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  Preface 

    In the late 1940s Claude Shannon laid the foundation for the pioneering devel-
opment of informational entropy. Then, Kullback and Leibler did their ground-
breaking work in 1951 that led to the principle of minimum cross-entropy. 
Lindley in 1956 made a seminal contribution by introducing the concept of 
transinfomation. Then followed the landmark contributions of Jaynes in 1957 
and 1958 leading to the development of the principle of maximum entropy and 
theorem of concentration. During the past fi ve decades, entropy theory has 
been widely applied to a wide spectrum of areas, including biology, chemistry, 
economics, ecology, electronics and communication engineering, data acquisi-
tion and storage and retrieval, fl uid mechanics, genetics, geology and 
geomorphology, geophysics, geography, geotechnical engineering, hydraulics, 
hydrology, image processing, management sciences, operations research, 
pattern recognition and identifi cation, photogrammetry, psychology, physics 
and quantum mechanics, reliability analysis, reservoir engineering, social sci-
ences, statistical mechanics, thermodynamics, topology, transportation engi-
neering, and turbulence modeling. New areas fi nding applications of entropy 
have since continued to unfold. Entropy theory is indeed versatile, and its 
application is widespread. 

 In the area of hydraulics and hydraulic engineering, a range of applications 
of entropy have been reported during the past two decades, and new topics 
applying entropy are emerging each year. There are many books on entropy 
written in the fi elds of statistics, communication engineering, economics, biology, 
and reliability analysis. However, these books have been written with different 
objectives in mind and for addressing different kinds of problems from what is 
encountered in hydraulics and hydraulic engineering. Application of concepts 
and techniques discussed in these books to hydraulic problems is not always 
straightforward. Therefore, there exists a need for a book that deals with basic 
concepts of entropy theory from a hydraulic perspective and that deals with 
applications of these concepts to a range of hydraulic problems. Currently there 
is no book devoted to covering the application of entropy theory in hydraulics 
and hydraulic engineering. This book attempts to fi ll this need. 

 Much of the material in the book is derived from lecture notes prepared for 
a course on entropy theory and its application in water engineering taught to 
graduate students in biological and agricultural engineering, civil and environ-
mental engineering, geoscience, and hydrologic science and water management 
at Texas A & M University, College Station, Texas. Comments, critiques, and 
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discussions offered by students have signifi cantly infl uenced the content and 
style of presentation in the book. 

 The subject matter of this book is divided into 17 chapters. The fi rst chapter 
introduces entropy theory as applied to hydraulic engineering. The remaining 
chapters are divided into six sections. The fi rst part, encompassing fi ve chapters, 
deals with the use of entropy for deriving velocity distributions. One-
dimensional velocity distributions are discussed in Chapter 2, which presents 
velocity distributions based on different constraints, or the specifi cation of infor-
mation. Chapter 3 presents two-dimensional velocity distributions in rectangular 
as well as arbitrary domains. Chapter 4 presents other well-known velocity dis-
tributions. Applications of velocity distributions are illustrated in Chapter 5. 
Velocity distributions in pipe fl ow are treated in Chapter 6. 

 Part 2, which contains three chapters, discusses sediment concentration 
and discharge. Chapter 7 treats grain size analysis and distribution. Sediment 
concentration and discharge in rivers and streams constitute the subject 
matter of Chapter 8. Sediment concentration in debris fl ow is presented in 
Chapter 9. 

 Hydraulic geometry constitutes the subject matter of Part 3, which contains 
two chapters. Combining entropy theory with the theory of minimum energy 
dissipation rate, Chapter 10 presents downstream hydraulic geometry. Chapter 
11 presents at-a-station hydraulic geometry. 

 Part 4 deals with stable channel design. Derivation of longitudinal channel 
profi les is given in Chapter 12. There is a vast network of channels in alluvial 
plains around the world. Design of alluvial channels takes on an added signifi -
cance and is discussed in Chapter 13. 

 Water fl ow and level monitoring constitute the subject matter of Part 5. 
Chapter 14 presents water level monitoring and evaluation. Rating curves are 
dealt with in Chapter 15. 

 Water distribution systems are presented in Part 6. Reliability of water 
distribution systems is analyzed in Chapter 16. The concluding chapter, 
Chapter 17, deals with the evaluation of water quality and wastewater treatment 
systems.  

  Acknowledgments 

 The subject matter discussed in the book draws from works of hundreds of 
investigators who have developed and applied entropy-related concepts in 
hydraulics and hydraulic engineering. Without their contributions, this book 
would not have been possible. I have tried to make my acknowledgments as 
specifi c as possible, and any omission on my part has been entirely inadvertent 
and I offer my apologies in advance. Over the years I have worked with a 
number of colleagues and students on entropy-based modeling in hydrology, 
hydraulics, and water resources engineering, and I have learned much from 
them. Several of my colleagues helped in different ways, including supplying 
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data and example problems. They are too many to mention by name. Neverthe-
less, I would particularly like to acknowledge Gustavo Marini from the Univer-
sity of Sannio, Benevento, Italy, for help with the 2-D velocity distributions 
discussed in Chapters 3 and 4; Tommaso Moramarco from the Institute of Hydro-
geological Protection Research, National Research Council, Perugia, Italy, for 
help with applications in Chapter 5; Emoke Imre from Szent Istvan University, 
Budapest, Hungary, for help with Chapter 7 on grain size distributions; S. Y. Cao 
from Sichuan University, Chengdu, China, for help with Chapter 13 on channel 
design; and J. L. Alfonso Segura from UNESCO-IHE Institute for Water Educa-
tion, Delft, Netherlands, for help with Chapter 14 on water level monitoring. 
Many of my graduate students, especially Huijuan Cui, Li Chao, and C. P. 
Khedun, helped with example problems and constructing fi gures and tables. I 
am grateful to each of them. 

 My brothers and sisters in India have been a continuous source of inspiration. 
My wife Anita, son Vinay, daughter-in-law Sonali, daughter Arti, and grandson 
Ronin have been most supportive and allowed me to work during nights, week-
ends, and holidays, often away from them. They provided encouragement, 
showed patience, and helped in myriad ways. Most importantly, they were 
always there whenever I needed them, and I am deeply grateful. Without their 
support and affection, this book would not have come to fruition. 

   Vijay P. Singh   
 College Station, Texas     
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1

    Chapter 1 

  Entropy Theory  

       In 1948, Claude Shannon formulated the concept of entropy as a measure of 
information or uncertainty. Almost a decade later, Jaynes ( 1957a, 1957b, 1958, 
1982, 2003 ) developed the principle of maximum entropy (POME) for deriving 
the least biased probability distributions subject to given information in terms 
of constraints, as well as the theorem of concentration for hypothesis testing. 
Kullback and Leibler ( 1951 ) introduced the concept of cross-entropy, which spe-
cializes in the Shannon entropy theory, and Kullback ( 1959 ) introduced the 
principle of minimum cross-entropy (POMCE), which includes POME as a 
special case. Lindley ( 1956, 1961 ) presented mutual information that is funda-
mental to multivariate analyses, selection of variables, fl ow of information, and 
design of networks. Together these concepts constitute what can now be referred 
to as the  entropy theory . Entropy has since been extensively applied in environ-
mental and water engineering, including geomorphology, hydrology, and 
hydraulics. Harmancioglu et al. ( 1992 ) and Singh and Fiorentino ( 1992 ) surveyed 
applications of entropy in water resources. Singh ( 1997, 2011 ) discussed the use 
of entropy in hydrology and water resources. New applications of entropy con-
tinue to unfold. This chapter introduces the concept of entropy and entropy 
theory and provides a snapshot of applications of the theory in hydraulic 
engineering. 
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2 Entropy Theory in Hydraulic Engineering

  1.1     Overview of This Volume 

 The concept of entropy and entropy theory is introduced in this chapter, and the 
subject matter of this book is organized into six main topics: fl ow velocity, sedi-
ment concentration and discharge, hydraulic geometry, channel design, water 
fl ow and monitoring, and water distribution systems. These topics illustrate the 
power and usefulness of the entropy concept and entropy theory. Chapters on 
velocity distributions, channel cross-section, longitudinal slope and profi le, sedi-
ment concentration and sediment discharge, channel design, and fl ow rating 
curves use entropy theory. Chapters on hydraulic geometry use only the prin-
ciple of maximum entropy, and the chapter on reliability analysis of water dis-
tribution systems uses only the entropy concept. Likewise, the chapter on water 
level monitoring networks uses different types of entropies. The chapter on 
water quality and wastewater treatment systems uses diversity index, Shannon 
entropy, and thermodynamic entropy.  

  1.2     Entropy Concept 

 Entropy is regarded as a measure of uncertainty or surprise (or sometimes even 
disorder or chaos), since these are different shades of information. Consider, for 
example, a discrete random variable  X  that takes on values  x  1 ,  x  2 , …,  x N   with 
probabilities  p  1 ,  p  2 , …,  p N  , respectively; i.e., each value of  X ,  x i  , represents an event 
with a corresponding probability of occurrence,  p i  , where  i   =  1, 2, …,  N . The 
occurrence of an event  x  i  provides a measure of information about the likelihood 
of that probability  p i   being correct (Batty  2010 ). If  p i   is very low, say 0.01, and if 
 x i   actually occurs, then there is a great deal of surprise as to the occurrence of  x i   
with  p i    =  0.01 because our anticipation of it would be highly uncertain. Con-
versely, if  p i   is very high, say, at 0.99, and if  x i   does actually occur, then there is 
hardly any surprise about the occurrence of  x i   where  p i    =  0.99 because our antici-
pation of it is quite certain. 

 Uncertainty about the occurrence of an event suggests that the random 
variable may take on different values. Information is gained by observing it 
only if there is uncertainty about the event. If an event occurs with a high 
probability, it conveys less information, and vice versa. Conversely, more infor-
mation is needed to characterize less probable or more uncertain events or to 
reduce uncertainty about the occurrence of such an event. In a similar vein, 
if an event is more certain to occur, its occurrence or observation conveys 
less information, and less information is needed to characterize it. This 
phenomenon suggests that the more uncertain the event, the more information 
it transmits or the more information is needed to characterize it. This means 
that there is a connection among entropy, information, uncertainty, and 
surprise. 
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Entropy Theory 3

  Example 1.1          Suppose that an event occurs with probability 1. Is there any uncer-
tainty about this event? What is the degree of surprise about the event? If there 
is another event whose probability of occurrence is close to 0 but it does actually 
occur, then what can be said about the uncertainty and degree of surprise about 
this event?  

  Solution     If an event occurs with probability 1, then it is a certain event, and there 
is no uncertainty associated with it. It does not correspond to a random value or 
it is not a manifestation of a random process. The degree of surprise in this case 
is zero. Conversely, the event whose probability of occurrence is close to 0 but 
it does occur, then the degree of surprise is enormously high because this is a 
highly uncertain event, i.e., its uncertainty is enormously high, and its occurrence 
provides enormously high information. If the probability of the event is indeed 
0, then that means that it cannot occur and it does not correspond to a random 
value or is not an outcome of a random process.  

  Consider as an example a random variable representing dam breaching. The 
dam breaching can take on many values. Consider an average return period of 
a breach as  T  years. If, say,  T   =  100 years, then the breach has a probability of 
occurrence as 1/ T   =  0.01. If this breach occurred, its occurrence would be a sur-
prise because it was not anticipated and was a highly uncertain event. To model 
such an event, a lot of observations or information are needed to reduce anticipa-
tory uncertainty. This kind of event contains a lot more uncertainty, and a lot 
more information is needed to reduce uncertainty. This phenomenon suggests 
that the anticipatory uncertainty of  x i   before the observation is a decreasing func-
tion of increasing probability  p ( x i  ) of its occurrence. Thus, it seems that informa-
tion varies inversely with probability  p , i.e., 1/ p . 

 Now the question arises: What can be said about the information when two 
independent events  x  and  y  occur with probability  p x   and  p y  ? The probability of 
the joint occurrence of  x  and  y  is  p x p y  . It would seem logical that the information 
to be gained from their joint occurrence would be the inverse of the probability 
of their occurrence, i.e., 1/( p x p y  ). This information, however, does not equal the 
sum of information gained from the occurrence of event  x , 1/ p x  , and the informa-
tion gained from the occurrence of event  y , 1/ p y  , i.e.,

  
1 1 1

p p p px y x y

≠ +       (1.1a)   

 Let there be a function  g (.). Then the left side of equation  (1.1a)  can be written 
as  g (1/( p x p y  )), and likewise the right side can be written as  g ((1/ p x  )  +  (1/ p y  )). 
Thus, this inequality of equation (1.a) can be expressed as

  g
p p

g
p px y x y

1 1 1⎛
⎝⎜

⎞
⎠⎟

= +
⎛
⎝⎜

⎞
⎠⎟

      (1.1b)   
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4 Entropy Theory in Hydraulic Engineering

 It is possible to choose the function  g  such that equation  (1.1b)  can be mathemati-
cally expressed as

  g
p p

g
p

g
px y x y

1 1 1⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

      (1.1c)   

 The only solution that seems to satisfy equation  (1.1c)  is the logarithmic function. 
Therefore, equation  (1.1c)  can be expressed as

  log log log
1 1 1

p p p px y x y

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

      (1.2)   

 Thus, one can summarize that the information gained from the occurrence of 
any event with probability  p  is log(1/ p )  =   − log  p . Tribus ( 1969 ) regarded  − log  p  
as a measure of uncertainty of the event occurring with probability  p  or a 
measure of surprise of the event occurring. This concept can be extended to a 
series of  N  events occurring with probabilities  p  1 ,  p  2 , …,  p N  , which then leads to 
the Shannon entropy, which is described in this chapter.  

  1.3     Entropy Theory 

 Entropy theory is comprised of four parts: (1) Shannon entropy, (2) the principle 
of maximum entropy (POME), (3) concentration theorem, and (4) the principle 
of minimum cross-entropy (POMCE). Each of these parts is now briefl y 
discussed. 

  1.3.1     Shannon Entropy 

 Consider a discrete random variable  X  that takes on values  x  1 ,  x  2 , …,  x N   with 
probabilities  p  1 ,  p  2 , …,  p N  , respectively, i.e., each value corresponds to an event. 
Then, equation  (1.2)  can be extended as

  log log log log
1 1 1 1

1 2 1 2p p p p p pN N…
�

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+ +
⎛
⎝⎜

⎞
⎠⎟

== −
=
∑ log pi
i

N

1

      (1.3)   

 Equation  (1.3)  expresses the information gained by the joint occurrence of  N  
events. One can write the average information as the expected value (or weighted 
average) of this series as

  H p pi i
i

N

= −
=
∑ log

1

      (1.4)  

where  H  is termed as entropy, defi ned by Shannon ( 1948 ). 
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Entropy Theory 5

 The concept of entropy is central to statistical physics and can actually be 
traced to Rudolf Clausius in the early nineteenth century. Later, Boltzmann 
and then Gibbs provided statistical interpretations of  H  as a measure of thermo-
dynamic entropy. Some investigators, therefore, designate  H  as Shannon–
Boltzmann–Gibbs entropy (see Papalexiou and Koutsoyiannis  2012 ). In this text, 
we will call it Shannon entropy. Shannon ( 1948 ) generalized equation  (1.4) , defi n-
ing entropy,  H , as

  H X H P K p x p xi i
i

N

( ) ( ) ( )log[ ( )]= = −
=
∑

1

      (1.5)  

where  H ( X ) is the entropy of  X :{ x  1 ,  x  2 , …,  x N  },  P :{ p  1 ,  p  2 , …,  p N  }is the probability 
distribution of  X ,  N  is the sample size, and  K  is a parameter whose value depends 
on the base of the logarithm used. If different units of entropy are used, then the 
base of the logarithm changes. For example, one uses bits for base 2, Napier for 
base  e , and decibels for base 10. 

 In general,  K  can be taken as unity, and equation  (1.5) , therefore, becomes

  H X H P p x p xi i
i

N

( ) ( ) ( )log[ ( )]= = −
=
∑

1

      (1.6)   

  H ( X ), given by equation  (1.6) , represents the information content of random 
variable  X  or its probability distribution  P ( x ). It is a measure of the amount of 
uncertainty or indirectly the average amount of information content of a single 
value of  X . Equation  (1.6)  satisfi es a number of desiderata, such as continuity, 
symmetry, additivity, expansibility, and recursivity. Shannon and Weaver ( 1949 ), 
Kapur ( 1989 ), and Singh ( 2013 ) have given a full account of these properties and 
are, therefore, not repeated here. 

 If  X  is a deterministic variable, then the probability that it will take on a 
certain value is 1, and the probabilities of all other alternative values are zero. 
Then, equation  (1.6)  shows that  H ( X )  =  0, which can be viewed as the lower limit 
of the values that the entropy function may assume. This notion corresponds to 
the absolute certainty, i.e., that there is no uncertainty and that the system is 
completely ordered. Conversely, when all instances of  x i   are equally likely, i.e., 
the variable is uniformly distributed ( p i    =  1/ N ,  i   =  1, 2, …,  N ), then equation  (1.6)  
yields

  H X H X N( ) ( ) logmax= =       (1.7)   

 This result shows that the entropy function attains a maximum, and equation 
 (1.7)  thus defi nes the upper limit. This result also reveals that the outcome has 
the maximum uncertainty. Equation  (1.4)  and in turn equation  (1.7)  show that 
the larger the number of events, the larger the entropy measure. This notion is 
intuitively appealing because more information is gained from the occurrence of 
more events, unless, of course, events have zero probability of occurrence. The 
maximum entropy occurs when the uncertainty is maximum or the disorder is 
maximum. 
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6 Entropy Theory in Hydraulic Engineering

 One can now state that entropy of any variable always assumes positive 
values within limits defi ned as

  0 ≤ ≤H x N( ) log       (1.8a)   

 It is logical to say that many probability distributions lie between these two 
extremes and their entropies between these two limits. For the special case of  
N   =  2, the entropy measured in bits is

  0 1≤ ≤H p( )       (1.8b)   

 As an example, consider a random variable  X , which takes on a value of 1 
with a probability  p  and 0 with a probability  q   =  1  −   p . Taking different values of 
 p , one can plot  H ( p ) as a function of  p , as shown in Fig.  1-1 . It is seen that for 
 p   =  ½,  H ( p )  =  1 bit is the maximum. 

   Example 1.2          Consider a random variable  X  taking on three values with prob-
abilities  p  1 ,  p  2 , and  p  3 . Using different combinations of these probabilities, as 
shown in Table  1-1 , compute entropy and determine the combination for which 
the entropy is maximum. Tabulate the entropy values for different combinations 
of probabilities and plot entropy as a function of  p  1 ,  p  2 , and  p  3 .   

  Solution     For three events, the Shannon entropy can be written as

  H X H P p x p xi i
i

( ) ( ) ( )log[ ( )]= = −
=
∑

1

3

   

    For different combinations of the values of  p  1 ,  p  2 , and  p  3 , the Shannon 
entropy is computed as shown in Table  1-1 , and then it is plotted as shown in 
Fig.  1-2 .   

  Figure 1-1      Entropy as a function of probability.    
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Entropy Theory 7

 p  1 p 2  p  3  H (X) [Decibels]

0.05 0.05 0.9 0.171

0.1 0.1 0.8 0.278

0.1 0.2 0.7 0.348

0.1 0.3 0.6 0.390

0.2 0.2 0.6 0.413

0.2 0.3 0.5 0.447

0.3 0.3 0.4 0.473

0.333 0.333 0.333 0.477

0.4 0.3 0.3 0.473

0.5 0.3 0.2 0.447

0.6 0.2 0.2 0.413

0.7 0.2 0.1 0.348

0.8 0.1 0.1 0.278

0.9 0.05 0.05 0.171

 Table 1-1      Values of probabilities  p  1 ,  p  2 , and  p  3  of values  x  1 ,  x  2 , and  x  3  that a random 
variable takes on, and corresponding entropy values.  

  Figure 1-2      Entropy of a distribution  P : { p  1 ,  p  2 ,  p  3 } as a function of probabilities. 
 Note:    p  1   +   p  2   +   p  3   =  1.    
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8 Entropy Theory in Hydraulic Engineering

  The next question is, What happens to entropy if the random variable is 
continuous? Let  X  be a continuous random variable within a certain range and 
a probability density function  f ( x ). Then, the range within which the continuous 
variable assumes values can be divided into  N  intervals of width  Δ  x . One can 
then express the probability that a value of  X  is within the  n th interval as

  p P x
x

X x
x

f x dxn n n

x x

x x

n

n

= − ≤ ≤ +⎛
⎝

⎞
⎠ =

−

+

∫
Δ Δ

Δ

Δ

2 2 2

2

( )
( / )

( / )

      (1.9)   

 For relatively small values of  Δ  x , probability  p n   can be approximated as

  p f x xn n≅ ( )Δ       (1.10)   

 The marginal entropy of  X  expressed by equation  (1.6)  for a given class 
interval  Δ  x  can be written as

  H X x p p f x f x x xn n
n

N

n n
n

N

( ; ) log ( )log[ ( ) ]Δ Δ Δ≅ − = −
= =

∑ ∑
1 1

      (1.11)   

 This approximation would have an error whose sign would depend on the form 
of the function  −  f ( x ) log  f ( x ). To reduce this approximation error, the  Δ  x  interval 
is chosen to be as small as possible. Let  p i    =   p ( x i  ) Δ  x . Let the interval size  Δ  x  tend 
to zero. Then, equation  (1.11)  can be expressed as

  H X x p x x p x x
x

i i
i

N

( ; ) lim ( ) log[ ( ) ]Δ Δ Δ
Δ

= −
→

=
∑

0
1

      (1.12)   

 Equation  (1.12)  can be written as

  H X x p x x p x p x x
x

i i
i

N

x
i( ; ) lim ( ) log[ ( )] lim ( )ln( )Δ Δ Δ Δ

Δ Δ
= − −

→
=

→∑
0

1
0

xx
i

N

=
∑

1

      (1.13a)   

 Equation  (1.13a)  can also be extended to the case where  Δ  x i   varies with  i , and it 
shows that the discrete entropy of equation  (1.13a)  increases without bound. 
Equation  (1.13a)  is also written as

  H X x p x x p x p x x xi i
i

N

i
i

N

( ; ) ( ) log[ ( )] ( )ln( )Δ Δ Δ Δ= − −
= =
∑ ∑

1 1

      (1.13b)   

 For small values of  Δ  x , equation  (1.13a)  converges to

  H X x f x f x dx p x x x
x

i
i

N

( ; ) ( )ln ( ) lim ( )ln( )Δ Δ Δ
Δ

= − −
∞

→
=

∫ ∑
0

0
1

      (1.14)   

 Equation  (1.14)  yields

  H X x f x f x dx x
x

( ; ) ( )ln ( ) lim lnΔ Δ
Δ

= − −
∞

→∫
0

0
      (1.15)   
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Entropy Theory 9

 Equation  (1.15)  is also written as

  H X x f x f x dx x( ; ) ( )log ( ) logΔ Δ= − −
∞

∫
0

      (1.16)   

 When we move  − log Δ  x  on the right side, equation  (1.16)  can, upon discretization, 
be written as

  H X x x p
p

x
f x f x xn

n

n

N

n n
n

N

( ; ) log log ( )log ( )Δ Δ
Δ

Δ+ ≅ − ⎛
⎝⎜

⎞
⎠⎟ = −

= =
∑ ∑

1 1

      (1.17)   

 The right side of equation  (1.17)  can be written as

  H X f x f x dx f x dF x E f x( ) ( )log ( ) log[ ( )] ( ) [ log ( )]= − = − = −
∞ ∞

∫ ∫
0 0

      (1.18)   

 Equation  (1.17)  is also referred to as spatial entropy if  X  is a space dimension 
and equation  (1.18)  is the commonly used expression for continuous Shannon 
entropy. Here  F ( x ) is the cumulative probability distribution function of  X ,  E [.] 
is the expectation of [.], and  H ( X ) is a measure of the uncertainty of random 
variable  X  of the system. It can also be understood as a measure of the amount 
of information required, on average, to describe the random variable. Thus, 
entropy is a measure of the amount of uncertainty represented by the probability 
distribution or of the lack of information about a system represented by the 
probability distribution. Sometimes it is referred to as a measure of the amount 
of chaos characterized by the random variable. If complete information is avail-
able, entropy  =  0, that is, there is no uncertainty; otherwise, it is greater than zero. 
Thus, the uncertainty can be quantifi ed using entropy taking into account all 
different kinds of available information. 

  Example 1.3          Consider a random variable  X   ∈  (0,  ∞ ), which is described by a 
gamma distribution whose probability density function (PDF) can be expressed 
as  f ( x )  =  ( x / θ )  k    − 1 exp( −  x / θ ){1/[ θ  Γ ( k )]}, where  k  and  θ  are parameters, and  Γ ( k )  =  
( k   −  1)!. For illustrative purposes, take  k   =  5,  θ   =  1,  X   =  (0, 10). The entropy theory 
shows that the gamma distribution can be derived by specifying the constraints 
 E [ x ] and  E [log  x ], where  E  denotes the expectation, which are obtained from 
the data. It also shows that    k xθ =     and  Ψ( ) ln( ) lnk k x− =    , where  Ψ ( k ) is the di-
gamma function, which is defi ned as the logarithmic derivative of the gamma 
function, as

  Ψ Γ Γ
Γ

( ) log ( )
( )
( )

k
d
dk

k
k
k

= = ′
      

and can be approximated as

  Ψ( ) log( )k k
k k k k

O
k

= − − + − + ⎛
⎝

⎞
⎠

1
2

1
12

1
120

1
252

1
2 4 6 8    
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10 Entropy Theory in Hydraulic Engineering

    Select an interval size for discrete approximation and compute entropy using the 
discrete approximation as well as the continuous form. Then, use different inter-
val sizes and repeat the calculations; determine the effect of the choice of interval 
size.  

  Solution     First, consider the continuous form. Then, substituting the gam-
ma PDF  f ( x )  =  ( x / θ )  k    − 1 exp( −  x / θ ){1/[ θ  Γ ( k )]} in the continuous form of entropy, 

H X f x f x dx( ) ( )log[ ( )]= −
−∞

+∞

∫    , one obtains  H X k k k x x( ) ln ln ( ) ( )ln ( / )= + + − +θ θΓ 1    . 

Substituting  x k= θ     and  ln ( ) ln( )x k k= −Ψ    , the entropy equation becomes the fol-
lowing:

  
H X k k k k k k( ) ln ln ( ) ( )[ ln ]

ln( ) ( )( .
= + + + − ( ) −
= + + − − −

θ Γ Ψ1
5 0 24 1 5 1 506 11 609 7 766. ) .= Napier

   

    Now consider discrete entropy, with interval  Δ  x . The continuous entropy can 
be written as

  H X f x f x dx f x x f x
x
x

pi i
i

N

i( ) ( )log ( ) ( ) ln ( ) l= − = − ⎡
⎣⎢

⎤
⎦⎥

= −
∞

=
∫ ∑
0 1

Δ Δ
Δ

nn
p
x
i

i

N

Δ
⎡
⎣⎢

⎤
⎦⎥=

∑
1

      

which can also be written as

  H x p p xi i
i

N

( ) ln ln= − +
=
∑

1

Δ    

    Using this equation, entropy is computed for different interval sizes, as given in 
Table  1-2 , which shows that the entropy value signifi cantly depends on the inter-
val size.     

