido(cioe dal pöto.d.) alme defimo ponto.c.Dico che li dettidui fotidi, intal fito, outr pofitione fonoequalmene se graui, er quefto fe puodimoAtrar in piumodi. El primodi qualie quefto, ch'eglic manifefo perle cofs dumostrate da Archimede in queflodel centro della grakitas, che

[93v]
 B O O K

sufficient to lift the body l from the same position of equality to the place where it is at present. ${ }^{[66]}$ Therefore if the body b (for the adversary) is able to lift the body a from the position of equality to the point d, the same body b would also be able and sufficient to lift the body l from the same position of equality to the point where it is at present, which consequence is false and contrary to the fifth proposition; that is, the body b (which is supposed equal in heaviness to the body l) would lift the said body l out of the position of equality [though they are] in equal places, that is, equally distant from the centre c, which is impossible by the said fifth proposition. Thus, the adversary's position destroyed, the thesis stands. S.A. This is a very pretty proposition, but it seems to me (if I recall correctly) that Archimedes of Syracuse has a similar one, and

[Fig. 4.16] I believe he does not prove it in this way of yours. N. Your Excellency is right. Indeed, of this proposition he makes two, and these are the fourth and fifth in that book of his wherein he deals with the centres of gravity of heavy bodies ${ }^{[67]}$; and in fact he proves those two propositions succinctly by principles of his set forth and demonstrated previously. And since those principles and arguments of his would not be suitable in this treatise, it being of somewhat different subject, it appeared best in this place to prove those propositions with other principles or arguments more appropriate here. ${ }^{[68]}$ S.A. I see. Proceed. N.

QUESTION XXXVI. PROPOSITION IX.

If there are two solid rods, beams or staff of the same length, breadth, a width, and weight hung on a balance in such a way that one is horizontal and the other vertical, with the distances equal from the centre of the balance to the point of suspension of the latter and the centre of the former, then they will be equally heavy according to this place or site. ${ }^{[69]}$ S.A. I do not understand you, so give me an example. N. For example, let there be the ends of the balance arms b and e and the pivot or centre at the point c (Fig. 4.17), and let there be attached the two similar equal solids, of which one shall be attached along the balance arm horizontally, called $f e$, whose midpoint is d, while the other shall be attached hanging perpendicularly as $b g$, the point of attachment being b. And let the distance from the point b to the point c (centre of the scale) be as much as that from the midpoint of the other solid (that is, the point d) to the same point. I say that the two solids in that place or position are equally heavy, and this can be demonstrated in several ways. The first of these is this: it is manifest by the things demonstrated by Archimedes in his centres of gravity that

0 T T A $\boldsymbol{\gamma} \boldsymbol{O}$

eanto pefail folido.F.e.in tal popitione nella detta libra, quanto che faria fe quello fufe feanchora lui appefo perpendicolarmente in ponto.d.perche intal ponto. d. ui fotto giace el centro delles grauits de tal folido, er per efferli detti dui folidi equali in gras uita dal prefuppojito, er appefiequalmente diftanti dal ponto, ouer centro.c. quelli (per las.propofitione) non fe feparanto dal fico delld equalita, ch'cil propofito.

Abstract

Ancboratal propoitione/ipuodemofitrar in quefo altro modo (el quale ipinfue conueniente dimostratione, perche fe nienà dimoftrare per li fuoi proprij primelpis, σ^{*} non per principi) alieni. Eglie manifefo, che e \int fendo $\int u f p e \rho i d u i$ pe β fimplicemens te equali, luno im ponto.f.er laltro im ponto.e.quali poniamo, che fiano.b.k. © Jimel mentedui altriequaliallimedefimi in ponto.b. quali ßano.l.m.neli quali ßati,dıco,ełee taipefipefaranno equalmente, perche la proportione del pefo. l. al pefo. k. éficome del brazzo.b.c.al brazzo.f.c.,per la quarta propofitione, percbe tanto graue faris el corpo. l. fecondo el fito nel ponto.d.quanto che nel ponto, doue $\rho \mathrm{l}$ troua al prefantes cioe in ponto.b. (per effer.e.d.equale al.c. b. dal prefuppofito)e pero per la detta pro pofitione, tal proportione fara della grauita del corpo. l. al corpo. k. fecondo el fito, quale fara delbrazzo.d.c.ouer.b.c.al.c.f.er per le medefime ragioni tal proportioa ne fara della grauita del corpo.m. alla grauita del corpo.b. fecondo el fito, quale fara del medejano brazzo.c.d. outr.c.b.al brazzo.c.e.adunque la grauita de ambi duili corpi.I.m. infieme alla grauita de ambidui licorpi.h. k.infieme fecondo il fito faraf come el doppio del brazzo.c.d. ouer del brazzo.c.b.imfieme alliduibrazzi.c.f.et.c. e.par inffeneser percbe li dettiduibrazzi.c.e.er.e.firffemefono precifamente tan to, quainto èil doppio del detto brazzzo.c.d. outr.e.b.feguita ancbora, cbe la grauia ta dellidettidui corpi. Ins. fa equale alla gramitadelli dui corpi.b.er. k. Jecondo ul β ta,ch'é il propofito,percbe fe del fopradetto folido.f.e.ne fara fatto otice parti equali; appiccandone una di quelle in ponto.f.ev laltra im ponto.e.tanto pefarano cofi fepar rate in tai fti, ficomic faceuano in longo congionte, comedi fopra fu fuppofto, ov ρ_{0} melmente facendo del foliso.b.g. pur due parti; 0 appiccarle ambe due m iel medefe mo ponto.6.tanto pefarano codifeparste, come che congionte, come, che di fopra fu fappofto eperoper le cofe deito, ar allegate 'éeguitail propofito. 2

[94r]
 E I G H T

the solid $f e$ weighs as much in that position on the balance as if it were hung perpendicularly at the point d, because at that point d is situated the centre of gravity of the solid; and the two solids being equal in weight by hypothesis and hung equally distant from the central point c, then by the fifth proposition they will not depart from the position of equality; which is the purpose.

[Fig. 4.17]
This proposition can also be demonstrated in another way (which is more suitable because it depends on its own principles rather than imported ones). ${ }^{[70]}$ It is manifest that, when two simply equal bodies, h and k, are suspended, the one at the point e and the other at the point f, and two others which shall be l and m, equal to them, are hung at the point b [See Fig. 4.18], these weights, I say, will weigh equally at those points, because the ratio of the weight l to the weight k is as that of the arm $b c$ to the $\operatorname{arm} f c$ (by the fourth proposition); for the body 1 will be positionally as heavy at the point d as where it is at present, that is, at the point b (since $c d$ is equal to $c b$ by assumption). Therefore, by the said proposition, this ratio will be that of the positional heaviness of the body l to the body k, which will be that of the arm $d c$ or $b c$ to $c f$; and for the same reasons this ratio will be that of the heaviness of the body m to the heaviness of the body h positionally, that is the ratio of the same arm $c d$ or $b c$ to the arm $c e$. Therefore the positional heaviness of both the bodies l and m, together, to the positional heaviness of the other two bodies h and k, together, will be as the double of the arm $c d$ or $b c$ to the two arms $c e$ and $c f$ together. And since the said two arms $c e$ and $c f$, together, are precisely as much as the double of the said arm $c d$ or $b c$, it follows also that the heaviness of the said two bodies l and m is equal to the positional heaviness of the two bodies h and k; which is the purpose. For if the said solid $f e$ were made into two equal parts, one of those hanging at the point f and the other at the point e, they would separately weigh as much thus at those points as they were elongated and joined in the manner supposed before. Similarly, if the solid $b g$ also were in two parts, both hung at the same point b, they would thus weigh as much separated as conjoined (as supposed above); hence from the things said and alleged the purpose follows.

\boldsymbol{I} I B R \mathbf{O}

S.A. Voria, che me dimoftrafti che ilbrazzo.e.f:infemecon il.e.e.flatanto quăto el doppio del brazzo.d.c.ouer.c.b. N. Signor eglie manifefto, cbetutto il brazzo c.e.ci maggiore del brazzo.c.d.per la parte.e.d.la qual parte.e.d.é equale alla.d.f.di remo adunque, che tutta la.c.e.ee equal alla.c.d. © drichora alla fua parte.f.d. alla qual parte.f.d. giontouiel brazzo.f.c..queste due partiinfiemefe egualiano anchora loro all.s medefima.c.d, e pero tuttala.c.e.infieme con la.c.f. fono precifamente il doppio della.c.d er perche la detta.c.d.é equale (dal prefuppofito)alla.b.c.feguita, che tutta la.c.e. infieme con la.c.e.fiano equali al doppio della.c. b, cb'c'il propofito. S. A. E witbo intefo benifimose perofeguitati. N.

QVESITO XXXVII. PROPOSITIONE X.

SEl fara una folida werga, trauc, ouer baftone di unafimile, er equal largbezza, grofeczzd, foffantia, égrauita in ogni fuaparte, ev che la long bezza diquella fladiuidain due partiinequale, é che nel termine della menor parte ui fa appefQuno altro folido, outr corpo graue, el quale faccia farc la dettauerg a, trauc, ouer bafione equidisante alo orizonte. La proportione della grauita dital corpo grauc, alla diffea rentia delld grauita della maggior parte della detta uerga (traue, ouer bafone) alld grauita della parte menore, faraficome la proportione della lögbezza di tutta la uer ga(traue, ouer baftone)al doppio della longbezzadella fua menor parte. S. A. Da time un efempiofe uoleti, che ui intédd. N. Siala folidauerga (trave, ouer bafione) il folido.a.b. di una fimile, et equal großezza, larghezza, foftatia, et graxita p tutto, cioe pogni parte, et fia diuifo cö l'intelletto in due partiinequale in potto.c.et fla figna tala.c.d.equal alla.a.c.adunque la.d.b. niè ie effere la differectia, cb'c frala parte mag giore.c.b.et la menore.c.a.della qual differctia fiatrouato ilmezzo, qual fa il pons to.e. Hor eßēdo (uppefo ildetto oflido, ouer trauc.a.b.nel pöto.c.et eßédouiattaccato, oner fupefo nel termine della fua menor parte un altro folido (poniamo il folido.f.) qual faccia ftare il primo folido, ouer traue.a. b.equidiftăte al orizöte. Dico, che tal proportione hakerala grauita del / olido.f.alla grauita della differëtia,d.b. qual hara tuttale löghezza.a.b.alla, a.d. cioe àl doppio della löghezza della parte menore.a.c. perche tanto pefa la detta differentia.d.b. m tal po itione, come che al prefente ftaquä so cbe fariafe quells fuffe perpendicolarmente [ofpefa in ponto.e., e pero (peril cone
$[94 \mathrm{v}]$
B O O K

[Fig. 4.18]
S.A. I should like to have you demonstrate to me that the arm $c f$ together with $c e$ is as much as double the arm $d c$ or $b c$. N. Sir, it is manifest that the whole arm $c e$ is greater than the arm $c d$ by the part $e d$, which part $e d$ is equal to $d f$. Therefore let us say that the whole of $c e$ is equal to $c d$ added to its part $f d$, and if to the part $f d$ we add the arm fc, these two parts together also equal $c d$. Therefore the whole $c e$ together with $c f$ are precisely the double of $c d$; and since the said $c d$ is equal by hypothesis to $b c$, it follows that the whole $c e$ together with $c f$ is equal to the double of $c b$; which is the purpose. S.A. I understand very well, so continue. N.

QUESTION XXXVII. PROPOSITION X.

If a solid rod or beam of uniform breadth, thickness, substance, and heaviness is assumed, and [if] its length is divided into two unequal parts, and at the end of the shorter part there is hung another solid or heavy body which makes the said rod, beam, or staff stay parallel to the horizon, then the proportion of the heaviness of that body to the difference between the heaviness of the longer part of the rod (or beam or staff) and the heaviness of the shorter part will be as the ratio of the length of the whole rod, beam, or staff to the double of the length of its shorter part [emphasis added]. ${ }^{[71]}$ S.A. Give me an example, if you want me to comprehend. N. Let $a b$ be a solid rod (beam or staff) of uniform breadth, thickness, substance, and heaviness throughout (that is, at every point), and divide it mentally into two unequal parts at the point c, and mark $c d$ equal to $c a$; then $d b$ becomes the difference between the longer part $c b$ and the shorter $c a$, of which difference the centre is found, which is the point e. Now the said solid beam $a b$ being suspended at the point c, and there being attached or suspended at the end of the shorter part another solid, which we call f, which makes the first solid beam $a b$ stand parallel to the horizon, I say that the proportion of the heaviness of the solid f to the heaviness of the difference $d b$ is that of the whole length $a b$ to $a d$, the double of the length of the shorter part $a c$. For the said difference $d b$ weighs as much in that position where it stands at present as it would if it were suspended perpendicularly at the point e, and therefore (by the converse
virrodella.8.proboftione) 0 T T A ∇ O 95 . partial folido, oucr traue.d.b. fara, $\hat{1}$ come la proportione della diffantia.c.e ealla die stantia.e.a. Et la proportione,che e della diftantiad.e.e.allla difantia.c.c. (per la.is.del giunto diEuclide) guella medefima fara del doppio della diftantia.c.e. al doppio della detta diftantia.c.a.é- perche cil doppio della detta diftantia.c.e.e quanto che é tutta la longbezza del Jolido.a.b. © il doppio della detta diftantia.c.a.équanto che étuttala a.c.d.feguita (per la.11.del quinto di Euclide) che la proportione della grauita del foe lido.f.alla grauita della pifferentia.d.b. .fa ficome la proportione de tutta la longbez $z a$ delfolido, ouer uerga.a.b.al doppio della longbezza della parte menore.a.c..(qual ita delta.a.a.c.d.) cbbe il propofito. S.A. Percberagione noleti cbe il doppio della

eiftantia.e.e.fla e equale à tutta la longbezza del tratue.a.b. N. Perche la detta diffan. Bia.c.e. кien ì effer precifamente eguale alla mita ditall longbezza.a.a.b.perche la para oe.d.e.é la mita della parte.d.b.e la,d.c.é la mita dell'altra parte. d.a.adunque le due parti.d.e.e.d.c.egionte infeme, uengono ie effere la mita delle due parti.d.b.e.d.d. pur gionte infleme. S, A, Euc bo intefose perofeguitate in altro. No

QVESITO, XXXVIII, PROPOSITIONE XI. conucrfa della precedente.

SE la proportione della grauitad'un folido fopefo inel termine della menor parte di unis finile folida uerga (traue, ouer baftone) diuifo in due parti ineguali, alla dif ferentia, che fara fra la grauita della magsior parte, ov quella dellamenore, fard, fico me la proportione diturtala longhezzadella folida uerga, traue, ouer bafione, al dope pio della longhezza della fua menor parte, Tal folida uerga, traule, outer baftone, nee «ef Jariamente fara equidifante all'Orizonte. S.A. Credo bene cbe tal precedente propofitione fe conuertifea, nondimeno non refati da farme la dimostratione. N. Per effer quefta il conuerfo della precedente, per fuo effempio fupponeremo la medea fima difpofitione, ouer figura, cioe fupponeremo, che la proportione della grauita del folido. FTalla differentia della grauita della maggior parte alla grauita della menore, cioe della , d, b.effer, ficome la proportione di tuttala longhezza della folida uerga* b.al dot pio della longbezza della parte menore,a,c. (quale fartala,a.d.) Dico cbe Fante ghesio, la folida uex gata,b, de necefitaffara equidifante ali'Orizonte, Et f o pof

[95r]
 EIGHT

of the eighth proposition) the ratio of the heaviness of the solid f to the heaviness of the partial solid beam $d b$ will be as the ratio of the distance $c e$ to the distance $c a$. And that ratio of $c e$ to $c a$ (by Euclid V.15) ${ }^{[72]}$ will be the same as [the ratio of] the double of the distance $c e$ to the double of the distance $c a$. and because the double of the said distance $c e$ is the whole length of the solid $a b$, and the double of the distance $c a$ is the whole of acd, it follows (by Euclid V.11) ${ }^{[73]}$ that the ratio of the heaviness of the solid f to the heaviness of the difference $d b$ is as the ratio of the whole length of the solid rod $a b$ to the double of the length of the shorter part $a c$ (which is $a c d$); which is the purpose. S.A. Why is double the distance CE equal to the whole [See Fig. 4.19]

[Fig. 4.19]
length of the beam AB . N. Because the distance CE becomes precisely equal to half of that length AB , for the part DE is the half of the part DB , and DC is the half of the other part DA; therefore the two parts DE and DC joined together become the half of the two parts DB and DA joined together. S.A. I understand; therefore go on to the next. N.

QUESTION. XXXVIII. PROPOSITION XI.
opposite of the preceding.
If the proportion of the heaviness of a solid suspended at the end of the shorter part of a similar rod (beam or staff) divided into two unequal parts, to the difference that it will be between the heaviness of the longer part and that of the shorter, shall be as the ratio of the whole length of the solid rod or staff to the double of the length of its shorter part, such solid rod (beam or staff) will necessarily be horizontal. S.A. I well believe that the preceding proposition may have its converse; yet do not fail to give me the demonstration. N . This being the converse of the preceding, for its exemplification let us assume the same arrangement or figure. That is, let us suppose the ratio of the heaviness of the solid f to the difference of heaviness between the longer part and the shorter, that is, of $d b$, to be as the ratio of the whole length of the solid $\operatorname{rod} a b$ to the double of the length of the shorter part $a c$, which will be $a d$. I say that this solid rod $a b$ will of necessity remain horizontal. If it is

2 \& 8 R

Abil fuffepert Pautrfario)cbe quella debbia, ouer Pof/a declimar da qualche banda, po niamo che declini idlla tanda ucrfo.b.al folido.f. gli aggiongeremo con lo intelletto
 traus, ,ume baftone equidifitante al detto Orizonte. Adunquu, ,per laprecedente, la pro

 quella dela.d.d.b.) fara, A come la proportione ditutta la longhezzasa.a.b.al doppia della longbezza della fuas parte menor,ac.c. il qual doppio, faria la.ad.d.e- perche il ßmplice folido.f.ba quelamedefima proportionce, alla medefina differentia (dal prce

do. f. fuffe equale alla grauita de tutto il compofito di dui olidi.f.f. la qual cofa e eimpof pbile cbe la parte jas eguale al tutto, il medefimo inconueniente feguiria quando cbe lo
 tal parte, cbe il rimanente faceffe reffare il detto folido, ac. b. equideffantceall' Orizone te, argomentando, come di fopra fu fatto, ©c guiris pur che la grauita del imedefimo re= fiduo fuffe equale alla grauita di tuttoil folido.f, Adunque non potendo declinare ne dalla banda uerfo.b.ne da quella kerfo.d.eglie necef(fario che stia equidiffante all'Orio zonte, checeil propofito. S.A. Stabenißimo,borfeguitatipur, N.

QVESITO. XXXIX, PROPOSITIONE XIL

SEl farauna folida uerga, traukr baffone, come nelle due precedente $\dot{f} f$ tato detto cioe diuna fimile, ev egual groffezza, larghezza. foftantia, © grauita, in ogni fua parte, Ơ cbe di quello one fan notala fua gravita, e fimilmentel la fua long bezza, et che quello fiadiuijo in due partiineguale pur note. Egle poßibile di vitrouar un pefo, il quale quando che quello fara foppefo al termine della fua menor parte fara fare la dettafolida uerg4, trauc, ouer byfone, equidiftante all'Orizonte. S.A, Queftoatto operativo uoglio cbe mel dicbbiaraticon efempio materiale, percbe lo noglio intendea rebene.- N. Sia effcmpigratia la folida uerga(traue, ouer baffone) a.b. fecondo che Fepropone, cioe di una funile, च゙ equal groffezza, largbezza, foftantus, ש゙ grauita

[95v]
 B O O K

possible (for the adversary) that it must or might tilt from either side, let us assume that it tilts toward b. To the solid f, we add mentally such a part (which we shall call g) which cause the said solid rod or staff to stand parallel to the horizon. Therefore (by the preceding), the proportion of the whole heaviness of the combination of the two bodies f and g to the difference between the weight of the longer part $b c$ and that of the shorter part $a c$ (which will be that of $d b$) shall be as the ratio of the whole length $a b$ to the double of the length of its shorter part $a c$, which double would be ad; and since the simple solid f has that same ratio to the same difference (by what has gone before), it would follow (by Euclid V.9) ${ }^{[74]}$ that the heaviness of the simple so[-] [See Fig. 4.20]

[Fig. 4.20]
$\operatorname{lid} f$ were equal to he heaviness of the whole combination of the two solids f and g, which is impossible, for the part would be equal to the whole. The same contradiction would follow if the adversary should assume that it tilted toward a, because cutting away from the solid f such a part that the remainder would make the solid $a b$ rest parallel to the horizon and arguing as above would make it follow that the heaviness of the same remainder was equal to the heaviness of the whole solid f. Therefore, being unable to tilt from either side toward a or b, it necessarily stands parallel to the horizon; which is the purpose. S.A. Very good; now go on. N.

QUESTION. XXXIX. PROPOSITION XII.

If there is a solid rod, beam, or staff, as in the two preceding [propositions], which is similar and equal in thickness, breadth, substance, and heaviness in every part and of which the heaviness as well as the length is known, and if it be divided into two unequal parts which are also known, it is possible to find a weight which, when suspended at the end of its shorter part, will make the said solid rod, beam, or staff stay horizontal. ${ }^{[75]}$ S.A. I should like y better explain to me this operation by means of a material example, for I want to understand it thoroughly. N. For example, let there be the solid rod (beam or staff) $a b$ as proposed, that is, equal and similar in breadth, thickness, substance, and heaviness on every side or in every part; and let us assume the heaviness of the said solid rod to be

O T TA V O

nota, cioc poniamio che tutta peflire. 40 . et che fimilmente lalonghezes ditaluerges outer baffone, ne fia nota, cioe poniamo che quella fia longa dui paffo, cioe dieci pied, er ponidmo dnchora che tal uerga fiadiuifa in due parti ine guale in ponto.c. © co ce le det te partine fia note, cioe poniamo cbe la parte.a.c.menore, fa piedidui, v cbe la mag gior.c.b. fa piedi.8. Hor dico, che eglie poßibile ditrouare di quante libre norra effer quel corpo qual efendofopefo nel ponto.a. (termine della fua menor parre) facciafta reta detta uerga, ouentraue equidifante all'O orizonte. Percbe (per le cofe dimoftrate nelle due precederite propofitiont) eglie manifeffo, sbe la proportione della grauita di guel tal corpo alla èrauita di quella differentiä cbe eifra la parte maggiore.c.b. ola parte menore.a.c. (la qual differentia uerria à effer la.d.b.)) Jara, ficome tutta la lons ghezza della uerga, ouer traue.a. b. (qual épiedi.10.) al doppio della longbezza della parte menor.a.c. (qualé piedi dui) il doppio della quale uerria à effer piedi.4. qual pongofla la.a.d.adunque la grauita di quel tal corpo, alla grauita della partial uerga.d. b. fara,ficome la longbezza de tutta la.a.b. (qual e piedi.io.) ala longhezzà della.a. d.(qual e piedi. 4.) Onde arguendo alcontrario, diremo, chela proportoone della.a.d. (qual é picdi.4.) ̀̀ tutta la.a.b. (qual é puedi.10) Jara, ficome la grauita della partial serga.d.6.qual (alla ratta di tuttala.a. b.che libre.40.) uerria ad effer libre. 24 .alla grauita del corpocherecercamo, cioe di quello, cbe appefo nel ponto.addebbiamatre

Genere la dettauerga, ouer trame equidifante alf' Orizonte. Onde per ritrouarlo proe cederemo fecondol 1 or dine della regola uolgarmente detta del tre, fordatafoprala, 20° propofitione del.7.diEuclide, moltiplicando.10.fia. 24. fa. 240 .er queftolo partie remo per.4.ne uenira,60.v libre.60. dico che pefara, ouer cbe douera pefare que! tal corpo,qual pongo fa il corpo.f.che cil propofito. S.A. Quefo problemameé piacefto afai, el l'bo intefo benifimo, eperofeguitatifecić altro da dirc. N.

QVESITO. XL, PROPOSITIONE XIII.

5Elfe baverauna verga,traue, ouer baforone, come piu uolte i stato detto, del qual ne fla nota la fua longbezze, ev anchora la fua grauita, ev anchoraun corpopon derofo, del quale ne fa nota fua granitas cglue po ßibile ì determinareil luoco doue fe baucra da dividere la data uerga,traue, ouer bafone, talmente che appendendo il det=

[96r]
 E I G H T

known, that is, assume that it weigh 40 pounds and similarly its length be two paces or ten feet, and let us also assume that the rod is divided into two unequal parts at the point c and that the [lengths of] said parts are known, it being assumed that the shorter part $a c$ is two feet and the longer $c b$ is 8 feet. Now I say that it is possible to find how many pounds that body must be which, suspended at the point a (end of the shorter part), will make the said rod or beam stand parallel to the horizon. For (by the things demonstrated in the two previous propositions) it is manifest that the ratio of the heaviness of that body to the heaviness of that difference which exists between the longer part $c b$ and the shorter $a c$ (which difference becomes $d b$) will be as the length of the whole rod or beam $a b$ (which is 10 feet) to the double of the shorter part $a c$ (which is two feet), and this double comes to be 4 feet. Let us call this $a d$. Then the heaviness of that body [at a] will he to the heaviness of the partial rod $d b$ as the whole length of $a b$ (which is 10 feet) is to the length of $a d$ (which is 4 feet). Whereby, arguing conversely, let us say that the ratio of $a d$ (which is 4 feet) to the whole $a b$ (which is 10 feet) will be as the heaviness of the partial rod $d b$, which (at the rate of 40 pounds to all $a b$) is 24 pounds to the heaviness of the body we seek that is that which, hung at the point a, should main[-] [See Fig. 4.21]

[Fig. 4.21]
tain the rod or beam parallel to the horizon. Whence in order to find this, we shall proceed by the rule ordinarily called the rule of three, founded on Euclid VII. $20{ }^{[76]}$; multiplying ten by 24 gives 240 , and this we shall divide by four, obtaining 60 . I say that that weight which I called the body f will be 60 pounds; and this is the purpose. S.A. This problem pleased me very much and I understood it well; therefore go on to the next. N.

QUESTION. XL. PROPOSITION XIII.

If you shall have a rod, beam, or staff, as often was said above, of which the length, as well as the heaviness, be known, and also a heavy body of which the weight be known, it is possible to determine the place at which the rod, beam, or staff must be divided in order that the cit[-]

218 R 0

to coppo pondero of al termine della fuamenor parte facciaftarela dettd tuer \& d, traties, wer baftone, equidiftante all'Orizontt. S. A. Efemplificatemi quest a propofitione. N. Per effemplificar quefta propofitione. fupponeremo cbe il fla pur unauerga,traa we, ouer bafione, come fula precedente, cioc longa piedi.10. δ c cbe la grauitadi quellos fla pur libre.40. (come che nella detta precedente fu fuppofo.) Et poniamo ancbord cbeil fla un corpo che la grauita di quello fa libre.So. Dico cb'eglie poßibile à deter. minarcilluoco doue fe debbe diuidere la dettauerga, talmente cbeappendendo il deta to corpo graue al termine della fua menor parte, facciaffar quella equidifante all'O. vizonte.Et quantunque tal problema, β ipoffa rijoluerc per uia diproportioni, nondia meno piu leggiadramente, fe riflue per Algebra, ponendo cbe la pafte menore della detta uerga, jla una cofa de pic, onde la parte maggiore uencria i reftare piedi.to. men. 1.co.Duplicola menor parte, cioc. 1 co.fa .2 ,co, e̛ queste. 2 , cofe le fottro da tut ta lauerga qual é piedi. $10 . r e f t a p i e d i .10$ men. 2.cofe, ev queftofara la differentia, cbe ifra la parte maggiore, é la menore delladetta uerga,onde per trouar la grauia ta ditaldifferentia, la moltiplico per.4. (perche pefando tuttala uerga libre.40.ue neris ogni pie diquella à pefar lire.4.) epero moltiplicando quella per. 4. come detta ue uenira libre. 40 .men. 8 .cofe. Et perche la proportione di tuttalauerga (qual épie di.10-al doppiodella fua menor parte) il qual doppio Paria. 2.cofe (eficome che lagra witadelinoftro corpograue (qualélibre. 80.) alla graxita della fopradetta differentia, qual fulibre.40.men.8.co.Onde per la. 20. del. 7 .di Euclide (la moltiplicatione della
 fe (fara eguale alla moltiplicatione della terza qual élibre. 80 . fia la feconds, qual $\dot{e} .2$. cofe (qual fara. $160 . c o$.) e pero haucremo.160.cofe equale $\mathbf{a} .400$. men. So.cofe, onts de riftorandole parti, er feguendo il capito',o, trouaremola cofa ualer. . . e dui terzi, - de piedi. i, e duiterzi, fe douera fignar la menor parte delladetta uerga, ouer trae ue, onde la maggioreuenira à reftare de piedi.8.e un terzo, che ćil propofito. S.A. Oefffa effata una bella refolutione, ma fegnitati pur, perche norria che traboggi or dimane uede Simo de ipedire tutto quetlo, cbe bauctid. proponere Sopradiquefta fcien tias, perche uorro poi che me aßignati la caufa de alcune queftioni, cbe bo da dirui. N. Non credo di potermene ipedire fra diman, e l'altro, perche continuamente me nafco nsoue materie da proponere circà̀ tal cientia. S.A. Se non fene potremo ıpedire cofidimane non importa, non perdemotempo, fgguitati. N.

QVESITO. XLI. PROPOSITIONE XIII.

LA egualita della declinatione $\dot{\text { inna }}$ medefima egualita de pefo. S.A. Datemi unefempio. N. La equalita della declinatione uien conferuata folamente in miaretta. Hor poniamo adungue che ladetta uiaretta fala lines.a.b. © dal ponto.a. Pla anchor tirata la perpendicolare.a.c.ev upponamo anchor nella dettadeclinata lie nea.a.b,dui ducrflluocbi. Hor poniamo che l'uno fail ponto.d. © l'adtro il ponto.eo Hor dico cbe difeendendo, qualunque corpo ponderofo, oucr dal ponto.d.oucr dal pon

[96v]
 B O O K

ed heavy body, when hung at the end of the shorter part, will cause the rod, beam, or staff to remain parallel to the horizon. S.A. Give me an example of this problem. N . To illustrate this problem, let us assume that there is a rod, beam, or staff as the above, 10 feet long and weighing 40 pounds (as in the preceding was assumed). And let us assume also that there is a body weighing 80 pounds. I say that it is possible to determine the place at which the rod may be divided so that the said heavy body, when hung at the end of its shorter part, will make the rod stay parallel to the horizon. And any such problem may be solved by ratios; nevertheless, it may be more easily solved by Algebra, the shorter part of the rod being a matter of feet, a co, ${ }^{[77]}$ whence the longer part is 10 minus co. I double the shorter part (that is one co), which gives 2 co, and subtract these two co from the whole length of 10 feet. There remains 10 minus 2 co, and this will be the difference between the longer part and the shorter. To find the weight of this difference, I multiply it by 4 (because, the whole rod weighing 40 pounds, each foot comes to weigh 4 pounds). Multiplying by 4 , as I said, the result is 40 minus 8 co . And since the ratio of the whole rod (which is 10 feet) to the double of its shorter part (which double is 2 co) is as the weight of our heavy body (which is 80 pounds) to the weight of the above difference, which is 40 minus 8 co. Hence by Euclid VII. $20^{[78]}$ the product of the first [term], or 10 feet, into the fourth, which is 40 minus 8 co (which would be 400 minus 80 co), will equal the product of the third, which is 80 pounds, into the second, which is 2 co (which will be 160 co). Thus we will have 160 co equal to 400 minus 80 co ; and restoring the parts by rule we shall find the co to be $1+2 / 3$. ${ }^{[79]}$ Hence $1+2 / 3$ feet will be the shorter part of the said rod or beam, whence the longer will be $8+1 / 3$ feet; which was our problem. S.A. This was a pretty solution. Now continue, for today and tomorrow I want to finish all that you have to say on this science, after which I should like to have you clear up for me some questions I have for you. N .

QUESTION XLI. PROPOSITION XIIII.

The equality of obliquity [slant] is an equality of weight [according to position]. S.A. Give me an example. N. Equality of obliquity is preserved only in a straight path. Therefore let us assume that the said straight path is the line $a b$ [See Fig. 4.22], and let the perpendicular $a c$ be drawn from the point a, and let also suppose two different places along the said inclined line $a b$. Let one of these be the point d and the other the point e. Now I say that any heavy body in descending, whether at the point d or at the point e, will be of the same positional weight as at any of the other said places. For

che fe piglidicmo fotto dild.d.ev al.e.due partiequali netld uid,ouer lined.4.b. Hor po niamo, che l'una flala parte.d.e.et laltrala.e.g.Dico,che perle dette parti equalica pirs equalmente del diretto, cioe della limed.d.c.la qual cofafe notificara in queftomo
 do,dalli duiponti.e.vr.g.fano tiratele due lineeie.b.ev.g.!. perpendicolare foprala lined.a.c.et dalli dui ponti, ouer luo cbi.d.e̛.e.le due linec.d.k.Uూ. e.m. perpendicolare foprs le medefine.e.b.er.g.t.le qual due perpendicolare, cioc. \&. k.ev.e.m. faranno fra loro equali, perche adunque il detto corpo ponderofo, fleffendo riel ponto.d.comenel ponto.e.in quantita, oiuer defcenfl equali, capira equalmente del direta to, fard di una medefina grduitain qual $\rho \frac{1}{}$ uoglia de quelli,fe condo el fto, ch'c'il propofito. S.A. E ue bo intejo, feguia tate pur. N.

QVESITO XLII. PROPOSITIONE XV.

SE dui corpigraui defcendano per uie de diuerfe obliquita, ev che la proportioa ne delle declinationi delle due ue, ev della grauita dedetticorpi fia fatta una mes defima, tolta per el medefimo ordine. Anchora la uirtu de luno, e laltro de detti duk corpigraui, ineldeféenderefara una medefima. S.A. Quefta propoftione mi par bell,e epero datime anchoraun effempio chiaro, accio che meglio mipiaccia. N. Sid la linéa.a.b.c.equidiftanteal orizonte, ev fopradi quella fla perpendicolarmente ea rettala linea.b.d.e dal ponto.d.def fendano de qua, ev de la le due uie, ouer linec.d. ai © .d.c.er Sala.d.d.cdi maggior obliquita. Per la proportione adunque delle lor ded clinationi, non dico delli lor angoli, ma delle linee per fina alla equidiftante refceation ne, in la quale equalmente fummemo del diretto. Sia adüque la lettera.e.e.fuppofta per un corpograue posto Joprala linea.d.c,eer un'altro la lettera.b. Jopra la linea. d. d. © fa la proportione della fimplice grauita del corpo.e.alla fimplice grauita del cor po.h. ficome quella della.d. c.alla.d.a. Dicoli dettidui corpi grauie effr in tai jiti, os merliochi di und medefims uirtu, ouer potentia. Et per dimoftrar quefto, tiro la.d. K. di quella medefona obliquita, cb' 'la.d. c.ev imagino un corpo grauc fopra di quella equalea corpo.e.el qual pongo fas la lettera.g.ma che fa in diretto con. e. b. cioe ea qualmente diftanti dalla.c. . . Hor fe poß 1 bel e (per. lauerfario) che li detti dui corpi e.e.b.bon fano diunamedef Ima, ש゙ equaluirtu intailuocbi, adunquic luno fara di imsggior nirtu, ouer potentiadell'altro,poniamo adunque, che.e. קa di nuaggior uir= tu, adunque quello fara atto d̀ difcenderc, er iimelmente à far af cendere, cioe d tirare infufo el corpo.b. Hor poniamo(fe posibel é)che il detto corpo.e.def cenda per fina in ponto. L. $\begin{aligned} \\ \text { che faccia afcendercil corpo.b. per fin in ponto.m. © factio, ouer che }\end{aligned}$ fegno la.g.n.equale alla.b.m. la quale anchoraleiuien d̀effer equale alla.e.l. Et dal pö to.g.tiro la.g.b.e.la qual /ara perpendicolare fopra la.d.b. per effer lidettitre pon= ti(ouer corpi)g.b.e.fuppofti in diretto, ev equalmente diftantidalla. k. c. ©゚ fimele mente dal ponto. L.factiratala, i. c .equidiftante alla, c.b.qual fara pur perpendicolare
[97r]

E I G H T

[Fig. 4.22]
let take under d and e two equal parts in the path or line $a b$; let one be the part $d e$ and the other eg. I say that the said equal parts partake equally the vertical, ${ }^{[80]}$ that is the line $a c$. This will be proved in the following way; from the two points e and g let there be drawn the two lines $e h$ and $g l$, perpendicular to the line $a c$, and from the two points or places d and e the two lines $d k$ and $e m$, perpendicular to the same $e h$ and $g l$. Let the two perpendiculars $d k$ and $e m$ be equal, then the said heavy body, at point d as at point e, in equal quantities or descents [along $a b$] will partake equally the vertical, and hence will be of the same positional heaviness in either of these places; which is the purpose. S.A. I have understood this; therefore continue. N.

QUESTION XLII. PROPOSITION XV.
If two heavy bodies descend by paths of different obliquities, and if the proportions of inclinations of the two paths and of the weights of the two bodies will be the same, taken in the same order, the power of both the said bodies in descending will also be the same. S.A. This proposition seems to me beautiful, and therefore give me a clear example, that I may be better satisfied. N. Let there be the line $a b c$ parallel to the horizon, and upon this there is perpendicularly erected the line $b d$, and from the point d there shall descend on either side the two paths or lines $d a$ and $d c$ [See Fig. 4.23]. Let $D C$ be the more oblique. Then by the ratio of their obliquity, I do not mean that of their angles, but of the lines to the parallel cut in which we take an equal part of the vertical [emphasis added]. ${ }^{[81]}$ Then let the letter e represent a heavy body placed on the line $d c$, and the letter h another on the line $d a$, and let the ratio of the simple heaviness of the body e to that of the body h be the ratio of $d c$ to $d a$. I say that the two heavy bodies in those places are of the same power or strength. And to demonstrate this, I draw $d k$ of the same obliquity as $d c$, and I imagine on that a heavy body, equal to the body e, which I letter g, in a straight line with $e h$, that is, parallel to $c k$. now if possible (for the adversary) that the said two bodies e and h are not the same in power and equal in strength, assume that e is of greater strength, and hence able to descend and thus to draw up the body h. Now let us suppose (if possible) that the said body e descends as far as the point l, and that it makes the body h ascend to the point m. Make or draw $g n$ equal to $h m$, which becomes also equal to $e l$. And from the point g, draw $g h$, which will be perpendicular to $d b$, the said three points or bodies g, h, and e being assumed in line and parallel to $k c$. And similarly from the point l, let $l t$ be drawn parallel to $c b$, which will also be perpendicular

$\boldsymbol{L} 8 \mathrm{R} \quad 0$

fopra lamedefima.d.b.er dallitre ponti.s.m.e. jiano tirate le tre perpendicolari.n. z.m.x.er.e.r. Et perche la proportione della.n.z.alla.n.g.è β come quelld, chè é dalls d.y.alla, d.g.e pero ficome anchora guella della.d.b. alla. d. k. (per effer li detti tre triangoli fimili.) Simelmente la proportione della.m.x.alla.m. $h_{+} \dot{e} f$ icome quella, che é dalla detta,d.b.alla.d.a. (per effer lidettidui triangolifimili.) Anchora la propore tione della,m.x. alla, n.z. faraficome quelld della. d. k.alla.d.a.er quella medefina (dal prefuppofito) e dalla grauita del corpo.g.alla grauita del corpo. b. perche il detto corpo.g. fu fuppofo effer fimpliceme te, egualmente.graue con el corpo.e. adunque tanto quanto, che il corpo.g.è implicemente piu graue del corpo.b. per altro tanto il corpo. h. uien à effer piu graue per uigor del fto del detto cörpo.g.e pero β uengono ad egualiar in uirtu, ouer potentia, er per tanto quclla uirtu, ouer potentia, che fara attla i far afcendere luno de dettidui corpi, cioe à tirarlo inf fu fo, quella medefima fara atta, ouer fofficiente à fare af cendere anchora l'altro, adungue fel corpo.e. (per lauerjario)éatto, er fofficiente à far afcendercil corpo,h.per fin in.m.elmedefimo corpo.e.farid da' dunque fofficiente à far afcendere anchora il corpo g.à lui equale, ev inequate declinatione, la qual cofa
 éimpoßibile per la precedente propofitione, adunz que il corpo.e.mon fara de maggior uirtu del corpo.h.in talifiti, ouer luochi, che čil propofito. S.A Quefta éftatauna bella peculatione, or me é piacefta affai.Et per che uedo effer horatarda, non uoglio, cbe procedati in altro per hoggi.

Fine del ottanolibro.

$$
\begin{gathered}
{[97 \mathrm{v}]} \\
\text { B O O K }
\end{gathered}
$$

to the same $d b$; and from the three points n, m, and e draw the perpendiculars $n z, m x$, and $e r$. Since the ratio of $n z$ to $n g$ is as that of $d y$ to $d g$, it is as that of $d b$ to $d k$ (for the said three triangles barte similar). Likewise the ratio of $m x$ to $m h$ is as that of the said $d b$ to $d a$ (the two triangles being similar). Also the ratio of $m x$ to $n z$ will be as that of $d k$ to $d a$; and (by hypothesis) that is the same as that of the weight of the body g to the weight of the body h, because g is supposed to be simply equal in heaviness with the body e. Therefore, by however much the body G is simply heavier than the body h, by so much does the body h become heavier by positional strength than the said body g, and thus they come to be equal in strength or power. And since that same strength or power that will be able to make one of the two bodies ascend (that is, to draw it up) will be able or sufficient to make the other ascend. Thus if (for the adversary) the body e is able and sufficient to make

[Fig. 4.23] the body h ascend to m, the same body e would be sufficient to make ascend also the body g equal to it, and equal in obliquity, which is impossible by the preceding proposition. Therefore the body e will not be of greater strength than the body h in such places or positions; which is the purpose. S.A. This was a beautiful speculation and satisfied me well. And since I see it is now late, I do not want you to proceed further today.

End of the eighth book.

4.1.5 The Italian Critical Transcriptions

4.1.5.1 Book VII (1554)

[78r]
LIBRO SETTIMO DELLI QUESITI, ET INVENTIONI DIVERSE, DE NICCOLO TARTAGLIA. Sopra gli principii delle Questioni Mechanice di Aristotile.
QUESITO PRIMO FATTO DAL ILLUSTRISS.[IMO] Signor Don Diego Hurtado di Mendozza, Ambasciator Cesareo in Venetia.

SIGNOR AMBASCIATORE. Tartalea, de poi, che noi dessimo vacatione alle lettioni di Euclide, ho ritrovato cose nuove sopra le Mathematice. N. Che cosa ha ritrovato vostra Signoria. S.A. Le questioni Mechanice di Aristotile, Grece, e Latine. N. Eglie tempo assai che io le vidi, massime Latine. S.A. Che vene pare. N. Benissimo, e certamente le sono cose sutilissime et di profonda dottrina. S. A. Anchora io le ho scorse, e inteso di quelle la maggior parte, nondimeno me resta molti dubbii sopra di quelle, li quali voglio, che me li dichiarati. N. Signore, vi sono dubbii assai, che à volergli à sofficientia delucidare, à me saria necessario prima à dechiarare à vostra Signoria li principii della scientia di pesi. S.A. A me mi pare, che Aristotile dimostri il tutto, senza procedere, over intendere altramente la scientia di pesi. N. Eglie ben vero, che lui approva cadauna de dette questioni, parte con ragioni, e argomenti naturali, e parte con ragioni, e argomenti Mathematici. Ma alcuni di quelli suoi argomenti naturali, con altri argomenti naturali vi si puol opponere. Et alcuni altri con argomenti Mathematici (mediante la scientia di pesi detta disopra) se possono reprobar per falsi. Et oltra di questo lui pretermette, over tace una questione sopra delle libre, over bilanze di non poca importanza, over speculatione, e questo è processo (per quanto posso considerare) perche di tal questione, non si puo assignar la causa per ragion naturale, ma solamente con la detta scientia di pesi. S.A. Non credo, che questo sia la verita, cioe, che alcuna sua argomentatione patisca oppositione, perche Aristotile non fu un'ocha, ne manco credo, che lui habbia pretermesso, over taciuto questione alcuna sopra delle libre, che sia de importantia. N. Anci eglie troppo el vero, perche volendo considerare, giudicare, et dimostrare la causa della sua prima questione, si come naturale, cioe con quelli ultimi argomenti naturali, che lui aduce sopra le libre over bilance materiale. Medesimamente con altri argomenti naturali (come di sopra dissi) si puo approvare, che seguita tutto al contrario di quello, che in tal questione conclude, over suppone. Et volendo poi considerare, e giudicare tal Questione, si come Mathematico, e con argomenti Mathematici si puo medesimamente li detti sui argomenti reprobar per falsi, mediante la scientia di pesi detta di sopra. S.A. Come se considerano, e giudicano le cose, si come natura le, e come se considerano, e giudicano, si come Mathematico[?]
[78v]
L I B R O
N. El naturale considera, giudica, et determina le cose, secondo el senso, e apparentia di quelle in materia. Ma el Mathematico le considera, giudica, e determina, non secondo el senso, ma secondo la ragione (astrate da ogni materia sensibile) come che V. Sig. sa, che costuma Euclide. S.A. Circa di questo non so che rispondere, perche io non me arricordo cosi all'improviso il soggetto di tal sua prima questione, e pero ditime come, che quella parla, e dice. N. La dice, e parla precisamente in questa forma.

Perche causa le maggior libre, over bilanze, sono piu diligente delle menore. S.A. Ben? che voleti dire sopra di tal questione. N. Voglio dir questo, che sumendola, over considerandola, si come Mathematico (cioe astrata da ogni materia.) Senza alcun dubbio tal questione è universalmente vera, si per le ragioni da lui adutte per avanti, come, che per molte altre, che nella scientia di pesi addur se potria. Perche quella linea, che con la sua mobile istremita piu se allontana dal centro d'un cerchio, movesta da una medesima virtu, over potentia (in tal sua istremita) piu facilmente, e con maggior celerita, over prestezza, sara mossa, spenta, over portata, di quella, che con la detta sua istremita men se alontanara dal detto centro, e per tal ragione le libre, over bilanze maggiori, se verificano esser piu diligente delle menore. Ma volendo poi considerare, e approvare tal questione in materia, e con argomenti naturali, come, che in ultimo lui considera, e approva, cioe per el senso del vedere in esse libre, over bilanze materiale. Dico, che con tai sorte de argomenti non se verifica generalmente tal questione, anzi se trovara seguir tutto al contrario, cioe le libre, over bilanze menori esser piu diligente delle maggiori, e che questo sia el vero nelle libre, over bilanze materiale, la sperientia lo fa manifesto: perche se de uno ducato scarso voremo sapere de quanti grani lui sia scarso, con una libra, over bilanza granda, cioe con una de quelle, che adoprano li speciali per pesar specie, zuccaro, zenzero, e canella, e altre cose simile, malamente se ne potremo chiarire, ma con una di quelle librette, over bilancette piccole, che oprano li bancheri, orefici, e gioieleri, senza dubbio se ne potremo totalmente certificare. Per il che seguitaria tutto al contrario, di quello, che in tal questione se conchiude, e dimostra, cioe, che tai bilancette piu piccole siano piu diligente, delle piu grande, perche piu diligentemente, over sottilmente dimostrano la differentia di pesi. Et la causa di questo inconveniente non procede da altro, che dalla materia, perche le cose costrutte, over fabricate in quella, mai ponno esser cosi precisamente fatte, come, che con la mente vengono imaginate fuora di essa materia, per il che tal hor se vien à causar in quelle alcuni effetti molto contrarii alla ragione. Et per questo, e altri simili respetti, el Mathematico non accetta, ne consente alle dimostrationi, over probationi fatte per vigor, e autorita di sensi in materia, ma solamente à quelle fatte per demostrationi, et argomenti astrati da ogni materia sensibile. Et per questa causa, le discipline Mathematice non solamente sono giudicate dalli sapienti esser piu certe delle naturale, ma quelle esser anchora nel primo grado di certezza. Et pero quelle questioni, che con argomenti Mathematici se possono dimostrare, non è cosa conveniente ad approbarle con argomenti naturali. Et simelmente quelle, che sono già dimostrate con argomenti Mathematici (che sono piu certi) non è da tentare, ne da persuader si de certificarle meglio con argomenti naturali, li quali sono

SETTIMO

men certi. S.A. A me mi pare che lui voglia, in tal prima questione, che quella resti ottimamente chiarita (come è il vero) per le ragioni, e argomenti per avanti adutti, e dimostrati, le quale ragioni, over argomenti sono tutti Mathematici, e non naturali, perche parte de quelli se verificano per la .23 . del Sesto di Euclide, e parte per la quarta del medesimo. N. Vostra Signoria insieme con lui dice la verita, che tal questione è manifesta per le sue ragioni adutte per avanti, e questo medesimo anchora io di sopra lo affermai, perche tai antecedenti sono stati da lui dimostrati con argomenti Mathematici, ma in fine de tai buone argomentationi, vi sottogionge due altre conclusioni, la prima delle quale dice precisamente in questa forma. Et certamente sono alcuni pesi, li quali posti nelle piccol libre, non sono manifesti al senso, e nelle grande sono manifesti. La qual conclusione, volendola considerare, giudicare, e approvare, si come naturale, cioe per vigore, e autorita del senso del vedere, nelle libre materiale, senza dubbio tal sua conclusione patisse oppositioni assai, perche nelle dette libre, over bilanze materiale, la maggior parte delle volte se trovara seguir tutto al contrario, cioe che sono alcuni pesi, li quali posti, nelle libre, over bilanze grande, non se faranno con alcuna inclinatione manifesti al senso del vedere. Et nelle bilanzette piccole se manifestar anno, cioe che far anno inclinatione visibile, e tutto questo, la sperientia lo manifesta. Perche se sopra una di quelle sopradette bilanze grande de Speciali, vi sara posto un grano di formento. Eglie cosa chiara, che nella maggior parte di quelle, non fara alcuna visibel inclinatione. Et nella maggior parte di quelle piccolette che usano li Banchieri, far anno inclinatione molto evidente. Ma volendo poi considerare, giudicare, e dimostrare tal sua questione, over conclusione, si come Mathematico, cioe fuora de ogni materia, senza dubbio tal sua conclusione saria falsa, perche ogni piccol peso posto in qual se voglia libra fara inclinar quella continuamente per fina all'ultimo, over piu basso luoco, che inclinar se possa, e tutto questo nelli principii della scientia di pesi à Vostra Signoria, lo faro manifesto. Dapoi lui sottogionge anchora quest'altra conclusione, e dice in questa forma. Et certamente sono alcuni pesi, le quali sono manifesti nell'una, e l'altra sorte de libre (cioe nelle maggiori, e nelle menori) ma molto piu nelle maggiori, perche molto piu granda inclinatione, vien fatta dal medesimo peso nelle maggiori. La qual conclusione, volendolo considerare, giudicare, e approvare, si come naturale (come fu detto dell'altra) cioe per vigore, e autorita del senso del vedere, nelle dette libre materiale, certamente questa non patira men oppositioni dell'altra, per le medesime ragioni in quella adutte. Et similmente, volendo poi considerare, giudicare, e dimostrare tal conclusione, come Mathematico, cioe fuora de ogni materia medesimamente tal sua conclusione saria falsa, perche ogni sorte di peso posto in qual si voglia sorte de libra, fara inclinar quella de continuo per fina à tanto che quella sia gionta all'ultimo, over piu basso luoco, che quella inclinar si possa, e tutto questo, nelli detti principii della scientia di pesi dimostrativamente à quella si fara manifesto. S.A. Anchor che tutte queste vostre oppositioni, e argomenti naturali, habbiano del verisimile non posso credere, che il non ve sia altre ragioni, e argomenti, si naturali, come Mathematici da poter difendere, e salvare, tal sua questione insieme con quelle altre due conclusioni. Anci è ho ferma opinione che chi studiasse con

[79v]
 LIBRO

diligentia sopra à tal materia, ritrovaria tutte quelle particolarita materiale, che sono causa, che tal questione, e conclusioni non se verificano in materia, come che l'autor conchiude, et dice. Et dapoi che quelle fusseno ritrovate, et conosciute, tengo che saria cosa facile à rimediarli, e fare che se verificasseno in materia precisamente, come che l'autor propone. N. Vostra Signoria non è di vana opinione, perche in effetto tutte quelle cose che nella mente sono conosciute vere, e massime per dimostrationi astratte da ogni materia, ragionevolmente si debbono anchora verificare al senso del vedere in materia (altramente le Mathematice sariano in tutto vane, e di nullo giovamento, over profitto all'huomo), e se per caso quelle non se verificano, come che nelle sopradette libre, over bilance maggior, e menor, e stato detto, e disputato. Eglie da credere, anci da tener per fermo, che il tutto proceda dalla disproportionalita, e inequalita delle parti, e membri materiali, dalli quali vengono composte, cioe che le dette parti, e membri dell'una piu se discostano, over allontanano da quelle considerate fuora de ogni materia, di quello che fanno quelli dell'altra. E per tanto volendo difendere, e salvare tal questione Aristotelica, cioe far che quella sempre se verifichi in materia, e in ogni qualita de libre, over bilance si grande, come piccole. Bisogna agguagliar le dette parti, over membri di cadauna di quelle, talmente che quelli siano egualmente distanti da quelle considerate fuora de ogni materia sensibile. Il che facendo non solamente se verificara tal sua questione al senso in materia, cioe nelle dette libre, over bilance materiale, ma anchora se verificaranno quelle altre due conclusioni, che sottogionse in fine. S.A. Io ho accaro che la mia opinione se sia verificata.

QUESITO SECONDO FATTO CONSEQUENtemente dal medesimo Illustrissimo Signor Don
 Diego Ambasciator
 Cesareo.

SIGNOR AMBASCIATORE. Ma per non haver troppo ben inteso le ragioni da voi allegate, vorria che un'altra volta, e piu chiaramente me le repli casti. N. Dico Signore, che la causa che le sopradette libre, over bilance maggiore, e menore, non rispondeno secondo che l'autor conchiude, e dimostra, non procede d'altro, che dalla inequalita delle parti, over membri materiali, dalli quali vengono composte, le quai parti, over membri, sono li dui bracci, e anchora il sparto (cioe quel axis over centro, sopra del qual girano li detti bracci in cadauna de loro, perche li detti bracci, e sparto nelle libre, over bilance maggiore sono molto piu grossi, e corpulenti di quelle delle menore. Et perche li bracci di quelle libre, over bilance che vengono considerate, come Mathematico, cioe fuora de ogni materia, sono considerati, et supposti, come simplice linee, cioe senza larghezza, ne grossezza, e il sparto, over axis di quelle vien considerato, e supposto un simplice ponto indivisibile, le qual sorte de libre, over bilance. Quando che possibil fosse à darne una cosi realmente spogliata, e nuda de ogni materia sensibile, come che con la mente vengono considerate, senza alcun
dubbio quella saria agilissima, e diligentissima sopra à tutte le libre, over bilance materiale, di quella medesima grandezza, perche quella saria totalmente libera da ogni material impedimento. Et per tanto conchiudendo dico, che quanto piu le parti, over membri di una libra, over bilanza materiale, se accostano, over appropinquano alle parti, over membri della non materiale (qual è la originale, over ideale di tutte le materiale) tanto sara piu agile, e diligente di quelle che men vi se accostaranno, over appropinquaranno (di quella medesima grandezza). Et perche le parti, over membri di quelle bilancette, che adoprano li Bancheri, e Gioieleri (disopra allegate) molto piu se accostano, over appropinquano alle parti, over membri della detta sua ideale, di quello che fanno le parti, over membri di quelle libre, over bilance maggiori, che adoprano li Speciali (disopra allegate) perche li brazzetti delle dette bilancette piccole sono sottilissimi, e quelli delle grande sono piu grossi. Onde li sottili piu se accostano alla simplice linea (quale manca de larghezza, e grossezza) di quello fanno li piu grossi, e corpulenti, e similmente il sparto, over axis delle dette librette, over bilancette piccole, è piccolino, e sottile, e quello delle grande, è piu grande, e grosso. Onde il detto sparto delle dette bilancette piccole piu se accosta, over appropinqua al sparto della sua ideale (qual è un ponto indivisibile) di quello fa il sparto delle dette bilance grande per esser piu grande, e grosso. Et questa è la principal causa che le sopradette librette, over bilancette menori, se dimostrano al senso piu diligente delle maggiori, cosa totalmente contraria alla sopra allegata Aristotelica questione.

QUESITO TERZO FATTO CONSE-
 quentemente dal medesimo Illustrissimo
 Signor Don Diego Ambascia-
 tor Cesareo.

SIGNOR AMBASCIATORE. Ben in che modo si puo difendere, e salvare tal sua questione, cioe far che quella se verifichi al senso in materia secondo che lui propone, over conchiude. N. Bisogna fondarse sopra le libre, over bilance ideale, cioe sopra quelle che vengono considerate con la mente astratte da ogni materia, e vedere in che cosale maggiore siano differente dalle menore, la qual cosa essendo osservata nelle libre, over bilance materiale sara difesa, e salvata tal questione Aristotelica, cioe che quella sempre se verificara al senso nelle dette libre materiale. S.A. Non ve intendo parlatime piu chiaro. N. Dico Signore, che à voler difendere, e salvare tal questione, bisogna fondarse, over reggersi per le libre, over bilance ideale, cioe per quelle, che con la mente vengono considerate fuora de ogni materia, e vedere in che cosa le maggiori siano differente dalle menori, sopra la qual cosa considerando, e guardando, se trovara, che le dette libre, over bilance maggiori, non sono differente dalle menori, eccetto che nella longhezza di suoi bracci, e in tutte le altre cose se agguagliano, perche anchor che li bracci delle libre maggiori siano piu longhi de quelli delle menori, tamen non sono ne piu grossi, ne piu sottili de quelli, perche, si nelle maggiori, come nelle menori, sono considerati,

[80v]
 L I B R O

come simplice linee, le quale mancano di larghezza, e grossezza, e pero in larghezza, e grossezza non vi è alcuna differentia. Et similmente li sparti, over axi delle libre, over bilance maggiori sono eguali alli sparti, over axi delle menori, perche si nelle maggiori, come nelle menori sono considerati, come simplici ponti, li quali ponti per esser tutti indivisibili, sono eguali, le qual cose essendo diligentemente osservate nelle libre, over bilance materiale, cioe che le maggiore non siano differente dalle menore, eccetto che nella longhezza di suoi bracci, ma che in larghezza, et grossezza siano eguali, e cosi li lor sparti materiali senza dubbio in quelle, non solamente se verificara al senso quello, che Aristotile nella detta sua questione conchiude. Ma anchora se verificaranno, quelle altre due conclusioni che vi sottogionse in fine. (Anchor che in astratto, cioe fuora de ogni materia, ambedue false siano, come che per li principii della scientia di pesi à V.S. faro manifesto.) Et siano le dette libre, over bilance di che qualita, materia, e condition si voglia, pur che osservino la detta egualita nella grossezza di detti bracci, e sparti loro. S.A. Certamente che questo vostro discorso me piace assai.

QUESITO QUARTO FATTO CONSE-
quentemente dal medesimo Illustrissimo Signor Don Diego Ambasciator Cesareo.

SIGNOR AMBASCIATORE. Ma se ben me aricordo voi dicesti anchora nel principio del nostro ragionamento, che Aristotile pretermette, over ta ce una questione sopra delle dette libre di non poca importantia, over speculatione, hor ditemi, che questione è questa. N. Se vostra Signoria ben se aricorda della sua seconda questione, in quella lui interrogativamente adimanda, e consequentemente dimostra, perche causa quando chel sparto sera disopra della libra, e che l'uno di bracci di quella da qualche peso sia portato, over spinto à basso, remosso che sia, over levato via quel tal peso, la detta libra di nuovo reascende, e ritorna al suo primo luoco. Et se il detto sparto è di sotto della detta libra, e che medesimamente l'uno di suoi bracci sia da qualche peso pur portato, over spinto à basso remosso, over levato che sia via quel tal peso la detta libra non reascende, ne ritorna al suo primo luoco (come che fa nell'altra positione) ma rimane disotto, cioe à basso. Hor dico, che lui pretermette, over tace un'altra questione, che in questo luoco se conveneria, di molta maggior speculatione di cadauna delle sopradette, la qual questione è questa. Perche causa quando che il sparto è precisamente in essa libra, et che l'un di bracci di quella sta da qualche peso portato, over urtato à basso, remosso, over levato che sia sia quel tal peso, la detta libra di nuovo reascende al suo primo luoco, si come che fa anchora quella, che ha il sparto di sopra da lei. S.A. Questa mi pare una bella questione, e molto piu remota dal nostro intelletto naturale che le due sopradette, e molto havero accaro ad intendere la causa di tal effetto, ma prima voglio che me chiariti un dubbio, che nella mente me intona sopra delle sopra allegate questioni, il quale è questo.

Quesito
[81r]
SETTIMO
QUESITO QUINTO FATO CONSEQUENTEemente dal medesimo Illustrissimo Signor Don Diego, Ambasciator Cesareo.

SIGNOR AMBASCIATORE. Dove se trova una libra, over bilanza materiale, che il suo sparto sia di sopra, over di sotto di quella, anci à me mi pare, che il detto sparto in tutte sia precisamente in esse libre, come, che nella vostra terza question se suppone, e non di sopra, ne manco di sotto. N. Anchor, che di tal sorte bilance non si faccia, over si trovi el non resta pero, chel non se ne potesse fare. S.A. A me mi pare una materia, à mover questione sopra à cose che non si costumano, ne si trovino in essere. N. Il tutto si fa Signore, perche tutti li artificiosi istromenti, che per augumentare le forze del huomo se oprano, in qual si voglia arte Mechanica se referiscono à una delle sopradette tre specie de libre, over bilance, et cosi in ogni dubbio, over questione, che sopra ad alcuno de tai istromenti nascer potesse, volendone conoscere, over assignare la intrinsica causa. Eglie necessario prima venir a quella sorte libra, over bilanza, alla qual piu se referisse quel tal istromento, e dalla detta libra, over bilanza se vien al cerchio, per la mirabil virtu, e potentia del quale se risolve il tutto, come, che nella scientia di pesi si fara manifesto. S.A. Essendo adunque cose di tanta importantia, voglio, che me replicati, e dimostrati figuralmente cadauna de dette tre Questioni, over parti a una per una: perche le voglio ben intendere, e cominciati alla prima. N. Per dimostrar in figura la prima parte di tal questione. Sia la libra .a.b. el sparto della quale sia el ponto. c. (qual sparto sia alquanto di sopra della detta libra .a.b. come nella figura appare) e sia che per la impositione del peso. e. el suo brazzo .a.d. sia da quel tirato a basso, come che di sotto appare in detta figura: hor dico, che chi levasse via el detto peso .e. tal brazzo .a.d. reascendaria, e

retornaria al suo primo, e condecente luoco, el qual luoco saria nel ponto, over sito . k. e cosi l'altro brazzo .d.b. descendaria per fina al ponto, over sito .l. e tutto questo procede: perche nel trasportar el detto brazzo a.d. a basso, piu della mitta di tutto el fusto della detta libra a.b. se vien a trasferirsi in alto, cioe oltra la perpendicolar .n.m. passante per il sparto .c. la qual perpendicolar se chiama
la linea della direttione, ${ }^{[82]}$ cioe, che la parte .b.d.g. in alto ellevata vien à esser tanto piu della mita de tutto el fusto .a.b. quanto che è dal .d. al .g. e la restante parte .a.g. ridutta al basso vien à esser tanto manco della mita di tutto el detto fusto .a.b. quanto che è dal detto ponto.g.al ponto .d. perche adunque tal parte .b.d.g. in alto ellevata è molto maggiore del restante brazzo a.g. al basso trasferto, levandose via el detto peso .e. la detta parte .a.g. (piu debole) vien à esser urtata, e spinta dall'altra maggior parte . b.d.g. in alto ellevata (per esser di lei piu potente) per fin à tanto, che la detta linea della direttione caschi perpendicolarmente sopra el detto fusto, over libra .a.b. e che seghi quello in due parti equali in ponto .d. S.A. Questa ragion è quasi simile à quella che aduce Aristotile, ma è alquanto piu chiara, e miglior figura.

QUESITO SESTO FATTO CONSE-
 quentemente dal medesimo Illustrissimo Signor Don
 Diego Ambasciator Cesareo.

SIGNOR AMBASCIATORE. Hor seguitati la seconda parte. N. Per dimostrare la seconda à vostra Signoria. Pongo sia la libra .a.b. la qual habbia il sparto (cioe quel ponto, over polo, sopra del qual lei gira) alquanto di sotto, cioe disotto dal fusto .a.b. come disotto appar in ponto .c. e sia anchor, che per la imposition del peso .e. el suo brazzo .a.d. sia da quel tirato à basso, come che di sotto nella figura appar, hor dico, che chi levasse via el detto peso .e. tal brazzo non reascenderia ne ritornaria al suo primo luoco, cioe in ponto .k. (come, che fa in quella, che ha il sparto di sopra) ma restaria cosi inclinato à basso, e la causa di questo procede, perche nel trasportarse el detto brazzo .a.d. al basso piu della mitta di tutto el fusto, over libra .a.b.

si vien à trasferire drio à quello, oltra la linea della direttione, cioe oltra la perpendicolar . n.m. qual passa per il sparto .c. tal che tutta la parte .a.g. al basso ridutta, vien à esser tanto piu della mitta di tutta la libra .a.b. quanto, che è dal .d. al .g. e la parte .g.b. in alto ellevata vien à restare tanto meno della detta mitta, quanto, che è dal detto .d. al detto .g. per esser adunque la ellevata parte .g.b. di menor quantita della inclinata .a.g. vien à esser piu debole, over men potente di lei, e pero, non è atta, ne sofficiente à po-

SETTIMO

terla urtare, e sforzare à farla ascendere al suo primo luoco in .k. come fece nella passata, anci quella restara cosi inclinata al basso, e la retenera lei cosi in aere ellevata, che è il proposito. S.A. Queste due parti quasi, che il nostro intelletto le apprende per ragion naturale, senza altra dimostratione. N. Cosi è Signore.

QUESITO SETTIMO FATTO CONSEQUENTEMENte dal medesimo Illustrissimo Signor Don Diego, Ambasciator Cesareo.

SIGNOR AMBASCIATORE. Hor seguitatimo la terza parte, quale diceti, che manca in questo luoco, cioe dove nasce la causa, che quando el sparto de una libra sara precisamente nel mezzo di essa, cioe ne di sotto, ne di sopra, ma nel mezzo di quella, come, che sono tutte le libre, over bilance, che communamente se oprano, e che l'uno di brazzi di quella sia da qualche peso (over dalla nostra mano) urtato à basso, levado, che sia via quel tal peso (over mano) immediate tal brazzo riascende, et ritorna al suo primo luoco si come che anchor fa quella libra qual tien il sparto di sopra da essa libra. Perche in effetto la causa di questo ultimo effetto mi par molto piu remota dal nostro intelletto de cadauna delle altre due. N. E ho detto à vostra Signoria, che à voler dimostrare la causa di tal effetto à me è necessario à diffinire, e dechiarire prima à vostra Signoria alcuni termini, e principii della scientia di pesi. S.A. So no cosa longa questi principii, che vi bisogna dechiarare. N . Per quanto aspetta à voler demostrare simplicemente questa particolarita sara cosa brevissima, vero è che quando, che vostra signoria volesse intendere ordinariamente tutti li principii di tal scientia, vi saria da dire assai. S.A. Bensa, che voglio intendere il tutto ordinariamente, come si de. N. L'hora è tarda Signore per far questo effetto. S.A. Ben andati, e ritornati dimane da mattina. N. Ritornaro Signore.