  1.3.2     Principle of Maximum Entropy 

 It is common that some information is available on the random variable  X . The 
question arises, What should be the probability density function of  X  that is 
consistent with the given information? The chosen probability distribution 
should then be consistent with the given information. Laplace ’ s principle 

  Δ x  N  H (x) [Napier]

1 10 2.046

0.1 100 4.313

0.01 1,000 6.571

0.005 2,000 7.251

0.001 10,000 8.830

 Table 1-2      Values of entropy for different interval sizes.  
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Entropy Theory 11

of insuffi cient reason says that all outcomes of an experiment on the random 
variable are equally likely unless there is information to the contrary. The prin-
ciple of maximum entropy (POME) states that the probability distribution 
should be selected in such a way that it maximizes entropy subject to the given 
information, i.e., POME takes into account all of the given information and at 
the same time avoids consideration of any information that is not given. 
This principle is consistent with Laplace ’ s principle. In other words, for given 
information, the best possible distribution that fi ts the data would be the one 
with the maximum entropy, because it contains the most reliable assignment of 
probabilities. Because the POME-based distribution is favored over those with 
less entropy among those that satisfy the given constraints, according to the 
Shannon entropy as an information measure, entropy defi nes a kind of measure 
of the space of probability distributions. Intuitively, distributions of higher 
entropy represent more disorder, are smoother, are more probable, are less pre-
dictable, or assume less. The POME-based distribution is maximally noncom-
mittal with regard to the missing information and is least biased. Maximizing 
the entropy given by equation  (1.4)  leads to the Boltzmann–Gibbs distribution 
(Papalexiou and Koutsoyiannis  2012 ) for describing the distribution of particles 
in a physical context.  

  1.3.3     Concentration Theorem 

 Entropy theory permits us to derive a probability density function (PDF) of any 
variable for specifi ed constraints, but more than one PDF may satisfy the given 
constraints. POME states that the PDF that has the maximum entropy must be 
chosen. To measure the bias in this choice, the concentration theorem, formulated 
by Jaynes ( 1958 ), can be used. Consider a random variable  X :{ x  1 ,  x  2 , …,  x n  } that 
has a probability mass function (PMF)  P :{ p  1 ,  p  2 , …,  p n  }. Each  x i   is a possible 
outcome. As an illustration, consider a die that has six faces, any one of which 
can show up when it is thrown. In a random experiment involving  N  trials, there 
are only  n   =  6 possible outcomes. The probability of any face appearing is deter-
mined by the number of times (say  m ) that that face appears divided by the total 
number of trials  N , that is  p i    =   m i   /  N  where  i  denotes the  i th outcome or face. 
In hydraulic terms, the random variable can be, say, mudslides in a given area 
in the month of January. It is assumed that mudslides are categorized, based on 
size and intensity, into four types (say, small, medium, large, and very large). For 
an area susceptible to mudslides, if we have 50 years of record with 50 mudslides 
in months of January, then   N    =  50,  n   =  4, and  m i   is computed by counting the 
number of mudslides of a given type, and  p i   by dividing  m i   by the total number 
of mudslides. Using entropy theory, one can determine the probability distribu-
tion of mudslides, subject to given constraints. 

 The concentration theorem states that the entropy  H ( X ) of  X  or the entropy 
of its PMF is in the range given as

  H H H x Hmax max( )− ≤ ≤Δ       (1.19)  
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12 Entropy Theory in Hydraulic Engineering

where  Δ  H  is the change in entropy, and  H  max  is the maximum entropy that can 
be obtained by using POME as

  H Z ak k
k

K

max log( )= +
=

∑λ
1

      (1.20)  

where  K  is the number of constraints;  a k   is the  k th constraint function specifi ed 
to obtain  f ( x );  λ   k  ,  k   =  0, 1, 2, …,  K , are the Lagrange multipliers;  Z  is the potential 
function, which is a function of the Lagrange multipliers; and  Z   =  exp( λ  0 ), 
 λ  0   =   λ  0 ( λ  1 ,  λ  2 , …,  λ   K  ). Jaynes ( 1982 ) showed that twice the product of the number 
of trials and the entropy change, 2 N  Δ  H , is asymptotically distributed as chi-
square ( χ  2 ) with  N   −   K   −  1 degrees of freedom, independently of the nature of 
constraints. 

 For the random experiment where there are  n  possible outcomes, meaning  n  
probabilities of their occurrence, and  N  different realizations or trials, one can 
determine the concentration of these probabilities near the upper bound  H  max  
with the use of the concentration theorem. Denoting the critical value of  χ  2  for 
 N   −   K   −  1 degrees of freedom at the specifi ed signifi cance level ( α ) as χ αc

2 ( )    , 2 N  Δ  H  
is given in terms of the upper tail area 1  −   F  as

  2 12N H FcΔ = −χ ( )       (1.21)   

 where  F  corresponds to the tail area of the PMF. If  F   =  0.95, then  α   =  1  −  0.95  =  
0.05. Equation  (1.21)  yields the percentage chance that the observed probability 
distribution will have an entropy outside the interval obtained from equation 
 (1.19) . Jaynes ( 1982 ) showed that for large  N , the overwhelming majority of all 
possible distributions possess entropy values that would be near  H  max . One can 
compute  H  max  for a known PMF and the value of  χ  2  for a given signifi cance level 
(say, 5%) from  χ  2  tables. Then, one computes the value of 2 N  Δ  H  from equation 
 (1.21) , which yields  Δ  H . Using equation  (1.19) , one determines the range in which 
95% of the values lie, and if they do then this would mean that the vast majority 
of realizations would follow the PDF known from the use of POME.  

  1.3.4     The Principle of Minimum Cross-Entropy 

 On the basis of intuition, experience, or theory, a random variable may be 
assumed to have an a priori probability distribution. Then, the Shannon entropy 
is maximum when the probability distribution of the random variable is the one 
that is as close to the a priori distribution as possible. This principle is referred 
to as the principle of minimum cross-entropy (POMCE), which minimizes the 
Bayesian entropy (Kullback and Leibler  1951 ). This method is equivalent to 
maximizing the Shannon entropy. 

 The Laplace principle of insuffi cient reason states that all outcomes of an 
experiment should be considered equally likely unless there is information to 
the contrary. A random variable has a probability distribution, called an a priori 
probability distribution, which, on the basis of intuition, experience, or theory, 
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may be determined. If some information on the random variable is available that 
can be encoded in the form of constraints, then the probability distribution of 
the random variable can be derived by maximizing the Shannon entropy subject 
to these constraints. The a priori probability distribution has an entropy, and the 
derived distribution has an entropy. Then the objective is to make these two 
entropy values as close as possible. This phenomenon suggests that the derived 
probability distribution of the random variable should be the one that is as close 
to the a priori distribution as possible. This principle is referred to as the principle 
of minimum cross-entropy (POMCE), which minimizes the Bayesian entropy 
(Kullback and Leibler  1951 ). This method is equivalent to maximizing the 
Shannon entropy.   

  1.4     Types of Entropy 

  1.4.1     Information 

 The entropy of a probability distribution can be regarded as a measure of infor-
mation or a measure of uncertainty. The amount of information obtained when 
observing the result of an experiment can be considered numerically equal to 
the amount of uncertainty as regards the outcome of the experiment before con-
ducting it. There are different types of entropy or measures of information: 
marginal entropy, conditional entropy, joint entropy, transinformation, and inter-
action information. The marginal entropy is the entropy of a single variable and 
is defi ned by equation  (1.18)  if the variable is continuous or equation  (1.6)  if the 
variable is discrete. Other types of entropy are defi ned when more than one 
variable is considered. 

 Entropy  H ( X ) permits us to measure information, and for that reason, it is 
also referred to as informational entropy. Intuitively, uncertainty can be consid-
ered as a measure of surprise, and information reduces uncertainty, or surprise, 
for that matter. Consider a set of values of a random variable. If nothing is known 
about the variable, then its entropy can be computed, assuming that all values 
are equally likely. Let this entropy be denoted as  H I  . Then some information 
becomes available about the random variable. Then its probability distribution 
is derived using POME and its entropy is computed and it is denoted as  H O  . The 
difference between these two entropy values is equal to the reduction in uncer-
tainty  H ( X ) or information  I , which can be expressed as

  I H HI O= −       (1.22)   

 If an input–output channel or transmission conduit is considered, then  H I   is 
the entropy (or uncertainty) of input (or message sent through a channel), and 
 H O   is the entropy (or uncertainty) of output (or message received). Were there 
no noise in the channel, the output (the message received by the receiver or 
receptor) would be certain as soon as the input (message sent by the emitter) 
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14 Entropy Theory in Hydraulic Engineering

was known. This situation means that the uncertainty in output  H O   would be 0 
and  I  would be equal to  H I  .  

  1.4.2     Relative Entropy and Relative Redundancy 

 Relative entropy  H *, also called dimensionless entropy, can be defi ned as the 
ratio of entropy  H  to the maximum entropy  H  max :

  H
H

H
*

max

=       (1.23)   

 Comparing  H  with  H  max , a measure of information can be constructed as

  I H H N p pi i
i

N

= − = +
=
∑max log log

1

      (1.24a)   

 Recalling that  H  max  is obtained when all probabilities are of the same value, i.e., 
all events occur with the same probability, equation  (1.24a)  can be written as

  I p
p

N
p

p
q

i
i

i

N

i
i

ii

N

= ⎡
⎣⎢

⎤
⎦⎥

=
⎛
⎝⎜

⎞
⎠⎟= =

∑ ∑log
/

log
11 1

      (1.24b)  

where  q i    =  1/ N . In equation  (1.24b) , { q i  } can be considered as a prior distribution, 
and { p i  } as a posterior distribution. Normalizing  I  by  H  max , equation  (1.24a)  
becomes

  R
I

H
H

H
= = −

max max

1       (1.25)  

where  R  is designated as relative redundancy varying between 0 and 1.  

  1.4.3     Multivariate Entropy 

 Now consider two random variables  X  and  Y  that are not independent. Then, 
the marginal entropy,  H ( X ), given by equation  (1.6) , can be defi ned as the poten-
tial information of variable  X ; this is also the information of its underlying prob-
ability distribution. For two variables, the joint entropy  H ( X ,  Y ) is the total 
information content contained in both  X  and  Y , i.e., it is the sum of marginal 
entropy of one of the variables and the uncertainty that remains in the other 
variable when a certain amount of information that it can convey is already 
present in the fi rst variable, as shown in Fig.  1-3 . Mathematically, the joint 
entropy of  X  and  Y  can be defi ned as

  H X Y p x y p x yi j i j
j

M

i

N

( , ) ( , )log ( , )= −
==
∑∑

11
      (1.26a)  
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Entropy Theory 15

where  p ( x i  ,  y j  ) is the joint probability of  X   =   x i   and  Y   =   y j  ;  N  is the number of 
values that  X  takes on; and  M  is the number of values that  Y  takes on. Equation 
 (1.26a)  can be generalized to any number of variables as

 H X X X p p p p p p pn i j nn i j nn
n

n

j

n

( , , , ) ( , , , )log ( , , , )1 2 1 2 1 2
1

… … … …= −
==

∑
111

21 n

i

n

∑∑
=

      (1.26b)     

  1.4.4     Conditional Entropy 

 Now consider the conditional entropy for two variables denoted as  H ( X | Y ), as 
shown in Fig.  1-3 . This is a measure of the information content of  X  that is not 
contained in  Y , or entropy of  X  given the knowledge of  Y  or the amount of 
information that still remains in  X  even if  Y  is known. Similarly, one can defi ne 
 H ( X | Y ). The conditional entropy  H ( X | Y ) can be expressed mathematically as

  H X Y p x y p x yi j i j
j

M

i

N

( ) ( , )log ( )= −
==
∑∑

11
      (1.27)  

where  p ( x i  | y j  ) is the conditional probability of  X   =   x i   conditional on  Y   =   y j  . 
Equation  (1.27)  can be easily generalized to any number of variables. Consider 
 n  variables denoted as ( X  1 ,  X  2 , …,  X n  ). Then the conditional entropy can be 
written as

  
H X X X X p x x xn n i i n

n

NN

i

i

n

i

[( , , , ) ] ( , , , )

lo

( )1 2 1 1 2 1
1 1

11

… … …− −= −
−

−

∑∑
gg[ ( , , , )]. ( )p x x x xi i in n1 2 1… −

      (1.28)  

or

  H X X X X H X X X X H Xn n n n n[( , , , ) ] ( , , , , ) ( )1 2 1 1 2 1… …− −= −       (1.29)  

where  N i   is the number of values  X i   takes on. 

  Figure 1-3       H ( X ): Marginal entropy of  X ;  H ( Y ): marginal entropy of  Y ;  T ( X ,  Y ): 
information common to  X  and  Y ;  H ( X | Y ): conditional entropy or information 

only in  X ;  H ( Y | X ): conditional entropy or information only in  Y ; and  H ( X ,  Y ): 
total information in  X  and  Y  together.    

T(X, Y) H(Y |X)H(X |Y)

H(X) H(Y)

H(X, Y)
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16 Entropy Theory in Hydraulic Engineering

 It may be noted that conditional entropy  H ( X | Y ) can also be used as an 
indicator of the amount of information loss during transmission, meaning the 
part of  X  that never reaches  Y . Conversely,  H ( X | Y ) represents the amount of 
information received as noise, that is, this part was never sent by  X  but was 
received by  Y . Clearly, both of these quantities must be positive.  

  1.4.5     Transinformation 

 The mutual entropy (information) between  X  and  Y , also called  transinformation , 
 T ( X ,  Y ), can be defi ned as the information content of  X  that is contained in  Y . In 
other words, it is the difference between the total entropy of  X  and  Y  and the 
sum of entropy of  X  and entropy of  Y . This is the information repeated in both 
 X  and  Y , and it defi nes the amount of uncertainty that can be reduced in one of 
the variables when the other variable is known. It is also interpreted as the reduc-
tion in the original uncertainty of  X , due to the knowledge of  Y . 

 The information transmitted from variable  X  to variable  Y  is represented by 
the mutual information  T ( X ,  Y ) and is given (Lathi  1969 ) as

  T X Y H X H X Y( , ) ( ) ( )= −       (1.30)   

 Equation  (1.30)  can be generalized as

 T X X X X H X X X H X X X Xn n n n n[( , , , ); ] ( , , , ) [( , , , ) ]1 2 1 1 2 1 1 2 1… … …− − −= −       (1.31)   

 For computing, equation  (1.30)  can be expressed as

  T X Y p x y
p x y

p x
i j

i j

iji

( , ) ( , )log
( )

( )
= ∑∑       (1.32a)  

or as the expected value

  T X Y E
p x y

p x p y
p x y

p x y

p x
i j

i j
i j

i j( , ) log
( , )

( ) ( )
( , )log

( , )
(

=
⎡

⎣
⎢

⎤

⎦
⎥ =

ii jji p y) ( )∑∑       (1.32b)   

  T ( X ,  Y ) is symmetric, i.e.,  T ( X ,  Y )  =   T ( Y ,  X ), and is nonnegative. A zero value 
occurs when two variables are statistically independent so that no information 
is mutually transferred, that is, T ( X ,  Y )  =  0 if  X  and  Y  are independent. When two 
variables are functionally dependent, the information in one variable can be fully 
transmitted to another variable with no loss of information at all. Subsequently, 
 T ( X ,  Y )  =   T ( X )  =   T ( Y ). For any other case, 0  ≤   T ( X ,  Y )  ≤   H ( X )  =   H ( Y ). Larger values 
of  T  correspond to greater amounts of information transferred. Thus,  T  is an 
indicator of the capability of the information transmission and the degree of 
dependency of two variables. Transinformation or mutual information measures 
information transferred among information emitters (predictor variables) and 
the information receivers (predicted variables). This fact means that the informa-
tion contained in different variables can be inferred, to some extent, from the 
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Entropy Theory 17

information in other variables. Mutual information is used for measuring the 
inferred information or, equivalently, for information transmission. Entropy and 
mutual information have advantages over other measures of information, for 
they provide a quantitative measure of (a) the information in a variable, (b) the 
information transferred and information lost during transmission, and (c) a 
description of the relationship among variables based on their information trans-
mission characteristics. 

  Example 1.4          Consider data on monthly mean stream fl ow at three stations (say 
 A ,  B , and  C ) for a river in Texas. The data are given in Table  1-3 . Compute mar-
ginal entropies of stations  A ,  B , and  C . Then, compute conditional entropies, 
 H ( A  |  B ), ( B  |  C ), and ( A  |  C ). Then, compute joint entropies  H ( A ,  B ),  H ( B ,  C ), and 
 H ( A ,  C ). Also, compute transinformation  T ( A ,  B ),  T ( B ,  C ), and  T ( A ,  C ).   

  Solution     Different entropies are computed as follows. 

  (1)   Computation of marginal entropy 
 To illustrate the steps for computaion, take station  A  as an example. By dividing 
the range of stream fl ow into fi ve equal-sized intervals, the contigency table can 
be constructued as shown in Table  1-4 . 

  Then the marginal entropy for station  A  can be computed as

  
H A p x p xi i

i

N

( ) ( )log [ ( )]

. log . . log .

= −

= − × − ×
=
∑ 2

1

2 20 383 0 383 0 433 0 4333 0 033 0 033
1 7418

2− − ×
=

… . log .
. bits

   

    Similarly, for station  B  the contigency table can be constructed as shown in 
Table  1-5 . 

  The marginal entropy for station  B  can be obtained as

  
H B p x p xi i

i

N

( ) ( )log [ ( )]

. log . . log .

= −

= − × − ×
=
∑ 2

1

2 20 467 0 467 0 300 0 3000 0 050 0 050
1 8812

2− − ×
=

… . log .
. bits

   

    The contigency table for station  C  is shown in Table  1-6 . From the contingency 
table, the marginal entropy for station  C  is obtained as

  
H C p x p xi i

i

N

( ) ( )log [ ( )]

. log . . log .

= −

= − × − ×
=
∑ 2

1

2 20 750 0 750 0 150 0 1550 0 017 0 017
1 1190

2− − ×
=

… . log .
. bits
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Year Month  A  B  C Year Month  A  B  C 

2000 1 61.21 2.54 6.86 2002 7 90.68 73.15 416.56

2000 2 40.64 8.13 45.97 2002 8 25.65 16.00 17.27

2000 3 122.68 22.10 15.75 2002 9 29.72 32.78 144.78

2000 4 97.54 18.80 26.16 2002 10 140.72 124.71 198.12

2000 5 179.83 23.88 80.52 2002 11 99.82 13.21 23.88

2000 6 110.49 120.65 109.22 2002 12 125.22 26.16 37.34

2000 7 12.45 12.45 7.87 2003 1 18.54 4.06 19.05

2000 8 4.06 0.51 7.11 2003 2 189.23 42.16 45.21

2000 9 62.23 16.51 48.00 2003 3 51.56 35.31 41.15

2000 10 59.69 109.47 185.67 2003 4 30.48 11.68 4.06

2000 11 347.98 84.07 140.46 2003 5 56.64 38.86 23.62

2000 12 137.16 14.73 34.54 2003 6 123.95 148.34 112.27

2001 1 120.14 30.48 64.77 2003 7 111.25 16.00 182.12

2001 2 104.90 36.83 30.73 2003 8 39.37 59.18 46.23

2001 3 175.01 33.27 59.44 2003 9 90.17 68.83 119.38

2001 4 14.48 14.73 39.62 2003 10 93.47 91.69 66.29

2001 5 89.15 60.20 72.39 2003 11 116.33 20.57 23.11

2001 6 336.55 5.84 22.61 2003 12 58.93 0 1.52

2001 7 41.66 12.45 25.15 2004 1 110.24 35.81 57.91

2001 8 117.35 70.10 92.71 2004 2 156.97 48.51 44.70

2001 9 168.66 52.32 67.31 2004 3 75.95 48.26 95.25

2001 10 103.89 21.84 43.43 2004 4 131.06 61.21 176.53

2001 11 72.39 77.98 126.49 2004 5 105.16 22.86 31.24

2001 12 144.53 4.83 34.80 2004 6 212.34 105.41 232.16

2002 1 49.78 10.67 6.60 2004 7 54.10 62.23 32.26

2002 2 57.91 30.23 6.10 2004 8 105.66 119.38 59.44

2002 3 82.55 41.91 27.69 2004 9 50.04 37.08 76.20

2002 4 59.44 9.40 60.45 2004 10 179.07 150.37 77.72

2002 5 101.85 32.00 50.55 2004 11 249.68 159.00 142.24

2002 6 104.65 41.15 50.29 2004 12 66.80 10.41 5.84

 Table 1-3      Streamfl ow observations.  
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Station  A 

Interval 4.06  ∼  72.84 72.84  ∼  141.62 141.62  ∼  210.40 210.40  ∼  279.18 279.18  ∼  347.96

Counts 23 26 7 2 2

Probability 0.383 0.433 0.117 0.033 0.033

 Table 1-4      Contingency table for station  A  in Example  1.4 .  

Station  B 

Interval 0  ∼  31.80 31.80  ∼  63.60 63.60  ∼  95.40 95.40  ∼  127.20 127.20  ∼  159.00

Counts 28 18 6 5 3

Probability 0.467 0.300 0.100 0.083 0.050

 Table 1-5      Contingency table for station  B  in Example  1.4 .  

Station  C 

Interval 1.52  ∼  84.53 84.53  ∼  167.54 167.54  ∼  250.55 250.55  ∼  333.56 333.56  ∼  416.57

Counts 45 9 5 0 1

Probability 0.750 0.150 0.083 0.000 0.017

 Table 1-6      Contingency table for station  C  in Example  1.4 .  

  (2)   Computation of conditional entropy 
 For illustraton,  H ( A  |  B ) is taken as an example. First, the joint contigency table is 
constructed as shown in Table  1-7 . 

  From the defi nition of conditional entropy

  H A B p A B
p A B

p B
i j

i j

jj

M

i

N

( ) ( , )log
( , )

( )
= −

==
∑∑ 2

11
   

    It can be seen that the marginal distribution of streamfl ow at station  B  is required. 
The marginal probability distribution of streamfl ow at station  B  can be obtained 
by marginalizing out the marginal probability distribution of streamfl ow 
at station  A  from the bivariate contingency table. The results are shown in 
Table  1-8 . 

  The last row corresponds to the marginal probability distribution of stream-
fl ow at station  B . Take the fi rst entry in the shaded row as an example. It is ob-
tained by summing up all elements of the fi rst column in the bivariate contin-
gency table, i.e.,

  0 467 0 250 0 167 0 033 0 000 0 017. . . . . .= + + + +    
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Contingency Table of Counts

Station  B 

  0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 15 6 1 1 0

72.84  ∼  141.62 10 8 4 3 1

141.62  ∼  210.40 2 4 0 0 1

210.40  ∼  279.18 0 0 0 1 1

279.18  ∼  347.96 1 0 1 0 0

Contingency Table of Probability

Station  B 

  0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 0.520 0.100 0.017 0.017 0.000

72.84  ∼  141.62 0.167 0.133 0.067 0.050 0.017

141.62  ∼  210.40 0.033 0.067 0.000 0.000 0.017

210.40  ∼  279.18 0.000 0.000 0.000 0.017 0.017

279.18  ∼  347.96 0.017 0.000 0.017 0.000 0.000

 Table 1-7      Joint contingency table for stations  A  and  B  in Example  1.4 .  

    Using the defi nition of conditional entropy,  H ( A  |  B ) can be computed as

  

H A B p A B
p A B

p B
i j

i j

jj

M

i

N

( ) , log
,

. log
.

= − ( ) ( )
( )

= − ×

==
∑∑ 2

11

20 250
0 2500
0 467

0 167
0 167
0 467

0 017
0 017
0 467

0 000

2 2
.

. log
.
.

. log
.
.

.

− × − − ×

−

…

…

×× − × − − ×log
.
.

. log
.
.

. log
.
.

2 2 2
0 000
0 050

0 017
0 017
0 050

0 000
0 000
0 0

…
550

1 4575= . bits

   

    Similarly, the joint contingency table for stations  B  and  C  is constructed as shown 
in Table  1-9 . 

  The marginal probability distribution of streamfl ow at station  C  can be ob-
tained by marginalizing out the probability distribution of streamfl ow at station 
 B . The results are presented in the last row of Table  1-10 . 
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Station  B 

  0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 0.250 0.100 0.017 0.017 0.000

72.84  ∼  141.62 0.167 0.133 0.067 0.050 0.017

141.62  ∼  210.40 0.033 0.067 0.000 0.000 0.017

210.40  ∼  279.18 0.000 0.000 0.000 0.017 0.017

279.18  ∼  347.96 0.017 0.000 0.017 0.000 0.000

0.467 0.300 0.100 0.083 0.050

 Table 1-8      Joint probability of stations  A  and  B  and marginal probability of station  B  in 
Example  1.4 .  

Contingency Table of Counts

Station  C 

  1.52  ∼  
84.53

84.53  ∼  
167.54

167.54  ∼  
250.55

250.55  ∼  
333.56

333.56  ∼  
416.57

Station  B 0  ∼  31.80 27 0 1 0 0

31.80  ∼  63.60 15 2 1 0 0

63.60  ∼  95.40 1 4 0 0 1

95.40  ∼  127.20 1 1 3 0 0

127.20  ∼  159.00 1 2 0 0 0

Contingency Table of Probability

Station  C 

  1.52  ∼  
84.53

84.53  ∼  
167.54

167.54  ∼  
250.55

250.55  ∼  
333.56

333.56  ∼  
416.57

Station  B 0  ∼  31.80 0.450 0.000 0.017 0.000 0.000

31.80  ∼  63.60 0.250 0.033 0.017 0.000 0.000

63.60  ∼  95.40 0.017 0.067 0.000 0.000 0.017

95.40  ∼  127.20 0.017 0.017 0.050 0.000 0.000

127.20  ∼  159.00 0.017 0.033 0.000 0.000 0.000

 Table 1-9      Joint contingency table for stations  B  and  C  in Example  1.4 .  
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Station  C 

  1.52  ∼  
84.53

84.53  ∼  
167.54

167.54  ∼  
250.55

250.55  ∼  
333.56

333.56  ∼  
416.57

Station  B 0  ∼  31.80 0.450 0.000 0.017 0.000 0.000

31.80  ∼  63.60 0.250 0.033 0.017 0.000 0.000

63.60  ∼  95.40 0.017 0.067 0.000 0.000 0.017

95.40  ∼  127.20 0.017 0.017 0.050 0.000 0.000

127.20  ∼  159.00 0.017 0.033 0.000 0.000 0.000

0.750 0.150 0.083 0.000 0.017

 Table 1-10      Joint probability of stations  B  and  C  and marginal probability of station  C  
in Example  1.4 .  

  The conditional entropy  H ( B  |  C ) can be computed as

  

H B C p B C
p B C

p C
i j

i j

jj

M

i

N

( | ) ( , )log
( , )

( )

. log
.