Il fine del Settimo Libro.

4.1.5.2 Book VIII (1554)

[82v]
LIBRO OTTAVO DELLI QUESITI, ET INVENTIONI DIVERSE, DE NICOLO TARTAGLIA BRISCIANO.
Sopra la Scientia di Pesi
QUESITO PRIMO FATTO DAL ILLUSTRISS.[IMO]
Signor Don Diego Hurtado di Mendozza, Ambasciator Cesareo in Venetia.

SIGNOR AMBASCIATORE. Hor voria Tartaglia, che me incomenciasti à dechiarire ordinariamente quella scientia de pesi, di che me parlasti hieri. Ma, perche conosco tal scientia non esser semplicemente per se (per non esser le arte liberale, salvo che sette) ma subalternata, voria che prima me dicesti, da che scientia, over disciplina quella derivi, e nasci. N. Signor Clarissimo parte di questa scientia nasce, over deriva dalla Geometria, e parte dalla Natural Philosophia: perche, parte delle sue conclusioni se dimostrano Geometricamente, e parte se approvano Physicalmente, cioe naturalmente. S. A. E ve ho inteso circa questa particolarita.

> QUESITO SECONDO FATTO CONSEQUENtemente dal medesimo Illustrissimo Signor Don Diego Ambasciator Cesareo.

SIGNOR AMBASCIATORE. Ma ditime anchora, che costrutto si puo cavar di tal scientia. N. Li costrutti, che di tal scientia si potriano cavare, saria quasi impossibile à poterli à vostra Signoria isprimere, over connumerare, nondimeno io ve referiro quelli, che per al presente à me sono manifesti. Et per tanto dico, che primamente per vigore di tal scientia, eglie possibile à conoscere, e misurare con ragione la vertu, e potentia di tutti questi istromenti Mechanici, che da nostri antiqui sono stati ritrovati, per augumentare la forza de l'huomo, nel ellevare, condurre, over spingere avanti ogni grave peso cioe in qual si voglia grandezza, che quelli siano constituidi, over fabricati, secondariamente per vertu di tal scientia, non solamente eglie possibile di poter con ragion conoscere, e misurare simplicemente la forza de l'huomo, ma anchora eglie possibile di trovar el modo di augumentar quella in infinito, e in varii modi, e cosi in qual si voglia modo eglie possibile à conoscere l'ordine, e proportione di tal augumentatione, come, che in fine con varii istromenti Mechanici à V. S. faro conoscere, e vedere. S.A. Questo havero molto accaro.
$[83 \mathrm{r}]$
O T T A V O
QUESITO TERZO. FATTO CONSE--
quentemente dal medesimo Illustrissimo Signor
Don Diego Ambascia
tor Cesareo.

SIGNOR AMBASCIATORE. Hor seguitati, come vi pare circa à tal scientia. N. Per procedere regolatamente, hoggi diffiniremo solamente alcuni termini, e modi di parlare occorrenti in questa scientia, accio che il frutto della intelligentia di quella, V.S. piu facilmente apprenda. Dimane poi dechiariremo li principii di tal scientia, cioe quelle cose che in tal scientia non si possono dimostrare, perche (come che V.S. sa) ogni scientia ha li suoi primi princpii indemostrabili, li quali essendo concessi, over supposti per lor mezzo si disputa, e sostenta tutta la scientia, dopo questo andaremo preponendo varie propositioni, over conclusioni sopra di tal scientia, e parte de quelle dimostraremo à V.S. con argomenti Geometrici, e parte approvaremo con ragioni naturali, come di sopra dissi. Et dapoi questo, vostra Signoria, preponera tutti quei dubbii, over questioni che à quella gli parera, nelle cose Mechanice, e massime sopra li mirabili effetti delli sopradetti istromenti materiali che augumentano la forza dell'huomo, che per le cose dette, e approbate, nella detta scientia de pesi, tutte se resolveranno. S.A. Questo vostro procedere cosi regolatamente molto mi piace.

QUESITO QUARTO FATTO CONSEquentemente dal medesimo Illustrissimo Signor Don Diego Ambasciator Cesareo.

SIGNOR AMBASCIATORE. Hor seguitate adunque le dette diffinitioni consequentemente. N .

QUESITO. IIII. DIFFINITIONE PRIMA.

Li corpi se dicono di grandezza eguali, quando che quelli occupano, over empino luochi eguali. S.A. Datemi qualche material essempio. N. Essempi gratia, doi corpi spherici gettati, over prontati in una medesima forma, over in forme eguale, se diriano eguali di grandezza, anchor che fusseno di materia diversa, cioe che l'uno fusse di piombo, e l'altro di ferro, over di pietra, e cosi si debbe intendere in qual si voglia altra diversita di forma. S.A. E ve ho inteso, seguitati. N.

QUESITO. V. DIFFINITIONE II.
Similmente li corpi se dicono di grandezza diversi, over ineguali, quando che quelli occupano, over empino luochi diversi, over ineguali. Et maggiore se intende quello, che occupa maggior luoco. S.A. E ve ho inteso, seguitati. NIC.

QUESITO. VI. DIFFINITIONE TERZA.
La vertu d'un corpo grave se intende, e piglia per quella potentia, che lui ha da tendere, over di andare al basso, e anchora da resistere al moto contrario, cioe à che il volesse tirar in suso. S.A. Quando che non vi dico altro seguitati, perche col mio tacere, e ve dinoto havermi inteso, e che debbiati seguitare. N.

QUESITO. VII. DIFFINITIONE QUARTA.
Li corpi se dicono de vertu, over potentia, equali, quando che quelli in tempi eguali di moto pertransiscono spacii eguali.

QUESITO. VIII. DIFFINITIONE QUINTA.

Li corpi se dicono de vertu, over potentia diversa, quando che quelli in tempi diversi, pertransiscono di moto, spacii eguali, over che in tempi eguali pertransiscono intervalli ineguali.

QUESITO. IX. DIFFINITIONE SESTA.

La vertu, over potentia de corpi diversi, quella se intende esser maggiore, la quale nel pertransire uno medesimo spacio summe manco tempo. Et menor quella che summe piu tempo, overamente quella che in tempi eguali pertransisse maggior spaccio.

QUESITO. X. DIFFINITIONE SETTIMA.
Quelli corpi se dicono essere di uno medesimo genere, quando che sono di egual grandezza, e che sono anchora di egual vertu, over potentia.

QUESITO. XI. DIFFINITIONE OTTAVA.

Quelli corpi se dicono essere de diversi generi, quando che sono di egual grandezza, e che non sono di egual vertu, over potentia.

QUESITO. XII. DIFFINITIONE NONA.
Quelli corpi se dicono essere simplicemente eguali in gravita, li quali sono realmente di egual peso, anchor che fusseno di materia diversa.

QUESITO. XIII. DIFFINITIO
NE DECIMA.

$$
\begin{gathered}
{[84 \mathrm{r}]} \\
\mathrm{O} \text { T T A V O }
\end{gathered}
$$

Un corpo se dice essere simplicemente piu grave d'un altro, quando che quello è realmente piu ponderoso di quello, anchor che fusse di materia diversa.

QUESITO XIIII. DIFFINITIONE XI.

Un corpo se dice essere piu grave d'un'altro secondo la specie, quando che la sostantia material di quello è piu ponderosa della sostantia material dell'altro, come che è il piombo del ferro, e altri simili.

QUESITO XV. DIFFINITIONE XII.

Un corpo se dice essere piu, over men grave d'un'altro nel descendere, quando che la rettitudine, obliquita, over dependentia del luoco, over spacio dove descende lo fa descendere piu, over men grave dell'altro, e similmente piu, over men veloce dell'altro, anchor che siano ambidui simplicemente eguali in gravita.

QUESITO XVI. DIFFINITIONE XIII.
Un corpo si dice essere piu grave, over men grave d'un'altro, secondo il luoco, over sito, quando che la qualita del luoco dove che lui se riposa, e giace, lo fa essere piu grave dell'altro anchor che fusseno simplicemente egualmente gravi.

QUESITO XVII. DIFFINITIONE XIIII.
La gravita d'un corpo se dice essere nota, quando che il numero delle libre, che lui pesa ne sia noto, over altra denomination de peso.

QUESITO XVIII. DIFFINITIONE XV.
Li brazzi de una libra, over bilancia se dicono essere nel sito, over luoco della equalita, quando che quelli stanno equidistanti al piano dell’Orizonte.

QUESITO XIX. DIFFINITIONE XVI.

La linea della direttione è una linea retta imaginata venire perpendicolarmente da alto al basso, e passare per il sparto, polo, over assis de ogni sorte libra, over bilanza.

QUESITO XX. DIFFINITIONE XVII.

Piu obliquo se dice essere quel descenso, d'un corpo grave, il quale in una medesima quantita, capisse manco della linea della direttione, overamente del descenso
retto verso il centro del mondo. S.A. In questa non ve intendo troppo bene e pero datemi uno essempio. N. Per essemplificare questa diffinitione sia il corpo .a. e il retto descenso di quello verso il centro del mondo sia la linea .a.b. e sia anchora li descensi .a.c. e .a.d. e de questi dui ne sia signati le due quantita, over parti .a.e. e .a.f. eguale, e dalli dui ponti .e. e .f. siano tirate le due linee .e.g. e.f.h. equidistanti al piano dell'Orizonte, e perche la parte .a.b. è menore della parte .a.g. il descenso . a.f.d. se dira esser piu obliquo del descenso .a.e.c. perche lui capisse manco del descenso retto, cioe della linea .a.b. in una medesima quantita. Et questo medesimo si debbe intendere in tutti li descensi che potesse fare il detto corpo .a. (over altro simile) stante appeso al braccio di alcuna
 libra, cioe che quel descenso se dira esser piu obliquo, che per lo medesimo modo capira manco della linea della direttione, in una medesima quantita de descenso. S.A. E ve ho inteso à sofficientia, e pero seguitati se haveti altra cosa da diffinire. N. Signore questa è la ultima cosa che habbiamo da diffinire sopra à questa materia. Dimane poi dichiariremo li principii di questa scientia, secondo la promessa. S.A. Alla bon'hora.

QUESITO. XXI. FATTO CONSEquentemente dal medesimo Illustrissimo Signor DonDiego Ambasciator Cesareo.

SIGNOR AMBASCIATORE. Hor seguitati Tartaglia questi vostri principii. N. Li principii de qual si voglia scientia alcuni vogliano che siano detti dignita, perche quelli approvano altri, e loro non ponno essere approvati da altri, alcuni le chiamano suppositioni, perche se suppongono per veri in detta scientia, altri piacque chiamarli petitioni, perche volendo disputare tal scientia, e quella sostentare con dimostrationi, bisogna prima adimandare all'aversario la concessione de quelli, perche se lui non li volesse concedere (ma negare) saria negata tutta la scientia, ne vi occorreria à disputarla altramente. Et perche questa ultima opinione mi piace alquanto piu delle altre due, petitioni le chiamaremo, e cosi anchora in forma de petitioni li proferiremo.

QUESITO. XXII. PETITIONE PRIMA.

Adimandamo che ne sia concesso, che il movimento naturale de ogni corpo ponderoso, e grave sia rettamente verso il centro del mondo. S.A. Questo non è da negare.

Quesito

[85r]
 O T T A V O
 QUESITO XXIII. PETITIONE II.

Simelmente adimandamo, che ne sia concesso quel corpo, ch'è di maggior potentia debbia anchora discendere piu velocemente, et nelli moti contrarii, cioe nelli ascensi, ascendere piu pigramente, dico nella libra. S.A. Datime uno essempio materiale sopra di questa petitione, se voleti, che ve intenda. N. Sia, essempi gratia, le due libre .a.b.c. e .d.e.f. equali, cioe, che li dui brazzi .a.b. e .b.c. siano equali alli dui brazzi .d.e. e .e.f. e li lor sparti, over centri siano .b. e .e. e nella istremita del brazzo .b.a. vi sia appeso il corpo .a. poniamo de libre due in gravita, e nella istremita de l'altro brazzo, cioe in ponto .c. non vi sia alcuna altra gravita, e cosi nella istremita del brazzo .e.d. vi sia appeso el corpo .d. poniamo di una libra sola in gravita, e nella istremita dell'altro brazzo, cioe in ponto .f. non vi sia alcuna gravita, e siano li detti dui corpi, cosi congionti ellevati con la mano in alto egualmente, come che di sotto appar in figura: hor adimando, che me sia concesso, lasciando andare cadauno de detti dui corpi cosi in alto ellevati, che il corpo .a. (per esser piu grave) discenda piu veloce-

mente al basso del corpo .d. cioe, che il detto corpo .a. sumara manco tempo à pertransire il curvo spacio .a.g. di quello fara il detto corpo .d. pertransire il curvo spatio .d.h. li quali spacii vengono à esser eguali, perche li brazzi de dette libre sono eguali dal presupposito, e pero li detti dui spacii, over descensi curvi, vengono à esser circonferentie di cerchii eguali. Et è converso, quando, che li detti corpi saranno discesi nel suo infimo, over piu basso luoco, cioe l'uno in ponto .g. e l'altro in ponto .h. adimando, che me sia concesso, che quella vertu, over potentia, la qual essendo appesa nell'altro brazzo della libra in ponto .c. sara atta ad ellevare el detto corpo .a .per fin al luoco, dove che al presente se ritrova nella figura superiore quella medesima sia atta ad ellevar piu velocemente il corpo .d. essendo a pesa nell'altro brazzo della sua libra, cioe in ponto .f. S.A. Questo vi concedo, perche la sperientia ne rende buona testimonianza. N. Ma vostra Signoria sappia, che quello, che havemo detto, e adimandato delli detti dui corpi, delli quali l'uno è simplicemente piu potente dell'altro, il medesimo adimandamo de dui corpi simplicemente eguali in potentia ma inequali per vigor della lor positione, over sito nel brazzo de una medesima libra, essempi gratia, se nel brazzo .a.b., della
libra .a.b.c. ve sia appeso li dui corpi .a. e .d. eguali simplicemente in potentia, cioe, l'uno in ponto .a. e l'altro in ponto .d. come di sotto appar in figura, anchor, che siano simplicemente egualmente potenti, nondimeno il corpo .a. in tal positione per la . 13 . diffinitione se dira esser piu grave del corpo .d. come per lavenire se fara manifesto, perche in questo luoco non si puo assignar la ragione per le cose dette, ma per lavenire se provara el corpo .a. in simel sito esser piu grave del corpo .d. e pero essendo quelli ellevati l'uno in ponto .e. e l'altro in ponto .g. e dapoi essendo ambi dui abandonati, dico, che il corpo .a. discendera piu veloce del corpo .d. e è converso, essendo l'uno, e l'altro discesi nelli loro infimi luochi, cioe l'uno in ponto .f. e l'altro in ponto .h. quella potentia che sara atta in ponto .c. ad ellevare il corpo .a .dal ponto .f. per fina al ponto .e. quella medesima sara atta ad ellevare nel medesimo luoco, molto piu velocemente il corpo .d.

dal ponto .h. per fin al ponto .g. S.A. Anchora questa è cosa chiara, ma voria intendere due cose da voi. la prima è, che voria intendere, perche non fingeti la soprascritta figura de libra, con quelle sue due tazzette appese l'una da un capo, e l'altra da l'altro (come nelle material libre si costuma) per imponervi li pesi, over campioni in l'una, e nell'altra le cose, che se hanno da ponderare; la seconda è, che voria sapere se questo essempio de libra si debbe intendere di quelle, che hanno il lor sparto di sopra, over di quelle, che l'hanno di sotto, over di quelle, che non l'hanno, ne di sopra, ne di sotto, ma in esse libre proprie. N. Circa alla prima, rispondo, che la pura libra se intende per quella pura longhezza, che forma quelli dui brazzi l'uno di qua, l'altro di la dal sparto, ò siano li detti brazzi equali tra loro, over inequali, e quelle due tazzette, che dice V.S. non sono parte della libra, ma vi se aggiongono per commodita del ponderante, per imponervi li campioni, e pesi, che ha da ponderare, si come ch'è anchora la sella d'un cavallo, la quale non è parte del cavallo, ma una cosa aggionta per commodita di colui, che l'ha da cavalcare, e perche meglio si vede, e comprende uno cavallo nudato della sua sella, che con la sella, et simelmente una libra nudata di quelle sue due tazzette, che con le tazzette senza tazzette la essemplificamo. Circa alla seconda particolarita, dico, che la presente libra, e simelmente tutte quelle, che per l'avenir si proponera (non specificando altro) si debbono intendere di quelle, che hanno il sparto in lor medesime, come nelle materiale si costuma. S.A. E ve ho inteso, seguitati. N.

[86r]
 OTTAVO
 QUESITO XXIIII. PETITIONE III.

Anchora adimandamo, che ne sia concesso un corpo grave esser in el discendere tanto piu grave, quanto che il moto di quello è piu retto al centro del mondo. S.A. Datime anchora uno qualche material essempio sopra à quest'altra petitione se voleti, che vi intenda. N. Sia, essempi gratia, il corpo grave .a. e poniamo, che le quattro linee .a.b. .a.c. .a.d. a.e. siano quattro luochi, over spacii da poter descendere el detto corpo .a. e poniamo anchora, che la linea .a.b. sia il rettissisimo, e perpendicolar descenso verso il centro del mondo, onde la linea .a.d. veneria ad esser piu retta verso il detto centro del mondo della linea .a.e. e per tanto in questo caso adimandamo, che ne sia concesso il detto corpo .a. esser piu grave nel discendere per la linea .a.d. che per la linea .a.e. (per esser come detto piu retta di quella al centro del mondo), e simelmente per la linea .a.c. descendere piu grave, che per la linea .a.d .per esser tal linea a.c. piu retta al centro del mondo della detta linea .a.d. e così quanto piu el detto corpo .a. se andara accostando alla detta linea .a. b. nel suo descendere se suppone tanto piu grave descendere, perche quel transito, over descenso, che forma piu acuto angolo con la linea .b.a. in ponto .a. se intende esser piu retto al centro del mondo, di quello, che lo forma men acuto. Onde per la linea .a.b. vien à discendere piu grave, che per qual si voglia altro verso.

Et questo, che havemo detto, e adimandato del sopradetto corpo .a. separato da ogni libra, il medesimo adimandamo de quelli, che descendono appesi al brazzo di qualche libra. Essempi gratia, sia anchora el detto corpo .a. appeso al brazzo della libra .a.b.c. girante sopra al sparto, over centro .b. overamente al brazzo della libra a.d.e. girante sopra al sparto, over centro .d. e sia el perpendicolar descenso verso il centro del mondo la linea retta .a.f. e el descenso, che faria el detto corpo .a. con el brazzo .a.b. della libra .a.b.c. sopra el centro .b. la linea curva .a.g. Et el descenso, che faria el medesimo corpo .a. con el brazzo .a.d. della libra .a.d.e. sopra el centro . d. la linea curva .a.h. Hor dico, e adimando, che ne sia concesso il detto corpo .a. esser piu grave nel descendere per il descenso .a.b. che pel descenso .a g. per essere el detto descenso .a.h. piu retto al centro del mondo del descenso .a.g. perche el detto descenso .a.h.
[86v]
L I B R O
forma piu acuto angolo con la linea .a.f. (qual'è l'angolo .b.a.f. della contingentia) di quello fa lo decenso .a.g.

S.A. E ve ho inteso benissimo, e tal petitione no è da negare, e pero seguitati nell'altra. N.

QUESITO. XXV. PETITIONE IIII.
Anchora adimandamo, che ne sia concesso quelli corpi esser egualmente gravi, secondo el sito, over positione, quando che li lor descensi in tai siti sono egualmente obliqui, e piu grave esser quello, che nel suo sito, over luoco dove se riposa, over giace ha il descenso manco obliquo. S.A. Anchora questa vien a esser manifesta per quello fu detto nella precedente, e anchora sopra la seconda petitione, e pero seguitati. N .

QUESITO. XXVI. PETITIONE V.

Simelmente adimandamo, che ne sia concesso quel corpo esser men grave d'un altro secondo el sito, over luoco, quando che per el descenso di quello altro, nell'altro brazzo della libra in lui seguita il moto contrario, cioe, che da lui vien ellevato insuso verso il cielo, e è converso. S.A. Questa è cosa troppo chiara da concedere. N .

QUESITO. XXVII. PETITIONE SESTA

Anchora adimandamo, che ne sia concesso, niun corpo esser grave in se medesimo. S.A. Questa vostra petitione non intendo. N. Cioe, che l'acqua nella acqua, il vino nel vino, l'olio nel olio, e l'aere nel aere non essere di alcuna gravita. S.A. E ve ho inteso, e è cosa concessibile, perche la sperientia nel manifesta, si che, seguitati. N . Non ci è altra cosa da adimandare à V. S. Diman, piacendo à Iddio, intraremo nelle propositioni. S.A. Saranno propositioni assai. N. Non troppo signore. S.A. Credeti, che le spediremo dimane. N. Non credo Signore, che le spediremo nanche fra diman, e l'altro. S.A. Ben andate ritornati da mattina a bon hora.

[87r]
 OTTAVO
 QUESITO. XXVIII. PROPOSITIONE
 PRIMA.

SIGNOR AMBASCIATORE. Hor seguitati Tartalea queste vostre propositioni, over conclusioni consequentemente l'una drieto all'altra, e sotto brevita. NICOLO.

La proportione della grandezza di corpi de un medesimo genere, e quella della lor potentia è una medesima. S.A. Datemi uno essempio. N. Siano li dui corpi .a.b. e .c. de uno medesimo genere, e sia .a.b. maggiore, e sia la potentia del corpo .a.b. la .d.e. e quella de corpo .c. la .f. Hor dico che quella proportione, che è dal corpo .a.b. al corpo .c. quella medesima è della
 potentia .d.e. alla potentia .f. Et se possibile è esser altramente (per l'aversario) sia che la proportione del corpo .a.b. al corpo .c. sia menore di quella della potentia .d.e. alla potentia .f. Hor sta del corpo .a.b. (maggiore) compreso una parte eguale al corpo .c. menore, quale sia la parte .a. e perche la vertu, over potentia del composito è composta dalla vertu di componenti. Sia adunque la vertu, over potentia della parte .a. la .d. e la vertu, over potentia del residuo .b. de necessita sara la restante potentia .e. et perche la parte .a. è tolta egual al .c. la potentia .d. (per il converso della .7. diffinitione) sara eguale alla potentia .f. e la proportione de tutto il corpo .a.b. alla sua parte .a. (per la seconda parte della .7. del quinto di Euclide) sara, si come quella del medesimo corpo .a.b. al corpo .c. (per esser .a. egual al .c.) e similmente la proportione della potentia .d.e. alla potentia .f. sara, si come quella della detta potentia .d.e. alla sua parte .d. (per esser la .d. egual alla .f.). Adunque la proportione de tutto il corpo .a.b. alla sua parte .a. sara menore di quella di tutta la potentia .d.e. alla sua parte .d. Adunque eversamente ${ }^{[83]}$ (per la .30. del quinto di Euclide) la proportione del medesimo corpo .a.b. al residuo corpo .b. sara maggiore di quella di tutta la potentia .d.e. alla restante potentia .e. la qual cosa saria inconveniente, e contra la opinion dell'aversario, il qual vol che la proportione del maggior corpo al menore sia menore, di quella della sua potentia alla potentia del detto menore. Adunque destrutto l'opposito rimane il proposito. S.A. Sta bene, seguitati. NIC.

QUESITO. XXIX. PROPOSITIONE SECONDA.

La proportione della potentia di corpi gravi de uno medesimo genere, e quella della lor velocita (nelli descensi) se conchiude esser una medesima, anchor quel-
a delli lor moti contrarii (cioe delli lor ascensi) se conchiude esser la medesima, ma trasmutativamente. S.A. Essemplificatime tal propositione. NIC.

Sia anchora li dui corpi .a.b. e .c. de uno medesimo genere, e di grandezza diversa, e sia lo .a.b. maggiore, e sia la potentia del .a.b. la .d.e. e del .c. la .f. e perche il corpo di potentia, over gravita maggiore (per la seconda petitione) descende piu velocemente, sia adunque la velocita nel descender del corpo .a.b. la .g.h. e quella del corpo .c. la .k. hor dico, che la proportione della potentia .d.e. alla potentia .f. e quella della velocita .g.h. alla velocita .k. esser una medesima, e quella delli lor moti contrarii esser quella medesima, ma trasmutativamente, cioe che la proportione della velocita del corpo .a.b. alla velocita del corpo .c. nel moto contrario (cioe nell'ascendere) esser, si come quella della potentia .f. alla potentia .d.e. over, come del corpo .c. al corpo .a.b. la qual cosa se dimostra per il medesimo modo, che fu dimostrata la precedente, cioe se la proportione della potentia .d.e. alla potentia f. non è (per l'aversario) si come quel la della velocita . g.h. alla velocita .k. necessariamente la sara maggiore,
 over menore, hor poniamo che la sia menore, della potentia .d.e. ne assignaremo la parte .d. eguale ala .f. e cosi della velocita .g.h. ne assignaremo la parte .g. eguale alla .k. e arguiremo, come nella precedente, dicendo che la proportione di tutta la potentia .d.e. alla sua parte .d. sara (per la seconda parte della. 7. del quinto di Euclide) si come quella della medesima potentia .d.e. alla potentia .f. (per esser la .d. e .f. eguale) e similmente la proportione de tutta la velocita .g.h. alla sua parte .g. esser, si come quella della medesima .g.h. alla .k. Adunque la proportione di tutta la potentia .d.e. alla sua parte .d. sara menore di quella di tutta la velocita .g.h. alla sua parte . g. Onde (per la 30 del quinto di Euclide) la proportione di tutta la medesima potentia .d.e. al suo residuo .e. havera maggior proportione, che tutta la velocita .g.h. al suo residuo .h. la qual cosa saria contra la opinione dell'aversario qual suppone, che la proportione della maggior potentia alla menore esser menore di quella della maggior velocita alla menore. Et con li medesimi argomenti se procederia quando che quel supponesse che la proportione della maggior potentia alla menore fusse maggiore di quella della maggior velocita alla menore, distrutto adunque l'opposito rimane il proposito, hor per la seconda parte della nostra conclusione, dico, che la proportione della velocita delli descensi, e delli contrari moti, cioe delli ascensi de detti corpi è una medesima, ma trasmutativamente, cioe che la proportione della velocita del corpo .a.b. essendo da qualche altra vertu imposta nell'altro braccio della libra in alto ellevato (poniamo per fin alla linea della direttione) alla velocita del corpo .c. dalla medesima vertu, pur in alto ellevato per fin alla medesima linea della direttione sara, si come quella della velocita .k. alla velocita . g.h. over della potentia .f. alla potentia .d.e. over del cor-
[88r]
OTTAVO
po .c. al corpo .a.b. perche quanta vertu, over potentia ha un corpo grave per descendere al basso, tanta ne ha anchora per resistere al moto contrario, cioe à che il volesse tirare, over à levare in alto adunque la potentia del corpo .a.b. per resistere à che il volesse ellevare in alto, sara tanto quanto la sopradetta .d.e. e quella del corpo .c. sara tanto quanto la sopradetta .f. Adunque quella vertu che nell'altro braccio della libra sara atta ad ellevare cosi à pena il detto corpo .a.b. per fin alla linea della direttione, quella medesima sara atta ad ellevare il detto corpo .c. tanto piu velocemente (per fin alla detta linea della direttione) quanto che la sua resistentia sara proportionalmente menore di quella del corpo .a.b. e perche la detta resistentia del detto corpo .c. e tanto menore della resistentia del corpo .a.b. quanto che la sua potentia .f. della potentia .d.e. Adunque la velocita del corpo .c. (nel moto contrario) alla velocita del corpo .a.b. sara, si come la potentia .e.d. alla potentia .f. over come che il corpo .a.b. al corpo .c. che il proposito.

CORRELARIO.

Da qui se manifesta qualmente la proportione della grandezza di corpi di uno medesimo genere, e quella della lor potentia, e quella della lor velocita nelli lor descensi esser una medesima. Et similmente quella della lor velocita nelli moti contrarii, ma trasmutativamente. S. AMBASCIA. E ve ho inteso, seguitati pur. NICOLO.

QUESITO XXX. PROPOSITIONE III.

Se saranno dui corpi simplicemente eguali di gravita, ma ineguali per vigor del sito, over positione, la proportione della lor potentia, e quella della lor velocita necessariamente sara una medesima. Ma nelli lor moti contrarii, cioe nelli ascensi, la proportione della lor potentia, e quella della lor velocita se afferma esser la medesima, ma trasmutativamente. S. AMBACIA. Fatemi la dimostratione di questo. NICOLO.

Siano li dui corpi .a. e .b. simplicemente eguali di gravita, e sia la libra .c.d. il cui centro, over sparto il ponto .e. e sia nella strema parte del brazzo .e.c. cioe in ponto . c. appeso, e sostentato il corpo .a. e in uno altro luoco piu propinquo al sparto nel medesimo brazzo, hor sia in ponto .f. vi sia sostentato il corpo .b. Et à ben che questi dui corpi siano simplicemente eguali di gravita, nondimeno (per la quarta petitione) il corpo .a. sara (per vigor del luogo) piu grave del corpo .b. perche il descenso di quello qual sia lo .c.h. e manco obliquo del descenso del corpo .b. qual sia lo .f.g. (per la terza, e quarta petitione) essendo adunque il corpo .a. piu grave, secondo il sito del corpo .b. sara etiam piu potente, e essendo piu potente (per la seconda petitione) nelli descensi descendera piu velocemente del corpo .b. e nelli moti contrarii, cioe nelli ascensi piu tardamente. Dico adunque che la proportione della lor velocita nelli descensi esser simile à quella della loro potentia, e quella delli lo-

L I B R O

ro ascensi esser pur la medesima, ma trasmutativamente, et per dimostrar la prima parte, sia la potentia del corpo .a. la .l. e quella del corpo .b. la .m. e la velocita del corpo .a. (nelli descensi) la .n. e quella del corpo .b. la .o. Dico che la proportione della velocita .n. alla velocita .o. esser, si come quella della potentia .l. alla potentia .m. la qualcosa se dimostra, si come la precedente, cioe se possibil fusse, che la proportione della potentia .m. (per l'aversario) potesse esser menore di quella della velocita .n. alla velocita. o. sumendo della potentia .l. la parte .p. eguale alla .m. e della velocita .n. la parte .q. eguale alla .o .e arguendo, come nella precedente, cioe che la proportione di tutta la potentia .l. alla sua parte .p. (per la .7. del quinto di Euclide) sara menore di quella di tutta la velocita .n. alla sua parte .q. Onde (per la .30. del quinto di Euclide) la proportione della medesima potentia .l. all'altra sua parte, over residuo .r. havera maggior proportione di
 quello, che havera tutta la velocita .n. all'altra sua parte, over residuo .s. la qual cosa saria inconveniente, et contra la opinione dell'aversario, qual suppone che la proportione della maggior potentia alla menore, esser menore di quella della maggior velocita, alla menore, e il medesimo inconveniente seguiria quando che l'aversario, supponesse che la proportione della potentia .l. ala potentia .m. fusse maggiore di quella della velocita .n. alla velocita .o. distrutto adunque l'opposito rimane il proposito. La seconda parte se risolve, over arguisse, si come nella precedente, cioe che quella potentia, che nell'altro brazzo della libra (poniamo in ponto .d.) sara atta ad ellevare il corpo .a. per fin alla linea della direttione, cioe in ponto .k. quella medesima sara atta ad ellevare tanto piu velocemente il corpo .b. per fin al ponto .i. quanto che la potentia del detto corpo .b. (qual'è la .m.) è menore della potentia del corpo .b. (qual'è la .l.) perche quanto che la potentia d'un corpo è menore tanto men resiste al moto contrario, e è converso, adunque la velocita del corpo .b. à quella del corpo .a. (nelli ascensi) sara, si come quella della potentia .l. alla potentia .m. che è il secondo proposito. S. AMB. Questa è stata assai bella propositione, ma seguitati pur. NIC.

Quesito

[89r]
 OTTAVO
 QUESITO XXXI. PROPOSITIONE IIII.

La proportione della potentia di corpi simplicemente equali in gravita, ma inequali per vigor del sito, over positione, e quella delle lor distantie dal sparto, over centro della libra, se approvano esser equali. S.A. Datime uno essempio. N. Siano li dui corpi .a. e .b. della figura precedente simplicemente equali in gravita e sia la libra .c. e.d. el centro, over sparto della quale sia el ponto .e. e sia appeso el corpo .a. in ponto .c. e lo corpo .b. nel ponto .f. come nella figura precedente appare. Dico, che la proportione della potentia del corpo .a. (quale sia la .l.) alla potentia del corpo .b. (quale sia la .m.) esser simile à quella, ch'è dalla distantia, over brazzo .e.c. alla distantia, over brazzo .e.f. e tutto questo si approva secondo l'ordine della precedente, cioe, se la proportione della distantia, over brazzo .c.e. alla distantia, over brazzo .f.e. non è (per l'aversario), si come quella, ch'è dalla potentia .l. alla potentia .m. adunque necessariamente sara, maggiore, over minore, hor sia prima (se possibil è) menore sia, del brazzo, over distantia .c.e. maggiore cavato el brazzo, over distantia .e.f. menore dalla banda verso .c. quale sia la .c.x. e dalla potentia .l. ne sia cavata la parte .p. equal alla .m. Adunque (per la .7. del quinto di Euclide) la proportione di tutta la distantia, over brazzo .e.c. alla sua parte .c.x. havera menor proportione, di quello, che havera tutta la potentia .l. alla sua parte .p. Onde (per la. 30. del quinto di Euclide) la proportione del brazzo, over distantia .c.e. alla restante distantia, over brazzo .e.x. havera maggior proportione di quello havera la potentia .l. alla restante potentia .r. la qual potentia .r. verria ad esser la potenza del medesimo corpo .b. stante nel ponto .x. la qual cosa saria inconveniente, perche, se la proportione della maggiore distantia dal sparto alla menore (per l'aversario) havera maggior proportione, che la maggior potentia alla menore, questo doveria seguire in ogni positione, e tamen se vede occorrere al contrario, cioe, che la proposizione della distantia .c.e. alla distantia .e.x. saria maggiore di quella della potentia .l. alla potentia del corpo .b. nel sito, over luoco, dove .x. distrutto adunque lo opposito rimane il proposito.

CORRELARIO.

Dalle cose dette, e dimostrate, se manifesta non solamente la proporzione delle distantie dal sparto nel brazzo della libra, e quella delle potentie di corpi simplicemente equali in gravita, in tai siti, over luochi, e simelmente la velocita de quelli nelli descensi esser una medesima, ma anchora li lor descensi, e anchora li loro ascensi osservano la medesima, perche qual proportione è dal brazzo .e.c. al brazzo .e.f. talla è dal curvo descenso .c.h. al curvo descenso .f.g. e simelmente del curvo ascenso .c.k. al curvo ascenso .f.i. perché li dette descensi, e ascensi vengono à esser cadauno de loro la quarta parte della circonferentia de dui cerchii. delli quali el semidiametro del maggiore verria à esser el brazzo, over distantia .e.c. et del menore el brazzo, over distantia .e.f. S.A. Anchor questa è stata una bella propositione seguitati. N .

[89v]
 L I B R O QUESITO XXXII. PROPOSITIONE V.

Quando, che la positione de una libra de brazzi equali sta nel sito della equalita, e nella istremita de l'uno, e l'altro brazzo vi siano appesi corpi simplicemente equali in gravita, tal libra non se separara dal detto sito della equalita, e se per caso la sia da qualche altro peso in l'uno de detti brazzi imposto separata dal detto sito della equalita, overamente con la mano, remosso quel tal peso, over mano, tal libra de necessita ritornara al detto sito della equalita. S.A. Questa è quella Questione, della quale voi dite, che manca Aristotile nelle sue Questioni Mechanice. N. Cosi è Signore. S.A. Molto haro à caro à intendere la causa di tal effetto, e pero seguitate. N. Sia essempi gratia la libra a.a.b. el centro della quale sia il ponto .c. e sia el brazzo .a.c. equale al brazzo .b.e. e stia nel sito della equalita, come se prepone. Et che nella istremita de l'uno, e l'altro brazzo vi sia appeso uno corpo (poniamo el corpo .a. e .c.) li quali corpi siano simplicemente equali in gravita. Dico che la detta libra (per la impositione de detti corpi) non se separara dal detto sito della equalita, e se pur quella fusse separata dal detto sito, ò per la impositione di qualche altro peso, over con la mano, remosso che sia quel tal imposto peso, over mano, tal libra de necessita ritornara al detto sito della equalita. La
 prima parte è manifesta, perche li detti dui corpi sono simplicemente di equal gravita (dal presupposito) et simelmente sono equalmente gravi per vigor del sito, per la quarta petitione (per esser li loro descensi equalmente obliqui) e pero essendo quelli si per vigor del sito, come che simplicemente duna equal gravita, e potentia, e pero niun de loro fara atto à poter ellevar l'altro, cioe à farlo ascendere di moto contrario, e pero restaranno nel medesimo sito della equalita. S.A. Questo ve credo e ve lo haveria largamente concesso senza altra demonstratione, per esser cosa naturale. Ma seguitati la seconda parte, la qual me pare molto piu astrata, over lontana dal
 nostro intelletto naturale dell'altra. N. Per la seconda parte sia pur anchora la libra .a.c.b. de brazzi equali et nella istremita de quelli siano pur appesi li dui corpi .a. et .b. simplicemente equali in gravita, la qual libra per le ragioni di sopra adutte stara nel sito della equalita, come di sotto appar in figura.

Hor essendo spinto el brazzo. a.c. al basso con la mano, over per la impositione di qualche altro peso sopra el corpo .a. remosso via la mano, over quel tal peso, el brazzo di tal libra reascendera, e ritornera al suo primo luoco della equalita, e per assignar la causa propinqua di tal effetto, sia descritto sopra el centro .c. el cerchio . a.c.b.f. per el viazzo, che fariano li detti dui corpi alzando, over arbassando li brazzi della detta libra, e sia tirata la linea della direttione, quale sia la .e.f. e sia diviso l'arco .a.f. in quanti parti equali si voglia (hor sia in quattro) nelli trei ponti, q.s.u. e in altre tante sia anchor diviso l'arco .e.b. nelli trei ponti

[90r]

OTTAVO
.i.l.n. e dalli detti trei ponti .n.l.i. siano tirate le tre linee .n.o. l.m. e i.k. equidistante al sito della equalita, cioe al diametro, over linea .a.b .le quale segaranno la linea .e. f. della direttione ne li tre ponti .z.y.x. Simelmente dalli tre ponti .q.s.u. siano tirate le tre linee .q.p. .s.r. e .u.t. pur equidistante alla medesima linea .a.b. le quale segaranno la medesima linea della direttione .e.f. nelli trei ponti .w.p.k. Et dapoi sia arbassato con la mano il corpo a. (over con la impositione di qualche altro peso) per fin al ponto .u. e l'altro corpo .b. (à quel opposito) in tal positione se trovar a esser asseso de moto contrario per fin al ponto .i. Onde per queste cose cosi disposite veniremo ad haver diviso tutto el descenso .a.u. fatto dal detto corpo .a. nel discendere in ponto .u. in tre descensi, over parti equali, le quale sono. a.q. q.s. e .s.u. e simelmente tutto el descenso .i.b. qual faria il detto corpo .b. nel discendere, over ritornare al suo primo luoco (cioe in ponto. b.) vera ad esser diviso in trei descensi, over in tre parti equali le quali sono i.l. .l.n. e .n.b. e cadauno de questi tre e tre parti di descensi capisse una parte della linea della direttione, cioe il descenso dal .a. al .q. piglia, over capisse della linea della direttione la parte .c.k. e lo descenso .q.s. capisse la parte .kp. e lo descenso .s.u. capisse la parte .p.w. e l'altro descenso, che resta à descendere al detto corpo .a. cioe el descenso .u.f. capisse la linea, over parte .w.f. Et simelmente el descenso del corpo .b. dal ponto .i. al ponto .l. capisse della medesima linea della direttione la parte .x.y. e nel descenso dal ponto .l. al ponto .n. capisse la parte .y.z. e dal ponto .n. al ponto .b. capisse la parte .z.c. et tutte queste parti sono fra loro inequale, cioe la parte .c.z. è maggiore della .z.y. e la .z. y. della .y.x. e la .y.x. della .x.e. e simelmente la parte .c.k. è maggiore della parte. $\mathrm{k} \rho$. e la parte .k. ρ. della parte . ρ. .w. e la $. \rho . w$. della .w.f. e tutto questo facilmente Geometrice si puo provare, e simelmente se puo provare, la parte .w.f. essere equale alla parte .e.x. e la parte . $\rho \mathrm{w}$. alla parte .x.y. e la parte $. \rho . \mathrm{k}$. alla parte .y.z. e la parte .k.c. alla parte .z.c. Hor per tornare al nostro proposito. Dico, che il corpo .b. stante quel nel ponto .i. vien à esser piu grave, secondo il sito del corpo .a. stante quello in ponto .u. (come disotto appar in figura) perche il descenso del detto corpo .b. dal ponto .i. nel ponto .l. è piu retto del descenso del corpo .a. dal ponto .u. nel ponto .f. (per la seconda parte della quarta petitione) perche capisse piu della linea della direttione, cioe, che nel descendere il detto corpo .b. dal ponto .i. nel ponto .l. lui capisse, over piglia della linea della direttione, la parte .x.y. e il corpo .a. nel discendere dal ponto .u. nel ponto .f. lui caperia della detta linea della direttione, la parte .w.f. e perche la parte .x.y. è maggiore della linea, over parte .w.f. (per la. 17. diffinitione) piu obliquo sara il descenso dal ponto .u. al ponto .f. di quello dal ponto .i. al ponto .l. Onde (per la seconda parte della quarta petitione) il corpo .b. in tal positione sara piu grave secondo il sito del corpo .a. essendo adunque piu grave, levando via lo imposto peso, over la mano dal corpo .a. (per il converso della quinta petitione) lui fara reascendere di moto contrario il detto corpo .a. dal ponto .u. al ponto .s. e lui descendera dal ponto . i. nel ponto .l. nel qual ponto .l. lui venira à trovarse anchora piu grave del detto corpo . a. secondo el sito, perche il detto corpo .a. stante nel ponto .s. havera il descenso .s.u. piu obliquo del descenso .l.n. del corpo .b. perche capisse men parte della

[90v]
 L I B R O

detta linea della direttione, cioe, che la parte . ρ.w. è menore della parte .y.z. Onde per le ragioni di sopra adutte, el detto corpo .b. fara ellevare il detto corpo .a. e ascendere nel ponto .q. e lui descendera nel ponto .n. nel qual ponto .n. el medesimo corpo .b. si trovara pur piu grave anchora, secondo il sito del corpo .a. perche il descenso dal .q. in .s. è piu obliquo del descenso dal ponto .n. nel ponto .b. per esser la parte .z.c. maggiore della parte .k. ρ. E pero (per le ragioni di sopra adutte) el detto corpo .b. fara reascendere il detto corpo .a. al ponto .a. (suo primo, e condecente luoco) e lui medesimamente descendara nel ponto .b. pur suo primo, e condecente luoco, cioe nel sito della equalita, nel qual sito li detti dui corpi se trovaranno (per le ragioni adutte nella prima parte di questa) egualmente gravi secondo el sito, e perche sono anchora simplicemente egualmente gravi, se conservarono nel detto luoco, come di sopra fu detto, e approvato, che è il nostro proposito. S.A. Questa è stata una bella demostratione, ma se ben me
 arricordo, voi dicesti anchor sopra la detta prima question Mechanica de Aristotile, che quelle sue due conclusioni, che lui vi aduce in fine esser false. N . Eglie è vero. S.A. Per che ragione. N. La ragione di tal particolarita, over oppositioni se verificaranno nella sequente propositione, mediante alcuni correlarii, che dalle cose dette, e dimostrate nella precedente si manifestano, delli quali il primo è questo.

CORRELARIO.

Dalle cose dette, et dimostrate di sopra, se manifesta qualmente un corpo grave in qual si voglia parte, che lui se parta, over removi dal sito della equalita lui si fa piu leve, over leggiero secondo el sito, over luoco, e tanto piu, quanto piu sara remosso da tal sito, essempi gratia. El corpo .a. si trovara esser piu leve nel ponto .u. che nel ponto .s. et nel ponto .s. piu che nel ponto .q. e nel ponto .q. che nel ponto .a. sito della equalita, per causa della varieta di descensi, cioe, che l'uno è piu obliquo dell'altro, cioe el descenso .u.f. vien à esser piu obliquo del descenso .s.u. perche la parte .f.w. della direttione, è menore della .w.f. et cosi el descenso . s.u. vien à esser piu obliquo del descenso .q.s. perche la parte .w. ρ. è menore della parte . ..k. e lo descenso .q.s. vien à esser piu obliquo del descenso .a.q. perche la parte . ..k. è menore della parte .c.k. e per le medesime ragioni si manifesta del corpo .b. cioe, che quello sara piu leve nel ponto .i. che nel ponto .l. e nel ponto .l. che nel ponto .n. e nel ponto .n. che nel ponto. b. sito della equalita.

CORRELARIO SECONDO.

Anchora per le cose dette, e dimostrate se manifesta, che removendosi li detti dui corpi dal detto sito della equalita, cioe l'uno in giuso, et l'altro insuso, anchor

[91r]
 OTTAVO

che l'uno, e l'altro sia fatto piu leve secondo il sito, tamen in ogni positione men leve si trovara quello che sara in alto ellevato di quello, che si trovara al basso oppresso, e questo è manifesto per la argomentatione di sopra adutta, cioe che il corpo .b .nel sito, over ponto .i. esser piu grave del corpo .a. nel sito, over ponto .u. e cosi nelli altri siti superiori si trovara piu grave del corpo .a. nelli siti inferiori, simili. S.A. E ve ho inteso, seguitati. NICOLO.

QUESITO. XXXIII. PROPOSITIONE VI.

Quando che la positione d'una libra de bracci eguali sia nel sito della egualita, e che nella istremita dell'uno e l'altro brazzo vi siano appesi corpi simplicemente ineguali di gravita, dalla parte dove sara il piu grave sara sforzata à declinare per fin alla linea della direttione. S.A. A me non pare che questa vostra propositione possa esser universalmente vera, e questo voglio che voi medesimo il confessati perche voi sapeti che nel Correlario precedente haveti conchiuso, che removendosi li detti dui corpi .a. e .b. (dalla figura della precedente propositione) dal sito della egualita, cioe l'uno in giuso, e l'altro in suso, anchor che l'uno è l'altro sia fatto piu leve, over leggero, secondo il sito, tamen in ogni positione men leve si trovara quello, che sara in alto ellevato di quello, che si trovara quello, che sara à basso inclinato. N. Eglie il vero Signore. S.A. Se questo è vero, eglie da credere, anci da tener per fermo, che chi imponesse sopra al corpo .a. à basso inclinato, un'altro corpetto qual in gravita fusse eguale à quella differentia, che il corpo ellevato è piu grave, secondo il sito del corpo à basso inclinato, che cadauno de loro restaria nel proprio luoco dove si trovasse, e accio meglio me intendiati, voi sapeti che il corpo .b. della figura della precedente propositione, stante ellevato per fin al ponto .i. (come in quello appare) e il corpo .a. à basso inclinato per fin al ponto .u. voi approvasti il detto corpo .b. in tal sito esser piu grave del corpo .a. N. Signore eglie il vero. S.A. Adunque conchiudo che chi imponesse in tal sito un'altro corpetto sopra al corpo .a. qual fusse precisamente di tanta gravita, quanto, che è la differentia, che è fra li detti dui corpi .a. e .b. in tal positione li detti dui corpi restariano fermi, e stabili in tal positione, perche in tal sito se trovariano egualmente potenti, cioe il corpo .b. non saria sofficiente à far reascendere il detto corpo .a. al sito della egualita, per esser il detto corpo .a. (per vigor di quel corpetto aggionto) tanto grave è potente quanto lui, cioe che per quel tanto che il detto corpo .b. è piu potente, over grave per vigor del sito del corpo .a. per quel tanto sara piu grave il detto corpo .a. del detto corpo .b. per vigore della gravita di quel simplice corpetto aggiontovi sopra, per il che il detto corpo .b. non sara atto à far reascendere il detto corpo .a. al sito della egualita, e manco il corpo .a. sara atto à potere piu ellevare il detto corpo .b. del sito .i. e pero l'uno è l'altro de necessita non se potra partire di tal suo luoco, cioe il corpo .a. con la gionta di quell'altro corpo, non potra reascendere al sito della egualita, ne manco potra descendere alla linea della direttione, cioe al ponto .f. come se conchiude nella vostra propositione, e pur il detto corpo .a. insieme con quell'altro corpetto aggionto, saria simplicemente piu grave del corpo .b. e per tanto non poteti ne-

[91v]
 L I B R O

gare che tal vostra propositione non sia falsa in quanto al generale, eglie ben vero, che se la gravita di quel corpetto che fusse aggionto sopra al detto corpo .a. fusse maggiore della gravita, nella quale il corpo .b. è piu grave per vigor del sito del corpo .a. seguiria quello che nella detta vostra propositione se conchiude, e se per caso tal gravita di corpetto fusse menore di detta differentia, tal corpo .b. faria ascendere il detto corpo .a. in un'altro sito piu alto del ponto .u. secondo che piu, over men scarsezasse la gravita di tal corpetto della detta differentia che è fra loro per vigor del sito. N. Questa oppositione di vostra Signoria certamente è molto speculativa, e bella, nondimeno advertisco quella, che se ben il corpo .b. in tal sito . i. sia piu grave del corpo .a. nel sito .u. la differentia di queste due gravita ineguale è tanto piccola, over minima, ch'eglie impossibile à potere ritrovare una cosi piccola, over minima differentia fra due quantita ineguale. S.A. Questo che haveti detto mi pare una cosa molto absorda da dire, e manco da credere, perche essendo la quantita continua divisibile in infinito, eglie una materia à voler dire, che il sia impossibile à dare un corpettino di tanta poca quantita, e gravita, quanto che è la differentia che è fra la gravita del corpo .b. nel sito .i. e quella del corpo .a. nel sito .u.N. Signore la ragione è quella che ne chiarisse le cose dubbiose, e che ne discerne il vero dal falso. S.A. Eglie il vero. N. S'eglie il vero, nanti che vostra Signoria dia assoluta sententia alla mia propositione quella ascolti prima le mie ragioni. S.A. Seguitati, e dite cio, che vi pare. N. Sia essempi gratia, la medesima libra .a.b.c. della precedente propositione, nelle istremita, della quale siano pur appesi li dui corpi .a. .b. eguali simplicemente in gravita, e sia abbassato con la mano il corpo .a. e ellevato il corpo .b. come di sotto appare in figura. Dico che in tal sito, il corpo .b. è piu ponderoso, over grave per vigor del sito del corpo .a. e che la differentia che è fra le gravita de questi dui corpi, eglie impossibile à poterla dar, over trovar fra due quantita ineguale, e per dimostrar questa propositione. Tiro le due rette linee .a.h. e .b.d. perpendicolare verso il centro del mondo, e tiro anchora le due linee .a.l. e .b.m. contingente il detto cerchio, che descrive li brazzi della libra, l'una nel ponto .a. e l'altra nel ponto .b. Et descrivo anchora una parte de una circonferentia d'un cerchio, contingente il medesimo cerchio .a.e.b. in ponto .b. la qual sia pur d'un cerchio simile, e eguale al medesimo cerchio .a.e.b. la qual parte pongo che sia la .b.z. tal che l'arco .b.z. vien à esser simile, e eguale all'arco .a.f .e anchora similmente posto, cioe nel medesimo sito, over luoco, e la linea .b.m. che continge, over tocca quello, e perche la obliquita dell'arco .a.f. (per quello che fu detto sopra la terza petitione) vien misurata, over considerata per meggio dell'angolo contenuto dalla perpendicolar .a.h. e dal la circonferentia .a.f. in ponto .a. e la obliquita dell'arco .b.f. vien misurata, over considerata per meggio dell'angolo contenuto dalla perpendicolar .b.d. e dalla circonferentia .b.f. in ponto.b. adunque il corpo .b. in tal sito veneria ad esser tanto piu grave del corpo .a. quanto che il detto angolo (contenuto dalla perpendicolar .b.d. e dalla circonferentia .b.f. in ponto .b.) sara menore dell'angolo contenuto dalla perpendicolar .a.b. e dalla circonferentia .a.f. in ponto .a. e perche il detto angolo .h.a.f. è precisamente eguale all'angolo .d.b.z. e lo detto angolo .d.b.z. vien ad esser tanto maggiore dell' angolo contenuto dalla detta perpendicolare .b.d. e dalla circonferenza

OTTAVO

.b.f. in ponto .b. quanto che è l'angolo della contingentia delli dui cerchii .b.z. e .b. f. in ponto .b. e perche il detto angolo della detta contingentia è acutissimo de tutti li angoli acuti de linee rette (come per la decimasesta del terzo di Euclide facilmente si puo approvare) adunque la differentia, over proportione, che casca fra l'angolo .h. a.f. e l'angolo contenuto dalla perpendicolar .b.d. e della circonferentia .b.f. in ponto .b. è menore di qual si voglia differentia, over proportione, che cascar possa fra qual si voglia maggiore, e menor quantita, e cosi (per la terza petitione) la differentia della obliquita del descenso .a.f. e del descenso .b.f. e consequentemente la differentia della detta gravita delli detti dui corpi .a. e .b. secondo il sito è menore, del quale si voglia fra due quantita ineguale, e pero ogni piccola quantita corporea, che sia aggionta sopra il corpo .a. necessariamente in ogni sito sara piu grave del corpo .b. e pero non cessara di descendere continuamente per fin alla linea direttione, cioe per fin al ponto .f. e cosi continuamente quello andara ellevando il corpo .b. per fin alla detta linea della direttione, cioe per fin al ponto .e. e se questo seguiria in tal sito, come che nella sottoscritta figura appare tanto piu seguiria nel sito della egualita, nel qual sito, over luoco non vi è, over saria alcuna differentia, per vigor del sito, ne per vigor delli lor descensi, cioe che in tal sito sariano egualmente gravi, e pero ogni piccola quantita di peso per minima, che sia, che vi sia imposto dall'una delle bande di qual si voglia libra (cioe granda, over piccola de brazzi eguali) immediate fara declinare necessariamente quella da quella medesima banda, over brazzo, e continuara tal sua declinatione (per le ragioni di sopra adutte) per fin alla linea della direttione, cioe per fin al ponto .f. la qual cosa saria contra à quelle due conclusioni, che adduce Aristotile sopra la sua prima questione Mechanica, delle quale altra volta ne parlai con vostra Signoria, delle quale in l'una dice, che sono alcuni pesi, li quali imposti nelle piccole libre, non se fanno manifesti con alcuna inclinatione al senso, e che nelle grande libre se fanno manifesti, la qual conclusione, sumendola Mathematicamente, cioe astrata da ogni materia, saria falsissima (per le ragioni di sopra adutte) perche si nelle piccole, come nelle grande libre, da quella banda dove sara posto quel tal peso (per piccol che sia) sara sforzata à declinar per fina alla detta linea della direttione, e pero nella declinatione della piccola, e in quella della granda, non sara proportionalmente alcuna differentia, perche in l'una, e l'altra la declinatione sara per fin alla linea della direttione, il medesimo seguiria dell'altra sua conclusione, cioe quando dice, che sono alcuni pesi, li quali sono manifesti in l'una, e l'altra sorte de libre, cioe nelle maggiori, e nelle menori, ma molto piu nelle maggiori, la qual conclusione (per le ragioni di sopra adutte) saria pur falsa, perche, come detto in l'una, e l'altra fara declinare il brazzo della libra per fin alla linea della direttione. S.A. Queste vostre ragioni, e argomenti sono ottimi e buoni, nondimeno nelle libre naturale, over materiale il si vede pur seguire la maggior parte delle volte, come che Aristotile conchiude, e dice, perche se sopra qual si voglia libra (cioe granda, over piccola) vi sara posto uno grano, over semenza di papavero, o altra simile piccola quantita, rare libre se ritrovara che per si poca gravita, facciano inclinatione sensibile, e si pur ni se ne ri-
trovara alcuna che faccia alcun sensibile segno de declinatione, tamen non procedera per fina alla detta linea della direttione, e non solamente il detto gran de papavero non sara atto à farla declinare per fin alla detta linea della direttione alcuna libra, ma

nanche un gran di formento, qual è molto piu ponderoso, e tutto questo la sperientia lo manifesta. Si che non so che mi dire, perche da una banda per le vostre ragioni, e argomenti, vedo, e comprendo che voi diceti il vero, e dall'altra trovo per isperientia seguir tutto al contrario. N. Il tutto procede Signor, dalla materia, perche nelle libre considerate con la mente fuora de ogni materia il suo sparto, polo, over assis, se suppone un ponto indivisibile, et nelle libre materiale, tal sparto, over assis ha sempre qualche corporal grossezza in se, la qual grossezza, quanto è maggiore tanto men diligente redusse la detta libra, e similmente li brazzi delle libre imaginate (cioe ideale) se suppongano linee, cioe senza larghezza, ne grossezza, e nelle libre materiale tai brazzi sono di alcun metallo, over di legno, li quali brazzi quanto piu sono corpulenti, e grossi tanto men diligente reducano tal libre. S.A. E ve ho inteso, seguitati se haveti altra propositione de adurre circa à questa materia. NIC.

QUESITO. XXXIIII. PROPOSITIONE VII.

Se li brazzi della libra saranno ineguali, et che nella istremita di cadauno de quelli vi siano appesi corpi simplicemente eguali in gravita dalla banda del piu longo brazzo tal libra fara declinatione. S.A. Questa è cosa naturale. N. Anchor che la sia cosa naturale volendo procedere rettamente, bisogna assignar la causa di tal effetto. S.A. Seguitati. N. Sia la verga, over libra .a.c.b. et sia il brazzo .a.c. piu longo del .c.b. Dico che essendo appesi corpi simplicemente eguali in gravita, nelli dui ponti .a. e .
 b. tal libra declinara dalla parte del .a. Perche essendo tirata la perpendicolare .c.f.g. (cioe la linea della direttione) et essen[-]

[93r]
 OTTAVO

do circinate ${ }^{[84]}$ le due quarte parte de circuli, sopra el centro .c. le quale siano .a.g. e .b.f. e essendo dutte dal ponto .a.e .b. due linee contingente, le quale siano .a.e. e .b. d. Eglie manifesto l'angolo .e.a.g. della detta contingentia, esser menore del angolo. d. b.f. e pero manco obliquo è il descenso fatto per .a.g. del descenso fatto per .b.f. e pero (per la terza petitione) piu grave sara il corpo .a. del corpo .b. in tal sito, ch'è il proposito. S.A. E ve ho inteso, seguitati. NIC.

QUESITO. XXXV. PROPOSITIONE VIII.

Se li brazzi della libra saranno proportionali alli pesi in quella imposti, talmente, che nel brazzo piu corto sia appeso il corpo piu grave, quelli tai corpi, over pesi seranno equalmente gravi, secondo tal positione, over sito. S.A. Datime uno essempio. N. Sia come prima la regola, over libra a.a.c.b. e vi siano appesi .a. e .b. et sia la proportione del .b. al .a. si come del brazzo .a.c. al brazzo .b.c. Dico, che tal libra non declinara in alcuna parte di quella, e se possibil fusse (per l'aversario) che declinar potesse, poniamo che quella declini dalla parte del .b. e che quella discenda, e transisca in obliquo, si come sta la linea .d.c.e. in luoco della .a.c.b. e attaccatovi .d. come .a. e .e. come .b. e la linea .d.f. descenda orthogonalmente, e simelmente ascenda la .e.h. Hor eglie manifesto (per la .16. e. 29. del primo di Euclide) che li dui triangoli .d.f.c. e .e.h.c. esser de angoli equali. Onde (per la .4. del sesto di Euclide) quelli saranno simili, e consequentemente de lati proportionali, adunque la proportione del .d.c. al .c.e. è si come del .d.f. al .e.h. e perche si come del .d.c. al .c.e. cosi è dal peso .b. al peso .a. (dal presupposito) adunque la proportione dal .d.f. al .e.b. sara si come dal peso .b. al peso .a. sia adunque dal .c.d. tolto la parte .c.l. equale alla .c.b. over alla .c.e.e sia posto .l. equale al .b. in gravita, e descenda el perpendicolo .l.m. Adunque perche eglie manifesto la .l.m. e la .e.h. esser equale, la proportione della .d.f. alla .l.m. sara si come delle simplice gravita del corpo .b. alla simplice gravita del corpo .a. over della simplice gravita del corpo .l. alla simplice gravita del corpo .d. (perche li dui corpi .a. e .d. sono supposti uno medesimo) e simelmente el corpo .b. e .l. (per esser supposta la gravita del .l. equale alla gravita del .b.) e per tanto dico, che la proportione di tutta la .d.c. alla .l.c. sara si come la gravita del corpo .l. alla gravita del corpo .d. Onde se li detti dui corpi gravi, cioe .d. e .l. fusseno simplicemente equali in gravita, stanti poi in li medesimi siti, over luochi, dove, che al presente vengono supposti, el corpo .d. saria piu grave del corpo .l. secondo el sito (per la .4. propositione) in tal proportione, qual è di tutto il brazzo .d.c. al brazzo .l.c. e per che il corpo .l. è simplicemente (dal presupposito) piu grave del corpo .d. secondo la medesima proportione (cioe, si come la proportione del brazzo. d.c. al brazzo .l.c. adunque li detti dui corpi .d. e .l. nel sito della equalita veneranno ad essere egualmente gravi, perche per tanto quanto il corpo .d. è piu grave del corpo .l. per vigor del sito, over luoco, per quel medesimo el corpo .l. è simplicemente piu grave del corpo .d. e pero nel detto sito della equalita vengono à restare egualmente gravi. Adunque quella potentia, over gravita, che sara sofficiente ad ellevare il corpo .a. dal sito della equalita, al ponto, dove che al presente è (cioe per fin al ponto .d.) quella medesima sara sof-

[93v] L I B R O

ficiente ad ellevare il corpo .l. dal medesimo sito della equalita al luoco, dove che al presente è. Adunque sel corpo .b. (per l'aversario) è atto ad ellevare il corpo .a. dal sito della equalita per fin al ponto .d. el medesimo corpo .b. saria anchora atto, e sofficiente ad ellevare il corpo .l. dal medesimo sito della equalita per fin al ponto, dove che al presente è, el qual consequente è falso, e contra alla quinta propositione, cioe el corpo .b. (qual è supposto equale in gravita al corpo .l.) ellevaria il detto corpo .l. fuora del sito della equalita, in siti equali, cioe equalmente distanti dal centro .c. la qual cosa è
 impossibile per la detta quinta propositione, distrutto adunque l'opposito, rimane il proposito. S.A. Questa è una assai bella propositione, ma el me pare, se ben me arricordo, che Archimede Syracusano ne ponga una simile, ma el non mi pare, che lui la dimostri per questo vostro modo. N. Vostra Signoria dice la verita, anci di tal propositione, lui ne fa due propositioni, e queste sono la quarta, e quinta di quel libro, dove tratta delli centri delle cose grave, e in effetto tai due propositioni lui le dimostra succintamente per li suoi principii da lui per avanti posti, e demostrati, e perche tai sui principii, over argomenti non se convegnariano in questo trattato, per esser materia alquanto diversa da quella, ne apparso in questo luoco de dimostrare tal propositioni con altri principii, over argomenti piu convenienti in questo luoco. S.A. E ve ho inteso seguitati. N.

QUESITO XXXVI. PROPOSITIONE IX.

Se saranno due solide verghe, travi, over bastoni di una simile, e equal longhezza, larghezza, grossezza, e gravita, e che siano appesi in una libra talmente che l'uno stia equidistante al Orizonte, e l'altro dependi perpendicolarmente, e talmente anchora, che del termine del dependente, e del mezzo dell'altro sia una medesima distantia dal centro della libra, secondo tal sito, over positione veneranno à essere equalmente gravi. S.A. Non ve intendo, e pero datime uno essempio. N. Essempi gratia. Siano li termini delli brazzi della libra .b. e .e. e il sparto, over centro di quella il ponto .c. e vi siano attaccati li dui solidi simili, e equali, come detto, delli quali l'uno vi sia attaccato secondo l'ordine del brazzo della libra, cioe equidistantamente al Orizonte qual sia .f.e. del qual il suo ponto di mezzo sia el ponto .d. e l'altro sia attaccato pendente perpendicolarmente qual sia .b.g. e sia il termine del suo attaccamento il ponto .b. e sia che la distantia del ponto. b. al ponto . c. (centro della libra) sia tanto, quanto ch'è dal ponto di mezzo de l'altro solido (cioe dal ponto .d.) al medesimo ponto .c. Dico che li detti dui solidi, in tal sito, over positione sono equalmente gravi, e questo se puo dimostrar in piu modi. El primo di quali è questo, ch'eglie manifesto per le cose dimostrate da Archimede in quello del centro della gravita, che

[94r]
 OTTAVO

tanto pesa il solido .f.e. in tal positione nella detta libra, quanto che faria se quello fusse anchora lui appeso perpendicolarmente in ponto .d. perche in tal ponto .d. vi sotto giace el centro della gravita de tal solido, e per esser li detti dui solidi equali in gravita dal presupposito, e appesi equalmente distanti dal ponto, over centro .c. quelli (per la .5. propositione) non se separano dal sito della equalita, ch’è il proposito.

Anchora tal propositione si puo demostrar in questo altro modo (el quale è piu sua conveniente dimostratione, perche se vien à dimostrare per li suoi proprii Principii, e non per principii alieni). Eglie manifesto, che essendo sospesi dui pesi simplicemente equali, l'uno in ponto .f. e l'altro in ponto .e. quali poniamo, che siano .h.k. e simelmente dui altri equali alli medesimi in ponto b . quali siano .l.m. nelli quali siti, dico, che tai pesi pesar anno equalmente, perche la proportione del peso .l. al peso .k. è si come del brazzo .b.c. al brazzo .f.c., per la quarta propositione, perche tanto grave saria el corpo .l. secondo el sito nel ponto .d. quanto che nel ponto, dove si trova al presente, cioe in ponto .b. (per esser .c.d. equale al .c.b. dal presupposito) e pero per la detta propositione, tal proportione sara della gravita del corpo .l. al corpo .k. secondo el sito, quale sara del brazzo .d.c. over .b.c. al .c.f. e per le medesime ragioni tal proportione sara della gravita del corpo .m. alla gravita del corpo .h. secondo el sito, quale sara del medesimo brazzo .c.d. over . c.b. al brazzo .c.e. adunque la gravita de ambidui li corpi .l.m. insieme alla gravita de ambi dui li corpi .h.k. insieme secondo il sito sara si come el doppio del brazzo . c.d. over del brazzo .c.b. insieme alli dui brazzi .c.f. et .c.e. pur insieme, e perche li detti dui brazzi .c.e. e .c.f. insieme sono precisamente tanto, quanto è il doppio del detto brazzo .c.d .over. c.b. seguita anchora, che la gravita delli detti dui corpi .l.m. sia equale alla gravita delli dui corpi .h. e .k. secondo il sito, ch'è il proposito, perche se del sopradetto solido .f.e. ne sara fatto due parti equali, appiccandone una di quelle in ponto .f.e l'altra in ponto .e. tanto pesarano cosi separate in tai siti, si come facevano in longo congionte, come di sopra fu supposto, e simelmente facendo del solido .b.g. pur due parti, e appiccarle ambe due in el medesimo ponto .b. tanto pesarano cosi separate, come che congionte, come, che di sopra fu supposto e pero per le cose detto, e allegate seguita il proposito.