= −

= − ×

==
∑∑ 2

11

20 450
0 4550
0 750

0 250
0 250
0 750

0 017
0 017
0 750

0 00

2 2
.

. log
.
.

. log
.
.

.

− × − − ×

−

…

…

00
0 000
0 017

0 000
0 000
0 017

0 000
0 000
0

2 2 2× − × − − ×log
.
.

. log
.
.

. log
.
.

…
0017

1 3922= . bits

   

    The joint contingency table for stations  A  and  C  is constructed as shown in 
Table  1-11 . 

  The marginal probability distribution of streamfl ow at station  C  can be 
obtained as shown in Table  1-12 . Similarly,

  

H C A p C A
p C A

p A
i j

i j

jj

M

i

N

( | ) ( , )log
( , )

( )

. log
.

= −

= − ×

==
∑∑ 2

11

20 333
0 3333
0 383

0 250
0 033
0 383

0 000
0 000
0 383

0 0

2 2
.

. log
.
.

. log
.
.

.

− × − − ×

−

…

……

117
0 017
0 033

0 017
0 017
0 033

0 000
0 000
0

2 2 2× − × − − ×log
.
.

. log
.
.

. log
.

…
..

.
033

0 9327= bits
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Contingency Table of Counts

Station  A 

  4.06  ∼  
72.84

72.84  ∼  
141.62

141.62  ∼  
210.40

210.40  ∼  
279.18

279.18  ∼  
347.96

Station  C 1.52  ∼  84.53 20 17 7 0 1

84.53  ∼  167.54 2 5 0 1 1

167.54  ∼  250.55 1 3 0 1 0

250.55  ∼  333.56 0 0 0 0 0

333.56  ∼  416.57 0 1 0 0 0

Contingency Table of Probability

Station  A 

  4.06  ∼  
72.84

72.84  ∼  
141.62

141.62  ∼  
210.40

210.40  ∼  
279.18

279.18  ∼  
347.96

Station  C 1.52  ∼  84.53 0.333 0.283 0.117 0.000 0.017

84.53  ∼  167.54 0.033 0.083 0.000 0.017 0.017

167.54  ∼  250.55 0.017 0.050 0.000 0.017 0.000

250.55  ∼  333.56 0.000 0.000 0.000 0.000 0.000

333.56  ∼  416.57 0.000 0.017 0.000 0.000 0.000

 Table 1-11      Joint contingency table for stations  A  and  C  in Example  1.4 .  

Station  A 

  4.06  ∼  
72.84

72.84  ∼  
141.62

141.62  ∼  
210.40

210.40  ∼  
279.18

279.18  ∼  
347.96

Station  C 1.52  ∼  84.53 0.333 0.283 0.117 0.000 0.017

84.53  ∼  167.54 0.033 0.083 0.000 0.017 0.017

167.54  ∼  250.55 0.017 0.050 0.000 0.017 0.000

250.55  ∼  333.56 0.000 0.000 0.000 0.000 0.000

333.56  ∼  416.57 0.000 0.017 0.000 0.000 0.000

0.383 0.433 0.117 0.033 0.033

 Table 1-12      Joint probability of stations  C  and  A  and marginal probability of station  A  
in Example  1.4 .  
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  (3)   Computation of joint entropy 
 From the joint contingency table of stations  A  and  B , the joint entropy  H ( A ,  B ) can 
be computed as

  

H A B p A B p A Bi j i j
j

M

i

N

( , ) ( , )log ( , )

. log . .

= −

= − × −
==
∑∑ 2

11

20 250 0 250 0 1167 0 167 0 017 0 017

0 000 0 000 0 017

2 2

2

× − − ×

− × − ×

log . . log .

. log . . l

…
……

oog . . log .
.

2 20 017 0 000 0 000
3 3388

− − ×
=

…
bits

   

    From the joint contingency table of stations  B  and  C , the joint entropy  H ( B ,  C ) 
can be computed as

  

H B C p B C p B Ci j i j
j

M

i

N

( , ) ( , )log ( , )

. log . .

= −

= − × −
==
∑∑ 2

11

20 450 0 450 0 2250 0 250 0 017 0 017

0 000 0 000 0 000

2 2

2

× − − ×

− × − ×

log . . log .

. log . . l

…
……

oog . . log .
.

2 20 000 0 000 0 000
2 5112

− − ×
=

…
bits

   

    Similarly, from the joint contingency table of stations  B  and  C , the joint entropy 
 H ( B ,  C ) can be computed as

  

H A C p A C p A Ci j i j
j

M

i

N

( , ) ( , )log ( , )

. log . .

= −

= − × −
==
∑∑ 2

11

20 333 0 333 0 2283 0 283 0 017 0 017

0 000 0 000 0 017

2 2

2

× − − ×

− × − ×

log . . log .

. log . . l

…
……

oog . . log .
.

2 20 017 0 000 0 000
2 6745

− − ×
=

…
bits

   

      (4)   Computation of transinformation 
 There are three different approaches to compute the transinformation. 

  Approach 1 

  T A B H A H A B( , ) ( ) ( ) . . .= − = − =1 7418 1 4575 0 2843 bits     

   T B C H B H B C( , ) ( ) ( ) . . .= − = − =1 8812 1 3922 0 4890 bits

     T A C H C H C A( , ) ( ) ( ) . . .= − = − =1 1190 0 9327 0 1863 bits    
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     Approach 2 

 T A B H A H B H A B( , ) ( ) ( ) ( , ) . . . .= + − = + − =1 7418 1 8812 3 3388 0 2843 bits    

   T B C H B H C H B C( , ) ( ) ( ) ( , ) . . . .= + − = + − =1 8812 1 1190 2 5112 0 4890 bits    

   T A C H A H C H A C( , ) ( ) ( ) ( , ) . . . .= + − = + − =1 7418 1 1190 2 6745 0 1863 bits    

     Approach 3 
 The third method is to compute transinformation directly from its defi nition rath-
er than using shortcut formulas, as in approach 1 and approach 2. Let us compute 
the transinformation between stations  A  and  B  fi rst. The bivariate contingency 
table between stations  A  and  B  has already been shown when computing their 
joint entropy. From the joint contingency table, we can compute the marginal 
probability distribution of streamfl ow at stations  A  and  B  by marginalizing out 
the probability distribution of streamfl ow of one of the stations. The results are 
shown in Table  1-13 . 

  The marginal probability distributions of streamfl ow at stations  A  and  B  are 
shown in the last column and last row of Table  1-13 . According to the defi nition 
of transinformation, we have

  

T A B p A B
p A B

p A p B
i j

i j

i jji

( , ) ( , )log
( , )

( ) ( )

. log
.

.

=

= ×

∑∑

0 250
0 250

0
2

4467 0 383
0 167

0 167
0 467 0 433

0 017
0 017

0 46

2

2

×
+

×

+ + ×

.
. log

.
. .

. log
.

.
…

77 0 117

0 000
0 000

0 050 0 383
0 017

0 017
0 050

2 2

×

+ ×
×

+ ×

.

. log
.

. .
. log

.
.

……

××

+ +
×

=

0 433

0 000
0 000

0 050 0 033
0 2843

2

.

. log
.

. .
.

…

bits

   

Station  B 

  0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

 

Station  A 4.06  ∼  72.84 0.250 0.100 0.017 0.017 0.000 0.383

72.84  ∼  141.62 0.167 0.133 0.067 0.050 0.017 0.433

141.62  ∼  210.40 0.033 0.067 0.000 0.000 0.017 0.117

210.40  ∼  279.18 0.000 0.000 0.000 0.017 0.017 0.033

279.18  ∼  347.96 0.017 0.000 0.017 0.000 0.000 0.033

0.467 0.300 0.100 0.083 0.050

 Table 1-13      Joint and marginal probabilities of stations  A  and  B  in Example  1.4 .  
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    Similarly, the transinformation between stations  B  and  C ,   H ( B ,  C ), can be com-
puted. From their joint contingency table, we can compute the marginal probabil-
ity distributions of streamfl ow at stations  B  and  C  by marginalizing out the 
probability distributions of streamfl ow at one of the stations. The results are 
shown in Table  1-14 . 

  The marginal probability distributions of streamfl ow at  B  and  C  are shown in 
the last column and last row of Table  1-14 . From the defi nition of transinforma-
tion, we have

  

T B C p B C
p B C

p B p C
i j

i j

i jji

( , ) ( , )log
( , )

( ) ( )

. log
.

.

=

= ×

∑∑

0 450
0 450

0
2

7750 0 467
0 250

0 250
0 750 0 300

0 017
0 017

0 75

2

2

×
+

×

+ + ×

.
. log

.
. .

. log
.

.
…

00 0 050

0 000
0 000

0 017 0 467
0 000

0 000
0 017

2 2

×

+ ×
×

+ ×

.

. log
.

. .
. log

.
.

……

××

+ +
×

=

0 300

0 000
0 000

0 017 0 050
0 4890

2

.

. log
.

. .
.

…

bits

   

    Similarly, the transinformation between stations  A  and  C ,   H ( A ,  C ), can be 
computed. From their joint contingency table, we can compute the marginal 
probability distributions of streamfl ow at stations  A  and  C  by marginalizing the 
probability distribution of streamfl ow at one of the stations out. The results are 
shown in Table  1-15 . 

Station  C 

  1.52  ∼  
84.53

84.53  ∼  
167.54

167.54  ∼  
250.55

250.55  ∼  
333.56

333.56  ∼  
416.57

 

Station  B 0  ∼  31.80 0.450 0.000 0.017 0.000 0.000 0.467

31.80  ∼  63.60 0.250 0.033 0.017 0.000 0.000 0.300

63.60  ∼  95.40 0.017 0.067 0.000 0.000 0.017 0.100

95.40  ∼  127.20 0.017 0.017 0.050 0.000 0.000 0.083

127.20  ∼  159.00 0.017 0.033 0.000 0.000 0.000 0.050

0.750 0.150 0.083 0.000 0.017

 Table 1-14      Joint and marginal probabilities of Stations  B  and  C  in Example  1.4 .  
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  The marginal probability distributions of streamfl ow at stations  A  and  C  
are shown in the last column and last row of Table  1-15 . From the defi nition of 
transinformation, we have

  

T A C p A C
p A C

p A p C
i j

i j

i jji

( , ) ( , )log
( , )

( ) ( )

. log
.

.

=

= ×

∑∑

0 333
0 333

0
2

7750 0 383
0 283

0 283
0 750 0 433

0 017
0 017
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2

2

×
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×

+ + ×

.
. log

.
. .

. log
.

.
…

00 0 033

0 000
0 000

0 017 0 383
0 017

0 017
0 017

2 2

×

+ ×
×

+ ×

.

. log
.

. .
. log

.
.

……

××

+ +
×

=

0 433

0 000
0 000

0 017 0 033
0 1863

2

.

. log
.

. .
.

…

bits

   

          1.4.6     Interaction Information 

 When more than two variables are under consideration, it is likely that they are 
interactive. For three variables  X ,  Y , and  Z , McGill ( 1954 ) defi ned interaction 
information (or co-information), denoted by  I ( X ,  Y ,  Z ), as

 
I X Y Z H X H Y H Z H X Y H Y Z H X Z H X Y Z

I

( , , ) ( ) ( ) ( ) [ ( , ) ( , ) ( , )] ( , , )
(

= + + − + + +
= XX Y Z I X Y I Y Z, ; ) ( , ) ( , )− −

   

    (1.33)   

 Equation  (1.33)  can be extended to  n  variables (Fano  1949 , Han  1980 ) as

  I X X X I X X X I X X X Xn n n n( ; ; ; ) ( ; ; , ) ( ; ; ; )1 2 1 2 1 1 2 1… … …= −− −       (1.34)   

Station  C 

  1.52  ∼  
84.53

84.53  ∼  
167.54

167.54  ∼  
250.55

250.55  ∼  
333.56

333.56  ∼  
416.57

 

Station  A 4.06  ∼  72.84 0.333 0.033 0.017 0.000 0.000 0.383

72.84  ∼  141.62 0.283 0.083 0.050 0.000 0.017 0.433

141.62  ∼  210.40 0.117 0.000 0.000 0.000 0.000 0.117

210.40  ∼  279.18 0.000 0.017 0.017 0.000 0.000 0.033

279.18  ∼  347.96 0.017 0.017 0.000 0.000 0.000 0.033

0.750 0.150 0.083 0.000 0.017

 Table 1-15      Joint and marginal probabilities of Stations  A  and  C  in Example  1.4 .  
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28 Entropy Theory in Hydraulic Engineering

 Interaction information has been interpreted differently in the literature. To 
illustrate these interpretations, consider three variables  X ,  Y , and  Z . Jakulin 
and Bratko ( 2003 ) interpret interaction information as a measure of the amount 
of information common to  X ,  Y , and  Z  (all variables) but is not present in 
either of these three variables. The interaction information can be positive 
or negative, because the dependency among variables (say  X  and  Y ) can 
increase or decrease with the knowledge of a new variable (say  Z ). Jakulin and 
Bratko ( 2004 ) interpret a positive interaction information value as a synergy 
between  X ,  Y , and  Z , whereas a negative value is a redundancy among these 
variables. 

 Interaction information is interpreted by Srinivasa ( 2005 ) as a gain or loss in 
the information transmitted between a set of variables (say  X  and  Y ) because 
of the knowledge of a new variable (say  Z ). The interpretation by Fass ( 2006 ) is 
as the name suggests. Accordingly, it refl ects the infl uence of one variable (say, 
 X ) on the amount of information shared between the remainder of variables (say, 
 Y  and  Z ). Fass goes on to state that with the knowledge of the third variable (say, 
 Z ) a positive interaction information strengthens the correlation between the two 
variables (say,  X  and  Y ). Conversely, a negative value diminishes the correlation 
between  X  and  Y . 

  Example 1.5          Compute interaction information between the three stations  A ,  B , 
and  C  using the data in Example  1.4 .  

  Solution     The interaction information can be computed by equation  (1.33) , i.e.,

  I A B C H A H B H C H A B H B C H A C H A B C( , , ) ( ) ( ) ( ) [ ( , ) ( , ) ( , )] ( , , )= + + − + + +    

    All the components, except for the trivariate joint entropy  H ( A ,  B ,  C ) in this equa-
tion, have been obtained in Example  1.4 . Now we need to compute the  H ( A ,  B , 
 C ). By dividing the ranges of streamfl ow values at station  A ,  B , and  C  into 5 
equal-sized intervals, the trivariate contingency table can be constructed as 
shown in Table  1-16 . 

  Accordingly,

  

H A B C p A B C p A B Ci j k i j k
kji

( , , ) , , log , ,

. log .

= − ( ) ( )

= − ×

∑∑∑ 2

20 233 0 2333 0 117 0 117 0 000 0 000
0 033 0 033 0 000

2 2

2

− × − − ×
− × −

. log . . log .
. log . .

…
×× − − ×

− × − ×
log . . log .

. log . . log .
2 2

2 2

0 000 0 000 0 000
0 000 0 000 0 017 0

…
0017 0 017 0 017

0 000 0 000 0 000 0 000 0
2

2 2

− − ×
− × − × − −

…
…

. log .
. log . . log . .. log .
. log . . log . . lo

000 0 000
0 000 0 000 0 000 0 000 0 000

2

2 2

×
− × − × − − ×… gg .
.

2 0 000
3 9264= bits
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Station C: 1.5  ∼  84.53

Contingency Table of Counts

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 14 5 1 0 0

72.84  ∼  141.62 7 6 1 2 0

141.62  ∼  210.40 3 4 0 0 1

210.40  ∼  279.18 0 0 0 0 0

279.18  ∼  347.96 1 0 0 0 0

Contingency Table of Probability

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 1.52  ∼  84.53 0.233 0.083 0.017 0.000 0.000

84.53  ∼  167.54 0.117 0.100 0.017 0.033 0.000

167.54  ∼  250.55 0.050 0.067 0.000 0.000 0.017

250.55  ∼  333.56 0.000 0.000 0.000 0.000 0.000

333.56  ∼  416.57 0.017 0.000 0.000 0.000 0.000

Station C: 84.53  ∼  167.53

Contingency Table of Counts

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 2 2 0 0 0

72.84  ∼  141.62 0 1 0 1 1

141.62  ∼  210.40 0 0 0 0 0

210.40  ∼  279.18 0 0 0 0 1

279.18  ∼  347.96 0 0 1 0 0

 Table 1-16      Trivariate contingency table for Example  1.5 .  

Continued
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Station C: 84.53  ∼  167.53

Contingency Table of Probability

Station  B 

  0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 1.52  ∼  84.53 0.033 0.033 0.000 0.000 0.000

84.53  ∼  167.54 0.000 0.017 0.000 0.017 0.017

167.54  ∼  250.55 0.000 0.000 0.000 0.000 0.000

250.55  ∼  333.56 0.000 0.000 0.000 0.000 0.017

333.56  ∼  416.57 0.000 0.000 0.017 0.000 0.000

Station C: 167.53  ∼  250.54

Contingency Table of Counts

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 0 0 0 0 1

72.84  ∼  141.62 1 0 0 0 0

141.62  ∼  210.40 0 0 1 0 1

210.40  ∼  279.18 0 0 0 0 0

279.18  ∼  347.96 0 0 0 0 1

Contingency Table of Probability

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 1.52  ∼  84.53 0.000 0.000 0.000 0.000 0.017

84.53  ∼  167.54 0.017 0.000 0.000 0.000 0.000

167.54  ∼  250.55 0.000 0.000 0.017 0.000 0.017

250.55  ∼  333.56 0.000 0.000 0.000 0.000 0.000

333.56  ∼  416.57 0.000 0.000 0.000 0.000 0.017

Table 1-16 Trivariate contingency table for Example 1.5. (Continued)
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Station C: 250.54  ∼  333.55

Contingency Table of Counts

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 0 0 0 0 0

72.84  ∼  141.62 0 0 0 0 0

141.62  ∼  210.40 0 0 0 0 0

210.40  ∼  279.18 0 0 0 0 0

279.18  ∼  347.96 0 0 0 0 0

Contingency Table of Probability

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 1.52  ∼  84.53 0.000 0.000 0.000 0.000 0.000

84.53  ∼  167.54 0.000 0.000 0.000 0.000 0.000

167.54  ∼  250.55 0.000 0.000 0.000 0.000 0.000

250.55  ∼  333.56 0.000 0.000 0.000 0.000 0.000

333.56  ∼  416.57 0.000 0.000 0.000 0.000 0.000

Station C: 333.55  ∼  416

Contingency Table of Counts

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 0 0 0 0 0

72.84  ∼  141.62 0 0 0 0 0

141.62  ∼  210.40 0 0 1 0 0

210.40  ∼  279.18 0 0 0 0 0

279.18  ∼  347.96 0 0 0 0 0

Contingency Table of Probability

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 1.52  ∼  84.53 0.000 0.000 0.000 0.000 0.000

84.53  ∼  167.54 0.000 0.000 0.000 0.000 0.000

167.54  ∼  250.55 0.000 0.000 0.017 0.000 0.000

250.55  ∼  333.56 0.000 0.000 0.000 0.000 0.000

333.56  ∼  416.57 0.000 0.000 0.000 0.000 0.000

Table 1-16 Trivariate contingency table for Example 1.5.(Continued)
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    Now the interaction information is computed as

  

I A B C H A H B H C H A B H B C H A C H A B C( ; , , ) ( ) ( ) ( ) [ ( , ) ( , ) ( , )] ( , , )= + + − + + +
= 1.. . . . . . .

.
7418 1 8812 1 1190 3 3388 2 5112 2 6745 3 9264

1 1439
+ + − + +( ) +

= biits
   

        1.4.7     Calculation of Transinformation 

 From the point of view of calculating  T , variables are either discrete or are dis-
cretized if they are continuous. For two variables,  X  taking on values  i   =  1, 2, 3, 
…,  N , and  Y  taking on values  j   =  1, 2, 3, …,  M , let  n  be the total number observa-
tions of events ( i ,  j ) and let  n ij   denote the number of times  i  occurred and  j  was 
caused, i.e., it is assumed that when  i  occurs,  j  is caused. Contingency tables are 
used to compute relative frequencies, wherein  XY  would represent cells and  n ij   
would be entries. The relative frequencies would be:  p ( i )  =   n i  / n ,  p ( j )  =   n j  / n , and 
 p ( i ,  j )  =   n ij  / n . Thus, one can think of a joint event ( i ,  j ) as having a relative fre-
quency  p ( i ,  j ). Rather than using relative frequencies, one can also use a simpler 
notation for computing entropies in terms of absolute frequencies, and this phe-
nomenon is explained here. See Appendix 1.1 at the end of the chapter for further 
explanation of symbols. 

 One can write the summations as

  n n n n n ni ij
j

j ij
i

ij
i j

= = =∑ ∑ ∑; ;
,

      (1.35)   

 Then, one can express

  s n
n n s

n
n n s

n
n n sij ij ij

i j
i i i

i
j j j

j

= = = =∑ ∑ ∑1 1 1
2 2 2log ; log ; log ; log

,
22 n       (1.36)   

 Now the transinformation can be expressed in terms of these summations as

  T X Y s s s si j ij( , ) = − − +       (1.37)   

 The two-dimensional case of the amount of information transmitted can be 
extended to three or more dimensional cases (McGill  1953, 1954 ). Consider three 
random variables:  U ,  V , and  Y , where  U  and  V  can be interpreted to constitute 
sources, and  Y , the effect. In this case,  X  of the two-dimensional case has 
been replaced by  U  and  V . Then, as shown in Fig.  1-4 , transinformation can be 
written as

  T U V Y H U V H Y H U V Y( , ; ) ( , ) ( ) ( , , )= + −       (1.38)   

  Here  X  is divided into two classes,  U  and  V , with values of  U  as  k   =  1, 2, 3, …, 
 K  and values of  V  as  w   =  1, 2, 3, …,  W . The subdivision of  X  is made such that 
the range of values of  U  and  V  jointly constitute the values of  X , with the impli-
cation that the input event  i  can be replaced by the joint event ( k ,  w ). This replace-
ment means that  n i    =   n kw  . 
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 Here  T ( U ,  V ;  Y ) measures the amount of information transmission that  U  and 
 V  transmit to  Y . It can be shown that the direction of transmission is irrelevant 
because

  T U V Y T Y U V( , ; ) ( ; , )=       (1.39)   

 This irrelevance also implies that distinguishing sources from effect or transmit-
ters from receivers does not gain anything, because the amount of information 
transmitted measures the association between variables, and, hence, the direc-
tion in which information travels is immaterial. However, it is important to note 
that symbols cannot be permuted at will, because

  T U Y V H U Y H V H U Y V( , ; ) ( , ) ( ) ( , ; )= + −       (1.40)   

 and it is not necessarily equal to  T ( U ,  V ;  Y ). 
 For computation,  T ( U ,  V ;  Y ) can be expressed as a function of bivariate trans-

mission between  U  and  Y , and  V  and  Y . Observations of the joint event ( k ,  w ,  j ) 
can be organized into a three-dimensional contingency table with  UVY  cells with 
 n kwj   entries. Then one can compute the terms of

  T U V Y s s s sj kw kwj( , ; ) = − − +       (1.41)  

where

  s n
n nkwj kwj kwj

k w j

= ∑1
2log

, ,
      (1.42)   

 Other terms can be expressed in a similar manner. 
 One can investigate transmission between  U  and  Y . This step would involve 

eliminating  V , which can be done in two ways. First, the three-dimensional con-
tingency table can be reduced to two dimensions by summing over  V , resulting 
in the entries of the reduced table as

  n nkj kwj
w

= ∑       (1.43)   

  Figure 1-4      Schematic of the components of three-dimensional transmitted information.    

T(U, V;Y) H(Y)H(U, V)

H(U, V, Y)
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 The transmitted information between  U  and  Y  can be expressed as

  T U Y s s s sk j kj( ; ) = − − +       (1.44)   

 The second way to eliminate  V  is to compute the transmission between  U  
and  Y  separately for each value of  V  and then average the transmitted values 
together. Designating  T w  ( U ; Y ) as the information transmitted between  U  and  Y  
for a single value of  V , namely  w , one can write the transmitted information 
 T v  ( U ;  Y ) as

  T U Y
n
n

T U Yv
w

w
w

( ; ) [ ( ; )]= ∑       (1.45)   

 It can be shown that

  T U Y s s s sv w kw wj kwj( ; ) = − − +       (1.46)   

 In a three-dimensional contingency table, three different pairs of variables 
occur. For transmission between  V  and  Y , one can write

  T V Y s s s sw j wj( ; ) = − − +       (1.47)  

  T V Y s s s su k kw kj kwj( ; ) = − − +       (1.48)   

 The transmission between  U  and  V  can be expressed as

  T U V s s s sk w kw( ; ) = − − +       (1.49)  

  T U V s s s sy j kj wj kwj( ; ) = − − +       (1.50)   

 Now, the information transmitted between  U  and  Y  can be reconsidered. If 
 V  affects the transmission between  U  and  Y , i.e.,  U  and  V  are related, then  T v  ( U ; 
 Y )  ≠   T ( U ;  Y ). This effect can be measured as

  A UVY T U Y T U Yv( ) ( ; ) ( ; )= −       (1.51)  

  A UVY s s s s s s s sk w j kw wj kj kwj( ) = − + + + − − − +       (1.52)   

 A little algebra shows that

 A UVY T U Y T U Y T V Y T V Y T U V T U Vv u y( ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )= − = − = −       (1.53)   

 Keeping this symmetry in mind,  A ( UVY ) can be regarded as the  U . V . Y  interac-
tion information and is the gain (or loss) in information transmitted between any 
two of the variables because of the knowledge of the third variable. 

 Now the three-dimensional information transmitted from  U ,  V  to  Y , i.e.,  T ( U , 
 V ;  Y ), can be expressed as a function of its bivariate components:

  T U V Y T U Y T V Y A UVY( , ; ) ( ; ) ( ; ) ( )= + +       (1.54)  

  T U V Y T U Y T V Y A UVYv u( , ; ) ( ; ) ( ; ) ( )= + −       (1.55)   
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 Following these two equations, taken together,  T ( U ,  V ;  Y ) can be shown as in 
Fig.  1-4  with overlapping circles. This fi gure assumes that there is a positive 
interaction between  U ,  V , and  Y , meaning that when one of the interacting vari-
ables is held constant, the amount of association between the remaining two 
increases, i.e.,  T v  ( U ;  Y )  >   T ( U ;  Y ), and  T u  ( V ;  Y )  >   T ( V ;  Y ). 

 For the three-dimensional case, one can write

  H Y H Y T U Y T V Y A UVYuv( ) ( ) ( ; ) ( ; ) ( )= + + +       (1.56)  

where  H ( Y )  =   s   −   s j   and  H uv  ( Y )  =   s kwj    −   s kw  . This equation shows that the marginal 
information is partitioned into an error term and a set of correlation terms 
because of input variables. The error term is  H uv  ( Y ), and it denotes the unex-
plained or residual variance in the output  Y  after the information caused by 
inputs  U  and  V  has been removed. For the two-dimensional case, one can write

  H Y H Y T U Yu( ) ( ) ( ; )= +       (1.57)   

 In this case,  H u   is the error term, because there is only one input variable  U . 
Shannon ( 1948 ) has shown that

  H Y H Yu uv( ) ( )≥       (1.58)   

 This notion shows that if only  U  is controlled, the error term cannot be increased 
if  V  is also controlled. It can be shown that

  H Y H y T V Yu uv uv( ) ( ) ( ; )= +       (1.59)   

 Now the issue of independence in three-dimensional transmission is consid-
ered. If the output is independent of the joint input, then  T ( U ,  V ;  Y )  =  0, i.e.,

  n
n n

n
kwj

kw j=       (1.60)   

 Then it can be shown that

  s s s skwj kw j= + −       (1.61)   

 This equation can be used to show that  T ( U ,  V ;  Y )  =  0. 
 Now assume that  T ( U ,  V ;  Y )  >  0, but  V  and  Y  are independent, i.e.,

  n
n n

n
wj

w j=       (1.62)   

 This variation results in

  s s s swj w j= + −       (1.63)   

 If  s wj   from equation  (1.47)  is used in equation  (1.63) , then  T ( V ;  Y )  =  0. Equation 
 (1.63)  does not lead to a unique condition for independence between  V  and  Y . 
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 If the input variables are correlated, then the question arises: How is the 
transmitted information affected? The three-dimensional transmitted informa-
tion  T ( U ,  V ;  Y ) would account for only part of the total association in a three-
dimensional contingency table. Let  C ( U ,  V ;  Y ) be the correlated information. 
Then one can write

  C U V Y H U H V H Y H U V Y( , ; ) ( ) ( ) ( ) ( , ; )= + + −       (1.64)   

 Adding to and subtracting from equation  (1.64)   H ( U ,  V ), one obtains

  C U V Y T U V T U V Y( , ; ) ( ; ) ( , ; )= +       (1.65)  

  C U V Y T U V T U Y T V Y A UVY( , ; ) ( ; ) ( ; ) ( ; ) ( )= + + +       (1.66)   

 It is seen that  C ( U ,  V ;  Y ) can be used to generate all possible components of the 
three correlated sources of information  U ,  V , and  Y . 

  Example 1.6          Using the s-notation method, compute transinformation  T ( A ,  B ), 
 T ( B ,  C ),  T ( A ,  C ) and the interaction information  A ( A ,  B ,  C ) using the data from 
Example  1.5 .  

  Solution 
    Calculation of transinformation 
 Let us compute  T ( A ,  B ) fi rst. From equation  (1.37) , we know that we need to com-
pute  s ,  s i  ,  s j  , and  s ij  . All of the components can be obtained from equation  (1.36) . In 
the following list, by taking transinformation  T ( A ,  B ) as an example, we compute 
all the components one by one.

   1.      Computation of  s : Dividing the ranges of streamfl ow values at stations 
 A  and  B  into 5 equal-sized intervals and counting the number of occur-
rences in all combinations of these subintervals, the contingency table 
can be computed as shown in Table  1-17 .   

  2.      From equation  (1.35) , we have

 n nij
i j

= = + + + + + + + + + + + + + + + =∑
,

15 10 2 0 1 6 8 4 0 0 0 1 1 1 0 60…    

    From equation  (1.36) , we have
 s n= =log .2 5 9069

       3.      Computation of  s i   and  s j  : Marginalizing out one of the two sets of stream-
fl ow values, the contingency table of stations  A  and  B  can be obtained 
from Table  1-17 . 

 From equation  (1.35) , we have

  

n n

n n

n

i j
j

i j
j

i

( )

( )

( )

1 15 6 1 1 1 23

2 10 8 4 3 1 26

5

1

2

= = + + + + =

= = + + + + =

=

∑

∑
……

nn j
j

5 1 0 1 0 0 2∑ = + + + + =
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 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 15 6 1 1 0

72.84  ∼  141.62 10 8 4 3 1

141.62  ∼  210.40 2 4 0 0 1

210.40  ∼  279.18 0 0 0 1 1

279.18  ∼  347.96 1 0 1 0 0

 Table 1-17       n  Table for Stations  A  and  B  in Example  1.6 .  

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

 

Station  A 4.06  ∼  72.84 15 6 1 1 0 23

72.84  ∼  141.62 10 8 4 3 1 26

141.62  ∼  210.40 2 4 0 0 1 7

210.40  ∼  279.18 0 0 0 1 1 2

279.18  ∼  347.96 1 0 1 0 0 2

28 18 6 5 3

 Table 1-18       n  and marginal  n  tables for Stations  A  and  B  in Example  1.6 .  

    The results (contingency table for station  A ) are shown in the last column in Table 
 1-18 . Similarly, we also have

  

n n

n n

n

j i
i

j i
i

j

( )

( )

( )

1 15 10 2 0 1 28

2 6 8 4 0 0 18

5

1

2

= = + + + + =

= = + + + + =

=

∑
∑

……

nni
i

5 0 1 1 1 0 3∑ = + + + + =

       

 as shown in Table  1-18 . 

 Finally, from equation  (1.36) , we have

 

s
n

n ni i i
i

=

= × + × + × + × + ×

∑1

1
60

23 23 26 26 7 7 2 2 2

2

2 2 2 2

log

log log log log loog

.

2 2

4 1651

( )
= bits
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    Also we have

  

s
n

n nj j j
j

=

= × + × + × + × + ×

∑1

1
60

28 28 18 18 6 6 5 5 3

2

2 2 2 2

log

log log log log loog

.

2 3

4 0256

( )
= bits

   

      4.      Compute  s ij  : From the joint contingency table and equation  (1.36) , we can 
also compute  s ij  ,

  

s
n

n nij ij ij
i j

=

= × + × + ×

+ + ×

∑1

1
60

15 15 10 10 2 2

0

2

2 2 2

log

( log log log

l

,

… oog log log )
.

2 2 20 1 1 0 0
2 5681

+ × + + ×
=

…
bits

   

       Finally,

  
T A B s s s si j ij( , ) . . . .

.

= − − + = − − +
=

5 9069 4 1651 4 0256 2 5681

0 2843 bits
   

    Similarly,  T ( B ,  C ) and  T ( C ,  A ) can be computed as

  T B C( , ) .= 0 4890 bits    

    T C A( , ) .= 0 1863 bits    

      Interaction information calculation 
 Dividing the ranges of streamfow values at stations  A ,  B , and  C  into fi ve equal-
sized intervals can be used to create the trivariate contingency table. The result-
ing contingency tables are shown in Tables  1-19 to 1-23 . 

      Summing up all the elements in the above trivariate joint contingency tables, 
we have  n   =  60. Therefore,  s   =  log 2  60  =  5.9069 bits. The marginal contingency 
table can be obtained in the following way:

   •      The marginal contingency table of stations  A  and  B  given  C   ∈  (1.5, 84.53] 
is shown in Table  1-24 .   

  •      The marginal contingency table of stations  A  and  B  given  C   ∈  (84.53, 
167.53] is shown in Table  1-25 .   

  •      The marginal contingency table of stations  A  and  B  given  C   ∈  (167.53, 
250.54] is shown in Table  1-26 .   
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Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 14 5 1 0 0

72.84  ∼  141.62 7 6 1 2 0

141.62  ∼  210.40 3 4 0 0 1

210.40  ∼  279.18 0 0 0 0 0

279.18  ∼  347.96 1 0 0 0 0

 Table 1-19       n  Table for Station  C : 1.5  ∼  84.53 in Example  1.6 .  

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 2 2 0 0 0

72.84  ∼  141.62 0 1 0 1 1

141.62  ∼  210.40 0 0 0 0 0

210.40  ∼  279.18 0 0 0 0 1

279.18  ∼  347.96 0 0 1 0 0

 Table 1-20      Contingency table of counts for Station  C : 84.53  ∼  167.53 in Example  1.6 .  

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 0 0 0 0 1

72.84  ∼  141.62 1 0 0 0 0

141.62  ∼  210.40 0 0 1 0 1

210.40  ∼  279.18 0 0 0 0 0

279.18  ∼  347.96 0 0 0 0 1

 Table 1-21      Contingency table of counts for Station  C : 167.53  ∼  250.54 in Example  1.6 .  
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Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 0 0 0 0 0

72.84  ∼  141.62 0 0 0 0 0

141.62  ∼  210.40 0 0 0 0 0

210.40  ∼  279.18 0 0 0 0 0

279.18  ∼  347.96 0 0 0 0 0

 Table 1-22      Contingency table of counts for Station  C : 250.54  ∼  333.55 in Example  1.6 .  

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 0 0 0 0 0

72.84  ∼  141.62 0 0 0 0 0

141.62  ∼  210.40 0 0 1 0 0

210.40  ∼  279.18 0 0 0 0 0

279.18  ∼  347.96 0 0 0 0 0

 Table 1-23      Contingency table of counts for Station  C : 333.55  ∼  416 in Example  1.6 .  

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

 

Station  A 4.06  ∼  72.84 14 5 1 0 0 20

72.84  ∼  141.62 7 6 1 2 0 16

141.62  ∼  210.40 3 4 0 0 1 8

210.40  ∼  279.18 0 0 0 0 0 0

279.18  ∼  347.96 1 0 0 0 0 1

25 15 2 2 1

 Table 1-24       n  Table for Station  C : 1.5  ∼  84.53 in Example  1.6 .  
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Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

 

Station  A 4.06  ∼  72.84 2 2 0 0 0 4

72.84  ∼  141.62 0 1 0 1 1 3

141.62  ∼  210.40 0 0 0 0 0 0

210.40  ∼  279.18 0 0 0 0 1 1

279.18  ∼  347.96 0 0 1 0 0 1

2 3 1 1 2

 Table 1-25       n  Table for Station  C : 84.53  ∼  167.53 in Example  1.6 .  

  •      The marginal contingency table of stations  A  and  B  given  C   ∈  (250.54, 
333.55] is shown in Table  1-27 .   

  •      The marginal contingency table of stations  A  and  B  given  C   ∈  (333.55, 
416] is shown in Table  1-28 .     

 Then the marginal contingency table for station  A  can be obtained by 
summing up the last columns of Tables  1-24 to 1-28  in an element-by-element 
way:

  

n n

n n

n

k wj
w j

k wj
w j

k

( )

( )

,

,

1 20 4 1 0 0 25

2 16 3 1 0 0 20

1

2

= = + + + + =

= = + + + + =

∑

∑
(( )

( )

( )

,

,

3 8 0 2 0 1 11

4 0 1 0 0 0 1

5

3

4

= = + + + + =

= = + + + + =

=

∑

∑

n

n n

n

wj
w j

k wj
w j

k nn wj
w j

5 1 1 1 0 0 3
,

∑ = + + + + =

   

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

 

Station  A 4.06  ∼  72.84 0 0 0 0 1 1

72.84  ∼  141.62 1 0 0 0 0 1

141.62  ∼  210.40 0 0 1 0 1 2

210.40  ∼  279.18 0 0 0 0 0 0

279.18  ∼  347.96 0 0 0 0 1 1

1 0 1 0 3

 Table 1-26       n  Table for Station  C : 167.53  ∼  250.54 in Example  1.6 .  
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Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

 

Station  A 4.06  ∼  72.84 0 0 0 0 0 0

72.84  ∼  141.62 0 0 0 0 0 0

141.62  ∼  210.40 0 0 0 0 0 0

210.40  ∼  279.18 0 0 0 0 0 0

279.18  ∼  347.96 0 0 0 0 0 0

0 0 0 0 0

 Table 1-27       n  Table for Station  C : 250.54  ∼  333.55 in Example  1.6 .  

Station  B 

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

 

Station  A 4.06  ∼  72.84 0 0 0 0 0 0

72.84  ∼  141.62 0 0 0 0 0 0

141.62  ∼  210.40 0 0 1 0 0 1

210.40  ∼  279.18 0 0 0 0 0 0

279.18  ∼  347.96 0 0 0 0 0 0

0 0 1 0 0

 Table 1-28       n  Table for Station  C : 333.55  ∼  416 in Example  1.6 .  

    Tabulate the results as shown in Table  1-29 , and the marginal contingency table 
for station  B  can be obtained by summing up the last rows and last columns of 
Tables  1-24 to 1-28  in an element-by-element way

  

n n

n n

n

j kw
k w

j kw
k w

j

( )

( )
,

,

1 25 2 1 0 0 28

2 15 3 0 0 0 18

1

2

= = + + + + =

= = + + + + =

∑

∑
(( )

( )

( )

,

,

3 2 1 1 0 1 5

4 2 1 0 0 0 3

5

3

4

= = + + + + =

= = + + + + =

=

∑

∑

n

n n

n n

kw
k w

j kw
k w

j kkw
k w

5 1 2 3 0 0 6
,

∑ = + + + + =

   

     Tabulate the results as shown in Table  1-30 . 
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  The marginal contingency table for station  C  can be computed by summing 
up all elements of Tables  1-24 to 1-28 :

  

n

n
w

w

( )
( )
1 25 15 2 2 1 20 16 8 0 1 45
2 2 3 1 1 2 4 3 0 1 1

= + + + + = + + + + =
= + + + + = + + + + = 99

3 1 0 1 0 3 1 1 2 0 1 5
4 0 0 0 0 0 0 0 0 0 0 0

n

n

n

w

w

w

( )
( )

= + + + + = + + + + =
= + + + + = + + + + =

(( )5 0 0 1 0 0 0 0 1 0 0 1= + + + + = + + + + =

   

    Tabulate the results as shown in Table  1-31 . 
  Therefore, we can have

  
sk = × + × + × + × + ×( )

=

1
60

25 25 20 20 11 11 1 1 3 3

4 08

2 2 2 2 2log log log log log

. 991 bits
   

    
sj = × + × + × + × + ×( )

=

1
60

28 28 18 18 5 5 3 3 6 6

4 0256

2 2 2 2 2log log log log log

. bbits
   

    sw = × + × + × + × + ×( ) =1
60

45 45 9 9 5 5 0 0 1 1 4 78792 2 2 2 2log log log log log . bitts    

n k 

 4.06  ∼  72.84 72.84  ∼  141.62 141.62  ∼  210.40 210.40  ∼  279.18 279.18  ∼  347.96

Station  A 25 30 11 1 3

 Table 1-29      Marginal contingency table for Station  A  in Example  1.6 .  

n j 

0  ∼  31.80 31.80  ∼  63.60 63.60  ∼  95.40 95.40  ∼  127.20 127.20  ∼  159.00

Station  B 28 18 5 3 6

 Table 1-30      Marginal contingency table for Station  B  in Example  1.6 .  

n w 

 1.5  ∼  84.53 84.53  ∼  167.53 167.53  ∼  250.54 250.54  ∼  333.55 333.55  ∼  416

Station  C 45 9 5 0 1

 Table 1-31      Marginal contingency table for Station  C  in Example  1.6 .  
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    Now we compute  s kw  ,  s wj  , and  s kj  . The bivariate contingency table can also be 
obtained from the trivariate contingency by marginalizing out one of the three 
sets of streamfl ow values. Using equation  (1.43) , we can have the bivariate joint 
contingency table of stations  A  and  B  as shown in Table  1-32 . Therefore,  s kj   in bits 
can be computed as

  
Skj = × + × + × + + × + ×

=

1
60

16 16 8 8 3 3 1 1 1 1

2 480

2 2 2 2 2( log log log log log )

.

…

22
   

     Similarly, the bivariate joint contingency table of  B  and  C  is shown in Table  1-33 , 
and  s wj   in bits can be computed as

  
Skj = × + × + × + + × + ×

=

1
60

25 25 15 15 2 2 0 0 0 0

3 2

2 2 2 2 2( log log log log log )

.

…

0035
   

     The bivariate joint contingency table of stations  A  and  C  is shown in Table  1-34 , 
and  s kw   in bits is computed as

  
skw = × + × + × + + × + ×( )

=

1
60

20 20 16 16 8 8 0 0 0 0

3 1

2 2 2 2 2log log log log log

.

…

5532
   

 Interval 0  ∼  
31.80

31.80  ∼  
63.60

63.60  ∼  
95.40

95.40  ∼  
127.20

127.20  ∼  
159.00

Station  A 4.06  ∼  72.84 16 7 1 0 1

72.84  ∼  141.62 8 7 1 3 1

141.62  ∼  210.40 3 4 2 0 2

210.40  ∼  279.18 0 0 0 0 1

279.18  ∼  347.96 1 0 1 0 1

 Table 1-32       n kj   Table for Station  A  in Example  1.6 .  

 Interval 1.5  ∼  
84.53

84.53  ∼  
167.53

167.53  ∼  
250.54

250.54  ∼  
333.55

333.55  ∼  
416

Station  B 0  ∼  31.80 25 2 1 0 0

31.80  ∼  63.60 15 3 0 0 0

63.60  ∼  95.40 2 1 1 0 1

95.40  ∼  127.20 2 1 0 0 0

127.20  ∼  159.00 1 2 3 0 0

 Table 1-33       n wj   Table for Station  B  in Example  1.6 .  
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 Interval 1.5  ∼  
84.53

84.53  ∼  
167.53

167.53  ∼  
250.54

250.54  ∼  
333.55

333.55  ∼  
416

Station  B 4.06  ∼  72.84 20 4 1 0 0

72.84  ∼  141.62 16 3 1 0 0

141.62  ∼  210.40 8 0 2 0 1

210.40  ∼  279.18 0 1 0 0 0

279.18  ∼  347.96 1 1 1 0 0

 Table 1-34       n wj   Table for Station  C  in Example  1.6 .  

     Using the trivariate contingency table and equation  (1.42) ,  s kwj   can be computed 
as

  

s
n

n nkwj kwj kwj
k w j

=

= × + × + × + +

∑1

1
60

14 14 7 7 3 3

2

2 2 2

log

( log log log

, ,

… 00 0 0 0

2 2 0 0 0 0 1 1 0 0

2 2

2 2 2 2 2

× + ×

+ × + × + × + + × + ×

log log

log log log log log…
++ × + × + × + + × + ×
+ × + ×

0 0 1 1 0 0 0 0 1 1
0 0 0

2 2 2 2 2

2 2

log log log log log
log log

…
00 0 0 0 0 0 0

0 0 0 0 0 0 0
2 2 2

2 2 2

+ × + + × + ×
+ × + × + × + + ×

log log log
log log log l

…
… oog log )

.
2 20 0 0

1 9805
+ ×

= bits

   

    So far, we can use equation  (1.52)  to compute the interaction information

 

A A B C s s s s s s s sk w j kw wj kj kwj( , , )

. . .

= − + + + − − − +
= − + +5 9069 4 0891 4 78799 4 0256 3 1532 3 2035 2 4802 1 9805

0 1393
+ − − − +

=
. . . . .

. bits
   

         1.4.8     Informational Correlation Coeffi cient 

 The informational correlation coeffi cient  R  0  is a measure of transferable informa-
tion and measures the mutual dependence between random variables  X  and  Y  
and does not assume any type of relationship between them. It is a dimensional 
quantity and is expressed in terms of transinformation as

  R T0 01 2= − −exp( )       (1.67)  

where  T  0  is transinformation or mutual information representing the upper limit 
of transferable information between two variables  X  and  Y . If the values of prob-
abilities are computed from the corresponding sample frequencies (Harmancio-
glu et al.  1992 ), then the transinformation so obtained represents the upper limit 
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of transferable information between the two variables. When  X  and  Y  are nor-
mally distributed and linearly correlated,  R  0  reduces to the classical Pearson 
correlation coeffi cient between  X  and  Y ,  r xy  :

  r r
x y

xy
x y

0 = =
Cov( , )

σ σ
      (1.68)  

where  Cov ( x ,  y ) is the covariance between  X  and  Y ,  σ   x   is the standard deviation 
of  X , and  σ   y   is the standard deviation of  Y . These quantities can be computed 
from sample data as follows:

  Cov( , ) ( )( )x y
N

x x y yi i
i

N

= − −
=
∑1

1

      (1.69)  

where x     is the mean of  X ,  y     is the mean of  Y , and  N  is the sample size. The 
standard deviations are computed as

  σ σx i
i

N

y i
i

N

N
x x

N
y y=

−
− =

−
−

= =
∑ ∑1

1
1

1
2

1

2

1

( ) , ( )       (1.70)     

  1.5     Application of Entropy Theory to Hydraulic 
Engineering Problems 

 The entropy concept has been applied to a wide range of problems in hydraulics. 
These problems can be classifi ed into three groups: (1) statistical, (2) physical, 
and (3) mixed. In the fi rst group, problems are entirely statistical and do not 
invoke any physical laws. Examples of such problems are derivation of fre-
quency distributions for given constraints, estimation of frequency distribution 
parameters in terms of given constraints, evaluation of monitoring networks in 
space and/or time, fl ow forecasting, spatial and inverse spatial analysis, com-
plexity analysis, clustering analysis, and so on. 

 In the second group, problems involve a kind of physical law in the form of 
a fl ux-concentration relation and a hypothesis on the cumulative probability 
distribution of either fl ux or concentration, depending on the problem at hand. 
Examples of such problems are distribution of velocity in water courses, hydrau-
lic geometry, channel cross section, sediment concentration, sediment yield, and 
river longitudinal profi le. 

 The third group involves problems wherein relations are derived between 
entropy and design variables and then relations between design variables and 
system characteristics are established. Examples of such problems include geo-
morphologic relations for elevation, slope, and fall and evaluation of water 
distribution systems. In hydraulics, the entropy theory has been applied to 
address problems from the second and third groups.  
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  1.6     Hypothesis on the Cumulative 
Distribution Function 

 The second concept deals with the formulation of a hypothesis on the cumulative 
distribution function (CDF) of fl ux in terms of concentration, as for example, the 
CDF of velocity of fl ow in open channels in terms of depth of fl ow, the CDF of 
discharge in terms of fl ow stage or depth, the CDF of sediment concentration in 
terms of fl ow depth, and so on. Now, depending on the problem at hand, the 
cumulative distribution function (CDF) of  X , say fl ux, can be hypothesized as

  F x a b
h
D

c

( ) = + ⎛
⎝

⎞
⎠       (1.71)  

where  D  is the maximum value of  h , say concentration, and  a ,  b , and  c  are con-
stants. A frequently used form of equation  (1.71)  is such that  a   =  0,  b   =   c   =  1; or 
 a   =  1,  b   =   − 1, and  c   =  1; or  a   =  0,  b   =   − 1 and  c   =  1. In the fi rst case, equation  (1.71)  
expresses the notion that the probability of fl ux  X , which is less than or equal to 
a given value  x , is equal to the concentration  h  at  X   =   x  divided by the maximum 
concentration,  D . From a sampling standpoint, all values of  h  are equally likely 
to be sampled; in other words,  h  follows a uniform distribution. This is a simple 
hypothesis and may not be entirely true. There is little physical justifi cation for 
equation  (1.71) , except that it has been found to be adequate for several hydraulic 
problems (Cui and Singh  2012 ). 

  Example 1.7          Using fi eld measurements of velocity as shown in Table  1-35 , plot 
equation  (1.71)  and show values of parameters  a ,  b , and  c .   

 y/D  F  u  (m/s)  y/D  F  u  (m/s)

0 0.05 0 0.3704 0.50 0.266

0.0925 0.07 0.232 0.4444 0.53 0.281

0.1111 0.10 0.229 0.5185 0.58 0.343

0.1296 0.11 0.203 0.6111 0.65 0.399

0.1481 0.14 0.189 0.7037 0.70 0.358

0.1667 0.17 0.222 0.7963 0.825 0.388

0.1852 0.20 0.270 0.8889 0.825 0.388

0.2222 0.30 0.248 0.9444 0.95 0.406

0.2593 0.35 0.240 1 1 0.377

0.3148 0.37 0.222

 Table 1-35      Field measurements of velocity.  
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  Solution     The velocity data were obtained for a cross section at Ghamasiab 
River in Iran. For this data set, using the least-squares method, parameters 
were found to be  a   =  0,  b   =  1, and  c   =  1. Equation  (1.71)  is plotted, as shown in 
Fig.  1-5 .     

  1.7     Methodology for Application of Entropy Theory 

 The methodology for application of the entropy theory as outlined involves the 
following steps:

   1.      Expression of the random variable and then its Shannon entropy.  
  2.      Specifi cation of constraints.  
  3.      Maximization of entropy using the method of Lagrange multipliers.  
  4.      Determination of the entropy-based PDF and determination of entropy 

in terms of constraints.  
  5.      Determination of the Lagrange multipliers in terms of constraints.  
  6.      Formulation of CDF hypothesis.  
  7.      Derivation of desired relations.    

 Step 6 is described in the preceding section, Step 7 is obtained with the 
use of Step 6, and the remainder of these steps are briefl y discussed in what 
follows. 

  1.7.1     Defi ning the Random Variable 

 If fl ux is the design variable, then time-averaged or space-averaged fl ux is 
assumed as a random variable. Let  X  be fl ux and  h  be the associated concentra-
tion. In many problems, the time-averaged fl ux can be considered as a random 

  Figure 1-5      Relation between  F ( u ) and  y/D .    
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variable. For example, in open channel fl ow, the time-averaged velocity at a 
given cross section can be considered as a random variable. If  X  is space-averaged, 
it can be considered as a random variable. For example, space-averaged capacity 
rate of seepage through a dam can be considered as a random variable. Likewise, 
space-averaged soil moisture can be considered as a random variable. This 
assumption is fundamental to the next step and is the basis of entropy-based 
analysis. How valid this assumption is may depend on the problem at hand. 
What is interesting, however, is that the fi nal result does not seem to be greatly 
affected by the perfect or less than perfect validity of this assumption—a marvel-
ous attribute of the entropy theory.  

  1.7.2     Specifi cation of Constraints 

 The second concept involves specifi cation of constraints in terms of the laws of 
mathematical physics—mass conservation, momentum conservation, and energy 
conservation—or constitutive laws. These three concepts link statistical analysis 
based on entropy with physical concepts in hydraulic engineering. 

 The information on a random variable can be expressed in many different 
ways, but it is more convenient to express it in terms of moments, such as mean, 
variance, covariance, cross covariance, and linear combinations of these statistics. 
Thus, constraints encode relevant information. If observations are available, then 
one way to express information on the random variable is in terms of constraints 
 C r  ,  r   =  0, 1, 2, …,  n , defi ned as

  C f x dx
a

b

0 1= =∫ ( )       (1.72)  

  C g x f x dx g x r nr r

a

b

r= = =∫ ( ) ( ) ( ), , , ,1 2 …       (1.73)  

where  g r  ( x ),  r   =  1, 2, …,  n  represent some functions of  x ,  n  denotes the number 
of constraints, and  g xr ( )     is the expectation of  g r  ( x ). Equation  (1.72)  states that 
the PDF must satisfy the total probability. Other constraints, defi ned by equation 
 (1.73) , have physical meaning. For example, if  r   =  1 and  g  1 ( x )  =   x , equation  (1.73)  
would correspond to the mean  x    ; likewise, for  r   =  2 and  g x x x2

2( ) ( )= −    , it would 
denote the variance of  x . For most hydraulic engineering problems, more than 
two or three constraints are not needed.  