S.A. Voria, che me dimostrasti che il brazzo .c.f. insieme con il .c.e. sia tanto quanto el doppio del brazzo .d.c. over .c.b. N. Signor eglie manifesto, che tutto il brazzo c.e. è maggiore del brazzo .c.d. per la parte .e.d. la qual parte .e.d. è equale alla .d.f. diremo adunque, che tutta la .c.e. è equal alla .c.d. e anchora alla sua parte .f.d. alla qual parte .f.d. giontovi el brazzo .f.c. queste due parti insieme se egualiano anchora loro alla medesima .c.d. e pero tutta la .c.e. insieme con la .c.f. sono precisamente il doppio della .c.d e perche la detta .c.d. è equale (dal presupposito) alla .b.c .seguita, che tutta la .c.e. insieme con la .c.f. siano equali al doppio della .c.b. ch’è il proposito. S.A. E ve ho inteso benissimo, e pero seguitati. N.

QUESITO XXXVII. PROPOSITIONE X.

Sel sara una solida verga, trave, over bastone di una simile, e equal larghezza, grossezza, sostantia, e gravita in ogni sua parte, e che la longhezza di quella sia divisa in due parti inequale, e che nel termine della menor parte vi sia appeso, un altro, solido, over corpo grave, el quale faccia stare la detta verga, trave, over bastone equidistante al Orizonte. La proportione della gravita di tal corpo grave, alla differentia della gravita della maggior parte della detta verga (trave, over bastone) alla gravita della parte menore, sara si come la proportione della longhezza di tutta la verga (trave, over bastone) al doppio della longhezza della sua menor parte. S.A. Datime un essempio se voleti, che vi intenda. N. Sia la solida verga (trave, over bastone) il solido a.b. di una simile, et equal grossezza, larghezza, sostantia, et gravita per tutto, cioe per ogni parte, et sia diviso con lo intelletto in due parti inequale in ponto .c. et sia signata la .c.d. equal alla .a.c. adunque la .d.b. vien à essere la differentia, ch'è fra la parte maggiore .c.b. et la menore .c.a. della qual differentia sia trovato il mezzo, qual sia il ponto .e. Hor essendo sospeso il detto solido, over trave .a.b. nel ponto .c. et essendovi attaccato, over sospeso nel termine della sua menor parte un altro solido (poniamo il solido .f.) qual faccia stare il primo solido, over trave .a.b. equidistante al Orizonte. Dico, che tal proportione havera la gravita del solido .f. alla gravita della differentia .d.b. qual hara tutta la longhezza . a.b. alla .a.d. cioe al doppio della longhezza della parte menore .a.c. Perche tanto pesa la detta differentia .d.b. in tal positione, come che al presente sta quanto che faria se quella fusse perpendicolarmente sospesa in ponto .e. e pero (per il con-

[95r]
 OTTAVO

verso della .8. propositione) la proportione della gravità del solido .f. alla gravita del partial solido, over trave .d.b. sara, si come la proportione della distantia .c.e. alla distantia .c.a. Et la proportione, che è della distantia .c.e. alla distantia .c.a. (per la .15. del quinto di Euclide) quella medesima sara del doppio della distantia .c.e. al doppio della detta distantia .c.a. e perche il doppio della detta distantia .c.e. è quanto che è tutta la longhezza del solido .a.b. e il doppio della detta distantia .c.a. è quanto che è tutta la .a.c.d. seguita (per la.11.del quinto di Euclide) che la proportione della gravita del solido .f. alla gravita della differentia .d.b. sia si come la proportione di tutta la longhezza del solido, over verga .a.b. al doppio della longhezza della parte menore .a.c. (qual è la detta .a.c.d.) che è il proposito. S.A. Perche ragione vuoleti che il doppio della

distantia .c.e. sia eguale à tutta la longhezza del trave .a.b. N. Perche la detta distantia .c.e. vien à esser precisamente eguale alla mita di tal longhezza .a.b. perche la parte .d.e. è la mita della parte .d.b. e la .d.c. è la mita dell'altra parte .d.a. adunque le due parti .d.e. e .d.c. gionte insieme, vengono à essere la mita delle due parti .d.b. e .d.a. pur gionte insieme. S.A. E ve ho inteso, e pero seguitate in altro. N.

QUESITO. XXXVIII. PROPOSITIONE XI. conversa della precedente.

Se la proportione della gravita d'un solido sospeso in el termine della menor parte di una simile solida verga (trave, over bastone) divisa in due parti ineguali, alla differentia, che sara fra la gravita della maggior parte, e quella della menore, sara, si come la proportione di tutta la longhezza della solida verga, trave, over bastone, al doppio della longhezza della sua menor parte. Tal solida verga, trave, over bastone, necessariamente stara equidistante all'Orizonte. S.A. Credo bene che tal precedente propositione se convertisca, nondimeno non restati da farme la dimostratione. N. Per esser questa il converso della precedente, per suo essempio supponeremo la medesima dispositione, over figura, cioe supponeremo, che la proportione della gravita del solido .f. alla differentia della gravita della maggior parte alla gravita della menore, cioe della .d.b. esser, si come la proportione di tutta la longhezza della solida verga .a.b. al doppio della longhezza della parte menore .a. c. (quale saria la .a.d.) Dico che stante questo la solida verga .a.b. de necessita stara equidistante all'Orizonte. Et se pos

[95v]
 L I B R O

sibil fusse (per l'aversario) che quella debbia, over possa declinar da qualche banda, poniamo che declini dalla banda verso.b.al solido .f. gli aggiongeremo con lo intelletto una tal parte (quale pongo che sia la parte .g.) che faccia restare la detta solida verga, trave, over bastone equidistante al detto Orizonte. Adunque (per la precedente, la proportione di tutta la gravita del composto delli dui corpi .f. e .g. alla differentia, che è fra la gravita della parte maggiore .b.c. e quella della parte menore .a.c. (che saria quella della .d.b.) sara, si come la proportione di tutta la longhezza .a.b. al doppio della longhezza della sua parte menor .a.c. il qual doppio, saria la .a.d. e perche il simplice solido .f. ha quella medesima proportione, alla medesima differentia (dal presupposito) seguitaria (per la .9. del quinto di Euclide) che la gravita del simplice soli[-]

do .f. fusse eguale alla gravita de tutto il composito di dui solidi .f.g. la qual cosa è impossibile, che la parte sia eguale al tutto, il medesimo inconveniente seguiria quando che lo aversario supponesse che declinasse dalla parte .a. perche segando via dal solido . f. una tal parte, che il rimanente facesse restare il detto solido .a.b. equidistante all'Orizonte, argomentando, come di sopra fu fatto, seguiria pur che la gravita del medesimo residuo fusse eguale alla gravita di tutto il solido .f. Adunque non potendo declinare ne dalla banda verso .b. ne da quella verso .a. eglie necessario che stia equidistante all'Orizonte, che è il proposito. S.A. Sta benissimo, hor seguitati pur. N.

QUESITO. XXXIX. PROPOSITIONE XII.

Sel sara una solida verga, trave over bastone, come nelle due precedente è stato detto, cioe di una simile, e egual grossezza, larghezza, sostantia, e gravita, in ogni sua parte, e che di quello ne sia nota la sua gravita, e similmente la sua longhezza, et che quello sia diviso in due parti ineguale pur note. Eglie possibile di ritrovar un peso, il quale quando che quello sara sospeso al termine della sua menor parte fara stare la detta solida verga, trave, over bastone, equidistante all'Orizonte. S.A. Questo atto operativo voglio che mel dichiarati con essempio materiale, perche lo voglio intendere bene. N. Sia essempi gratia la solida verga (trave, over bastone) .a.b. secondo che se propone, cioe di una simile, e equal grossezza, larghezza, sostantia, e gravita per ogni sui banda, over parte, e poniamo, che la gravita di tal solida verga ne sia
nota, cioe poniamo che tutta pesi lire ${ }^{[85]} .40$. et che similmente la longhezza di tal verga, over bastone, ne sia nota, cioe poniamo che quella sia longa dui passa, cioe dieci piedi, e poniamo anchora che tal verga sia divisa in due parti ineguale in ponto .c. e che le dette parti ne sia note, cioe poniamo che la parte .a.c. menore, sia piedi dui, e che la maggior . c.b. sia piedi .8. Hor dico, che eglie possibile di trovare di quante libre vorra esser quel corpo qual essendo sospeso nel ponto .a. (termine della sua menor parte) faccia stare la detta verga, over trave equidistante all'Orizonte. Perche (per le cose dimostrate nelle due precedente propositioni) eglie manifesto, che la proportione della gravita di quel tal corpo alla gravita di quella differentia che è fra la parte maggiore .c.b. e la parte menore .a.c. (la qual differentia verria à esser la .d.b.) sara, si come tutta la longhezza della verga, over trave .a.b. (qual è piedi .10.) al doppio della longhezza della parte menor .a. c. (qual è piedi dui) il doppio della quale verria à esser piedi .4. qual pongo sia la .a.d. adunque la gravita di quel tal corpo, alla gravita della partial verga .d.b. sara, si come la longhezza de tutta la .a.b. (qual è piedi .10.) alla longhezza della .a.d. (qual è piedi .4.) Onde arguendo al contrario, diremo, che la proportione della .a.d. (qual è piedi .4.) à tutta la .a.b. (qual è piedi .10.) sara, si come la gravita della partial verga .d.b. qual (alla ratta ${ }^{[86]}$ di tutta la .a.b. che libre .40.) verria ad esser libre .24. alla gravita del corpo che recercamo, cioe di quello, che appeso nel ponto .a. debbia man[-]

tenere la detta verga, over trave equidistante all'Orizonte. Onde per ritrovarlo procederemo secondo l'ordine della regola volgarmente detta del tre, fondata sopra la .20. propositione del .7. di Euclide moltiplicando .10. fia .24. fa .240. e questo lo partiremo per .4. ne venira .60. e libre .60. dico che pesara, over che dovera pesare quel tal corpo, qual pongo sia il corpo .f. che è il proposito. S.A. Questo problema me è piacesto assai, e l'ho inteso benissimo, e pero seguitati se ci è altro da dire. N.

QUESITO. XL. PROPOSITIONE XIII.
Sel se havera una verga, trave, over bastone, come piu volte è stato detto, del qual ne sia nota la sua longhezza, e anchora la sua gravita, e anchora un corpo ponderoso, del quale ne sia nota sua gravita, eglie possibile à determinare il luoco dove se havera da dividere la data verga, trave, over bastone, talmente che appendendo il det-

[96v]
 L I B R O

to corpo ponderoso al termine della sua menor parte faccia stare la detta verga, trave, over bastone, equidistante all'Orizonte. S.A. Essemplificatime questa propositione. N. Per essemplificar questa propositione, supponeremo che il sia pur una verga, trave, over bastone, come fu la precedente, cioe longa piedi .10. e che la gravita di quella fia pur libre .40. (come che nella detta precedente fu supposto.) Et poniamo anchora che il sia un corpo che la gravita di quello sia libre 80 . Dico ch'eglie possibile à determinare il luoco dove se debbe dividere la detta verga, talmente che appendendo il detto corpo grave al termine della sua menor parte, faccia star quella equidistante all'Orizonte. Et quantunque tal problema, si possa risolvere per via di proportioni, nondimeno piu leggiadramente, se risolve per Algebra, ponendo che la parte menore della detta verga sia una cosa de pie, ${ }^{[87]}$ onde la parte maggiore veneria à restare piedi .10. men .1. co. Dupplico la menor parte (cioe .1.co) fa .2. co., e queste .2. cose le sottro da tutta la verga qual è piedi .10. resta piedi .10. men .2. cose, e questo sara la differentia, che è fra la parte maggiore, e la menore della detta verga, onde per trovar la gravita di tal differentia, la moltiplico per .4. (perche pesando tutta la verga libre .40. veneria ogni pie di quella à pesar lire ${ }^{[88]} .4$.) e pero moltiplicando quella per .4. come detto ne venir a libre .40. men .8. cose. Et perche la proportione di tutta la verga (qual è pie di .10 . al doppio della sua menor parte (il qual doppio saria .2. cose) è si come che la gravita del nostro corpo grave (qual è libre.80.) alla gravita della sopradetta differentia, qual fu libre .40. men .8. co. Onde per la .20. del settimo di Euclide (la moltiplicatione della prima) che .10 . piedi fia la quarta che è .40 . men .8. cose) qual fara .400 . men .80. cose (sara eguale alla moltiplicatione della terza qual è libre 80 . fia la seconda, qual è .2. cose (qual fara .160. co.) e pero haveremo 160 . cose eguale à .400 . men .80 . cose, onde ristorando le parti, e seguendo il capitolo, trovaremo la cosa valer . $12 / 3$ e de piedi $.1 .2 / 3$ se dovera signar la menor parte della detta verga, over trave, onde la maggiore venira à restare de piedi $.8 .1 / 3$, che è il proposito. S.A. Questa è stata una bella resolutione, ma seguitati pur, perche vorria che tra hoggi e dimane vedessimo de ispedire tutto quello, che haveti da proponere sopra di questa scientia, perche vorro poi che me assignati la causa de alcune questioni, che ho da dirvi. N. Non credo di potermene ispedire fra diman, e l'altro, perche continuamente me nasce nuove materie da proponere circa à tal scientia. S.A. Se non se ne potremo ispedire cosi dimane non importa, non perdemo tempo, seguitati. N .

QUESITO. XLI. PROPOSITIONE IIII.

La egualita della declinatione è una medesima egualita de peso. S.A. Datemi un essempio. N. La egualita della declinatione vien conservata solamente in via retta. Hor poniamo adunque che la detta via retta sia la linea .a.b. e dal ponto .a. sia anchor tirata la perpendicolare .a.c. e supponamo anchor nella detta declinata linea .a.b. dui diversi luochi. Hor poniamo che l'uno sia il ponto .d. e l'altro il ponto .e. Hor dico che discendendo, qualunque corpo ponderoso, over dal ponto .d. over dal ponto .e. sara de uno medesimo peso, secondo il sito in qual si voglia de detti luochi. Per[-]
che se pigliaremo sotto al .d. e al .e. due parti equali nella via, over linea .a.b. Hor poniamo, che l'una sia la parte .d.e. et l'altra la .e.g. Dico, che per le dette parti equali capira equalmente del diretto, cioe della linea .a.c. la qual cosa se notificara in questo modo, dalli dui ponti .e. et .g. siano tirate le due linee .e.h. et .g.l.
 perpendicolare sopra la linea .a.c. et dalli dui ponti, over luochi . d. et .e. le due linee .d.k. et .e.m. perpendicolare sopra le medesime .e.h. et .g.l. le qual due perpendicolare, cioe .d.k. et . e.m. saranno fra loro equali, perche adunque il detto corpo ponderoso, si essendo nel ponto .d. come nel ponto .e. in quantita, over descensi equali, capira equalmente del diretto, sara di una medesima gravita in qual si voglia de quelli, secondo el sito, ch'è il proposito. S.A. E ve ho inteso, seguitate pur. N.

QUESITO XLII. PROPOSITIONE XV.

Se dui corpi gravi descendano per vie de diverse obliquita, e che la proportione delle declinationi delle due vie, e della gravita de detti corpi sia fatta una medesima, tolta per el medesimo ordine. Anchora la vertu de l'uno, e l'altro de detti dui corpi gravi, in el descendere sara una medesima. S.A. Questa propositione mi par bella, e pero datime anchora un essempio chiaro, accio che meglio mi piaccia. N. Sia la linea a.b.c. equidistante al Orizonte, e sopra di quella sia perpendicolarmente eretta la linea .b.d. e dal ponto .d. descendano de qua, e de la le due vie, over linee .d.a. e .d.c. e sia la .d.c. di maggior obliquita. Per la proportione adunque delle lor declinationi, non dico delli lor angoli, ma delle linee per fina alla equidistante resecatione, in la quale equalmente summemo del diretto. Sia adunque la lettera .e. supposta per un corpo grave posto sopra la linea .d.c. e un'altro la lettera .h. sopra la linea .d.a. e sia la proportione della simplice gravita del corpo .e. alla simplice gravita del corpo .h. si come quella della .d.c. alla .d.a. Dico li detti dui corpi gravi esser in tai siti, over luochi di una medesime vertu, over potentia. Et per dimostrar questo, tiro la .d.k. di quella medesima obliquita, ch'è la .d.c. e imagino un corpo grave sopra di quella equale al corpo .e. el qual pongo sia la lettera .g. ma che sia in diretto con .e.h. cioe equalmente distanti dalla .c.k. Hor se possibel è (per l'aversario) che li detti dui corpi .e. e .h. non siano di una medesima, e equal vertu in tai luochi, adunque l'uno sara di maggior vertu, over potentia dell'altro, poniamo adunque, che .e. sia di maggior vertu, adunque quello sara atto à discendere, e simelmente à far ascendere, cioe à tirare in suso el corpo .h. Hor poniamo (se possibel è) che il detto corpo .e. descenda per fina in ponto .l. e che faccia ascendere il corpo .h. per fin in ponto .m. e faccio, over che segno la .g.n. equale alla .h.m. la quale anchora lei vien à esser equale alla .e.l. Et dal ponto .g. tiro la .g.h.e. la qual sara perpendicolare sopra la .d.b. per esser li detti tre ponti (over corpi) .g.h.e. supposti in diretto, e equalmente distanti dalla .k.c.e simelmente dal ponto .l. sia tiratala .l.t. equidistante alla .c.b. qual sara pur perpendicolare
sopra la medesima .d.b. e dalli tre ponti .n.m.e. siano tirate le tre perpendicolari .n.z. .m.x. et .e.r. Et perche la proportione della .n.z. alla .n.g. è si come quella ch'è dalla . d.y. alla .d.g. e pero si come anchora quella della .d.b. alla .d.k. (per esser li detti tre triangoli simili.) Simelmente la proportione della .m.x. alla .m.h. è si come quella, che è dalla detta .d.b. alla .d.a. (per esser li detti dui triangoli simili.) Anchora la proportione della .m.x. alla .n.z. sara si come quella della .d.k. alla .d.a. e quella medesima (dal presupposito) e dalla gravita del corpo .g. alla gravita del corpo .h. perche il detto corpo .g. fu supposto esser simplicemente, egualmente grave con el corpo .e. adunque tanto quanto, che il corpo .g. è simplicemente piu grave del corpo . h. per altro tanto il corpo .h. vien à esser piu grave per vigor del sito del detto corpo .g. e pero si vengono ad egualiar in vertu, over potentia, e per tanto quella vertu, over potentia, che sara atta à far ascendere l'uno de detti dui corpi, cioe à tirarlo in suso, quella medesima sara atta, over sofficiente à
 fare ascendere anchora l'altro, adunque sel corpo .e. (per l'aversario) è atto, e sofficiente à far ascendere il corpo .h .per fin in .m. el medesimo corpo .e. saria adunque sofficiente à far ascendere anchora il corpo .g. à lui equale, e inequale declinatione, la qual cosa è impossibile per la precedente propositione, adunque il corpo .e. non sara de maggior vertu del corpo .h. in tali siti, over luochi, ch'è il proposito. S.A. Questa è stata una bella speculatione, e me è piacesta assai. Et per che vedo esser hora tarda, non voglio, che procedati in altro per hoggi.

Fine del ottavo libro.

4．1．6 Iordani opusculum de ponderositate（1565）

4．1．6．1 The Facsimile and Critical English Translation

```
I O R D A N I
    O P V S C V L V M
    DE PONDEROSITATE
        NICOLAI TARTALEAE
        STVDIOCORRECTVM,
    2OVISQVE FIGVRIS AVCTVM,
            40日⿱⿱亠䒑日心十⿱⿱⿰㇒一十凵
        CVM PRIVILEGIO.
    TR\mathscr{AINNO}
```



```
        V E N E TIIIS,
    APVD CVRTIV,M TROIANVM.
        M D L X V.
```


ON mefugit fumma in expectatione te cfle, cum optimis literarum ftudijs, qui teuchementius in. cumbat cognofcam neminem. nul lum profećto doctrinæ genuis eft, in quo non ucrferis, nulla difciplina, quam nori intelligere uelis,tu gram maticorum canones, hiftorias, \& poetarum fabulas mirifice tenes, tu rhetoricis flofculis abundas, dialecticorum argutias fcrutaris, phyfices arcana, \& fuperiores intelligentias perueftigas, tu theologorum abdita petquiris, tu mathematicıs, \& omni denique eru ditionis genere delectaris, quamobrem, pro mea in te, \& patrem tuum beneuolentia, propter egregiam tuam indolem, iucundislimos mores, diuinum inge

[2r]
 TO FRANCESCO LABIA
 adorned with many good qualities.
 Curtio Troiano

I am aware of the great expectations on you for I do not know anyone who applies with more passion than you to the literary studies. Certainly there is not any kind of doctrine you are not versed in; any discipline that you will not understand. You know the rules of grammar very well, the history, the stories of the poets; you excel in rhetoric, you analyse with the keenness of dialecticians, you inquire with superior intelligence about the mysteries of nature. You investigate the secrets of theology, finally you are attracted by mathematics and any kinds of knowledge. For my and your father benevolence, for your egregious nature, joyful customs, divine inge
niùm, fummam modeftiam, tibi optimæ fpei adolefeenti dicare uolui hunc Iordani ingeniofi, \& acuti hominis librum de ponderibus, quem mihi fuis in fragmentis Nicolaus Tartalea familiaris meus, uir quidem preclaris ornatus fcientijs excudendum reliquit. Accipias igitur lato vultu hunc in lucem editum, tuoque fub nomine emiffum, quandoquidem tibi non modo iucunditati, fed ctiam utilitati fore certo fcio. Vale: Non. Kalendas Feb.

PRIMA

[2v]
nuity, the sum modesty, I want to dedicate excellent youth this book on weights by Jordanus ingenious and acute man, whose fragments Niccolò Tartaglia, my friend, a man of science, left to settle. Receive with pleased face this [book] just published, dedicated to you, because I know for sure that it will be not only entertaining but also useful to you. Greetings. 5th February.

PRIMA SVPPOSITIO.

M NIS ponderofi motum effe ad medium uirtutemq́; ipfius effe potentia ad inferioratendendi nirtatem ipfius, frue potentia poffumus intelligere longitudinembrachij libra, aut uelociter cins quem probatur ex longitudine brachif librx, \& motui contrariorefiftendi. Secunda: Quòd gratius eft uelocius defcendere. Tertia: Grauius effe in defendendo quanto eiufdem motus ad medium rećtior. Quarta: Secundum fitum grauius cffe cuius in eodé fitu minus obliquas defcenfus. Quinta: Obliquiorem autem defcenfum in ea demquantitate minus capere de directo Sexta : Minus graue aliud alio fecundum fitum, quod defcenfum alterius fequitur contrario motu. Septima: Situm eqqualitatis effe $x q u a l i t a t e m$ angulorum circa perpendiculum, fiue rectitudi nem angulorum, fiue eque diftantiam regula fu perficieiOrizontis.

Quxftio Prima.
Inter quaztibet grauia eft uirtutis, \& ponderis codem ordine fumpta proportio.

Int pondera a, b, c, leuius c, defcendat $q ; ; a, b$, in d, d c, ine . Itaque ponatur a, b, furfum in f, 心 c, i, b. Di$\mathcal{L}_{\text {co ergo quod qus proportio } a, d \text {, ad } c, e, \text { fickt } a, b, \text { pont }}$ deris ad c.pondus, quanta enim sirtus ponderofi tanta defcendend uelocitas : at que compofitisirtus ex uirtu tibus componentium componuntur. Sit ergo a, equale c. ©) b,ad c, mmor quim uirtutis ad uirtutem. Erit fimiliter proportio $a, b, a d$ a a, minor proportio quim uirtutts a, b, ad uirtutim $a_{\text {, ergo uirtutis } a, b \text {, ad uirtutem } b \text {, minor pro }}$
 conueniens. Similium igitur ponderuzt minor, © maior proportio, quàm uirtutum. Et quia boc inconuenicns erit, utrobique eadem ideo $a, b, a d c$, ficut a,d,ad c, e, © c c, 60 m trmin firur ohada f

FIRST SUPPOSITION.

The motion of every heavy body is toward the centre [of the world] and its strength is a power of tending downward and to resist to the contrary motion, and we can understand its strength or power from the arm length or from its velocity which is determined by the length of the balance arms. Second: What is heavier descends more speedily. Third: It is heavier in descending, to the degree its movement toward the centre is more direct. Fourth: It is heavier according to position in that position where its path of descent is less oblique. Fifth: A more oblique descent is one which, in the same space, partakes less of the vertical. Sixth; One weight is less heavy according to position, than another, if it is caused to ascend by the descent of the other. Seventh: The position of equality is that of equality of angles to the vertical, either these are right angles, or the beam is parallel to the plane of the horizon.

First Question [Proposition].

Among any heavy bodies, the strength is proportional to the weight.
Consider weights $a b, c$, of which c is the lighter and $a b$ descend to d, and let c descend to e. In the same way let $a b$ be raised to f, and c to h [See Fig. 4.24]. I then say that the proportion of ad to ce, is as the weight ab is to the weight c, indeed the velocity of descending is as great as the strength of the heavy body. But the strength of the compound is composed by the strengths of its components. Let a then be equal to c, so that the strength of a is the same as that of c. If instead the ratio of $a b$ to c is less than the ratio of the strength to the strength, the ratio of ab to a will similarly be less than the ratio of the strength of ab to the strength of a, and therefore the ratio of the strength of ab to that of b will likewise be less than that of $a b$ to b, for [the proposition] 30 of fifth book of Euclid, ${ }^{[89]}$ what is absurd. Therefore the ratio of weights will be both greater and less than the ratio of strengths. Since this is absurd, [the proportion] must be the same in both cases, so $a b$ is to c, as ad is to

[Fig. 4.24] $c e$, and conversely as ch is to [the distance] af.

OTVSCVLYMDE

Quaftio Secunda .

Quum zquilibris fuit pofitio xqualiszquis ponderibus appenfis $2 b$ zqualitate non difcedet $: \&$ fi a re ritudine fepara-
 dantur, ex parte grauioris ufque ad diredionem declinare co getur.

Figura a Nicolzo de Tartaglijs

$\mathrm{Al}^{\text {Equilibris dicitur quando as }} \begin{aligned} & \text { centro circunnolutionis bra- } \\ & \text { cbia regula fient equalia. Sit }\end{aligned}$ ergo centrum a, © rezulab.a, $c, a p$:penja b, é c, perpendiculum f, a. Cir cunduŽoigitar crrculo per b, \& c, in medio cuius infcrioris medietatis fit e, manifestmm quoniam defrenfus tamb,quàm c, e, per circunferétiam circuli uerfuse, to cum sque obliquas fit binc inde defcenfus, quŭ fint aque ponderofa, non mutabit alteratrum . Ponatur item quìd fubmittatur ex paizse b, © q acendat ex par tec, dico quoniam redibit ad squalitatem. oft enim minus obliquas defcenfus $a, a d$ aqualitatem, quam a, b, nerjase. Sumantur erim forjumar cus aquales, quantumlidst parni qui
 quidifantiam squalitatis, qua /int, $c, 2, l, d \quad d, m, n .1 t e m b, K, b, 6 y, t, d i$ mittattre orthogonaliter deccendens diametram qua fit $f, 2, m, a, K, y, c$, crit quà̀ d 2, , matior K, y, quia fomspro uer zus f, arcuex co quod fit aqua lis c,d, ê ductia ex tranjuerfo linea x, r, serit $r, 2$, minor $2, m$, quòd facile demonstrabis. Et quiat $r, 2$ est aqualis K, y, erit $2, m$, maior K, y. Quia igitur quilibet arcus $\int u b c$, plus ca-
 \& ideo in altiori fitu grauius erit c, qui im b, redibit ergo ud aqusalitatem.
[3v]

OPUSCULUM DE

Second Question [Proposition].
When a horizontal position is gained [for a balance of equal arms], then, if equal weights are suspended [from its extremities], the balance will not leave the horizontal position; and if it is moved from the horizontal position, it will revert to the horizontal position. If instead unequal [weights] are suspended, [the balance] will fall on the side of the heavier [weight] until it reaches the vertical position.A balance is equal, when the arms of the beam, measured from the centre of rotation, are equal.

[Fig. 4.25] Figure drawn by Niccolò ${ }^{[90]}$

[Fig. 4.26]

Let the centre, then, be a, and the beam bac; and let b and c be suspended, and fa be the vertical. Drawn a circle through b and c, the mid point of its lower half being e, it is evident that the descent of both b and c will be along the circumference of the circle, toward e. And since the descents along these paths are equally oblique, and [b and e] have equal weight, therefore neither of them will move [See Fig. 4.25].

Let it now be supposed that the balance is tilted down on the side of b, and up on the side of c [See Fig. 4.26]. I say that it will revert to the horizontal position. The descent from c toward the horizontal position is indeed less oblique than the descent from b toward e. Assume indeed equal arcs, as small as you please, cd and bg; and draw the lines parallel to the horizontal czl and dmn, and also bkh and gyt, and draw, vertically, the diameter frzmakye. Then zm will be greater than ky, because if an arc, equal to cd, is taken in the direction of f, and if the line xrs is drawn transversally, then $r z$ will be smaller than $z m$, what is easy to show.

And since $r z$ equals $k y, z m$ will be greater than ky. Since because any arc you please, which is beneath c, takes more of the vertical than an arc equal to it, taken beneath b, the descent from c is more direct than the descent from b; and then c will be heavier in the most elevated position, than b. Therefore [the balance] will revert to the horizontal position.

$$
\text { TÖNDEROSITATE. } 4
$$ Sit item b, graxius, quim c, © ponantur aquaditer, quia ergo ntrobique eft aque obliquiss defienjus pazet, quia b, defḉdic. Ponatur etiams b,inferius , wt libet, ©f, c s fuperius: di co quòd etiam in hoc fitu crit grawins b, dimittant enim dire ite linee $c, d, \otimes b b, b, \& \begin{gathered}\text { contingentes } \\ c r a c u l \vec{k}\end{gathered}$ fint $b, 1, c, m$, , f fit arcus c, z, fimilis, ©r aqualis, or in eodem jith cum artu b,eqquem \&́linea c, m, contis

 get. Et quia obliquitas arcuam $b, e_{\text {, }}$ wel c, z,est angudus d, c, z, er abliquitas arcus, c, e, eft in angulo d, c, m, arque proportio anguli d, c, z, ad angulum d, c, m, ff minor qualibet proportione, que of muter maiorem, \& mzorem quantutatem. Minor ét erit,quam ponderis b_{3} ad pondust. Quomodo ergo plus addat b, fuper c, quàm obliquitas skper obliquitantem graxins erit b, in boc fitw, quàm c, bac rationem non defmet b, defcen dere, of $f, a f$ cendere, $s f q u e f, e, q$.

> Quzftio Tertia .

Omne pondus in quamcunque partem difcedaz ab zqualitate fecundum fitum fit leuius.

SVpra enim locum aqualitatis dwo loca fignentur fuper . *infra, ©rab omnibus arcus refecentur ab inferiore aquales, ut libet parna, © qui est jubloco aqualitatis plus capiet de dirceio.

Figura à Nicolao confitucha

[4r]

P O N DER O S IT A T E.

Now let b be heavier than c, and assume the horizontal position. Then, since the descent on each side is of equal obliquity, it is evident that b will descend. For let b be placed below, in any position, and c above. I say that in this position also, b will be heavier. Indeed let the vertical lines $c d$ and $b h^{[91]}$ be drawn; and let the lines bl and cm be tangents to the circle [See Fig. 4.28]; and let the arc $c z$ be similar and equal and similarly placed as the arc be, so that the line cm is tangent. But because the obliquity of the arcs be or $c z$ is represented by the angle dcz, and the obliquity of the arc ce by the angle dcm, the proportion of the angle $d c z$ to the angle dcm is smaller than any ratio that can be assigned between a greater and a smaller quantity. ${ }^{[92]}$ And it will also be less than the ratio of the weight b to the weight c. Since then bexceeds c to a greater extent than the obliquity exceeds the obliquity, b in this position will be heavier than c. For this reason b will not cease to descend, and c to ascend, until the beam is in $f e, q$.

Third Question [Proposition].
In whichever direction a weight is displaced from the position of equality, it becomes lighter according to position.

Above the horizontal position let there be identified two points, above and below. And from each of these assume equal arcs, as small as you like, on the lower side. Then the arc which is taken below the position of equality will take more of the vertical.

[Fig. 4.27]
Figure drawn by Niccolo

[Fig. 4.28]

－PナTVLVMDE

Quaftio Quarta．
Quum fuerint appenforum pó deraxqualia，non faciet nutum in aquilibriappendiculorum in－ zqualitas．

S_{t}^{2}It refponfa a^{\prime}, b, c ，centram c ，es appendicula a，d，er b，e，longixs ase tem b，e，appenfa b, e ，defcendatq́；c_{3} $z, y, o r t h o g o n a l i t e r ~ q u a n t u m l i b e t, ~ む ゙ ~$ duCtis d, z, © e，j, aque diffantiousre－ Bondere，ér pojitis centris in z ，ev y ， circunducantkr quarta criculorkm per d，家，e．Et quoniam d，z，é e，$y_{\text {s }}$ funt aquales，crunt \＆\％quatracirck－ Lorum aquales．© quia per illorus circunferentias ef defcernjus d ，\＆r c， quum aque ponderofa fint d ，$\dot{\sim}$ sque obliquis，defcenfus in boc fits eque grakia ernnt．Non ergonuta－ bit hinc，sel inde reffonfa．Quod autem per illas foc illornm defcenjus， fic constet．Defcribatur enim femi－ circulus circa centrum c ，fecindion quantitatem b ，忘 \mathbf{a} ，c－dimittatur a ， in m ，心－b ，in n ，deccendant q ；$a b m$ ， © n ；ad $q: 12 r$ zzrum circunfeientizs lines $m, x, \dot{\sim} n, h$, sque distantes c ， x ，dico quod m，x ，ad．squatur a ，d，ec n, b, ，Aqualis $(f t b, e, q u o d ~ p a t e t ~ d u c t i s ~$ lineis z, x, y, b ．Q uü ergo femper de－ fcendant a ，屯f b，per buas femicircu－ lum defiendunt ctiam d，© e，per de firiptas quartas，el bos fuit demon－ firantum．

Quxitio Quinta．
Si brachia librafuerint inz－ qualia，zqualibus appenfis ex parte longiore nutum faciet．
[4v]
OPUSCULUMDE Fourth Question [Proposition].

When equal weights are suspended [with wires] from a balance, inequality of the wires [pendants] will not determine a perturbation of their equilibrium.

Let the balance be acb, its centre c; the wires ad and be, with be the longer; and the suspended weights d and e. Then let the perpendicular czy go down as long as you like, and draw dz and ey parallel. Then, with centres at z and y, let quarter circles be described through d and e; and since $d z$ and ey are equal, the quarter circles will also be equal. Because d and e descend along the circumferences, and because d and e are of equal weight, and of equal obliquity, they will be equally heavy according to position. Therefore the balance will not move neither here nor there. That their descent is along these paths, is shown as follows. Indeed let a semicircle be drawn around the centre c, through the points a and b; and let a descend to m, and b to n, and from m and n, to the circumferences of the quarter circles, draw the lines $m x$ and nh parallel to cz. I say that mx is equal to ad, and that nh is equal to be: which is evident after the lines $z x$ and $y h$ are drawn. Since therefore a and b descend always along this semicircle, d and e will also descend through the quarter described. And this is what was to be proved.

Fifth Question [Proposition].
If the arms of the balance are unequal, equal [weights] suspended [from their extremities], determine a tilting on the side of the longer [arm] [See Fig. 4.29].

Let
[Fig. 4.29]

SItrefpanfa a, c, b, , δ fit a, c, longior quàn cou dico quod appenfis aqualubus panderibus, que int $a, \forall \sigma$. de clinabicex parte a, dimifja enim perpen. denderic, f.bseircinentur:due querre cir culorum circa centrum c; qua jins a $b, e t$ $b f, * \begin{gathered}\text { chuctis contingentious } a b a, * \sigma b \text {, }\end{gathered}$ qua fint a, e. \& b, di, palam eft minorem $c \beta$ cangulum c, a, b, contingentis, quàm d, b, f, \in ideo minor obliquus defen'us A Nicolao confirufa .
 per a, b, quàm per b, f. gravius ergo a, quàm b, in boc fitu.

Quxftio Sexta.

Si fuerint brachia libra pro portionalia ponderibusappé forum ita, ut in breuiori grauiter appendatur, xque grauia erunt fecundum fitem appenfa.

SIt ut prius regula $a, c, b, a p p e n f a$ $x,<l$ b,fitq́; proportio $b, a d$ a,tä quam a, c, ad bc. dico quid non nutabit in aliqua parte libre. Sit eni $u t$ ex parte b, defcendat, tranfeatq́; in obliquim linea $d_{2} c_{2}, e_{2}$ loco $a_{3} c_{3} b_{2} e t$

appenfa d,ut $a, \forall<c$,ut b, , d, b, linea orthogonaliter defeendar, © $t c, b$,

[5r]

P O N DEROSIDATE.

Let the balance be acb, and let ac be longer than cb [See Fig. 4.30]. I say that if equal weights are suspended, as a and b, the balance will decline on the side of a.

Indeed let the perpendicular cfg be drawn, and let two quarter circles, ag and bf, be described around the centre c; and let the tangents af and bd be drawn from a and b. it is then plain that the angle of contingency eag is smaller than the angle dbf, and that therefore the descent along ag is less oblique than along bf. Then, in this position, a is heavier than b.

Sixth Question [Proposition].

If the [length of the] arms of a balance are proportional to the weights suspended, and the heavier weight is suspended from the shorter, the weights will be equally heavy according to position.

Figure drawn by Niccolo ${ }^{[93]}$

[Fig. 4.30]

Let consider the beam acb, as before, with suspended [weights] a and b; and let the ratio of b to a be as the ratio of ac to bc [See Fig. 4.31]. I say that the balance will not tilt in any direction.

[Fig. 4.31] (Of this figure only the left part is commented upon in the text)

Suppose it descends on the side of b; and passes to the skew line dce from the position acb. If a weight d, equal to a, and a weight e equal to b, are suspended, and if the line da descends vertically downward and the line eh rises, it is evident that because the triangles dcf and ech are similar, the proportion of dc to ce is the same as that of df to eh. But dc is to ce as b is to a therefore off is to eh as bis to a. Then assume cl equal to $c b$ and to $c e$, and l equal in weight to b,

OTVSCVLVMDE

dere，\＆def cendat perpendiculum $l, m, q u i a l, m$, ，© $c, b, c o n f l a u t ~ e f e r e y . ~$ quales，erind，byad Limsficut b，ad a；© jocut l ，ad a ，fed ut oftenjum oft a， \＆l proportionsliter fe babent ad contrarios motus alecrnatim．Q wod igi tur＇）ufficiet attollere a ，in d ，fuficiet attollere l ，fecundam l, m ．Q num er go equalia fint l ，er b ，σ l l ，c ，aquale c ，b, l ，non fequitur b ，contrario morn， aeque a ，fequitur b ，fecundum quid proponitur．

12 icolso construlta

Sive

Quxftio Settima．

Si duo oblonga per totum fimilia，\＆quantitate，$£$ ponde－ re x qualia appendantur ita，ut in alterum dirigatur，alternm orthogonaliter dependeat，ita etiam，ut termini dependentis \＆medii alterins eadem fit a centro diftantia，（ecundum nuns fitum aque grania fient．

SInt termini reguite $a, * b b$ ，centrum c ，st appenja qui dem dirigitur fecundum fitkm．Reßp．ad aquidiftan－ tia orizontis fit，a dde mediom cius d，é alterum de－ pendes $b, 6$ ．fit tüc $b,=$ ，fit $\dot{q} ; b, c$, tanquame c, z ，d．Dico quòd $a, d, c, c-b, 6$ ，in boc fitu sque rraniora fumt．Ad buuus cuidentiam dicimus，quid j i refponfa ex parte a ，$\sqrt{\text { It }}$ ut c ， e，ઠ゙ append antur in a，©た e，＂iko pondera «qualia，ficut
z ，e＇y ，\＆duplum utriufque appendatur ad b ，quod $j t$ x ，，er it etiam in boc fitu x ，l ，tanquam $z, \leqslant y$ ，in pondere．Sint enim x ，$火$ l ，dimidia eius erit \dot{q} ；pondus cius，x ，ed pondus z ，tanquam $b, c, a d c, e$ ，per prami $\{[a m$, ，commune ponius l ，ad pondus y ，in $b o c$ fitu，ficut ab $b, c, a d$
 quia duptiam b, c ，eft，ut c, a, e $c c, c$ ，critx x ，aquale z ，\＆f y ，in pondere in boc fitu，hac ratione，quoniam omnes partes b， 6 pondere funt equales，ef in boc fru，© qualibtt dua partes a，$d, c, a q u a l i t e r ~ a, d$ ，diflantes frat in pä dere

[5v]

O P U S C U L U M D E

and draw perpendicularly $l m$. Since $l m$ and eh are shown to be equal, then df will be to lm as b is to a, and as l is to a. But, as has been shown, a and l are inversely proportional to their contrary [upward] motions. Therefore, what suffices to lift a to d, will suffice to lift l through $l m$ Since l and b are equal, and $l c$ is equal to $c b, l$ will not follow b; and neither a will follow b in the contrary motion, which is what it is proposed.
[Figure] drawn by Tartaglia ${ }^{[94]}$
Or

[Fig. 4.32]
Seventh Question [Proposition].
If two oblong bodies, wholly similar and equal in size and weight, are hung from a balance so that the one be disposed horizontally and the other comes down vertically, so that the distance from the centre [of the balance] to the extremity that descends is the same as the distance to the midpoint of the other, in this position [the two bodies] will be equally heavy.

Let a and b be the ends of the beam, c the centre; and be the body disposed horizontally, with d its mid point; and let the other body, which hangs, be bg so that bc be equal to cd [See Fig. 4.32]. I say that ade and bg, in this position, are equally heavy. To make this evident, we say that if the beam, on the side of a, were equal to ce, and if there were suspended from a and e two equal weights, z and y [See Fig. 4.33], and if a weight double of any of these, xl, were suspended from b, then also in this position xl would be equally heavy as z and y. Let indeed x and l the two halves ${ }^{[95]}$ [of xl$]$ then the weight x will be to the weight z, as bc is to $c e$, and the weight l will be to the weight y, in this position, as $b c$ is to ca. Hence xl will be to z plus y, as twice cb is to ec plus ac. And because twice bc is equal to ca plus ce, xl will be equal in weight to z plus y, in this position. ${ }^{[96]}$ For this reason, since all the parts of bg are of equal positional gravity, and since the two parts of ade equidistant from d are equal in wei-

PONDEROSTTMYE

6 dere equales duabus equis partibus b，6．equitur ut to－ tum toti．

Quęfio Ottaua．

Si inxqualia fuerint brachia librx，\＆in cen－ tro motus angulum fecerint ：fi termini corum ad direftionemhinc inde equaliter accefferint： x qualia appenfa in hac difpofitione xqualiter ponderabunt．

S
It centrama a brachia a，c，longius b，c，breuius，© deficendat perpen diculariter c，e，σ ．fupra quä peri－ pendiculariter cadant binc，inde a，6． © b，e，equales．Qumm int ergo a－
 ne non mutabütur，pertranfeät enim aqualiter $a, 6, \sigma$ b，e，ad K ，むz，© fuper eas fiant portiones criculormm $m, b, b, z, x_{,} x_{2}, a, l$ ，ev rirca centrum c，fiat commane proportio K, y, a, f ， fimilis，©－aqualis portionis m, b, b, z_{0}由f fint arcus a, x, a, ，aquales fibiat－ que fimiles arcubus b, m, b, b ．Itemq́； a, y, a, ．fi ergoponderofius eft $a, q u a z$ b ，in boc fitu deficendat a ，in x ，es a－ feendat b，inm，ducătur igitur lines． $z, m, K, x, y, K, f, l, \notin m, p$, fuper z, b ， fet perpendiculariter etiam $x, e, \delta-$ f, d ，fuper K, a ，d，er quia m，p, squa－ tirf，d，\＆ipfa est maior $x, t, p e r \int i-$ miles triangulos erunt m, p, maior $x, t, q u i a$ plus afcendit b ，ad reClitu－ dinem，quàm a ，defcendis ．quod est impoffbile，quamm fint aqualia：defç
 dat ratione b ，in b ，\＆trabat $a, i n l$ ， \＆cadant perpendicklariter $b, 2$, ，fuper $b, z, \dot{\sim} l, n$, ，$y, 0$, ，fuper n, m ，fiet l, n, maior $y, 0$ ，父 ideo maior b, r, inde fimiliter colligitar impolibile．Ad maiorem autem enidentiam defribamus aliam figuram，boc noodo．

[6r]

PONDEROSIDATE.
to two equal parts of bg, it follows that the whole is equal to the whole.
Eighth Question [Proposition].
If the arms of a balance are unequal, and form an angle at the centre of rotation, then, if their ends are equidistant from the vertical passing through the centre, equal weights suspended in this configuration will weigh equally

Let the centre be c, the longer arm ac, and the shorter bc and draw the vertical line ceg; and let ag and be be equal lines, perpendicular to this vertical. When equal weights are suspended at a and b, they will not change this position [See Fig. 4.35]. ${ }^{[97]}$ For let ag and be be equally extended to k and z [See Fig. 4.35]; and on them draw the arcs of circles, mbhz and kxal and about the centre c let kyaf be similar et equal to mbhz and let the arcs ax and al be equal to each other, and similar to the arcs mb and be and let the arcs ay and af also be equal and similar. If then in this position a is heavier than b, a descends to x and that b raises to m. Then draw the lines zm, kxy, kfl; and $m p$ perpendicular to $z b p$, and $x t$ and fd on kad. Because mp is equal to fd which is greater than xt, on account of similar triangles, ${ }^{[98]} \mathrm{mp}$ will also be greater than xt. hence b will be [See Fig. 4.34) lifted vertically [of mp] more than a will descend vertically [of $t x$], which is impossible since they are of equal

Fig. 4.33

Fig. 4.34 (de Nemore 1565, 6r.) ${ }^{[99]}$ weight. Again, let b descends to h and a lifts to l; and let hr fall perpendicularly on bz, and ln and yo on kon. Then ln will be greater than yo, and consequently greater than hr; so similarly the impossible will result. For a greater evidence, let us draw a different figure, as follows. ${ }^{[100]}$

OTVGCYLVMDE

Figurad Nicolao Tartalea coftrutta juper banc 8.

Effo linearela i, k, e, n, z © circa centron c.binc inde dwo femicirculiy,
 d diretic q; perpend. culares hinc inde fiant aquales ut b, l, er e,f, pertra-
 $c \cdot \frac{f}{2}$ in boc fitu aque ponderofa crunt Directer enim linea b, a, b, x, f, b, r, d, a, d, f, d, c, omnes f icabuntur per ep fualia apud diamerrum, weluth b, x, f, ©-ita omnes diuife crunt per medium. quare ergo in medro omnium fint centra poits ficut junt pondera pofita equaliter, ergo ponderant: fubriliws tamen qusd amd fire nt a potiff perpendt : ut fit a,ponderof fus quàm
 statm enim portio hineed d, uerjus e, fieret mvor, frd ; potest nutu fatto
 luta depend ant ut fit angulus iupra centrum, fub ipfo cnim mota b, unferias crefict fempor pars lineas b, a, ,uerjus b_{2} of fiat b grauius.

Quxftio Nona.

Aequalitas declinationis identitatis ponderis.

DE lination's aqualitas tantum in sia refla con'eruatur, et ipfa fit
 d, 心r c. Siuc er go a d, deiend nt qurodiber pondus, fiuc abe, culdem punder's errit, aqua's senim partes fubd. ©, c, inmpta aqualater capzanit de direfito, quel patee ductis perpendicularibas ad a, c, a, b, eidem loris que fist $c s^{4}, b, 6, t, \mathcal{C}$ dmuffis orthogonaliteriuper illas d, K, er $e, m, l i-$ neas, pnd: fincexcedatur pondus jupra a,b,fiuc friml ponatur pnius pon di,isff.
[6v]
O P U S C ULUM DE
Figure drawn by Niccolo Tartaglia based ${ }^{[101]}$ on this 8. [Eight Question]

Fig. 4.36

Fig. 4.35 [our performance] ${ }^{[102]}$
Let there be a vertical line ykcnz, and around the centre c let there be drawn two semicircles, yaez and kbdn [see Fig. 4.35] and let the lines afe and bd be drawn at equal distances from the diameter, and from these let there be drawn the equal perpendiculars bl and cf Then draw the lines $c b, c a, c d$, and ce and assume that equal weights are suspended at a, b, d, e, and f, they will be of equal weight in this position. For if the lines $b a, b x f, b e, d a, d f$, and de are drawn, all of them will be bisected by the diameter as for instance bxf. And in the same manner the others will be divided at their mid points. Since weights are placed in the same way they will be of equal weight. A more subtle variant may, however, be determined, if we suppose that a is heavier than b, b heavier than f, f heavier than d, and d heavier than e. Yet d is not able to lift e; for the segment of the line de on the side of e would immediately become greater. But if a is given an impulse downward, it is able to raise b, and similarly b can raise a; and a can raise d; and b can raise f and f can raise b; until they make a complete revolution and hang in such manner that the angle with the axis is beneath them. For when b is moved downward, the segment of the line ba, on the side of b, will become steadily longer, and b will become heavier. ${ }^{[103]}$

Ninth Question [Proposition].

Equality of declination conserves identity of weight.
Equality of declination is conserved only on a rectilinear path. Let this [path] be on the line ad, and let the line ac descend vertically and assume two points, d and e on ab [See Fig. 4.36]. Any heavy body you like, then, whether it descends from d, or from e, will have the same weight. For equal segments of ad, taken beneath d and e, will have equal components of the vertical. This is clear, if we draw from these points the perpendiculars eh and gl to the line ac, and if we let lines $d k$ and em perpendicularly on them. Thus, whether a heavy body moves along ab, or is placed there, it will be of the same weight.

PONDEROSITATE.

Quxatio Dicima .
Si per dinerfaram obliquitatum uias duo pondera defcendane.fiantq̆́; declinationum, \&s ponderum vna proportio eodemordine fump:a vna erit utriulque uirtus in deifendendo.

SIt linea a, b, c, equed Anns orizonti, b fuper a eam orthozonal ter ereal. fit $b, d, a \ddot{q u i}$ defien dant binc, inde lnea $d, a, d . c$, fit q; d, c, matoris ub'rquitatis proportione igit -r declinationum dico non angulorum, fed lmearnm "fque ad equedifian tem retecationem, in qua squaliter fumunt de dire Efo. Sit ergo e pondus fuper d $c, v i b$, fuper d, a, to fit e, ad b.ficut $d, c, a d$ a,d. Dico ea pödira effer minius uircutis in boc fitu, fit enim d, k, linea pnius $Q b$ liquitzits cion $d_{\text {, }}$, vr pondusfaper exm. ergo equa le eft c, ว̧ux it 6 . Si igitur poJibule eft, defcend it c, in l, © trahat h, in m, fitq; $6, n$. squale b, m, quod etiam equale eft e,l, \& tranieat per 6. 心b, perpé dicul_ris, fuper d, b. Sitq́; 6.b.y, 各 $a b l$, $\left(i t l, t_{3}\right.$, unt © tunc fuper $6, b y, n, z, m, x, *$ isper l, t, erit c, r_{3} qua igatur proportio n, χ, ad $n, 6$, ficut ad $d, 6, d, y$, propter fimulitkdinem trimgulornm, \&- tdeo ficut $d, b, a d d, k$, or quia fimititer $m, x, a d m, h, f i$ ut d, $b, a d d_{2} z$. Erit propter aqualé proportion.littaté per turbitam, $x, a d n z$. ficut $d, K, a d d, x$, or boc oft ficht 6, ad b fed awar roc, non fufficit attollere 6,in $n, n \in c$ juffictict attollere m, in m, fic ergo man.bunt.

Quxftio Vndecima.
Quam fit refponfa librę vnins ponderis, \& grosficiei pertotum: \& ipfa in pondere data fuper inzqualıa diuidatur, atque ex parte breuiore dependeat xquabilicer pödus darum, erunt \& portiones \& regalx, quefunt a centro examinis fimiliter datz.

[7r]

P O NDEROSIDATE.
Tenth Question [Proposition].
If two weights descend along diversely oblique paths, then, if the inclinations are directly proportional to the weights, they will be of equal strength in descending.

Let there be a line abc parallel to the horizon, and let bd be erected vertically on it; and from d draw the lines da and dc, with dc of greater obliquity [See Fig. 4.37]. I then mean by proportion of obliquities not the ratio of the angles, but of the lines measured up to a horizontal line cuts off an equal segment of the vertical. Let the heavy body e, then, be on $d c$, and the weight h on da; and let e be to h as $d c$ is to da. I say that those weights are of the same strength in this position. For let dk be a line of the same obliquity as $d c$, and let there be on it a weight g, equal to e. Then let assume possible e descends to l, and lifts h up to m and let gn be equal to hm, which in turn is equal to el. Then draw a perpendicular to $d b$ from g to h, which will be ghy; and [another] from l, which will be $t l$. And on ghy, erect the perpendiculars $n z$ and $m x$; and on $l t$, [erect] the perpendicular er. Since the proportion of $n z$ to $n g$ is as that of dg to dy, for the similitude of triangles, and hence as that of $d b$ to $d k$, and since likewise $m x$ is to $m h$ as $d b$ is to da, $m x$ will be to $n z$ as $d k$ is to da, i.e., as g is to h. But because e does not suffice to lift g to n, it does not suffice to lift h to m. Therefore they remain as they are.

Eleventh Question [Proposition]

When there is a balance beam of uniform weight and thickness throughout, and its weight is known, if it is divided into unequal segments and if a body of known weight, suspended from the shorter arm, holds the beam in equilibrium, then the lengths of

[Fig. 4.37] the arms on each side of the axis of rotation will also be determined.

Let the beam be abc, of a given weight and of uniform thickness. Let a body,

Figura ì 2 Vicolao conflrufta. Quod fi portiones datz fue-
int, $\&$ pondus datum erit.

$\sim^{2}$$V$ menim xt premiffurm eft d, pondus (\bar{x} tota a, r, fit ad cius dimidiom, ficut tota $a, c, a d b$, c. $c \bar{u}$ fint $a, b, \& f b, c$, data, \mathfrak{l} ducatur a,c, in fuum dimidinm, ut prius, c- pro ductum dixidattr per b, c, exibit pon dusd, $*$ tota a, c, detraitia ergoas $c_{\text {, }}$ relinquitur pondus d, datum.

Quzftio Tertiadecima.

Si uero pondus datum fuerit, \& pars cui appenditur data,totam quoque datum erit.
[7v]
O P U S C U L U M DE

Fig. 4.38
Figure drawn by Tartaglia
d, of known weight, hang from the end c, and let be be equale to bc. From the mid point of ae, designated as z, let there be suspended a body, h, equal in weight to the segment of the beam ae; and in this position it will also be of equal heaviness. Since therefore h and d are equally heavy in this position, the proportion of d to h will be that of $z b$ to $b c$. And by alternation, the proportion of d to $z b$ will be that of ae i.e., of h to bc. And by composition, the proportion of d plus twice $z b$ (i.e., ac) to $z b$, will be that of $A E$ plus twice bc i.e., ec to bc. If therefore the whole weight abc is multiplied by its half, and the product is divided by the sum of the weights of d and of ac-all these being given-, the weight of the segment bc is thereby determined.

4.1.6.2 The Latin Critical Transcription

[2r]
 FRANCISCO LABIAE ${ }^{[104]}$
 OMNI VIRTUTUM GENERE ORNATO.
 CURTIUS TROIANUS S.D.

Non me fugit summa in expectatione te esse, cum optimi literarum studijs, qui te vehementius incumbat cognoscam neminem. Nullum profecto doctrina genus est, in quo non verseris, nulla disciplina, quam non intelligere velis, tu grammaticum canones, historias, et poetarum fabulas mirifice tenes, tu rhetoricis flosculis abundas, dialecticorum argutia scrutaris, physices arcana, et superior intelligentia pervestigas, tu theologorum abdita perquiris, tu mathematicis, et omni denique eruditionis genere delectaris, quamobrem, pro mea in te; et patrem tuum benevolentia, propter egregiam tuam indolem, iucundissimos more, divinum inge
nium, summa modestiam, tibi optimae adolescent dicare volui hunc Iordani ingeniosi, et acuti hominis librum de ponderibus, quem mihi suis in fragmentis Nicolaus Tartalea familiaris meus, vir quidem praeclaris ornatus scientiis excudendum reliquit. Accipias igitur laeto vultu hunc in lucem editu, tuoque sub nomine emissum, quandoquidem tibi non modo iucunditati, sed etiam utilitati fore certo scio. Vale: Nonae Kalendas Februarius.
[3r]
PRIMA SUPPOSITIO.
Omnis ponderosi motum esse ad medium virtutemque ipsius esse potentia ad inferiora tendendi virtutem ipsius, sive potentia possumus intelligere longitudinem brachii librae, aut velociter eius quem probatur ex longitudine brachii librae, et motui contrario resistendi. Secunda: Quod gravius est velocius descendere. Tertia: Gravius esse in descendendo quanto eiusdem motus ad medium rectior. Quarta: Secundum situm gravius esse cuius in eodem situ minus obliquus descensus. Quinta: Obliquiorem autem descensus in eadem quantitate minus capere de directo. Sexta: Minus grave aliud alio secundum situm, quod descensum alterius sequitur contrario motu. Septima: Situm aequalitatis esse aequalitatem angulorum circa perpendiculum, sive rectitudinem angulorum, sive eque [aeque] distantiam regulae superficiei Orizontis [Horizontis].

Quaestio Prima.

Inter quaelibet gravia est virtutis, et ponderis eodem ordine sumpta proportio.
Sint pondera a, b, c, levius c, descendatque a, b, in d, et c, in e. Itaque ponatur a, b, sursum in f, et c in $h .{ }^{[105]}$ Dico ergo quod quae proportio a, d, ad c, e, sicut a, b, ponderis ad c pondus, quanta enim virtus ponderosi tanta descendendi velocitas: at quae compositi virtus ex virtutibus componentium componuntur. Sit ergo a, aequale c. Quae igitur virtus a, eadem et, c. Sit igitur proportio a, b, ad c, minor quam virtutis ad virtutem. Erit similiter proportio $a, b, a d a$, minor proportio quam virtutis $a, b, a d$ virtutem a, ergo virtutis a, b, ad virtutem b, minor proportio quam a, b, ad b. per 30. quinti Euclidis quod est inconveniens. Similium igitur ponderum minor, et maior proportio, quam virtutum. Et quia hoc inconveniens erit, utrobique eadem ideo $a, b, a d c$, sicut a, d, ad c, e, et e, contrario sicut $c, h, a d a, f$.

[3v]

O P U S C ULUM DE

Quaestio Secunda.
Quum aequilibris [aequilibriis] fuit positio aequalis aequis ponderibus appensis ab aequalitate non discedet: et si a rectitudine separatur, ad aequalitatis situm revertetur. Si vero inaequalia appendantur, ex parte gravioris usque ad directionem declinare cogetur.

Figura a Nicolao de Tartagliis instructa.

Aequilibris dicitur quando a centro circunvolutionis [circumvolutionis] brachia regulae sunt aequalia. Sit ergo centrum a, et regula b, a, c, appensa b, et c, perpendiculum $\quad f$, \quad. Circunducto [Circumducto] igitur circulo per b, et c, in medio cuius inferioris medietatis sit e, manifestum quoniam descensus tam b, quam c, e, per circunferentiam [circumferentiam] circuli versus e, et cum aeque obliquus sit hinc inde descensus, quum sint aeque ponderosa, non mutabit alterutrum. Ponatur item quod submittatur ex parte b, et ascendat ex parte c, dico quoniam redibit ad aequalitatem, est enim minus obliquus descensus $c,{ }^{[106]}$ ad aequalitatem, quam a, b, versus e. Sumantur enim sursum arcus aequales, quantumlibet parvi qui sint c, d, et $b, g,{ }^{[107]}$ et ductis lineis ad aequidistantiam aequalitatis, quae sint, c, h, l, et d, m, n. Item b, k, h, g, y, t, dimittatur orthogonaliter descendens diametrum quae sit f, z, m, a, k, y, e, erit quod z, m, maior k, y, quia sumpto versus f, arcu ex eo quod sit aequalis c, d, et ducta ex transverso linea.
x, r, s, erit r, z, minor z, m, quod facile demonstrabis. Et quia r, z, est aequalis k, y, erit z, m, maior k, y. Quia igitur quilibet arcus sub c, plus capiat de directo quam ei aequalis sub b, directo est descensus a, c, quam a, b, et ideo in altiori situ gravius erit c, quam b, redibit ergo ad aequalitatem.

P ONDEROSIDATE.
Sit item b, gravius, quam c, et ponantur aequaliter, quia ergo utrobique est aeque obliquus descensus patet, quia b, descendit. Ponatur etiam b, inferius, ut libet, et, c, superius: dico quod etiam in hoc situ erit gravius b, dimittant enim directae lineae c, d, et b, h, et contingentes circulum sint b, l, c, m, et sit arcus c, z, similis, et aequalis, et in eodem situ cum arcu b, e, quem et linea c, m, continget. Et quia obliquitas $\operatorname{arcuum} b, e$, vel c, z, est angulus d, c, z, et obliquitas arcus, c, e, est in angulo d, c, m, atque proportio anguli $d, c, z, a d$ angulum d, c, m, est minor qualibet proportione, quae est inter maiorem, et minorem quantitatem. Minor et erit, quam ponderis b, ad pondus $c .{ }^{[108]}$ Quomodo ergo plus addat b, super c, quam obliquitas super obliquitatem gravius erit b, in hoc situ, quam c, hac rationem non definet [definiet] b, descendere, et, c, ascendere, usque f, e, q.

Quaestio Tertia.

Omne pondus in quamcunque partem discedat ab aequalitate secundum situm fit levius.

Supra enim locum aequalitatis duo loca signentur super, et infra, et ab omnibus arcus resecentur ab inferiore aequales, ut libet parvi, et qui est sub loco aequalitatis plus capiet de directo.

Figura a Nicolao de Tartagliis instructa

[4v]

OPUSCULUM DE

Quaestio quarta.
Quum fuerint appensorum pondera aequalia, non faciet nutum n aequilibri appendiculorum inaequalitas.

Sit responsa [regula] a, b, c, centrum c, et appendicula a, d, et b, e, longius autem b, e, appensa b, e, descendatque c, z, y, orthogonaliter quantumlibet, et ductis d, z, et e, y, aeque distantibus respondere, et positis centris in z, et y, circunducantur quartae circulorum per d, et, e. Et quoniam d, z, et e, y, sunt aequales, erunt et quartae circulorum aequales. et quia per illorum circunferentias est descensus d, et c, quum aeque ponderosa sint d, et e, et aeque obliquus, descensus in hoc situ aeque gravia erunt. Non ergo nutabit hinc, vel inde responsa [regula]. Quod autem per illas sit illorum descensus, sic constet. Describatur enim semicirculus circa centrum c, secundum quantitatem b, et a, et dimittatur a, in m, et b, in n, descendantque ab m, et n, ad quartarum circunferentias lineae m, x, et n, h, aeque distantes $c, y,{ }^{[109]}$ dico quod m, x, adaequatur a, d, et n, h, aequalis est b, e, quod patet ductis lineis z, x, y, h. Quum ergo semper descendant a, et b, per hunc semicirculum descendunt etiam d, et e, per descriptas quartas, et hoc fuit demonstrandum.

Quaestio Quinta.

Si brachia librae fuerint inaequalia, aequalibus appensis ex parte longiore nutum faciet.

[5r]

P O N DER O S I D A TE.

Sit responsa [regula] a, c, b, et sit a, c, longior quam c, A Nicolao constructa.
b. dico quod appensis aequalibus ponderibus, quae sint a, et b. declinabit ex parte a, dimissa enim perpendiculari c, f, $g,{ }^{[110]}$ circinentur duae quartae circulorum circa centrum c, quae sint a, b, et b, f, et eductis contingentibus $a b a$, et b, quae sint a, e et b, d, palam est minorem esse angulum e, a, $g,{ }^{[111]}$ contingentiae, quam d, b, f, et ideo minor obliquus descensus per a, b, quam per b, f, gravius ergo a, quam b, in hoc situ.

Quaestio sexta.
Si fuerint brachia librae proportionalia ponderibus appensorum ita, ut in breviori graviter appendatur, aeque gravia erunt secundum situm appensa.

Sit ut prius regula a, c, b, appensa a, et b, sitque proportio
 b, ad a, tam quam a, c, ad bc, dico quod non nutabit in aliqua parte librae, sit enim ut ex parte b, descendat, transeatque in obliquum linea d, c, e, loco a, c, b, et appensa d,

ut a, et e, ut b, et $d, f,{ }^{[112]}$ linea orthogonaliter descendat, et e, h, ascendat. palam quoniam trianguli $d, c, f,{ }^{[113]}$ et e, c, h, sunt similes, quia proportio d, c, ad $c, e, q u a m d, b$, ad e, h, atque d, c, ad c, e, sicut b, ad a, ergo $d, f,{ }^{[114]}$ ad e, h, sicut b, ad a, sit igitur c, l, aequalis c, b, et c, e, et l, aequatur b, in pon $[-]$

[5v]

O P U S C U L U M D E

dere, et descendat perpendiculum l, m, quia l, m, et e, h, constant esse aequales, erit $d, g,{ }^{[115]}$ ad l, m, sicut b, ad a, est sicut l, ad a, sed ut ostensum est a, et l, proportionaliter se habent ad contrarios motus alternatim. Quod igitur sufficiet attollere a, in d, sufficiet attollere l, secundum l, m. Quum ergo aequalia sint l, et b, et l, c, aequale c, b, l, non sequitur b, contrario motu, neque a, sequitur b, secundum quod proponitur.

A Nicolao constructa

Sive

Quaestio Settima.

Si duo oblonga per totum similia, et quantitate, et pondere aequalia appendantur ita, ut in alterum dirigatur, alterum orthogonaliter dependeat, ita etiam, ut termini dependentis et medii alterius eadem sit a centro distantia, secundum nunc situm aeque gravia fient.

Sint termini regula a, et b, centrum c, ut appensa quidem dirigitur secundum situm. Responsa [regula] ad aequedistantia orizontis sit, adde medium eius d, et alterum dependes b, g, fit tunc $b, c,{ }^{[116]}$ sitque b, c, tamquam c, a, d. Dico quod a, d, c, et b, g, in hoc situ aeque graviora sunt. Ad huius evidentiam dicimus, quod si responsa [regula] ex parte a, sit ut c, e, et appendantur in a, et e, duo pondera aequalia, sicut z, et y, et duplum utriusque appendatur ad b, quod sit
x, l, erit etiam in hoc situ x, l, tanquam z, et y, in pondere. Sint enim x, et l, dimidia eius eritque pondus eius, x, ad pondus z, tanquam b, c, ad c, e, per praemissam, et commune pondus l, ad pondus y, in hoc situ, sicut $a b b, c, a d c, a$, itaque erit x, l, ad z et y, in hoc situ, sicut ad e, c, et a, c, duplum a, b, et quia duplum b, c, est, ut c, a, et c, e, erit x, l, aequale z, et y, in pondere in hoc situ, hac ratione, quoniam omnes partes b, g, pondere sunt aequales, et in hoc situ, et quaelibet duae partes a, d, e, aequaliter a, d, distantes sunt in $p o[-]$

[6r]

PONDEROSIDATE.

dere aequales duabus aequis partibus b, g. Sequitur ut to-tum toti.

g
Quaestio Octava.
Si inaequalia fuerint brachia librae, et in centro motus angulum fecerint: si termini eorum ad directionem hinc inde aequaliter accesserint: aequalia appensa in hac dispositione aequaliter ponderabunt.

Sit centrum c, brachia a, c, longius b, c, brevius, et descendat perpendiculariter c, e, g. supra quam perpendiculariter cadant hinc, inde a, g. et b, e, aequales. Quum sint ergo aequalia appensa a, c, b, ab hac positione non mutabuntur, pertranseant enim aequaliter a, g, et $b, e, a d k$, et z, et super eas fiant portiones circulorum m, b, h, z, k, x, a, l et circa centrum c, fiat commune proportio k, y, a, f, similis, et aequalis portionis m, b, h, z, et sint arcus a, x, a, l, aequales sibi atque similes arcubus b, m, b, h. Itemque a, y, a, f. Si ergo ponderosius est a, quam b, in hoc situ descendat a, in x, et ascendat b, in m, ducantur igitur lineae z, m, k, x, y, k, f, l, et m, p, super z, b, stet perpendiculariter etiam x, e, et f, d, super k, a, d, et quia m, p, aequatur f, d, et ipsa est maior x, t, per similes triangulos erunt m, p, maior x, t, quia plus ascendit b, ad rectitudinem, quam a, descendit. quod est impossibile, quum sint aequalia: descendat ratione b, in h, et trahat a, in l,

et cadant perpendiculariter h, r, super b, z, et l, n, et y, o, super $n, k{ }^{[117]}$ fiet l, n, maior y, o, et ideo maior, h, r, unde similiter colligitur impossibile. Ad maiorem autem evidentiam describamus aliam figuram, hoc modo.
[6v]
O P U S C U L U M D E

Figura a Nicolao Tartalea constructa super 8 .

Esto linea recta $y, k, c, n, z,{ }^{[118]}$ et circa centrum c, hinc inde duo semicirculi y, a, e, z, k, b, d, n, et transeat lineae aequedistantes a diametro a, f, e, et $b, d,{ }^{[119]}$ directeque perpendiculares hinc inde fiant aequales ut b, l, et $c, f,{ }^{[120]}$ pertractis recte lineis $c b, c, a, d, c, e,{ }^{[121]}$ positio quod pondera sint aequaliam, a, b, d, e, f, in hoc situ aeque ponderosa erunt. Directe enim lineae $b, a, b, x, f, b, e, d, a, d, f, d, e$, omnes secabuntur per aequalia apud diametrum, veluti b, x, f, et ita omnes divisae erunt per medium. quare ergo in medio omnium sint centra posita, sicut sunt pondera posita aequaliter, ergo ponderant: subtilius tamen quaedam differentia potest perpendi: ut sit a, ponderosius quam b, et b, quam f, et f, quam d, et d, quam e, nec tamen potest d, elevare e, statim enim proportio lineae d, e, versus e, fieret maior, sed e, potest nutu facto trahere b, et b, similiter a, et d, a, et a, d, et b, f, et f, b. donec circumvoluta dependeant ut sit angulus supra centrum, sub ipso enim motu b, inferius crescet semper pars lineae b, a, versus b, et fiat b, gravius.

Quaestio Nona.

Aequalitas declinationis identitatis ponderis.
Declinationis aequalitas tantum in via recta conservatur, et ipsa sit in linea a, b, et recte descendens linea sit a, c, sintque in a, b, duo loca d, et e. Sive ergo a d, descendat quodlibet pondus, sive $a b e$, eiusdem ponderis erit, aequales enim partes sub d, et, c, sumptae aequaliter capiunt de directo, quod patet ductis perpendicularibus ad a, c, a, b, eisdem locis quae sint e, $k, h, g, l,{ }^{[122]}$ et dimissis orthogonaliter super illas d, k, et e, m, lineas, unde sive excedatur pondus supra a, b, sive simul ponatur unius ponderis est.

[7r]

P O N DER O S I D A TE.

Quaestio Decima.
Si per diversarum obliquitatum vias duo pondera descendant, fiantque declinationum, et ponderum una proportio, eodem ordine sumpta una erit utriusque virtus in descendendo.

Sit linea a, b, c, aequedistans orizonti, et super eam orthogonaliter erecta sit b, d, a qua descendant hinc, inde lineae d, a, d, c, sitque d, c, maioris obliquitatis proportione igitur declinationum dico non angulorum, sed linearum usque ad aequedistantem resecationem, in qua aequaliter sumunt de directo. Sit ergo e, pondus super d, c, et h, super d, a, et sit e, ad b, sicut d, c, $a d a, d$. Dico ea pondera esse unius virtutis in hoc situ, sit enim d, k, linea unius obliquitatis, cum d, c, et pondus super eam. ergo aequale est e, quae sit g. Si igitur possibile est, descendat e, in l, et trahat h, in m, sitque g, n, aequale h, m, quod etiam aequale est e, l, et transeat per g. et h, perpendicularis, super d, b. Sitque g, h, y, et $a b$ l, sit l, t, sunt et tunc super g, h, y, n, z, m, x, et super l, t, erit $e, r, q u i a ~ i g i t u r ~ p r o p o r t i o ~ n, z, ~ a d ~ n, ~$ g, sicut ad d, g, d, y, propter similitudinem triangulorum, et ideo sicut $d, b, a d d, k$, et quia similiter $m, x, a d m, h$, sicut $d, b, a d d, a$. Erit propter aequalem proportionalitatem perturbata m, x, ad n, z, sicut d, k, ad d, a, et hoc est sicut g ad h, sed quia $e^{[123]}$ non sufficit attollere g, in n, nec sufficiet attollere $h^{[124]}$ in m, sic ergo manebunt.

Quaestio Undecima.
Quum sit responsa libre vnius ponderis,et grossiciei per totum: et ipsa in pondere data super inaequalia diuidatur, atque ex parte breuiore dependeat aequabiliter pondus datum, erunt et portiones, et regulae, quae sunt a centro examinis similiter datae.

Sit responsa a, b, c, data in pondere, et aequalis in grossicie, et dependeat

[7v]

O P U S C ULUM DE

Figura à Nicolao constructa.
ex parte c, pondus b, datum, sitque b, e, aequalis b, c, et in medio a,e, notetur z, á quo dependeat pondus h, aequale a, e, et in eo etiam situ aeque ponderabit. Quia ergo in hoc situ aeque ponderant h, et d, eritque proportio d, ad h, ea z, b. ad b, c, et permutatim quae proportio $d, a d z$, b, ea est a, e, hoc est h, ad b, c, et coniunctim quae proportio d, et dupli z, b, hoc est $a, c, a d z$, b, ea est a, e, et dupli b, c, hoc est $e, c, a d b, c$. Si ergo tota a, b, c, ducatur in suum dimidium, et perductum diuidatur per d, et a, c, quod totum est datum, exibit b, c,. datum.
[...].

In the following, for historical completeness, we report Latin transcriptions of all of the others Quaestio (de Nemore 1565, $8 \mathrm{r}-14 \mathrm{r}$), as well. Nevertheless, as announced above, they were not interesting for our research on Tartaglia's Book VII and Book VIII.

[7v]

O P U S C U L U M D E
Quaestio Duodecima.
Quod si portiones datae fuerint, et pondus datum erit.
Cum enim ut praemissum est d, pondus cum tota a, c, sit ad eius dimidium, sicut tota $a, c, a d b, c$. cum sint a, b, et b, c, datae, si ducatur a, c, in suum dimidium, ut prius, et productum diuidatur per b, c, exibit pondus d, et tota a, c, detracta ergo a, c, relinquitur pondus d, datum.

Quaestio Tertiadecima.

Si uero pondus datum fuerit, et pars cui appenditur data, totum quoque datum erit.
Verbi gratia d, pondus datum sit, et b, c, portio data. Quia igitur d, ad h, siue ad e, a, sicut $z, b, a d b, e$, erit, quód ex ductu d, in c, b, aequale ei, quod ex ductu a, e in b, z. ergo quod ex ductu d, in c,

[8r]

P O N DER O S I D A TE.

b, bis aequale ei quod ex ductu a, e, in z, b, bis, et hoc est in totum a, c, ergo quod es d, in c, b, bis cum quadrato e, b, est aequale ei, quod ex a, e. in a, c, cum quadrato c, b, sed quod ex a, e, in a, c, cum quadrato c, b, ualent quadratum a, b, per primam, et quartam secundi Euclidis, in materijs igitur quod ex ductu d, in c, b, bis cum quadrato c, b, ualent quadratum, a, b, sed quod ex ductu d, in c, b, bis cum quadrato c, b, est, quoddam datum cum d, et c, b, sint data ergo quadratum a, b, est datum: ergo eius radix, scilicet a, b, est data, cum sit datum quod fit ex d, in b, c, erit et quod ex z, b, in e, a, datum. quare et quod ex $z, b, m, z, e, q u o r u m ~ c u m ~ s i t ~ d i f f e r e n t i a ~ d a t a, ~$ erit utrunque eorum datum: sicque tota a, b, c. data hoc opus est, ut ei quod fit ex d, in b, c, bis addatur quadratum b, c, et compositi radix erit a, b. In hac non ponderandi ratione hic incidunt generalia, scilicet quód quadratum d, c, b, est tanquam quadratum d, et quadratum b, a. Quod enim fit ex d, in c, b, bis est quadratum, quod ex tota c, a, in ea, quare ex d, in c, b, bis cum quadrato c, b, est quantum quadratum b, a. Quadratum ergo d, c, b, ut quadrata d, et b, a amplius quod fit ex d, c, h, in c, b. bis est, ut quadratum c, b, et quadratum b, a, quod enim fit ex d, in c, b, bis cum quadrato c, b, est, ut quadratum b, a, quare quod est d, in c, b, bis cum quadrato c, b, bis et hoc est quod fit ex d, c, b, in c, b, bis erit, ut quadrata b, a, et b, c. amplius quadratum d, c, b, et quod fit ex d, c, b, in c, b, a, bis est, ut quadrata c, b, a, et d, b, a, erit h, quadratum d, c, b, et quod fit bis ex d, c, b, in c, b, tamquám quadrata d, et b, a, et b, a, et b, e, et tunc fit bis, ex d, c, b, in b, a, est ut quod est, d, atque c, b, in b, a, bis, et sic patet, quod dicitur.

Quaestio Quartadecima.
Quod si pondus datum sit, et pars opposita, data similiter omnia data erunt.
Eadem ubique depositio, et d, atque b, a, data sunt, et quadrata eorum coniuncta data erunt, quae sunt, ut quadratum d, c, b, cuius radix quae est d, c, b, data erit. dempto ergo d, relinquitur c, b, datum, et sic ota a, b, c, data erit.

[8v]

O P U S C ULUM DE
Quaestio Quintadecima.
Si responsa dati fuerit ponderis, et pondus appensum cum parte, in qua dependet fecerit quod datum, utrunque eorum datum erit.

Erit enim datum quadratum d, c, b, cum eo quod fit ex ipso in c, b, a, b, a, bis. de quibus dempto quadrato a, b, c, relinquitur quadratum d, b, a, datum erit ergo d, b, a, datur et ipsius ad d, c, b, differentiam data, quae est differentia $a, b, a d b, c$, sicque utrunque erit datum. Et similiter d, eadem ratione, si data a, b, c, fuerit d, b, a, datur erunt omnia data: quia enim quadrata a, b, c, et d, b, a, sunt, ut quadratum d, b, c, et quod fit ex ipso in a, b, c, bis, erit quadratum d, a, b, cum duplo quadrati a, b, c, tanquam quadratum compositi ex a, b, c, et $d, b, c, q u o d$ cum sit datum, et a, b, c, datum erit, et d, b, c, datum, sicque ut prius b, a, et b, c, et d, data amplius scilicet d, c, b, et d, b, a, data non autem a, b, c, erit quoque et ipsa data, et singula data, quum sit enim quadratum d, b, c, ut quadratum d, et quadratum b, a, detracto eo de quadrato d, b, a. relinquitur, quod fit ex d, in b, a, bis datum,quare utrunque datum.

Quaestio Sextadecima.

Si brachia librae fuerint data pondere, et breuius in duo secetur similiter data, et a sectione pondus dependeat quod libram inaequalitate componat, ipsum quoque datum esse demonstrabitur.

Sint brachia librae ut prius a, b, longius b, c, breuius quod secetur in e, dependeatque pondus d, quod libram inaequalitate conseruet, dependeat autem et a, quum pondus h, quidem operetur. Quia igitur tam h, quám d, cum c, b, ponderat ut b, a, dempto b, c, aequale erit d, in pondere ad h, in

[9r]

P O N DER O S I D A TE.

hoc situ. sicut igitur b, c, ad b, e, et d, ad h. quumque sit h, datum, et d, datum erit. Amplius et si d, datum esset, atque c, e, et c, b, data fierent b, a, et a, c, data. Sicut etiam $b, c, a d b, e$, et d, ad h, in eadem proportione. quare h, datum ob hoc etiam b, a, data erit. Similiter ratione, si d, pondus fuerit datum, et a, b. et b, c, data erunt b, e, et, c, e, data. quia enim a, b, et b, c, data sunt, erit et h, datum. atque sicut d, ad h, ita c, b, ad b, e, quare b, e, datum erit.

Quaestio Decimaseptima.
Quod si a breuiore duo dependeant pondera, alterum termino, alterum a sectione, quae regulam in aequedistantiam conseruent, compositumque ex ipsis datum sit singulis Responsae sectionibus existentibus datis, utroque appensorum data erunt.

Int ut solent brachia librae data a, b, b, c, et sectiones datae b, e, e, c, et ponderantia h, et d, sitque y. aequale d, ut sit totum h, y, datum. Sit tunc t, pondus, quod dependens a, c, aequalitatem faciat, cuius ad h, y, differentia data sit z, et quia t, est in pondere, ut h, d, h, y, erit maius pondere quam h, et d, quantum est z, ergo y tantum est pondere, quantum d, et z, sed y, ad d, in pondere est, si(-) cut $b, c, a d b$, e, ergo y, ad z, sicut b, c, ad e, c, et quia z, datum erit, et y, datum similiter. hoc amplius si h, et d, data, atque c, e, et e, b, erit et b, a, datum. quia enim t, ad z. sicut b, e, ad c, e, erit z, datum. Sitque t, atque a, b, data. Amplius si h, et d, data, rationeque a, b, et b, c, erunt b, e, et e,c, data. quia enim a, b, et b, c, data erit t, datum. et ob hoc z, et quia $b, c, a d c, e$, sic d, ad z, erit c, e, datum. Amplius simili de causa si b, a, et b, c, data atque b, e, et c, e. sitque d, datum, siue h, siue differentia eorum, siue proportio, omnia data erunt.

Quaestio Decimaoctaua.
Si sectiones librae sunt adinuicem datae, pondusque datum in

[9v]

O P U S C U L U M D E
termine breuioris, siue in sectione dependens, uel etiam duo pondera data alterum in termino, alterum insectione appensa, regulam in aequedistantiam constituant, ipsa quoque in pondere data erit.

Esto ut prius regula a, b, c, sitque $a, b, a d c, b$, datur in proportione appendaturque pondus d, elatum aequabiliter ex parte c, duo ergo a, b, c, datam esse in pondere. Ponatur enim ipsa alicuius noti ponderis quod diuidatur secundum proportionem a, b, a, d, et c, b, ponaturque maius a, b, et minus e, b, et secundum hoc inuenietur pondus d. sicut ergo se habet pondus d, prius sumptum ad posterius sumptum, ita se habebit pondus a, b, c, ad pondus positum. Si enim maius, uel minus, et t, similiter maius, uel minus quám positum est, erit quód si, d, in e dependeat, et data sit $c, b, a d e, b$, datum erit, et t, aequaliter pendens a, c, quód si d, et h, data sint, similiter et t, datum erit. quod quoniam datum est, datum erit pondus a, b, c. Commentum respicit prius schema praecedentis propositionis.

Quaestio Decimanona.
Si responsa dati ponderis per inaequalia diuidatur, et alter minus ipsius data pondera appendantur, quae in aequalitate consistant, brachia quoque librae a centro, examinis data erunt.

Verbi gratia, dependeat ex a pondus d, et a, pondus utrunque et sit b, z, aequalis b, c, et diui

[10r]

P O N DER O S I D A TE.

so z. a, per aequalia apud t, descendat h, y, quod similiter in pondere respondeat e, sitque y, tanquam a, t, z. eritque proportio e, ad h. y, sicut c, b, ad b, c, et permutatim $e, a d c$. sicut y, h. siue h, cum $a, z, a d b, c$. quare sicut e, cum $c, b, a d$ c, b, ita h, cum b, a. ad b, c. Itemque h, ad d, sicut a, b. ad c, h. erit ad a, b, sicut d, ad c, b. Itaque d, et $c, b, a d c, b$, sicut h, et a, b. Igitur e, cum $c, b, a d d$. sicut cum c, b, sicut $a, b, a d b, c$, et coniunctim sicut e, d, cum a, b, c, aeque quae est dupla $c, b, a d$ d, cum c, b,. Ita tota $a, b, c, a d a, b, c$. Si ergo a, b, c, ducatur in d, et c, b, perductum diuidatur per d, e, et a, b, c, simul exibit b, c, data. Amplius si data a, b, c, fuerint a, b. et b, c, datae, et totum d, e, datum, et d, et c. erit datum. Amplius si illis datis fuerint, uel d, uel e, datum, erit reliquum datum. Amplius si d, et e, data sint, et proportio a, b, et b, c, data, erit tota a, b, c, data. Quia enim e, cum c, b, est data ad d. cum c, b, quoniam sicut $a, b, a d b, c$, et quia d, et e. data sunt, erit et c, b. atque a, b, c, tota data. Amplius si datum a, b, et b, c, fuerit proportio e, ad d. data erit, utrunque eorum datum.

Quaestio Vigesima.

Si uero a sectione unius brachii pondus datum appendatur, quod alicui dato, et a termino alterius dependenti in pondere aequentur altera sectionum librae data, reliqua data erit.

Haec habentur ex praemissa, quia mutua est inter pondera, et remotiones proportio. Diuisiones quoque huius plures sunt ueluti in praemissa.

Quaestio Vigesimaprima.
Quod si a termino, et a sectione unius brachii duo pondera data dependeant, quae tertio in termino alterius in aequalitate respondeant sectionibus regulae datis, illud tertium datum erit.
[10v]
O P U S C U L U M D E
Ab a, t, quae est sectio a, b. dependeat d, et 3. et a, c, dependeat $e, h, 1$. penderetque e ut v. et h, ut 3. et $b, 1$, cum b, e, quantum a, b. eritque singulum eorum datum, quare totum datum. Amplius si e, h, l. datum est, proportio v. ad 3. data, quodlibet eorum datum erit, dependeat ex a, d, g. quód in pondere respondeat ad e, h, 1. proportio igitur ad 3. data, atque 3. ad d, quare g, ad v. quumque g, s, sit datum, erit utrunque datum, et 3. datum. Aliae quoque plures diuisiones intercidunt.

Quaestio Vigesimasecunda.
Si duo pondera alterum in termino, alterum in sectione longioris brachii suspensa duobus datis ponderibus, et a termino breuioris dimissis in pondere aequentur, locis suis alternatis, singula eorum data erunt.

Vt si d, ab a, et 3. a, t, suspensa sint. dimissum itaque 3. ad a, et d, a, t, respondeant h, in i, pondere tunc sumptis aequalibus d, et 3. quae sint m, et n, pendeat m, cum 3. in t, et n, cum d, in a, ponderabunt simul quanto c, h, quod quum sit datum, et d, n, aequale in 3. erunt ipsa data, sicque et d, et 3. datum erit.

Quaestio Vigesimatertia.
Si supra regulam in perpendiculo centro motus posito quantumlibet pondus utralibet parte dependeat non erit possibile illud usque ad directum centri descendere.

[11r]

PONDEROSIDATE.

Verbi gratia. Sit responsa a, b, c, perpendiculum b, u, e, centrum d, et sit a, pondus maius, quám c, ducantur ergo lineae d, a, d, e, et pertranseat d, a, a, 3,. donec sit d, a, 3, ad d, a, tamquam a pondus ad c, sitque, 3, ponderet ut c. Quia igitur tria pondera a, c, 3 , sic dependent in a, b, c, atque reuolutio eorum circa centrum d, quare essent in lineis d, $a, 3$, et d, c, sed positis ita ipsis tantum uellet 3, distare a directo d, quantum, et c, distabit quoque et a, proportionaliter a directo eiusdem non ergo ad directum quum poterit pertingere.

Quaestio Vigesimaquarta.
Quum sit igitur distantia centri a medio. Responsae ad longitudinem ipsius data ponderaque appensa ad pondus regulae data erit perpendiculi declinatio data.

Sit regula, quae directum determinat $h, d, l, 3$, et c. ut prius, declinetque regula ex parte a, donec linea $h, d, l, 3$, secet in l, quasi ergo centrum exanimis esset in l, sicut sita est. Responsa quum ergo sine pondera data, et regula, erunt sectiones. Responsae quae sunt a, l, l, c, datae quasi longitudo utriusque ad b, d, data erit similiter et l, b, quia etiam angulus l, d, b, datus erit, et est ut angulus c, u, h, et ipsa est declinatio perpendiculi a directo data.
[11v]
O P U S C U L U M D E

Quaestio Uigesimaquinta.

Si uero sub regula centrum designetur, uix continget in hoc situ stabiliri pondera. Sit Responsa ut prius a, b, c, et perpendiculum d, b, e, sitque e, centrum sub Responsa, et pondera a, et c, ductis igitur lineis e, a, e, c, quasi inde ipsis, sint, sic sita sunt pondera. ipsius igitur in hoc situ aeque ponderantibus si fiat qualitercunque nutus in alterutra partium ueluti in a, crescet ex parte a, portio. Responsae usque ad rectitudinem quae signeretur $h, l, 3$, ut sit communis sectio ipsius, et regulae in l, sicque grauius reddetur continue donec circumuoluatur regula sub e.

Quaestio Uigesimasexta.
Possibile est igitur Responsa aeque distantis collocata quantumlibet pondus in alterutra parte suspendere, quae regular ab aequalitate non separet.

Sic regula a, b, c, centrum b, linea directionis d, b, e, sitque Responsa suo pondere in aequalitate sita. Sumatur igitur alia Responsa aequalis grossiciei, et ponderis, quae sit h, t, 3, posito t, in eius medio, sitque portio regulae h, b, in utralibet parte minor longitudine quam sit h, t, et pendeat regula $h, t, 3$, ab h, fixa ut t, sit in directo sub b, secta a linea directionis in t, dico ergo ipsa ita dependens non faciet mutare literam, sita est enim quasi si traheretur linea b, 3, et in ipsa linea b, h, dependeret omnesque partes eius aequaliter a, t, distantes aeque ponderarent, distant enim aequaliter a linea directionis, quia $t, 3$, ponderant, quantum b, t, t, h, non ergo fiet nutus, sed et super hoc si quolibet pondus suspendatur a, t, non faciet, hinc uel inde nutum.

[12r]

P O N D ER O S I D A T E.

Quaestio Vigesimaseptima.
Quolibet ponderoso ab aequalitate ad directionem eleuato secundum mensuram substinentis in omni positione pondus ipsius determinari est possibile.

Sit a, b, ponderosum, et sit ubique aequaliter ponderis situm aequaliter et fixo b, eleuetur in a, donec directum sit c, b, mota a, quae suo describat quartam circuli ab a, in c, sitque situs aequalitatis primus directionis dicatur ultimus, et quando diuidit arcum a, c, per aequalia, sic ipsa b, d, et situs medius, et quum eleuatum fuerit secundum mensurarum substinentis, sit b, e, et perpendicularis e, l, sit pro eleuante, et sit hic situs secundus. In situ uero .3. sit b, f, sitque arcus f, d, aequaliter d, e, dico igitur ipsum semper leuius fieri usque inf, aeque graue ut in e, et inde item semper leuius usque ad c, possibile alius leuius esse in a, quam in d, et grauius, et aeque graue pro quantitate e, l, sit enim g, h, aequaliter e, l, ut orthogonaliter erecta, donec contingat d, b, in h, et dimittatur d, k, recte super a, b. Si igitur g, fuerit in medio a, b, tunc g, h, aequum erit eius dimidio, scilicet dimidio a, b, quia é aequale g, b, quum sit d, b, in d, ad pondus a, b, sicut linea $b, k, a d b, a$, atque pondus eius in d, ad pondus eius in h, ut b, g, ad b, k, quum sit $b, g, a d b, k$, sicut $b, k, a d b, a, q u i a$ sunt consequenter proportionali erit pondus d, b, in h, tanquam pondus a, b, quia habent eadem proportionem ad pondus d, b, in a, quod si g, sit uersus b, erit in h, maius pondus, quam in a, si uero uersus a minus sit, item in u, perpendicularis aequaliter e, l, quia b, k, haberet maior proportio ad b, g, quam $a b a d b$, k, et
[12v]
O P U S C U L U M D E
ideo, et pondus in, h, ad pondus in d, contingens b, f, in e, u, m, transeatque linea e, u, p, et ducantur perpendiculares $f, r, f, x, a d b, a, b, c$. Quia igitur ponderis e, b, ad pondus f, b, ut l, b, ad r, b, siue x, b, ad p, b, a puncta f, et e, aequedistent (ex hypothesi) a punctis c, et a, siue a puncto d, pondusque f, b, in u, ad pondus eius inf, sicut f, b, ad u, b, siue $r, b, a d m, b$. Et quia $x, p, a d p, b$, sicut $r, b, a d m, b$, erit pondus e, b, ad pondus f, b, sicut pondus f, b, in u, pondus eius in f, tantum ergo est pondus e, b, in e, quám f, b, in u, quia figurae, a, b, p, est similis figurae, f, r, b, c, (quod facile probabis) et figura a, u, m, b, p, circa diametrum f, b, (per sextum Euclidis) erit similis eisdem. Ideo sicut b, l, ad b, r, sic $b, r, a d b, m$, et ideo sicut b, e, in e, ad pondus b, f, m, f, sic erit idem pondus f, b, in u, ad idem pondus f, b, in f, et ideo (per quintam Euclidis) pondera e, b, in e, et b, f, in u, erunt aequalia. Quod autem in e, sit leuius, quám in h, probatur quia d, h, est longior, et est etiam d, r, maior, quám e, z, et angulus $b, e, 3$, minor angulo u, k, z.

Quaestio Uigesimaoctaua.
Mundus non in medio descendens breuiorem partem secundum proportionem longioris ad ipsam grauitatem redditur.

In, quo suspenditur sit a, b, c, et pondus e. Diuidatur autem e, in d, ac f, ut sit d, $a d f$, sicut $a, b, a d b, c$. Si igitur suspenditur d, in c, et f, in a,tanti ponderis quodlibet eorum, quanti e, intellecto quód in opposita, sit quasi centrum librae. substinentibus igitur in a, et c, pondus c, dependens a, b, erit grauitas in a, ad grauitatem c, sicut $c, b, a d b, a$.

[13r]

P O N D ER O S I D A TE.

Quaestio Vigesimanona.
Omne medium impedit motum.
Esto quód mouetur a, b, quod uero occurit medium sit t, ponaturque c, quasi instantia, quae sit t, e, d. Si igitur c, nullius fuit grauitatis si non impedit motum a, b, descendente quum impellatur ab ipso, cogetur discendere et sic erit ut grauitatem habens, poterit ergo descendens ex parte e, ad pondus ex parte d, attollere, aeque ergo constabat a descensu suo impellere d, quia attollens d, non impedietur a uelocitate sua, quod est impossibile. Quod sic ponderosum finite, si non mouetur quod ipsum impedit, habebit eam ab aqua tenus impedire, si mouetur, quum a, b, ipsum consequetur, erit a, b, grauius quo uelocius sitque 3, aequale a, b, in pondere, possibile igitur est 3, ex parte 3, positum motu c, descendere, et attollere ad pondus ex parte d, fietque tunc 3, in pondere ut c. si igitur a, b, non impeditur impellendo, non impedietur impellendo 3, similiter ergo quum moueantur a, b, et 3. motu naturali, non impediuntur in attollendo d, quod totum est impossibile.

Quaestio Trigesima.

Quo ponderosius est pro quod fit transitus, eo in transeundo difficilior fit descensus.

Huiuscemodi per quod fit transitus sunt aer et aqua, et alia liquida, quod igitur ponderosius est ipsium sit a, b, c, quod leuius sit d, e, f, quodque transit t, transiens autem per illa, offendat in b, et e. Est autem b, grauius, quám e. Quumque ad descendum impedia
[13v]
O P U S C U L U M D E
ntur, et ipsa quum descendere habeant, stant, pluris est grauitatis quod impedit b, quám quód impedit c, quia autem t, habet, eodem offendendi impedimento, plus offendetur in b, similiter infra b, et e, aequaliter, si sursum pellatur, tardioris erit motus in b.

Quaestio Trigesimaprima.
Quod maius coheret, plus substinet.
Sit quod substinere habet a, b, c, et res descendens t, quae cadens offendat in b, ad hoc ergo, ut per transeat, habet a, b, saeparari a, b, c. Quo ergo cohaeret, uel plus substinebunt t, ut non moueantur ante operationem suam, uel si moueatur, plus habet e, a, secum trahere coniuncta. plus ergo impedient, et ideo prius.

Quaestio Trigesimasecunda.
In profundo magis est descensus tardior.
Sit profundum a, b, g, d, lineis conclusum, et partes, per quas sit descensus sine e, f, k, profundior e, partes collaterales e, b, et g, quanto igitur liquor est profundior, tanto inferiores partes plus comprimuntur, ut e, comprimitur enim et a superioribus et iuxta se positis. Quum enim liquida sint b, g, comprensa a superioribus nituntur undique, euadere. Coarctant ergo e, ita, ut si f, cederet exiret in locum superiorem. Vnde manifestum est, quód non solum e, sustinet f, sed nititur contra e, t, et e, o, magisf, contra k, minusque ideo f, repelleret k si in f, profunditas terminaretur. Tunc enim solidum suppositum substineret tantum f, et non niteretur contra magis igitur, quum impediatur descensus k, in hoc situ quód si minor esset profunditas, et e, magis impedietur.

Quaestio Trigesimatertia.
Altitudo maior minuit grauitatem.
Vt superiorem formam repetamus, dicimus in omni liquido quam libet partem inferiorem a qualibet superiori grauari, ut e non so-
lum

[14r]

P O N DER O S I D A TE.

lum abf, et k, sed $a b a$, et d. Quum enim non possit a, descendere $i b$, tendit et in e, quoniam liquidum est similiter, et f, ab b, omni superiori grauatur, eo quód amplius quanto a, b, latius. quanto igitur plus nititur contra. k, et ideo amplius tardabitur descensus t, tertium grauitatis minuetur.

Quaestio Trigesimaquarta.
Res grauior quo amplius descendit eo fit descendendo uelocior. In aere quidem magis in aqua minus, se habet enim aer ad omnes motus.

Res igitur grauis descendens primo motu trahet posteriora, et mouet proxima inferiora, et ipsa mota mouetur sequentia, ita ut illa mota grauitatem descendentem impediat minus. Vnde grauius efficitur, et cedentia amplius impelli, ita ut iam non impellantur, sed etiam trahant. Sicque fit, ut illius grauitas tractu illorum addiuuatur et motus eorum grauitate ipsius augeatur, unde et uelocitatem illius continue multiplicare constat.

Quaestio Trigesimaquinta.
Forma ponderosi mutat uirtutem ponderis.
Et enim si acutum, et strictum fuit, facilius pertransit, et hoc dicitur leuius enim separat, et sic fit leuius, minori etiam ostendit, minus quidem impeditur, et ob hoc etiam uelocius transit e, contra si obtusum est.
[14v]
O P U S C U L U M D E

Quaestio Trigesimasexta.

Omne motum plus mouet.
Si quid ex impulsu moueatur, certum est quód impelletur si autem motu proprio descendat, quo plus mouetur, uelocius fit, et eo ponderosius ad quae plus impellit motum, quám sine motu, et quo plus mouetur, eo amplius.

Quaestio Trigesimaseptima.
Quod motum plus impedit plus impellitur.
Sit quod mouetur a, et quod plus impedit c, et quod minus b, sitque libra u, e,f, duoque pondera z, et t, sitque a, quasi in d, suspensum, atque in z, ab f, dependens, quum c, impediat omnino motum a, et t, cum b, patet, ergo quód e, t, quám b, minus, ergo a, t, adiuuat c, quám c, b, substinendum a, plus ergo grauatur c, pondere a, quám b, plus ergo impellitur.

Quaestio Trigesimaoctava.
Et grauius rei motae, et leuitas frustrare uidentur mouentis uirtutem.
Sic mouens a, b, et quod mouetur c, adeo ergo leue potest esse c, respectu uirtutis a, b, ut eam non impediat, et ita uix impelletur. adeo ergo graue, quod uirtuti impellentis non cedat, uel et ideo modicum mouebitur, uel nihil, utrobique ergo uidetur frustrata uirtus impellentis, quia non confert ad motum rei in rapisse uel parum.

Quaestio Trigesimanona.
Virtutem impellentis adiuuat circumactio ipsius, eó amplius, quó fuit longius.

[15r]

PONDEROSIDATE.

Sit quod motum est a, b, c, et motum e, si igitur impellat a, b, c, impellat e, in c, et moueatur a minus impellet, quám si figatur a. Ponderosius est enim c, in situ aequalitatis, quám si dimittatur a, ut ostensum est. Manete item a, plus impelletur e, in c, quám in b, quia grauius in c. Item circumactum c, manete a, plus impellet, quám utroque prius non moto. quia motum plus eó etiam maius, quó longius dicitur. fixo enim a, in centro circumacta b, et, c, describent arcus circulorum, et maiorem e. Quum ergo maius pondus in c, quám in b, et uelocius quoque motum multo amplius impelletur e, in c, quám in b, similiter etiam circumactum e, cum c, magis mouebitur, quám si c, motum prius offendat. Si iterum centrum alterius motus sit in b, ut c, b, t, circa ea: et iterum c, b, moueatur circa b, et augmentabitur uirtus impellendi pro duplici motu, quám aequali tempore multo maiori circumitur, feretur.

Quaestio Quadragesima.
Quod sustentatur in terminis circa medium, citius deprimi tur, et eo amplius si impellatur. et hoc secundum formam impellentis, et quantitatem ipsius fit plurimus.

Sit quod impellatur a, b, c, ipsum quoque si substineatur in a, et, c, plus habebit deprimi circa b, uel omnium substineat b, nisi continuitas ad alia, quam quidem quandoque substinet, quandoque non sufficit. Omnino etiam ex quo incipit descendere b, fit magis ponderosum, quám inimus incipit esse pondus, in a, et c, porro, quanto b, magis distat á terminis, magis ponderabit, quám ipsa sunt in centrum librae, quoniam subste-
ntatur prae longitudine. ergo contingit aggrauari medium, ut rumpatur antequam dirigatur. hoc autem magis contingit etiam b, impellitur, sicque duplicato pondere citius directo continuitatis b, cum a, et, c, soluitur, atque magis sit, si acutum fuerit impellens: magis enim impellet vnum, atque hoc etiam ut e, soliditas continuitatis, et ponderis, et impulsui non cedant, siquae substinent aliquatenus cedant persequutae eo, quod impelli soluatur, quoniam medium semper fit grauius. hoc etiam si inuentus termino substineatur, fit et si in altero, ut in a, quoniam si impellatur in b, quoniam grauius, fiet b, non equetur c, circunuolutionem b, et rumpetur continuitas. alioquin plus transiret c, quám b, quam si leuius esset minima soliditas in c, a.

Quaestio Quadragesimaprima.
Quum medium detinetur facilius extrema curuantur.
Sit ipsum a, b, c, d, e, medium c, quod quum detineatur, extrema impellantur, quòniam motum eorum in partem, qua impelluntur non potest sequi, oportet curuari, quoniam directam habet solui nisi connexio soliditatis impediat. quae quidem minus perfecit in a, quám in b, et c, quám d, impulsa enim a, et e, quoniam medij connexione detineri habent scilicet b, et d, quum ipsa habilia sint ad sequendum, quum in se non detineantur, minus impedietur a, et e, continuitate ad c, sicque fit, ut quum extrema facilius cedant, in quo illis uiciuiora facilius sequantur, contingat totum curuari in circulum. quanto igitur longius a, c, e, tanto leuius extrema curuantur in eadem ratione, qua et remotiora á centro librae ponderosiora sunt, quoniam maiores arcus describunt eandem quoque: et in omnem partem magis sequentur impellentem, si non pondus ipsum impediat. Notum etiam quód super hoc quidem manente c, non magis impedit pondus a, quám pondus b, impellentem b, quoque ad ipsum pondus.

Quaestio Quadragesimasecunda.
Magis impulsum plus cohaeret.
Haec impulsio sit a posterioribus, quae impulsa habent anteriora perpellere. quae quoniam pondere suo aliquatenus resistunt, habent media constringi. Vnde quando in latus declinantur, hinc etiam contingit, quód inferiora superioribus infixa, uel depulsis infiguntur.

Quaestio
[16r]
PONDEROSIDATE
Quaestio Quadragesimatertia.
Quod partes habet cohaerentes, si motu directe offendantur, redit directe.
Hoc quidem fieri habet per medium, in quo defertur, siue aer, siue aqua, et propter partium raritatem sit in quo defertur b, idest aer, siue aqua, et materiam a, in quo offendit c. Quia ergo a, mouet b, quum recedat a, de e, loco suo, et impellat b, de loco suo, oportet ut ad supplendum
loca posteri. reciperetur b, vnde eodem impulsu et permouetur, et retorquetur eo amplius quum offendat a, in c, quumque b, nequeat procedere pondere imminentis constructum ponderosus refertur, et cum impetus a, refractus sit in c, et ponderet solo iam inuitatur. habet retrahi motum b, nisi pondus eius praeualeat, et directe. quia in omnes partes aequaliter recedit b. Raritas uero partium hoc idem operatur, quoniam priores partes a, quum prius offendantur in e, urgentur mole, et impetu posteriorum, et cedunt in se, sicque deluso impetu redeuntes in locum suum, alias repelluntur recedendo, separabiles sunt partes constrictae, hinc, inde resiliunt.

Si quidem aliquod quo amplius continue demissum descendit, tantum in priori perstrictus efficiatur.

Exitus per quod egreditur a, b, et per prima pars c, quod quum descen
[16v]
O P U S C U L U M D E
derit ad f, sit e, in exitu. Item quum c, fuerit in u, fit f, e, in 3. quare ergo quo plus descenderit, ponderosius erit c, ponderosius in u,f, quám in a,b. Quia uero dum e, peruenit in u, f, pertingit c, in 3. t, longius erit a, f, quám f, 3. quia gracilius continue, quia partes uelociores, et sic tandem adrumpuntur.

Si res inaequalis ponderis in partem quamcunque impellantur, pars grauior occupabit.

Sit quod impellit a, b, pars grauior a. Si ergo impellatur ex parte a, et b, impellatur, quoniam leuius est, facilius cedet pulsui. quumque facilitatem eius non sequatur a, frustrabitur quidem in se, et grauitate a, adiuuabit; sicque totus uisus reuertetur ad a, habet ergo praecedere in suo impetu trahere b. Si uero b, posterius impellatur, et praecedat a, impulsum quidem b, impellet a, leuitas 3. attrectabitur mouendo a, et ideo prius impelletur a, quia motum ipsius plus impedit, totoque conatu in plurium habebit trahere b, ea finiter liber Ioradam de ratione ponderis.

Et sic finit.

End Notes

[1] Baldi 1707, 133; our translation.
[2] Durante 1981, 157; our translation.
[3] Trovato 1994, 32; our translation
[4] Tartaglia is very probably referring to Leonico Tomeo's 1525 edition (Aristotle 1525).
[5] Notice the attribution to Aristotle of the use of mathematics. This is coherent with the medieval vision of mixed-sciences for which theoretical mechanics was a mixing of physics and mathematics.
[6] Tartaglia's reference to a "natural philosopher" implies empirical observations only.
[7] "In primis igitur quae accidunt circa libram dubitare faciunt, quae nam ob causam exactiores minoribus maiores sunt librae". (Aristotle 1525, 25. See also Problemata mechanica 848b in Aristotle 1955c, 848b, 337).
[8] Facts resulting from empirical evidence cannot disprove theoretical proofs; the discrepancy depends on some aspects of the matter being modelled improperly.
[9] "Equiangular parallelograms have to one another the ratio compounded of the ratios of their sides." ["Tutte le superficie de equidistanti lati che stanno intorno al diametro de ogni paralellogrammo sono simile a tutto el paralellogrammo anchora fra loro."] (Tartaglia 1543a, Book VI, Theorema XVII, Propositione XXIII, LXXXVIIr). The theorem would generalize the basic formula for calculate the area of a rectangle. In other words: the ratio of a given rectangle to a given square is the product of the ratios of the sides of the rectangle to a side of the square. Tartaglia probably refers to the rule of parallelogram used by Aristotle in problem 1 of Problemata mechanica. See Chap. 3.
[10] Aristotele $(1525,30)$.
[11] Aristotele (1525, 30).
[12] The liberal arts were those of trivium (grammar, rhetoric, logic) and of quadrivium (arithmetic, geometry, music, astronomy).
[13] A subordinate science was a science that needed another science to explain the phenomena concerning it. Aristotelians of the XVI century considered at least two of the liberal arts, i.e. music and astronomy, as sciences subordinated to mathematics.
[14] Tartaglia suggests that the definitions he is introducing are shared definitions. Indeed most of them are. We will indicate in the footnotes the sources.
[15] According to the Aristotelian epistemology.
[16] "Bodies equal in volume are those which fill equal spaces" (Liber Euclidis de ponderoso et levi (Moody and Clagett [1952] 1960, 27). For example: grandezza (size) is identified with volume, thus in the following we will translate grandezza with volume.
[17] "And those which fill unequal places are said to be of different volume" (Liber Euclidis de ponderoso et levi in: Moody and Clagett [1952] 1960, 27).
[18] Cfr.: de Nemore 1565, Quaestio prima, 3r.
[19] "Bodies are equal in forces, whose motions through equal places, in the same air or the same water, are equal in times" (Liber Euclidis de ponderoso et levi, Moody and Clagett [1952] 1960, 27).
[20] "And those which traverse equal places in different times, are said to be different in force" (Liber Euclidis de ponderoso et levi, Moody and Clagett [1952] 1960, 27).
[21] This definition comes both from Liber Euclidis de ponderoso et levi (Moody and Clagett [1952] 1960, 27): "And that which is greater in its force, it is the lesser in its time" and "What is heavier descends more quickly" (de Nemore 1565, 3r). However, it differs from them because it explicitly refers to different bodies (presumably bodies with different weight). In such a way, the strength of a body (virtus) is identified with its speed and is independent of its weight. Which is in contrast with Petition II (See Chap. 3).
[22] "Bodies are of same kind which, if of equal volume, are of equal force" (Liber Euclidis de ponderoso et levi, Moody and Clagett [1952] 1960, 27).
[23] We can identify simple heaviness with weight avoiding an additional analyses concerning a modern term, force-weight.
[24] "Of two bodies equal in volume the one whose weight is equal to that of a greater number of calculi is of greater specific gravity (gravius esse in specie)" (Liber archimedis de ponderibus, Moody and Clagett [1952] 1960, 43). We note that a calculus is the least measure of weight.
[25] de Nemore 1565, Quaestio prima, 3r. The definition of obliquity is the classical one in the science of weights: a line is more oblique when it makes a greater angle with the line of descent. Tartaglia maintains quite an ambiguity about the directions of lines of descent of heavy bodies. In general statements (as for example see Petition I) he says the lines of descent are toward the centre of the word; but in the proofs of his entire proposition, he assumes parallel (and vertical) lines of descent.
[26] "A weight is known, when the number of its calculi is known" (Liber archimedis de ponderibus, Moody and Clagett [1952] 1960, 41). Note: a calculus is the least measure of weight.
[27] Cfr.: de Nemore 1565, Quaestio prima, 3r.
[28] Cfr.: de Nemore 1565, Quaestio prima, 3r.
[29] Cfr.: de Nemore 1565, Quaestio prima 3r. We note Tartaglia's reference to lines of descent converging toward the centre of the world.
[30] Cfr.: de Nemore 1565, 3r. Mention of the balance is important because it allows us to frame the problem of descent of weight into a physical and mental model very known and studied, which also makes easier possible reference to experience.
[31] Tartaglia is saying that his is a mathematical (ideal) model. The presence of small cups to sustain weights has no relevance, as all goes with weights hung directly from the scale.
[32] Cfr.: de Nemore 1565, Quaestio prima, 3r.
[33] Note that Tartaglia will give a mathematical definition of obliquity, only at the end of Book VIII.
[34] Cfr.: de Nemore 1565, Quaestio prima, 3r.
[35] Cfr.: de Nemore 1565, Quaestio prima 3r. Differently from de Nemore however there is the explicit reference to a balance, where the lowering of a weight causes the raising of the other.
[36] Cfr.: de Nemore 1565, Quaestio prima, 3r.
[37] This is an assumption about the additivity of the power.
[38] "Equal magnitudes compared to the same, have to the same ratio; and the same has to equal magnitudes the same ratio". ["Se due quantità equale seranno, comparate a quale si uoglia quantità, di quelle a quella serà una medesima proportione, \& similmente da quella a quelle serà una medesima proportione."] (Tartaglia 1543a, Book V, Theorema VII, Propositione VII, LXIXv). The Theorem V. 7 is evident: if $\mathrm{a}=\mathrm{b}$, then $\mathrm{a}: \mathrm{c}=\mathrm{b}: \mathrm{c}$, and $\mathrm{c}: \mathrm{a}=\mathrm{c}: \mathrm{b}$.
[39] Here Tartaglia cites Theorem 30 by Euclid's Book V. We remark that Euclid's Book V has 18 Definitions and only 25 Propositions (Theorems). Nevertheless, as in other parts of the Quesiti, it looks like that Tartaglia refers to his Euclid book where, effetely, additionalcorrelated propositions is possible to read. In his Euclid book, Theorem 30 claims: "Let there be four quantities, of which the ratio of the first plus the second is greater than the ratio of the third plus the fourth to the fourth, then, conversely, the ratio of the first plus the second to the first will be lower than the ratio of the third and fourth to the fourth". ["[30/0] Se seranno quattro quantità, delle quale della prima e seconda alla seconda sia maggior proportione, che della terza e quarta alla quarta serà eversamente minor proportione che della prima e seconda alla prima che della terza e quarta alla terza.") (Tartaglia 1543a, Book V, Theorema XXX, Propositione XXX, LXXVIv). In other words, let us assume A, B, C, D as the four quantities in the order. The theorem V. 30 would say: if $(\mathrm{A}+\mathrm{B})$: B $>(\mathrm{C}+\mathrm{D})$: D, then $(\mathrm{A}+\mathrm{B}): \mathrm{A}<(\mathrm{C}+\mathrm{D}): \mathrm{C}$.
[40] Tartaglia (1543a, Book V, Theorema VII, Propositione VII, LXIXv).
[41] Tartaglia (1543a, Book V, Theorema XXX, Propositione XXX, LXXVIv).
[42] This proof is similar to that of Proposition I.
[43] The second part of the corollary, i.e., that speed is proportional to volume, follows from Proposition I and Proposition II by means the transitive property.
[44] Tartaglia (1543a, Book V, Theorema VII, Propositione VII, LXIXv).
[45] Tartaglia (1543a, Book V, Theorema XXX, Propositione XXX, LXXVIv).
[46] This proof is similar to that of Proposition I.
[47] Tartaglia (1543a, Book V, Theorema VII, Propositione VII, LXIXv).
[48] Tartaglia (1543a, Book V, Theorema XXX, Propositione XXX, LXXVIv).
[49] This proof is similar to that of Proposition I.
[50] Here Tartaglia seems to state a trivial theorem of geometry, for which the length of paths of points in a radius of a circle are proportional to the radius. He is probably comparing the path with the power, reconnecting to Jordanus de Nemore's weak form of the virtual work law.
[51] Cfr.: de Nemore (1565, Quaestio secunda, 3v).
[52] See Chap. 3.
[53] Notice that Tartaglia, following Jordanus de Nemore, proves equilibrium for a balance with equal arms and weights and does not assume it as a postulate in the wake of Archimedes's theory of balance.
[54] Tartaglia assumes as a fact of nature that the balance returns to its first position (which is not generally true in effect) and want to explain this fact (the why) by means of mathematics.
[55] See Chap. 3.
[56] Curious expression. In fact, Tartaglia is considering vertical parallel lines.
[57] Notice that Tartaglia is associating an angle - that which the path (curvilinear indeed) of descent forms with the vertical - with obliquity. We also note that the obliquity of the path $b f$ is measured by the contingency angle $d b f$ though the verical $b d$ crosses the path $b f$.
[58] Angle between two curved lines or a curved line and its tangent.
[59] "The straight line drawn at right angles to the diameter of a circle from its end will fall outside the circle, and into the space between the straight line and the circumference another straight line cannot be interposed, further the angle of the semicircle is greater, and the remaining angle less, than any acute rectilinear angle". ["Se dall'un di termini del diametro de alcun cerchio serà dutta orthogonalmente una linea retta le necessario che quella cada di fuora del detto cerchio, \& fra quella è il cerchio le impossibile che gli possa capire altra linea retta. E l'angolo contenuto de quella, \& dalla circonferentia è piu acuto de tutti li angoli acuti contenuti da linee rette, e l'angolo fatto di dentro dal diametro, e dalla circonferentia e maggiore de tutti li angoli acuti contenuti da linee rette."] (Tartaglia 1543a, Book III, Theorema XV, Propositione XVI, XLIIIv).
[60] In this part, considerations about the difference of behaviour of mathematical and real balances developed in Book VII are repeated.
[61] Cfr.: de Nemore 1565, Quaestio quinta, 4v.
[62] Here Tartaglia is stressing that physical reasoning in mechanics is subalternate to mathematics.
[63] Cfr.: de Nemore 1565, Quaestio sexta, 5r.
[64] Euclid I.16: "In any triangle, if one of the sides is produced, then the exterior angle is greater than either of the interior and opposite angles." ["Essendo protratto direttamente un lato d'un triangolo, qual ne pare, quel farà l'angolo estrinsico maggiore dell'uno e dell'altro angolo intrinsico del triangolo a se opposito."] (Tartaglia 1543a, Book I, Theorema IX, Propositione XVI, XIXv). Euclid I.29: "A straight line falling on parallel straight lines makes the alternate angles equal to one another, the exterior angle equal to the interior and opposite angle, and the sum of the interior angles on the same side equal to two right angles." ["Se una linea retta cader à sopra a due linee equidistante, li duoi angoli coalterni seranno equali, \& l'angolo estrinseco serà equale allo angolo intrinseco a se opposito, \& similmente li duoi angoli intrinseci constituidi dall'una e l'altra parte seranno equali a duoi angoli retti'] (Tartaglia 1543a, Book I, Theorema XX, Propositione XXX [read: XXIX], XXIIv).
[65] "In equiangular triangles the sides about the equal angles are proportional where the corresponding sides are opposite the equal angles." ["D'ogni triangoli di quali li angoli dell'un a li angoli di l'altro son equali, li lati che risguadano li angoli equali sono proportionali"] (Tartaglia 1543a, Book VI, Theorema IIII, Propositione IIII, LXXXr).
[66] Here Tartaglia resumes Jordanus de Nemore's reasoning (de Nemore 1565, 5rv), which is useless for him; he could have finished his proof more clearly by observing that body d in a is equally as heavy as body e in b.
[67] When Quesiti et invention diverse was published Tartaglia had already edited Archimedes' work (Tartaglia 1543b).
[68] Tartaglia is conscious he is moving in a different tradition than Archimedes'.
[69] Cfr.: de Nemore 1565, Quaestio settima, 5v.
[70] The "other way" is to use the concept of the gravity of position. To use the other way Tartaglia changes his model. The horizontal bar is replaced by two equal weights located at its extremity. However he fails to notice that he is using an Archimedean approach to do this; so his method is not fully other.
[71] de Nemore 1565 Quaestio undecima, 7r. Now Jordanus de Nemore's proposition does not contain the part in italic. This part is however contained in the body of the proof. See Chap. 3.
[72] "Parts have the same ratio as their equimultiples". This Theorem would say that: if n is any number and a and b any magnitudes of the same kind, then $\mathrm{a}: \mathrm{b}=$ na: nb. This Theorem is reused in the Books V, VI, and XIII, as well. Taking into account Tartaglia's reasoning in the text, we think that an appropriate quotation should be: "If some quantities will be divided equally by a multiple, the ratio of the submultiple will be the same" ["Se ad alcune quantità saranno tolti li multiplici equalmente, la proportione di multiplici, \& quella di submultiplice serà una medesima"] (Tartaglia 1543a, Book V, Theorema XV, Propositione XV, LXXIIv).
[73] "Ratios which are the same with the same ratio are also the same with one another". ["Quelle proportioni che a una medesima proportion seranno equale eglie necessario che fra loro siano equale."] (Tartaglia 1543a, Book V, Theorema XI, Propositione XI, LXXIr). This Theorem - very frequently whenever ratios are used - claims the transitivity of the relation of being the same when applied to ratios. In modern terms: if $a / b=c / d$ and $c / d=e / f$, then we can write: $a / b=e / f$.
[74] "Magnitudes which have the same ratio to the same equal one another; and magnitudes to which the same has the same ratio are equal." ["Se la proportione di alcune quantità a un a quantità serà una medesima, eglie necessario quelle quantità esser equal, \& se la proportione dell'una a quelle serà una medesima similmente eglie necessario quelle esser equale." (Tartaglia 1543a, Book V, Theorema IX, Propositione IX, LXXv).
[75] Cfr.: de Nemore 1565 Quaestio duodecima, 7v.
[76] Here Tartaglia cites Theorem 20 by Euclid's Book VII: "The least numbers of those which have the same ratio with them measure those which have the same ratio with them the same number of times; the greater the greater; and the less the less." ["Li numeri secondo qual si uoglia proportione minimi, numerano quai si uoglian in quella medesima proportione, equalmente, el minor el minor, \& lo maggior el maggior." (Tartaglia 1543a, Book VII, Theorema XX, Propositione XXII, CVIIr). The Theorem VII. 20 (and VII.29) concern with ratios in lowest terms as relatively prime numbers and properties of relatively prime numbers; properties of prime numbers are discussed propositions VII. 30 (and VII.32). For example, given a ratio $\mathrm{a}: \mathrm{b}$, if $\mathrm{c}: \mathrm{d}$ is the same ratio and the least among all those ratios with the same ratio, then, first of all, c divides a, and d divides b, but also, c divides a the same number of times that d divides b. Taking into account Tartaglia's reasoning in the text, we think that an appropriate quotation should be: "Consider four proportional number [abcd], the product of the first with the last $[a d]$ will be equal to the product of the second and third [bc]. But if the product of the first and last equals that of the second and third the four numbers will be proportional". ["Se seranno quattro numeri proportionali quello che uien produtto dal primo in l'ultimo, serà eguale a quello che uien produtto dal dutto del secondo in el terzo, Ma se quello che è prodotto dal primo in el ultimo è eguale a quello, che è produtto dal secondo nel terzo quelli quattro numeri sono proportionali."] (Tartaglia 1543a, Book VII, Theorema XVIII, Propositione XX, CVIr; in Euclid's Book VII this is Theorem 19).
[77] For example, something to be measured in feet; an unknown denoted below as "co", from the Italian cose (things). See Chap. 3, footnote 186.
[78] Tartaglia (1543a, Book VII, Theorema XVIII, Propositione XX, LXXVIv).
[79] By indicating co with x, the equation Tartaglia is solving is $160 x=400-80 x$, which gives $x=5 / 3=1+2 / 3$. Note the use of fractions.
[80] Tartaglia considers the vertical in A as parallel to the verticals in D, E, G, etc. I.e. he assumes the lines of descent as parallel to each other.
[81] Here Tartaglia assumes that the obliquity is measured by the ratio of the length to the height of the inclined plane. This actually is the correct choice, but he gives no justification for that.
[82] Neologism.
[83] Inversamente.
[84] From "cercina": pair of compasses.
[85] From "Libre": pounds.
[86] Ratio.
[87] For example, something to be measured in feet; an unknown denoted below as "cosa", "cose" (thing, things) or more simply "co". See Chap. 3, footnote 186.
[88] Libre.
[89] Tartaglia (1543a, 104v, 105r).
[90] Note the label, maybe by the editor Troiano or Tartaglia's himself, to distinguish figures drawn by Tartaglia.
[91] In the original drawing instead of " b " is erroneously reported " a ".
[92] They are contingency angles, and as such both of them are different from zero but less then any positive number.
[93] The second figure has not reference to Tartaglia.
[94] This figure, indicated in the text as drawn by Niccolò, is less complete and accurate than that which refers no indication [See Fig. 4.32]. Consequently the latter has been commented here.
[95] As x and l cannot be equal, as clear from the text, Jordanus de Nemore instead of "halves" would have had to write, more generically, "parts".
[96] Modern notation. With reference to the figure, which in Tartaglia's book follows Figure 8, from the equilibrium of the lever the two proportions can be written: $x: z=b c: c e$ and l : $y=b c: c a$. By adding the two proportions we obtain: $x+l:(z+y)=2 b c:(c a+c e)$ and because $x+l=x l, c a+c e=2 c b$ by assumption, it is obtained: $x l=z+y$.
[97] Tartaglia's (or better probably Curtio Troiano's) arranging of figures is not very clear. In the body of the text there is only the drawing represented on Fig. 4.33. But at the end of Opuscoli Jordanus de ponderositate (de Nemore 1565, 17rv) two drawings like that of Fig. 4.34 are added (probably by Troiano), but with a bad lettering; only the letters underlined in Fig. 4.34 are reported. Also the drawing is incomplete; the dashed lines are missing; see also (Moody and Clagett [1952] 1960, 186).
[98] There are no similar triangles. The conclusion is however correct.
[99] To make the reading easier, the figure is redrawn below for 90 degrees clockwise rotation.

[100] Jordanus de Nemore's alternative proof is scarcely commented into the literature, probably because it is not very clear being too hasty and probably incorrect. The original system of beams centred about c seems to be ideally replaced by some other beams. For example $b x f$ is considered as a beam centred in x. The weight at f and b are said to be equilibrated because x is in the middle of $b x f$. How can de Nemore make this affirmation? Is he applying the law of moments, which he knows though limited to vertical loads? (He had applied it at least in another part of the De ratione ponderis (de Nemore 1565, 10v).
[101] This is an evident case, which shows the role played by Tartaglia within de Nemore's work: he declared what he did with respect to Iordani opusculum's text.
[102] In order to be choerent with de Nemore's reasoining in the text (de Nemore1565, 17v), the figure reported (See Fig. 4.35) and performed by us has been corrected in some parts. The original figure is:

[Fig. 4.35bis]
[103] Here Jordanus de Nemore's reasoning is not clear. For sure, he recognized an unstable configuration of equilibrium, which involves, in the case of disturbance, a complete reversal of the system.
[104] Francesco Labia. To him is dedicated also the Euclide Megarense, 1565 edition.
[105] In the printed text: "c, i, h" instead of "c in h".
[106] In the printed text "a" instead of "c".
[107] In the printed text: "b, h" instead of "bg".
[108] In the printed text: " t " instead of " c ".
[109] In the printed text: "x" instead of " y " or " z ".
[110] In the printed text: "b" instead of "g".
[111] In the printed text: "b" instead of "g".
[112] In the printed text: "b" instead of " f "".
[113] In the printed text: "b" instead of " f "".
[114] In the printed text: " b " instead of " f "".
[115] In the printed text: "b" instead of " g ".
[116] "fit tunc bc" has not meaning for us and has been omitted in the traslation.
[117] In the printed text: " m " instead of " k ".
[118] In the printed text: "i, k, e, n, z" instead of " $y, k, c, n, z "$.
[119] In the printed text: "b, $1, d$ " instead of "b, d".
[120] In the printed text: "e, f " instead of "c, f ".
[121] In the printed text: "e, b, c, a, d, c, e" instead of "c, b, c, a, c, e".
[122] In the printed text: "e, f, h, g, l" instead of "e, k, h, g, l".
[123] In the printed text: "r, e" instead of "e".
[124] In the printed text: " m " instead of " h ".

Part IV
Circulation of Knowledge \& Conclusion

Chapter 5
 Foreign Editions of Quesiti et inventioni diverse

In this section, we present the results of an historical archive research. It has been finalized to list, as far as possible, the main Quesiti's foreign editions published in the history of science. We also list some uncertain dates and alleged editions cited in the history of science archives. In some cases we do not yet have historical proofs of some quotations. Our apologies for any relevant items that may be missing.

5.1 An Outline

In between the sixteenth and seventeenth centuries, publications concerning scientific works were produced mainly in Latin. Nevertheless, there appeared some in the a kind of Italian (vulgare) language, produced by scholars, artists, mechanicists, architects of fortifications, military studies (e.g., Charbonnier 1928; Hall 1952, chapters I-II) etc. Particularly, military engineering (in ca. half of the sixteenth century) was essentially part of military architecture and thus presented works in architecture, artisanship and military expertise (e.g., Zanchi 1554; Cataneo [1567] 1982; Lantieri 1557; Lupicini 1582a, b; Rusconi 1590, etc.) addressed to men of war (Gille 1964). They published compendia, scientific works and tables, the latter being particularly useful and produced by means of images (without previous usual materials errors), as well. Most publications came from France, e.g., de Monluc ([15211576] 1964), de Fourquevaux (1548), de la Noue (1587), from Germany, e.g., Fronsperger (1564), from Italy, e.g., Biringucci, della Rovere, de Marchi, Collado, Pigafetta, Lorini, Tadino de Martinengo, Bellucci (1598) Greco, Gromo, Busca, Lupicini, Machiavelli, Peruzzi, Romano, Curtio Troiano, et al., already cited above in Chap. 1, and from England, e.g., Ascham (1545) and Cyprian Lucar (1588).

Tartaglia was one of the Italian mathematicians who were mainly busy with mathematics, geometry, fortifications and science of weights and were translated into vulgare. Among his publications, Quesiti et inventioni diverse (hereafter

Quesiti; Tartaglia 1546, 1554) is the most translated work. Generally speaking, Tartaglia's corpus underwent a number of translations, some partially and some in full, most of them with regard to Quesiti. In our opinion, numerous translations were mainly inspired by the amazing ideas they contained. There also appeared to be a wish, on the one hand, to spread Tartaglia's studies with those of de Nemore's science and, on the other hand, to further developments of the Nova scientia within military studies (Webb 1965; Besana 1996; Walton 1999). An example of the latter can be found in Cyprian Lucar's (fl. 1590) choice to translate and publish (1588) the first three books of Quesiti ${ }^{1}$ only, and to add a special appendix to permit the reader to go into the properties and expertise of gunneries.

5.1.1 Quesiti Foreign Editions

In the following, a list of Quesiti's foreign editions is presented. It includes the main known non-Italian editions from 1547 to 2010. We provide an original orthographical structure within titles and main library accounts.

5.1.1. 1 The Foreign Editions, 1547-2010

1547 German	Books I-II-IV-VI-VII-VIII in: Der furnembsten, notwendigsten, der gantzen Architectur angehörigen Mathematischen und Mechanischen künst, eygentlicher bericht, und haftklare, verstendliche unterrichtung [...] in drey furneme Bücher abgetheilet. Als Der newen Perspectiua. I. Buch vom rechten gewissen Geometrischen grund, alle Regulierte und Unregulierte Cörperliche ding [. . .] Weiteren inhalt des II. und III. Buchs der Geometrischen Büxenmeisterei, und geometrischen Messung, sampt der kurtzen summarien des gantzen begriffs der selbigen unterschidnen theil, finden hernach, Ryff W.H., Nurimberg. [Accounts: Italy ${ }^{2}$ and France. ${ }^{3}$ Reprint: Holms ${ }^{4}$ Verlag, Hildesheim 1981].
1556 French	Book VI in: Livre VI. Des demandas et inventions diverses de Nicolas Tartalea, Bressan, Sur la maniere de fortifier les Cités, eu esgart à la forme. ET de quelle largeur, espesseur \& hauteur doivent etre les Boulleuarts, Platesformes \& Cavaliers. A Rheims de l'imprimerie de Bacquenois, Imprimeur de M. le R. Cardinal de Loraine. [Account: France ${ }^{5}$].

[^151]| 1558 German | Books I-II-IV-VI-VII-VIII in: Der furnembsten, notwendigsten, der gantzen Architectur angehörigen Mathematischen und Mechanischen künst, eygentlicher bericht, und haftklare, verstendliche unterrichtung [. . .] in drey furneme Bücher abgetheilet. Als Der newen Perspectiua. I. Buch vom rechten gewissen Geometrischen grund, alle Regulierte und Unregulierte Cörperliche ding [. . .] Weiteren inhalt des II. und III. Buchs der Geometrischen Büxenmeisterei, und geometrischen Messung, sampt der kurtzen summarien des gantzen begriffs der selbigen unterschidnen theil, finden hernach, Ryff W.H., Nurimberg. [Account: France ${ }^{6}$]. |
| :---: | :---: |
| 1582 German | Books I-II-IV-VI-VII-VIII in: [Der] Bawkunst oder Architectur aller fürnemmsten, nothwendigsten, Angehörigen mathematischen vnd mechanischen Künsten, eygentlicher Bericht, und verständliche Vnderrichtung, zu rechtem Verstand der Lehr Vitruuij, in drey fürnemme Bücher abgetheilet. [. . .] Allen künstlichen Handtwerckern, Werckmeistern, [...] zu sonderlichem Nutz vnd vielfeltigem Vortheil in truck verordnet, durch Gualtherum H. Riuium medi. \& math Getruckt zu Basel, Getruckt, zu Basel: durch Sebastian Henricpetri, Ryff W.H, Basilea.
 [Account: Italy ${ }^{7}$ and France ${ }^{8}$]. |
| 1588 English | Books I-II-III in: Three books of colloquies concerning the arte of shooting [microform] : in great and small peeces of artillerie, variable randges, measure, and waight of leaden, yron, and marble stone pellets, mineral saltepeeter, gunpowder of diuers sortes, and the cause why some sortes of gunpower are corned, and some sortes of gunpowder are not corned: written in Italian, and dedicated by Nicholas Tartaglia vnto the Royall Prince of most famous memorie Henrie the eight, late King of England, Fraunce, and Ireland, defender of the faith \&c. And now translated into English by Cyprian Lucar Gent. who hath also augmented the volume of the saide colloquies with the contents of euery colloquie, and with all the corollaries and tables, that are in the same volume. Also the said Cyprian Lucar hath annexed vnto the same three books of colloquies a treatise named Lucar Appendix [. . .]. Thomas Dawson for Harrison J, London. ${ }^{9}$
 [Account: U.K, ${ }^{10}$ Australia ${ }^{11}$ and U.S.A ${ }^{12}$] |

[^152]| 1778 German | Book VI in: Das sechste Buch der Fragen und Erfindungen des Nicol. Tartaglia, Von der Befestigung der Städte, so wediesble von der Gestalt der Walle abhänget, printed for: Magazin für Ingenieure und Artilleristen, vol. IV. Bohm A, Universität Giessen. |
| :---: | :---: |
| $1845-1846 a$
 French | Books I-II-III and Nova scientia, in: Journal des arms specials, Vol. VI. |
| 1845-1846b
 French | Books I-II-III and Nova scientia, in: La Balistique de Nicolas Tartaglia, ouvrage publié pour la 1re fois en 1537 sous le titre de "La Science nouvelle", et continué en 1546 dans les deux lers livres du recueil du même auteur intitulé. "Questions et inventions diverses", traduit de l'italien [. . .] par François-Xavier-Joseph Rieffel [. . .]. 1er partie. Correard, Paris. ${ }^{13}$
 [Account: France ${ }^{14}$ and U.K ${ }^{15}$]. |
| 1845-1846c
 French | La balistique de Nicolas Tartaglia, ou, Recueil de tout ce que cet auteur a écrit touchant le mouvement des projectiles et les questions qui s'y rattachent, composé des deux premiers libres de La science nouvelle (ouvrage publié pour la première fois en 1537) et des trois premiers libres des Recherches et inventions nouvelles (ouvrage publié pour la première fois en 1546). 2e partie. Corréard J, Paris. [Account: France ${ }^{16}$ and U.K ${ }^{17}$]. |
| 1969 English | Selections from Quesiti-Books I, VII and VIII In: Mechanics in SixteenthCentury Italy: Selections from Tartaglia, Benedetti, Guido Ubaldo, and Galileo. ${ }^{18}$ |
| 1981 German | Books I-II-IV-VI-VII-VIII. In: Der furnembsten, notwendigsten, der gantzen Architectur [...]. Reprint: Holms Verlag, Hildesheim. |
| 2001 German | [From 1554-edition] Die kubischen Gleichungen bei Nicolo Tartaglia: die relevanten Textstellen aus seinen Quesiti et inventioni diverse auf deutsch übersetzt und kommentiert, in Veröffentlichungen der Kommission für Geschichte der Mathematik, Naturwissenschaften und Medizin 53. Wien Verlag der Österreichischen Akademie der Wissenschaften. Translator: Friedrich Katscher. [Account: Austria ${ }^{19}$ and Italy ${ }^{20}$]. |
| 2010 French | Tartaglia N. 2010. Niccolo Tartaglia: Questions et inventions diverses, Livre IX [Book IX only] ou L'invention de la résolution des équations du troisième degré. Hamon G, Degryse L (eds). Hermann, Paris. |

[^153]In total we have:
English: 2 editions
French: 5 editions
German: 5 editions plus 1 reprint

5.1.2 Bibliographical Notes

During the latest ten years, our research on Tartaglia (and correlated history of mechanics from Archimedes to Torricelli) produced numerous results already published (References list). For this reason, one of us (RP) collected several references concerning alleged Quesiti editions. Yet some of them lack historical proofs. Nevertheless, negative results also belong to historical research. In order to make it clear within the international archives programmes, and hoping that they will be of some help, the following are listed as well.