  1.7.3     Maximization of Entropy 

 To obtain the least-biased  f ( x ), the entropy given by equation  (1.18)  is maximized, 
subject to equations  (1.72)  and  (1.73) , and one simple way to achieve the 

c01.indd   49c01.indd   49 5/21/2014   11:06:13 AM5/21/2014   11:06:13 AM



50 Entropy Theory in Hydraulic Engineering

maximization is the use of the method of Lagrange multipliers. To that end, the 
Lagrangian function  L  can be constructed as

  L f x f x dx f x dx C f x g x dx
a

b

a

b

r r= − − − −
⎡

⎣
⎢

⎤

⎦
⎥ − −∫ ∫( )ln ( ) ( ) ( ) ( ) ( )λ λ0 01 CCr

a

b

r

n

∫∑ ⎡

⎣
⎢

⎤

⎦
⎥

=1

   

    (1.74)  

where  λ  1 ,  λ  2 , …,  λ   n   are the Lagrange multipliers. To obtain an  f ( x ) that maximizes 
 L , one may recall the Euler–Lagrange calculus of variation, and, therefore, one 
differentiates  L  with respect to  f ( x ) (noting  X  as a parameter and  f  as a variable), 
equates the derivative to zero, and obtains the following:

  
∂
∂

= ⇒ − + − − − =
=

∑L
f

f x g xr r
r

n

0 1 1 00
1

[ ln ( )] ( ) ( )λ λ       (1.75)    

  1.7.4     Probability Distribution 

 Equation  (1.75)  leads to the probability density function of  X  in terms of the given 
constraints:

  f x g xr r
r

n

( ) exp ( )= − −⎡
⎣⎢

⎤
⎦⎥=

∑λ λ0
1

      (1.76)  

where the Lagrange multipliers  λ   r  ,  r   =  0, 1, 2, …,  n , can be determined with the 
use of equations  (1.72)  and  (1.73) . Equation  (1.76)  is also written as

  f x
Z

g x
n

r r
r

n

( )
( , , , )

exp ( )= −⎡
⎣⎢

⎤
⎦⎥=

∑1

1 2 1λ λ λ
λ

…
      (1.77)  

where  Z   =  exp( λ  0 ) is called the partition function. Integration of equation  (1.76)  
leads to the cumulative distribution function or simply the probability distribu-
tion of  X ,  F ( x ) as

  F x g x dxr r
r

n

a

x

( ) exp ( )= − −⎡
⎣⎢

⎤
⎦⎥=

∑∫ λ λ0
1

      (1.78)   

 Substitution of equation  (1.76)  in equation  (1.18)  results in the maximum 
entropy of  f ( x ) or  X  as

  H g x E g x Cr r
r

n

r
r

n

r r
r

n

= + = + = +
= = =

∑ ∑ ∑λ λ λ λ λ λ0
1

0 1
1

0
1

( ) [ ( )]       (1.79)  

where  E [ g ( x )] is the expectation of  g ( x ). Equation  (1.79)  shows that the entropy 
of the probability distribution of  X  depends only on the specifi ed constraints, 
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since the Lagrange multipliers themselves can be expressed in terms of the speci-
fi ed constraints. Equations  (1.18) ,  (1.72) ,  (1.73) ,  (1.76) , and  (1.79)  constitute the 
building blocks for application of the entropy theory. Entropy maximization 
results in the probability distribution that is most conservative and hence most 
informative. If a distribution with lower entropy were chosen, then it would 
mean the assumption of information that is not available. Conversely, a distribu-
tion with higher entropy would violate the known constraints. Thus, it can 
be stated that the maximum entropy leads to a probability distribution of a 
particular macro state among all possible confi gurations of events under 
consideration.  

  1.7.5     Determination of Lagrange Multipliers 

 Equation  (1.76)  is the POME-based probability distribution containing Lagrange 
multipliers  λ  0 ,  λ  1 ,  λ  2 , …,  λ   n   as parameters that can be determined by inserting 
equation  (1.76)  in equations  (1.72)  and (1. 73):

  exp( ) exp ( ) , , , ,λ λ0
1

1 2= −⎡
⎣⎢

⎤
⎦⎥

=
=

∑∫ r r
r

n

a

b

g x dx r n…       (1.80)  

and

  C g x g x dx r nr r r r
r

n

a

b

= −⎡
⎣⎢

⎤
⎦⎥

=
=

∑∫ ( )exp ( ) , , , ,λ
1

1 2 …       (1.81)   

 Equation  (1.80)  can be written for the zeroth Lagrange multiplier as

  λ λ0
1

1 2= −⎡
⎣⎢

⎤
⎦⎥

=
=

∑∫ln exp ( ) , , , ,r r
r

n

a

b

g x dx r n…       (1.82)   

 Equation  (1.82)  expresses the partition function  Z  as

  Z g x dxm r r
r

m

a

b

( , , , ) exp ( )λ λ λ λ1 2
1

… = −⎡
⎣⎢

⎤
⎦⎥=

∑∫       (1.83)   

 Differentiating equation  (1.83)  with respect to  λ   r  , one gets

  
∂
∂

= −
−⎡

⎣⎢
⎤
⎦⎥

−⎡
⎣

=

=

∑∫

∑
λ
λ

λ

λ

0 1

1

r

r r r
r

n

a

b

r r
r

n

g x g x dx

g x

( )exp ( )

exp ( )⎢⎢
⎤
⎦⎥

=

∫ dx

r n

a

b , , , ,1 2 …       (1.84)   
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 Multiplying the numerator as well as the denominator of equation  (1.84)  by 
exp( −  λ  0 ), one obtains

  
∂
∂

= −
− −⎡

⎣⎢
⎤
⎦⎥

− −

=
∑∫λ

λ

λ λ

λ λ

0
0

1

0
r

r r r
r

n

a

b

r r
r

g x g x dx

g x

( )exp ( )

exp ( )
==

∑∫ ⎡
⎣⎢

⎤
⎦⎥

=

1

1 2
n

a

b

dx

r n, , , ,…       (1.85)   

 The denominator in equation  (1.85)  equals unity by virtue of equation  (1.72) . 
Therefore, equation  (1.85)  becomes

  
∂
∂

= − − −⎡
⎣⎢

⎤
⎦⎥

=
=

∑∫
λ
λ

λ λ0
0

1

1 2
r

r r r
r

n

a

b

g x g x dx r n( )exp ( ) , , , ,…       (1.86)   

 Note that substitution of equation  (1.76)  in equation  (1.73)  yields

  C g x g x dx r nr r r r
r

n

a

b

= − −⎡
⎣⎢

⎤
⎦⎥

=
=

∑∫ ( )exp ( ) , , , ,λ λ0
1

1 2 …       (1.87)   

 Therefore, equations  (1.86)  and  (1.87)  yield

  
∂
∂

= − =λ
λ

0 1 2
r

rC r n, , , ,…       (1.88)   

 Likewise, equation  (1.83)  can be written analytically as

  λ λ λ λ λ0 0 1 2= ( , , , )… n       (1.89)   

 Equation  (1.89)  can be differentiated with respect to  λ   r  ,  r   =  1, 2, …,  n , and each 
derivative can be equated to the corresponding derivative in equation  (1.88) . This 
correspondence would lead to a system of  n   −  1 equations with  n   −  1 unknowns, 
whose solution would lead to the expression of Lagrange multipliers in terms of 
constraints. 

  Example 1.8          Assume a discrete random variable  X , which takes on values  x  1 , 
 x  2 ,  x  3 , …,  x N   with probabilities  p  1 ,  p  2 ,  p  3 , …,  p N  . The expected value or the average 
value of the variable is known from observations. What should be its probability 
distribution?  

  Solution     The expected value of the variable is known:

  p x p x p x x p xN N i i
i

N

1 1 2 2
1

+ + + = =
=
∑…       (1.90)   

 Of course, the total probability law holds

  p p i Ni
i

N

i
=
∑ = ≥ =

1

1 0 1 2, , , , ,…       (1.91)   
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 The objective is to derive the POME-based distribution  P   =  { p  1 ,  p  2 , …,  p N  }, subject 
to equations  (1.90)  and  (1.91) . In other words, one maximizes the Shannon en-
tropy given by equation  (1.4) , subject to equations  (1.90)  and  (1.91) . 

 Following the POME formalism, one constructs the Lagrangian  L :

  L p p p p x xi i
i

N

i
i

N

i i
i

N

= − − −( ) −⎛
⎝⎜

⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟= = =

∑ ∑ ∑ln
1

0
1

1
1

1 1λ λ       (1.92)   

 Differentiating equation  (1.92)  with respect to  p i  ,  i   =  1, 2, …,  N , and equating each 
derivative to zero, one obtains:

  
∂
∂

= ⇒ − − − = =L
p

p x i N
i

i i i0 0 1 20ln , , , ,λ λ …       (1.93)   

 Equation  (1.93)  yields

  p x i Ni i= − − =exp[ ], , , ,λ λ0 1 1 2 …       (1.94)   

 Equation  (1.94)  contains parameters  λ  0  and  λ  1 , which are determined with the 
use of equations  (1.90)  and  (1.91) . Inserting equation  (1.94)  in equation  (1.91) , one 
gets

  exp( ) exp( )− = −⎡
⎣⎢

⎤
⎦⎥=

−

∑λ λ0 1
1

1

xi
i

N

      (1.95)   

 When equation  (1.95)  is substituted in equation  (1.94) , the result is

  
p

x

x
i

i i

i
i

N=
−

−
=
∑

exp( )

exp( )

λ

λ1
1

      (1.96)   

 Equation  (1.96)  is called the Maxwell–Boltzmann (M–B) distribution, which is 
used in statistical mechanics. 

 Now its parameter,  λ  1 , must be determined in terms of constraint  x    . Inserting 
equation  (1.94)  in equation  (1.90) , one gets

  x x xi i
i

N

exp( )− − =
=
∑ λ λ0 1

1

      (1.97)   

 Taking advantage of equation  (1.95) , equation  (1.97)  yields

  
x x

x
x

i i i
i

N

i
i

N

exp( )

exp( )

−

−
==

=

∑

∑

λ

λ

1

1
1

      (1.98)   

 Equation  (1.98)  permits the estimation of  λ  1  in terms of  x    . Note that if  λ  1   =  0, 
clearly equation  (1.96)  would be a rectangular distribution with  p i    =  1/ N . If  λ  1  
is negative, then the probability increases as  x i   increases, and if  λ  1   >  0, then the 
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probability decreases as  x i   increases. In physics, the M–B distribution has been 
used to derive the microstates of a system on the basis of some knowledge about 
macroscopic data. For example, if a system had a large number of particles, each 
with an energy level, then the M–B distribution would be used to determine the 
probability distribution of energy levels of particles, provided that the expected 
energy of the system was somehow known. Fiorentino et al. ( 1993 ) used the M–B 
distribution to describe the probability distribution of elevations of links in a 
river basin if the mean basin elevation was known.  

   Example 1.9          Consider a random variable  X  varying over a semi-infi nite interval 
(0,  ∞ ) and having a probability density function (PDF)  f ( x ). From observations, 
the expected value of  X ,  E [ x ], is known. Derive the PDF  f ( x ) of  X .  

  Solution     In this case, the constraint equation is given as

  xf x dx E x x k( ) [ ]
0

∞

∫ = = =       (1.99)   

 The Shannon entropy is given by equation  (1.18) , where

  f x dx( )
0

1
∞

∫ =       (1.100)   

 The least-biased  f ( x ) is determined by maximizing equation  (1.18) , subject to 
equations  (1.99)  and  (1.100) . To that end, the Lagrangean  L  is constructed as

  L f x f x dx f x dx xf x dx k= − − − −
⎡

⎣
⎢

⎤

⎦
⎥ − −

⎡∞ ∞ ∞

∫ ∫ ∫( )ln ( ) ( ) ( ) ( )
0

0

0

1

0

1 1λ λ
⎣⎣
⎢

⎤

⎦
⎥       (1.101)   

 Taking the derivative of  L  with respect to  f ( x ) and equating it to 0, one obtains

  
∂

∂
= ⇒ − + − − − =L

f x
f x x

( )
[ ln ( )] ( )0 1 1 00 1λ λ       (1.102)   

 Therefore,

  f x x( ) exp( )= − −λ λ0 1       (1.103)   

 Equation  (1.103)  is the POME-based distribution with  λ  0  and  λ  1  as param-
eters. 

 Substituting equation  (1.103)  in equation  (1.100) , one obtains

  exp( ) exp( )− − = =
∞

∫ λ λ λ λ0 1

0

1 0 1x dx       (1.104)   

 Substituting equation  (1.104)  in equation  (1.103) , one gets

  f x x( ) exp( )= −λ λ1 1       (1.105)   
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 Inserting equation  (1.105)  in equation  (1.100) , one gets

  λ λ λ1 1

0

1
1

x x dx k or
k

exp( )− = =
∞

∫       (1.106)   

 Thus equation  (1.106)  becomes

  f x
k

x
k

k x( ) exp ,= −⎛
⎝

⎞
⎠ =1

      (1.107)  

which is the exponential distribution. 
 The entropy-based method of deriving a probability distribution can also be 

used for estimating parameters of a distribution. In that case, fi rst the constraints 
for the distribution must be derived. Then, distribution parameters can be ex-
pressed in terms of these constraints.     

  Appendix 1.1 

     Counts of Event Occurrences 

    n i  ,  n j  ,  n k  : the counts of event  X   =   x i  ,  Y   =   y j  , and  Z   =   z k   occurrences, 
respectively.  

   n ij  ,  n ik  ,  n jk  : the counts of joint event [ X   =   x i  ,  Y   =   y j  ], [ X   =   x i  ,  Z   =   z k  ], [ Y   =   y j  ,  Z   =  
 z k  ] occurrences, respectively.  

   n ijk  : the counts of joint event [ X   =   x i  ,  Y   =   y j  , and  Z   =   z k  ] occurrences.  
   n : the total number of events.    
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      S -Notation for Bivariate and Trivariate Transinformation 
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       S -Notation for Interaction Information 

  A X Y Z s s s s s s s sX Y Z XY YZ XZ XYZ, ,( ) = − + + + − − − +    

     Relationship between Trivariate Transinformation and 
Its Bivariate Component 
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       Questions 

   Q1.1      If an event occurs with a probability  p  1   =  0.1, then compute its entropy. 
Likewise, if six different events occur with probabilities, respectively, of 
 p  2   =  0.2,  p  3   =  0.4,  p  4   =  0.5,  p  5   =  0.6,  p  6   =  0.8, and  p  7   =  0.9, then compute 
entropy for each value of  p . What can be said about the uncertainty, 
degree of surprise, and information with respect to each event?  

  Q1.2      Compute the value of information reduction. Table  1-36  shows discharge 
values for two stations,  A  and  B , for 30 years.   

  Q1.3      Compute joint entropy using discharge values in Q1.2.  

  Q1.4      Compute conditional entropy using the data in Q1.2.  
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 A  (m 3 /s)  B  (m 3 /s)

78.7 57.1 142 73.2 51.8 140

79.2 127 31.9 54.5 165 116

87.8 360 150 55.6 1210 194

33.9 156 144 56.8 2270 322

10 178 60.9 67.6 234 225

7.45 340 138 59 354 242

20.7 434 160 52.6 953 137

62.7 610 168 119 1280 286

25.6 229 132 89 3250 258

15.9 246 1200 93.3 1340 6860

77.3 739 1440 99.9 865 2350

19.7 459 1440 103 1220 2650

166 507 1440 130 2730 2000

124 597 2330 154 917 2030

17.6 606 3660 124 1690 6700

33.6 574 5550 153 1690 7060

18.9 852 7780 144 1900 5200

 Table 1-36      Discharge values at two stations,  A  and  B .   

  Q1.5      Compute transinformation using the data in Q1.2.  

  Q1.6      Compute the CDF for velocity as a function of fl ow depth for the data 
on velocity and depth given in Table  1-37 .   

  Q1.7      Consider data in Table  1-38  on fl ow discharge at three stations ( A ,  B , and 
 C ) for a river in Texas. Compute marginal entropies of stations  A ,  B , and 
 C . Then compute conditional entropies of  A | B ,  B | C ,  A | C . Then compute 
joint entropies  H ( A ,  B ),  H ( B ,  C ),  H ( A ,  C ). Also, compute transinformation 
 T ( A ,  B ),  T ( B ,  C ),  T ( A ,  C ).   

  Q1.8      Using the entropy theory, compute the probability density function of 
a random variable whose mean and variance are known. Compute the 
Lagrange multipliers and the partition function and provide their physi-
cal interpretations.  

  Q1.9      Using the entropy theory, compute the probability density function of a 
random variable whose mean and the mean of logarithmic values of the 
variable are known. Compute the Lagrange multipliers and the partition 
function, and provide their physical interpretations.  
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Depth (ft) Velocity (ft/s) Depth (ft) Velocity (ft/s)

0.006 2.221 0.045 5.075

0.009 2.497 0.050 5.298

0.011 2.720 0.054 5.522

0.011 2.858 0.064 5.806

0.015 2.964 0.074 6.090

0.017 3.329 0.084 6.293

0.019 3.573 0.095 6.516

0.024 3.898 0.104 6.699

0.034 4.519 0.124 7.113

0.040 4.831

 Table 1-37      Velocity measurements.  

  Q1.10      Using the entropy theory, compute the probability density function of 
a random variable where nothing is known about the variable. The 
variable takes on values over a fi nite interval. Compute the Lagrange 
multipliers and the partition function, and provide their physical 
interpretations.  

  Q1.11      Using the entropy theory, compute the probability density function of 
a random variable whose mean and variance are known. However, the 
variable takes on values over the semi-infi nite domain, i.e., 0 to infi n-
ity. Compute the Lagrange multipliers and the partition function, and 
provide their physical interpretations.    

Discharge Values  
(m 3 /s)

 A  B  C 

Frequency
Relative  

Frequency Frequency
Relative  

Frequency Frequency
Relative  

Frequency

0–5,000 224 0.95 216 0.92 215 0.91

5,000–10,000 7 0.03 7 0.03 2 0.01

10,000–15,000 2 0.01 5 0.02 5 0.02

15,000–20,000 1 0.005 0 0 2 0.01

20,000–25,000 0 0 5 0.02 2 0.01

25,000–30,000 1 0.005 0 0 7 0.03

30,000–35,000 0 0 2 0.01 2 0.01

Sum 235 1.00 235 1.00 235 1.00

 Table 1-38      Discharge values (m 3 /s) (arranged in seven class intervals) from 1980 to 
2009 at stations  A ,  B , and  C , and their relative frequencies.  
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65

    Chapter 2 

  One-Dimensional Velocity 
Distributions  

       Fundamental to hydraulic modeling of fl ow propagation, sediment transport, 
pollutant transport, and river behavior is the velocity distribution in river cross 
sections. The velocity distribution is infl uenced by the hydraulics of fl ow, which 
entails three classes of variables relating to (1) geometry, (2) fl ow, and (3) fl uid. 
Geometry-related variables include the depth of fl ow, hydraulic depth, stage, 
top width, bottom width, cross-sectional area, wetted perimeter, hydraulic 
radius, bed roughness, and bed slope. The bed forms, side slope, and vegeta-
tion in the channel also infl uence the velocity distribution. The variables in the 
fl ow class are discharge, velocity, shear force (stress), drag, lift force, water 
surface slope, and energy grade line slope. The fl uid-related variables are 
density, specifi c weight (or weight density), specifi c gravity, viscosity, com-
pressibility, and temperature. The water fl owing in the channel is laden with 
sediment and may also be carrying pollutants, including biological, physical, 
and chemical—organic and inorganic. The velocity distribution of clear-water 
fl ow is not the same as that of mixed-water fl ow. Furthermore, fl ow in open 
channels can be characterized by nondimensional parameters defi ned by group-
ing some of these variables. The most commonly used nondimensional param-
eters are the relative roughness, the Reynolds number ( R n  ) (the ratio of the 
inertial force to the viscous force), Froude number ( F r  ) (the ratio of inertial force 
to the gravitational force), Euler number (the ratio of kinetic to potential energy 
difference or the ratio of pressure and gravity force difference to the inertial 
force), Weber number (the ratio of inertial force to the surface tension force), 
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Richardson number (the ratio of gravitational acceleration times the gradient of 
density in vertical direction to the density times the square of the gradient of 
velocity in the vertical direction), Mach number (the ratio of the inertial force 
to the compression force), and the Cauchy number (the square of the Mach 
number) (Cruise et al.  2007 ). 

 The fl ow in an open channel at a given time and location can be laminar, 
turbulent, or mixed (transitional). Based on the value of the Reynolds number, 
this classifi cation of fl ows is laminar ( R n    ≤  500), transient (500  ≤   R n    ≤  2000), and 
turbulent ( R n    ≥  2000) in pipe fl ow. However, in open-channel fl ow where the 
characteristic length may be defi ned by hydraulic mean depth, the classifi cation 
of fl ows is laminar ( R n    ≤  1000), transient (1000  ≤   R n    ≤  12500), and turbulent 
( R n    ≥  12500). For both pipe and channel fl ows, these ranges of  R n   are only 
approximate. Likewise, fl ows can be classifi ed into subcritical (tranquil) ( F r    <  1), 
critical ( F r    =  1), and supercritical ( F r    >  1), depending on the value of the Froude 
number. Further classifi cation of open-channel fl ow can be based on the vari-
ability of velocity (or fl ow depth) in time as steady or unsteady fl ow and in space 
as uniform or varied (nonuniform) fl ow. Thus, steady fl ow can be uniform—a 
rare occurrence—or nonuniform—a usual occurrence that itself can be gradually 
varied or rapidly varied. Likewise, unsteady fl ow can be uniform or nonuniform—
again gradually varied or rapidly varied (Chow  1959 ; Henderson  1966 ; Singh 
 1996 ). 

 The velocity distribution varies from one class of fl ow to another. Fundamen-
tal to the fl ow and its velocity distribution is the fl ow resistance. For example, 
the fl ow in open channels on alluvial sand beds is generally hydraulically rough, 
and, therefore, turbulent fl ow prevails for most natural conditions. If the fl ow is 
laminar, then velocity can be defi ned accurately. However, in turbulent fl ow, the 
velocity vector is not constant, and the velocity fl uctuates both spatially and 
temporally. The discussion in this chapter is restricted to time-averaged velocity 
at a given location. 

 Chiu ( 1987 ) was probably the fi rst to use entropy and the principle of 
maximum entropy (POME) to derive the probability density function of veloc-
ity, subject to mass conservation. He then derived the one-dimensional (1-D) 
velocity distribution as a function of depth. Barbé et al. ( 1991 ) extended Chiu ’ s 
work by incorporating constraints based on the conservation of mass, momen-
tum, and energy. Chiu and his associates have since extended Chiu ’ s work to a 
variety of issues related to open-channel fl ow and sediment and pollutant con-
centration (Chiu  1988, 1989, 1991 ; Chiu and Murray  1992 ; Chiu and Said  1995 ; 
Chiu et al.  2000 ; Chiu and Tung  2002 ; Chiu and Chen  2003 ; Chen and Chiu 
 2004 ; Chiu et al.  2005 ). Chiu ’ s work has been used by Xia ( 1997 ) for establish-
ing the relation between mean and maximum velocities, Moramarco et al. 
( 2004 ) for estimating mean velocity, Greco ( 1999 ) for velocity distribution in a 
river, Choo ( 2000 ) for sediment discharge measurements, and Moramarco 
and Singh ( 2001 ) for estimation of discharge at remote locations. We closely 
follow Chiu ’ s work and ensuing works by others here. Before deriving velocity 
distributions, we briefl y review concepts of mass, momentum, and energy 
conservation. 
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  2.1     Preliminaries 

 Consider a typical channel cross section, as shown in Fig.  2.1 . For purposes of 
deriving 1-D velocity distribution, we assume that the fl ow in an open channel 
is uniform with a fl ow depth  D , and the velocity  u  (time-averaged) at a given 
location monotonically increases with depth  y  from zero at the channel bed to a 
maximum value  u D  , at the water surface. Thus, the velocity  u  at any distance  y  
from the bed is less than the velocity  u  1  at another distance, say  y  1 , greater than 
 y . The velocity is assumed to be zero at the bed because of the maximum bound-
ary shear and maximum at the water surface because of the minimum boundary 
shear and when the water–air interface is neglected. Thus, the maximum velocity 
at the water surface is an assumption. In reality, the maximum velocity occurs 
somewhere between 10% and 40% of the fl ow depth below the water surface, 
depending on the channel aspect ratio (width/depth). 

  First, recall the fl ux of mass, momentum, and energy passing through an 
elemental area  dA   =   dyB , where  A  is the cross-sectional area ( L  2 ) (here  L  is the 
length),  B  is the fl ow width ( L ), and  y  is the fl ow depth ( L ). The mass of fl uid  m  
(kg) passing through this elemental area  dA  ( L  2 ) at a velocity  u  ( L / T ) in a time 
 dt  ( T ) is  m   =   ρ ( udt )( dA ), where  ρ  is the mass density (kg/ L  3 ) or the mass (kg) per 
unit volume ( L  3 ), and  udt  is the distance ( L ) traversed by the mass of water  m  in 
time  dt . Similarly, the momentum (kg- L / T ) in time  dt  equals  mu   =   ρ  u  2 ( dt )( dA ), 
and the kinetic energy (kg- L  2 / T  2 ) is represented as (1/2) mu  2   =  (1/2) ρ  u  3 ( dt )( dA ). 
Integrating over the elemental area and dividing by  dt , one gets the expressions 
for the fl uxes of mass, momentum, and energy, respectively, as follows:

  mass/time mass flux= = = =∫ρ ρ ρudA KAu KQ
A

m       (2.1)  

  Momentum/time momentum flux= = = =∫ρ ρβ ρβu dA Au Qu
A

m m
2 2       (2.2)  

 Kinetic energy/time kinetic energy flux= = =∫
1
2

1
2

3 3ρ ραu dA Au
A

m == 1
2

2ραQum    

    (2.3)  

  Figure 2-1      A typical channel cross section.    

y

x

D
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where  u m   is the cross-sectional average velocity ( L / T ) over the cross-sectional 
area,  Q   =   Au m   is discharge,  K  is the mass distribution factor (dimensionless),  β  is 
the momentum distribution factor (dimensionless), and  α  is the energy distribu-
tion factor (dimensionless). 

 By defi nition, one can write the cross-sectional average velocity as

  u
A

udAm
A

= ∫
1

      (2.4)   

 The volume per unit time is defi ned as discharge or quantity of fl ow per unit 
time:

  Q udA Au
A

m= =∫       (2.5)   

 Distribution factors,  K ,  β  and  α , can be evaluated from, respectively, equations 
 (2.1) ,  (2.2) , and  (2.3)  by noting equations  (2.4)  and  (2.5)  as

  K
A

u
u

dA
Q

udA
m

= ⎛
⎝⎜

⎞
⎠⎟ = =∫ ∫

1 1
1       (2.6)  

  β = ⎛
⎝⎜

⎞
⎠⎟ =∫ ∫

1 2

2
2

A
u

u
dA

A
Q

u dA
m

      (2.7)  

  α = ⎛
⎝⎜

⎞
⎠⎟ =∫ ∫

1 3 2

3
3

A
u

u
dA

A
Q

u dA
m

      (2.8)   

 It may also be noted that

  α β> > =K 1       (2.9)   

 From 62 current-meter measurements in natural trapezoidal-shaped chan-
nels without overbank fl ow and with no bridge piers or other human-made 
structures, Franz and Melching ( 1996 ) found that 36 of 62 values of  β  were sig-
nifi cantly greater than unity. These channels were compact, and yet  β  was greater 
than 1.1 in more than half of the channel measurements and greater than 1.2 for 
8 of them. Likewise,  α  was greater than 1.3 in 30 and greater than 1.5 in 13 
channel measurements, respectively. The average values of  β  and  α  were found 
to be 1.12 and 1.36 for the 62 measurements. It seems logical that these values 
would be much higher for channels with overbank fl ow, as is frequently the case 
in nature. This phenomenon suggests that it may be necessary to include the 
effect of velocity distribution in equations governing channel fl ow (Singh  1996 ). 