5.1.2.1 Uncertain Dates Around Partial and/or Alleged Quesiti's Editions

Quesiti	1528
	An incomplete treatise seems to have first appeared in Venice.
	Ayala gives 1528 (and 1546, 1550, 1554, 1660, 1562, 1583, 1606) editions in
	Venetia and another one on 1620 in Carpi.
	Cfr: D'Ayala M (1854) Bibliografia militare italiana e moderna, Stamperia Reale, Torino, 155.
	Cfr.: Ayala M (1841) Dizionario Militare Francese Italiano. Tipografia Gaetano Nobile, Napoli, 367.
	We do not have historical proves of that. For, maybe it is an error in the
	Ayala's book.
Delli quesiti	1538
	See 1554-edition.
	Delli quesiti et inventioni diverse, di Nicolo Tartaglia, stampato a Venezia nel 1538.
Quesiti	It seems to be at the Biblioteca of the Palazzo dell'Arsenale ${ }^{21}$ Torino, Italy. 1550
	De Bascarini.
	Cfr.: Riccardi P (1870-1880) Biblioteca Matematica Italiana dalla origine della stampa ai primi anni del secolo XIX. Tipografia dell'erede Soliani, Modena, II, 499. Cfr.: Weiss M (1841) Biographie universelle ou dictionnaire historique. Tome VI. Furne \& C, Paris, 22, Col. 1.

[^154]| Quesiti | 1551 |
| :---: | :---: |
| | Ruffinelli, included Gionta to Book VI. |
| | Cfr.: Riccardi P (1870-1880) Biblioteca Matematica Italiana dalla origine della stampa ai primi anni del secolo XIX, II, 499. |
| | Cfr. Brunet JC (1860-1865) Manuel du Libraire et de L'Amateur de Livres. Firmin Didot |
| | Frères, Paris, (see also 1878 et succ.). |
| | Cfr.: Graesse JGT (1859-1869) Trésor de livres rares et precieux, Vols. I-VII. Dresde, Kuntze. |
| | Cfr.: Weiss M (1841) Biographie universelle ou dictionnaire historique. Tome VI. Furne \& C, Paris, 22, Col. 1. |
| | CONTRA |
| | Cfr.: Boncompagni B (1881) Intorno ad un testamento inedito di N. Tartaglia. |
| | In memoriam dominici Chelini. Collectanea Mathematica. Hoepli, Milano, 380-381. |
| | UNCERTAIN |
| | Cfr. Masotti gives it in: Tartaglia N ([1554] 1959) Quesiti et inventioni diverse de Nicolo Tartaglia brisciano. Commentari dell'Ateneo di Brescia, Brescia, XXXVIII, fn. 24. |
| | The book in Florence is missing c. 81-132 related to Books VI-IX substituted by c. 81-88, 93-128 by 1554-Edition (see Riccardi 1870-1880, II, 499-500).
 [Account: Italy ${ }^{22}$]. |
| Quesiti | 1558 (150 |
| | Nova Scientia de N. T. con una gionta al terzo Libro. (legato con) Il Primo Libro (-Ottavo) delli quesiti, et inventioni diverse de N. T., sopra gli tiri delle artiglierie, et altri suoi varii accidenti. (legato con) Regola generale di solevare ogni fondata |
| | Nave \& navilii con Ragione. Published by s.d. 1562, Vinegia, Curtio Troiano dei Navò[?]. |
| | It seems that Riccardi had a copy without the Book IX. ${ }^{23}$ Cfr.: Riccardi P (1870- |
| | 1880) Biblioteca Matematica Italiana dalla origine della stampa ai primi anni del secolo XIX, II, 499-500.
 [Account: Italy ${ }^{24}$]. |

[^155]| Quesiti | 1562 |
| :--- | :--- |
| | Il primo [-ottavo] libro delli quesiti, et inventioni diverse de Nicolo Tartaglia, sopra |
| gli tiri delle artiglierie, et altri suoi varii accidenti [...]. Curtio Troiano dei Nauo[?]. | |
| | It seems that Riccardi had a copy without the Book IX. 25 |

[^156]
Chapter 6
 Conclusion

> Questa è stata una bella speculazione, \& me è piaciesta assai. Et perche vedo essere hora tarda, non voglio, che procedati in altro per hoggi.
> (Tartaglia 1554, Book VIII, Q. XLII, Proposition XV, 98v)

6.1 Concluding Remarks

It was 1546 when Italian scholar, Niccolò Tartaglia wrote his first edition of the Quesiti et inventioni diverse.

Mechanics between the 15th and 16th centuries mainly concerned what largely is now called statics and was referred to as the Scientia de ponderibus. Generally, in secondary literature, it was pursued with two different approaches. The former, usually referred to as Aristotelian school, where the equilibrium of bodies was set as a balance of opposite tendencies to motion. The latter, usually referred to as Archimedean science, where the study of the equilibrium reduced to the evaluation of the centre of gravity of a body (centrobaric). In between the two traditions - but far from Aristotelian-Euclidean axiomatic - the Italian scholar, Niccolò Fontana, better known as Tartaglia (1500?-1557), wrote the treatise Quesiti et inventioni diverse (1546; 1554).

The Quesiti et inventioni diverse is an extraordinary and interdisciplinary debate on physics, architecture, statics and mathematics. The science in-common is geometry. The language used is Italian (vulgare). Particularly, Book VII and Book VIII mainly concern to Scientia de ponderibus, which - with some optional nowadays we call statics.

Firstly, we presented a historical account of Tartaglia's lifetime, his scientific production and the Scientia de ponderibus from the Middle Ages to the Renaissance, and taking into account Arabic-Islamic studies. Then, a historical epistemology analysis of Book VII and Book VIII was done. All propositions of Books VII and VIII, and their relationships with the Problemata mechanica by Aristotle and Iordani opvsculvm de ponderositate by Jordanus de Nemore were deeply examined. Most accomplishments obtained are detailed descripted in each chapters.

The last part of this book includes information about the original texts and related transcriptions into Italian-Latin languages and English translations. It would be of some help in using the archives in history of science research, as well.

The book aim to gather and re-evaluate current thinking on the subject offering its original contribution to the history and historical epistemology of science, philosophy of science within fields of physics, engineering and mathematics.

Fine del Tartaglia's Science of Weights and Mechanics in the Sixteenth-Century de Raffaele Pisano, \& Danilo Capecchi.

In Dordrecht per Springer, Raffaele Pisano, \& Danilo Capecchi Autori. Nell'anno di nostra Salute. M M XV.

Abstract

L I B R capitolo alcund fiata dararifpofta in duimodi, alcun'altra folamente in un modo foles come accaduto in quefto Joprafcritto, cioe che la mita di cubinon fe puo fenon aggion= gere alla radice di quel rimanente, che fu.1.ma quando fe fufe potuto aggiongere, © cauare forf, che P Puno, e Paltro baucriano dato perfetta rifpofta, ma per una rifpofta fempre la dar a, o in el aggiongere, ouer nel catuare, et mai falld, ma alcuna uoltarifon deraall'uno, e l altro modo. M.R. Queftitrecapitoli certamentenon gli bo manco accari di quello baucro quelli de cenfoe e cubo egual à numero con glialtri dui fuoi come pagni, quando cbe me li mandareti, borfuui uogliolafdare Compare, gionto che fla in Ingbilcerrauefcriuero. N. Andatimeffer Compare, che Iddio ue dis il buon uiage gio, ev ui prego cbe me fcriucti fubito, che ui feti aggionto, come baueti detto. MI.R. Faro fenza fallo.

Fime delli Quefiti, er Inuentionidiuerfe de Nicolo Tartaglia.

REGISTRO.
ABCDEFGHIKLMNOPQRSTVXYZ AA BB CC DDEEFF GGHH II.

Tutti fono Duerni.

In Venetia per Nicolo de Bafcarimi, ad inftantia er requifitione,
© à propric ßefe de Nicolo Tartaglia Autore. Nell amodinoftrafalute. M D LIIII.

Tartaglia 1554, Quesiti et invention diverse, Book IX, Q XLII, 128v

References

Abattouy M (2006) The Arabic transformation of mechanics: the birth of science of weights. Foundation for Science Technology and Civilisation 615:1-25
Abattouy M, Jurgen R, Weinig P (2001) Transmission as Transformation: The Translation Movements in the Medieval East and West in a Comparative Perspective. Science in Context 14:1-12
Alberti LB (1973) Ludi rerum mathematicarum. In: Greys G (ed). Opere volgari.Vol. 3. Laterza, Bari, pp 131-173, pp 352-360
Alberti LB (15th century). Ex ludis rerum mathematicarum. MS. Typ 422.2. The Houghton Library. The Harvard University Press, Cambridge-MA. [via:http://pds.lib.harvard.edu/pds/ view/8282412?op=n\&n=1\&treeaction=expand]
Altieri Biagi ML (1984) Forme della comunicazione scientifica. In: Asor Rosa A (ed). Letteratura italiana. Le forme del testo. La prosa. Vol. III, Tome II. Einaudi, Torino, pp 891-847
Alvarez C, Dhombres J (2011) Une histoire de l'imaginaire mathématique. Vers le théorème fondamental de l'algèbre et sa démonstration par Laplace en 1795. Hermann, Paris
Ampère AM (1834) Essai sur la philosophie des sciences. Bachelier, Paris
Archimedes (1503) Tetragonismus idest circuli quadratura per Campanum Archimedem Syracusanum atque Boetium mathematicae perspicacissimos adinuenta. [Gaurico L (ed)] Impressum Venetiis: per Ioan. Bapti. Sessa, 1503 die 28 august
Archimedes (1558) Archimedis opera non nulla a Federico Commandino Urbinate nuper in latinum conversa et commentariis illustrata. apud Paulum Manutium, Aldi F. Venetiis
Archimedes (1565) Archimedis De iis quae vehuntur in aqua libri duo. A F. Commandino U. in pristinum nitorem restituti, et commentariis illustrati. Ex Offcina Benacii, Bononiae
Archimedes (1881) Opera Omnia cum commentari Eutocii. Heiberg JL (ed). Teubneri BG, Lipsiae
Archimedes (2002) On the equilibrium of planes. In: Heath 2002, pp 189-220
Arend G (1998) Die Mechanik des Nicolò Tartaglia im Kontext der zeitgenössischen Erkenntnis und Wissenschaftstheorie. Algorismus Series. Institut für Geschichte der Naturwissenschaften, Munich
Aristotle (1525) Conversio mechanicarum quaestionum Aristotelis cum figuris et annotationibus quibusdam. In: Leonico Tomeo 1525
Aristotle (1530) Aristotelis Questiones mechanicae. In Leonici Thomei 1530, pp 22-55
Aristotle (1853) On the Definition and Division of Principles. In: Octavius Freire Porphyry Owen (ed). The Organon, Or Logical Treatises, of Aristotle. Bohn H G, London, vol I., pp 263-266
Aristotle (1949). Aristotle's Prior and Posterior Analytics. A Revised Text with Introduction and Commentary Ross WD (ed). The Oxford University Press, Oxford

Aristotle (1955a) De Caelo. Translation into English by Stocks JL. The Tech Classics Archive. The Massachusetts Institute of Technology Press, Cambridge-MA
Aristotle [1936] 1955b Mechanical problems. In: Hett WS (ed) Aristotle. Minor works. William Heinemann, Cambridge, pp 328-414
Aristotle [1936] 1955c Minor Works. Transaltion by Hett WS. The Harvard University PressHeinemann W LTD, Cambridge MA-London
Aristotle (1984) The Complete Works of Aristotle, Barnes (ed) The Princeton University Press, Princeton, NJ
Aristotle (1996) The principles of Nature-Physics. Vol I. In: Waterfield R (ed). The Oxford University Press, Oxford
Aristotle (1999). Physics. Translation by Waterfield R. The Oxford University Press, Oxford
Aristotle (2000) Problemi meccanici. Bottechia Dehò ME ed. Rubbettino, Catanzaro
Bagni GT, D’Amore B (2007) Leonardo e la matematica. In: Marazzani I (ed) (2007). La matematica e la sua didattica. Pitagora, Bologna, pp 3-7
Baldi B (1621) Bernardini Baldi Urbinatis Guastallae abbatis in mechanica Aristotelis problemata exercitationes. Ioannis Al-bini, Moguntiae
Baldi B (1707) Cronica de' matematici ovvero Epitome dell'istorie delle loro vite, Monticelli, Urbino
Baldi M, Canziani G (1999) (ed) Girolamo Cardano. Le opere, le fonti, la vita. Franco Angeli, Milano
Baliani GB (1998) De motu naturali gravium solidorum et liquidorum. Baroncelli G (ed). Giunti, Firenze
Banfi A (1966) Galileo Galilei. La Nuova Italia, Firenze
Barbin E, Cholière M (1987) La trajectoire des projectiles de Tartaglia à Galilée. In: Barbin E (ed). Mathématiques, arts et techniques au XVIIème siècle, Publication de l'Université du Maine. Vol. 4, Maine, pp 40-147
Barbin E, Pisano R (2013) The Dialectic Relation between Physics and Mathematics in the XIXth Century. Springer, Dordrecht
Bellucci GB (1598) Nuoua Inventione di fabricar Fortezze, di varie Forme in qualunque sito di piano, di monte, in acqua, con diuersi disegni, et un trattato del modo, che si ha da osseruare in esse, con le sue misure, et ordine di levar lepiante, tanto in fortezze reali, quanto non reali. Roberto Meietti, Venezia
Benedetti GB (1533) Resolutio omnium Euclidis problematum aliorumque ad hoc necessario inventorum una tantummodo circini data apertura. Apud Bartholomaeum Caesanum, Venetiis
Benedetti GB (1585) Diversarum speculationum Mathematicarum, \& Physicarum liber. Apud Haeredem Nicolai Bevilaquae, Taurini
Bertoloni Meli D (2006) Thinking with Objects. The Transformation of Mechanics in the Seventeenth Century. The Johns Hopkins University Press, Baltimore
Besana L (1996) La Nuova Scientia di Niccolò Tartaglia: una lettura. In: Beretta M et al. (eds) Per una storia critica della scienza. Cisalpino, Milano, pp 49-71
Biagioli M (2003) Galileo e Derrida: il libro della natura e la logica del supplemento. Rinascimento. Serie II, Vol. XLIII. Olschki, Firenze, pp 205-232
Biagoli M (1989) The Social Status of the Italian Mathematicians, 1450-1600. History of Science XXVII:41-95
Biener Z (2004) Galileo's first new science: The science of matter. Perspectives on science 12:262-287
Biener Z (2008) The unity of science in early-modern philosophy: Sub-alternation, metaphysics and the geometrical manner in Scholasticism, Galileo and Descartes. PhD dissertation. The University of Pittsburg Press, Pennsylvania
Biringucci VO (1582) Parafrasi di monsignor Alessandro Piccolomini sopra le meccaniche di Aristotele, tradotta da Oreste Vannocci Biringucci, gentilomo senese. Francesco Zanetti, Roma
Bittanti L (1871) Di Nicolò Tartaglia matematico bresciano, Liceo Arnaldo, lettura 4 giugno 1871. Apollonio, Brescia

Bolletti I (1958) Nicolò Tartaglia. La sua vita, le sue opere, i suoi tempi. Etude Tecnique Bolceraf, Brescia
Bolton R (1976) Essentialism and semantic theory in Aristotle: Posterior analytics, II, 7-10. The Philosophical Review 85(4):514-544
Bombelli R (1572) L Algebra. Parte Maggiore dell'artitmetica divisa in tre libri di Rafel Bombelli da Bologna. Nuovamente posta in luce. Nella Stamperia di Giovanni Rossi, in Bologna
Boncompagni B (1881) Intorno ad un testamento inedito di N. Tartaglia. Memoriam dominici Chelini-Collectanea Mathematica. Hoepli, Milano, pp 363-412
Borelli GA (1686a) De motionibus naturalibus a gravitate pendentibus. In Borelli 1686b [as separate book]
Borelli GA (1686b) De VI percussionibus, et motionibus naturalibus a gravitate pendentibus, sive introductiones \& illustrationes physico-matematicae [...] ad opus ejus intelligendum de motu animalium. Una cum ejusdem Auctoris responsionibus in animadversiones. Petrum Vander, Leida
Bortolotti E (1935) I cartelli di matematica disfida e la personalità psichica e morale di Girolamo Cardano. Studi e memorie per la storia dell'Università di Bologna XII:3-79
Bradwardine T (1955) Thomas Bradwardine and his Tractatus de proportionibus, Edition and translated by Corby HL. The University of Wisconsin Press, Madison
Brown EJ (1967-1968) The scientia de ponderibus in the later middle ages. Ph.D. doctoral thesis. The University of Winscosin. Tutor: Prof. Clagett M. UMI - ProQuest Company: www.il. proquest.com
Brown EJ (1976) The science of weights. In: Lindberg 1976, pp 179-205
Brugmans A (1785) Specimen mechanicae veterum per mechanicam recentiorem plenius expositum. Societatis regiae scientiarum Gottingensi 7:75-88
Brunet JC (1860-1865) Manuel du Libraire et de L’Amateur de Livres. Librairie de Firmin Didot Frères, Paris
Buchwald JZ and Feingold M (2011) Newton and the Origin of Civilization. Princeton University Press, NJ
Buridan J (1509) Subtilissimae Quaestiones super octo Physicorum libros Aristotelis, Paris. [Reprint: Id. (1964) Kommentar zur Aristotelischen Physik. Minerva, Frankfurt]
Buridan J (1513) Quaestiones super decem libros Ethicorum Aristotelis ad Nicomachum, Paris. [Reprint: Id. (1968) Super decem libros Ethicorum. Minerva, Frankfurt]
Buridan J (1942) Iohannis Buridani Quaestiones super libris quattuor De caelo et mundo. In: Moody EA (ed). Studies and documents 6/40.The Medieval Academy of America, Cambridge-MA
Busard HLL (2005) Introduction to the Text. Campanus of Novara and Euclid's Elements I. Franz Steiner Verlag, Stuttgart
Bussotti P, Pisano R (2013) On the Conceptual Frames in René Descartes’ Physical Works. Advances in Historical Studies 2(3):106-125
Bussotti P, Pisano R (2014a) On the Jesuit Edition of Newton's Principia. Science and Advanced Researches in the Western Civilization. Newton Special Issue: History and Historical Epistemology of Science. Advances in Historical Studies 3/1:33-55
Bussotti P, Pisano R (2014b) Newton's Philosophiae Naturalis Principia Mathematica "Jesuit" Edition: The Tenor of a Huge Work. Accademia Nazionale Lincei-Rendiconti Matematica e Applicazioni 25:413-444
Butterfield H (1957) The origins of modern science, 1300-1800. Bell, London
Capecchi D (2004) On the logical status of the virtual work principle. Meccanica 39:159-173
Capecchi D (2009) aristotle's mechanics and virtual work principle. In: Gianetto E (ed). Proceedings of XXIX SISFA Congress. Guaraldi, Rimini, pp 139-146
Capecchi D (2011) Weight as active or passive principle in the Latin and Arabic scientia de ponderibus. Organon 43:29-58
Capecchi D (2012a) Historical roots of the rule of composition of forces. Meccanica 47:1887-1901
Capecchi D (2012b) History of virtual work laws. Birkhäuser, Milano

Capecchi D (2014a) An historical and epistemological point of view of mathematical physics. Mathematics and Mechanics of Solids MMS-13-0143
Capecchi D (2014b) The problem of motion of bodies. Springer, Dordrecht
Capecchi D (2014c) A Historical Reconstruction of Mechanics as a Mathematical Physical Science. Mathematics and Mechanics of Solids. OnlineFirst: doi: 10.1177/1081286514553146
Capecchi D, Pisano R (2007) Torricelli e la teoria dei baricentri come fondamento della statica. Physis XLIV:1-29
Capecchi D, Pisano R (2008) La meccanica in Italia nei primi anni del Cinquecento. Il contributo di Niccolò Tartaglia. In: Tucci P (ed). Proceedings of XXV SISFA Congress. The University of Milano Press, Milano, C17.1-C17.6
Capecchi D, Pisano R (2010a) Scienza e tecnica nell'architettura del Rinascimento. CISU, Roma
Capecchi D, Pisano R (2010b) Reflections on Torricelli's principle in mechanics. Organon 42:81-98
Cardano G [1550] 1554 De Subtilitate. Ludovicum Lucium. Basileae.
Cardano G (1570) Opus novum de proportionibus numerorum, motuum, ponderum, sonorum, aliarumque rerum mensurandarum non solum geometrico more stabilitum sed etiam variis experimentis \& observationibus rerum in natura solerti demonstratione illustratum ad multiplices usus accommodatum \& in V libros digestum. Praeterea Artis magnae sive de Regulis algebraicis liber unus abstrusissimus \& inexhaustus plane totius arithmeticae thesaurus ab authore recens multis in locis recognitus \& auctus. Item de Aliza regula liber hoc est algebraicae logisticae suae, numeros recondita numerandi subtilitate [...]. Ex officina Henricpetrina, Basileae
Cardano G (1574 [attribuited]) Commentaria in Euclidis Elementa geometrica. Bibliothèque Nationale Paris. Lat.7217: s.a.Paris
Cardano G (1663) Hieronymi cardani mediolanensis philosophi ac medici celeberrimi opera Omnia In Decem Tomos Digesta. Tam hactenvs excusa hic tamen aucta et emendata; quam nunquam alias visa, ac primum ex auctoris ipsius autographis eruta: Cura Caroli Sponii Doctoris Medici Collegio Medd. Lugdunaorum Aggregati. Lugduni, Sumptibus Ioannis Antonii Hugvetan, et Marci Antonii Ravavd. M.DC.LXIII. Cvm Privilegio Regis, Lyon
Cardano G (1934) The first book of Jerome Cardan's De subtilitate. English edition. Translation by Cass MM. Baylord, Williamsport
Cartelon H (1975) Does Aristotle Have A Mechanics? In: Barnes et al. (eds) Articles on Aristotle. Vol. I. Science. Duckworth, London
Castriotto JF, Maggi G [et al] ([1564] 1583) Della Fortificatione delle Citta, di M. Girolamo Maggi, e del capitan Jacomo Castriotto, Ingegniero del Christianis. Re di Francia, Libri III. Appresso Camillo Borgominiero, al Segno di S. Giorgio. MD LXXXIII, Venetia
Cataneo P ([1567] 1982) L'architettura: libri otto. Biblioteca di architettura urbanistica: teoria e storia. Forni, Bologna
Caverni R (1891-1900) Storia del metodo sperimentale in Italia. VI vols. [Volume VI is incomplete because of author's death; Reprinted by Forni, Bologna, 1970]. Civelli, Firenze
Cesariano C (1521) Di Lucio Vitruvio Pollione De architectura libri dece traducti de latino in vulgare affigurati. Gotardo da Ponte, Como
Céu Silva M (2013) Renaissance Sources of Juan Pérez de Moya's Geometries. Asclepio. Revista de Historia de la Medicina y de la Ciencia 65(2):1-13
Charbonnier P (1928) Essais sur l'Histoire de la Balistique: extrait du mémoral de l'artillerie Francaise. Imprimerie Nationale, Paris
Chasles M (1881) (ed) Catalogue de la bibliothèque scientifique, historique et littéraire de feu. Claudin A libraire-expert et paléographe, Paris
Ciocci A (2011) Le matematiche tra Medio Evo e Rinascimento. Proceedings of the 2nd International meeting, Sansepolcro-Perugia-Firenze. The Fondazione Cassa di Risparmio Perugia, Perugia, pp 253-285
Clagett M (1956) The liber de Motu of Gerard of Brussels and the origin of kinematics in the West. Osiris 12:73-175
Clagett M (1959) The science of mechanics in the Middle Ages. The University of Wisconsin Press, Madison

Clagett M (1964-1984). Archimedes in the Middle Ages, Madison-Philadelphia, Memoirs of the American Philosophical Society, 5 Vols., 10 Tomes. The Clarendon University Press, Oxford
Clauvius C (1574) Euclidis Elementorum Libri XV. Apud Vicentium, Romae
Cockle MJD (1900) A Bibliography of English foreign and military books. Biography of military books up to 1642. Simpkin, Marshall, Hamilton, Kent \& Co. Ltd, London
Cohen IB (1985) Revolution in science. The Harvard University Press, Cambridge-Massachusetts
Commandino F (1565) Federici commandini vrbinatis liber de centro gravitatis solidorum Bononiae: Ex Officina Alexandri Benacii
Commandino F (1575) De gli elementi di Euclide libri quindici. Con gli scholii antichi. Tradotti prima in lingua latina da m. Federico Commandino da Vrbino, \& con commentarij illustrati, et hora di ordine delli istesso trasportati nella nostra vulgare, et da lui riueduti in Vrbino: appresso Domenico Frisolino In Vrbino: in casa di Federico Commandino
Corbini A (2006) La teoria della scienza nel XIII secolo. I commenti agli analitici secondi. Edizioni del Galluzzo, Firenze
Costabel P (1973) Vers une mécanique nouvelle. In: Roger J (ed) Sciences de la renaissance. VII Congrés International de Tours. Vrin, Paris, pp 127-142
Crombie AC (1957) Augustine to Galileo, the history of science, AD 400-1650. Heinemann, London
Crombie AC (1959) Medieval and Early Modern Science. II. Science in the later middle ages and early modern times, XIII-XVII centuries. Doubleday Anchor Books, New York
Crowley CB, Redpath PA (1996) Aristotelian-Thomistic Philosophy of Measure and the International System of Units (SI): Correlation of International System of Units with the Philosophy of Aristotle and St. Thomas. University Press of America, Lanham-MD
Cuomo S (1997) Shooting by the Book: Notes on Nicolò Tartaglia's Nova Scientia. History of Science 35(2):155-188
Cuomo S (1998) Nicolò Tartaglia, Mathematics, Ballistics and the Power of Possession of Knowledge. Endeavour 22(1):31-35
Cuomo S (2004) Pappus of Alexandria and the Mathematics of Late Antiquity. The Cambridge University Press, Cambridge
D'Ayala M (1841) Dizionario Militare Francese Italiano. Tipografia Gaetano Nobile, Napoli
D'Ayala M (1854) Bibliografia militare italiana e moderna. Stamperia Reale, Torino
Da Vinci L (1940) I libri di meccanica nella ricostruzione ordinata di Arturo Uccelli preceduti da una introduzione critica e da un esame delle fonti. Hoepli, Milano
De Fourquevaux R (1548) Instructions sur le faict de la Guerre. Michel Vascosan, Paris
De La Noue F (1587) Discours politiques et militaires du Seigneur de la Noue. Novvellement recueillis \& mis en lumière. François Forest, Basle
De Monluc B ([1521-1576] 1964) Commentaires, 1521-1576. Bibliothèque de la Pléiade. Gallimard, Paris
De Nemore I (fl. 13th) Ms. Elementa Jordani super demonstratione de ponderibus. Oxford, Bodleian Library, Ms. Auct. F.5.28. Folia 125v-133r
De Nemore I (1533) Liber Iordani Nemorarii viri clarissimi, de ponderibus propositiones XIII \& earundem demonstrationes, multarumque rerum rationes sane pulcherrimas complectens. [edited by Apianus] Ioh Petreium, Norimbergae
De Nemore (1565) Iordani Opusculum de Ponderositate, Nicolai Tartaleae Studio Correctum Novisqve Figuris avctum [Tartaglia N (ed)]. Cum Privilegio Traiano Curtio, Venetiis, Apud Curtium Troianum. MDLXV
De Pace A (1993) Le matematiche e il mondo. Ricerche su un dibattito in Italia nella seconda metà del Cinquecento. Franco Angeli, Milano
De Pace A (2009) Niccolò Copernico e la fondazione del cosmo eliocentrico. Mondadori, Milano
De Ridder-Symoens H (1992) (ed) A history of the university in Europe. Universities in the Middle Ages. 4 Vols. The Cambridge University Press, Cambridge, Vol. I
De Roberval Personne G (1636) Traité de mechanique des poids soustenus par des puissances sur les plans inclinez al'horizon. Charlemagne, Paris
del Monte G ([1577] 1581). Le Meccaniche dell'Illustrissimo Sig. Guido Ubaldo dè Marchesi del Monte, tradotto in volgare dal Sig. Filippo Pigafetta. Evangelista Deuchino, Venezia [1577: Mechanicorum Liber]
del Monte G (1588) In duos Archimedis aequeponderantium libros paraphrasis. Hieronymum Concordiam, Pisauri
del Monte G (1615) Le mechaniche dell'illustriss. Sig. Guido Ubaldo de' marchesi del Monte tr. Tradotto in volgare da Filippo Pigafetta (1581). Evangelista Deuchino, Venezia
del Monte G (2013) Guidobaldo del Monte (1545-1607) Theory and Practice of the Mathematical Disciplines from Urbino to Europe. In: Becchi A, Bertoloni Meli D, Gamba E (eds). The Open Access Edition Press, Berlin
Demidov SS (1970) Gerolamo Cardano and Niccolo Tartaglia. Physik Mathematik Jorurnal of Bulgarian Academy of Science 13(46):34-47
Di Pasquale L (1957a) I cartelli di matematica disfida di Ludovico Ferrari e i controcartelli di Nicolo Tartaglia I. Periodico di Matematiche 35(4):253-278
Di Pasquale L (1957b) I cartelli di matematica disfida di Ludovico Ferrari e i controcartelli di Nicolo Tartaglia II. Periodico di Matematiche 36(4):175-198
Di Pasquale L (1957c) Le equazioni di terzo grado nei "Quesiti et inventioni diverse" di Nicolo Tartaglia. Periodico di Matematiche 35(4):79-93
Dijksterhuis EJ (1957) Archimedes. The Humanities Press, New York
Dijksterhuis EJ (1961) The mechanization of the world picture. English Translation Dikshoorn C. The Oxford University Press, New York
Dijksterhuis EJ (ed) (1955) The principal works of Simon Stevin. Vol. I. Swets \& Zeitlinger, Amsterdam.
Drabkin IE (1938) Notes on the laws of motion in Aristotle. The American Journal of philology 59:60-84
Drabkin IE (1964) Two versions of G.B. Benedetti Demonstratio proportionum motuum localium. Isis 54:259-262
Drachmann AG (1963) Fragments from Archimedes in Heron's Mechanics. Centaurus 8:91-146
Drachmann A G (1967-1968) Archimedes and the science of physics. Centaurus 12:1-11
Dragoni G, Bergia S, Gottardi G (2004) Tartaglia, Entry. In: Dizionario Biografico degli scienziati e dei tecnici. Zanichelli, Bologna
Drake S (1973) Galileo's experimental confirmation of horizonal inertia. Isis 64:291-305
Drake S (1985) Galileo's accuracy in measuring horizontal projections. Annali dell'Istituto e Museo di Storia delle Scienze di Firenze 10(1):3-14
Drake S (1990) Galileo. Pioneer Scientist. The University of Toronto Press, Toronto [Italian Translation: Id., (1992) Galileo Galilei pionere della scienza. Franco Muzzio Editore, Padova]
Drake S (1999) Essays on Galileo and the history of philosophy of science. The University of Toronto Press, Toronto
Drake S (2000) Two new sciences. A history of free fall, Aristotle to Galileo. Wall and Emerson, Toronto
Drake S, Drabkin IE (1969) Mechanics in Sixteenth-Century Italy: Selections from Tartaglia, Benedetti, Guido Ubaldo, and Galileo. The University of Wisconsin Press, Madison
Dugas R (1950) Historie de la mécanique. Griffon, Neuchatel
Duhem PMM (1905-1906) Les origines de la statique. 2 Vols. Hermann, Paris
Duhem PMM (1906-1913) Etudes sur Léonard de Vinci. Hermann, Paris
Duhem PMM (1913-1959) Le système du monde, histoire des doctrines cosmologiques de Platon à Copernic. 10 Vols. Hermann, Paris
Durante M (1981) Dal latino all'italiano moderno. Saggio di storia linguistica e culturale. Zanichelli, Bologna
Edwards AWF (2002) Pascal's arithmetical triangle: the story of a mathematical idea. The Johns Hopkins University Press, Baltimore
Ekholm KJ (2010) Tartaglia'a ragioni: A maestro d'abaco's mixed approach to the bombarder's problem. The British Journal for the History of Science 43(2):181-207
Essenwein A, Germanisches M (1873) Quellen zur Geschichte der Feuerwaffen. Brockhaus FA, Leipzig

Euclid (1945) The optics of Euclid. Translation by Burton HD. The Journal of the Optical Society 35/5:357-372
Favaro A (1882) Intorno ad un testamento inedito di N. Tartaglia pubblicato da Don B. Boncompagni. Rivista periodica dei lavori della Regia Accademia di Scienze Lettere ed Arti in Padova (1881) XXXII:71-108
Favaro A (1883) Galileo e lo studio di Padova. Le Monnier, Firenze, Vol. I, p 209, Vol. II, p 175
Favaro A (1900) Due lettere inedite di Guidobaldo del Monte a Giacomo Contarini. Ferrari, Venice. [Reprinted in: Id., (1899-1900) Atti del Reale istituto veneto di scienze, lettere ed arti 59(2)]
Favaro A (1913) Per la biografia di Niccolò Tartaglia. Archivio storico italiano LXXI:335-372
Favaro A (1916) Se e quale influenza abbia Leonardo da Vinci esercitata su Galileo e la scuola galiziana. Scientia XX(X):LVI-12
Ferriello G (2005) The Lifter of Heavy Bodies of Heron of Alexandria in the Iranian World. Nuncius 20(2):327-346
Festa E, Roux S (Forthcoming) Les 'mécaniques' de Galilée. Les Belles Lettres, Paris
Fronsperger L (1564) Kriegs Ordnung und Regiment, sampt derselbigen Befehl, Statt und Empter, zu Rosß und Fuß, auch an Geschütz und Munition. Frankfurt, J. Lechler für S. Feyerabend u. S. Hüter
Gabrieli GB (1986) Nicolo Tartaglia: invenzioni, disfide e sfortune. Università di Siena, Siena
Galilei G (1585) Theoremata circa centrum gravitatis solidorum. In: Galilei 1888-1909, Vol. I, pp 187-208
Galilei G (1590) De motu. In: Galilei 1888-1909, Vol. I, pp 243-419
Galilei G (fl. 16th) Ms. A - Trattato di fortificazioni e modo d'espugnare la città con disegni e piante di fortificazioni. Biblioteca Ambrosiana. D: 328 Inf.- 38640
Galilei G (fl. 16th) Ms. B - Trattato delle fortificazioni, con disegni diversi. Biblioteca Ambrosiana. D: 296 Inf.- 38499
Galilei G (fl. 16th) Ms. m - Trattato di fortificazioni, con disegni e figure (acephalous). Biblioteca Ambrosiana. N: 281 Sup.- 2- 80277
Galilei G (1606) Diversi modi per misurar con la vista; e prima, delle altezze perpendicolari, alla radice delle quali si possa accostare e discostare. In: Le operazioni del compasso geometrico e militare. Padova, pp 61-80
Galilei G (1610) Sidereus Nuncius. In: Galilei 1888-1909, Vol. III, pp 55-96
Galilei G (1612) Discorsi intorno alle cose che stanno in su l'acqua e o che in quella si muovono. In: Galilei 1888-1909, Vol. IV, pp 57-141
Galilei G (1632) Dialogo sopra i due massimi sistemi. In: Galilei 1888-1909, Vol. VII, pp 21-520
Galilei G (1634) Les mechaniques de Galilée, Mathématician et Ingénieur du Duc de Florence. Mersenne M (ed). Guenon Paris
Galilei G (1638) Discorsi e dimostrazioni matematiche intorno a due nuove scienze. In: Galilei 1888-1909, Vol. VIII, pp 38-362
Galilei G (1649) Le Mecaniche. In: Galilei 1888-1909, Vol. II, pp 147-191
Galilei G (1656) Opere di Galileo Galilei linceo. Eredi del Dozza, Bologna
Galilei G (fl. 17th) Ms. 72, 33rv-196v. Biblioteca Nazionale Centrale, Florence Istituto e Museo di Storia della Scienza, Florence-Max Planck Institute for the History of Science, Berlin. Via: http://www.imss.fi.it/ms72/MAIN/HOW_TO.HTM
Galilei G (1843-1856) Le opere di Galileo Galilei. Società Editrice Fiorentina, Firenze
Galilei G (1888-1909a) Breve instruzione all'architettura militare. In: Galilei 1888-1909, Vol. II, pp 15-75
Galilei G (1888-1909b) Le operazioni del compasso geometrico e militare In: Galilei 1888-1909, Vol. II, pp 343-424
Galilei G (1888-1909c) Le opere di Galileo Galileo: Edizione nazionale sotto gli auspici di sua maestà il re d'Italia. Favaro A (ed), Barbera, Firenze
Galilei G (1888-1909d) Lettera del 1° sett. 1599. In: Galilei 1888-1909, Vol. X, p 77
Galilei G (1888-1909e) Trattato di fortificazione. In: Galilei 1888-1909, Vol. II, pp 77-146
Galilei G (1914) The new sciences. Translation by Crew H and De Salvio A. Mc Millan Company, New York

Galilei G (2002) Le Mecaniche. Gatto R (ed). Olschki, Firenze
Galilei G (2005) Opere. Brunetti F (ed), UTET, Padova, Vol. I, pp 189-26
Galluzzi P (1979) Momento. Ateneo e Bizzarri, Roma
Galluzzi (1988) Leonardo da Vinci: Engineer and Architect. Montreal Museum of Fine Arts, Montreal
Galluzzi P, Torrini M (1975-1984) (eds) Le opere dei discepoli di Galileo Galilei. Carteggio. Giunti-Barbera, Firenze, 2 Vols.
Garber D, Roux S (2013) (eds) The Mechanization of Natural Philosophy. Vol. 300. Boston Studies in the Philosophy and History of Science. Dordrecht, Springer
Garin E (1993) L'umanesimo Italiano. Laterza, Bari
Garin E (2008) L'uomo del Rinascimento. Laterza, Bari
Gatto R (1988) Un matematico sconosciuto del primo Seicento: Davide Imperiali. Bollettino di Storia delle Scienze Matematiche 8:71-135
Gatto R (1996) La meccanica a Napoli ai tempi di Galileo. In appendice De Gli Elementi Mechanici di Colantonio Stigliola e le inedite Mechaniche mie di Davide Imperiali. La Città Del Sole, Napoli
Gavagna V (2007) L'insegnamento dell'aritmetica nel "General Trattato" di N. Tartaglia. Supplemento ai Commentari dell'Ateneo di Brescia per il 2007:101-138
Gerardus de Brussel (1956) Liber magistri Gerardus de Brussel de motu. In Clagett M (ed). The liber de Motu of Gerard of Brussels and the origin of kinematics in the West. Osiris 12:73-175
Geymonat L (1980) Galileo Galilei. Einaudi, Torino
Giannetto E, Maccarone GD, Pappalardo, Tinè A (1992) Impulsus and Impetus in the Liber Jordani de Ratione Ponderis. Medieval Studies 54:162-185
Giard L, Romano A (2008) L’usage jésuite de la correspondance: sa mise en pratique par le mathématicien Christoph Clavius (1570-1611). In: Romano A (ed). Rome et la Science moderne: entre Renaissance et Lumières. Collection de l'École française de Rome, Roma, pp 51-98
Gibb HAR, Bowen H (1950-1957) Islamic Society and the West, a study of the impact of Western civilization on Moslem Culture in the Near West, 2 vols. The Oxford University Press, London-New York-Toronto
Gille B (1964) Les ingénieur de la Renaissance. Hermann, Paris
Gille B (1966). Engineers of the Renaissance. MIT Press, Cambridge-MA
Gillispie CC (ed) (1971-1980) Dictionary of Scientific Biography (1971-1980). Scribner \& Son, New York
Gillispie CC, Pisano R (2014) Lazare and Sadi Carnot. A Scientific and Filial Relationship. 2nd edition. Springer, Dordrecht
Ginzberg B (1936) Duhem and Jordanus Nemorarius. Isis 25:341-362
Giordani E (1878) I sei cartelli di matematica disfida di L. Ferarri ed i sei controcartelli di N. Tartaglia. Bullettino di Bibliografia e Storia delle Scienze Matematiche e Fisiche XI
Giusti E, Petti R (2002) (eds) Un ponte sul Mediterraneo: Leonardo Pisano, la scienza araba e la rinascita della matematica. Edizioni Polistampa, Florence
Gomez-Lobo A (1977) Aristotle hypotheses and the Euclidean postulates. The review of metaphysics 30(3):430-439
Gosselin G ([1578] 1613) L'Arithmétique de Nicolas Tartaglia Brescian, Grand Mathematicien, et Prince des Praticiens. Divisee en deux parties. Recueillie \& traduite d'Italien en François, par Guillaume Gosselin. Perier, Paris
Graesse JGT (1859-1869) Trésor de livres rares et precieux. Dresde, Kuntze. Vols. I-VII
Grant E (1962) Later medieval, thought, Copernicus and the scientific revolution. The Journal of the History of Ideas 23:197-220
Grant E (1965) Aristotle, Philoponus, Avempace, and Galileo's Pisan Dynamics. Centaurus 11:79-95
Grant E (1996) The foundations of modern science in the Middle Ages: their religious, institutional, and intellectual contexts. The Cambridge University Press, Cambridge
Grant E, Murdoch JE (1987) (eds) Mathematics and its applications to science and natural philosophy in the middle ages. The Cambridge University Press, Cambridge

Grendler P (1955) What Piero Learned in School: Fifteenth-Century Vernacular Education. In: Lavin MA (ed). Piero della Francesca and His Legacy. The University Press of New England, Lebanon-New Hampshire, pp 161-176
Grendler PF (2002) The universities of the Italian renaissance. The John Hopkins University Press, Baltimora
Guidera P (1994) Koyré e Tartaglia. In: Vinti C (ed). Alexandre Koyré: l'avventura intellettuale. Esi, Napoli, pp. 487-502
Gutas D (1998) Greek thought Arabic Culture. Routledge, London
Hall AR (1952) Ballistics in the Seventeenth Century: A Study in the Relations of Science and War with Reference Principally to England. The Cambridge University Press, Cambridge
Hall Boas M (1962) The scientific Renaissance. 1450-1630. Dovre, NY
Hall BS (1997) Weapons and Warfare in Renaissance Europe: Gunpowder, Technology, and Tactics. The Johns Hopkins Studies in the History of Technology, New series 22. The John's Hopkins University Press, Baltimore
Harrison P (2006) The book of nature and early modern science. In: van Berkel K, Vanderjagt A (eds). Book of nature in early modern and modern history. Groningen studies in cultural change 17. Peeters Publishers, Leuven

Heath TL (1896) Apollonius, Treatise on Conic Sections. The Cambridge University Press, Cambridge
Heath TL (2002) The works of Archimedes. Dover Publications Inc., New York
Henninger-Voss MJ (2002) How the "New science" of cannons shook up the Aristotelian cosmos. The History of Ideas 63(3):371-397
Heron Alexandrinus (1575) Heronis Alexandrini Spiritalium liber. A Federico Commandino Urbinate, ex Graeco, nuper in Latinum conversus. Frisolino Domenico, Urbini
Heron Alexandrinus (1893) Les mécaniques ou l'élévateur de Héron d'Alexandrie Arabic text and French translation by Carrà de Vaux. Journal Asiatique 9(1):386-472
Heron Alexandrinus (1899-1914) Heronis Alexandrini opera quae supersunt omnia. 5 vols. Teubner, Leipzig
Heron Alexandrinus (1900) Herons von Alexandria Mechanik und Katoptrik. Nix L and Schmidt W (eds). In: Heron 1899-1914
Heron Alexandrinus (1999) Heron Alexandrinus Mechanica. English translation by Jutta Miller. Via: http://archimedes.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.cgi
Hill DK (1986) Galileo's Work on 116v: A New Analysis. Isis 77:283-291
Hogg I (1982) Storia delle fortificazioni. Istituto Geografico De Agostini, Novara
Høirup J (1989) Sub-scientific mathematics: observations on a pre-modern phenomenon. History of Science 28:1-79
Hoyrup J (1988) Jordanus de Nemore, 13th Century Mathematical Innovator. Archive for History of Exact Science 38:307-363
Hultsch FO (1878) Pappi Alexandrini collections. 3 Vols. Weidmannas, Berolini Khanikov 1857
Jähns M (1889-1891) Geschichte der Kriegswissenschaften, vornehmlich in Deutschland, 3 Vols. München und Leipzig [Geschichte der Wissenschaften in Deutschland. Neuere Zeit 21; New York, 1965: XIX, pp 507; pp 596-605; p 626; pp 707-712; p 718; pp 797-802; p 985; p 1008
Jaouiche K (1971) La Statique chez les Arabes. Oriente e Occidente nel Medio Evo: filosofia e scienze. Convegno internazionale (1969, April 9-15). Atti Accademia Nazionale dei Lincei, Roma, pp 731-740
Jaouiche K (1976) Le livre du Qarastun de Thabit Ibn Qurra. EJ Brill, Leiden
Jesseph DM (2004) Galileo, Hobbes and the book of nature. Perspectives on science 12(2):191-211
Kesten H (1945) Copernicus and his world. Secker \& Warburg, London
Khanikoff N ([1858] 1982) Analysis and Extracts of Kitab Mezan Al-hikmah. Book of the Balance of Wisdom, An Arabic Work On the Water-Balance, Written By 'Al-Khazini in the Twelfth Century. Journal of the American Oriental Society 6:1-128
Knobloch E (1981) Mariano di Jacopo detto Taccola, ein Werk der italienischen Frührenaissance Technikgeschichte 48:1-27

Knobloch E (1990) Christoph Clavius. Ein Namen und Schriftenverzeichnis zu seinen "Opera mathematica". Bollettino di Storia delle Scienze Matematiche 10:135-189
Knobloch E (2002) The Jesuit Ratio Studiorum, La connaissance des mathématiques arabes par Clavius. Arabic Science and Philosophy 12(2):257-284
Knobloch E, Vasoli C, Siraisi N (2001) Il Rinascimento. Entry. Istituto della Enciclopedia Italiana. Vol. 4, Medioevo, Rinascimento. Storia della scienza, Roma, pp 605-1044
Knoblock E (2004) Mathematical Methods in Preindustrial Technology and Machines. In: Lucertini M, Gasca AM, Nicolò F, (eds). Technological Concepts and Mathematical Models in the Evolution of Modern Engineering Systems. Birkhauser, Basel
Knorr WR (1978-1979) Archimedes and the "Elements": proposal for a revised chronological ordering of the Archimedean corpus. Archive for History of Exact Science 19(3):211-290
Knorr WR (1985) Archimedes and the pseudo-Euclidean "Catoptrics": early stages in the ancient geometric theory of mirrors. International Archive on the History Science 35:114-115; [Id. (1986), Ivi, 28-105]

Koetsier T (2010) Simon Stevin and the rise of Archimedean mechanics in the Renaissance. In: Paipetis SA, Ceccarelli M (eds) The genius of Archimedes. Springer, Dordrecht pp 85-112
Koyré A (1950) L'apport scientifique de la Renaissance. In: Koyré A (1961) Etudes d'histoire de la pensé scientifique. Colin, Paris, pp 38-47
Koyré A (1960) La dynamique de Nicolo Tartaglia (1957). In: La science au seizième siècle. Colloque international de Royaumont, 1-4 juillet 1957. Hermann, Paris, pp 91-116; see also: Koyré A (1966) La dynamique de Niccolo Tartaglia. Etudes d’histoire de la pensée scientifique:101-121
Koyré A (1961) La révolution astronomique: Copernic, Kepler, Borelli. Hermann, Paris
Koyré A (1996) Études Galiléennes. Hermann, Paris
Kragh H (1987) An introduction to the historiography of science. The Cambridge University Press, Cambridge
Kuhn TS (1957) The Copernican revolution. Planetary astronomy in the development of western thought. Harvard University Press, Cambridge, Massachusetts
Kusukawa S (2012) Picturing the book of nature: image, text and argument in sixteenth-century human anatomy and medical botany. The Chicago University Press, Chicago
Lagrange JL (1811) Mecanique Analytique. Courcier, Paris
Lagrange JL (1853) Mecanique Analytique. 3rd ed., 2 Vols. Betrand MJ (ed) Mallet-Bachelier, Paris
Lagrange JL (1870-1873) Euvres de Lagrange. Courcier (ed), I-XIV Vols. (in X) Paris GauthierVillars, Paris
Lagrange JL (1889) Mécanique analytique (tome premier). In: Lagrange (1867-1892) Oeuvres de Lagrange. 14 Vols. Serret JA [Darboux G] (eds). Gauthier-Villars, Paris, vol XI
Laird WR (1986) The scope of Renaissance mechanics. Osiris 2(2):43-68
Laird WR (1987) Giuseppe Moletti's Dialogue on Mechanics (1576). Renaissance Quarterly 40(2):209-223
Laird WR (2000) The unfinished mechanics of Giuseppe Moletti. The University of Toronto Press, Toronto
Laird WR, Roux S (2008) (eds) Mechanics and Natural Philosophy before the Scientific Revolution. Vol. 254. Boston Studies in the Philosophy and History of Science. Dordrecht-Boston, Kluwer-Springer Verlag
Laland KN, Brown B (2011) Sense and Nonsense: Evolutionary Perspectives on Human Behaviour. Second Edition. The Oxford University Press, Oxford
Lantieri G (1557) Due dialoghi di m. Iacomo de'Lantieri da Paratico, bresciano, nei quali s'introduce messer Girolamo Catanio nouarese \& messer Francesco Treuisi ingegnero veronese, con un giouene bresciano à ragionare del modo di disegnare le piante delle fortezze secondo Euclide et del modo di comporre i modelli et torre in disegno le piante delle città. Vincenzo Valgrisi et Baldessar Costantini, Venetia.
Lefèvre W (2004 (ed) Picturing machines 1400-1700. The Massachusetts Institute of Technology Press, Cambridge-MA, pp 164-170

Lennox JG (1985) Aristotle, Galileo and the mixed sciences. In: Wallace W (ed). Reinterpreting Galileo. Washington, The Catholic University of America Press, pp 29-51
Leonici Thomei [Leonico Tomeo] N (1530) Opuscula nuper in lucem aedita Parisiis Apud Simonem Colieaeum
Leonico Tomeo N (1525) Opuscula nuper in lucem aedita quorum nomina proxima habentur pagella. Bernardino Vitali, Venice [see also English Translation by Walter Stanley Hett: Aristotle, Mechanical Problems. Nicolao Leonico Thomaeo interprete, Venise 1525]
Lindberg DC (1976) (ed) Sciences in the Middle Ages. Chicago History of Science and Medicine. The Chicago University Press, Chicago
Loria G (1914) Le scienze esatte nell'antica Grecia. Hoepli, Milano
Lorini B (1596) Delle fortificationi di Buonaiuto Lorini nobile fiorentino Libri Cinque. Ne' quali si mostra con le più facili regole la Scienza con la ratica, di fortificare le città, \& altri luoghi sopra diversi siti [...]. Nuovamente dati in luce. In Vinegia, appresso Gio. Antonio Rampanzetto. [BNCF - Palatino 11. 3 .7.37]
Lorini B (1609) Le fortificationi di Buonaiuto Lorini nobile fiorentino nuovamente ristampate, corrette \& ampliate con l'aggiunta del sesto libro, in Venetia, presso Francesco Rampazetto.
Lupicini A (1582a) Architettura militare con altri Auuertimenti appartenenti alla Guerra di Antonio Lupicini. Appresso Giorgio Marescotti, Fiorenza
Lupicini A (1582b) Discorsi militari d'Antonio Lupicini sopra l'espugnazione d'alcuni siti. Nella stamperia di Bartolomeo Sermartelli, Firenze
Maccagni C (1967) Le speculazioni giovanili "de motu" di Giovanni Battista Benedetti. Domus Galileana, Pisa
Mach E ([1883] 1974) The Science of Mechanics. A Critical and Historical Account of its Development. Translation by McCormack TJ. 4th edition. The Open Court-Merchant Book, La Salle
Machamer P (1978) Galileo and the causes. In: Butts RE, Pitt JC (eds). New perspectives on Galileo. Reidel, Dordrecht, pp 161-180
Maier A ([1509] 1968) Zwei Grundprobleme der scholastichen Naturphilosphie. In: Edizioni Storia e Letteratura. 3rd ed. Roma [which, in turn, includes - with some modifications - the Parisian edition-1509]
Marchionna E (1978) Giuseppina Masotti Biggiogero. Istituto lombardo- Accademia di scienze e lettere, Rendiconti, Parte generale e atti ufficiali, Milano, Vol. 112
Marcolongo R (1932) La meccanica di Leonardo da Vinci, Stabilimento Industrie. Editoriali Mendionali, Napoli
Marcolongo R (1937) Studi vinciani. Memorie sulla geometria e la meccanica di Leonardo da Vinci. Stabilimento Industrie Editoriali Meridionali, Napoli
Marini L (1810) Biblioteca istorico-ritica di fortificazione permanente. Mariano de Romanis e Figli, Roma
Masotti A (1957) In memoria di Niccolò Tartaglia nel quarto centenario della morte. Il Bene, Milano
Masotti A (1958) Commemorazione di Niccolò Tartaglia tenuta all'Ateneo di Brescia il 14 dicembre 1957. Commentari dell'Ateneo di Brescia per il 1957. Ateneo di Brescia, Brescia, pp 25-48 [see also: n. 232 dell'Istituto di Matematica del Politecnico di Milano, Milano]
Masotti A (1958) Sopra i "Quesiti" di Niccolò Tartaglia nell'occasione della loro ristampa. Il Bene, Milano, pp 144-148
Masotti A (1959) La nuova edizione dell'opera "Quesiti et inventioni diverse" di Niccolò Tartaglia. Parole di presentazione di A. Masotti. The Istituto lombardo- Accademia di scienze e lettere, Rendiconti, Parte generale e atti ufficiali, Milano, Vol. 92
Masotti A (1960-1962a) (ed) N. Tartaglia e i suoi Quesiti. In: Atti del II Convegno di storia delle matematiche, 30-31 Maggio 1959, Brescia. Quarto centenario della morte di Niccolò Tartaglia. Supplemento ai commentari dell'Ateneo di Brescia, Brescia, pp 17-56
Masotti A (1960-1962b) Rarità tartagliane. In: Atti del II Convegno di storia delle matematiche, 30-31 Maggio 1959, Brescia. Quarto centenario della morte di Niccolò Tartaglia. Supplemento ai commentari dell'Ateneo di Brescia, Brescia, pp 119-160

Masotti A (1960a) Su alcuni possibili autografi di Niccolo Tartaglia. The Istituto lombardoAccademia di scienze e lettere, Rendiconti, Parte generale e atti ufficiali, Milano 94, Milano, pp 42-46
Masotti A (1960b) Sui "Cartelli di matematica disfida" scambiati fra Lodovico Ferrari e Niccolo Tartaglia. The Istituto lombardo-Accademia di scienze e lettere, Rendiconti, Parte generale e atti ufficiali, Milano, Vol. 94, pp 31-41
Masotti A (1961-1962) Intorno a Costanzo Bolognese traduttore italiano di Euclide nel secolo XVI, 16 novembre 1961. The Istituto lombardo- Accademia di scienze e lettere, Rendiconti, Parte generale e atti ufficiali, Milano, Vol. 96, pp 143-150
Masotti A (1962a) Notizie intorno al matematico Lodovico Ferrari. Il Bene, Milano
Masotti A (1962b) Su Niccolò Tartaglia. Ateneo di Brescia, Brescia
Masotti A (1962c) Matematica e matematici nella storia di Milano. Storia di Milano, Fondazione Treccani, Milano, vol. XVI, pp 24-28
Masotti A (1962d) Atti del Convegno di Storia della Matematica. Ateneo di Brescia, Supplemento ai Commentari dell'Ateneo di Brescia per il 1960, Brescia
Masotti A (1962e) Studi su Niccolò Tartaglia. Studi di Matematica del Politecnico di Milano, Milano
Masotti A (1963a) Gli Atti del Convegno di Storia delle Matematiche tenuto in Commemorazione di Niccolò Tartaglia. Parole di presentazione nell'adunanza del 16 giugno 1962. Commentari dell'Ateneo di Brescia, Ateneo di Brescia, Brescia, pp 19-23
Masotti A (1963b) N. Tartaglia. Storia di Brescia Vol. II. Giovanni Treccani degli Alfieri Editor, Brescia, pp 597-617
Masotti A (1963c) Sopra alcuni cimeli bibliografici della Specola Braidense. Atti del Symposium Internazionale celebrativo del 250° anniversario della nascita di R. G. Boscovich e del 200° anniversario della fondazione dell'Osservatorio di Brera, Milano-Merate 6-8 ottobre 1962. Istituto Italiano per la storia della Tecnica, Milano, pp 129-137
Masotti A (1964) Niccolò Tartaglia. Storia di Brescia. Morcelliana, Brescia, Vol. II, Parte V
Masotti A (1971) Ferro (or Ferreo, Dal Ferro, Del Ferro), Scipione. Entry. In: Gillispie 1971-1980 (ed), Vol. IV, pp 595-597
Masotti A (1972) Anticipazioni sulla nuova edizione dei "Cartelli di sfida matematica" di Lodovico Ferrari e Niccolò Tartaglia. Note presentate all'Ateneo di Brescia nelle adunanze dell'8 aprile e 27 maggio 1971. Commentari dell'Ateneo di Brescia per il 1971. Ateneo di Brescia, Brescia, pp 1-15, pp 9-23; [Nota I]; pp 25-47, pp 33-55 [Nota II].
Masotti A (1973-1974) Gabriele Tadino e Niccolò Tartaglia. Atti dell'Ateneo di Scienze, Lettere ed Arti, Bergamo 38:363-374
Masotti A (1974a) Sui contributi meccanici di Niccolò Tartaglia. Topics in contemporary mechanics, Wien-New York-Udine, Springer (Courses and Lectures No. 210), pp 149-151
Masotti A (1974b) Cartelli di sfida matematica. Commentari dell'Ateneo di Brescia, Ateneo di Brescia, Brescia
Masotti A (1974c) Lodovico Ferrari e Niccolò Tartaglia. Cartelli di sfida matematica, riproduzione in facsimile delle edizioni originali 1547-1548. Supplemento ai Commentari dell'Ateneo di Brescia per il 1974, Ateneo di Brescia, Brescia
Masotti A (1975) Ricci, Ostilio. Entry. In: Gillispie 1971-1980, Vol. XI, pp 405-406
Masotti A (1976a) La nuova edizione dei Cartelli di sfida matematica di Lodovico Ferrari e Niccolò Tartaglia. Breve presentazione nella seduta del 5-4-1975 con parole in memoria di Carlo Viganò. Commentari dell'Ateneo di Brescia per il 1975. Ateneo di Brescia, Brescia, pp 53-60
Masotti A (1976b) Tartaglia (also Tartalea or Tartaia) Niccolò. Entry. In: Gillispie 1971-1980 (ed), Vol. XIII, pp 258-262 [see also: Id., "Tartaglia" in Encyclopaedia Britannica]
Masotti A (1979) Sopra Enrico Giordani. Notizie raccolte in occasione dell'offerta all'Istituto Lombardo di una sua lettera e di un esemplare della sua edizione dei "Cartelli di sfida matematica» di Lodovico Ferrari e Niccolò Tartaglia", Parole di accompagnamento di A. Masotti. The Istituto lombardo- Accademia di scienze e lettere, Rendiconti, Parte generale e atti ufficiali, Milano, Vol. 113

Masotti A (1980a) Sopra 1' "Euclide" greco-latino di Camerer e Hauber offerto all'Istituto Lombardo. Parole di accompagnamento di A. Masotti. The Istituto Lombardo - Accademia di scienze e lettere, Rendiconti, Parte generale e atti ufficiali, Milano, Vol. 114, pp 128-129
Masotti A (1980b) Opere di Niccolò Tartaglia e Giovanni Francesco Gambara offerte all'Istituto Lombardo, parole di accompagnamento di A. Masotti. The Istituto Lombardo - Accademia di scienze e lettere, Rendiconti, Parte generale e atti ufficiali, Milano, Vol. 114, pp 133-135
Maurolico F (1685) Monumenta omnia mathematica quae extant quorumque catalogum inversa pagina demonstrat, ex traditione Francisci Maurolici; Opus praeclarissimum, non prius typis commissum, a matheseos vero studiosis enixe desideratum, tandemque e fulgine temporum accurate excussum. Cyllenium Hesperium, Panormi
McMurran S, Rickey VF (2011) The Impact of Ballistics on Mathematics. The Annual meeting of The Euler Society, Carthage College, Kenosha, WI, 27 July 2011. California State University, San Bernardino. Via: http://fredrickey.info/talks/08-10-25-Ballistics-ARL/08-10-23 BallisticsARL-pulished.pdf
Mieli A (1938) La Science arabe et son rôle dans l'évolution scientifique mondiale. Brill, Leiden.
Miller M (1983) Tartaglia. Biographien bedeutender Mathematiker. Volk und Wissen, Berlin
Montagnana M (1958) Nicolo Tartaglia quattro secoli dopo la sua morte. Archimede 10:135-139
Moody E, Clagett M ([1952] 1960) The medieval science of weights (Scientia de ponderibus). The University of Wisconsin Press, Madison
Mussini M (2003) Francesco di Giorgio e Vitruvio. Olschki, Firenze
Nasr SH (1977) Scienza e civiltà nell'Islam. Feltrinelli, Milano
Nastasi P ([1985] 1988) (ed) Sviluppi della ricerca sui principi meccanici. Proceeding of Il meridione e le scienze, (secoli XVI-XIX). Istituto Gramsci Siciliano, Palermo, pp 177-193
Natucci A (1956a) Che cosa contiene la "Nova Scientia' di Tartaglia?" Giornale di Matematiche di Battaglini 5, 4(5):261-271
Natucci A (1956b) Che cos'è la "trauagliata invention" di Nicolò Tartaglia? Periodico di Matematiche (4)34:294-297
Natucci A (1956c) Il calcolo dei radicali in Nicolò Tartaglia. Bollettino dell'Unione Matematica Italiana 11(3):594-598
Naylor RH (1976) Galileo: the Search for the Parabolic Trajectory. Annals of Science 33:153-172
Neugerbauer O (1975) A history of ancient mathematical astronomy. 3 Vols. Springer, Berlin
Newton I (1687) Philosophiae Naturalis Principia Mathematica. Imprimatur S. Pepys, Reg. Soc. Preses. Julii 5. 1686. Londini, Jussi Societatus Regiae ac Typis Josephi Streater. Prostat apud plures Bibliopolas. Anno MDCLXXXVII
Newton (1713) Philosophiae Naturalis Principia Mathematica. Editio secunda auctior et emendatior. Cornelius Crownfield, Cambridge
Newton I ([1726; 1739-1742] 1822) Philosophiae Naturalis Principia Mathematica, auctore Isaaco Newtono, Eq. Aurato. Perpetuis commentariis illustrate, communi studio pp. Thomae le Seur et Francisci Jacquier ex Gallicana Minimorum Familia, matheseos professorum. Editio nova, summa cura recemsita. A. et J. Duncan, Glasgow.
Newton I (1739-1742) Philosophiae Naturalis Principia Mathematica, auctore Isaaco Newtono, Eq. Aurato. Perpetuis commentariis illustrate, communi studio pp. Thomae le Seur et Francisci Jacquier ex Gallicana Minimorum Familia, matheseos professorum. Barillot et filii, Geneva.
Newton I (1972) Philosophiae Naturalis Principia Mathematica. Koyré A and Cohen BI (eds). The Harvard University Press, Cambridge-MA
Noviomago DS (1561) Problematum astronomicorum et geometricorum. Henricum Petri et Petrum Pernam, Basel
Numbers RL (2006) Reading the book of nature through American lenses. In: van Berkel K, Arjo Vanderjagt A (eds). Book of nature in early modern and modern history. Peeters, Leuven, pp 261-274
Nuñez P (1567) Libro de Algebra en artithmetica y geometria. En casa de Herederos de Arnoldo Birckman, a la Gallina gorda, Anvers
Olivari EA (2005) Una traduzione inglese cinquecentesca de quesiti et inventioni diverse di niccolò tartaglia. Ph.D. dissertation, a.y 2004-2005. The University of Bologna, Bologna

Olschki L (1919-1927) Geschichte der neusprachlichen wissenschaftlichen Literatur, 3 vol. Leipzig
Oresme N (1968) Nicole Oresme and the medieval geometry of qualities and motions. A treatise on the uniformity and difformity of intensities known as "tractatus de configurationibus qualitatum et motuum". Clagett M (ed). The University of Wisconsin Press, Madison
Othman A (ed) (1949) Farabi: La Statistique des Sciences. 2 edn. Dar al-fikr al'arabi, Cairo
Pacioli L (1494) Summa de arithmetica, geometria, proportioni et proporzionalità. Paganino de' Paganini, Venezia
Pacioli L (1496-1508). De viribus quantitatis. Codex 250, Bibliotheca, University of Bologna. [see Agostini A (1924) De Viribus Quantitatis di Luca Pacioli. Periodo di Matematiche IV, pp 165-192
Pacioli L (1509a). De Divina proportione Opera a tutti gli ingegni perspicaci e curiosi necessaria [...]. Paganino de' Paganini, Venezia
Pacioli L (1509b) Euclidis Megarensis, philosophi acutissimi mathematicorumque omnium sine controversia principis, Opera a Campano interprete fidissimo tra[s]lata.. [...]. Paganino de' Paganini, Venezia
Pacioli L (1992) Summa de arithmetica geometria proportioni et proportionalita (1494). Pistolesi, Siena
Palmieri P (2008) Breaking the circle: the emergence of Archimedean mechanics in the late Renaissance. Archive for history and exact sciences 62:301-346
Palmieri P (2011) A History of Galileo's Inclined Plane Experiment and Its Philosophical Implications. The Edwin Mellen Press, Lewiston-NY
Panza M (2008) The Role of Algebraic Inferences in Na'īm Ibn Mūsā’s Collection of Geometrical Propositions. Arabic Sciences and Philosophy 18(2):165-191
Pappus Alessandrinus (1588) Mathematica collectiones a Federico Commandino urbinate in latinum conversae. Hieronimum concordiam, Pisauri
Pappus Alexandrinus (1970) The Arabic version of the mathematical collection of Pappus Alexandrinus Book VIII. In: Jackson D. [Ph.D. dissertation]. The University of Cambridge press, Cambridge
Pasquale L (1957) Le equazioni di terzo grado nei "Quesiti et inventioni diverse" di Nicolo Tartaglia. Periodico di Matematiche 35(4):79-93
Pedersen O (1992) The book of nature. Vol. VI. The Vatican Observatory Publications, Città del Vaticano
Pedretti C (1978) Leonardo architetto, Electa, Milano [Id., 1999 Leonardo. Le macchine, Giunti Editore, Firenze 1999; et refs. Codex]
Pedretti C (1998) Leonardo da Vinci, Il Codice Arundel 263 nella British Library. 2 Vols. Giunti, Firenze
Pellicani B (s.d.) Questiones super tractatum de ponderibus [Expletae sunt Quaestiones super Tractatum de Ponderibus, compilatae et ordinatae per Magistrum Blaxium de Pellacanis de Parma Artium Doctorem eminentissimum] Manuscript F 145 sup. 18r-28r. Biblioteca Ambrosiana, Milano [see also Brown 1967-1968; Moody and Clagett M [1952]1960 pp 238-279]
Pérez de Moya J (1568) Obra intitulada fragmentos mathematicos. En casa de Iuan de canoua, Salamanca
Pérez de Moya J (1573) Tratado de Geometria Pratica, y Speculativa. Ivan Gracian, Alcala
Philoponus J (1993) On Aristotle's Physica. Lacey A (ed). The Cornell University press, Ithaca
Piotti M (1998) La lingua di Niccolò Tartaglia. LED, Milano
Pisano R (2005-2008) Il ruolo della scienza meccanica nella progettazione degli architetti e degli ingegneri del Rinascimento. Ph.D. dissertation from University of Roma La Sapienza, Roma, 2 Vols. On Tartaglia see Vol. I. [available via: International Galilean Bibliography-Istituto e Museo di Storia delle Scienze, Firenze: http://biblioteca.imss.fi.it and In: Direction des collections, Département Sciences \& Techniques, Bibliothèque Nationale de France, Paris, référence: DDD-TOL-2011-94]
Pisano R (2007) Brief history of centre of gravity theory. Epistemological notes. In: Kokowski M (ed). Proceedings of the 2nd ESHS Congress, Krakow, Poland, 934-94

Pisano R (2009a) Continuity and discontinuity. On method in Leonardo da Vinci’ mechanics. Organon 41:165-182
Pisano R (2009b) Il ruolo della scienza archimedea nei lavori di meccanica di Galilei e di Torricelli. In: Giannetto E, Giannini G, Capecchi D, Pisano R, (eds). Da Archimede a Majorana: La fisica nel suo divenire. Guaraldi Editore, Rimini, pp 65-74
Pisano R (2009c) On method in Galileo Galilei' mechanics. In Hunger H (ed). Proceedings of ESHS 3rd Conférence. The Austrian Academy of Science, Vienna, pp 147-186
Pisano R (2009d) Galileo Galileo. Riflessioni epistemologiche sulla resistenza dei corpi. In Giannetto E, Giannini G, Toscano M (eds). Relatività, Quanti Chaos e altre Rivoluzioni della Fisica. Guaraldi Editore Rimini, 61-72
Pisano R (2011) Physics-Mathematics Relationship. Historical and Epistemological notes. In: Barbin E, Kronfellner M, Tzanakis C, (eds), Proceedings of the ESU 6th European Summer University History And Epistemology In Mathematics, Verlag Holzhausen GmbHHolzhausen Publishing Ltd., Vienna, pp 457-472
Pisano R (2013a) Reflections on the Scientific Conceptual Streams in Leonardo da Vinci and his Relationship with Luca Pacioli. Advances in Historical Studies 2(2):32-45
Pisano R (2013b) Historical Reflections on Newton's First Law and Carnot's Première Hypothèse In: 5th International Conference of the European Society for the History of Science. The Hellenic Foundation of Science Press. Athens, pp 214-220
Pisano R (2013c) Note sulle Fortificazioni nei Quesiti di Tartaglia. Libro Sesto e sua Gionta. D'agostino S (ed). Proceedings of the 5th International Conference History of Engeenering (AISI 2014). Cuzzolin, Napoli, pp pp 813-826
Pisano R (2013d) Notes on the Historical Conceptual Streams for Mathematics and Physics Teaching. International Proceedings of the 53° mathematical Society Congress. Series A. The Vilnius University Press, Vilnius A/54:iv-xvii
Pisano R (2013e) On Lagrangian in Maxwell's Electromagnetic Theory. Proceedings of the Scientiatum VI. História das Ciências e das Técnicas e Epistemologia. The University of Federate University of Rio de Janeiro Press, Brazil, pp 44-59
Pisano R (2013f) Historical Reflections on Physics Mathematics Relationship. In Barbin E and Pisano (eds), pp 31-57
Pisano R (2014) (ed) Isaac Newton and his Scientific Heritage: New Studies in the History and Historical Epistemology of Science. Adavances in Historical Studies Special Issue 3/1
Pisano R (ed) (2015a) A Bridge between Conceptual Frameworks. Science, Society and Technology Studies. Springer, Dordrecht
Pisano R (2015b) A Development of the Principle of Virtual Laws and its Framework in Lazare Carnot's Mechanics as Manifest Relationship between Physics and Mathematics. Submitted to Foundations of Physics
Pisano R, Bussotti P (2012) Galileo and Kepler. On Theoremata Circa Centrum Gravitatis Solidorum And Mysterium Cosmographicum. History Research 2(2):110-145
Pisano R, Bussotti P (2013a) On Popularization of Scientific Education in Italy Between 12nd And 16th Centuries. Problems of Education in the 21st Century 57:90-101
Pisano R, Bussotti P (2013b) Open problems in mathematical modelling and physical experiments: exploring exponential function. Problems of education in the 21st century 50:56-69
Pisano R, Bussotti P (2013c) Notes on the Concept of Force in Kepler. In Pisano R, Capecchi D, and Lukešvá A 2013 (eds), pp 337-344
Pisano R, Bussotti P (2014d) Historical and Philosophical Reflections on the Culture of Machines around the Renaissance. How Science and Technique Work? Acta Baltica Historiae et Philosophiae Scientiarum 2/2:20-42
Pisano R, Bussotti P (2015a) Fibonacci and the Reception of the Abacus Schools in Italy. Mathematical Conceptual Streams and their Changing Relationship with society. Almagest, in press
Pisano R, Bussotti P (2015b) On the Conceptualization of Force in Johannes Kepler's Corpus: an Interplay between Physics, Mathematics and Metaphysics. In: Pisano R, Agassi J, Drozdova D (eds). Hypotheses and Perspectives within History and Philosophy of Science - Hommage to Alexandre Koyré 1964-2014. Dordrecht Springer, in press.

Pisano R, Bussotti P (2015c) The Emergencies of Mechanics and Thermodynamics in the Western Technoscience-Society during Eighteenth-Nineteenth Century. In Pisano R (2015a) (ed), pp. 399-436
Pisano R, Bussotti P (2015e) Historical and Philosophical Reflections on the Culture of Machines around the Renaissance: Machines, Machineries and Perpetual Motion. Acta Baltica Historiae et Philosophiae Scientiarum 3(1):67-85
Pisano R, Bussotti P (2015f) Galileo in Padua: architecture, fortifications, mathematics and "practical" science. Lettera Matematica Pristem International 2(4):209-221
Pisano R, Capecchi D (2008) La meccanica in Italia nei primi anni del Cinquecento. Il contributo di Niccolò Tartaglia. In: Tucci P (ed). Proceedings of XXV SISFA Congress. The Milano University Press, Milano, pp C17.1-C17.6 [also available in .pdf via: http://www.brera.unimi. it/sisfa/atti/index.html]
Pisano R, Capecchi D (2009) Il ruolo della meccanica ne Le fortificationi di Buonaiuto Lorini In: D'Agostino S (ed). 3rd Convegno di Storia dell'ingegneria, Cuzzolin editore, Napoli, Vol. II, pp 797-808
Pisano R, Capecchi D (2010a) Galileo Galilei: Notes on Trattato di Fortificazione. In: Altamore A, Antonini G (eds) Galileo and the renaissance scientific discourse. Edizioni Nuova Cultura, Roma, pp 28-41
Pisano R, Capecchi D (2010b) On Archimedean roots in Torricelli's mechanics. In: Paipetis SA, Ceccarelli M (eds). The genius of Archimedes. Springer, Dordrecht, pp 17-28
Pisano R, Capecchi D (2012) Historical Reflections on Scale Ratio in Galilean Tratattto di Fortificazione. In: Koetsier T, Ceccarelli M (eds). Explorations in the History of Machines and Mechanisms, Springer, Dordrecht, pp 463-473
Pisano R, Capecchi D (2013) Conceptual and Mathematical Structures of Mechanical Science in the Western Civilization Around the $18^{\text {th }}$ century. Almagest 4(2):86-121
Pisano R, Capecchi D (2014a) Note su Scienza e tecnica. In: Giannetto E, Ricciardo S et al (eds) Cielo e Terra: Fisica e Astronomia, un antico legame. Proceedings of SISFA XXVII. Aracne, Roma, pp 115-124
Pisano R, Capecchi D (2014b) Note storiche sul carattere fisico del Trattato di Fortificazione di Galilei. In: Giannetto E and Ricciardo S (eds.), Cielo e Terra: Fisica e Astronomia, un antico legame. Proceedings of SISFA XXVII. Aracne, Roma, pp 67-76
Pisano R, Capecchi D (2014d) Note su Scienza e tecnica. In: Giannetto E, Ricciardo S, et al. (eds.), Cielo e Terra: Fisica e Astronomia, un antico legame. Proceedings of SISFA XXVII. Aracne, Roma, pp 115-124
Pisano R, Capecchi D (2014e) Note storiche sul carattere fisico del Trattato di Fortificazione di Galilei. In: Giannetto E, Ricciardo S, et al. (eds.), Cielo e Terra: Fisica e Astronomia, un antico legame. Proceedings of SISFA XXVII. Aracne, Roma, pp 67-76
Pisano R, Capecchi D, Lukešová A (2013) (eds) Physics, Astronomy and Engineering. Critical Problems in the History of Science and Society. International 32nd Congress for The SISFAItalian Society of Historians of Physics and Astronomy. The Scientia Socialis UAB \& Scientific Methodical Centre Scientia Educologica Press, Siauliai
Pisano R, Casolaro F (2011) An Historical Inquiry on Geometry in Relativity. Reflections on Early Relationship Geometry-Physics (Part one). History Research 1(1):47-60
Pisano R, Drago A (2013) The Modern Thermodynamics as based on the Principle of Virtual Laws. In Pisano, Capecchi and Lukešová 2013 (eds), pp 345-352
Pisano R, Gaudiello I (2009) Continuity and discontinuity. An epistemological inquiry based on the use of categories in history of science. Organon 41:245-265
Pizzamiglio PL (1989) Un episodio della storiografia ottocentesca della matematica documentato dalla "Raccolta Carlo Viganò" di Brescia, in Pietro Riccardi (1828-1898) e la storiografia delle matematiche in Italia. In: Barbieri F, Cattelani Degani F (eds). (Atti del Convegno: 16-18 marzo 1987, Modena). Università degli Studi di Modena, Modena, pp 87-97
Pizzamiglio PL (2005) Niccolò Tartaglia (1500ca.-1557) nella storiografia. Accademia Nazionale di Scienze Lettere e Arti di Modena, Atti e Memorie. Memorie scientifiche, giuridiche, letterarie, s. VIII, v. VIII, fasc. II, Mucchi, Modena, pp 443-453

Pizzamiglio PL (2007) (ed) Atti della Giornata di Studio in Memoria di Niccolò Tartaglia nel 450° anniversario della sua morte 13 dicembre 1557-2007. Supplemento ai Commentari dell'Ateneo di Brescia per il 2007, Brescia
Pizzamiglio PL (2012) Niccolò Tartaglia nella storia, con antologia degli scritti. EDUCatt, Brescia
Popplow M (2002) The Concept of Machina in the Roman Period. In: Renn J and Castagnetti G (eds) Homo Faber: Studies on Nature, Technology, and Science at the Time of Pompeii. L'erma di Bretschneider, Roma, pp 83-90
Popplow M (2003) Hydraulic Engines in Renaissance Privileges for Inventions and Theatres of Machines. In: in Fiocca A, Lamberini D and Maffioli C (eds) Arte e Scienza delle Acquenel Rinascimento. Marsilio, Venezia, pp 73-83
Promis C (1808-1873) Della vita e delle opere degl'italiani scrittori di artiglieria, architettura e meccanica militare da Egidio Collana a Francesco Marchi. Memoria Storica I. Tipografia Chirio e Mina, Torino, Part II
Promis C (1841) Della origine dei moderni baluardi. Memoria storica IV. Trattato di architettura militare di Francesco di Giorgio Martini, architetto senese del secolo XV, a cura del cavalier Cesare Saluzzo, Parte Seconda. Tipografia Chirio e Mina, Torino, pp 203-281
Pulte H (1998) Jacobi's criticism of Lagrange: the changing role of mathematics in the foundations of classical mechanics. Historia Mathematica 25(2):154-184
Radelet-de Grave P (1996) Entries: Stevin, Kepler, Leibniz, Huygens. In Dictionnaire du patrimoine littéraire européen, Patrimoine Littéraire Européen. Vol. VIII. Avènement de l'Equilibre européen 1616-1720. De Boeck Université, p 18, pp 745-755, pp 1020-1027
Radelet-de Grave P (2007) Kepler (1571-1630) et Cavalieri (1598-1647) astrologues, ou le logarithme au secours de l'astrologie. In Mélanges offerts à Hossam Elkadem par ses amis et ses élèves, Bruxelles. Archives et Bibliothèques de Belgique, pp 297-315
Radelet-de Grave P (2009) Guarini et la structure de l'Univers. Nexus Network Journal 11(3):393-414
Radelet-de Grave P (2012) Des montres pour calculer des vitesses: ou comment Kepler explique sa découverte des deux premières lois. Philosophica 41-42(I-II):13-79
Radelet-de Grave P, Benvenuto E (1995) (eds) Entre Mécanique et Architecture. Birkhauser, Basel
Ramelli AC (1964) Dalle caverne ai rifugi blindati. Tre secoli di architettura militare. Nuova Accademia Editrice, Milano, p 320, p 326, p 346, p 354, p 360
Regiomontanus J (1972) Joannis Regiomontani Operera collectanea. Schemeidler. Osnabrück, Otto Zeller
Renn J, Damerow P (2010a) Guidobaldo del Monte's Mechanicorum liber. The Max Planck research library for the history and development of knowledge. The open access edition, Berlin
Renn J, Damerow P (2010b) The equilibrium controversy. Edition open access, Berlin
Renn J, Damerow P, McLaughlin P (2003) Aristotle, Archimedes, Euclid, and the Origin of Mechanics: The Perspective of Historical Epistemology. The Max Planck Institute for the history of science of Berlin, print n. 239, Berlin, pp 43-59
Riccardi P (1870-1880) Biblioteca Matematica Italiana dalla origine della stampa ai primi anni del secolo XIX. 7 Vols. Tipografia dell'erede Soliani, Modena
Riccardi P (1870-1928) Biblioteca matematica italiana dalla origine della stampa ai primi anni del secolo XIX: compilata dal comm. prof. Pietro Riccardi, ripubblicata a cura della Società tipografica modenese, con due nuove serie di aggiunte dell' autore, Modena, 2 Vols. [See: Vol. 2, 2nd part, pp 496-507; see also Aggiunte]
Riccardi P (1952) Bibliotheca matematica italiana dalla origine della stampa ai primi anni del secolo XIX. Editore Görlich, Milano, Vol. I, 2 Parts, Vol. II
Riccardi P (1985) Bibliotheca matematica italiana dalla origine della stampa ai primi anni del secolo XIX. Arnaldo Forni Editore, Bologna
Rogers K (2005) On the Metaphysics of Experimental Physics, Palgrave-Macmillan, NY
Rommevaux S (2013) A treatise on proportion in the tradition of Thomas Bradwardine: The De proportionibus libri duo (1528) of Jean Fernel. Historia mathematica 40(2):164-182
Rose PL (1975) The Italian renaissance of mathematics. Droz, Geneve

Rowland D, Howe TN (1999) Vitruvius. Ten Books on Architecture. The Cambridge University Press, Cambridge
Rüegg W (ed) (2004) A history of the university in Europe, Vol. III. Universities in the nineteenth and early twentieth centuries. The Cambridge University Press, New York
Rusconi GA (1590) Della architettura: con centosessanta figure dissegnate dal medisimo, secondo i precetti di Vitrvuio, e con chiarezza, e brevità dichiarate, libri dieci. Gioliti, Venetia
Salusbury (1661-1665a) Galileus, his mechaniks, weights and from its instruments. In Salusbury 1661-1665, II, pp 271-310
Salusbury (1661-1665) Mathematical Collections and Translations. 2 Vols. Leybourn W, London
Santalo LA (1941) Nicolas Tartaglia and the resolution of the equation of third order. Mathematical Notes 1:26-33
Sarton G (1953) Leonardo de Vinci, ingenieur et savant. Léonard de Vinci et l'expérience scientifique au XVIe siècle. Colloques internationaux du Centre de la Recherche Scientifique, Sciences Humanes. Presses Universitaires de France, Paris, s. 11-29
Schneider JHJ (2011) Philosophy and Theology in the Islamic Culture: Al Farabi’s de scientiis Philosophy Study 1(1):41-51
Schultz P (1984) Tartaglia, Archimedes and cubic equations. The Australian Mathematical Society Gazette 11(4):81-84
Schuster JA (2013) Descartes-Agonistes. Physico-mathematics, Method and Corpuscular-Mechanism 1618-1633. Springer, Dordrecht
Singer (1954-1958) A History of Technology. Vols 2-3. The Clarendon Press, Oxford.
Solmi E (1908) Le fonti dei manoscritti di Leonardo da Vinci e altri scritti Giornale storico della letteratura italiana. Supplemento $10-11$
Stanford TC (1926) Early Editions of Euclid's Elements. The Bibliographical Society, ThomasStanford, London
Stevin S (1586a) De Beghinselen der Weegconst. Tot Leyden, Inde Druckerye van Christoffel Plantijn, By Francoys van Raphelinghen
Stevin S (1586b) De Beghinselen des Waterwichts.Tot Leyden, Inde druckerye van Christoffel Plantijn, by Françoys van Raphelinghen
Stevin S (1605) Tomus quartum mathematicorum hypomnematum de statica. Lugodini Batavorum [Translation into Latin by Willebrord Snel van Royen]. Ex Officina Ioannis Patii, Academiae Typographi
Stevin S (1605-1608a) Memoires mathematiques: contenant ce en quoy s'est exercé le trèsillustre, très-excellent Prince \& Seigneur Maurice, Prince d’ Orange, Conte de Nassau, Catzenellenboghen, Vianden, Moers. [Translated into French by Jean Tuning]. Chez Ian Paedts Iacobsz. Marchand Libraire, \& Maistre Imprimeur de l'Université de ladite Ville
Stevin S (1605-1608b) Hypomnemata Mathematica, hoc est eruditus ille pulvis, in quo se exercuit [. . .] Mauritius, princeps Auraïcus [. . .] a Simone Stevino [Translation into Latin by Willebrord Snel van Royen]. Lugodini Batavorum. Ex Officina Ioannis Patii, Academiae Typographi
Stevin S (1605-1608c) Wisconstige Gedachtenissen. Tot Leyden, Inde Druckerye van Ian Bouvvensz
Stevin S (1634) Les Euvres Mathematiques de Simon Stevin de Bruges. Le tout reveu, corrigé, \& augmenté Par Albert Girard. Samielois, Mathematicien. Bonaventure \& Abraham Elsevier Imprimeurs ordinaires de L'Université, Leyde
Stevin S (1955) The principal works of Simon Stevin. Mechanics. Committee of Dutch scientists, Dijksterhuis EJ (eds). Vol. I. Swets \& Zeitkinger, Amsterdam
Stinner A (1994) The story of force from Aristotle to Einstein. Physics Education 29:77-85
Stubbe H (1670) Legends no histories: or, A specimen of some animadversions upon the History of the Royal Society: Wherein, besides the several errors against common literature, sundry mistakes about the making of salt-petre and gun-powder are detected, and rectified: whereunto are added two discourses, one of Pietro Sardi, and another of Nicolas Tartaglia relating to that subject. Translated out of Italian. With a brief account of those passages of the authors life, which the virtuosi intended most to censure, and expatiate upon: written to save them the trouble of doing any thin besides defending themselves. Together with the Plus ultra of Mr. Joseph Glanvill reduced to a non-plus, \&c. Printed at London, London

Taisbak C M (1981-1982) Errata: An Archimedean proof of Heron's formula for the area of a triangle; reconstructed, Centaurus 25(1/2):160
Tartaglia N (1537) Nova scientia inventa da Nicolo Tartalea. B. Disciplinae mathematicae loquuntur[.] Qui cupitis rerum varias cognoscere causas disate nos cunctis hac patet una via. In Vinegia per Stefano Nicolini da Sabio. Ad instantia di Nicolo Tartalea Brisciano il qual habita a San Saluador. MDXXXVII
Tartaglia N (1538) Il primo libro delli Quesiti, et inventioni diverse de Nicolo Tartaglia, sopra gli tiri delle artiglierie, et altri svoi varii accidenti. In: Tartaglia 1554
Tartaglia N (1541-1551) Esperienze fatte da Nicolo Tartalea. In: Tartaglia [de Nemore] 1565 folia 20rv-23v
Tartaglia N (1543a) Euclide Megarense acutissimo philosopho: solo introduttore delle scientie mathematice: diligentemente rassettato, et alla integrita ridotto, per il degno professore di tal Scientie Nicolo Tartalea, Brisciano, Secondo le due tradottioni: e per commune commodo \& utilita di latino in volgar tradotto, con una ampla esposizione dello istesso tradottore di novo aggionta. Talmente chiara, che ogni mediocre ingegno, senza la notitia, over suffragio di alcun'altra scientia con facilità, sera capace a' poterlo intendere. Stampato in Vinegia per Venturino Rossinelli ad instantia e requisitione de Guilielmo de Monferra, \& de Pietro di Facolo da Vinegia libraro, \& de Nicolo Tartalea Brisciano Tradottore: Nel Mese di Febraro. Anno no nostra salute MDXLIII
Tartaglia N (1543b) Opera Archimedis Syracusani philosophi et mathematici ingeniosissimi per Nicolaum Tartaleam Brixianum (mathematicarum scientiarum cultorem) multis erroribus emendata, expurgata, ac in luce posita, multisque necessariis additis, quae plurimis locis intellectu difficillima erant, commentariolis sane luculentis \& eruditissimis aperta, explicata atque illustrata existunt, appositisque manu propria figuris quae graeco exemplari deformatae ac depravatae erant, ad rectissimam symetriam omnia instaurata reducta \& reformata elucent, apud Venturinum Ruffinellum, sumptu \& requisizione Nicolai de Tartaleis Brixiani, mense Aprili
Tartaglia (1543c) Archimedis Siracusani Tetragonismus. In: Tartaglia 1543b, 19v-29r)
Tartaglia (1543d) Archimedis Syracusani Liber. In: Tartaglia 1543b, 29v-31r
Tartaglia (1543e) Archimedis de Insidentibus Aquae. In: Tartaglia 1543b, 31v-[36r]. See also: Tartaglia 1565-Insidentibus, 1rv-16rv
Tartaglia N (1546) Quesiti et inventioni diverse de Nicolo Tartalea Brisciano. Stampata in Venetia per Venturino Ruffinelli ad instantia et requisitione, \& a proprie spese de Nicolo Tartalea Brisciano Autore. Nel mese di luio L'anno di nostra salute. M.D.XLVI
Tartaglia N (1550) La Nova Scientia de Nicolo Tartaglia con una gionta al terzo. Libro. Disciplinae mathematicae loquuntur[.] Stamapata in Venetia per Nicolo de Bascarini a sistantia de l'Autore.
Tartaglia N (1551a) Ragionamenti de Nicolo Tartaglia sopra la sua Travagliata inventione. Nelli quali se dechiara volgarmente quel libro di Archimede Siracusano intitolato. De insidentibus aquae, con altre speculatiue pratiche da lui ritrouate sopra le materie, che stano, \& chi non stano sopra lacqua ultimamente se assegna la ragione et causa naturale di tutte le sottile et oscure particularità dette et dechiarate nella detta sua Travagliata inue[n]tione co[n] molte altre da quelle dependent. Stampata in Venetia per Nicolo Bascarini à istantia \& requisistione, \& a proprie spese de Nicolo Tartaglia Autore. Nel mese di Maggio L'anno di nostra salute. 1551
Tartaglia N (1551b) [Ragionamenti I-III and Supplimento] Regola Generale da Sulevare con Ragione e Misura no[n] solame[n]te ogni affondata Nave: ma una Torre Solida di Mettallo Trovata da Nicolo Tartaglia, delle discipline Mathematice amatore intitolata la Travagliata Inventione. Insieme co un artificioso modo di poter andare, \& stare plogo tepo sotto acqua, a ricercare le materie affondate, \& in loco profundo. Giontovi anchor un tratttato, di segni della mutationi dell'Aria, over di te[m]pi, material no[n] men utile, che necessaria, a Nauiganti, \& altri. Nicolo Bascarini, Venetia.
Tartaglia N (1554) Quesiti et inventioni diverse de Nicolo Tartaglia, di novo restampati con una gionta al sesto libro, nella quale si mostra duoi modi di redur una citta inespugnabile. In Venetia per Nicolo de Bascarini, ad istantia \& requisistione, \& a proprie spese de Nicolo Tartaglia Autore. Nell'anno di nostra Salute. MDLIIII

Tartaglia N (1556-1560) La prima [-sesta] parte del general trattato di numeri, et misure di Nicolo Tartaglia, nella quale in diecisette libri si dichiara tutti gli atti operativi, pratiche, et regole necessarie non solamente in tutta l'arte negotiaria, \& mercantile, ma anchorin ogni altra arte, scientia, over disciplina, dove interuenghi il calculo. In Vinegia per Curtio Troiano de i Navò. MDLVI [-MDLX]
Tartaglia N (1558) La Nova Scientia de Nicolo Tartaglia con una gionta al terzo Libro. Disciplinae mathematicae loquuntur[.] Qui cupitis rerum varias cognoscere causas disate nos cunctis hac patet una uia. [Curtio Troiano editor is legible from the text]. In Vinegia. MDLVIII
Tartaglia N ([1558] 1562) La nova scientia de Nicolo Tartaglia con una giurita al terzo libro. Curtio Troiano dei Navo, Vinegia [see here: http://www.sudoc.fr/147532981]
Tartaglia N (1562) [Regola Generale with Supplimento and Ragionamenti I-II] Regola Generale di solevare ogni fondata Nave \& navilli con Ragione. In Vinegia, per Curtio Troiano de i Navò. MDLXII
Tartaglia N (1565a) Iordani Opusculvm de Ponderositate, Nicolai Tartaleae Studio Correctum Novisqve Figuris avctum. Cum Privilegio Traiano Curtio, Venetiis, Apud Curtium Troianum. MDLXV
Tartaglia N (1565-Euclid) Euclide Megarense acutissimo philosopho, solo introduttore delle scientie mathematice. Diligentemente rassettato, et alla integrita ridotto, per il degno professore di tal Scientie Nicolo Tartalea, Brisciano. Secondo le due tradottioni. Con una ampla esposizione dello istesso tradottore di nuono aggiunta. Talmente chiara, che ogni mediocre ingegno, senza la notitia, over suffragio di alcun'altra scientia con facilità, sera capace a' poterlo intendere. In Venetia, appresso Curtio Troiano, 1565
Tartaglia N (1565-Insidentibus) Archimedis de Insidentibus Aquae Liber Primus [...] Liber Secundus. Cum Privilegio Traiano Curtio, Venetiis, Apud Curtium Troianum. MDLXV, 1rv-16rv
Tartaglia N (1569) Euclide Megarense acutissimo philosopho, solo introduttore delle scientie mathematice. Diligentemente rassettato, et alla integrita ridotto, per il degno professore di tal Scientie Nicolo Tartalea, Brisciano. Secondo le due tradottioni. Con una ampla esposizione dello istesso tradottore di nuono aggiunta. Talmente chiara, che ogni mediocre ingegno, senza la notitia, over suffragio di alcun'altra scientia con facilità, sera capace a' poterlo intendere. In Venetia, appresso Giovanni Bariletto, 1569
Tartaglia N (1583) [La nova scientia de Nicolo Tartaglia con una gionta al terzo libro] Disciplinae mathematicae loquuntur[.] Qui cupitis rerum varias cognoscere causas disate nos cunctis hac patet una uia. In Vinetia, Appresso Camillo Castelli, 1583
Tartaglia N (1585) Euclide Megarense acutissimo philosopho, solo introduttore delle scientie mathematice. Diligentemente rassettato, et alla integrita ridotto, per il degno professore di tal Scientie Nicolo Tartalea, Brisciano. Secondo le due tradottioni. Con una ampla esposizione dello istesso tradottore di nuono aggiunta, talmente chiara, che ogni mediocre ingegno, senza la notitia, over suffragio di alcun'altra scientia con facilità, sera capace a' poterlo intendere. Di nuovo con ogni diligenza ben corretto, e ristampato. In Venetia, appresso gli Eredi di Troian navo, alla libraria dal Lione, MDLXXXV
Tartaglia N (1876) I sei scritti di matematica disfida di Lodovico Ferrari coi sei contro-cartelli in risposta di Niccolò Tartaglia, comprendenti le soluzioni de' quesiti dall'una e dall'altra parte proposti. Raccolti, Autografi e Pubblicati da Enrico Giordani, Bolognese. Premesse notizie bibliografiche ed illustrazioni sui Cartelli medesimi, estratte da documenti già a stampa ed altri manoscritti favoriti dal Comm. Prof. Silvestro Gherardi, Preside del’Istit. Tecn. Prov. di Firenze. R. Sabilimento litografico di Luigi Ronchi e tipografia degl’Ingegneri, Milano
Tartaglia (1949) Tartaglia. Entry In: Enciclopedia Italiana Treccani. Vols. XXII, XXXIII, VIII. Istituto Poligrafico di Stato, Roma
Tartaglia N ([1554] 1959) La nuova edizione dell'opera "Quesiti et inventioni diverse de Nicolo Tartaglia brisciano, Riproduzione in facsimile dell'edizione del 1554 [with Gionta al sesto Libro] Masotti A (ed). Commentari dell'Ateneo di Brescia, Tipografia La Nuova Cartografica, Brescia
Tartaglia N (1998) La nueva ciencia. Martinez JR, Bravo JCG (eds). Trillas, Mexico
Tartaglia N (2000) Tutte Le Opere. 3 Cd-Rom. Riproduzione dei testi originali. Pizzamiglio L (ed). Synergy Solutions, Brescia
Tartaglia N (2007) Euclide Megarense. Pizzamiglio P (ed). Ateneo di Brescia, Brescia

Tartaglia N (2010) Niccolo Tartaglia: Questions et inventions diverses, Livre IX ou L'invention de la résolution des équations du troisième degré. Hamon G, Degryse L (eds). Hermann, Paris
Tartaglia N (2013) The Nova Scientia of Nicolò Tartaglia. Valleriani M (ed). The Open Access Edition, Berlin
Tenenti A (1990) Les hommes et leurs cités. In Bec C, Choulas I, Jestaz B, Tenenti A (eds) L'italie de la Renaissance. Un monde en mutation (1378-1494). Fayard, Paris
Thorndike L (1923-1958) History of magic and experimental science. 8 Vols. The Columbia University Press, New York
Tonni-Bazza V (1900) Nicolò Tartaglia nel quarto centenario natalizio. Commenatri dell'Ateneo di Brescia. Tipografia La Nuova cartografica, Brescia, pp 160-179
Tonni-Bazza V (1901) Di una lettera inedita di Nicolò Tartaglia. Rendiconti della R. Accademia dei Lincei. Classe d. Scienze Fisiche. Serie 5, X, Parte II. Tipografia della R. Accademia dei Lincei, Roma, pp 39-42
Tonni-Bazza V (1904a) Nicolò Tartaglia (con ritratto e fac simile del testamento). Tipografia dell'Unione cooperativa editrice, Roma
Tonni-Bazza V (1904b) Frammenti di nuove ricerche intorno a Nicolò Tartaglia. Comunicazione dell'ingegnere Vincenzo Tonni-Bazza In: Atti del Congresso internazionale di scienze storiche (Roma 1903) Tipografia della R. Accademia dei Lincei, Roma, s. XXXIII, pp 7-8, pp 293-307 [Tonni-Bazza also published a prologue of this communication in Tonni-Bazza 1904c. See Tonni-Bazza 1904b, p IX]
Tonni-Bazza V (1904c) Di Nicolò Tartaglia; frammenti di nuove ricerche. Rendiconti della R. Accademia dei Lincei. Classe di Scienze Fisiche. Serie 5, XIII, Parte I. Tipografia della R. Accademia dei Lincei, Roma, pp 27-30
Torricelli E (1644) Opera geometrica. Masse \& de Landis, Florentiae
Trovato P (1994) Il primo Cinquecento. In: Bruni F. (ed). Storia della lingua italiana 1992-2003. Il Mulino, Bologna
Truesdell C (1968) Essay in the history of mechanics. Spinger, New York
Tybjerg K (2000) Doing Philosophy with Machines: Hero of Alexandria's Rhetoric of Mechanics in Relation to the Contemporary Philosophy. The Cambridge University Press, Cambridge
Uccelli A (1941-1943) (ed) Storia della tecnica dal Medioevo ai giorni nostri. Opera compilata con la collaborazione di eminenti specialist. Hoepli, Milano
Ulivi E (2002) Scuole e maestri d’abaco in Italia tra Medioevo e Rinascimento. In: Giusti E et al. (eds). Un ponte sul Mediterraneo. Leonardo Pisano, la scienza araba e la rinascita della matematica in occidente, Polistampa, Firenze pp 121-159
Upton TV (1985) Aristotle on hypothesis and the unhypothesized first principle. The Review of Metaphysics 39(2):283-301
van Ophuijsen JM (2005) The two fold action of mind in Aristotle's proto-book of nature. In: van Berkel K, Vanderjagt A (eds) Book of nature in antiquity and the Middle Ages. Peeters, Leuven, pp 1-12
Ringelberg van JF (1531-1532) Chaos Mathematicum. Ad Geometriam Spectantia. Joachim Fortius Ringelberg Opera [with] compendium de conscribendis versibus Sébastien Graphycus, Lyon. [Reprint: 1967, Hies \& de Graaf, Nieuwkoopm, pp 332-517]
Vanderputten S (2005) Exploring the book of nature? Human history and natural history in monastic historiography from the Middle Ages. In: Berkel van K, Vanderjagt A (eds). Book of nature in antiquity and the Middle Ages. Peeters, Leuven, pp 151-166
Vilain C (2008) Circular and rectilinear motion in the mechanica and in the 16th century. In: Laird LR, Roux S (eds) Mechanics and natural philosophy before the scientific revolution. Springer, Dordrecht, pp 149-172
Villa M (1963-1964) Niccolo Tartaglia a quattro secoli dalla morte. Atti della Accademia delle Scienze dell'Istituto di Bologna, Classe di Scienze Fisiche. Rendiconti s XII(1):5-24
Walton SA (1999) The Art of Gunnery in Renaissance England. UMI - ProQuest Company: www. il.proquest.com
Webb HJ (1965) Elizabethan Military Science. The University of Wisconsin Press, Madison-Milwaukee-London
Weiss M (1841) Biographie universelle ou dictionnaire historique. Tomo VI. Furne \& C, Paris

Zanchi GB (1554) Del modo di fortificar le Città: Trattato di M. Giovambattista de’ Zanchi, da Pesaro. In Venetia per Plinio Pietrasanta. MDLIIII
Zeuthen HG (1893) Notes sur l'histoire des Mathématiques, Tartalea contra Cardanum. Sur la résolution numérique d'une équation du 3e degré par Léonard de Pise. II. Tartalea contra Cardanum ; réplique relative à la question de priorité sur la résolution des équations cubiques. III. Sur la signification traditionnelle du mot géométrique. Oversigt over det Kongelige Danske videnskabernes selskabs forhandlinger og dets medlemmers arbejder. [Bulletin de l'Académie Royale des Sciences et des Lettres de Danoise pour l'année 1893 1(17):303-341]

Microfilm Tartalea

Biblioteca di Scienze "Carlo Viganò" by Pierluigi Pizzamiglio:
4666 Tartaglia Niccolo, General trattato, Vinegia, per Curtio Troiano dei Navò, 1556-1560. (A.3.2-4) [FA.5A.97/1-3]

4670 Tartaglia Niccolò, Ragionamenti sopra la sua travagliata inventione, Venetia, per Nicolò Bascarini, a instantia et requisitione et a proprie spese de Nicolo Tartaglia, 1551. [FA.5B.22]
4671 Tartaglia Niccolò, Regola generale ...intitolata la travagliata inventione, Venezia, Nicolò Bascarini, c. 1551. [FA.5B.23]
The progressive numbers respectively correspond to the Fondo Antico section (printed books) and Fondo Manoscritti of the Catalogo della Biblioteca di Scienze "Carlo Vigano".
Fondo antico (1482-1800) e Fondo manoscritti: available both in print (1994. Vita e pensiero, 1994, p XIX, p 869) and in CD-Rom.
The final signatures in the brackets ("(...)") belong to of the old archive, the others ("[...]") refer to the current new cataloging of the Library.

Main Quesiti Accounts

France. Edition of 1554. Conservatoire nationale des arts et métiers. Bibliothèque centrale de Paris, France. Coll.: 4Y49; and Bibliothèque nationale de France. Loc.: EDIT16 CNCE 31875 (from: ETH-Bibliothek Zürich, Rar 5553).
Germany. Edition 1546 and 1554. ECHO - Cultural Heritage Online. Open Access Infrastructure for a Future Web of Culture and Science, Max Planck Institute for the History of Science, Berlin.
Italy. Full Tartaglia's corpus both manuscripts and editions. Biblioteca di Storia delle Scienze "Carlo Vigano", Brescia.
United Kingdom. British Library. Edition of 1546 and 1554. System number 003581581-2. Physical Description: 4°. Holdings Notes: General Reference Collection 8530.c.7.(2) and 52. d.3.(3.) [Another copy.] Shelfmark(s): General Reference Collection 534.g.22.(1.). General Reference Collection 52.d.3.(3.) and 8530.c.7.(2.). UIN: BLL01003581581-2.

Index

A

Abacus schools, 87, 128, 253
Accademy of Rezzato, 31
Accidentale, 138, 142, 153, 160
Accuracy, 60, 191, 193-195, 198-202
Accuracy of balances, 193-195, 199, 200
Acqua, 367
Additions, 24, 31, 41, 53, 56, 61, 67, 75, 78, 81, $99,136,138,144,163,164,180,181$, 185, 187, 188, 207, 262-264
Additivity, 221, 222, 240, 241
Aequiponderanti, 120, 171
Aeternum, 183
Alessandro from Venetia, 100
Alexander von Humboldt Foundation Berlin, vii
Al-Farabi, 115
Algebra, 20, 38, 39, 54, 67, 98, 101, 102, 129, $143,168,192,222,253,343,387,460$
Alidades, 66
Aliud commentum of Elementa, 122
Altezza, 55, 144, 149, 160, 210
Ambrosian Library, 80
Ambrosio from Ferrara, 100
Angolo, 161, 263, 366, 367, 377, 380
Angular balance, 125, 157-159
Anima motrix, 213
Antiquity, 134
Apianus, P., 192
Arabic Middle age, 115-119
Archimedean, 38, 50, 54, 67, 87, 89, 92-94, $115,130,163-167,171,174,179,182$, 250-252, 451
Archimedeane, 67

Archimedean mathematics, 163
Archimedes, 11, 17, 20, 33, 34, 54, 72, 87-89, $91,92,104,114,116,117,120,130$, $132,159,163-165,168,170,171,179$, 181, 192, 250, 331, 381, 450, 461, 462
Archimedis de iis quae vehuntur in aqua libri duo, 164
Archimedis de insidentibus aquae, 88, 92-95, 97, 164
Archimedis de ponderibus, 120, 192, 264, 449
Archimedis insidentibus in aquae, 120
Archimedis opera non nulla, 164
Archimedis syracusani liber, 88
Archimedis syracusani philosophi ac geometrae, 164
Architettore, 96
Archivio di Stato di Verona, 4, 14, 20
Arcs, 61, 118, 125-127, 169, 195, 214, 215, 242, 245-247, 315, 317, 323, 399, 401, 409
Aristotelian circles, 114
Aristotelism, 163
Aristotle, 3, 19, 40, 54, 71, 72, 114, 116, 119, $121,123,128,136,154,168,193-199$, 203, 205, 225-227, 247, 271, 273, 275, 277, 281, 287, 289, 315, 319, 325, 465
Arithmetic, 3, 10, 35-39, 98, 111, 115, 128, $129,135,210,448$
Arm, 40, 118, 119, 122, 123, 125, 126, 143, $144,147,148,156-159,161,166$, 169-172, 174, 175, 178, 179, 181, 191, 195, 197, 200-207, 212, 218, 222, 224, 225, 228, 230-233, 239, 241-246, 248-252, 273, 275, 277, 279, 281, 283,

293, 295, 297, 299, 301, 303, 307, 309, $311,313,315,321,323,325,327,329$, $331,333,335,397,399,403,405,409$, 413, 460
Armoury House, xi
Ars magna, 20, 29
Arte Cossica, 253
Artillery, 10, 39, 41, 54, 55, 61, 67, 68, 74, 79, $83,85,96,98,133$
Artillerymen, 60, 61, 65, 68, 99
Artisan, 457
Artis magnae sive de regulis algebraicis, 102
Astrology, 129
Astronomy, xv, 18, 114, 117, 128, 130, 133, 448
Ateneo di Brescia, 18, 19, 36, 98, 462
Automata, 164
Averroes, 53
A viso aperto, 201
$\operatorname{Axiom}(s), 34,50,54,83,170,219,226$
Axíoma ($\mathfrak{\alpha} \xi i ́ \omega \mu \alpha$), 226
Axiomatic-deductive mathematics, 129
Axiomatization, 50, 54

B

Balance(s), v, 98, 99, 113, 116-120, 122, 123,
125-127, 143, 144, 147, 148, 150, 152, 156-159, 161, 162, 165-167, 169-173, 175-177, 181, 194-207, 212-214, 218, 222, 224, 225, 228, 230-233, 239, 241-243, 245, 247-252, 267, 269, 271, 273, 275, 279, 293, 295, 297, 299, 301, 303, 307, 325, 329, 331, 333, 397, 399, $403,405,407,409,413,449,450,465$
Baldi, B., 10, 29, 31, 163, 170, 193, 262
Balla, 5, 67, 71, 73
Balle, 73, 78
Ballistics, 10, 71, 78, 85, 99
Baluardi, 71
Baluardo, 81
Barletta, 12, 74, 75, 96
Bascarini, N., 106, 461
Bastions, 11, 71, 72, 74, 76, 78, 81, 85
Beam, 147, 163, 196-198, 203-206, 212, 218, $224,230,232,233,252,253,279,281$, 331, 335, 337, 339, 341, 343, 397, 399, $401,405,407,413,415,453$
Bellucci, G.B., 133, 457
Benedetti, G.B., v, 10, 34, 101, 102, 159, 163-170, 174, 176, 209, 241, 472
Bernardin Dona from Zano, 100
Bernardino, B., v, 9, 31, 129, 164, 170, 260

Bertoloni Meli, Domenico, 40
Biagioli, M., 93
Biagio of Parma, 122, 192
Biagio Pelacani of Parma, 122, 192
Bianco, 67, 68, 70, 263
Bibliografia militare italiana e moderna, 461
Biblioteca Angelica, 463
Biblioteca centrale dell'Area umanistica dell'Universitádegli studi di Urbino, 97, 463
Biblioteca Centrale del Politecnico di Milano, 17, 97
Biblioteca dell'Accademia dei Lincei e Corsiniana, 463
Biblioteca dell'Osservatorio Ximeniano, 463
Biblioteca Fardelliana, 463
Biblioteca istorico-critica di fortificazione permanente, 11, 49
Biblioteca Matematica Italiana dalla origine della stampa ai primi anni del secolo, 43, 459-461, 462
Biblioteca Nazionale Centrale di Firenze, 459, 463
Biblioteca Nazionale Centrale Vittorio Emanuele II, 463
Biblioteca of the Istituto di fisica, 462
Biblioteca of the Palazzo dell'Arsenale, 461
Biblioteca Ottorino Marcolini dell'Universitá cattolica del Sacro Cuore, 463
Biblioteca provinciale Salvatore Tommasi, 463
Biblioteca Reale, 463
Biblioteca regionale universitaria, 463
Biblioteca statale, 463
Biblioteca universitaria, 463
Biblioteca universitaria Alessandrina, 463
Bibliothéque Nationale de France, 458-460
Biggiogero Masotti, G., 18
Bilancia, 144, 147, 148, 153, 156, 158, 161, 162, 173-175
Bioblioteca Istituto Filosofico Aloisianum, 463
Biographie universelle ou dictionnaire historique, 462, 487
Biringucci, V.O., 72, 133, 207, 457
Block, 134, 152-156
Bodies in equilibrium, 54, 163
Bodleian Oxford Libraries, 57, 223
Bolletti, I., 24, 60, 71, 199
Bombardier, xii, 45, 47, 55, 56, 60, 67, 70, 96
Bombardieri, xii, 60, 70, 96
Bombardier's quadrant, 45, 47
Bombelli, R., xii, 101
Boncompagni, B., 4, 5, 11, 462
The Book of Enumeration of the sciences, 115

Book on the balance, 116
Book VII, 3, 40, 49, 91, 99, 111, 191-257, 348, 450, 465
Book VIII, 3, 49, 54, 99, 111, 165, 168, 169, 176, 191-257, 284, 358, 428, 449, 465
Bordeaux bibliotheca, 458
Bortolotti, E., 10, 29
Bossolo, 65, 66
Braccia, 147, 148, 157, 162, 174, 175
Brescia, 4, 10, 12, 18-20, 24, 29, 31, 36, 56, 97, 98, 101, 105, 462, 463
Brisciano, 56, 98, 103, 107, 462
British Library, 459, 460
Brown, E.J., 53, 121, 122, 193, 222, 263
Brunet, J.C., 474
Buridan, J., 37
Buridanus, J., 39, 53
Bussola, 66
Bussotti, P., 17, 43, 53, 54, 70, 87, 129, 130, 175, 213, 253

C

Calculus, xi, 168, 222, 247, 449
Calle del Sturion near Ponte di Rialto, 4
Cambridge, 145
Campano, G., 9, 33, 34
Cannon, xii, 39, 41, 43, 47, 55, 61, 68, 70, 78
Cannon balls, 41, 43, 55, 78
Capecchi, D., 17, 41, 50, 53, 54, 70, 75, 80, 81, $102,111,115,119,133,159,160,177$, 185, 194, 209, 218, 222, 241, 466
Capo dei bombardieri, xii, 96
Cardano, G., xii, 3, 10, 20, 21, 23-25, 29-31, $38,96,98,100-102,129,164,177,181$, 209, 211, 263
Carlo, vii, 11, 96, 101, 105, 107, 462
Cartelli, 18, 19, 23, 24, 29, 31, 97, 101, 111
Castriotto, J.F., 10
Catalogue of Milano University, 458
Cataneo, P., 457
Causa, 54, 73, 92, 113, 142, 153, 195, 349, 350, 352-357, 373, 375, 379, 387, 432
Cavalieri, B., 17
Cavallo, 12, 365
Caverni, R., 11, 199, 201, 255
Centre of earth, 61, 148
Centre of gravity, 142, 158, 171-173, 187, 251, 333
Centrobaric, 114, 171
Charbonnier, P., 457
Château du Clos Lucè, 135

Circle, 31, 34, 66, 70, 87, 89, 114, 119, 123, 127, 133, 136, 154, 157, 163, 171, 178, 193-195, 198, 215, 242, 246-248, 269, $279,297,313,315,323,325,329,399$, 401, 403, 405, 409, 411
Circonferenza, 179, 377
Circulare, 148, 153
Circulation, 101, 130, 159, 180-188
Cisotti, U., 17
Cittá, 10, 72, 73, 86
Cittá del Vaticano, 72
Clagett, M., 39, 53, 87, 91, 118-122, 125, 127, 192, 193, 211, 212, 214, 215, 219, 228, 229, 263, 264, 448, 449, 452
Clavius, 101
Cockle, M.J.D., 463
Codex Arundel, 137-140, 147, 155, 157, 158, 160-162
Codex Atlanticus, 41, 135, 142, 144, 148, 150, 153, 156
Codex Forster, 135, 138
Codex M, 87, 89, 91, 135
Codex O, 87
Colophon, 5, 102
Colpi di rimbalzo, 71
Commandino, F., 163, 165, 170, 171, 181
Commentari dell'Ateneo di Brescia, 98, 462
Commentaries, 35, 99, 101, 122, 203
Common assumptions, 54
Commune scientia, 83
Compass, 29, 31, 34, 38, 66, 99, 133, 452
Composition of forces, 156, 159-163, 181, 185
Comune Sententie, 54
Concept, 53, 54, 119, 120, 123, 125, 127, 136, $149,156-159,163,166,170,171,175$, 176, 197, 205, 213, 214, 218, 219, 226, 227, 229, 234, 239, 241, 243, 451
Conclusia, 87
Congiugne, 160
Consectarium, 184
Constant, 53, 154, 222, 224, 254, 424
Conte Hieronimo from Piagnano, 100
Continuum, 183
Controcartelli, 23
Convergence, 171
Converging pendants, 156
Copernicus, N., 72, 129
Copia materiae, 213
Corda, 153-155, 158, 160, 354
Corde, 153, 155, 160, 161
Corollaries, 54, 181, 185, 319, 459
Corpo offeso, 53

Corroborated, 177
Cortine, 71, 73
Cosa, 21, 73, 86, 92, 142, 147, 153, 173, 174, 207, 210, 253, 349-353, 357, 363, 365, 367-369, 371-373, 377-379, 381, 385, 387-389
Coss, 253
Cossali, P., 10
Costante, 53
Crombie, A.C., 192
Cube roots, 21, 38
Cubic equation, 29-31, 98, 99, 209
Curtains, 71, 74, 75, 78, 81
Cyprian, L., 457-459

D

Dal Ferro S, xii, 30
Da Vinci, xii, 11, 72, 113, 128, 130, 133-144, 147-162, 164
D’Ayala, M., 11, 107, 461
De architectura, 72, 134, 152, 164
De Beghinselen der Weegconst, 180
De Beghinselen des Waterwichts, 180
De Benedetti, R., 4
De divina proportione, 72, 128
De expetendis et fugiendis rebus, 130, 164
Defense with ruined walls, 71
Defensive techniques, 133
Definitions, $51,53,54,114,170,171,181,208$, 210, 213, 225-229, 240, 241, 244, 289, 291, 293, 295, 299, 305, 317
De Foix, G., 12
Degryse, L., 460
De la Noue, F., 457
De la Pirotechnia, 72
Del Ferro, S., 20, 24, 30, 31, 99, 362
Del Fiore, A.M., 24
Della bilancia, 144, 147, 156, 157, 161, 173
Della scala, 80
Delle diversità de' tiri, 70
Delli quesiti et inventioni diverse, 461, 462
Del Monte, G.U., 10, 138, 143, 163-165, 169-174, 176, 177, 182, 209, 241
Del moto, 144, 151, 153, 162, 175
Del peso, 143, 144, 147, 153, 157, 160, 173, 178, 356
Del tempo, 153
de Mendoza, D.D.H., 96, 199
De Monluc, B., 457
De Motu, 43, 177, 214, 215
De Nemore, 3, 5, 11, 39, 43, 102, 121-127, 136, 144, 148, 149, 159, 163-166, 169-171, 176, 177, 206, 208-214, 216-226, 228-231, 233-235, 237,

239-241, 245, 247, 250, 254-256, 261, 263, 409, 428, 448-452, 453, 458
de Nemore's Quaestio, 231-234
De Nemore's Suppositions, 212, 213, 230
De ponderoso et levi, 120, 192, 214, 228, 229, 448
De revolutionibus orbium coelestium, 72
de Roberval, P.G., 181
De subtilitate, 29, 164
de Tonini da Collio, G., 263
Dhombres, J., 253
Di Alberghetti, A., 100
The Dialogues Concerning the Two New Science, 43
Dictionary of Scientific Biography, 17
Die Coss, 253
Difesa con le mura rovinate, 71
Di Giorgio Martini, F., 11, 133, 134, 152
Dignità, 208, 226, 295, 363
Di Lucio Vitruvio Pollione de architectura libri dece traducti de latino in vulgare affigurati, 164
Discorsi e dimostrazioni matematiche sopra due nuove scienze, 174
Discorso intorno alle cose che stanno in su l'acqua, 175, 176
Disfida, xiii, 23, 29, 31, 101, 111
Distances, $41,55,60,61,63,67,68,81,118$, $119,156-159,165,166,175,176,178$, $179,187,195,197,198,218,220-222$, 224, 228, 231, 232, 239, 241, 251, 253, 313, 331, 337, 397, 407, 411
Diversarum speculationum Mathematicarum, \& Physicarum liber, 10, 101, 166
Dizionario Militare Francese Italiano, 107, 461, 463
Documentazione, 97
Doge, 55
Double, 147, 149, 157, 232, 252, 253, 333, 335, 337, 339, 341, 343, 407
Drabkin, I.E., 53, 67, 165-167, 173, 193, 199, 211, 226, 227, 261, 459, 460
Drake, S., 49, 53, 67, 165-167, 169, 173, 174, 193, 199, 211, 226, 227, 261, 459, 460
Duhem, P.M.M., 121, 124, 128, 135, 136, 138, $142,159,160,163,193,214,264$
Duke of Urbino, 50, 56, 61, 96
Duplo, 156, 431

E

Editions, xiii, 9, 17-19, 33, 34, 39, 43, 51, 57, $60,67,91,93,95,96,102,103$, 105-109, 111, 134, 135, 181, 192, 208, 211, 261-263, 448, 453, 457-463

Efficacia, 175
Efficient, 143, 183, 186, 194
Elementa Jordani super demonstratione de ponderibus, 121, 124, 211
Elements, 3, 10, 17, 31-34, 43, 53, 54, 71, 78, $81,123,129,130,133,134,140,180$, 192, 198, 208, 211, 214, 221, 225
Elevation, 10, 40, 41, 43, 45, 58, 60, 61, 63, 68, 70, 184
Emergence, 116, 128, 133-134
Energy, 78, 85
Engineer, xii, 117, 133-136, 143, 164, 180, 193
England, xi, xiii, 56, 57, 95, 180, 457, 459
English, xi, xiii, 12, 39, 57, 97, 118, 125, 126, $134,138,140,142-144,148-150,151$, 153-161, 193, 205, 261, 262, 264, 265, 284, 458-461, 463, 466
Epistola, 50, 53, 56, 58, 87
Epistola dedicatoria, 50, 53, 56, 58
Equally bodies, 53, 54
Equally heavy, 53, 173, 230, 232, 244, 249-251, 255, 303, 319, 325, 329, 331, 403, 405, 407, 415
Equilibra, 144, 147, 157, 158
Equilibrium, 50, 54, 87, 89, 94, 95, 98, 99, 113, $114,116,118-120,124-127,141$, $148-151,155-159,163,165,166,169$, 171-174, 176, 179-183, 186, 187, 196, 197, 203, 206, 209, 213, 218, 225, 232, 239, 241, 249-252, 254, 255, 403, 413, 450, 452, 453, 465
Euclide Megarense, 3, 18, 31-34, 97, 227, 453
Euclidis Elementum, 101
Euler, L., 247
Europe, xi, 17, 33, 128, 180-188, 192
Eutocius, 87, 89, 91
Excellency, 56, 199-201, 203, 204, 207, 208, 225, 226, 250, 267, 269, 271, 273, 275, 277, 279, 281, 283, 287, 289, 295, 297, 299, 303, 323, 325, 331
Excellentissimi Opera, 164
Excerptum de libro Thatbit de ponderibus, 121
Experiences, 41, 54, 60, 123, 147, 150, 165, $173,174,192,200,206,262,269,271$, 297, 327
Experiments, 143, 173, 177, 241
Ex sese, 183

F

Fake doors, 81
Falconetti, 79, 81
Falsum, 183
Favaro, A., 4, 5, 11, 70, 102

Feliciano, F., 16, 100
Ferrari, L., xii, xiii, 18-20, 23, 24, 29, 31, 101, 209
Ferriello, G., 116
Fibonacci, 38, 129
Filza, 4-6
Fior, A.M., 100, 263
Firearms, 72, 98
Firenze, 135, 459-463
Firing elevation, 43
Florence, 72, 117, 134, 135, 174, 462
Florido, A.M., 30, 263
Floridus, A.M., 30
Fontana, T., 14
Force, 40, 113, 116, 118. 120, 137-138, $140,142-144,152-163,165-168,171$, 175-181, 183-187, 194, 195, 198, 214, $218,231,240,255,269,279,283,448$
Forces' composition, 185-188
Foreign editions, xiii, 457-463
Forma geometrica delle mura, 71
Fortification, xi, 3, 10, 11, 17, 19, 34, 39, 41, 49-86, 95, 96, 98, 99, 101-103, 110-112, 135, 180, 457
Fortificazione delle strade e stima della spesa, 71
Fortresses, 133
Forza, 113, 138, 142, 153, 175, 179, 359, 360
France, xi, 56, 101, 135, 175, 180, 457-460
Francesco I king of France and la Venetian Republic, 56
Francesco Maria Feltrese della Rovere, 50
Friction, 53, 155, 182, 241
Frisi, P., 18
Fronsperger, L., 457
Frontespice, 36, 51, 101
Fulcrum, 119, 147, 156-159, 165, 166, 169, 171, 176, 179, 191, 193, 196-199, 203-206, 232, 239, 251, 252, 263, 273, 275, 277, 279, 281, 293, 297, 299, 301, 309, 313, 327
above, 191, 196-198, 203-205, 277, 281, 299
below, 191, 196-198, 203, 205-206
inside, 203, 206-207
Fuoco incrociato, 81

G

Galilei, G., 40, 43, 59, 70, 75, 80, 81, 102, 119, $129,131,165,174-179,181,209$
Galileo, G., 11, 17, 39, 49, 70, 72, 75, 80, 81, $102,119,129,131,138,165,174-179$, 182, 209, 460

Galluzzi, P., 176
Gavagna, V., 36
General trattato di numeri et misure, 3, 5, 19
Geometric shape of walls, 74
Geometry, xi, 3, 10, 18, 23, 29, 31-34, 38, 49, $50,54,60,67,71,75,78,98,99,111$, $114,115,128,129,135,170,192,194$, 197, 225, 253, 287, 450, 457, 465
Germany, 175, 253, 457
Gille, B., 41, 181, 457
Gillispie, C.C., 135
Gionta, 3, 5, 39, 49, 60, 71, 75-86, 98, 103, $107,108,110-111,262,351,365,376$, 462, 478
Gionta del sesto libro, 75-86, 111
Gli artificiosi et curiosi moti spirituali, 164
Globi, 182, 183
Gosselin G, xii, 101, 102
Graesse, J.G.T., 462
Grafometro, 66
Gravis, 213
Gravità, 11, 138, 140, 142, 150, 161, 175, 396
Gravitas ex figura, 53
Gravitá sospesa, 161
Gravitas secundum situm, 43, 213, 215-217, 235-241, 243
Gravity, 53, 71, 98, 99, 116, 117, $123,125-127,137-144,148-150$, 158, 161, 170-176, 187, 205, 209, 213-215, 218, 224, 234, 239, 241, 242, 245, 246, 248-251, 254, 255, 331, 333, 407, 449,
Gravity of position, $125,127,149,170,171$, 176, 205, 209, 214, 218, 234, 239, 241, 242, 245, 246, 248, 251, 254, 255, 451
The Great Art, 29
Grossezza, 78, 352-354, 379, 381, 383, 385
Gunpowder, 39, 98, 133, 459

H

Hall, A.R., 457
Hamon, G., 460
Harvard College, 145
Houghton Library, 145
Heavy, 10, 53-56, 113, 115, 127, 142, 148, $151,153,160,168,170,171,173,175$, 176, 179, 181, 183, 197, 212-215, 218-220, 228-233, 244, 246, 249-255, 287, 291, 293, 295, 303, 305, 309, 315, $319,321,323,325,329,331,333,335$, $341,343,345,397,403,405,407,411$, $413,415,449,450$

Henry VIII, xiii, 56, 57, 95
Heron, 34, 72, 116, 130, 149, 152, 154, 159, 164, 177
Hieronimo from isle of Cipro, 100
Historical epistemology of science, xiii, 61, 175, 191, 465
Honorando, xii, 100
Honourable Artillery Company, xi
Horizon, 55, 60, 67, 68, 126, 173, 178, 212, 213, 230, 232, 233, 241, 253, 293, 295, $335,339,341,343,345,397,413$
Horizontal position, 125-127, 171, 197, 198, 203, 206, 218, 231, 241, 242, 245, 399, 401
Humanism, 127-163
Human nature, 128
Hylomorphism, 202
Hypomnemata mathematica, 180
Hypotheses, xiii, 49, 54, 61, 85, 91, 102-112, $122,191,203,226,227,255,333$, 335, 347

I
Iacomo de Achaia, 100
Il primo libro delli quesiti, et inventioni diverse de Nicolo Tartaglia, sopra gli tiri delle artiglierie, et altri svoi varii accidenti, 461
Impact, 141
Imperator Charles V king of Spain, 56
Impetus, $39,40,43,71,142,175,176,178$, 192, 446
Impetus theory, 39, 192
Inclined plane, 122, 138, 142, 149-152, 164, 171, 174, 177-179, 181-186, 209, 210, 212. 218, 224, 237-239, 254-257, 451
Incognita, 253
Indifferent equilibrium, 171, 172, 241
Indre-et-Loire, 135
In duos Archimedis aequeponderantium libros paraphrasis, 164
Inequali, 148, 364, 365, 372
Infantry, 98, 99
Infinitesimal, 127, 248
Infinitesimal arcs, 127
Instance of a balances, 198
Instances, 129, 142, 160-162, 164, 171, 198, 241, 245, 247, 289, 411
Intellectual, 92, 128, 133-134
Interlocutor, xvi, 12, 56, 74, 76, 81, 96, 98, 110, 199, 203, 205, 206, 225, 262

Intermediate position, 127
Invariant, 53, 142
Inzegnero, xii
Iordani opusculum de ponderosidate, 5, 216, 217, 263-264, 390-447
Ipsique, 183
I sei scritti di matematica disfida di Lodovico Ferrari coi sei contro-cartelli in risposta di Niccolo Tartaglia, xiii
Istituto Austriaco di Roma, 460
Istituto di studi superiori, 462
Italian, xii, 3, 5, 10, 12, 17, 18, 33, 34, 57, 74, $75,91,95,97,102,128,130,134,142$, $147,152,164,170,173,174,180,192$, 226, 261, 262, 348, 451, 457-459, 463, 465, 466
Italianism, 130
Italy, xii, 17, 36, 56, 72, 101, 127, 133-135, 163-179, 192, 193, 457-463

J

Jordani opuscolorum de ponderositate, 164

K

Kinetic energy, 85
Knobloch, E., 101

L

Laboratorio di Fisica in Arcetri, 462
L Algebra, 101
Lantieri, G., 457
L'Archivio Tartaglia, 97
Larger balances, 194, 195, 271
L'Arithmétique, 101, 102
L'Arithmétique de Nicolas Tartaglia Brescian, Grand Mathematicien, et Prince des Praticiens, xvi, 101
Latin, xvi, xvii, 9, 17, 29, 33, 39, 91, 93, 113, $117,119-130,134,135,147,180,192$, 193, 199, 212, 213, 219, 226, 261-264, 267, 416-447
Latinism, 53
Latin Middle age, 119-127
Laws, xv, 41, 43, 44, 49, 55, 60, 61, 118, 120, $122-125,134,143,149-153,159-163$, $165,166,168,171,174,176-179$, 181-183, 196, 210, 212, 218, 219, 222, 224, 249-250, 254-257, 313
lbs, 79, 143
League of Cambrai, 12

Legacy, 5, 163-188
Leibniz, G.W., 247
Le mecaniche, vi, 174-176, 181, 209
Leonardo, xvi, 11, 55, 128-130, 133-163, 164, 166
Leonici Thomei, N., 193, 205
Leonico Tomeo, N., 192, 193, 197, 199, 204, 267
Lexical neologisms, 263
Liber, 3, 10, 53, 72, 88, 101, 102, 120-122, $129,159,160,164-166,170,171,173$, 174, 180, 192, 206, 209-225, 247, 255, 264, 287, 289, 291, 353, 447
Liber Archimedis de insidentibus in humidum, 120, 122, 192
Liber Archimedis de ponderibus, 192, 293
Liber de canonio, 120
Liber de ponderibus, 121, 164
Liber de ratione ponderis, 121-127, 165, 170, 206, 209-225, 247, 263
Liber Euclidis de ponderoso et levi, 120, 289, 291
Liber Jordani de Nemore de ratione ponderis, 211
Liber Jordani de ponderibus, 121, 211
Liber Jordani de ponderibus cum commento, 121
Liber karastonis, 120, 121
Libra, 44, 175, 178, 195, 196, 207, 350, 351, 353-357, 362-367, 369-373, 376-382, 443
Libri, 5, 71, 83, 93, 99, 164, 209
Libro, 71-86, 91, 92, 101, 104, 111, $121,178,209,349,357,381,389$, 462, 463
Libro de Algebra en artithmetica y geometria, 101
Lido, 72
Lifting, 115, 116, 152, 263
Lombardism, 262
Longer, 16, 56, 118, 147, 151, 153, 157, 172, $173,175,181,203,214,218,232,233$, $248,253,275,327,335,337,339,341$, 343, 403, 405, 409, 411
Lord, 56, 210
Loria, G., 11
Lorini, B., 75, 102, 457
Lucian, xvii
Ludi Matematici, 147
Ludi rerum mathematicarum, 147
Lunghezza, 158, 179
Lunghezze, 157, 160
Lupicini, A., 457