 Xia and Yen ( 1994 ) evaluated the effect of fl ow nonuniformity and approxi-
mation of  β  on computed water surface profi les by conducting a series of experi-
ments on fl ow routing subject to a variety of downstream boundary conditions. 
Experiments included routing a sinusoidal stage hydrograph with a peak 2.25 
times the base stage through a 54-mile (86.9-km) long channel of rectangular, 
wide, or trapezoidal geometry. The maximum error in the computed depth was 
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One-Dimensional Velocity Distributions 69

found to be 0.36% for  β   =  1.33, and 1.11% for  β   =  2 for a channel with bed slope 
of 0.00019 and downstream backwater ranging from 0 to 2.53 times the base 
stage. This result indicates that a reasonable approximation of  β  should be 
acceptable for computation of water surface profi les. 

  Example 2.1          For a rectangular channel cross section with  B   =  1.006 ft,  D   =  0.194 ft, 
and  Q   =  1.139 ft 3 /s, fl ow measurements are given in Table  2-1 . Compute the val-
ues of  β  and  α .   

  Solution     For  B   =  1.006 ft,  D   =  0.194 ft,  A   =  1.006 ft 2 , and  Q   =  1.139 ft 3 /s,

  β = = = =
×

∫ ∫ ∫ ∑A
Q

u dA
A

Q
u Bdy

AB
Q

u dy u y
2

2
2

2
2

2
2

2
21 006 0 194

1 139
. .

.
Δ    

    α = = = =
×

∫ ∫ ∫ ∑A
Q

u dA
A
Q

u Bdy
A B
Q

u dy u y
2

3
3

2

3
3

2

3
3

3 2

3
31 006 0 194

1 139
. .

.
Δ    

    To perform numerical integration, set  Δ  y  as 0.01 ft. The resulting computation is 
shown in Table  2-2 .

  u y2 741 011 0 01 7 41Δ∑ = × =. . .    

    u y3 4810 383 0 01 48 1Δ∑ = × =. . .    

    β =
×

=∑1 006 0 194
1 139

1 12
2

2
2. .

.
.u yΔ    

    α =
×

=∑1 006 0 194
1 139

1 25
3 2

3
3. .

.
.u yΔ    

     Both  β  and  α  are signifi cantly greater than unity; this fact suggests that the mo-
mentum distribution and the energy distribution are not uniform in the vertical 
plane, i.e., there is a lot of turbulence in the fl ow.    

 y  (ft) 0.006 0.007 0.008 0.036 0.01 0.014 0.017 0.019 0.029

obs.  u  
(ft/s)

2.467 2.7 2.807 2.983 3.105 3.586 3.941 4.094 4.774

 y  (ft) 0.034 0.044 0.064 0.079 0.094 0.119 0.144 0.169 0.194

obs.  u  
(ft/s)

5.041 5.423 5.92 6.16 6.37 6.718 6.951 7.195 7.409

   Note:   obs.  =  observed.   

 Table 2-1      Velocity data from experiment S8 of Einstein and Chien ( 1955 ) in 
Example  2.1 .  
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70 Entropy Theory in Hydraulic Engineering

  2.2     Derivation of One-Dimensional 
Velocity Distributions 

 Derivation of a velocity distribution using the entropy theory entails (1) formula-
tion of a hypothesis on the cumulative distribution function (CDF) of velocity in 
terms of fl ow depth, (2) expression of the Shannon entropy, (3) specifi cation of 
constraints, (4) maximization of entropy, (5) derivation of the probability density 
function (PDF) of velocity, (6) determination of the Lagrange multipliers, and (7) 
entropy of the velocity distribution. These steps are described in the next 
sections. 

 y  (ft)  u  (ft/s)  u  2  (ft/s) 2  u  3  (ft/s) 3 

0 0.000 0.000 0.000

0.01 3.104 9.633 29.898

0.02 4.161 17.311 72.025

0.03 4.826 23.292 112.411

0.04 5.271 27.778 146.406

0.05 5.573 31.054 173.049

0.06 5.822 33.892 197.311

0.07 6.017 36.203 217.825

0.08 6.175 38.130 235.455

0.09 6.315 39.883 251.874

0.1 6.454 41.652 268.815

0.11 6.591 43.444 286.349

0.12 6.725 45.229 304.173

0.13 6.820 46.513 317.220

0.14 6.915 47.815 330.635

0.15 7.011 49.160 344.686

0.16 7.109 50.540 359.292

0.17 7.205 51.917 374.077

0.18 7.291 53.156 387.547

0.19 7.376 54.409 401.335

Sum 741.011 4810.383

 Table 2-2      Computation of values for Example  2.1 .  
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  2.2.1     Hypothesis on the Cumulative Distribution Function of 
Velocity in Terms of Flow Depth 

 Let the time-averaged velocity be considered as a random variable. It is assumed 
that all values of  y  between 0 and  D  are equally likely to be sampled; in reality, 
that is not entirely true. Then the probability of velocity being equal to or less 
than  u  is  y / D ; thus the cumulative distribution function (CDF) of velocity,  
F ( u )  =   P (velocity  ≤  a given value of  u ),  P   =  probability, can be expressed as

  F u
y
D

( ) =       (2.10)   

 Note that on the right side of equation  (2.10)  the variable is  y , not  u . Differentia-
tion of  F ( u ) in equation  (2.10)  yields the probability density function (PDF) of  u , 
 f ( u ), as

  f u
dF u

du D
dy
du

or f u D
du
dy

( )
( )

( )= = =
⎛
⎝⎜

⎞
⎠⎟

−
1

1

      (2.11)   

 The term  f ( u ) du   =   F ( u   +   du )  −   F ( u ) denotes the probability of velocity being 
between  u  and  u   +   du , where  du  represents a small change in velocity. Equation 
 (2.10)  constitutes the fundamental hypothesis that is used for deriving 1-D veloc-
ity distributions in this chapter. 

  Example 2.2          Consider velocity measurements in a river cross section, presented 
in Table  2-3 . Compute the CDF of velocity for these measurements. Verify if the 
hypothesis expressed by equation  (2.10)  holds.   

  Solution     Data on fl ow velocity and the corresponding fl ow depth are obtained 
for a cross section of the Ghamasiab River where the maximum fl ow depth is 

Depth (m) Velocity (m/s) Depth (m) Velocity (m/s)

0.05 0.2 0.2 0.369

0.06 0.229 0.24 0.424

0.07 0.277 0.29 0.41

0.08 0.288 0.34 0.447

0.09 0.299 0.4 0.458

0.11 0.314 0.47 0.483

0.13 0.347 0.55 0.506

0.16 0.366 0.59 0.535

 Table 2-3      Velocity measurements in a cross section of the Ghamasiab River, Iran.  
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72 Entropy Theory in Hydraulic Engineering

0.59 m. The fl ow depth is fi rst nondimensionalized by diving by the maximum 
fl ow depth  D   =  0.59 m. Then, the cumulative probability distribution of velocity is 
computed, as shown in Fig.  2-2 , which validates equation  (2.10)  reasonably well.     

  2.2.2     Expression of the Shannon Entropy 

 In practice,  u  is measured discretely. For  N  discrete measurements of  u , the 
Shannon entropy can be written as

  H u k p u p u p pi i
i

N

i i
i

N

( ) ( )log ( ) log= − = −
= =
∑ ∑

1 1

      (2.12)  

where  p i    =   p ( u i  ) is the probability of  u   =   u i  ,  i   =  1, 2, …,  N ; log is the logarithm, 
usually taken to the base of 2, 10, or  e , thus yielding the units of  H  in bits, deci-
bels, or Napier, respectively; and  k  is a constant that depends on the base of the 
logarithm; often it is taken as unity. Here the probability distribution of velocity 
 U   =  { u  1 ,  u  2 , …,  u N  } can be expressed as  P   =  { p  1 ,  p  2 , …,  p N  }. Equation  (2.12)  can be 
written for continuous  u  by noting that  p ( u )  =   f ( u ) Δ  u , where  Δ  u  is a small quantity 
and can be represented as  du , and the velocity range, 0  ≤   u   ≤   u D  ,  u D   being the 
upper limit of  u , can be divided into  N  intervals where  N  is large. Then equation 
 (2.12)  becomes

  H u k f u f u du k u
uD

( ) ( )log ( ) log= − +∫0
Δ       (2.13)  

where  k  is also taken as unity. 
 The second term on the right side of equation  (2.13) , log Δ  u , is either consid-

ered small and is, hence, neglected or is considered as base reference above, 
which  H ( u ) is measured. Thus, equation  (2.13)  is normally written [with the base 
 e  of log] as

  Figure 2-2      Cumulative (probability) distribution function of velocity as a function of 
dimensionless fl ow depth.    
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  H u f u f u du
uD

( ) ( )ln ( )= −∫0
      (2.14a)   

 More generally, equation  (2.14a)  is expressed as

  H u k f u
f u
m u

du
uD

( ) ( )ln
( )
( )

= − ⎡
⎣⎢

⎤
⎦⎥∫0

      (2.14b)  

where  m ( u ) is the invariance measure that ensures the invariance of entropy 
regardless of the coordinate system and is often taken as unity. It will have the 
same dimension as  f ( u ). 

 Thus, equation  (2.14a)  expresses the relative Shannon entropy for continuous 
velocity. It may be noted here that it is more convenient to use the continuous 
form of the Shannon entropy, for the algebra is much simpler, and, hence, equa-
tion  (2.14a)  in place of equation  (2.12)  will be used henceforth. Equation  (2.14a)  
expresses a measure of uncertainty about  f ( u ) or the average information content 
of sampled  u . 

 To derive the velocity distribution, the fi rst step is to determine the proba-
bility density function of  u ,  f ( u ). This determination is accomplished by maxi-
mizing the Shannon entropy of velocity,  H ( u ). Maximizing  H ( u ) is equivalent to 
maximizing [ f ( u ) ln f ( u )]. To maximize  H ( u ), certain constraints need to be 
satisfi ed.  

  2.2.3     Specifi cation of Constraints 

 For velocity, one can now state the constraints based on hydraulic considerations. 
The fi rst constraint,  C  1 , is the total probability:

  C f u du b
uD

1
0

11= = =∫ ( )       (2.15)   

 In actuality,  C  1  is not a constraint, because  f ( u ) must always satisfy the 
total probability. Nevertheless, it is treated as a constraint for the sake of 
discussion. 

 Flow in open channels satisfi es the laws of conservation of mass, momentum, 
and energy. These laws constitute additional constraints to which entropy maxi-
mization can be subjected. According to Fig.  2-3 , the conservation of mass in 
open-channel fl ow can be expressed as

  q udy u D
D

m= =∫0
      (2.16)  

where  q  is the specifi c discharge (discharge per unit width  =   Q / B ,  B   =  channel 
width) ( L  2 / T ), and  u m   is the cross-sectional mean velocity. Substitution of  dy  from 
equation  (2.11)  in equation  (2.16)  yields

  uDf u du u D
u

m
D

( )
0∫ =       (2.17)   
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  Figure 2-4      Schematic for momentum conservation in open-channel fl ow.    
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D
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  Figure 2-3      Schematic for mass conservation in open-channel fl ow.    
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  Thus, the second constraint,  C  2 , can be expressed as

  C uf u du u b
u

m
D

2
0

2= = =∫ ( )       (2.18)   

 Equation  (2.18)  can be interpreted as the fi rst moment of random variable  u  about 
the origin, which is the mean velocity, and defi nes the mass conservation-based 
constraint. 

 On a unit width basis, the momentum through the elemental area ( dA   =   dy ) 
can be stated, according to Fig.  2-4 , as

  dM u dy= ρ 2       (2.19)   

  Integrating equation  (2.19)  over the cross section, one obtains the momentum 
transfer  M :

  ρ u dy M
D

2

0∫ =       (2.20)  
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where  M  is the momentum transferred across a section per unit width of the 
channel, and  ρ  is the mass density or mass per unit volume. Substitution of  dy  
from equation  (2.11)  in equation  (2.20)  results in

  u Df u du
MuD 2

0
( )∫ =

ρ
      (2.21)   

 The third constraint,  C  3 , can be expressed from equation  (2.21)  as

  C u f u du u u
M
D

K b
u

m
D

3
2

0

2 2
1 3= = = = = =∫ ( ) β

ρ
      (2.22)  

where  K  1   =   M /( ρ  D ),  u2    is the mean of  u  2 , and  β  is the momentum distribution 
coeffi cient  = u um

2 2/    , often referred to as the Boussinesq coeffi cient. Equation 
 (2.22)  can be interpreted as the second moment of random variable  u  about the 
origin and defi nes the momentum conservation-based constraint and is a measure 
of the variability of velocity distribution. 

 Referring to Fig.  2-5 , the transport of kinetic energy (KE) through the elemen-
tal cross section is

  ΔKE = ρ
2

3u dA       (2.23)   

  Integrating equation  (2.23)  over the cross section, one gets the kinetic energy 
transfer:

  
ρ ρ α ρ ρ α
2 2 2 2

3 3 3
2

u dA u A u A Q
u

g
m

m∫ = = =
⎛
⎝⎜

⎞
⎠⎟

      (2.24)  

where  α  is the energy distribution coeffi cient  = u um
3 3/    , often referred to as Corio-

lis coeffi cient, in which  u3    is the cross section mean of  u  3 , and  g  is the acceleration 
caused by gravity. 

  Figure 2-5      Schematic for energy conservation in open-channel fl ow.    
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76 Entropy Theory in Hydraulic Engineering

 Frequently energy in open channels is expressed in terms of head. Then, the 
specifi c energy in open channels in terms of head is composed of pressure head 
and the kinetic energy head:

  D
de

g udy

D E
k

E

D k

k

+ = +
∫

∫
0

0

2
      (2.25)  

where  de k   is the incremental kinetic energy given by equation  (2.23) , and  E k   is the 
kinetic energy head. As in equation  (2.24) , the conservation of energy in open-
channel fl ow can be stated in terms of head over the cross section, according to 
Fig.  2-5 , as

  D
u dy

g udy
E

D

D+ =∫
∫

3

0

0
2

      (2.26)  

where  E  is the specifi c energy head per unit width of the channel in a section. 
Substitution of  dy  from equation  (2.11)  in equation  (2.26)  yields

  D u f u du E D D g uf u du
u uD D3

0 0
2( ) ( ) ( ) ( )∫ ∫= − ⎡

⎣
⎤
⎦       (2.27)   

 Thus, the fourth constraint,  C  4 , can be expressed as

  C u f u du u u E D gu K b
u

m m
D

4
3

0

3 3
2 42= = = = − = =∫ ( ) ( )α       (2.28)  

where  K  2   =   b  4   =  ( E   −   D )2 gu m  , and  u3     is the mean of  u  3 . Equation  (2.28)  can be 
interpreted as the third moment of random variable  u  about the origin and mea-
sures the skewness of the probability distribution of  u ,  f ( u ). It defi nes the energy 
conservation-based constraint. 

 The momentum and energy coeffi cients in equations  (2.22)  and  (2.28)  can 
also be interpreted statistically. Recall the defi nition of variance  σ  2  of  u :

  σ2 2 2 2 2= − = −E u E u u um[ ] ( [ ])       (2.29)  

where  E  is the expectation operator. Equation  (2.29)  can be expressed as

  σ β β2 2 2 21= − = −u u um m m( )       (2.30)   

 Defi ning the coeffi cient of variation of velocity,  CV ,

  CV
um

= σ
      (2.31)  
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equation  (2.30)  yields the momentum coeffi cient as

  β
σ= + =1 2CV CV
um

,       (2.32)  

where  σ  is the standard deviation of velocity  u . 
 In a similar vein, the energy coeffi cient can be expressed as

  α γ= + +1 3 2 3CV CV       (2.33)  

where  γ  is the coeffi cient of skewness defi ned as

  γ μ
σ

=
3

3
      (2.34)  

where  μ  3  is the third central moment of  u  about the centroid or mean. 
 In open-channel fl ow, coeffi cients  β  and  σ , for simplicity, are often assumed 

to equal 1 (Chow  1959 ). Equations  (2.31)  and  (2.33)  show that if the coeffi cient 
of variation of velocity is very small as compared with unity, coeffi cients  β  and 
 α  would tend to unity. 

  Example 2.3          Consider the values of  CV  as 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 
2.0, 2.25, 2.50, 2.75, and 3.0; and the values of  γ  as 0.5, 0.5, 2.0, 2.5, and 3.0. Then, 
compute the values of  α  and  β . What do these values say about channel fl ow 
characteristics? Plot  β  as function of  CV  and  α  as a function of  CV , for various 
values of  γ .  

  Solution     Recall equation  (2.32) :  β   =  1  +   CV  2 . Values of  β  are calculated for given 
values of  CV  as shown in Table  2-4 . Similarly, recall equation  (2.33) :  α   =  1  +  3 CV  2  

CV  β  α ( γ   =   0.5 )  α ( γ   =   1 )  α ( γ   =   1.5 )  α ( γ   =   2 )  α ( γ   =   2.5 )  α ( γ   =   3 )

0 1 1 1 1 1 1 1

0.25 1.063 1.195 1.203 1.211 1.219 1.227 1.234

0.5 1.25 1.813 1.875 1.938 2 2.063 2.125

0.75 1.563 2.898 3.109 3.320 3.531 3.742 3.953

1 2 4.5 5 5.5 6 6.5 7

1.25 2.563 6.664 7.641 8.617 9.594 10.570 11.547

1.5 3.25 9.438 11.125 12.813 14.5 16.188 17.875

1.75 4.063 12.867 15.547 18.227 20.906 23.586 26.266

2 5 17 21 25 29 33 37

2.25 6.063 21.883 27.578 33.273 38.969 44.664 50.359

2.5 7.25 27.563 35.375 43.188 51 58.813 66.625

2.75 8.563 34.086 44.484 54.883 65.281 75.680 86.078

3 10 41.5 55 68.5 82 95.5 109

 Table 2-4      Values of  β  and  α  for given values of  CV  and  γ .  
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  Figure 2-7      Plot of  α  as a function of  CV  for various values of  γ .    

  Figure 2-6      Plot of  β  as a function of  CV .    

 +   γ  CV  3 , where values of  α  are computed for given values of  CV  and  γ , as shown 
in Table  2-4 . Fig.  2-6  plots  β  as a function of  CV , and Fig.  2-7  plots  α  as a function 
of  CV  for various values of  γ . It is seen that depending on the variability of fl ow 
velocity, the values of  α  and  β  can be greatly different from unity. With increas-
ing  CV ,  α  and  β  increase. Likewise,  α  increases with increasing  γ . Thus, only for 
 CV  equal to zero do these coeffi cients become unity. Increasing values of  β  and  α  
indicate high turbulence.       

  2.2.4     Maximization of Entropy 

 The velocity entropy given by equation  (2.14a)  is to be maximized subject to the 
constraints given by equations  (2.15) ,  (2.18) ,  (2.22) , and  (2.28) . To that end, the 
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method of Lagrange multipliers is used. Then the Lagrangian function  L  can be 
expressed as

  

L f u f u du f u dy uf u du u
u u

m

uD D D

= − + −
⎛
⎝⎜

⎞
⎠⎟
+ −

⎛
∫ ∫ ∫( )ln ( ) ( ) ( )
0

1

0

2

0

1λ λ
⎝⎝⎜

⎞
⎠⎟

+ −
⎛
⎝⎜

⎞
⎠⎟
+ −

⎛
⎝⎜

⎞
⎠⎟∫ ∫λ λ3

2 2

0

4
3 3

0

u f u du u u f u du u
u uD D

( ) ( )

      (2.35)  

where  λ  1 ,  λ  2 ,  λ  3 , and  λ  4  are the Lagrange multipliers. Recalling the Euler–Lagrange 
equation of calculus of variation, differentiating equation  (2.35)  with respect to 
 f ( u ), noting  f  as variable and  u  as parameter, and equating the derivative to zero, 
one gets

  
∂
∂

= ⇒ − + + + + +
L
f

f u u u u0 1 1 2 3
2

4
3[ ln ( )] λ λ λ λ       (2.36)   

 Details of the method of Lagrange multipliers are given in Appendix 2.1.  

  2.2.5     Derivation of the Probability Density Function of Velocity 

 The probability density function of velocity for which the entropy is maximum 
can be expressed from equation  (2.36)  as

  f u u u u( ) exp[( ) ]= − + + +λ λ λ λ1 2 3
2

4
31       (2.37)   

 Equation  (2.37)  expresses the entropy-based probability density function of 
velocity. In this equation, the Lagrange multipliers  λ   i  ,  i   =  1, 2, 3, and 4 are 
unknown. Denoting  λ  1   −  1 by  λ  0 , equation  (2.37)  can be cast as

  f u u u u( ) exp[ ]= + + +λ λ λ λ0 2 3
2

4
3       (2.38)   

 The CDF of  u  follows from integration of equation  (2.38) :

  F u u u u du
uD

( ) exp( )= + + +∫ λ λ λ λ0 2 3
2

4
3

0

      (2.39)    

  2.2.6     Determination of the Lagrange Multipliers 

 Equation  (2.38)  is a general expression of PDF of velocity with four parameters: 
Lagrange multipliers  λ   i  ,  i   =  0, 2, 3, and 4, which can be estimated using constraint 
equations  (2.15) ,  (2.18) ,  (2.22) , and  (2.28) . The method of estimation involves the 
following steps:

   1.      Substitute equation  (2.38)  in equation  (2.15) :

  exp( )λ λ λ λ0 2 3
2

4
3

0

1+ + + =∫ u u u du
uD

      (2.40)   
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 Equation  (2.40)  can be written as

  λ λ λ λ0 2 3
2

4
3

0

= − + +∫ln exp( )u u u du
uD

      (2.41)    

  2.      Differentiate equation  (2.41)  with respect to  λ  2 ,  λ  3 , and  λ  4 , multiply the 
numerator and the denominator of the derivative by exp( λ  0 ), and recall 
constraint equations  (2.18) ,  (2.22) , and  (2.28) :

  
∂
∂

= −
+ + +

+ + +

∫λ
λ

λ λ λ λ

λ λ λ λ

0
0 2 3

2
4

3

0

0 2 3
2

4
3i

i
u

u u u u du

u u u

D

exp( )

exp( )ddu

C iu iD

0

2 3 4

∫
= − =, , ,       (2.42)    

  3.      Equation  (2.41)  does not have an analytical solution, but it can also be 
expressed as

  λ ξ λ λ λ0 2 3 4= ( , , )       (2.43)   

 where  ξ  is some function. It may be possible to analytically express equation 
 (2.43) .  

  4.      Differentiate equation  (2.43)  with respect to  λ   i  ,  i   =  2, 3, 4:

  
∂
∂

= =λ
λ

ξ λ λ λ0
2 3 4 2 3 4

i

i( , , ), , ,       (2.44)   

 For simple cases, equation  (2.44)  results in explicit equations.  
  5.      Equating equation  (2.42)  to equation  (2.44) , one gets three equations with 

three unknowns ( λ  2 ,  λ  3 , and  λ  4 ), which are then solved for the unknowns. 
In this manner, the unknown Lagrange multipliers are expressed in terms 
of constraints.     

  2.2.7     Entropy of Velocity Density Function 

 Substitution of equation  (2.38)  in equation (2.14) yields

  
H u u u u u u u du

um

( ) exp[ ][ ]

[

= − + + + + + +

= − +

∫ λ λ λ λ λ λ λ λ

λ λ

0 2 3
2

4
3

0 2 3
2

4
3

0 2 ++ +λ λ3
2

4
3u u ]

      (2.45)   

 Equation  (2.45)  shows that the entropy of velocity is expressed in terms of the 
Lagrange multipliers and constraints. Because the Lagrange multipliers them-
selves are expressed in terms of constraints, the entropy is determined in terms 
of constraints alone.  
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  2.2.8     General Velocity Distribution 

 Substitution of equation  (2.38)  in equation  (2.11)  and integrating gives the veloc-
ity distribution as

  exp[ ]λ λ λ λ0 2 3
2

4
3

0
+ + + = +∫ u u u du

y
D

c
u

      (2.46)  

where  c  is a constant of integration evaluated using  u   =  0 at  y   =  0. Because of its 
highly nonlinear nature, equation  (2.46)  does not lend itself to a simple expres-
sion. The method of parameter estimation for the general velocity distribution 
becomes cumbersome and hence is not presented here. Rather, estimation of 
parameters for simplifi ed velocity distributions are discussed at appropriate 
places in the chapter. Simple velocity distributions can be derived depending on 
the constraints to be used. Now velocity distributions are derived for different 
constraints.   

  2.3     One-Dimensional Velocity Distribution with No 
Physical Constraint 

 In this case, there are no physical constraints, i.e.,   λ   2   =    λ   3   =    λ   4   =  0, and the only 
constraint is the total probability equation  (2.15) . Then, equation  (2.38)  becomes

  f u( ) exp[ ]= λ0       (2.47)   

 The PDF of  u  given by equation  (2.47)  is uniform. The CDF of  u  is expressed by 
integrating equation  (2.47)  as

  F u f u du du u
u u

( ) ( ) exp( ) exp( )= = =∫ ∫
0

0

0

0λ λ        (2.48)   

 The value of   λ  0   can be obtained by substituting equation  (2.47)  in equation  (2.15)  
and solving:

  exp[ ]− =λ0 uD       (2.49)   

 Equation  (2.49)  shows a unique relation between  λ  0  and  u D  :

  λ0 = – ln uD       (2.50)   

 Thus, the PDF and CDF of  u  are obtained by substituting equation  (2.50)  in 
equation  (2.47)  and equation (2.48), respectively, as

  f u
uD

( ) = 1
      (2.51)  
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and

  F u
u

uD

( ) =       (2.52)   

 Fig.  2-8  shows the PDF of  u , and Fig.  2-9 , the CDF of  u . 
   The velocity distribution from equation  (2.46)  then becomes

  u
y
D

= −exp( )λ0       (2.53)  

which, with the use of equation  (2.50) , becomes

  u u
y
D

or
u

u
y
D

D
D

= =       (2.54)   

  Figure 2-8      PDF of  u .    

  Figure 2-9      CDF of  u .    
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 Equation  (2.54)  shows that if there are no constraints, then velocity increases 
linearly with distance from the bed, attaining the maximum value of  u  as  u D   at 
the water surface  y   =   D . 

  Example 2.4          Consider a 10-m-wide open channel with a fl ow depth of 2.5 m. 
The velocity at the surface is about 1 m/s. Plot the velocity as a function of fl ow 
depth, assuming zero velocity at the bottom. What is the average fl ow velocity? 
Comment on this velocity distribution. How realistic is it?  