M

Machiavelli, N., 457
Maggi, G., 10
Magnus, A., 136
Manuscripts, 4, 5, 39, 50, 57, 61, 70, 72, 80, $91,102,103,117,120-122,128,131$, $135,136,160,165,174,192,213,223$, 263, 264
Maphio from Mantova, 100
Marcolongo, R., 11, 136, 142, 144, 150, 160, 161
Marini, L., 11, 49
Masotti, A., 4, 10, 16-20, 23, 29, 31, 85, 97, 98, 107, 255, 261, 462
Masotti archive, 19
Masotti, C., 19
Mass, 40, 207, 213
Master Gunner, xvi
Matematica, xvii, 18, 19, 23, 29, 31, 43, 97, 101, 111, 207, 459-463
Matematica disfida, xvii, 23, 29, 31, 101, 111
Mathematica collectiones, 164
Mathematical memoirs, 181
Maximum range of a projectile, 165
Measurement, xv, 3, 10, 19, 35, 38, 49, 58, 80, 81, 87, 89, 99
Meccanici, 175
Mechanical problem, 3, 91, 168, 194-198, 205, 319, 325
Mechanicorum liber, 170, 171, 174
Mechanicorum liber Archimedis aequeponderantium, 171
Mechanics, 170, 171, 175, 177, 180, 181, 183, 191, 193, 194, 199, 209, 218, 225, 239, 241, 248, 263, 267, 315, 327, 459-461, 465, 466
Medieval definitions, 228
Memo, G.B., 31, 192
Memo, Z., 100
Mendozza, 209
Men of war, 457
Mersenne, M., 174
Metaphysics, 114, 115, 131
Micheletto Cavallaro, 12
Middle age, xvi, 35, 39, 87, 113-128, 159, 193, 226, 227, 241, 248, 465
Milano, 17, 18, 97, 100, 458, 462
Military architecture, 70, 72, 99, 457
Military expertise, 457
Minus, 126, 195, 215, 253, 343, 419, 420, 433, 438, 441
Mobile resists, 175

Modeling, xvii, 191
Modern statics, 113-188, 191
Moment, 9, 156, 163, 165-167, 175-178, 186, 194, 197, 209, 269, 287
Momenta omnia mathematica, 164
Momento, 9, 175, 178
Moment of a force, 156, 163, 166
Moody, 53, 118-122, 192, 193, 211, 212, $214,215,219,228,229,264,289,291$,
Mortar, 41, 55, 85
Motion, 10, 39-41, 43, 49, 53-55, 58, 60, 61, $68,69,71,72,113,116,118,119,127$, $133,138,140,142,144,150,157,165$, $168,170,172,175,176,180,182,183$, 194, 198, 207, 209, 212-215, 218, 219, 221, 224, 228-231, 239, 241, 242, 244, 291, 297, 301, 303, 307, 309, 311, 315, 317, 397, 407, 434
Moto, 10, 53, 113, 138, 140, 142, 144, 150, $151,153,158,175,207,361,366,367$, 369-371, 373, 374, 444
Motum, 183, 213, 215, 419, 440, 443-447
Movement, 31, 40, 54, 116, 128, 130, 131, 195, 198, 212-214, 219, 230, 295, 397
Muscle force, 171, 182
Museo di fisica e storia naturale, 462
Museo strumenti antichi, 462
Music, 114, 115, 128, 166, 287

N

Napoli, 461, 463
National Library of Australia, 459
Naturale, 40, 54, 92, 113, 142, 153, 173, 349-351, 354, 357, 363, 373, 378, 379, 462
Natural motion, 40, 58, 61, 69, 71, 165
Navigation, 133, 180
Niccolò, xvii, xvi, 3-111, 130, 165, 166, 170, 174, 191-193, 216, 261, 349, 395, 399, 401, 405, 407, 411, 460, 465
Nicolao, 205, 216, 264, 420, 421, 423, 424, 426, 428
Nicolaus, 17, 30, 129, 418
Nicolo, 4, 5, 49, 56, 86, 92, 98, 107, 267, 287, $305,309,321,359,368,370,376$, 460-463
Nicolò, 10, 34, 56, 97, 462
Nobile, G., 461, 463
Non-rectilinear, 41, 55
Nouvelle maniere de Fortification par éscluses, 101

Nova scientia, 3, 19, 39, 40, 43, 45, 50-53, 58, 60-62, 67-69, 71, 72, 97, 99, 111, 208, 227, 253, 262, 263, 458-460, 462
Nulla osta, 103
Nuñez, P., 101

0

Obbliqua, 150, 160
Obbliquità, 149, 160
Obliquity, 126, 149-151, 160-162, 213, 228, 233, 246, 247, 254, 255, 293, 301, 323, 325, 343, 345, 347, 401, 403, 413
Obra intitulada fragmentos mathematicos,101
Old Artillery Gardens, xv
On the equilibrium of planes, 50, 87
On the floating bodies, 87, 89, 91
On the Heaven, 116, 193
On the Sphere and Cylinder, 20, 91
Opera, 10, 29, 33, 34, 87-93, 101, 102, 111, 164, 209, 210
Opera Archimedis Syracusani, 88, 89
Opere, 5, 10, 11, 18, 70, 97, 102, 110, 111, 138
Opposition, 50, 53, 182, 201, 271
Optics, 114, 135
Orizonte, 67, 262, 381, 383, 385, 388
Osservatorio meteorologico, 462
Österreichischen Akademie der Wissenschaften, 460
Overturning, 197
Oxford, 57, 223

P

Pacioli, L., xiv, 9, 18, 20, 34, 38, 72, 99, 128, 131-133, 135, 163, 210
Padova, 11, 87, 129, 170, 192, 463
Pamphlet, 24, 31, 96
Pappus of Alexandria, 152, 171, 177
Parabola, 87, 89
Parabolic trajectory, 39
Paradigm, 71, 148
Paradox, 247, 248
Parallelogram, 181, 185-188, 271
Parianette, 78, 79, 99
Percossa, 73, 141
Pérez de Moya, J., 92
Pescatore, xvi
Pesi, 143, 144, 147-150, 153, 161, 173, 175, $178,199,349-351,354,355,357,359$, 360, 365, 378, 380, 382, 386
Peso, 44, 142-144, 147, 149, 153-155, 157, $158,160-162,173,175,178,179,207$,

351, 354-357, 359, 361, 362, 373, 374, 378, 380, 382, 385, 387
Petitione, 363-367, 369, 370, 373, 374, 377, 378, 380
Petitioni, 208, 210, 226, 227, 363
Pezzo, 41, 42, 55, 58, 68
Piano dell'opera, 97
Pigafetta, F., 170, 457
Pinelli, G.V., 173
Pirovano, A., 100
Pisa, 174
Pisano, L., 129
Pisano, R., vi, 17, 18, 20, 33, 35, 41, 43, 49, 50, $53,54,70,72,75,80,81,87,102,111$, 128-130, 133-135, 155, 164, 175, 177, 213, 253, 466
Pizzamiglio, P.L., 4, 5, 9, 18, 32, 33, 36, 97
Plato, xvii, 128
Platonic, 33, 131, 263
Plus, 126, 181, 195, 196, 215, 242, 253, $305,317,407,415,420,421,425$, 441-445, 447
Pneumatica, 164
Point blank, 67, 68, 70, 263
Ponderosus, 213, 446
Ponto Bianco, 67
Pope Paolo III, 56
Positionally, 228, 230-232, 244-246, 249-252, 293, 303, 309, 315, 317, 319, 321, 323, 329, 333
Posterior analytics, 114, 193, 227
Postulates, 54, 114, 118, 126, 179, 181, 226, 229
Potential, 17, 156
Potential arm, 156-159, 161
Potential counter lever, 162, 163
Potential lever, 162, 163
Potenziali, 157, 161
Pounds, 56, 142, 147, 154, 155, 228, 252, 253, 293, 297, 341, 343
Poveiani, M., 97, 100, 101
Powers, 38, 54, 118, 119, 138-143, 153, $155,156,159,163,182,212,213,222$, 228-231, 233, 239-241, 250, 255, 263, 269, 273, 279, 281, 287, 291, 297, 299, $305,307,309,311,313,321,329,345$, 347, 397, 459
Pozzi, 153
Practical, xvi, 38, 41, 49, 56, 61, 87, 99, 117, $123,129,164,192,206,250$
Practical geometry, 99, 129
Practical-weapon, 49
Preparation, 182

Principia, 43

Principij primi, 208, 227
Principles of the art of weighing, 180
Principles on the weight of water, 180
Printing, 34, 130, 131, 133, 192
Prior of Barletta, 74, 75, 96
Problemata mechanica, 114, 116, 121, 123, $154,164,166,171,176,191-199,214$, 269, 271, 465
Projectiles, 39-41, 43, 53-55, 61, 67, 68, 70-72, 99, 165, 460
Promis, C., 11
Proper principles, 54
Proportion, xvii, 17, 38, 43, 72, 118, 135, 143, $144,147,150,152,157,160-163,167$, $175,178,179,184,188,219,220,224$, 232, 233, 249, 252, 253, 255, 287, 329, 335, 337, 339, 397, 401, 405, 413, 415
Proportional, 60, 119, 150, 166, 176, 183, 184, 188, 218-220, 222, 224, 231-233, 239-241, 249, 251, 254, 255, 309, 313, 329, 341, 345, 397, 405, 407, 413
Propositio, 169, 186
Proposition, 20, 29, 33, 38, 50, 54, 61, 94, $101,114,118,119,121-123,125-128$, $143,147,161,168,169,171,173$, 176, 179, 186, 208-210, 212, 218-227, 229, 231-234, 236, 238-242, 244-255, 289, 295, 303, 305-307, 309, 311, $313,317,319,321,323,327,329$, 331-334, 335, 337, 339, 341, 343, $345,347,397,399,401,403,405$, 407, 411, 413, 465
Propositioni, 169, 208-211, 360, 367, 368, 381, 386, 433
Propter quid, 114
Ptolemaic, 129
Ptolemy, 130, 210
Pulley, 143, 149, 152-156, 164, 181
Pythagorean, 131

Q

Quadrant, 45, 47, 55, 59, 61, 68, 263
Quadrante, xvi, 263
Quadrature, 87
The quadrature of the parabola, 87, 89
Quadrivium, 121, 128, 129, 287
Quaestio, 169, 206, 212, 224, 231-235, 237, 239, 241, 245, 254, 256, 327, 335, 339, 419-425, 427-447
Qualità, 71
Quality, 33, 40, 55, 71, 72, 74, 75, 129, 228, 277

Quesiti et inventioni diverse, xvii, 3, 5, 19, 34, 40, 91, 95, 98-99, 103, 104, 107, 108, 164, 176, 191-257, 262, 265-347, 349, 359, 457-463
Question(s), xvii, 3, 43, 67, 75, 98, 102, 122, 166, 193-195, 199-201, 203, 204, 206, 208, 225, 226, 234, 248, 249, 252, 255, 267, 269, 273, 275, 277, 279, 281, 283, 287, 289, 291, 293, 295, 297, 301, 303, 305, 309, $311,313,315,321,327,329,331$, 335, 337, 339, 341, 343, 345, 355, 375, 397, 399, 401, 403, 405, 407, 409, 411, 413, 460
Questione balistica, 58
Questiones super tractatum de ponderibus, 122, 128

R

Radelet-de Grave, P., 75, 102, 180, 182
Rafael, xvi
Raffaello, 199, 255
Ragionamenti sopra la sua Travagliata inventione, 92
Ragionamento, 92, 354
Raphaelle fra from S. Zorzi in Verona, 100
Ratio, 20, 78, 80, 118, 142, 144, 149-152, 161, 162, 183-187, 195, 198, 220-222, 224, 231-233, 240, 247, 249-255, 305, 307, $309,311,313,325,329,333,335,337$, $339,341,343,345,347,386,397,401$, 405, 413
Rational reconstruction, 156
Recoil, 71, 72, 74, 78, 99
Regola Generale da sulevare con ragione e misura non solamente ogni affondata nave, ma una torre solida di metallo, 94
Renaissance, xvi, xvii, 3-188, 193, 202, 213, 241
Resolutio omnium Euclidis problematum, 101
Riccardi, P., 43, 459-463
Ricci, M., 17
Rieffel, X.J., 460
Riese, A., 253
Risposte, 24
Roads, 71, 75
Roma, 39, 103, 460, 463
Roman balance, 118
Romano, G., 101, 457
Rome, 72, 193
Roots, 12-13, 21, 23, 35, 38, 115-119, 122, $135,195,200,263,273$

Rope, 143, 149, 152-156, 158-163, 166, 181, 183-186
Roux, S., 40, 130
Rovere, 50, 56, 96, 98, 129, 457
Ruffinelli, V., 106, 462
Rule of parallelogram, 181, 185-188, 271
Rusconi, G.A., 85, 97, 100, 457
Ryff, W.H., 458, 459

S

Sack, 12, 72
San Barnaba (S. Barnaba), 20, 31
San Lorenzo (S. Lorenzo), 20, 31
Sant' Afra (S. Afra), 20, 31
Savorgnano, G., 100
Saxony, A., 136, 142
Scala, 80, 263
Scale, 40, 70, 78-81, 86, 102, 110, 117, 120, $143,148,153,164,173,174,195$, 200-202, 204-206, 231, 232, 239, 242, 244, 246, 248, 263, 267, 269, 271, 273, 275, 277, 279, 281, 283, 293, 297, 299, 301, 309, 311, 313, 315, 321, 323, 325, 327, 331
Schiaparelli, G., 18
Science of equilibrium of weights, 113,165 , 180, 181
Science of Weights, 3, 49, 54, 71, 111, $113-117,120,122,134-165,168$, $171,174,176,180,191,192,199$, 201, 203, 207-208, 211, 212, 225, 227, 267, 269, 271, 277, 279, 283, 287, 289, 293, 457, 466
Scientia, 83, 115, 191, 227, 357, 359, 363, 387
Scientia de ponderibus, xvii, 3, 113-127, 465
Scientia di Pesi, 54, 199, 349-351, 354, 355, 357, 359
Scienza, 11, 135, 460, 462
Scuole d'abaco, xvi
Segreo, B., 100
Sentinelle di guardia alle mura, 71
Sentinels, 71, 75
Smaller balances, 195, 200, 269, 273, 275
Solmi, E., 136
Sospensione, 160
Spartostatica, 181, 185
Speculative arithmetic, 129
Sphere, 20, 60, 91, 152, 185
Spiritali di Herone Alexandrino, ridotte in lingua volgare, 164
Spiritalium liber, 164
Squadra, 62, 64, 68, 70

Squads, 41
Stability, 148, 193, 196, 197, 202-207
Stability of balances, 191, 193, 196-198, 202, 206
Statica, 11, 113, 180, 181
Statics, xvii, 3, 19, 31, 34, 49, 54, 67, 72, 113-188, 191-257, 465
Steelyard, 117, 118
Stevin, S., 101, 102, 113, 138, 150, 163, 177, 180-188
Strade coperte, 81
Strength of materials, 133
Stubbe, H., 463
Subalternate-science, 114, 116, 119, 163, 165, 170, 192, 194, 199, 203
Subtilissimae Quaestiones super octo Physicorum libros Aristotelis, 53
Summa, 35, 38, 128, 131-133, 135, 163, 417, 418
Supplemento ai Commentari dell'Ateneo, 19
Suppositio, 212, 419
Suppositione, 44, 54
Suppositioni, 208, 226, 227, 363
Symmetrically, 125
Symmetry, 148, 225, 250

T

Tackle, 134, 153-156
Tactics, 98, 99
Tadino de Martinengo, 457
Tadino, G., 96, 98
Tartaglia, N., 3-112, 130, 191, 261, 457, 465
definitions, 227-229
petitions, 229, 230
propositions, 38, 168, 231-234, 241
triangle, 35-39
Tartalea, 4, 5, 18, 30, 49, 56, 96, 169, 349, 368, 418, 426, 458
Technician, 71, 99, 131, 133-134, 264
Testament, 4, 5, 9, 11, 14, 102
Tetragonismus idest circuli quadratura per Campanum Archimedem Syracusanum atque Boetium mathematicae perspicacissimos adinuenta, 87
Theorem, 33, 50, 61, 114, 120-123, 170, 179, 181, 185-187, 211, 212, 252, 313
Third-degree-equation, xvii, 3, 20-31
Tipografia Gaetano Nobile, 461, 463
Tirare, 67, 73, 370, 388
Tiri di fianco, 81
Tiri di infilata, 81
Tiri di rovescio, 81

Tolbiac, 460
Tomus quartus mathematicorum hypomnematum de statica, 113, 180, 181
Tonni-Bazza, V., 5, 6, 8, 96, 103, 458
Topographical, 98
Torino, 72, 74, 76, 461-463
Torricelli, E., 10, 43, 461
Tractatus Blasi de ponderibus, 122, 192
Tractatus de configurationibus qualitatum et motuum, 53
Traditions, xv-xvii, 50, 72, 114, 116, 117, 119, $122,130,134,171,176,199,202,208$, 213, 228-229, 251, 263
Trajectory, 39-41, 46, 50, 51, 55, 60, 67-68, 70-72, 165, 301
Transition, 163-188
Trascrizioni di opere, 97
Tratado de Geometria, 101
Trattato di Fortificazione, 70, 75, 80, 102
Traverse, 78, 79, 120, 228, 291
Treccani, G., 18
Trivisano, H., 100
Troiano Navò, C., 4, 5, 192
Truesdell, C.A., 18, 136, 193
Turkish emperor Suleiman, 56
Tutte le opere, 97
Two-dimensional beam, 198

Venetian Republic, 56
Venezia, 4-6, 24, 56, 72, 97, 101, 130, 192, 199, 461
Venice, 3, 4, 10, 17, 19-21, 29, 31, 33, 34, 50, $55,56,72,85,89,95,96,112,135,192$, 193, 267, 287, 461
Ventworth, R., 100
Veronese, A., 100
Version E, 121, 123, 124, 219
Version P, 72, 121, 123, 124, 211, 214, 219
Version R, 121, 123, 209, 211, 219, 263
Violent motion, 53, 55, 61, 68, 71
Virtù, 142, 175, 350, 355
Virtù impressa, 40
Virtus, 213, 214, 219, 221, 228, 229, 291, 419, 427
Virtus promotoria, 213
Virtus tractoria, 213
Virtute, 167, 214
Vis, 213
Vista, 10, 61
Vitruvio, 72, 85, 164
Vittore, F., 193
Volgare, 10, 164, 462
Volume, 9, 10, 18, 20, 31, 60, 97, 117, 127, $180,213,228,239,240,289,291,305$, 309, 459
Vorlesungen über analytische Mechanik, 127
Vulgare, 10, 33, 53, 92, 95, 147, 164, 170, 457, 465

W

Walls, 41, 71, 74-76, 78, 81, 83, 85, 460
War, xv, 12, 41, 56, 457
Weapon, xv, xvi, 49, 53, 54, 74
Weights, 3, 49, 113, 115-120, 134-188, 191, 230-233, 250-254, 264, 411, 457, 466
Weiss, M., 461
Wentworth, R., 57, 97, 98
Wiskonstighe Ghedachtenissen, 181
World, xv, 31, 60, 114, 128, 150, 156, 157, 163, $172,173,209,213,228,230,246,295$, 301, 327, 397, 458

Z

Zamberti, B., 9, 17, 33, 34, 130
Zanantonio di Rusconi, 85, 100
Zanchi, G.B., 457
Zuanne de Tonini da Coi, 100

[^0]: ${ }^{1}$ Tartaglia 1554, 4v; see also Alli Lettori, 3v. Idem in: Tartaglia 1546, 1v.
 ${ }^{2}$ Tartaglia 1556-1560, II, 103r. The translations is ours. See also many passages within Tartaglia's answers in I sei scritti di matematica disfida di Lodovico Ferrari coi sei contro-cartelli in risposta di Niccolo Tartaglia (Tartaglia 1876, 2nd Tartaglia’s answer, see also Zeuthen 1893).

[^1]: ${ }^{1}$ For a recent biographical excursus see Pizzamiglio (2012; see also Miller 1983; Villa 1963-1964).
 ${ }^{2}$ Cfr.: Favaro 1913, 335-372. See also: "Introduzione" by Masotti (Tartaglia 1554, XIX-XXII). A selected list of works on Tartaglia is reported in the Reference section.
 ${ }^{3}$ Tartaglia 1554, XXII, footnote 5. The translation is above in the running text.
 4 "Io Nicolo Tartaia Dottor di Mathematice [. . .] ritrovandomi hora in letto aggravato da molto male, ho deliberato ordinar i fatti miei." (The translation is ours; see also Filza 168.VII; N.119; Boncompagni 1881).
 ${ }^{5}$ Curzio Troiano Navò (or de Navò) was one of the most important editors and book sellers during the sixteenth century in Venice. His French origins are not clear. Some historians report about a family-publishing composed of him and his brothers. They and their heirs edited and published ca. 30 books between 1537 and 1599 .

[^2]: ${ }^{6}$ Curzio Troiano Navò posthoumously published two other works by Tartaglia: Iordani Opusculum de ponderositate (de Nemore [Tartaglia's editor] 1565) and Esperienze fatte da Nicolo Tartalea from 1541, 14 April to 1551, 7 April (Tartaglia 1541-1551). Philological notes regarding this point are provided in the following paragraphs concerning Book VI and Gionta in the Quesiti et inventioni diverse (Tartaglia [1554] 1959).
 7 "Io mi attrovo libri del mio general trattato de numeri et misure p. ${ }^{\text {a }}$ (prima) 2. ${ }^{\text {da }}$ (seconda) 3. ${ }^{\text {a }}$ (terza) et 4. ${ }^{\text {a }}$ (quarta) parte, et di miei Quesiti et invention diverse circa quatro cento [. . .] Item mi attrovo circa .60. opere della travagliata inventione et ragionamenti [. . .] Item libri de diverse sorte per lo mio studiare, per la valuta di cento ducati in circa [. . .] Item mi attrovo circa quaranta libri di nuova scientia [...] Io mi attrovo una balla de libri de Paris di diverse sorte, quali io sto per vendere". (The translation is ours. In the Notary Archive of Venezia, a document (Filza 168.VII; N.119) which includes the testament exists; (see also Boncompagni 1881; Pizzamiglio 2007, 40).

[^3]: 8 "'Degna di nota ci sembra di conseguenza la circostanza per cui il Tartaglia, al momento della sua morte, non fosse in possesso di nessuna delle due edizioni latine dell' Euclide da lui utilizate, che erano in- f°, cioè nè quella di B. Zamberti [v. 1505] nè quella di G. Campano-L. Pacioli [see 1509b]". Pizzamiglio in Tartaglia 2007, XXXIII (Author's brackets and Italics). Recently on Euclid by Campano see Busard (2005) and on Aristotle-Archimedes and Euclid see Renn, Damerow and McLaughlin (2003). On early editions of Euclid's elements see Stanford (1926).

[^4]: 9 "1567. Nicolò Tartaglia Bresciano d'humile nascimento attese alle cose Matematiche e particolarmente alla Geometria \& all'Aritmetica con tanto genio, che si lasciò molti adietro. Trasferì costui in lingua volgare gl'Elementi d'Euclide, ch'egli leggeva publicamente in Venetia. Scrisse molte opere appartenenti al moto de corpi gravi, a' tiri dell'Artigliarie, a fortificationi de luoghi, a misurar con la vista, \& altre cose tali, e finalmente scrisse due gran volumi, ne quali raccolse tutto quello che s'appartiene ad una compita specolatione e pratica delle cose dell'Aritmetica e della Geometria. Fu egli grand'avversario di Girolamo Cardano e scrisseli contro alcune opere. Attese nondimeno così poco alla bontà della lingua, che muove a riso talhora chi legge le cose sue." (Baldi, 1707, 133).
 ${ }^{10}$ With regard to the second half of the past century, we should include works by Bortolotti and, of course, the crucial works by Masotti and recently by Pizzamiglio. Most important works cited in Table 1.1 are detailed in the References section below.

[^5]: ${ }^{11}$ Hereafter Quesiti.
 12 "Micheletto" (Little Michele) due his low stature. "Cavallo" in English is "horse". "Cavallaro" is an ancient Italian word derived from "Cavallo" and means, more or less, a man busy with horses or using horses.

[^6]: ${ }^{13}$ The surname Fontana appears in his testament: Zuampiero Fontana.

[^7]: ${ }^{14}$ Tartaglia (1554, Book IX, Q. I.
 ${ }^{15}$ Masotti 1970-1980, 13, 258. (Author's quotation marks).
 ${ }^{16}$ Tartaglia 1554, Book VI, Q 8.

[^8]: ${ }^{17}$ On Tartaglia's Euclid, see Tartaglia 1543a, 2007). On Euclid see also Commandino edition (1575) and on Archimedes and Euclid see Knorr (1978-1979, 1985).

[^9]: ${ }^{18}$ She was Oscar Chisini's (1889-1967) pupil and collaborated closely on historical studies with Masotti. She wrote two important memoirs on Luca Pacioli (1445-1517; Pisano 2013).
 ${ }^{19}$ On Masotti's contributions about Tartaglia see: Masotti (1957, 1958a, b, 1960-1962a, 1960a, b, 1961-1962, 1962a, b, c, d, e, 1963a, b, c, 1964, 1971, 1972, 1973-1974, 1975, 1976a, b, 1979, 1980b).
 ${ }^{20}$ "È proprio quell'iniziativa che giunge ora a compimento, in occasione della celebrazione del 450° anniversario della morte del grande matematico bresciano, ed è quindi giusto e doveroso che questo volume delle "Opere di Niccolò Tartaglia" venga dedicato proprio al prof. Arnaldo Masotti. [Transl.: ours]. See also: Tartaglia 2007. "1990. Rendiconti dell'Istituto Lombardo, col. 124, pp 157-166 (L. Amerio) Nastasi, Lettera matematica, 23.

[^10]: ${ }^{21}$ We specify that Masotti reported the existence of some documents (Archivio di Stato di Verona) that declared his stay in Verona to be around 1529-1533 (Masotti 1970-1980, 13, 259). In this period 17 Quesiti concerning Book IX were proposed to him to solve.
 ${ }^{22}$ Until 1557 and except a short stay in Brescia (March 1548-October 1549).
 ${ }^{23}$ With the exception of his return to Brescia from 1548 to 1549 (ca. 18 months) he taught at Sant'Afra, San Barnaba, San Lorenzo and at the Academy near Rezzato, a small village.
 ${ }^{24}$ Heath 2002, On the Sphere and Cylinder, Book II, 62.

[^11]: ${ }^{25}$ The news spread and a mathematical contest made up of thirty problems was organized (12 febbraio 1535). Only Tartaglia succeeded in solving these problems in the allotted time.

[^12]: ${ }^{26}$ We remark that among the 31 inquiries which Ferrari sent to Tartaglia in Terzo Cartello di matematica disfida (1547-1548), there are two inherent to the inscription and reciprocal circonscription of regular polygons, which can also be found in Commentaria in Euclidis Elementa geometrica by Cardano (Cardano 1574; see also Masotti 1974b, 1974c, pp 66-68).
 ${ }^{27}$ Ferrari, Quinto cartello (Milan, October 1547), [25-39], 141-155.
 ${ }^{28}$ Which was also translated into Latin (Masotti 1974c, plates XXX-XXXVI; Cardano 1663, Opera omnia, III, 589-592; see also Masotti 1974a, b). See below Fig. 1.9.

[^13]: ${ }^{29}$ Although he didn’t publish his discovery, before his death, Scipione dal Ferro revealed it to one of his students, the Venetian Anton Maria Florido (Floridus).

[^14]: ${ }^{30}$ It must be noted that a different historiography opinion exists according with Cardano who waited for six years so that Tartaglia could have the chance to publish it. About the role played by historiography of science in historical investigations see as very relevant Kragh 1987.
 ${ }^{31}$ Differently from other opinions (Gabrieli 1986, p 30) - based on no historical proof - Tartaglia did not substitute for Giovanni Battista Memo (1550-1575) in mathematics teaching in Venice, but he was only a successor (1536) as one can read in Book IX (Tartaglia 1554, Book IX, Quesito XXII, 104v).

[^15]: ${ }^{32}$ Cfr.: Pizzamiglio 2007.
 ${ }^{33}$ Directly on Greek codes, as yet unidentified, however of rather low quality.
 ${ }^{34}$ Cfr.: Pizzamiglio 2007.

[^16]: ${ }^{35}$ Gabrieli (1986, 29-67).
 ${ }^{36}$ Tartaglia (1554, Book IX, Q 22).

[^17]: ${ }^{37}$ The triangular method by means of a different configuration is possible to see in other early scholarly works, e.g., in Pascal's Traité du triangle arithmétique (1653). Nevertheless, the earliest explicit depictions of a triangle of binomial coefficients occur in the 10th century in commentaries on the Chandas Shastra, an Ancient Indian book on Sanskrit prosody written (fl. 2nd century BC) by Pingala. (Edwards 2002, 30-31).
 ${ }^{38}$ Two years before his death (1556), Tartaglia worked on his larger compendium, which unfortunately, he was unable to finish and publish.
 ${ }^{39}$ Generally speaking, the Trattato was intended (at that time) as research work not necessarily large, and well structured mostly based on known principles. The Summa, typically within Meddle Ages, had the prerogative to be a largely and organically exhaustive for monastic schools and universities (Pisano 2013a, b, c, d).

[^18]: ${ }^{40}$ At the end of the book, this part includes the following quotation "in Vinagia per Comin da Tridino MDLVI" even though the title page reads " 1560 ". It circulated after Tartaglia's death. An even more interesting fact is that in the inventory this book is cited "in folio", that is, printed but not in hardcover.
 ${ }^{41}$ The correlation between Euclid's propositions (IV: 1-16) and respectively Tartaglia's propositions (Tartaglia 1556-1560, Part V, IX: 1-17, 13r-16r) is an interesting historical matter.

[^19]: ${ }^{42}$ Buridan, also in Latin Johannes Buridanus (ca. 1300 - ca. 1360). The historical genesis of the impetus theory - later applied to the motion of projectiles - is quite complex and varied. Aside from Aristotle's initial theory ($384-322$ B.C.), among the scholars who dealt with the topic, we note: Johannes Philoponus (active in VI century), Pūr Sina' (Persian) son of Sina called Avicenna (980-1037), Roger Bacon (1214-1292), Thomas Aquina (1225-1274), Pierre Jean Olivi (12481298), Francesco of Marchia or of Esculo, of Ascoli (fl. XIV century), William of Ockham (ca. 1280 - ca. 1349), and for some considerations, Jordanus de Nemore, too. Here, for the sake of brevity, and since there is already a vast literature on the topic, we refer only to that which historians consider a true cultural background of projectile theory until the Renaissance (Giannetto, Maccarone, Pappalardo and Tiné 1992).
 ${ }^{43}$ Buridan 1509. Nicole Oresme (ca. 1320/1325-1382) version should also be considered. An English study is in The Science of Mechanics in the Middle Ages (Clagett 1959) and in turn reproduced by Maier ([1509] 1968) which, in turn, includes - with some modifications - the Parisian edition from 1509. For the comments of Subtilissimae Quaestiones, at first glance, one can see Clagett (Clagett 1959 and secondary literatures cited). Clagett dated Buridan's manuscript around 1357. It is archived at the Vatican Library in Roma (Vat. Lat. 2136, 1r.).

[^20]: ${ }^{44}$ Galilei $M s .72,116 \mathrm{v}$; see also: Hill 1986, 283-291. On Galilei and mechanization of nature see recently: Bertoloni 2006; Garber and Roux 2013, Biagioli 2003.
 ${ }^{45}$ Tartaglia criticized Aristotle's theory of the lever in regard to the sensitivity of a scale according to which (wrongly) the Stagirite supported that the greater the length of the arms, the greater the sensitivity of the instrument (Tartaglia 1554, Book VII, Qs IV-V-VI, 80v-82v). Still exciting about Aristotelian mechanics is Cartelon (1975).

[^21]: ${ }^{46}$ 1504. Mortar' model (Codex Atlanticus, 33r.). See also: Gille 1964 (and English version: 1966), 219; Pisano and Capecchi 2010a, Pisano 2009a, c; Vilain 2008). In 16th century an interesting study about ballistic arguments taking into account a straight-line path, the velocity lost and consequent downwards of the cannonball was done by Noviomago (1561).
 ${ }^{47}$ Here, Tartaglia also gave his contribution, which we will later discuss.

[^22]: ${ }^{48}$ Later, other scholars took up the questions of the range of projectile motion. Mainly (17th centuries): Galilei (The Dialogues Concerning the Two New Sciences), Torricelli (De Motu) on the geometrical way of calculating the range of a projectile, and Newton (Principia) on the proportion between air resistance and the square of the speed of the projectile. Recently on Newton, science-and-revolutions see Buchwald and Feingold (2011), Cohen (1985). On Newton and Geneva edition see: Pisano 2013b, 2014a, 2015a, b; Bussotti and Pisano 2014a, b; see also Newton (1687), (1713), ([1726; 1739-1742]; (1822), (1739-1742), (1972).
 ${ }^{49}$ See also Riccardi's quotation in his Biblioteca Matematica Italiana dalla origine della stampa ai primi anni del secolo (Riccardi 1870-1880, II, 497; see also Riccardi (1870-1928, 1952, 1985) and Pizzamiglio 1989).

[^23]: ${ }^{50}$ Galileo's notes were made more legible by transcribing the content of the folio (Drake 1985, 314; 1992, 113-116).
 ${ }^{51}$ Biblioteca istorico-critica di fortificazione permanente (Marini 1810, p XII).

[^24]: ${ }^{52}$ Nowadays we find an undue use of the term axiomatization concerning non-modern theories in the history of science. Usually, in mathematics and mathematical physics, the term axiomatization of a scientific theory represents a formulation of a scientific system of statements (e.g., axioms/ primitive terms) in order to build a consistent-coherent corpus of statements (e.g., propositions) which may be logically and deductively derived from these statements; and the proof of any statement (i.e., theorems) should be taken into account and traceable back to these axioms. Of course, the latter is a difficult condition to be universally claimed: i.e., see the case-study of Archimedean's On the equilibrium of planes (Capecchi and Pisano 2007, 2010b, Pisano 2009b, Pisano and Capecchi 2008, 2010b), and non-Euclidean geometry. Therefore, the use of axioms (in the history of science) as self-evident statements in a theory does not mean that this theorysystem is axiomatically built (Pisano 2008). In fact, three fundamental properties should be formally respected: 1) an axiomatic system is said to be consistent if it lacks contradiction, i.e. the ability to derive both a statement and its denial from the system's axioms; 2) in an axiomatic system, an axiom is called independent if it is not a theorem that can be derived from other axioms in the system; a system will be called independent if each of its underlying axioms is independent. Although independence is not a necessary requirement for a system, consistency is; 3) An axiomatic system will be called complete if for every statement, either itself or its negation is derivable. For example, Euclid of Alexandria authored the earliest extant axiomatic geometry and number theory presentation that can be formally considered: an axiomatic system, a model theory, and mathematical proofs within a formal system. All of that evidently is lacking in Tartaglia. Therefore a random use of axioms (i.e., in Tartaglia) only means a tentative step toward ordering a new theory - or simply to order a scientific reasoning extrapolated from a known theory - by means of primitive statements and eventually derived proportions. This aspect belongs to several periods of the history of science (see Pisano's references). Recently on physico-mathematics as case study in Descartes-Agonistes see wonderful Schuster 2013, and on physico-mathematics in Descartes' physical works see Bussotti and Pisano 2013.

[^25]: ${ }^{53}$ Stillman Drake translated it as "A body is called uniformly heavy [. .]" (Drake and Drabkin 1969, p 70). A remark is necessary. Now, following Tartaglia's text (just after First definition) we note his recalls Avicenna's work (see "Fen", that is a section of the Liber canonis). Particularly Averroes' fourth book of the De caelo et mundo, text 29 is cited by Tartaglia (Ibidem). In addition, the tentative correlation with geometric forms of bodies, the kind of the matter of bodies, the concept of shared gravity where " $[\ldots]$ each body, compounded of four elements, one of which is air, shares gravity [...]" with bodies' qualities (Ibidem), make evident his difficulties to distinguish equally bodies from - as Drake proposed - uniformly bodies. Of course the knowledge of a physical magnitude lacks: let us think to uniformly term which can be addressed (ambiguously) both constant velocity and no-acceleration. Moreover, one should also add equally bodies between them like i.e., Tartaglia correctly wrote "Equally heavy bodies are said to be similar and equal when they do not show [among each other] any substantial or accidental differences" (Tartaglia 1537, Book I, def. II, 9v). On that we would add that we prefer both equally and uniformly or more simply constant bodies since at that time the concept of constant gravity was already proposed in many works during the 1300s-1400s, i.e., one can see Subtilissimae Quaestiones super octo Physicorum libros Aristotelis (Buridanus 1509, 1513, 1942) by Johannes Buridanus and Tractatus de configurationibus qualitatum et motuum by Nicole Oresme also edited by Clagett as A treatise on the configuration of qualities and motions (Oresme 1968; of course see Clagett 1959; Brown 1967-1968; Moody and Clagett ([1952] 1960). Now, by avoiding Latinism-and-vulgare philological analysis since within a dictionary the term "egualmente" can be translated by "uguale a se", "uniforme", "costante" (equally itself, uniform, constant) we remark that an a posteriori reflection related to physical proprieties of a body during the motion, i.e. an ideal rigid geometric body and its tendency to fall down, may suggest, at that time, the idea of constant, that is a sort of invariant of the motion. In Tartaglia's words: "[...] is not perceptibly influenced by air opposition during its motion" (Ibidem). On the contrary let us think about a paper or a leaf falling down. Finally in our opinion, since he refers to ancient conceptions of the fifth elements, Aristotelian and Medieval streams (i.e., gravitas ex figura), early attempts to formalize the friction as resistance by corpo offeso (offended bodies) concerning weapons etc., we prefer to literally translate it with equally heavy adding the term uniformly to both to give the idea that some physical substance (not clear at that time) does not change and for the modern-specialist-reader, avoiding attribution to Tartaglia - at this stage -of advanced mathematical abstract concepts within physics -mathematics relationships of subjects that are still hard to make historically and epistemologically clear and since the mathematization of the nature was still far from complete. (Pisano 2011; Pisano and Bussotti 2013b, c; on the relationship between physics and mathematics in the nineteenth century see: Pisano and Bussotti 2015c; Pisano 2013e, 2014a, d, e, 2015a, b; Pisano and Capecchi 2013; Barbin and Pisano 2013; see also Numbers 2006; Olschki 1919-1927; Pedersen 1992).
 54 "Diffinitione Prima. Corpo egualmente graue è detto quello, che secondo la grauita della materia, et la figura di quella è atto à non patire sensibilmente la opposition di l'aere in alcun suo moto." (Tartaglia 1537, Book I, 9r).

[^26]: 55 "Diffinitione. IIII. Il Tempo e una misura del mouimento, et della quiete, li termini del quale son dui istanti." (Tartaglia 1537, Book I, 9v).
 56 "Diffinitione. VI. Mouimento naturale di corpi egualmente graui e quello che naturalmente fanno da un luogo superiore a un'altro inferiore perpendicularmente senza uiolenza alcuna." (Tartaglia 1537, Book I, 10v).
 57 "Diffinitione. VII. Mouimento uiolente di corpi egualmente graui e quello che fanno sforzatamente di giuso in suso, di suso in giuso, di qua et di la, per causa di alcuna possanza mouente." (Tartaglia 1537, Book I, 10v).
 ${ }^{58}$ Based on previous comments on axiomatization, we note that, in order to argue on statics in his "Scientia di Pesi" (Science of Weights) only in the Book VIII of the Quesiti et invention diverse (Tartaglia 1554, Book VIII, 83rv-97rv; see Chap. 3) Tartaglia proposes a sort of prologue to the statics writing his definitive conceptual ideas concerning the role played by Proper principles (also called Proper Principles by Aristotle as sentences strictly related to the subject of theory: Aristotle 1853, On the Definition and Division of Principles, Book I, Chap. X, p 266), Propositions (or also called by him conclusions which can confirm the science of weights), Suppositions (also called by him true principles) and Petitions (as sentences which can go against science of weights). We will return to that idea (see Chap. 3). For further readings see Pisano and Capecchi 2010a, b; Pisano 2009b.
 ${ }^{59}$ i.e., one can see Book I-The foundations: theories of triangles, parallels, and area of the Euclid's Elements where after an initial 23 Definitions follow 5 Postulates, 5 Common Notions and 48 Propositions.
 ${ }^{60}$ A difference with regard to bodies in motion with respect to Archimedean statics studies.

[^27]: ${ }^{61}$ By physical reasonings.
 62 " ". . .] cioè a che segno si dovesse assettare un pezzo de arteglieria che facesse il maggior tiro che far possa sopra un piano". (Tartaglia 1537, Book I, 3rv).
 63 "Serenissimo" is, e.g., a title for some Principe and Doge of the Republic of Venice. "Altezza" is also commonly used.
 ${ }^{64}$ Tartaglia (1537, Book I, 3rv, line 1).

[^28]: ${ }^{65}$ On invasion of Italy, particularly North-East (especially Venezia). Since Francesco Maria della Rovere, Duke of Urbino (interlocutor of Tartaglia's letter) was employed by the Venetian Republic to organize a defense, Tartaglia's words are particularly important at this stage of the Quesiti. We note that in Book I of the Quesiti, Tartaglia also describes technical results on 20pound culverin as being 10 feet in length (ca. 3 mt .), and weighing 4300 pounds (ca. 1950 Kg). ${ }^{66}$ Tartaglia (1537, 4rv, line 37).
 ${ }^{67}$ The figure and other observations are below.

[^29]: ${ }^{68}$ From the beginning of the last century until today, we have not been exempt from seeing similar situations faced by Nobel Prize winners and involved scholars.
 ${ }^{69}$ We note that in the subsequent pages we can also see the explicit observation against the Aristotelean conception of violent and natural motion in effect at the time. (Tartaglia 1554, Book I, Q I, 5rv-7rv; Q. III, 11rv; Qs I-II-III-VI, 5rv-13rv, Q I, 6rv).

[^30]: ${ }^{70}$ Tartaglia (1537, Book I, 5rv, line 23).
 ${ }^{71}$ The following works during 1531-1532 which, in general, from a historical point of view, had a certain influence on society, should also be noted. Gerolamo Fracastoro observes the tails of comets and concludes that they are always facing opposite the Sun; 1535-38. Fracastoro publishes Homocentricorum sive de stellis, in which the system of the world starting with the geometric motion of the planets defined by the uniform rotations of homocentric spheres is discussed; 1536. Calvino publishes Istituzioni della religione cristiana.
 72 "[...] primo scritto di balistica [. . .] basato saldamente sull'esperienza viva e concreta dei fatti e svolto con l'ausilio della geometria e del calcolo numerico [...]." (Bolletti 1958, 14, line 8).
 ${ }^{73}$ The 1562 edition lacks Book IX (Cfr.: Cuomo 1997, 1998).

[^31]: ${ }^{74}$ A clarification. Within 7rv folia (in-between Book I and Book II) of the Nova scientia, Tartaglia proposed his main arguments concerning the 3 parts-composition of the trajectory of a projectile: rectilinear segment, arc of circumference and a final rectilinear segment towards the centre of the Earth (Tartaglia 1537, Book I, 13rv-20rv; see also Book I, IV-V Props., 14r-15r; for the representation of various distances with respect to various inclinations see $I v i, 20 \mathrm{v}$). These parts are described by some figures (Tartaglia 1537, Book I, 15r, 16r) which are divided into letters corresponding to natural motion, violent motion and mixed natural motion. Of course without a modern vectorial and mathematical interpretation of a composed motion (particularly along a curved path where the change of vectorial orientation produces an acceleration), then it is obvious that in Tartaglia's context a body cannot assume (in a point long the path) negative and positive values at the same time.
 ${ }^{75}$ At that time many practical instruments were in use, so it is reasonable to think that the instruments often cited by Tartaglia were not originally invented by himself. For example, Tartaglia cites a frequent use of the quadrant at that time and without mentioning which version of quadrant he preferred. For sure we do not have historical proof if he really did or did not invent the quadrant that he often cited in his own manuscripts. Thus, even if similar instruments are reported in secondary literature (e.g., see: Alberti fl. 15th, 10rv-11rv (retrieved via web); Essenwein and Germanisches 1873), we cannot claim an historical hypothesis within history and historical epistemology of science studies concerning his eventual (or not) invention.

[^32]: ${ }^{76}$ On that Drake (Drake and Drabkin 1969, 66) pointed out that in the next editions Tartaglia avoided the word Archimedean ("Archimedeane") and wrote "[...] con ragion natural [...]" (by physical reasonings). In any case the relationship between Archmedean and natural reasoning is confirmed since the inductive method was adopted.
 77 "Da poi (Signor humanissimo) con ragion Archimedeane qualmente la distantia dil sopra ditto tiro elleuato alli 45 gradi sopra al orizonte, era circa decupla al tramito retto dun tiro fatto per il piano del orizonte: che da bombardiere è ditto tiro de ponto in bianco, con la qual evidentia, Magnanimo Duca, trovai con ragione geometrice e algebratice qualmente balla tirata vesro li detti 45 gradi sopra a l'orizzonte va circa a quattro volte tanto per l'aere di quello che va essendo tirato per il pian de l'orizzonte, che dà borbandieri è chiamato (come ho detto) tirar de punto in bianco [cioè tirare orizzontalmente]." (Tartaglia 1537, 5rv, line 28).

[^33]: ${ }^{78}$ Tartaglia 1537, 5rv-9rv, line 7. Incidentally, literature on military arguments was current at that time, (i.e., see Alberti). Thus, Tartaglia's novelties might be merely part of these shared studies.

[^34]: ${ }^{79}$ Pisano 2009c, d, Pisano and Capecchi 2009, 2010a; Pisano and Bussotti 2012.

[^35]: ${ }^{80}$ It should be noted that in the paradigm of Aristotelean science, it was necessary for the projectile trajectory to be composed of three parts: an inclined rectilinear branch ("violent motion"), a circular branch ("mixed motion") and a vertical branch ("natural motion"). That is to say, that as gravity prevails it decreases speed and the "balla" falls vertically. Subsequent developments of this vision hypothesized the decrease of the speed of the "balla" was due to the impetus action. In Book I of Quesiti (Tartaglia 1554, Book I, Q III), Tartaglia denies this thesis, affirming that gravity, which is always present, acts on the "balla" from the beginning (of the shot) of its path until it touches the ground. According to Bolletti, Tartaglia's explanation is essentially based on the fact that the "balla", shot with whatever initial speed, would favor the composition -so to speak - of gravity and of the impetus of the "balla" itself (Bolletti 1958, 61-62). It must be noted, however, that if this was Tartaglia's intention, in Q III of Quesiti, I don't believe he was as explicit and precise as it seems in Bolletti's analysis.
 ${ }^{81}$ We specify that in Book I Tartaglia suggests to the reader that, before proceeding in his ballistic theory, it is opportune to examine elements of the science of weights (Tartaglia 1554, Book I, Q II, 7rv-10rv). On Tartaglia's dynamics see Koyré (1960); recently see Pisano and Bussotti 2015b in: Pisano, Agassi and Drozdova (eds). Hypotheses and Perspectives within History and Philosophy of Science - Hommage to Alexandre Koyré 1964-2014. Dordrecht Springer.

[^36]: 1509. Luca Pacioli publishes De divina proportione (Pisano 2013a; 2009a) on the geometric principles and the study of the proportions of the human body. Da vinci's xylographies are included.
 1510. Cesare Cesariano translates De architectura by Vitruvio.
 1511. Sack of Rome.
 1512. Michele Sanmicheli (1484-1559) develops the bastione angolare
 1513. Liber Iordani Nemorarii viri clarissimi, de ponderibus [..] edited by Petrus Apianus (1495-1552) who reproduced a manuscript of Liber Jordani de ponderibus (version P).
 1514. Antonio da Sangallo il Giovane oversees the fortifications of Fortezza da Basso in Florence.
 1515. Michele Sanmicheli in Venezia to construct the lido and the forte di Sant'Andrea. Perhaps the first example of an entirely bastioned system.
 1516. Antonio da Sangallo il Giovane oversees the fortifications of Città del Vaticano (Vatican City).
 1517. Niccolò Tartaglia publishes Nova scientia on the geometric motion of projectiles
 1518. In Venice De la Pirotechnia by Vannoccio Biringuccio is released posthumously. It is fundamental for the development of inorganic chemistry, mineralogy and metallurgy, but also for the improvement of firearms.
 1519. De revolutionibus orbium coelestium by Copernicus is released.
[^37]: ${ }^{82}$ Tartaglia (1554, Book VI, Q III, 65r).
 ${ }^{83}$ Tartaglia (1554, Book VI, Q IV, 66r, line 10).

[^38]: ${ }^{84}$ Galileo, as we will see in the following paragraph, considers this "quality" without referring to Tartaglia (Galilei 1888-1909c, II, pp 107-109, pp 118-120). In this sense, we will also see that the Galilean work feels the effects of the content from Tartaglia's Book VI and Gionta; even given the different historical period and different aim (also didactic) of Galilei's text compared to that of Tartaglia's, in Trattato di Fortificazione, important theoretical advances can be noted (Pisano and Capecchi 2012).
 ${ }^{85}$ The subject of the small model in Renaissance architecture will be dealt with later in the analysis of Delle Fortificationi by Lorini who considers the matter (Pisano and Capecchi 2009, II, 797-808; see also Pisano and Capecchi 2014a, b). On mechanics and architecture an indispensable work is Entre Mécanique et Architecture by Patricia Radelet-de Grave and Edoardo Benvenuto (Radeletde Grave and Benvenuto 1995).
 ${ }^{86}$ The original text, which is not necessary to comment upon, is presented in the Appendix to this chapter. (see also Vol. II).
 ${ }^{87}$ Tartaglia (1554, Book VI, Q VII, 67rv).
 ${ }^{88}$ The original text, which is not necessary to comment upon here, is presented in Chap. 4. It should be noted that the suggestive autobiographical information is found at the end of Book VI (see also Pizzamiglio 2005).

[^39]: ${ }^{89}$ The dialogue form (Puer's questions and Magister's answers) was perfectly integrated in the typically Renaissance scientific context (Altieri Biagi 1984, 891-847) both as advanced research, and teaching science.
 ${ }^{90}$ Tartaglia 1554, Gionta, Q VI, 76rv, line 2.

[^40]: ${ }^{91}$ Tartaglia (1554 , Gionta, Q I, 70v, line 34). The translation is ours.
 ${ }^{92}$ The parianette, also called traverse, are structural elements placed along the walls of the curtains. They are usually arranged vertically. The aim was to limit the effects of enfilade fire. As is clear from the text, Tartaglia shows personal innovation for the construction of the traverse by assuming an inclination of and a height greater than that of a man.

[^41]: ${ }^{93} \mathrm{~A}$ small gun.
 ${ }^{94}$ Tartaglia 1554 , Gionta, Q I, 71r, line 10 . The image in the quoted text is suitably enlarged and rotated. Maybe due to an editorial pagination, the reader will find two similar images in the Quesiti (Tartaglia 1554, Gionta, Q I, 71r and 72v).

[^42]: ${ }^{95}$ See also Tartaglia's figure in the text.

[^43]: ${ }^{96}$ This is an important fact for this work. It involves the ability to absorb kinetic energy from the "ball" in reference to the type of material used; in this case the dirt should absorb the shot better than the stone. (Tartaglia 1554, Gionta, Q VI, 76rv). Tartaglia also provides an entertaining geometric analogy with the moon (Ivi, Q VI, 76rv, line 19).
 ${ }^{97}$ In accordance with Masotti's unverified hypothesis (Tartaglia 1554, Qs L-LI) it could be about Rusconi (di) Zanantonio, architect and painter, student of Tartaglia who, in Quesiti, Tartaglia explicitly names when introducing a problem on artillery and on ballistics in Vitruvio's work (Tartaglia 1554, Book II, Q X, 34-35; here the entire "quesito" is dedicated to him: "done by [...]"); and from a solution to a geometric problem (Ivi, Book IX, Q XXXVIII, 123; see also: Ivi, Q VII, 76rv, line 1).

[^44]: ${ }^{98}$ For Archimedes works see Heath 2002.

[^45]: ${ }^{99}$ We do not have space to comment significantly on the history of Archimedean works during Italian Renaissance. The secondary literature is extensive so for the sake of brevity we refer the reader to it. Mainly, see both Heath (2002, XXVII-XXX) and Clagett (1964-1984).
 100 "Il primo libro di Archimede Siracusano, da me trovato \& tradotto da uno latinamente scritto, qual era andato quassi in strazzaria \& in mano di un salzizaro in Verona l'anno 1531. Del qual libro molte parti erano totalmente rotte $\&$ annullate, onde accioche una così degna sua opra non restasse del tutto morta, mi sono sforzato di redrizzarla \& d'interpretar le parti che mancavano, talmente che ogni commune impegno potrà gustar dimostrativamente la sua gran dottrina in tal materia". (Tartaglia 1560, Parte IV, Book III, 43v-44r).
 ${ }^{101}$ We note that Tartaglia did not mention the existence of the second book. Later (Tartaglia 1565) his editor, Curtio Troiano, published both the Archimedean books on the floating bodies as credited manuscripts from Tartaglia for his editorial job. (Heath 2001, XXVII-XVIII). Some historians have conjectured that Tartaglia had all Archmedean works and did not publish some of them freely. Nevertheless, this only means that Curtio Troiano produced an editorial job after Tartaglia's death, and this it is not sufficient to claim (historically) that Tartaglia truly had the whole Archimedean corpus.

[^46]: 102 "Si dichiara volgarmente quell libro di Archimede Siracusano, ditto, de insidentibus aquae, materia di non poca speculation, \& intellettual dilettatione" (Tartaglia 1551a, [part of the subtitle of] Ragionamento Primo). Translation is ours.

[^47]: ${ }^{103}$ Heath 2002, p XXVII, line 10. (Author's italics and quotations marks). The codices mentioned by Heath are: $\mathrm{B}=$ Codex Parisinus 2360, olim Mediceus; $\mathrm{C}=$ Codex Parisinus 2361, Fonteblandensis. Others codexes are mentioned, so we refer to Heath for a full reading. (Author's symbol and quotations).

[^48]: ${ }^{\text {a }}$ Also cited in the Book $I X$

[^49]: ${ }^{104}$ In 1904, in the proceedings of the Congresso internazionale di scienze storiche held in Roma (1903) and edited by Sezione VIII di Storia delle Scienze Fisiche, Matematiche, Naturali e Mediche, a paper (Tonni-Bazza 1904b, 293-307), reported a discussion on the last results concerning Tartaglia's death, the controversy on some content published in 1546 and/or 1554 of Quesiti et inventioni diverse and others things around the Brisciano. We note that the paper begins with the typical title page of Quesiti et inventioni diverse, but without including the date et al., so it is unclear which edition it is. ${ }^{105}$ Tonni-Bazza (1904b, 303, line 13). (Author's italics and quotations marks).
 106 "Il Tartaglia, come si vede, rispondendo al Castrioti, si rallegra che i loro singoli studi sulle fortificazioni conducano a risultati conformi; e ciò, dice il Tartaglia, si vedrà nel Book dei quesiti fatto da me nuovamente nel sesto Book. I Quesiti et inuentioni diverse, già erano stati pubblicati la prima volta nel 1546; ma nel 1554 sopravvenne la ristampa [. . .] con la appendice al sesto Book cui allude il Tartaglia [. . .]. Ivi figurano alcuni problemi propostigli dal Magnifico e Clarissimo sig. Marc' Antonio Morosini dottore e Philosopho Eccellentissimo. Non figura il Castrioti; sebbene vi si trattino argomenti contenuti nei «discorsi » di lui, e nella sua lettera, il Tartaglia, prometta una risposta partichulare et generale." (Tonni-Bazza 1904b, 303, line 13 (Author's italics and quotations marks)).

[^50]: 107 "Tartaglia, Niccolo, Quesiti et inventioni diverse, 1554"
 Permanent URL: http://echo.mpiwg-berlin.mpg.de/MPIWG:KQ9TP5T3

[^51]: ${ }^{108}$ Tartaglia (1554, Gionta, Q VII, 77v, line 2).
 ${ }^{109}$ Ibidem, line 16.

[^52]: 110 " $[. .$.$] ne far vendere in Venetia, ne in alcuno altro luoco, ò terra del Dominio Veneto, per anni$ diece, sotto pena de duc. $300 \&$ perdere le opere in qual si voglia [...]" (Tartaglia 1546, 77v).

[^53]: ${ }^{1}$ For our historical epistemology aims and because the science at that time, we distinguish between the role of geometry and of other next mathematical disciplines (arithmetic, algebra, and calculus starting from the 17 th century). Therefore here we historically distinguish between arithmetic, geometry and mathematics, including under this denomination all mathematical branches not belonging to classical definition of geometry.
 ${ }^{2}$ Al-Fārābī cited in: Abbatouy 2008, 100; see also Othman 1949.

[^54]: ${ }^{\text {a }}$ Al-Şābil Thābit ibn Qurra al- " arrānī (836-901) was a native of Harran and a member of the Sabian sect. He was a great scholar in mathematics and astronomy; translated and revised many of the important Greek works: particularly all the works of Archimedes that have not been preserved in the original language and Apolonius' Conic sections (Heath 1896; see also Panza 2008, 165-191). He was a founder of the science of weights.
 ${ }^{\mathrm{b}} \mathrm{Ab} \overline{\mathrm{u}}$ • ātim al-Mu " affar ibn Ismā $\overline{1} l$ al-Isfizārī. (ca. 1048-ca. 1116). A mathematician, astronomer and an engineer, he was born in Isfizar, a city near Herat. His study of Archimedes' book helped him in identifying the purity of gold and silver for which purpose he made a hydrostatic scale to determine the weight of alloys in the two metals His main scientific contribution was in the field of weights and mechanical designs.
 ${ }^{\text {c }} \mathrm{Ab}$ ar-Raḥmān al-Khāzini (ca. 1115-1130) was a Muslim of Greek origin who was brought to Merv as a slave by the Seljuk king after his victory over the Byzantine Emperor. Al-Khazini was a great physicist, astronomer, mathematician, philosopher and an alchemist. He is better known for his contributions to physics. His treatise; al-Kāzinī's Kitāb mĪzān al-ḥikma written in four volumes, remained an important part of physics among the Muslim scientists

[^55]: 3 "PROPOSITION I. Le rapport de deux distances parcourues par deux mobiles en deux camps [égaux] est égal au rapport de la force du mobile [qui parcourt] la distance plane a la force de l'autre mobile" (Jaouiche 1976, 147).
 ${ }^{4}$ Moody and Clagett [1952] 1960, 92, 94.
 ${ }^{5}$ Moody and Clagett [1952] 1960, 92. English translation is ours.

[^56]: ${ }^{6}$ Practically nothing is known about Jordanus de Nemore's life. He appears at the beginning of the XIII century. Besides writings about mechanics, he is author of many mathematical writings. For some more information see: Klein (Kelin 1964), Høirup (1988) and Duhem (1905, I, 99-108), Ginzberg (1936).

[^57]: ${ }^{7}$ There are various hypotheses about the roots of Jordanus' mechanical works. Quite convincing is the hypothesis of the Arabic roots: Abattouy (2006, p 17), Folkerts and Lorch (2007, 4, 12); Brown (1967), Clagett (1959).

[^58]: ${ }^{8}$ Cfr.: Moody and Clagett [1952] 1960, 136.
 9 "Quum aequilibris [aequilibriis] fuit positio aequalis aequis ponderibus appensis ab aequalitate non discedet: et si a rectitudine separatur, ad aequalitatis situm revertetur. Si vero inaequalia appendantur, ex parte gravioris usque ad directionem declinare cogetur." (de Nemore 1565, 3v). English translation is ours.

[^59]: 10 "Ponatur item quod submittatur ex parte b, et ascendat ex parte c, dico quoniam redibit ad aequalitatem. est enim minus obliquus descensus a, $a d$ aequalitatem, quam a, b, versus e. Sumantur enim sursum arcus aequales, quantumlibet parvi qui sint c, d, et h, b, et ductis lineis ad aequidistantiam aequalitatis, quae $\operatorname{sint}, c, h, l$, et d, m, n. Item b, k, h, g, y, t, dimittatur orthogonaliter descendens diametrum quae sit f, m, a, k, y, e, erit quod z, m, maior k, y, quia sumpto versus f, arcu ex eo quod sit aequalis c, d, et ducta ex transverso linea x, r, s, erit r, z, minor z, m, quod facile demonstrabis. Et quia r, z, est aequalis k, y, erit z, m, maior k, y. Quia igitur quilibet arcus sub c, plus capiat de directo quam ei aequalis sub b, directo est descensus a, c, quam a, b, et ideo in altiori situ gravius erit c , quam b, redibit ergo ad aequalitatem" (de Nemore 1565, $3 v)$. English translation is ours.

[^60]: ${ }^{11}$ Cfr.: Clagett (1959, Chapter 2).
 ${ }^{12}$ Bertrand's criticism is reported in the third issue of Lagrange's Mecanique analytique (Lagrange 1811, 1870-1873, 1889), first volume edited by Bertrand himself (Lagrange 1853, 22). Jacobi gave profound criticisms of Lagrange's mechanics (Pisano and Capecchi 2013; on Lagragian as a methdological approach in other scientific fields see Pisano 2013e) in his Vorlesungen über analytische Mechanik, Berlin, 1847-1848, particularly concerning the role of mathematics in the empirical sciences. For details and references, see Pulte 1998. Note that Bertrand and Jacobi, as well as Jordanus, considered infinitesimals as small as you like but always finite quantities.
 ${ }^{13}$ In the modern view, infinitesimals are considered in the limit, and the infinitesimal motion is closer to a velocity than a displacement.

[^61]: ${ }^{14}$ Since different intellectual schools of thought are identified with the term Humanism, here are just a few words to remark that by this term we mean in particular the Italian humanist group (human nature) busy with lecturing, transcription, and studies of the mathematical sciences from Greek and Latin manuscripts.
 ${ }^{15}$ The last book of some importance toward the end of the XIV century was Questiones super tractatum de ponderibus by Biagio (or Blasius) Pelacani da Parma.
 ${ }^{16}$ The De divina proportione is well known also for the famous Leonardo da Vinci's engravings it contains. (Pisano 2013a; see also Pacioli 1496-1508).
 ${ }^{17}$ For the role of European universities in the XV century, refer to: Duhem 1988, X; Grant 2001; de Ridder-Symoens 2003; Rüegg 2004. For the Italian universities see the Annals of the history of Italian universities (CLUEB, Bologna) and Grendler's work (Grendler 2002).

[^62]: ${ }^{18}$ This is the case for example of Padova, where the introduction of mathematics into the undergraduate curriculum preceded that of astronomy-astrology related to medicine (Kusukawa 2012).
 ${ }^{19}$ Considering the small number of chairs of mathematics in the University of Padova and Bologna compared to those of medicine until the time of Galileo, it can be seen that the academic discipline was marginal (Ciocci 2011, 261).

[^63]: ${ }^{20}$ Printed for Aldo Manuzio's types, De rebus expetendis et fugiendis consisted of 49 books, 30 of which were devoted to sciences. The first book presents a classification of philosophy, within which the mathematical sciences plays a dominant role as given on the basis of the commentary to Euclid's Elements made by Proclus. Valla's book contains references to Archimedes' works.

[^64]: ${ }^{21}$ Rose (1975, 110).
 22 "[...] Fratris Luca de Burgo Sancti Sepulcri, ordinis minorum, sacre theologiae Magistri [. . .]" "Ad Illustrissimum principem sui Ubaldum Duces Montis Feretri, Mathematice discipline cultorem serventissimum [. ..]." (Pacioli 1494, Summa, 3r).

[^65]: ${ }^{23}$ Pacioli (1494, Summa, 4r).

[^66]: ${ }^{24}$ Probably one of the first partial translations from Latin to Italian, which was not published. On our side, no historical documents we know of has claimed that it was really the first.
 ${ }^{25}$ Francesco di Giorgio Martini added elements of theory of machines and construction in book X already devoted to use and construction of machines. For an English edition, see: Rowland and Howe (Rowland and Howe 1999).

[^67]: ${ }^{26} \mathrm{~A}$ transcription that respects the original spelling and punctuation marks, spaces included.
 ${ }^{27}$ A transcription that is faithful to the original but avoids typos, resolves " u " in " v " according to the modern practice, uses a standard character for "s", unifies the writing of words with the same meaning to the most used form, and so on.
 ${ }^{28}$ Leonardo da Vinci was born in 1452 in Vinci, a small village near Empoli and province of Firenze, in the Toscana department, Italy. He died in 1519 at the Château du Clos Lucé, in the Indre-et-Loire department, France. He was educated in his father's house, receiving thereby the usual elementary notions of reading, writing and arithmetic.
 ${ }^{29}$ Leonardo da Vinci's (written down at an earlier meeting with Pacioli) transcripts of his handful of whole passages of the Summa (Pisano 2013a, b, c, d). On 10th November 1494 (Venice) finally released in print in Latin, Luca Pacioli's Summa arithmetic, geometry, proportions et proportionality. Luca Pacioli inspired Leonardo da Vinci (Pisano 2013a) and was his counselor, teacher and translator. Da Vinci purchased the Summa (119 soldi) as he himself claimed (da Vinci, Codex Atlanticus, 288 r f. 104r, 331r) and noted: "Learn multiplication of the roots by master Luca" (da Vinci, Codex Atlanticus, 331r [120r]). From 1496 to 1504 Leonardo studied Luca Pacioli's works and summarized his theory of proportions (da Vinci, Codex Madrid, 8936). Particularly, geometrical figures were presented for the first time in the Codex Forster and finally included in the De divina proportion (Pisano 2013a). For Leonardo's sources see the Pinacoteca Ambrosiana in Milan and Museo Galileo-Istituto e Museo di Storia della Scienza in Florence.

[^68]: ${ }^{30}$ Cfr.: Arturo Uccelli (da Vinci 1940).

[^69]: ${ }^{31}$ Screw was also applied to an inclined plane but in a rotating motion. In addition it is the only simple machine which offers the possibility to turn and drive inward. The idea of a simple machine originated with Archimedes who, as well known, studied three machines: lever, pulley and screw, Later on, Heron of Alexandria (see Mechanica, in Heron 1899-1914, vol. II) studied five machines: winch, lever, pulley, wedge, screw. Guidobaldo del Monte in Mecanicorum Liber (1577) supplied an advanced - for that period - theory of simple machines, also taking into account gravitas. He pointed out the limits of the approach held by the ancients to this subject, in particular as far as Aristotle's approach was concerned (Aristotle 1955b, pp. 329-411). Galilei in Le Mecaniche added the inclined plane, so that the simple machines became six. With regard to the definition of machine, for our historical epistemology aims, we refer to the intuitive conception according to which a machine is a device or a system of devices consisting of fixed and moving parts, which modifies mechanical energy and transforms (machineries) it in a more useful form. Very interesting is it development during 19th century between mechanics and thermodynamics (Gillispie and Pisano 2014). Machines studies also concern the history of science in social context (technoscience) of machines drawings traits (e.g. see Popplow 2002, 2003). Recently on how science works and how technique works see Pisano and Bussotti 2014d; 2015a, e, f.
 ${ }^{32}$ "Gravità è una potentia invisibile la quale per accidente moto è creata, e infusa ne' corpi che dal lor natural sito sono remossi." (da Vinci, Codex Arundel, 37r. See also: da Vinci 1940, 31). English translation is ours.
 ${ }^{33}$ "La gravità, la forza, e'l moto accidentale, insieme colla percussione, son le quattro accidentali potenzia, colle quali tutte le evidenti opere de' mortali hanno loro essere e loro morte." (da Vinci, Codex Forster II, 116v. See also: da Vinci 1940, 32). English translation is ours.

[^70]: 34 "Nessun elemento ha in sè gravità o levità se non si move. La terra è in contatto coll'aria e coll'acqua e non ha in sè gravità nè levità; non sente dall'acqua nè dall'aria che la circunda se non per accidente, il qual nasce dal lor moto. E questo c'insegna le foglie dell'erbe nate sopra la terra ch'è in contatto coll'acqua e coll'aria, le quali non si piegano se non per il moto dell'aria o dell'acqua." (da Vinci, Codex Arundel, 205r. See also: da Vinci 1940, 30). English translation is ours.
 35 "La gravità essere un accidente creato dal moto delli elementi bassi ne' più alti." (da vinci, Codex Arundel, 205r. See also: da Vinci 1940, 30). English translation is ours.

[^71]: ${ }^{36}$ "Forza, dico essere una virtù spirituale, una potenzia invisibile, la quale per accidentale esterna violenza è causata dal moto e collocata e infusa ne' corpi i quali sono dal loro naturale uso retratti e piegati, dando a quelli vita attiva di maravigliosa potenzia; costrigne tutte le create cose a mutazione di forma e di sito; corre con furia alla sua desiderata morte e vassi diversificando mediante le cagioni. Tardità la fa grande e prestezza la fa debole; nasce per violenzia more per libertà. E quanto è maggiore, più presto si consuma. Scaccia con furia ciò che si oppone a sua disfazione, desidera vincere, uccidere la sua cagione, il suo contrasto e, vincendo, sè stessa occide. Fassi più potente, dove trova maggior contrasto. Ogni cosa volentieri fugge sua morte. Essendo costretta, ogni cosa costrigne. Nessuna cosa sanza lei si move. Il corpo dove nasce non cresce in peso nè in forma." (da Vinci, Ms. A, 34v. See also: da Vinci 1940, 253-254). English translation is ours.
 37 '"Ogni corpo di disforme figura ha 3 centri, de' quali l'uno è centro della gravità naturale, l'altro dell'accidentale e 13° della magnitudine." (da Vinci, Codex Atlanticus, 188v(b); See also: da Vinci 1940, 45). English translation is ours.

[^72]: 38 "Ancora colla regola del 3 potrà dire: ne' bracci ab e bf, che son 2 e 5 , chi scambia e' pesi attaccati secondo le proporzioni, essi resisteranno al discenso luno dell'altro, onde il 5, peso posto nel braccio di due spazi resiste al peso di 2 posto ne li 5 spazi; onde dirai per la regola del 3: se ' 1 2 di ab posto in f trasmutassi in 6 che in f , il che sarebbe a trasmutare il 3 di bf posto in [?] sarebbe 9 e così de converso, sapendo il peso a e cercando del peso f." (da Vinci, Codex Windsor, 12602v. See also da Vinci 1940, 76). English translation is ours.

[^73]: 39 "REGOLA DA TROVARE IL CONTRAPPESO A UN DATO PESO NELL' UN DE' BRACCI DELLA BILANCIA. Multiplica il braccio del contrappeso per tante volte il numero del dato peso, quante sono le volte che esso riceve in sè il suo opposite braccio, e colla somma parti il numero del peso, e quel che ne viene rimultiplica con esso numero del peso, e co' la resultata somma arài fatto il debito contrappeso al già dato peso." (da Vinci, Codex Atlanticus, 309r(d). See also da Vinci 1940, 86; Author's capital letters). English translation is ours.
 40 "Quella proporzione, che arà in sè la lieva colla sua contralíeva, tale proporzione troverai in nelle qualità de' pesi, in nella tardità del moto e in nella qualità del cammino fatta da ciascuna loro stremità, quando sieno pervenute alla permanente altezza del loro polo." (da Vinci, Codex Atlanticus, 173r(a). See also da Vinci 1940, 165). English translation is ours.

[^74]: ${ }^{41}$ The title should be in Italian: Ludi matematici, as the book was in Italian vulgare. Its original dedication was however: "Leonis Baptistae Albertis ad Illustrissimum principem dominum Meliadusium Marchionem Estensem ex Ludis Rerum mathematicarum". From that, it can be deduced that the original title was probably Ludi rerum mathematicarum. Indeed a Latin title for a work in vernacular was a quite common use of the time".
 ${ }^{42}$ "Alla qual cosa la sperienza e la ragion li mostra essere falsa proposizione; perché dove lui mette li pesi oppositi 2 contro 4 nella bilancia che in sé pesa 6 libbre, vole essere 7 contro 2 ; e così resterà la bilancia ferma con equali resistenzia di braccia. E qui errò esso altore per non far menzione del peso dell'aste della bilancia, che è ineguale di peso." (da Vinci, Codex Arundel 66r. See also da Vinci 1940, 101-102). Here Leonardo's calculations do no sound right.

[^75]: 43 "La bilancia di braccia e pesi uguali, remossa del sito dell'equailità farà braccia e pesi inequali, onde necessità la costrigne a riacquistare la perduta equalità di braccia e di pesi." (da Vinci, Ms. E, 59r. See also da Vinci 1940, 74-75). English translation is ours.
 ${ }^{44}$ "BILANCIA CIRCULARE. Questa bilancia circulare, per essere lei d'uniforme gravità, per qualunque linia intorno al suo polo, essa non fa totalmente tutto l'uffizio che farebbe la bilancia comune, cioè, che quella, essendo mossa del sito della equalità, essa per sè medesima vi ritorna; e questa, avendo e' pesi equahnente pesanti e distantí dal suo centro, essendo remossa del sito della equaütà, essa per sè non vi ritorna" (da Vinci, Codex Atlanticus, 365r(a). See also da Vinci 1940, 103). Author's capital letter. English translation is ours.

[^76]: 45 "Se a besi, non spingono inverso il centro del mondo, essendo come son separati, il lor congiunto attende a esso centro del mondo, come ci insegna la linia centrale nm che passa per le proporzioni de' pesi 2 e 4 e per le proportioni delle base che hanno li triangoli 2 e 4 ; ma il sito d'essi pesi non ha spazi proporzionati, perchè nelle medesime obbliquita un peso pò stare alto e l'altro basso e non varierà in tal situazione; varia in altezza, la proporzion de' pesi dupla" (da Vinci, Ms. $G, 77 \mathrm{v}$. See also da Vinci 1940, 109). English translation is ours.

[^77]: ${ }^{46}$ "La equalità della declinazione osserva la equalità de' pesi. Se le proporzioni de' pesi e dell'obliqua dove si posano saranno equali ma converse, essi pesi resteranno uguali in gravità e in moto" (da Vinci, Codex Atlanticus, 981b [new numeration]. See also da Vinci 1940, 110; English translation and is ours.
 ${ }^{47}$ Redrawn from da Vinci, Ms H, 81v.

[^78]: 48 "del Moto. Il corpo sperico e ponderoso piglierà per sè tanto più veloce moto, quanto il contatto suo col loco dove corre fia più lontano dal perpendiculare della sua linia centrica. Tanto quanto ab è più lungo che ac, tanto caderà più tardi la palla per la sua linia che per la linia $a b$, e tanto più tardi, quanto la parte o è minore che la parte m; perchè essendo p il polo della palla, essendo sopra p la parte m, caderebbe con più veloce moto, se non fussi quel poco della resistenzia che gli fa di contrappeso la parte o; e se non fussi detto contrappeso, la palla discenderebbe per la linia af tanto più presto, quanto o entra in m; cioè se la parte o entra nella parte $m 100$ volte, mancando sempre nel voltare della palla la parte o, discenderebbe più presto il centesimo del suo tempo; $m n$ è la linia centrica e p sia il polo dove la palla tocca il suo piano, e quanto Ha maggiore spazio da $n p$, tanto fia più veloce il suo corso." (da Vinci, Ms. A, 52r. See also da Vinci 1940, 343). English translation is ours.

[^79]: ${ }^{49}$ Cuomo (2004), Hultsch (1878).
 ${ }^{50}$ Note that this figure will be used again by Nicola Antonio Stigliola (1546-1623), also known as Colantonio Stelliola (Cfr.: Gatto 1996).
 ${ }^{51}$ A reasonable conjecture would be that he could have obtained information by some epitome of Heron's text of mechanics (a book intended for architects, containing means by which to lift heavy objects). Nevertheless, even if Heron's Mechanica (3 Books) was quite close to the Archimedian ideas circulating in the Renaissance, i.e, shapes, proportion statics problems and balance (Taisbak 1981-1982; Drachmann 1963), it is remarkable that it was preserved only in an Arabic language (Tybjerg 2000). Instead, the idea that theoretical information may be derived also by Book X of Vitruvius' De architectura, could be less conjectural. In fact, da Vinci could have reasonably known it from the Italian translation due to Francesco di Giorgio Martini.

[^80]: 52 "Bilancia círculare chiamo la rotella ovver carrucola, colla quale si trae l'acqua de' pozzi, colla quale non si leverà mai più peso che si pesi quello che attigne l'acqua. Nessuno corpo ponderoso leverà in bilancia circulare con forza del suo semplice peso più peso di sè medesimo." (da Vinci, Ms A, 62r. See also da Vinci 1940, 104). English translation is ours.
 53 "La bilancia circulare, detta carrucola, essendo di tanta importanzia nelli strumenti machinali (e massime nelle trasmutazioni delle forze), non è da preterire; con ciò sia che mediante quella si multipllca la potenzia al motore delle dette machine, come si vede nelle taglie, dove tanto cresce la potenzia, quanto cresce il numero di tal carrucole; adunque difiniren la sua natura e potenzia, e prima mostreremo come le corde sanza moto sentano equal peso della gravita da lor sostenuto, e questo domanderen peso naturale; poi diren del moto, e che varia il peso che nelle corde si comparte e questo nomineren peso accidentale, cioè forza, la quale tanto si cresce, quanto più si fa veloce; ma il peso naturale mai si varia, variasi la potenzia nel motore insieme colla resistenzia della cosa mossa e della resistenzia dell'aria, che si condensa e resiste, come fa l'aria alla ventola delli orilogi." (da Vinci, Codex Atlanticus, 566 [new numeration]. See also da Vinci 1940, 104). English translation is ours.
 54 "LA CORDA, che passa infra le taglie ai sua stremi, in due modi nominati, quella parte che dà causa al moto che si ferma all'argano, si nomina, arganica; e quella ch'è ferma alla superiore taglia, che non lascia scorrere nè cadere le taglie, è detta ritenente. DEL MOTO. Tante volte fîa più lungo il moto della corda arganica che ' 1 peso move, che non è il moto del peso, che, mediante le taglie, per essa corda è mosso, quanto è il numero delle rote che in esse taglie stanno. DEL TEMPO. Tanto quanto fia il numero delle rote, che nelle taglie stanno, tanto fia più veloce il moto fatto dalla corda atganica, che quello fatto dalla corda ritenente. DEL PESO. Quanto fia il numero delle rote delle taglie, tanto fia maggiore il peso sostenuto, che quello che sostiene." (da Vinci, Codex Atlanticus, 882 [new numeration]. See also Vinci 1940, 496. Author's italic). English translation is ours.

[^81]: ${ }^{55}$ It should be 96; 24 times 4.
 56 "Se voi sapere che peso ha la corda che sostiene l'ultima carrucola, multiplica sempre cubicamente il peso appiccato da piè col numero delle carrucole, e quel che di tal multiplicazione resulta, fia il numero delle libbre che tale ultima corda riceve di detto peso attaccato da piè. Diciamo adunque ch'esso peso attaccatto da piè sia 4 , onde tu dirai: 4 libbre vie 4 carrucole fa 16 numeri; e poi dì: 4 vie 16 f . 64; ed è multiplicato cubicamente, e essa corda di sopra sostiene 64 libbre per le 4 appiccate da piè; e se esse carrucole fussino 6 , diresti: 4 via 6 , 24, e 4 vie 24 , 98 ; e tanto peso sostiene l'ultima corda delle 4 libbre attaccate da piè." (da Vinci, Codex Foster II, 82v. See also da Vinci 1940, 501). English translation is ours.

[^82]: 57 "Se tu voi incordare le taglie in 4 doppi, le quali taglie abbino a le- vare 20 libbre di peso, dico che la girella 1 sosterrà 10 libbre, e 10 ne sosterrà la rotella k , le quali si trasferiscano a' sua superiori sostentaculi, cioè o piglia da 15 libbre, e 5 ne piglia ancora p da l, e 5 da k, e questo medesimo k ne da 5 aq ; e chi volessi vincere le 5 di q ne metta 6 nel contrappeso x , e mettendo in l'ultimo loco 6 contra 5 in ciascuna delle 4 corde che sostengono le 20 libbre, non sentendo per sè se non quelle 5 libbre, quella libbra più ch'io metto nella corda gx, non trovando in nessuna delle opposite corde pari peso a sè, tutte le vince e tutte le move." (da Vinci, Ms A, 62r. See also da Vinci 1940, 499). English translation is ours.

[^83]: 58 "Ciascuno de' bracci della bilancia è duplo; de' quali l'uno è reale e l'altro potenziale e son posti in diversi siti distanti con l'estremi l'un dall'altro, e son di varie lunghezze." (da Vinci, Codex Atlanticus, 338 [new numeration]. See also da Vinci 1940, 70). English translation is ours.

[^84]: 59 "Sempre le braccia reali della bilancia sono più lunghe di quelle potenziali e tanto più quanto esse sono più vicine al centro del mondo." (da Vinci, Ms E, 64r. See also da Vinci 1940, 72). English translation is ours.
 ${ }^{60}$ "REGOLA DELLA BILANCIA ANGULARE. La equilibra angulare è quella della quale la congiunzione delle sue diritte braccia è angulare; nel quale angulo il suo polo è collocato. Braccio si intende dove cade il centro del peso appiccatovi. Sempre le distanzie che hanno li oppositi stremi della bilancia angulare dalla linia centrale del polo suo han nella medesima proporzione qual'è quella che hanno le lunghezze delle braccia d'essa bilancia infra loro; ma sia proporzione conversa. Come dire della bilancia angulare cef, de la quale il polo è nell'angolo e, che lo stremo f e c oppositi hanno nelle loro distanzie dalla linia centrale ab tal proporzione qual'è quella della

[^85]: lunghezza delle sue braccia ec e ef; ma è conversa: cioè che 'l braccio minore ha il suo estremo tanto più discosto dalla centrale quant'egli è minor del suo maggiore. E così lo spazio, che ha il braccio maggiore da tale linia centrale, è tanto minore quanto il suo braccio è maggiore che 'l suo minore. Qui le porzíon de' cerchi non sono equali nel moto de' bracci, ma sì nelle distanzie dalla linia centrale." (da Vinci, Codex Arundel, 32v. See also da Vinci 1940, 99). English translation is ours.
 ${ }^{61}$ "Quello è detto vero termine di braccio di bilancia, il quale giungendo la sua retta colla rettitudine della corda, tirata dal peso, questa congiunzione sarà fatta componendo l'angolo retto come si vede in s con ma e similmente $p n$ con $n a$ (braccio spirituale)." (da Vinci, Ms M, 40r. See also da Vinci 1940, 170). English translation is ours.

[^86]: ${ }^{62}$ Cfr.: Duhem (1905-1906, I, 192).
 ${ }^{63}$ As discussed in Chapter 1, this works belongs to Jordanus de Nemore and generally assigned to be edited by Tartaglia and posthumously published by Curtio Troiano in 1565.

[^87]: ${ }^{64}$ Note that Duhem did not study the fundamental Codex Arundel.
 65 "DEL PESO. Se due corde concorrono alla sospensione d'un grave e che l'una sia diritta e l'altra obbliqua, essa obbliqua non sostiene parte alcun d'esso peso. Ma se due corde obblique concorreranno al sostenere d'un peso,tal proporzione fia da peso a peso, qual fia da obbliquità a obbliquità. Delle corde che da una medesima altezza che con diverse obbliquità discendano alla sospensione d'un peso, tal proposizione fia quella che a tal corda del peso accidentale si congiugne, qual'è quella delle lunghezze d'esse corde." (da Vinci, Ms E, 70r. See also da Vinci 1940, 142). English translation is ours.

[^88]: 66 "Quando dalla linia equigiacente discenderan due linie concorrenti all'angolo sospensore del grave, caderà la perpendiculare dividitrice di tale angolo, allora sarà diviso il peso alle due corde d'esso sospensore infra li quali pesi fia la medesima proporzione ch'è quella de' due angoli, generata dalla predetta division del primo angolo; come se dalla equigiacente a e discendessi le due linie ac e ec, concorrenti alla composizion dell'angolo c , al quale angolo si sospenda il peso f , cadessi la perpendiculare dc dividitrice d'esso angolo in due altri angoli acd e dfe; dico che tale corde riceveranno il predetto peso in tal proporzione qual'è quella che hanno infra loro li due angoli predetti e qual fia la proporzione delle quantità de' due triangoli infra loro. E sempre la perpendiculare dividitrice dell'angolo di tal triangolo sarà dividitrice della gravità sospesa in due parti equali, perché passa per il centro di tal gravità." (da Vinci, Ms E, 71r; See also da Vinci 1940, 143). English translation is ours.

 67 "Per la 6° del 9°, il grave 3 non si distribuisce alle braccia reali della bilancia nella medesima proporzione che è quella d'esse braccia, ma in quella proporzione che hanno infra loro le braccia potenziali." (da Vinci, Codex Arundel, 1v. See also daVinci 1940, 171). English translation is ours.

[^89]: 68 "Qui è il peso n sostenuto da due potenzie varie, cioè $m f$ e $m b$. Ora mi bisogna trovare la lieva e contralieva potenziale d'esse due potenzie $b m$ e $f m$. Delle quali alla potenzia b sarà data la lieva $f e$ e la contralieva $f a$. Alla lieva $f e$ si dà l'appendiculo $e b$, al quale sta appiccato il motore b; e alla contralieva $f a$ si da l'appendiculo an, che sostiene il peso n. Avendo ordinata la bilancia della potenzia e resistenzia del motore e peso, è necessario vedere che proporzione ha la lieva fe colla contralieva, $f a$. La quale $f e$ è li 21/22 della contralieva $f a$. Adunque b sente 22 , quando il peso n fusi 21." (da Vinci, Codex Arundel, 7v. See also da Vinci 1940, 179). The translation is ours.

[^90]: ${ }^{69}$ "Ex iis quae nobis hucusque sunt dicta, facile intelligi potest, quantitatis B.u. quae fere perpendicularis es a centro .B. ad lineam .F.u. inclinationis, ea est, quae non ductis in cognitionem quantitatis virtutis ipsius F in huiusmodi situ constituens videlicet linea .F.u. cum brachio .F.B. angulum acutum." (Benedetti 1585, 142-143. See also Drake and Drabkin 1969, 169). Drake and Drabkin's tranlsation.

[^91]: 70 "Ut hoc tamen melius intelligamus, imaginemur libram .b.o.a. fixam in centro .o. ad cuius extrema sint appensa duo pondera, aut duae virtutes moventes .e. et .c. ita tamen, linea inclinationis .e. idest .be. faciat angulum rectum cum .o.b. in puncto .b. linea vero inclinationis .c. idest .a.c. faciat angulum acutum, aut obtusum cum .o.a. in puncto .a. Imaginemur ergo lineam .o.t. perpendicularem lineae .c.a. inclinationis [...] secetur deinde imaginatione .o.a. in puncto .i. ita ut .o.i. aequalis. sit .o.t. \& puncto .i. appensum sit a pondus aequale ipsi .c. cuius inclinationis linea parallela sit linea inclinationis ponderis .e. supponendo tamen pondus aut virtutem .c. ea ratione maiorem esse ea, quae est .e. qua .b.o. maior est .o.t. absque dubio ex 6 lib. primi Archi. de ponderibus .b.o.i. non movebitur situ, sed si loco .o.i. imaginabimur .o.t. consolidatam cum .o.b. \& per lineam .t.c. attractam virtute .c. similiter quoque contingent ut .b.o.t.; communi quadam scientiam, non moveatur situ." (Benedetti 1585, Chapter 3, p 143. See also Drake and Drabkin 1969, 169-170). Drake and Drabkin's tranlsation.

[^92]: ${ }^{71}$ Benedetti really started his criticisms by with comments on Tartaglia's proposition II concerning his errors in external resistance on motion (Tartaglia 1554, Book VIII, Quesito XXIX [in the book "XIX" is wrongly reported], Propositione II, 86rv-87r).

[^93]: 72 "Sed in secunda parte quinte propositionis non videt vigore situs eo modo, quo ipse disputat, nulla elicitur ponderis differentia quia si corpus .B. descendere debet per arcum .IL. corpus .A. ascendere debet per arcum .V.S. Haec autem quinta propositio Tartalea est secunda quaestio a Iordano proposita." (Benedetti 1585, VII, 148. Drake Drabkin's translation 1969, 174-175). The figure in the text belongs to Tartaglia (Tartaglia 1554 Book VIII, Q XXXII, Propositione V, 89v; see also de Nemore $1565,3 \mathrm{r}-5 \mathrm{r}$) since Benedetti did not report it in his Chapter VII of the section De mechanicis (Benedetti 1585, VII, 148-149).
 ${ }^{73}$ Benedetti (1585, VII, 147-148).

[^94]: 74 "DELLA BILANCIA. [...]. Se dunque il peso posto in E è più grave del peso posto in D , la bilancia DE non starà giamai in questo sito, la qual cosa noi habbiamo proposto di mantenere, ma si moverà in FG. Alle quali cose rispondiamo che importa assai, se noi consideriamo i pesi overo in quanto sono separati l'uno dall'altro, overo in quanto sono tra loro congiunti: perche altra è la ragione del peso posto in E senza il congiungimento del peso posto in D , et altra di lui con l'altro peso congiunto, si fattamente che l'uno senza l'altro non si possa movere. Imperoche la diritta, et naturale discesa dal peso posto in E , in quanto egli è senza altro congiungimento di peso, si fa per la linea ES , ma in quanto egli è congiunto col peso D , la sua naturale discesa non sarà più per la linea ES, ma per una linea egualmente distante da CS percioche la magnitudine comporta de i pesi ED, et della bilancia DE il cui centro della gravezza è C , se in nessun luogo non sarà sostenuta, si muoverà naturalmente in giù nel modo che si trova, secondo la grandezza del centro per la linea diritta tirata dal centro della gravezza C al centro del mondo S, finche il centro C pervenga nel centro S [...] Ma se i pesi posti in ED sono l'un l'altro fra se congiunti, et gli considereremo in quanto sono congiunti, sarà la naturale inclinazione del peso posto in E per la linea MEK, percioche la gravezza dell'altro peso posto in D fa si, che il peso posto in E non gravi sopra la linea ES, ma nella EK. Il che fa parimente la gravezza del peso posto in E , cioè, che'l peso posto in D non gravi per la linea reta DS, ma secondo DH impedirsi ambedue l'uno l'altro, che non vadino a propri luoghi [. . .]. Adunque il peso posto in D non moverà in su il peso posto in E. Dalle quali cose segue che i pesi posti in DE , in quanto tra loro sono congiunti, sono egualmente gravi." (del Monte [1581] 1615, 34-36. See also Drake and Drabkin 1969, 281-282). Drake and Drabkin's translation.
 ${ }^{75}$ Gian Vincenzo Pinelli (1535-1601), erudite Neapolitan and bibliophile man, was a friend of Galileo.

[^95]: 76 "]. . .] che essendo la bilancia sostenuta nel suo centro dalla gravezza sta ferma dovunque el la si trova, il quale effetto in particolare non è piu stato tocco, ne veduto, ne man co da niuno manifestato, fuor che dall'autore: anzi fin hora tenuto falso, \& impossibile da tutti gli predecessori nostri; i quali con molte ragioni si sono sforzati di provare non solamente il contrario, ma hanno etiandio affermato per certo, che la sperienza mostra la bilancia non dimorare gia mai ferma se non quando ella è egualmente distante dall'orizonte. La qual cosa in tutto è contraria alla ragione prima, per essere la dimostratione della sudetta quarta propositione tanto chiara, facile, \& vera, che non sò, come se le possa in modo alcuno contradire: \& poi all'esperienza concio sia che l'autore habbia fatto sottilissimamente lavorare bilancie giuste a posta per chiarire questa verità, una delle quali hò io veduto in mano dell'Illustre Signor Gio. Vicenzo Pinello, mandatagli dall'istesso autore, la quale per essere sostenuta nel centro della sua gravezza, mossa dovunque si vuole, \& poi lasciata, sta ferma in ogni sito dove ella vien lasciata. Ben è egli vero, che non bisogna, nel fare cotesta esperienza, correr cosi a furia, per essere cosa oltra modo difficile, come dice l'autore di sopra, il fare una bilancia, la quale sia nel mezo del le sue braccia sostenuta à punto, \& nel centro proprio della sua gravezza." (del Monte [1581] 1615, 56). Drake and Drabkin's translation.
 ${ }^{77}$ In the 1593-1594 the early manuscripts was and first printed in a French version by Mersenne (Galilei 1634; See also Festa and Roux, forthcoming). It was published into Italian (1649) after the death of Galileo (Galilei 1649; for completeness see also: Galilei 1610, 1632, 1656. About Galilei’s Opere (Works) see: Galilei 1846-1856, 1890-1909c, 1888-1905, 2005; recently on Galileo and Hobbes see Jesseph 2004).

[^96]: ${ }^{78}$ In 2014 Galileo's anniversary is celebrated. 1564-2014. Homage to Galileo Galilei. History and Historical Epistemology of Sciences within Iuvenilia-Early Galilean Works. It is a Special issue of Philosophia Scientice (21/1: February 2017). Raffaele Pisano and Paolo Bussotti Guest editors.
 79 "Momento, appresso i meccanici, significa quella virtù, quella forza, quella efficacia, con la quale il motor muove e 'l mobile resiste; la qual virtù depende non solo dalla semplice gravità, ma dalla velocità del moto, dalle diverse inclinazioni degli spazii sopra i quali si fa il moto, perché più fa impeto un grave descendente in uno spazio molto declive che in un meno. Il secondo principio è, che il momento e la forza della gravità venga accresciuto dalla velocità del moto: sì che pesi assolutamente eguali, ma congiunti con velocità diseguali, sieno di forza, momento e virtù diseguale, e più potente il più veloce, secondo la proporzione della velocità sua alla velocità dell'altro. Di questo abbiamo accomodatissimo esemplo nella libra o stadera di braccia disuguali, nelle quali posti pesi assolutamente eguali, non premono e fanno forza egualmente, ma quello che è nella maggior distanza dal centro, circa il quale la libra si muove, s'abbassa sollevando l'altro, ed è il moto di questo che ascende, lento e l'altro veloce: e tale è la forza e virtù che dalla velocità del moto vien conferita al mobile che la riceve, che ella può compensare altrettanto peso che all'altro mobile più tardo fosse accresciuto; sì che, se delle braccia della libra uno fosse dieci volte più lungo dell'altro, onde nel muoversi la libra circa il suo centro, l'estremità di quello passasse dieci

[^97]: volte maggiore spazio che l'estremità di questo, un peso posto nella maggiore distanza potrà sostenerne ed equilibrarne un altro dieci volte assolutamente più grave che non egli è; e ciò perché, muovendosi la stadera, il minor peso si moveria dieci volte più velocemente che l'altro." (Galilei's Discorsi intorno alle cose che stanno in su l'acqua e o che in quella si muovono (1612) in Galilei 1888-1905, IV, pp 68-69). The translation is ours.
 ${ }^{80}$ On proportion theory and force-resistance-and-velocity see Bradwardine 1955 and recently Rommevaux 2013).

[^98]: 81 "È la presente speculazione stata tentata ancora da Pappo Alessandrino nel' 8° libro delle sue Collezioni Matematiche; ma, per mio avviso, non ha toccato lo scopo, e si è abbagliato [...]. Intendasi dunque il cerchio AIC, ed in esso il diametro ABC, ed il centro B, e due pesi eguali momenti nelle estremità A, C; sì che, essendo la linea AC un vette o libra mobile intorno al centro B, il peso C verrà sostenuto dal peso A. Ma se c'immagineremo il braccio della libra $B C$ essere inchinato a basso secondo la linea BF , in guisa tale però che le due linee AB, BF restino salde insieme nel punto B , allora il momento del peso C non sarà più eguale al momento del peso A , per esser diminuita la distanza del punto F dalla linea della direzione che dal sostegno B , secondo la BI, va al centro della terra. Ma se tireremo dal punto F una perpendicolare alla BC, quale è la FK , il momento del peso in F sarà come se pendesse dalla linea KF." (Galilei [1649] 1888-1905, II, 181). Salusbury's translation (Salusbury 1661-1665a, II, 294).

[^99]: 82 "Vedesi dunque come, nell'inclinare a basso per la circonferenza CFLI il peso posto nell'estremità della linea BC , viene a scemarsi il suo momento ed impeto d'andare a basso di mano in mano più, per esser sostenuto più e più dalle linee BF, BL. [. . .]. Se dunque sopra il piano HG il momento del mobile si diminuisce dal suo totale impeto, quale ha nella perpendicolare DCE , secondo la proporzione della linea KB alla linea BC o BF ; essendo, per la similitudine de i triangoli $\mathrm{KBF}, \mathrm{KFH}$, la proporzione medesima tra le linee KF , FH che tra le dette KB, BF, concluderemo, il momento integro ed assoluto che ha il mobile nella perpendicolare all'orizzonte, a quello che ha sopra il piano inclinato HF , avere la medesima proporzione che la linea HF alla linea FK, cioè che la lunghezza del piano inclinato alla perpendicolare che da esso cascherà sopra l'orizonte. Sì che, passando a più distinta figura, quale è la presente, il momento di venire al basso che ha il mobile sopra il piano inclinato FH , al suo totale momento, con lo qual gravita nella perpendicolare all'orizonte FK, ha la medesima proporzione che essa linea KF alla FH. E se così è, resta manifesto che, sì come la forza che sostiene il peso nella perpendicolare FK deve essere ad esso eguale, così per sostenerlo nel piano inclinato FH basterà che siano tanto minore, quanto essa perpendicolare FK manca dalla linea FH. E perché, come altre volte s'è avvertito, la forza per muover il peso basta che insensibilmente superi quella che lo sostiene, però concluderemo questa universale proposizione: sopra il piano elevato la forza al peso avere la medesima proporzione, che la perpendicolare dal termine del piano tirata all'orizonte, alla lunghezza d'esso piano." (Galilei [1649] 1888-1905, II, 182-183). Salusbury's translation (Salusbury 1661-1665a, II, 294-296).

[^100]: ${ }^{83}$ The word statica appears in the title of the fourth parts of the translation of Stevin's major work in mechanics Wisconstige Gedachtenissen (Stevin 1605-1608c). In addition, Willebrord Snel van Royen (1580-1626), in his Latin translation as Hypomnemata mathematica, published into two volumes (Stevin 1605-1608b) immediately after the original Flemish publication, uses also the term "Statica". Particularly, Snel uses the word "Statica" in the volume 2 (Stevin 1605-1608b, II [Tomus quartus mathematicorum hypomnematum de Statica] Liber Primus Staticae, de Staticae Elementis, 5). Jean Tuning (see next footnote) in his French translation of Stevin's work as Memoires mathematiques (Stevin 1605-1608a) uses the word "art pondéraire". Then, in 1634 Albert Girard (1595?-1632) reused - in his French work, as Les Ceuvres Mathematiques de Simon Stevin de Bruges (Stevin 1634), the term "L'art pondérarire ou de la statique [...]". This word was not so much of succesful, at least until to Nouvelle mécanique (1725) by Pierre Varignon (1654-1722). Therefore, in agreement with Patricia Radelet de-Grave, it seems that the introduction of the notation Statica should be attribueted to Snel rather than to Stevin. Nevertheless, as suggested by Radelet de-Grave, since Snel translated in collaboration with Stevin, it is hard to establish the history of genesis of the scientific term "Statica" in Stevin context.

[^101]: ${ }^{84}$ This Stevin's book was immediately - but partially - translated both into French language as Memoires mathematiques: contenant ce en quoy s'est exercé le très-illustre, très-excellent Prince \& Seigneur Maurice, Prince d'Orange, Conte de Nassau, Catzenellenboghen, Vianden, Moers [...] (Stevin 1605-1608a) by Jean Tuning and into Latin language as Hypomnemata mathematica, hoc est eruditus ille pulvis, in quo se exercuit [. . .] Mauritius, princeps Auraïcus [. . .] a Simone in two volumes (Stevin 1605-1608b) by Willebrord Snel van Royen.

[^102]: ${ }^{85}$ "PRAEPARATIO. Triangulum A B C quatuordecim globorum pondere et magnitudine æqualium, quasi corona ut E, F, G, H, I, K, L, M, N, O, P, Q, R, D, cunctum fingamus, qui omnes lineâ per centro ipsorum, ut in illis moveri possint, transeunte, colligati aequali inter se spacio distent, ut illorum bini lateri B C, qua- terni vero B A accommodentur, hoc est, quemadmodum linea ad lineam; ita globi sint ad globos. Insuper in $\mathrm{S}, ~ Г, \mathrm{~V}$ tria sint puncta immota ac fixa, quae a linea sive globorum funiculo, cum movetur, raduntur, ac stringuntur: duaeque funiculi partes, quae supra trianguli basin, lateribus A B, B C sint parallelae, ut, quando connexio illa seriesque; globorum adscendit, descenditve, globi pes crura A B, B C volui possint." (Stevin 1605, 34). The translation is ours. See also important works by Radelet-de grave 1996.

[^103]: 86 "] . . .] ipsique globi ex sese continuum et aeternum motum efficient, quod est falsum" (Stevin $1605,35)$. The translation is ours.

[^104]: 87 "BN ducatur, secans AC continuatam in N, consimiliter D O secans continuatam LI, hoc est, latus columnæ in O , ut angulus IDO aequalis sit angulo CBN. Appendatur quoque ad DO pondus P oblique attollens, quod (amotis M, E ponderibus) columnam in suo situ conservet. Quia vero DL et BA, item DI et BC latera triangulorum DLI et BAC homologa sunt, hujusmodi conclusio inde deducitur. Quemadmodum BA ad BC: ita sacoma lateris B A ad anti sacoma lateris BC (per 2 consectarium) item quemadmodum DL ad DI: ita sacoma lateris DL ad antisacoma lateris DI, hoc estita M ad E . sed homologa latera triangulorum similium ABN , LDO sunt AB et DL, item BN, et DO. Itaque ut supra, quemadmodum BA ad B N: ira sacoma B A ad anti sacoma B N (per 1 consectarium) Et quemadmodum DL ad DO: ita illius sacoma ad hujus anti sacoma, id est, M ad P. si linea BN à puncto B aliovorsum; A scilicet versus, ultra BC fuisset ducta, etiam recta DO à D ultra DI cecidisset, hoc est, ut nunc citra: ita tunc ultra cecidisset, et praecedens demonstratio etiam isti situi accommoda fuisset, hoc est, quemadmodum BA ad BN ita sacoma lateris BA, ad anti sacoma lateris BN esset: et quem-admodum DL ad DO: ita sacoma lateris DL, ad anti sacoma lateris DO. hoc est M ad P . Ut ista proportio non tantum in exemplis valeat, in quibus linea attollens, ut DI, perpendicularis est axi, sed etiam in aliis cuiusmodi cunque sint anguli." (Stevin $1605,36-37$). The translation is ours.

[^105]: 88 " 12 THEOREM. 20 PROPOSITIO. Si axis columnae puncta habeat, firmum, et mobile, et ex isto dependentia pondera, unum rectè, alterum obliquè extollens, in dato situ columnam conservant: erit quemadmodum linea recte extollens ad lineam oblique extollentem; ita illius pondus, ad pondus hujus". (Stevin 1605, 41).
 89 "18 THEOREM. 27 PROPOSITIO. Si columna, et duo pondera oblique extollentia situ aequilibria sunt, erit quemadmodum linea oblique extollans, ad lineam recte extolletem: ita ponderum quodque obliquum ad suum pondus rectum". (Stevin 1605, 48).

[^106]: ${ }^{1}$ Mathematician and Greek translator from the Latin, he lived in Venezia where he obtained the chair of mathematics at the same university (1530).

[^107]: ${ }^{2}$ Aristotle 1955b, c, 1984; see also Baldi 1621 and Aristotle 2000. In the Aristotelian school, the Problemata mechanica remained an argument which was long debated. In this regard, see Drake (Rose and Drake) and, recently, Winter (Winter 2007). See also: Duhem 1905-1906, II, 292, 1906-1913; Clagett 1956, 1959, 1964-1984; Clagett and Moody [1952] 1960; Brown 1967-1968, 1976; Lindberg; Truesdell 1968. During the Middle Ages and Renaissance the attribution of the Problemata mechanica to Aristotle was substantially undisputed. Today there is the spread feeling that it was not Aristotle's but of some one of his circle. Main Aristotelian works on mechanical arguments, besides Problemata mechanica, are in Physics (Aristotle 1999), On the Heaven (Aristotle 1984), and in Problemata mechanica (Aristotle 1955c). From an epistemological point of view, Aristotle dealt with the organization of science particularly in The posterior analytics (Aristotle 1853; see also Id., 1949, 1955c, 1996).
 ${ }^{3}$ Note that in Leonico Tomeo's translation the numbering of problems starts from Heet's second one. Thus, the first problem has no number and the second is Leonico Tomeo's first problem. The English translation is that of (Aristotle 1955b, c).
 ${ }^{4}$ Nicholas Leonicus Thomaeus (or Niccolò Leonico Tomeo, Nikollë Leonik Tomeu, Leonik Tomeu) was born in Albany and worked as professor of philosophy at the University of Padova.

[^108]: 5 "In primis igitur quae accidunt circa libram dubitare faciunt, quae nam ob causam exactiores minoribus maiores sunt librae." (Aristotle 1525, 25v. See also Problemata mechanica, Aristotle 1955c, 848b, 337).
 ${ }^{6}$ Aristotle $(2000,55)$. The translation is ours.

[^109]: 7 "Huius autem rei principium est quam ob rem in ipso circulo quae plus distat linea, eadem vi commota citius fertur, quam illa quae minus distat. Citius enim bifariam dicitur. Sive enim in minori tempore aequalem pertransit locum, citius fecisse dicimus, seu in aequali maiorem. Maior autem in aequali tempore maiorem describit circulum; qui enim extra est, maior eo qui intus est. Horum autem causa, quoniam duas fertur lationes ea, quae circulum describit." (Aristotle 1525, 25v-26r. See also Problemata mechanica in Aristotle 1955c, 848b, 337).
 8 "Omni quidem igitur circulum describenti istuc accidit: ferturque eam quae secundum naturam est lationem secundum circunferentiam; illam vero quae praeter naturam in transversum et secundum centrum, maiorem autem semper eam quae praeter naturam est, ipsa minor fertur, quia enim centro est vicinior, quod retrahit vincitur magis: Quod autem magis quod praeter naturam est movetur ipsa minor quam maior illarum, quae ex centro circulos describunt, ex iis manifestum." (Aristotle 1525, 27r-27v. See also Problemata mechanica in Aristotle 1955c, 849b, 347).
 9 "Ab eodem igitur pondere citius moveri necesse est extremum librae, quo pus a sparto discesserit. Et nonulla quidem in parvis libris imposita non manifesta sensui sunt pondera; in magnis autem manifesta. Nihil enim prohibet minorem moveri magnitudinem quam ut visioni sit manifesta. In magna autem libra idem pondus visibile efficit magnitudo. Quedam vero vero manifesta sunt in utrisque, sed multo magis in maioribus, quoniam multo maior inclinationis sit magnitudo ab eodem pondere in maioribus. Quam ob rem machinantur ii, qui purpuram vendunt, ut pendendo defraudent, tum ad medium spartum non ponentes, tum plumbum in alterutram librae partem infundentes, aut ligni quod ad radicem vergebat, in eam quam deferri volunt partem constituentes, aut si nodum habuerit (ligni enim gravior illa est pars, in qua est radix; nodus vero radix quaedam est)." (Aristotle 1525, 30r. See also Problemata mechanica in Aristotle 1955c, 849b, 347).

[^110]: 10 "Cur siquidem sursum fuerit spartum, quando deorsum lato pondere quispiam id amovet sursum ascendit libra, si autem deorsum constitutum fuerit non ascendit, sed manet?" (Aristotle 1525, 30v. See also Problemata mechanica in Aristotle 1955c, 850a, 347-349).
 11 "An quia sursum quidem sparto existente plus librae extra perpendiculum sit; spartum enim est ad perpendiculum quare necesse est deorsum ferri id quod plus est donec ascendat quam bifariam libram dividit, ad ipsum perpendiculum, cum onus incumbat ad librae partem sursum raptum." (Aristotle 1525, 30v. See also Problemata mechanica in Aristotle 1955c, 850a, 347-349).

[^111]: ${ }^{12}$ Aristotle 1955b, 353. Here we consider Hett's translation as Leonico Tomeo's is not clear to us.

[^112]: ${ }^{13}$ Problemata mechanica in Aristotle 1955c, 850a 30, 353.
 ${ }^{14}$ The first part: Tartaglia 1554, Book VII, Q V, 81v. The second part: Ivi, Q VI, 81rv-82rv. The third part: $I v i, 82 \mathrm{v}$.

[^113]: 15 "N. Eglie tempo assai che io le vidi, massime Latine" (Tartaglia 1554, Book VII, Q I, 78r).
 16 "N. Signore, vi sono dubbii assai, che à volergli à sofficientia delucidare, à me saria necessario prima à dechiarare à vostra Signoria li principii della scientia di pesi." (Tartaglia 1554, Book VII, Q I, 78r).
 ${ }^{17}$ Tartaglia 1554, Book VII, Q I, 78r. Drake and Drabkin's translation.
 ${ }^{18}$ In the Book VIII Tartaglia will use the attribute subordinate for mechanics (Tartaglia 1554, Book VIII, 82v).
 ${ }^{19}$ On Tartaglia anti-Aristotelian positions, already discussed before the Quesiti et inventioni diverse see Bolleti (Bolletti 1958, 45-51).

[^114]: ${ }^{20}$ Tartaglia (1554, Book VII, Q I, 78v).
 ${ }^{21}$ Tartaglia (1554, Book VII, Q I, 78v).
 ${ }^{22}$ Tartaglia (1554, Book VII, Q II, 79v).

[^115]: ${ }^{23}$ Tartaglia (1554, Book VII, Q I, 78v-79r).
 ${ }^{24}$ Tartaglia (1554, Book VII, Q I, 79r).
 ${ }^{25}$ Caverni (1891-1900, I, 3-54).
 ${ }^{26}$ Tartaglia (1554, Book VII, Q I, 79r).
 ${ }^{27}$ Tartaglia (1554, Book VII, Q I, 79r).
 ${ }^{28}$ Tartaglia (1554, Book VII, Q I, 79v).

[^116]: ${ }^{29}$ Tartaglia (1554, Book VII, Q I, 79v).
 ${ }^{30}$ Tartaglia (1554, Book VII, Q II, 79v-80r).

[^117]: ${ }^{31}$ Tartaglia (1554, Book VII, Q IV, 80v).
 ${ }^{32}$ Tartaglia (1554, Book VII, Q VI, 82r).
 ${ }^{33}$ Tartaglia (1554, Book VII, Q VII, 82r).
 ${ }^{34}$ Tartaglia (1554, Book VII, Q VII, 82r).

[^118]: ${ }^{35}$ Tartaglia (1554, Book VII, Q IV, 80v).

[^119]: ${ }^{36}$ Tartaglia (1554, Book VII, Q V, 81rv).
 ${ }^{37}$ Tartaglia (1554, Book VII, Q VI, 81v-82r).

[^120]: ${ }^{38}$ Tartaglia (1554, Book VII, Q VII, 82r).
 ${ }^{39}$ de Nemore (1565, Quaestio secunda, 3v).

[^121]: ${ }^{40}$ Tartaglia (1554, Book VII, Q VII, 82r).
 ${ }^{41}$ "E se a alcuno paresse inconveniente quel che habbiam detto ad esso, cioè che alcuna cosa di poco peso si possa metter sopra qualche libra piccola, che non solo il suo moto non sia manifesto, ma che anco veramente non la muova: massime che potremmo dir contra, e concluder con ragione perché s'è posto sopra quelle balance qualcosa che prima non v'era, è necessario, che tal cosa, o sia di nessun peso (il che per quanto si è concesso è falso) o vero che tal peso non abbia alcuna inclinazione al discendere, il che naturalmente è falso. A chi dubitasse in tal modo bisogna rispondere, che molte cose per demonstratione e immaginatione matematica si concluden per vere che non di meno non si danno." (Biringucci 1582, 37-38). The translation is ours.

[^122]: ${ }^{42}$ Tartaglia suggests that the definitions he is introducing are shared definitions. Indeed most of them are.
 ${ }^{43}$ According to the Aristotelian scientific structure.
 ${ }^{44}$ Tartaglia (1554, Book VII, Q III, 83r).
 ${ }^{45}$ Tartaglia (1554, Book VIII, Q XXI, 84v).

[^123]: ${ }^{46}$ Capecchi (2012a, Chapter 4).
 47 "Atteso che, oltra mille errori de primieri libri di questa vostra opera, havete anchor posto nel libro ottavo le propositioni di Giordano come vostre, senza far mentione alcuna di lui: il che grida furto. E facendovi le dimostrationi di vostra testa, le quali per lo più non conchiudono, fate confessar con gran vostro vituperio all'Illustrissimo Signor Don Diego di Mendozza cose, che io certo (percioche conosco in parte la sua gran dottrina) che egli non le direbbe per tutto l'oro del mondo [. . .]." (Tartaglia 1876, Ferrari-Primo cartello, 2).

[^124]: ${ }^{48}$ In Apianus edition of the Liber Iordani Nemorarii viri clarissimi, de ponderibus propositiones XIII \& earundem demonstrationes, multarumque rerum rationes sane pulcherrimas complectens (de Nemore 1533) the theorem about inclined plane - subsequently descripted by Tartaglia in Quesiti (Tartaglia 1554, Book VIII, Q XLII, Pr. XV) and posthumous in Iordani Opusculum de Ponderositate (Tartaglia 1565, Quaestio X, 7rv) lacks. Other differences exist between Apianus edition (de Nemore 1533) and Troianum one (de Nemore 1565). For, Duhem accidentally supposed that the author of 1565 -edition edited by Troianum was different from the author of 1533 -edition edited by Apianus. He referred to another unknown author, a disciple of Jordanus of a great influence at that time and that he baptized as "[...] le Précurseur de Léonard de Vinci" (Duhem 1905-1906, I, p 136; author's italic).
 49 "A questo ve rispondo che in questo caso mio basta che voi confessati che faccio le demonstration de mia testa, \& la demonstratione (come dovresti sapere) è molto di maggior considerazione, Dottrina, \& più scientifica \& e di maggior difficultà, della pura Proposizione. Perché ogni propositione Mathematica, senza la sua demonstratione è reputata de niun valore appresso di cadaun mathematico, perche il proponere è cosa facile, \& ogni ignorante saperà formar una propositione, ma non dimostrarla. Se adunque la più dottrinata, più istimata, più scientifica parte di tai propositioni me concedeti, \& confirmati che la sia mia, come è, en non è cosa inhonestaq a dir tai propositioni esser mie, \& tanto più chel mio ordine non ha alcuna convenienza con quello di Giordano, \& ogni volta che uno compone una opera con uno ordine diverso di quello d'un Altro autore anchor che la sostatntia, over continentia, fusse quasi quella medesima, senza reprensione la può chiamar sua opera, perché la sufficientia del huomo in el componere più se discerne nel ordine che nella altezza della materia che lui tratta. Mo dittime un poco, qunte particolaritò ha tolte Giovan de monte regio dal Almagesto di Ptolomeo, senza far mentione del Autore, ma per haverle isposte per un modo, over ordine più piano \& diverso da quello di Ptolomeo, se ha fatto licito attribuirse tal cosa a se, Ma più quante particolarità ha cavato el vostro Signor Hieronimo Cardano da Frate Luca, \& da Giorgio Valla \& quelle inserte nella sua pratica di Arithmetica [...]. Secondariamente per haverlo non puoco ampliato de Diffinitioni, Petitioni, \&

[^125]: Propositioni, \& esser per ampliarlo molto più per l'avvenire se mpre se morte non inetrrompe i miei disegni. Tertio per le mie dimostrationi quale confessati esser mie e non di Giordano, O voi potresti dire quella puoca parte che haveti tolto da Giordano el dover voleva pur che festi mentione di tal Authore. Ve rispondo che voiando io farne mentione a me era necessario a tansarlo di non puoca oscurità nelle propositioni, come nelle demonstrationi, come cadauno inteligente può considerare, la qualcosa non me aparso de fare." (Tartaglia 1876, Tartaglia-Secondo cartello, 7-8).
 ${ }^{50}$ Recently see and interesting work on the Controversy: Renn and Damerow 2010b.
 ${ }^{51}$ The classification E, P and R, nowadays largely adopted, was proposed by Clagett (Moody and Clagett [1952] 1960).

[^126]: ${ }^{52}$ The version edited by Clagett (Moody and Clagett [1952] 1960, 167-227) has 45 propositions and has been divided into four books.

[^127]: ${ }^{53}$ In the Renaissance Latin manuscript traditions we can also read: virtus promotoria responsible of the movement, copia materiae (mass or volume) responsible of the gravity, virtus tractoria (depending on the mass), vis, gravis, anima motrix, etc. (Pisano and Bussotti 2012, 2013a, b).

[^128]: 54 "Corpora equalia in virtute sunt quorum motus sunt in temporibus equalibus super loca equalia in eodem aere vel eadem aqua." (Moody and Clagett [1952] 1960, 26; see also Liber magistri Gerardus de Brussel de motu (1956).

[^129]: 55 "Patet ergo quod maior est violentia in motu secundum cum maíorem, quam secundum minorem; alias enim non fieret motus magis contrarius. Cum ergo apparet plus in descensu adquirendum impedienti, patet quia minor erit gravitas secundum hoc. Et quia secundum situationem gravium sic fit, dicatur gravitas secundum situm in futuro processo. Ita enim, sillogizando de motu tamquam motus sit causagravitatis vel levitatis, potius per motum magis contrariumconcludimus causam huiusmodi contrarietatis esse plus contrariam, id est, plus habere violentie. Quod quidem grave descendat, hoc est a natura; sed quod per lineam curvam, hoc est contra naturam, et ídeo iste descensus est mixtus ex naturali et violento. In ascensu vero ponderis, cum ibi nihil sit secundum naturam, debet argui sicut de igne, quoniam nihil naturaliter ascendít. De igne enim arguitur in ascensu, sicut de gravi in descensu; ex quo sequitur quod grave, quanto plus sic ascendit, tanto minus habet de levitate secundum situm, et sic plus habet de gravitate secundum situm." (Moody and Clagett [1952] 1960, 151-153).

[^130]: ${ }^{\text {a }}$ de Nemore $1565,3 \mathrm{r}-7 \mathrm{r}$. The translation is ours

[^131]: 56 "Queastio Prima. Inter quaelibet grauia est uirtutis, et ponderis eodem ordine sumpta proportio. Sint pondera $\mathrm{a}, \mathrm{b}, \mathrm{c}$, leuius c , descendatque a, b, in d , et c , in e. Itaque ponatur a, b, sursum in f , et c, i, h. Dico ergo quód quae proportio a, d, ad c, e, sicut a, b, ponderis ad c pondus, quanta enim uirtus ponderosi tanta descendendi uelocitas: at quae compositi uirtus ex uirtutibus componentium compununtur. Sit ergo a, aequale c. Quae igitur uirtus a, eadem et, c. Sit igitur proportio a, b, ad c , minor quám uirtutis ad uirtutem. Erit similiter proportio a, b, ad a, minor proportio quám uirtutis a, b, ad uirtutem a, ergo uirtutis a, b, ad uirtutem b, minor proportio quám $a, b, a d b$. per 30 . quinti Euclidis quód est inconueniens. Similium igitur ponderum minor, et maior proportio, quám uirtutum. Et quia hoc inconueniens erit, utrobique eadem ideo $a, b, a d c$, sicut a, d, ad c, e, et e, contrario sicut c, b, ad a, f." (de Nemore 1565, 3r).

[^132]: ${ }^{57}$ de Nemore (1565, 3r).
 ${ }^{58}$ Ibidem.
 ${ }^{59}$ Ibidem.
 ${ }^{60}$ Ibidem.
 61 "[...] per 30. quinti Euclidis [...]" (Ibidem). This proposition states that given four quantities, $\mathrm{A}, \mathrm{B}, \mathrm{H}, \mathrm{K}$, if $(\mathrm{A}+\mathrm{B}) / \mathrm{A}>(\mathrm{H}+\mathrm{K}) / \mathrm{H}$, then $(\mathrm{A}+\mathrm{B}) / \mathrm{B}<(\mathrm{H}+\mathrm{K}) / \mathrm{K}$. Therefore, considering modern notation, assumed $\mathrm{A}=a, \mathrm{~B}=b, \mathrm{H}=p(a) ; \mathrm{K}=p(b)$, from $a+b) / c<p(a+b) / p(c)$ then $(a+b) / a<[p(a)+p(b)] / \mathrm{p}(a)$ it follows $(a+b) / b>[p(a)+p(b)] / p(b)=p(a+b) / p(b)$.

[^133]: ${ }^{62}$ "Quaestio sexta. Si fuerint brachia librae proportionalia ponderibus appensorum ita, ut in breviori graviter appendatur, aeque gravia erunt secundum situm appensa. Sit ut prius regula a, c , b , appensa a , et b , sitque proportio b , ad a , tam quam $\mathrm{a}, \mathrm{c}, \mathrm{ad} \mathrm{bc}$, dico quod non nutabit in aliqua parte librae, sit enim ut ex parte b, descendat, transeatque in obliquum linea d, c, e, loco a, c, b, et appensa d, ut a, et e, ut b, et d, f, linea orthogonaliter descendat, et e, h, ascendat. palam quoniam trianguli d, c, f, et e, c, h, sunt similes, quia proportio d, c, ad c, e, quam d, b, ad e, h, atque d, c, ad c, e, sicut b , ad a, ergo d, f, ad e, h, sicut b, ad a, sit igitur c, 1 , aequalis c , b, et c , e, et l , aequatur b , in pondere, et descendat perpendiculum $1, m$, quia $1, m$, et e, h, constant esse aequales, erit d, g, ad l , m , sicut b , ad a, est sicut l , ad a, sed ut ostensum est a, et 1 , proportionaliter se habent ad contrarios motus alternatim. Quod igitur sufficiet attollere a, in d, sufficiet attollere 1, secundum 1, m. Quum ergo aequalia sint 1 , et b, et $1, c$, aequale $c, b, 1$, non sequitur b, contrario motu, neque a, sequitur b, secundum quod proponitur." (de Nemore 1565, Quaestio sexta, 5rv).

[^134]: ${ }^{63}$ Tartaglia (1554, Book VIII, Q I, 82v).
 ${ }^{64}$ Tartaglia (1554, Book VIII, Q I, 82v).
 ${ }^{65}$ Tartaglia (1554, Book VIII, Q III, 83r).

[^135]: ${ }^{66}$ For an Aristotelian distinction between real and nominal definitions see Butlon (1976; see also Corbini 2006).
 ${ }^{67}$ Tartaglia (1554, Book VIII, Q III, 83r).
 ${ }^{68}$ The use of axioms as self-evident statements in a theory does not mean that this theory is axiomatic. Properties should be verified (see Chap. 1).
 ${ }^{69}$ Dignita (written by Tartaglia with final letter "a" without accent as usual in modern Italian language) comes from the Latin dignitas-atis. The term recalls the Greek $\dot{\alpha} \xi i \omega \mu \alpha$ (axioma), which means "to deem worth" (dignity), but also "to require" (axiom).

[^136]: 70 "Inanti che procediamo piu oltra, bisogna notare, che li primi principij di ciascaduna scientia non si cognoscono per demostratione: ne etiam alcune scientia è tenuta a provar li suoi principij, perche bisogneria proceder in infinito, Ma quelli tali principij si cognoscono per intelletto, mediante il senso, e pero il principio di ogni nostra cognitione incomincia dal senso, per il che sono supposti nella scientia, et con quelli se dimostra, \& sostenta tutta la scientia; \& sono detti principij di quella scientia, perche, provano altri, \& non essere possono provati da altri, in quella scientia; \& questi primi principij delle scientie alcuni li chiamano petitioni, \& alcuni di dicono dignità, overo supposition." (Tartaglia 2007, 16).
 ${ }^{71}$ Aristotle, Posterior analytics, I, 2, 10. For a comment of the concept of hypothesis in Aristotle, see Upton (Upton 1985) and Gomez-Lobo (1977).

[^137]: ${ }^{72}$ Tartaglia (1554, Book VIII, Q XXVIII, Proposition I, 87r).
 ${ }^{73}$ Tartaglia (1554, Book VIII, Q XXIX, Proposition II, 87r-88v).
 ${ }^{74}$ Tartaglia (1554, Book VIII, Corollary, 88r).
 ${ }^{75}$ Tartaglia (1554, Book VIII, Q XXX, Proposition III, 88rv).
 ${ }^{76}$ Tartaglia 1554, Book VIII, Q XXXI, Proposition IIII, 89r. See also its corollary (Ibidem).

[^138]: ${ }^{77}$ This Euclidean proposition states that given four quantities, A, B, H, K, if $(A+B) / A>(H+K) /$ H , then $(\mathrm{A}+\mathrm{B}) / \mathrm{B}<(\mathrm{H}+\mathrm{K}) / \mathrm{K}($ Tartaglia 1543a, $\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{p} 104$, 105). So assumed $\mathrm{A}=a, \mathrm{~B}=b$, $\mathrm{H}=p(a) ; \mathrm{K}=p(b)$, from $(a+b) / c<\mathrm{p}(a+b) / \mathrm{p}(c) \equiv(a+b) / a<[p(a)+p(b)] / p(a)$ it follows $(a$ $+b) / b>[p(a)+p(b)] / p(b)=p(a+b) / p(b)$.
 ${ }^{78}$ Tartaglia 1554, Book VIII, Q XXVIII, Proposition I, 87r.

[^139]: ${ }^{79}$ Tartaglia (1554, Book VIII, 89v).
 ${ }^{80}$ Tartaglia (1554, Book VIII, 89v).
 ${ }^{81}$ Tartaglia (1554, Book VIII, 89v).

[^140]: ${ }^{82}$ Tartaglia (1554, Book VIII, Q XXXII, Proposition V, 89v).
 ${ }^{83}$ Tartaglia (1554, Book VIII, 90rv).

[^141]: ${ }^{84}$ Tartaglia (1554, Book VIII, Q XXXIII, Proposition VI, 91r.)

[^142]: ${ }^{85}$ The angle of contingency is the angle formed between two curve lines or a curve and straight line in the point where they are tangent to each other. The figure below show different instances of the angle of contingency, between straight lines and curves or between curves.

[^143]: ${ }^{86}$ Tartaglia 1554, Book VIII, 91v-92r.

[^144]: ${ }^{87}$ Tartaglia 1554, Book VIII, Q XXXIIII, Proposition VII, 92v-93r.

[^145]: ${ }^{88}$ Tartaglia (1554, Book VIII, Q XXXV, Proposition VIII, 93r).

[^146]: ${ }^{89}$ Tartaglia (1554, Book VIII, 93rv).
 ${ }^{90}$ Archimedes' work by Tartaglia was already edited (Tartaglia 1543b, d, e).
 ${ }^{91}$ Tartaglia (1554, Book VIII, Q XXXV, Proposition VIII, 93v).

[^147]: ${ }^{92}$ Tartaglia (1554, Book VIII, Q XXXVI, Proposition IX, 94r).

[^148]: ${ }^{93}$ By indicating co with x, the equation Tartaglia is solving is: $160 x=400-80 x$, which gives $x=5 /$ $3=1+2 / 3$.
 ${ }^{94}$ Tartaglia (1554, Book VIII, 96v).
 ${ }^{95}$ Tartaglia had already used algebra - a second-degree equation in the Nova scientia (Tartaglia 1537, Book II, Proposition IX). On a history of algebra towards Laplace's theorem, see Alvarez and Dhombres 2011.
 ${ }^{96}$ The word thing (cos) to indicate an unknown dates back at least to al-Khwārizmī (Høyrup 1989, 78). Next (ca. 1489) Germany symbols appears as "+" and "-", "p" (plus) and "m" (minus). Finally the term "Coss" for "Incognita" (Arte Cossica). Adam Riese (1492-1559) wrote his Die Coss (1524).

[^149]: 97 "If one has three proportional numbers, the product of the first by the last will be equal to the product of the second by the third." ["Se seranno quattro numeri proportionali quello che vien produtto dal primo in l'ultimo serà equale a quello che vien produtto del second in el terzo [...].]" (Tartaglia 1543a, Book VII, Theorema XVIII, Propositione XX, CVIr).

[^150]: ${ }^{98}$ Tartaglia (1554, Book VIII, Q XLII, Proposition XV, 97rv).

[^151]: ${ }^{1}$ At the University of Bologna (Italy), a Ph.D. thesis in literature (Olivari 2005) about the importance of English translations also involved Quesiti.
 ${ }^{2}$ Catalogue of Milano University, Italy: Inv. 047 334278. Coll. 3L. 13A.T.068. 001. Note 1 V. Philosophy faculty. 1981-edition is a reproduction of 1547 -edition. World biographical Index. Internet-edition. K.G. Saur Electronic Publishing München: www.saur-wbi.de
 ${ }^{3}$ Bibliothèque Nationale de France: Rés. V 333.
 ${ }^{4}$ Catalogue of Genova University, Italy: CSB di Architettura Fondo: Coll. E.1920. Barcode 00192529.
 ${ }^{5}$ Bibliothèque Mériadec Municipal de Bordeaux. France. Fonds Patrimoniaux, Côte A 5384(2). For idem book, Jadart also mentioned the following Archive at the cited Bordeaux bibliotheca: 23, 265A. Section Science et Arts, 8665*. See also: Tonni-Bazza 1901, 1904b, c.

[^152]: ${ }^{6}$ Bibliothèque nationale de France: N027156-1. We remark that Ryff quoted Tartaglia many times even though he only translated part of his ideas without developing them. Therefore, it is not really a Quesiti's edition. It is a comment on several parts of Quesiti. More or less like Drake and Drabkin's made with their Mechanics in Sixteenth-Century (Drake and Drabkin 1969).
 ${ }^{7}$ Biblioteca Nazionale Centrale di Firenze, Italy. Coll. MAGL.20.4.14 Inv.: CF005683893. It also includes 3 books of Nova scientia.
 ${ }^{8}$ Bibliothèque nationale de France: Loc. N027156-2.
 ${ }^{9}$ The book is also given by Riccardi in his Biblioteca Matematica Italiana dalla origine della stampa ai primi anni del secolo XIX (Riccardi 1870-1880, II, 500).
 ${ }^{10}$ British Library, UK. Identifier: System number 003581577. Plates. fol. (UK) MP1.0003828712. General Reference Collection 62.d.14. [Another issue]. General Reference Collection 62.d.14. UIN: BLL01003581577.
 ${ }^{11}$ National Library of Australia. Bib. ID 1141724 STC (2nd ed.) 23689. Microfilm. Ann Arbor, Mich.: University Microfilms International, 1964. 1 microfilm reel; 35 mm (Early English books, 1475-1640; 1010:15). It is a reproduction of the original archived at the British Library. We also note: (a) the website of the Australian library reports both dates 1587 and 1588, and (b) it is also available from UMI 300 N Zeeb Rd., Ann Arbor, MI 48103-1553.
 ${ }^{12}$ University of Pennsylvania Library. 1 microfilm reel, 35 mm . Location: Van Pelt Micro text Call Number: STC I Reel 1010:15. It is a reproduction of the original in the British Library. It is also available from UMI, 1964, Ann Arbor, MI 48103-1553.

[^153]: ${ }^{13}$ The book is also given by Riccardi in his Biblioteca Matematica Italiana dalla origine della stampa ai primi anni del secolo XIX: "Fu [Quesiti] translated into French language, with the title La Balistique de Nicolas Tartaglia, ouvrage publié pour la 1re fois [. .]" and he also cited "sur la maniere de fortifier les citez [. . .]" of the 1556 (Riccardi 1870-1880, II, 500).
 ${ }^{14}$ Bibliothèque nationale de France. Two Vols. ${ }^{\circ}$: FRBNF31434939. Loc.: Tolbiac V-53572-3. The translator added a long appendix on ballistic theory.
 ${ }^{15}$ British Library, UK. Loc.: General Reference Collection 1398.e.9. The books is also cited by Riccardi (Riccardi 1870-1880, 500).
 ${ }^{16}$ This is the second part of the previous book. The title changes. Bibliothèque nationale de France. Two Vols. N $^{\circ}$: FRBNF31434939. Loc.: Tolbiac V-53572-3. The translator added a long appendix on ballistic theory.
 ${ }^{17}$ British Library, UK. Loc.: General Reference Collection 1398.e.9.
 ${ }^{18}$ Drake and Drabkin (1969).
 ${ }^{19}$ The 2001 edition is part of a book series: Veröffentlichungen der Kommission für Geschichte der Mathematik, Naturwissenschaften und Medizin; 53.
 ${ }^{20}$ Biblioteca dell'Istituto di Storia della Scienza di Firenze, Italy. Aritmetica e Algebra Testi, Carteggi. Coll: Misc. 613/16; see also Istituto Austriaco di Roma, Coll.: 8.GN.53.

[^154]: ${ }^{21}$ The title in the text is exactly that reported by Biblioteca of the Palazzo dell'Arsenale in its website. Very probably it should be Il primo libro delli quesiti, et inventioni diverse de Nicolo Tartaglia, sopra gli tiri delle artiglierie, et altri svoi varii accidenti (Tartaglia 1538) of the 1554 edition (Tartaglia 1554).

[^155]: ${ }^{22}$ Biblioteca dell'Istituto di Storia della Scienza, Firenze, Italy. Old coll.: Antico 1092. Sigla del catalogatore: rl. New coll.: MED 1051/01. It is cited in: Biblioteca of the Istituto di fisica, Università di Firenze; Laboratorio di Fisica in Arcetri, Università di Firenze Museo di fisica e storia naturale; Istituto di studi superiori, Firenze. Osservatorio meteorologico; Museo strumenti antichi. Università di Firenze.
 23 'Nell'esemplare da me posseduto manca il nono libro e dopo l'ottavo, che termina con la 94° car., vi sono uniti la Travagliata invenzione [. . .] e l'Opera di Archimede de insidentibus aquae dechiarata in volgare ec. In car. 32 senza num. compresa l'ultima colla impresa e le note di stampa nel recto: IN VINEGIA, Per Curtio Troiano dei Nauò. M.D. LXII.". (Riccardi 1870-1880, II, 499. Author's capital letters and italic style).
 ${ }^{24}$ Biblioteca di Storia delle Scienze "Carlo Vigano", Brescia, Italy.

[^156]: ${ }^{25}$ See 1558 edition (Riccardi 1870-1880, II, 499-500).
 ${ }^{26}$ Biblioteca di Storia delle Scienze "Carlo Vigano", Brescia, Italy.
 ${ }^{27}$ Cfr.: The Universal Short Title Catalogue (USTC) hosted by the University of St Andrews. The date before 1566 is obtained from reading Troiano's publishing activities from 1537 to 1566 : 28 works in 36 publications in 3 languages and 115 library holdings. Italian Library copies: Brescia, Biblioteca Ottorino Marcolini dell'Università cattolica del Sacro Cuore; Cremona, Biblioteca statale, Gallarate, Bioblioteca Istituto Filosofico Aloisianum; L’Aquila, Biblioteca provinciale Salvatore Tommasi; Messina, Biblioteca regionale universitaria; Padova, Biblioteca universitaria; Roma, Biblioteca Angelica; Roma, Biblioteca dell'Accademia dei Lincei e Corsiniana; Roma, Biblioteca nazionale centrale Vittorio Emanuele II; Roma, Biblioteca universitaria Alessandrina; Torino, Biblioteca Reale; Trapani, Biblioteca Fardelliana; Urbino, Biblioteca centrale dell'Area umanistica dell' Università degli studi di Urbino; Firenze, Biblioteca dell' Osservatorio Ximeniano, Coll. K.3.38/M.