  Solution     Here the cross-sectional area  A   =  10 m  ×  2.5 m  =  25 m 2 .  u D    =  1 m/s. With 
the velocity at the water surface denoted by  u D  , the velocity distribution is ex-
pressed as

  u u
y
D

y
D

y
D= = =

2 5.

     Substituting  u  in the mass conservation expressed by equation  (2.16)  and 
solving for  u m  

  q
y

dy
y

= = = = =∫ 2 50 5
2 5

5
6 25

5
1 25

0

2 5 2

0

2 5 2
2

.
( . ) .

.
. .

m /s    

    Therefore,

  um = =
1 25

2 5
0 5

2.
.

.
m /s

m
m/s    

    One can also arrive at

  u
u

m
D= =
2

0 5. m/s    

    The velocity distribution is sketched in Fig.  2-10 . The velocity distribution shown 
in the fi gure is linear, i.e., the fl ow velocity increases linearly from a value of 

  Figure 2-10      Velocity as a function of depth.    
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zero at the channel bed to a maximum of 2.5 m/s at the water surface. In the real 
world, the velocity distribution is signifi cantly different from linear, and, there-
fore, the linear velocity distribution is not realistic.   

   Example 2.5          Construct the PDF and CDF of  u  with no physical constraints using 
the data from Example  2.4 .  

  Solution     The PDF  f u
uD

( ) = =1
1     is uniform, as shown in Fig.  2-11 . 

  The CDF  F u
u

u
u

u
D

( ) = = =
1

    is linear, as shown in Fig.  2-12 .     

  Figure 2-11      PDF of  u .    

  Figure 2-12      CDF of  u .    
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  2.4     One-Dimensional Velocity Distribution with One 
Physical Constraint 

 In this case, there is only one physical constraint—mass conservation—given by 
equation  (2.18) . Of course, equation  (2.15)  must be satisfi ed. Thus,   λ   3   =    λ   4   =  0. 
Then the PDF of  u  from equation  (2.38)  becomes

  f u u or f u u( ) exp[ ] ( ) exp[ ]= + = − +λ λ λ λ0 2 1 21       (2.55)  

which is the entropy-based probability density function of velocity with Lagrange 
multipliers as its parameters. The CDF of  u  follows from the integration of equa-
tion  (2.55) :

  F u u( )
exp( )

[exp( ) ]= −
λ

λ
λ0

2
2 1       (2.56)   

 If  u   =  0,  f ( u )  =  exp( λ  0 ), and  F ( u )  =  0, from equations  (2.55)  and  (2.56) , 
respectively. 

  2.4.1     Determination of Lagrange Multipliers 

 The Lagrange multipliers can be determined following the procedure outlined 
earlier. Substituting equation  (2.55)  in equation  (2.15) , one obtains

  exp( )λ λ1 2

0

1 1− + =∫ u du
uD

      (2.57)  

or

  exp( )[exp( ) ]λ λ λ1 2 21 1− − =uD       (2.58)   

 Equation  (2.58)  yields

  λ λ λ1 2 21 1= + − −ln ln[exp( ) ]uD       (2.59)   

 Differentiating equation  (2.59)  with respect to  λ  2 , one gets

  
∂
∂

= −
−

λ
λ λ

λ
λ

1

2 2

2

2

1
1

u u
u

D D

D

exp( )
exp( )

      (2.60)   

 Equation  (2.57)  can also be written as

  λ λ1 2

0

1= − − +∫ln exp( )u du
uD

      (2.61)   
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 Differentiating equation  (2.61)  with respect to  λ  2 , one gets

  
∂
∂

= −
− +

− +

∫

∫

λ
λ

λ

λ

1

2

2

0

2

0

1

1

u u du

u du

u

u

D

D

exp( )

exp( )
      (2.62)   

 Multiplying and dividing equation  (2.62)  by exp( λ  1 ) and recalling equation  (2.18) , 
one obtains

  
∂
∂

= −
− +

− +
= − = −

∫

∫

λ
λ

λ λ

λ λ

1

2

1 2

0

1 2

0

2

1

1

u u du

u du

C u

u

u m

D

D

exp( )

exp( )
      (2.63)   

 Equating equation  (2.60)  to equation  (2.63) , one gets

  u
u u

u
m

D D

D

=
−

−
exp( )

exp( )
λ

λ λ
2

2 21
1

      (2.64)   

 Equation  (2.64)  is implicit in terms of the Lagrange multiplier  λ  2  and, therefore, 
cannot be solved explicitly for the Lagrange multiplier. 

 One can also arrive at equation  (2.64)  as follows. Substitution of equation 
 (2.55)  in equation  (2.18)  yields

  u
u u u

m
D D D= − − +⎡

⎣⎢
⎤
⎦⎥

[exp( ) ]
exp( ) exp( )

λ
λ

λ
λ
λ λ1

2

2

2

2
2

2
2

1
1

      (2.65a)   

 Eliminating   λ   1  by inserting equation  (2.59)  in equation  (2.65a) , the result is

  u u u u um D D D D[exp( ) ] exp( ) [exp( ) ]λ λ
λ

λ2 2
2

21
1

1− = − −       (2.65b)  

or

  u
u u

u
m

D D

D

=
−

−
exp( )

exp( )
λ

λ λ
2

2 21
1

      

which is the same as equation  (2.64) . It expresses  λ  2  in terms of  u m   and  u D  , which 
can be obtained from observations.  

  2.4.2     Velocity Distribution 

 To obtain the velocity as a function of  y , one combines equations  (2.11)  and  (2.55) :

  exp( ) exp( )λ λ2 1
1

1u du
D

dy= −       (2.66)   
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 Integration of equation  (2.66)  with the boundary condition that  u   =  0 when  y   =  
0 yields

  u
y
D

= +
−

⎡
⎣
⎢

⎤
⎦
⎥

1
1

12

2

1λ
λ
λ

ln
exp( )

      (2.67)   

 Eliminating  λ  1  by substituting equation  (2.59)  in equation  (2.67) , the velocity 
distribution becomes

  u u
y
D

D= + −⎡
⎣⎢

⎤
⎦⎥

1
1 1

2
2λ

λln {exp( ) }       (2.68)   

 This is a one-physical constraint velocity distribution in which the Lagrange 
multiplier  λ  2  remains yet to be determined.  

  2.4.3     Estimation of Lagrange Multiplier  λ  2  

 Using empirical evidence, Chiu ( 1987 ) related  λ  2  to shear velocity denoted by 
 u * as

  λ2
1= k

u*
      (2.69)  

where  k  1  is a parameter, and  u * is equal to  gDS     in which  g  is the acceleration 
caused by gravity,  D  is the channel fl ow depth, and  S  is the channel bed slope. 
Introducing equation  (2.69)  in equation  (2.68) , one obtains

  u
u
k

k
u
u

y
D

D= + ⎛
⎝

⎞
⎠ −{ }⎡

⎣⎢
⎤
⎦⎥

*
*1

11 1ln exp       (2.70)   

 The corresponding PDF and CDF of  u  then becomes

  f u
u

uD

( )
exp( )

exp( )
=

−
λ λ

λ
2 2

2 1
      (2.71)  

and

  F u
u

uD

( )
exp( )

exp( )
=

−
−

λ
λ

2

2

1
1

      (2.72)   

 Substitution of equation  (2.69)  in equations  (2.71)  and  (2.72)  leads to

  f u
k
u

k u u
k u uD

( )
exp( / )

exp( / )
=

−
1 1

1 1*
*

*
      (2.73)  

and

  F u
k u u

k u uD

( )
exp( / )

exp( / )
=

−
−

1

1

1
1

*
*

      (2.74)   
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 It should now be noted that parameters  k  1 ,  u D  , and  u m   are related through 
equations  (2.64)  and  (2.69) . To determine  λ  1 , one can use equation  (2.59) , pro-
vided that  k  1  and  u D   or  u m   are known. Recognizing that  u   =  0 at the channel 
bottom ( y   =  0) and setting  u   =  0 in equation  (2.55) , one gets

  λ1 1= + ln ( )f u       (2.75)  

and likewise setting  u   =  0 in equation  (2.66) , one gets

  λ1 1= −
⎛
⎝⎜

⎞
⎠⎟

ln D
du
dy

      (2.76)   

 Equations  (2.75)  and  (2.76)  are expressions for  λ  1 , but it is not certain if they are 
more useful than equation  (2.59)  or equation  (2.65a) , which can be used in con-
junction with  k  1  and  u D   or  u m  .  

  2.4.4     Entropy of Velocity Probability Distribution 

 The entropy of the velocity distribution can be obtained by inserting equation 
 (2.55)  in equation (2.14) as

  H u um( ) ln= − +λ λ0 2       (2.77)   

 In equation  (2.77) ,  λ  0  can be expressed in terms of  λ  2  using equation  (2.59) . Taking 
advantage of equations  (2.59)  and  (2.69) , equation  (2.77)  becomes

  H u k u
k
u

u k u um D( ) ln ln ln[exp( / ) ]= − + + + −1
1

1 1*
*

*       (2.78)   

  Example 2.6          Consider the channel of Example  2.4 . Taking the mean fl ow velocity 
as a constraint, compute the velocity distribution, plot it, and compare it with the 
velocity distribution plotted in Example  2.3 .  

  Solution     Taking  S   =  0.0014, and  D   =  2.5 m, the shear velocity is

  u gDS* m/s= = 0 185.    

    With  k  1   =  0.4, and  u D    =  1 m/s, the velocity distribution from equation  (2.70)  is 
determined as

  u
y

= + ⎛
⎝

⎞
⎠ −{ }⎡

⎣⎢
⎤
⎦⎥

0 185
0 4

1
0 4

0 185
1

2 5
.
.

ln exp
.

. .
   

    Note that   λ   2   =  0.4/0.185 s/m. The velocity distribution is plotted in Fig.  2-13 . 
Clearly the velocity distribution given by equation  (2.70)  is signifi cantly differ-
ent from the velocity distribution given by equation  (2.54) , and it seems more 
realistic.      
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  Figure 2-13      Velocity distributions.    

  2.5     Testing of One-Physical-Constraint 
Velocity Distribution 

 Chiu ( 1987 ) tested equation  (2.70)  using 29 sets of experimental velocity and 
sediment data collected by Einstein and Chien ( 1955 ) for fl ows ranging from zero 
to heavy sediment concentration over coarse, medium, and fi ne-grained sand 
bed channels. In the experiments, velocity was measured close to the bed. Chiu 
also compared the velocity distribution with the Prandtl–von Karman universal 
velocity distribution (Prandtl  1925 ; von Karman  1935 ), which is discussed in 
Chapter 4. The velocity at the water surface can be either measured or estimated 
from equation  (2.64)  with the knowledge of  u m  ,  u *, and  k  1 . For heavy sediment 
concentration over coarse sand beds, equation  (2.70)  was found to predict the 
velocity distribution quite accurately, whereas the Prandtl–von Karman velocity 
distribution equation did not when  y / D  was below 0.05. Chiu ( 1987 ) also noted 
that the fi t of equation  (2.70)  could be further improved by estimating, adjusting, 
and selecting the mean velocity value,  u m  , which relates  u D   to  λ  2  and, hence, to 
 k  1 . This relationship means that  u m   can be estimated along with  u D   and  k  1 . Equa-
tion  (2.70)  covers the full depth from  y   =  0 to  y   =   D . 

 Using velocity profi le measurements made by Davoren ( 1985 ), who mea-
sured fl ow velocity downstream from a hydropower plant, which enabled fl ow 
to be uniform for several hours, Barbé et al. ( 1991 ) compared equation  (2.70) , 
Prandtl–von Karman velocity distribution, and power law velocity distribution 
with observed velocity profi les. They found that the Prandtl–von Karman veloc-
ity distribution was good close to the water surface but deviated signifi cantly as 
 y  tended to approach the bed. Hence, it would not be suitable for modeling near-
the-bed processes, such as scour. The power law velocity distribution with expo-
nent close to 1/6 was satisfactory. Near the bed, it was better than the Prandtl–von 
Karman distribution. The entropy-based velocity distribution was found to be 
superior, and the most improvement was near the bed. 
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 Plotting the dimensionless velocity ( u *  =   u / u *) against the argument of loga-
rithmic function in equation  (2.70) , Chiu ( 1987 ) expressed the probability distri-
bution function of dimensionless velocity as

  f
u
u

u f u
*

*⎛
⎝

⎞
⎠ = ( )       (2.79)  

where  f ( u ), given by equation  (2.55) , has the same parameters as equation 
 (2.70) . 

  Example 2.7          Considering equation  (2.70)  and using the data from Einstein and 
Chien ( 1955 ) given in Table  2-5 , plot the following: (1)  y / D  on the log scale and 

 u / u * on the arithmetic scale; (2)  1 11+ −⎡
⎣⎢

⎤
⎦⎥

{exp( / ) }k u u
y
D

D *     on the  y -axis (log 

scale) and  u / u * on the  x -axis; and (3)  f ( u / u *) versus observed velocity values 
divided by  u *. For the second case, the slope of the line is the value of  k  1 . Deter-
mine the value of  k  1 . Note that the velocity probability distribution is based on 
one physical constraint (mean) and is given by equation  (2.70) . What can one 
conclude from the plot? For the laboratory channel,  D   =  0.378 ft,  u *  =  0.406 ft/s, 
 u D    =  9.094 ft/s, and  k  1   =  0.205.   

  Solution     For the data from experiment S4 (Einstein and Chien  1955 ), a plot of 
 u / u * versus  y / D  is constructed, as shown in Fig.  2-14 . It is seen that the com-
puted dimensionless velocity values are in close agreement with observed val-
ues, with slight deviations close to the bed for  y / D  below 0.05. Fig.  2-15  plots 

 1 11+ −⎡
⎣⎢

⎤
⎦⎥

{exp( / ) }k u u
y
D

D *       versus  u / u *. The agreement between computed and 

observed values is quite close. Fig.  2-16  is a plot of  f ( u / u *) versus  u / u *. The PDF 
increases hyperbolically with increasing dimensionless velocity.     

 y  (ft) Observed  u  (ft/s)  y  (ft) Observed  u  (ft/s)

0.000 0.000 0.040 4.831

0.006 2.221 0.045 5.075

0.009 2.497 0.050 5.298

0.011 2.720 0.054 5.522

0.011 2.858 0.064 5.806

0.015 2.964 0.074 6.090

0.017 3.329 0.084 6.293

0.019 3.573 0.095 6.516

0.024 3.898 0.104 6.699

0.034 4.519 0.124 7.133

0.040 4.831 0.378 9.094

 Table 2-5      Velocity measurements for experiment S4 from Einstein and Chien ( 1955 ).  
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  Figure 2-14      Plot of  u / u  *  versus  y / D . 
 Note:    u  obs .  =  observed  u ; and  u  ent   =   u  computed by the entropy method.    

  Figure 2-15      Plot of  1 11+ ⎛
⎝

⎞
⎠ −{ }exp k

u
u*

y
D

D    versus  u / u  * .    

  Figure 2-16      Plot of  f ( u / u *) versus  u / u *.    
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   Example 2.8          Plot on rectangular graph paper  y / D  on the  y -axis and  u / u * on the 
axis, using observed values near the bed and an entropy-based velocity distribu-
tion equation. What can one conclude from this plot?  

  Solution     The velocity distribution is plotted in Fig.  2-17 . It is seen that the en-
tropy-based velocity distribution predicts the velocity well near the bed as well 
as in the middle portion. There are no observed values beyond what is shown in 
the fi gure.     

  2.6     One-Dimensional Velocity Distribution with Two 
Physical Constraints 

 If in equation  (2.38) ,  λ  4   =  0, then the velocity distribution with two constraints is 
obtained:

  f u u u( ) exp[ ]= + +λ λ λ0 2 3
2       (2.80)   

 The constraints for equation  (2.80)  are given by equations  (2.15) ,  (2.18) , and 
 (2.22) . An exact analytical solution of these equations and equation  (2.11)  for 
velocity is not tractable and hence an approximate solution is obtained by 
expanding the term involving the third parameter  λ  3  (Barbé et al.  1991 ). Equation 
 (2.80)  can be expressed as

  f u u u( ) exp[ ]exp[ ]= +λ λ λ0 2 3
2       (2.81)   

  Figure 2-17      Comparison of entropy-based velocity distribution 
equation  (2.55)  and observations. 

 Note:   uobs  =  observed velocity, and uent  =  velocity computed using the 
entropy-based velocity distribution.    
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 Recall that for a function  f ( x )  =  exp[ g ( x )], the Maclaurin series expansion can be 
obtained as

  f x g x g x g x( ) ( )
!
[ ( )]

!
[ ( )]= + + + +1

1
2

1
3

2 3 …       (2.82)   

 In equation  (2.81) , the quadratic term can be expressed as

  exp[ ]
!
[ ]

!
[ ]λ λ λ λ3

2
3

2
3

2 2
3

2 31
1
2

1
3

u u u u= + + + +…       (2.83)   

 Equation  (2.83)  can be approximated by retaining only the fi rst two terms:

  exp[ ]λ λ3
2

3
21u u≅ +       (2.84)   

 Thus, equation  (2.80)  or  (2.81)  becomes

  f u u u( ) ( )exp[ ]= + +1 3
2

0 2λ λ λ       (2.85)   

 Using equation  (2.85)  in equation  (2.15) , one obtains

  ( )exp( )1 13
2

0 1

0

1+ + = =∫ λ λ λu u du C
uD

      (2.86)   

 Integration of equation  (2.86)  leads to

  λ λ λ λ λ
λ λ2 0 2 3 2

2

2 2
2

1
2 2 2

exp( ) [exp( ) ] exp( )− = − + − +⎡
⎣⎢

⎤
⎦⎥
−u u u

u
D D D

D

λλ2
2{ }       (2.87)   

 Substituting equation  (2.87)  in equation  (2.18)  and simplifying yields

  

λ λ λ
λ λ

λ λ

2 0 2
2 2

3 2
3

1 1

3

u u u

u u
u

m D D

D D

exp( ) exp( )

exp( )

− = −⎡
⎣⎢

⎤
⎦⎥
+{ }

+ − DD Du2

2 2
2

2
3

2
3

6 6 6
λ λ λ λ

+ −⎡
⎣⎢

⎤
⎦⎥
+⎧

⎨
⎩

⎫
⎬
⎭

      (2.88)   

 Substituting equation  (2.85)  in equation  (2.22)  and simplifying, one obtains

 
λ λ λ

λ λ λ

λ

2 1 0 2
2

2 2
2

2
2

3

2 2 2
u K u u

u
m D D

Dexp( ) exp( )

exp(

− = − +⎡
⎣⎢

⎤
⎦⎥
−{ }

+ λλ
λ λ λ λ λ2

4
3

2

2

2
2

2
3

2
4

2
4

4 12 24 24 24
u u

u u u
D D

D D D) − + − +⎡
⎣⎢

⎤
⎦⎥
−⎧

⎨
⎩

⎫
⎬
⎭

      (2.89)   

 Equations  (2.87) to (2.89)  can be solved simultaneously for  λ  0 ,  λ  2 , and  λ  3 , and 
their substitution in equation  (2.85)  yields the velocity distribution. 
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  Example 2.9          Consider the velocity observations on the Tiber River given in Table 
 2-6 . Compute the velocity distribution using two physical constraints and plot it. 
Compare it with the one-physical-constraint velocity distribution.    

  Solution      D   =  6.07 m,  u D    =  2.26 m/s. Solving Equations  (2.87) to (2.89)  numeri-
cally,  λ  0   =  2.29,  λ  2   =  0.75, and  λ  3   =  0.43. Up to a height of about 3 m, the velocity 
is predicted well. For depths greater than 3 m, the observed velocity is not pre-
dicted well at all, as shown in Figure  2-18 .     

Vertical 1 Vertical 2 Vertical 3 Vertical 4

 y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)

4.71 0.52 6.31 0.99 6.21 1.54 6.09 1.98

4.65 0.52 6.25 0.99 6.15 1.54 6.03 1.98

4.35 0.63 5.95 1.25 5.85 1.74 5.73 2.15

3.65 0.92 5.25 1.51 5.15 1.87 5.03 2.32

2.65 1.02 4.25 1.81 4.15 2.13 4.06 2.34

1.85 0.97 3.25 1.83 3.15 2.08 3.09 2.48

1.15 0.74 1.25 1.65 2.18 2.06 2.09 2.32

0.45 0.67 0.45 0.97 1.18 1.92 1.09 1.97

0.15 0.34 0.15 0.81 0.48 1.47 0.39 1.78

0 0 0 0 0.15 1.28 0.15 1.37

0 0 0 0

Vertical 5 Vertical 6 Vertical 7 Vertical 8 Vertical 9

 y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)

6.07 2.66 5.89 2.37 5.76 1.97 5.66 1.42 5.36 0.88

6.01 2.66 5.83 2.37 5.7 1.97 5.6 1.42 5.3 0.88

5.71 2.58 1.89 2.41 5.4 2.03 5.3 1.4 5 0.87

5.04 2.61 0.89 1.91 4.7 1.98 4.6 1.63 4.3 1.16

4.07 2.66 0.39 1.53 3.7 2.39 3.6 1.97 3.3 1.49

3.13 2.72 0.15 1.49 2.7 2.22 2.6 1.92 2.3 1.71

2.13 2.61 0 0 1.9 2.37 1.8 1.81 1.3 1.19

1.1 2.32 1.2 2.06 1.1 1.73 0.4 0.91

0.37 1.92 0.5 1.51 0.5 1.36 0.15 0.8

0.15 1.47 0.15 1.42 0.15 0.71 0 0

0 0 0 0 0 0

 Table 2-6a      Velocity observations at Ponte Nuovo at the Tiber River, Italy, June 3, 
1997.  
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Vertical  D  (m) Maximum  u  (m/s)  h  (m)  Z  (m)

1 4.71 1.02 2.7  − 20.2

2 6.31 1.83 2.7  − 2.64

3 6.21 2.13 2.7  − 11.44

4 6.09 2.48 2.7  − 6.24

5 6.07 2.72 2.7 0

6 5.89 2.41 2.7 6.24

7 5.76 2.39 2.7 11.44

8 5.66 1.97 2.7 15.6

9 5.36 1.72 2.7 19.76

   Note:    y   =  vertical distance (m) of each sampled point from the channel bed;  u   =  observed 
velocity (m/s);  D   =  water depth (m) along the vertical; maximum  u   =  maximum sampled 
velocity (m/s) along the vertical;  h   =  vertical distance (m) below the water surface where the 
maximum velocity occurs;  z   =  horizontal distance from the vertical where the maximum 
velocity is sampled.]   

 Table 2-6b      Velocity observations at Ponte Nuovo at the Tiber River, Italy, June 3, 
1997.  

  Figure 2-18      Two-physical-constraint velocity distribution. 
 Note:   uobs  =  observed velocity and uent  =  velocity computed using the 

entropy equation.    
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96 Entropy Theory in Hydraulic Engineering

  2.7     One-Dimensional Velocity Distribution with 
Three Physical Constraints 

 The velocity distribution for the three-physical-constraint case is given as

  exp( ) exp( ) exp( )λ λ λ λ
λ λ0 2 3 2

2

2 2
2

2 2
u u u

u y
D

C+ − +⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥{ } = +       (2.90)  

where  C  is the constant of integration. Using the boundary condition  u   =  0 at 
 y   =  0,  C  becomes

  C = +⎡
⎣⎢

⎤
⎦⎥

exp( )λ
λ

λ
λ0

2

3

2
3

1 2
      (2.91)   

 The velocity distribution now becomes

 exp( ) exp( ) exp( ) exλ λ λ λ
λ λ0 2 3 2

2

2 2
2

2 2
u u u

u y
D

+ − +⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥{ } = + pp( )λ

λ
λ
λ0

2

3

2
3

1 2+⎡
⎣⎢

⎤
⎦⎥

   

    (2.92)   

 The Lagrange multipliers are determined numerically. 

  Example 2.10          Consider the velocity observations on the Tiber River given in Ta-
ble  2-6 . Compute the velocity distribution using three physical constraints and 
plot it.  

  Solution     The PDF of the velocity distribution with three physical constraints can 
be written as

  f u u u u u u u( ) exp( ) exp( )exp( )= + + + = + +λ λ λ λ λ λ λ λ0 2 3
2

4
3

0 2 3
2

4
3       (2.93)   

 According to the Maclaurin series expansion, in equation  (2.93)  the second term 
can be expressed as

 exp[ ]
!
[ ]

!
[ ]λ λ λ λ λ λ λ λ3

2
4

3
3

2
4

3
3

2
4

3 2
3

2
4

3 31
1
2

1
3

u u u u u u u u+ = + + + + + + ++…       (2.94)   

 Equation  (2.94)  can be approximated by retaining only the fi rst three terms:

  exp[ ]λ λ λ λ3
2

4
3

3
2

4
31u u u u+ ≅ + +       (2.95)   

 Thus, equation  (2.93)  becomes

  f u u u u( ) ( )exp[ ]= + + +1 3
2

4
3

0 2λ λ λ λ       (2.96)   

 Using equation  (2.96)  in equation  (2.15) , one obtains

  ( )exp( )1 13
2

4
3

0 1

0

1+ + + = =∫ λ λ λ λu u u du C
uD

      (2.97)   
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 Integration of equation  (2.97)  leads to

  
λ λ λ λ λ λ

λ
λ λ λ

λ2 0 2 4
3

3
4

2

2 2 3 4

2
2

1
3 2 6

exp( ) exp( )− = + + −⎛
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⎞
⎠⎟ − −

u u uD D D
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⎞
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2 6
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2
3

2 3 4

2
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      (2.98)   

 Substituting equation  (2.96)  in equation  (2.18)  and simplifying yields

 

λ λ λ λ λ λ
λ

λ λ λ
λ

2 0
2
3

2 3 4

2
4

2 4
4

3
4

6 6

4

u

u u

m

D D
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      (2.99)   

 Substituting equation  (2.96)  in equation  (2.22)  and simplifying, the result is

 

λ λ λ λ λ λ
λ

λ λ λ
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      (2.100)   

 Substituting equation  (2.96)  in equation  (2.28)  and simplifying, one gets
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    (2.101)   

 For  D   =  6.07 m,  u D    =  2.26 m/s, the Lagrange multipliers using equations 
 (2.98) to (2.101)  are obtained as  λ  0   =  2.56,  λ  2   =  0.46,  λ  3   =  0.13, and  λ  4   =  0.05. With 
the use of these multipliers in equation  (2.92) , the velocity distribution is com-
puted as shown in Fig.  2-19 . Comparing with observations, it seems that the 
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three-constraint velocity distribution does not reproduce observed values well. 
This result suggests that the approximation by the Maclaurin series expansion is 
not good.     

  Appendix 2.1: Method of Lagrange Multipliers 

 The function to be maximized is the Shannon entropy of velocity given by equa-
tion (2.14), which is rewritten as

  H u f u f u du
uD

( ) ( )ln ( )= −∫0
      (2.102)   

 Let  R ( f )  =   −  f ( u ) ln  f ( u ). Then equation  (2.102)  can be written as

  H f R f u du
uD

( ) [ ( )]= ∫0
      (2.103)   

 The Lagrange function,  L , can be formulated as

  L f H f u Ci i i
i

( ; , , , ) ( ) [ ( ) ]λ λ λ λ λ φ1 2 3 4
1

4

= − −
=
∑       (2.104)  

where  λ   i  ,  i   =  1, 2, 3, and 4, are the Lagrange multipliers;  ϕ   i  ,  i   =  1, 2, 3, and 4, are 
functions of  u  for expressing constraints; and  C i   constraints are expressed as

  E u u f u du C i E ui i

u

i

D

[ ( )] ( ) ( ) , , , , ; [ ( )] .φ φ φ= = = =∫
0

11 2 4 1…    

    C C u C K C K or C b im i i1 2 3 1 4 21 1 2 3 4= = = = = =; ; ; , , , ,       (2.105)   

  Figure 2-19      Three-constraint velocity distribution.    
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 Note that for permissible values of  u ,  C i    −   b i    =  0,  i   =  1, 2, 3, and 4. The Lagrange 
function can also be cast as

  L f R f u f u Ci
i

i
i

( ; , , , ) ( ) [ ( ) ]λ λ λ λ λ1 2 3 4
1

1

4

= − −−

=
∑       (2.106)   

 Thus,  L ( f ;   λ   1 ,   λ   2 ,   λ   3 ,   λ   4 )  =   R ( f ). To achieve the maximum entropy,

  
∂
∂

= ∂
∂

−
∂

∂
=

−

=
∑L

f
R
f

u f u
f
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λ
[ ( )]1

1

4

0       (2.107)  

  
∂
∂

= − =L
u f u

i

i

λ
[ ( )] 0       (2.108)   

 Equations  (2.107)  and  (2.108)  are to be solved for  f  and  λ   i  ,  i   =  1, 2, 3, and 4. First, 
the fi rst part of equation  (2.107)  on the right side is obtained:

  
∂
∂

=
∂ −

∂
= − −

R f
f

f u f u
f

f u
( ) [ ( )ln ( )]

ln ( )1       (2.109)   

 Second, for  f ( u ),

  
∂
∂

=
∂
∂
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ψ1 1

( ) ( )f
f

f u
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      (2.110)   

 Third, for  uf ( u ),
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∂
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f
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f u
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 For  u  2  f ( u ),
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∂
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∂

∂
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∂
∂
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f
u f u

f
u

f u
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 For  u  3  f ( u ),

  
∂

∂
=
∂

∂
=

∂
∂

=
ψ 4

3
3 3( ) [ ( )] ( )f

f
u f u

f
u

f u
f
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 The task is to solve for  f ( u ). Therefore, inserting equations  (2.109)–(2.113)  in equa-
tion  (2.107) , one obtains

  − − + + + + =1 01 2 3
2

4
3ln ( )f u u u uλ λ λ λ       (2.114)   

 This insertion results in

  f u u u u( ) exp[( ) ]= − + + +λ λ λ λ1 2 3
2

4
31       (2.115)   
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 Denoting  λ  1   −  1 by  λ  0 , equation  (2.115)  leads to the entropy-based probability 
distribution of velocity as

  f u u u u( ) exp[ ]= + + +λ λ λ λ0 2 3
2

4
3       (2.116)   

 The constraints for maximization are given by equations  (2.15) ,  (2.18) ,  (2.22) , and 
 (2.28) .  

  Questions 

   Q2.1      Consider a set of velocity observations for a river cross section, given 
in Table  2-7 . Compute the mean, standard deviation, coeffi cient of vari-
ation, and coeffi cient of skewness of velocity from these observations. 
Then, compute the momentum distribution coeffi cient and the energy 
distribution coeffi cient. How much do these coeffi cients deviate from 
unity?   

  Q2.2      Check if the hypothesis on the cumulative distribution function of 
velocity given by equation  (2.10)  is valid for velocity observations 
in Q2.1.  

  Q2.3      Compute the fl ow cross-sectional area, discharge, specifi c discharge, and 
shear velocity for the cross section in Q2.1. Then compute the PDF and 
CDF of velocity.  

 y  (ft)  u  (ft/s)  y  (ft)  u  (ft/s)

0.003 2.471 0.038 4.485

0.004 2.457 0.046 4.746

0.005 2.925 0.056 4.834

0.006 2.869 0.066 5.113

0.008 3.270 0.045 5.113

0.010 3.427 0.076 5.113

0.013 3.699 0.091 5.479

0.016 3.884 0.106 5.514

0.020 4.066 0.126 5.835

0.025 4.212 0.151 5.849

0.030 4.415 0.176 6.073

   Source:   Data from Einstein and Chien ( 1955 ).   

 Table 2-7      Velocity data from experiment C13.  
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  Q2.4      Using the data in Q2.1, compute the velocity distribution assuming that 
there are no physical constraints known. Also, compute the PDF and CDF 
of velocity and plot them. Then compute the velocity entropy. Compute 
the Lagrange multipliers.  

  Q2.5      Using the data in Q2.1, compute the velocity distribution assuming 
that there is only one physical constraint based on the mass conserva-
tion. Also, compute the PDF and CDF of velocity and plot them. Then, 
compute the velocity entropy. Compute the Lagrange multipliers.  

  Q2.6      Using the data in Q2.1, compute the velocity distribution assuming that 
there are two physical constraints known. These constraints are based 
on the conservation of mass and momentum. Also, compute the PDF 
and CDF of velocity and plot them. Then compute the velocity entropy. 
Compute the Lagrange multipliers.  

  Q2.7      Using the data in Q2.1, compute the velocity distribution assuming that 
there are three physical constraints known. These constraints are based 
on the conservation of mass, momentum, and energy. Also, compute 
the PDF and CDF of velocity and plot them. Then compute the velocity 
entropy. Compute the Lagrange multipliers.  

  Q2.8      What is the probability density value of velocity at the bed for the data 
in Q2.1? What is the probability of zero velocity at the bed?    
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    Chapter 3 

  Two-Dimensional 
Velocity Distributions  

       The distribution of velocity is infl uenced by fl ow properties, such as shear stress 
distribution, secondary currents, and sediment and pollutant transport; channel 
geometry, such as width, cross-sectional area and shape, depth, slope, aspect 
ratio, roughness, meandering, and braiding; vegetation; geological material 
properties; and boundary conditions. Flow in channels belongs to the general 
class of bounded shear fl ows. For purposes of describing the distribution of 
velocity in such fl ows, the boundary layer above the viscous sublayer can be 
divided into two regions: (1) the near-boundary inertial region, and (2) the outer 
(or wake) region (Landweber  1953 ; Coles  1956 ). 

 In the inertial region, the velocity profi le can be closely approximated by a 
logarithmic equation, but in the secondary region the velocity deviates such that 
the velocities are actually higher than those predicted by the logarithmic equa-
tion. The deviation of velocity from the logarithmic law is linearly proportional 
to the logarithmic distance log(1  −   y / D ) from the surface, where  y  is the distance 
normal to the boundary and  D  is the fl ow depth. In the inner region, the control-
ling variables are the inner variables, such as kinematic viscosity, local shear 
velocity, and the distance normal to the boundary (Montes  1998 ). 

 The outer region is dominated by the fl ow depth. The relative thicknesses of 
these two regions depend on the level of turbulence in the outer part of the 
boundary layer and in the free stream (Landweber  1953 ). In an experimental 
study, Coleman ( 1986 ) found that the thickness of the logarithmic region (iner-
tial) was reduced by suspended sediment and that this effect was greater for 
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smaller sediment sizes. Velocity profi le was found to be more sensitive to the 
suspension of fi ner sediment particle sizes than to coarse particles. 

 In the outer region, the maximum velocity occurs, but its location depends 
on the aspect ratio. The maximum velocity occurs below the water surface if 
the channel aspect ratio is less than a certain value. The occurrence of the 
maximum velocity below the water surface is often referred to as the  dip phenom-
enon  and has been of interest for more than a century (Stearns  1883 ; Murphy 
 1904 ). This phenomenon can occur near side walls even if the aspect ratio is 
large. The mechanism of the dip phenomenon is explained in terms of secondary 
currents. Nezu and Nakagawa ( 1993 ) reasoned that low-momentum fl uids are 
transported by secondary motion from near the bank to the center and high-
momentum fl uids are transported by this motion from the free surface toward 
the bed. Yang et al. ( 2004 ) derived a velocity distribution incorporating the dip 
phenomenon. 

 In narrow channels, the time-averaged velocity varies in both the vertical 
direction ( y ) and the transverse direction ( z ). In other words, velocity is two-
dimensional (2-D). When contours of equal velocity lines, called  isovels , are 
plotted, they tend to curve up the water surface because of the effect of channel 
boundaries, among other things. Velocity observations show that the maximum 
velocity is not at the water surface because of the air–water interaction at the 
water surface but is below the surface, meaning that there can be two depths 
where velocity is the same. 

 Chiu ( 1988 ) was the fi rst to use entropy for determining two-dimensional 
(2-D) velocity distributions. Chiu and his associates have since extended Chiu ’ s 
work to a variety of issues related to open-channel fl ow and sediment and pol-
lutant concentration (Chiu  1989, 1991 ; Chiu and Murray  1992 ; Chiu et al.  2000, 
2005 ; Chiu and Tung  2002 ; Chiu and Chen  2003 ; Chen and Chiu  2004 ). Choo 
( 2000 ) extended Chiu ’ s work to sediment discharge measurements, Moramarco 
and Singh ( 2001 ) to estimation of discharge at remote locations, and Moramarco 
et al. ( 2004 ) to estimation of mean cross-sectional velocity. The discussion in this 
chapter is heavily drawn from Chiu ’ s work. 

  3.1     Derivation of Velocity Distributions 

 Derivation of velocity distributions entails a number of steps, including (1) defi n-
ing a coordinate system, (2) formulation of a hypothesis on the cumulative dis-
tribution of velocity in terms of space coordinates, (3) expression of the Shannon 
entropy, (4) specifi cation of constraints, (5) maximization of entropy, (6) deriva-
tion of entropy-based probability distribution of velocity, (7) determination of 
the Lagrange multipliers, (8) determination of velocity distribution, (9) defi nition 
of entropy parameter, (10) velocity distribution in terms of entropy parameter, 
(11) testing of velocity distribution, (12) PDF, CDF, and entropy of velocity dis-
tribution in terms of entropy parameter, (13) measures of homogeneity of veloc-
ity distribution, (14) entropy of velocity distribution, (15) signifi cance of entropy 

c03.indd   106c03.indd   106 5/21/2014   2:12:36 PM5/21/2014   2:12:36 PM



Two-Dimensional Velocity Distributions  107

parameter, and (16) estimation of entropy parameter. Each of these steps is 
described in the next 16 sections. 

  3.1.1     Defi ning a Coordinate System 

 It is convenient to transform the Cartesian coordinates ( y ,  z ) into another system 
of coordinates ( r ,  s ), in which  r  has a unique one-to-one relation with velocity 
(Chiu and Chiou  1986 ), where  y  is the vertical coordinate and  z  is the transverse 
horizontal coordinate; in other words, one value of  r  corresponds to one velocity 
value. Fig.  3-1  depicts patterns of two-dimensional velocity distributions, wherein 
isovels are represented by  r -coordinate curves, and  s -coordinate curves are their 
orthogonal trajectories. Thus,  r  is a function of  y  and  z . The orthogonality of  r  
and  s  suggests that if  r  is determined, then  s  can be determined. The idea of using 
the ( r ,  s ) coordinates seems analogous to using curvilinear coordinates for fl ow 
in pipes. The time-averaged velocity  u  is bounded, and its time-invariant value, 
0  ≤   u   ≤   u  max , is on an isovel that corresponds to a value of  r ,  r  0   ≤   r   ≤   r  max . Here 
 u  max  is the maximum velocity at  r   =   r  max , which may occur on or below the water 
surface. The velocity  u  is zero along an isovel that corresponds to  r   =   r  0 , where 
 r  0  represents the channel bed, including boundaries, and has a small value. It is 
implied that  u  increases monotonically with  r  from  r   =   r  0  to  r   =   r  max . It should be 
emphasized that  u  may not increase monotonically with  y , the vertical distance 
from the channel bed, all the way up to the water surface.   

  3.1.2     Formulation of a Hypothesis 

 It is hypothesized that there exists a deterministic relation between  u  and  r  
expressed as

  u W r r W u= = −( ) ( )or 1       (3.1)  

where  W  is some function. Both  u  and  r  are considered random variables with 
probability density functions as  f ( u ) and  g ( r ), respectively. If it is assumed that 
all values of  r  between  r  0  and  r  max  are equally likely to be sampled, then the prob-
ability density function of  r ,  g ( r ), will be uniform on the interval 0  ≤   r   ≤   r  max :

  g r
r r

( )
max

=
−

1

0
      (3.2)   

 The cumulative distribution function (i.e., the probability of velocity being less 
than or equal to  u ),  F ( u ), can be expressed as

  F u f u du f W r du g r dr
r r

r r

u u

r

W u r

( ) ( ) [ ( )] ( )
( )

max

= = = = −
−∫ ∫ ∫

− =

0 0

0

00

1

      (3.3)  

where  f ( u ) is the probability density function (PDF) of velocity  u . Equation  (3.3)  
states that if  r  is sampled between  r  0  and  r  max  and the corresponding velocity 

c03.indd   107c03.indd   107 5/21/2014   2:12:36 PM5/21/2014   2:12:36 PM



108 Entropy Theory in Hydraulic Engineering

  Figure 3-1      Velocity distribution and curvilinear coordinate system: (a)  h   >  0 and 
(b)  h   <  0. 

 Note:   Here  D   =  channel fl ow depth,  B  1   =  half channel width,  h   =  the distance from 
the water surface to the maximum velocity,  y   =  vertical coordinate,  z   =  transverse 

coordinate,  c  1   =  distance from the  y -coordinate to the channel boundary, 
 c y    =  distance from the  z- coordinate to the channel bed, and  c  1  and  c y   are also considered 

as coeffi cients.    

 u   =   W ( r ) is obtained, then the probability of velocity being between  u  and  u   +   du  
is  f ( u ) du . Chiu and Chiou ( 1986 ) showed that ( r   −   r  0 )/( r  max   −   r  0 ) in equation  (3.3)  
is equal to the ratio of the area between the isovel  r  and the channel bed to the 
total area of the channel cross section. 

 Differentiation of equation  (3.3)  yields

  f u
dF u

du
dF u

dr
dr
du

r r
du
dr

( )
( ) ( )

( )max= = = −⎡
⎣⎢

⎤
⎦⎥

−

0

1

      (3.4)   
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 Equations  (3.3)  and  (3.4)  show that if  f ( u ) and  r  are determined, then the velocity 
distribution as a function of  y  and  z  coordinates can be determined. Fundamental 
to deriving the velocity distribution is the derivation of  f ( u ), which can be 
obtained by maximizing the Shannon entropy, subject to given constraints, in 
accordance with the principle of maximum entropy.  

  3.1.3     Expression of the Shannon Entropy 

 The Shannon entropy of the PDF of  u  can be expressed as

  H u f u f u du
u

( ) ( )log ( )
max

= − ∫
0

      (3.5)   

 Equation  (3.5)  can be interpreted as the average information content per sampled 
value of  u  and can, therefore, be used as a measure of uncertainty about  u  or  f ( u ). 
The base of the logarithm log can be 2 for  H  in bits or  e  for  H  in Napiers. The 
objective is to derive  f ( u ) using the principle of maximum entropy (POME). Thus, 
one maximizes entropy  H ( u ) subject to specifi ed constraints.  

  3.1.4     Specifi cation of Constraints 

 The PDF of  u  must satisfy

  f u du
u

( )
max

0

1∫ =       (3.6)   

 For simplicity, one can use just one constraint based on mass conservation:

  uf u du u
u

m( )
max

0
∫ =       (3.7)  

where  u  max  is the maximum velocity, and  u m   is the cross section mean velocity 
defi ned as  Q / A , where  Q  is the discharge and  A  is the cross-sectional area. Equa-
tion  (3.7)  states that  u  must be distributed over the entire cross-sectional area or 
over the entire domain of the PDF  f ( u ).  

  3.1.5     Maximization of Entropy 

 Entropy, given by equation  (3.5) , can be maximized, subject to equations  (3.6)  
and  (3.7) , following POME. This can be accomplished by using the method of 
Lagrange multipliers. To that end, the Lagrangian function  L , using equations 
 (3.6)  and  (3.7) , can be expressed as

  L f u f u du f u dy uf u du u
u u

m= − + −
⎛
⎝⎜

⎞
⎠⎟

+ −∫ ∫( )ln ( ) ( ) ( )
max max

0

1

0

2

0

1λ λ
uumax

∫
⎛
⎝⎜

⎞
⎠⎟

      (3.8)  
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where  λ  1  and  λ  2  are the Lagrange multipliers. Recalling the Euler–Lagrange equa-
tion of calculus of variation, differentiating equation  (3.8)  with respect to  f ( u ) 
noting that  u  is parameter and  f  is a variable, and equating the derivative to zero, 
one gets

  
∂
∂

= ⇒ − + + +L
f

f u u0 1 1 2[ ln ( )] λ λ       (3.9)    

  3.1.6     Derivation of Entropy-Based Probability Distribution 
of Velocity 

 The entropy-based probability density function of velocity is obtained from 
equation  (3.9)  as

  f u u( ) exp[( ) ]= − +λ λ1 21       (3.10)   

 Equation  (3.10)  can be expressed as

  f u b u b( ) exp( ), exp( )= = −1 2 1 1 1λ λ       (3.11)   

 The CDF of  u  becomes

  F u u( ) exp( )[exp( ) ]= − −1
1 1

2
1 2λ

λ λ       (3.12)  

or

  F u
b

u( ) [exp( ) ]= −1

2
2 1

λ
λ       (3.13)    

  3.1.7     Determination of the Lagrange Multipliers 

 Equation  (3.10)  contains two Lagrange multipliers  λ  1  and  λ  2 , which can be deter-
mined with the aid of equations  (3.6)  and  (3.7) . Substituting equation  (3.10)  in 
equation  (3.6) , one obtains

  exp( ) exp( ) [exp( ) ]
max

maxλ λ λ
λ

λ1 2

0

1
2

21 1
1

1 1− + = − − =∫ u du u
u

      (3.14)   

 Equation  (3.14)  can be written as

  exp( ) [exp( ) ]maxλ λ λ1 2 2
11 1− = − −u       (3.15)  

or

  λ λ λ1 2 21 1= + − −ln ln[exp( ) ]maxu       (3.16)   

 Equation  (3.16)  expresses a relation between  λ  1  and  λ  2 . 
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 Differentiating equation  (3.16)  with respect to  λ  2 , the result is

  
∂
∂

= −
−

λ
λ λ

λ
λ

1

2 2

2

2

1
1

u u
u

max max

max

exp( )
exp( )

      (3.17)   

 Conversely, equation  (3.14)  can also be written as

  λ λ1 2

0

1= − − +∫ln exp( )
max

u du
u

      (3.18)   

 When we differentiate equation  (3.18)  with respect to  λ  2 , the result is

  
∂
∂

= −
− +

− +

∫

∫
λ
λ

λ

λ

1

2

2

0

2

0

1

1

u u du

u du

u

u

exp( )

exp( )

max

max
      (3.19)   

 By multiplying and dividing equation  (3.19)  by exp( λ  1 ) and recalling equation 
 (3.7) , one obtains

  
∂
∂

= −
− +

− +
= −

∫

∫
λ
λ

λ λ

λ λ

1

2

1 2

0

1 2

0

1

1

u u du

u du
u

u

u m

exp( )

exp( )

max

max
      (3.20)   

 Equating equation  (3.17)  to equation  (3.20)  leads to

  u
u u

u
m =

−
−max max

max

exp( )
exp( )

λ
λ λ

2

2 21
1

      (3.21)   

 Equation  (3.21)  implicitly expresses  λ  2  in terms of  u  max  but can be solved 
numerically. 

 Equation  (3.21)  can also be derived as follows. Substituting equation  (3.10)  
in equation  (3.7) , one obtains

  u u du u
u

mexp( )
max

λ λ1 2

0

1− + =∫       (3.22a)   

 When we insert equation  (3.15)  in equation  (3.22a) , the result is

  u u u um = − −−
max max maxexp( )[exp( ) ]λ λ

λ2 2
1

2

1
1

      (3.22b)  

which is the same as equation  (3.21) . 
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 The Lagrange multipliers  λ  1  and  λ  2  can be determined from equations  (3.16)  
and  (3.21)  where  u m   and  u  max  are measurable quantities or parameters from 
observations and can be determined by applying the least-squares method to 
velocity observations. 

 Now the PDF and CDF of  u  can be expressed from equations  (3.10)  and  (3.12)  
by eliminating  λ  1  with the use of equation  (3.16)  as

  f u
u

u
( )

exp( )
exp( )max

=
−

λ λ
λ

2 2

2 1
      (3.23)  

and

  F u
u

u
( )

exp( )
exp( )max

=
−

−
λ

λ
2

2

1
1

      (3.24)   

 Note that at  u   =  0 (corresponding to  r  0 ),  f ( u )  =  exp( λ  1   −  1)  =  value of the probability 
density function at  u   =  0 and is related to  λ  2  and  u  max  through equation  (3.15) . 
Likewise,  F ( u )|  u    → 0   =   − [exp( λ  2  u  max )  −  1]  − 1 . 

 Also the entropy of the velocity distribution can be expressed as

  H u u um( ) ln ln[exp( ) ]max= + + −λ λ λ2 2 2 1       (3.25)   

  Example 3.1            Construct a plot of  λ  1  as a function of  λ  2  for various values of  u  max . 
Discuss the plot and its implications.  

  Solution     Fig.  3-2  plots  λ  1  as a function of  λ  2  for  u  max   =  0.1, 0.5, 1, 2, 5, and 10 m/s. 
For  λ  2   >  0,  λ  1  is negative. It is interesting to note that the relation between  λ  1  and 
 λ  2  is more or less linear but is sensitive to the value of  u  max , with  ∂  λ  1 / ∂  λ  2  increas-
ing with increasing  u  max .   

  Figure 3-2      Plot of  λ  1  as a function of  λ  2  for various values of  u  max  (m/s).    
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   Example 3.2            Construct a plot of  λ  2  as a function of  u m   for various values of  u  max . 
Discuss the plot and its implications.  

  Solution     Using equation  (3.21) , a plot of  λ  2  versus  u m   (m/s) is constructed for 
 u  max   =  0.1, 0.5, 1, 2, 5, and 10 m/s, as shown in Fig.  3-3 . It is seen that  λ  2  increases 
sharply with increasing  u m  , such that a small change in  u m   causes a huge change 
in  λ  2 . This difference indicates that  u m   should be correctly determined.     

  Figure 3-3      Plot of  λ  2  as a function of  u m   (m/s) for various values of  u max   (m/s).    

  3.1.8     Determination of Velocity Distribution 

 From equations  (3.10)  and  (3.4) , one gets

  exp( )
max

λ λ1 2
0

1
1− + =
−

u
du
dr r r

      (3.26a)  

or

  
du
dr

u
r r

=
− −

−
exp( )

max

1 1 2λ λ
      (3.26b)   

 Integration of equation  (3.26b)  with the condition that  u   =  0 at  r   =   r  0 , one 
obtains

  u
r r

r r
= +

−
−

−
⎡
⎣
⎢

⎤
⎦
⎥

1
1

12

2

1

0

0λ
λ
λ

ln
exp( ) max

      (3.27)   

 Equation  (3.27)  can be recast with the substitution of  λ  1  by equation  (3.16)  as

  u u
r r

r r
= + − −

−
⎡
⎣⎢

⎤
⎦⎥

1
1 1

2
2

0

0λ
λln {exp( ) }max

max
      (3.28)   
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114 Entropy Theory in Hydraulic Engineering

 Equation  (3.28)  is the entropy-based velocity distribution. Chiu ( 1988 ) defi ned a 
dimensionless parameter,  M , as  M   =   λ  2  u  max , which is called entropy number. 
Equation  (3.28)  can be expressed in terms of  M  as

  
u

u M
M

r r
r rmax max

ln {exp( ) }= + − −
−

⎡
⎣⎢

⎤
⎦⎥

1
1 1 0

0

      (3.29)    

  3.1.9     Defi nition and Meaning of Entropy Number  M  

 Parameter  M  can be determined as follows. From equation  (3.10) , one can write

  f u u( ) exp( )exp( )max max= −λ λ1 21       (3.30)   

 For  u  max   =  0, equation  (3.30)  becomes

  f ( ) exp( )0 11= −λ       (3.31)   

 Equation  (3.31)  shows that the PDF has a fi nite value at the bed. Dividing equa-
tion  (3.30)  by equation  (3.31) , one gets

  
f u

f
u M

( )
( )

exp( ) exp( )max
max

0
2= =λ       (3.32)   

 Therefore,

  M
f u

f
=

⎡
⎣⎢

⎤
⎦⎥

ln
( )

( )
max

0
      (3.33)   

 Equation  (3.33)  shows that  M  is the logarithm of the ratio of the PDF of  u  evalu-
ated at  u   =   u  max  to the PDF of  u  evaluated at the bed, i.e.,  u   =  0. 

 Using equation  (3.33)  and  (3.4) , one obtains

  M
f u

f

du
dr

du
dr

r r

r r

= =

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

=

ln
( )

( )
lnmax

max

0
0       (3.34)  

where  ( / )du dr r r= 0    is  du / dr  evaluated at  r   =   r  0 . Equation  (3.34)  shows that  M  is 
the logarithm of the ratio of the derivative of  u  with respect to  r  evaluated at 
 r   =   r  0  to the derivative of  u  evaluated at  u   =   u  max . Thus, entropy number  M  can 
be determined.  

  3.1.10     Velocity Distribution in Terms of Entropy Number 

 With the use of parameter  M , equation  (3.29)  can be expressed as

  
u

u M
M

r r
r rmax max

ln {exp( ) }= + − −
−

⎡
⎣⎢

⎤
⎦⎥

1
1 1 0

0

      (3.35a)   
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Two-Dimensional Velocity Distributions  115

 Equation  (3.35a)  is a 2-D velocity distribution equation and has a parameter  M , 
which consists of two parameters:  λ  2  and  u  max . It describes the velocity spatially. 
For wide channels, Chiu ( 1988 ) showed that ( r   −   r  0 )/( r  max   −   r  0 ) equals  y / D . Thus, 
equation  (3.35a)  can be cast as

  
u

u M
M

y
Dmax

ln exp( ) ]= + −⎡
⎣⎢

⎤
⎦⎥{ }1

1 1       (3.35b)   

 By taking the derivative of equation  (3.35b) , we can express the velocity 
gradient as

  
du
dy

u
DM

M M
y
D

= − + −{ }−
max [exp( ) ] [exp( ) ]1 1 1

1

      (3.36)   

  Example 3.3            Construct a plot of  u / u  max  as a function of ( r   −   r  0 )/( r  max   −   r  0 ) for vari-
ous values of  M . Discuss the plot and its implications.  

  Solution     Using equation  (3.35a) , a plot of  u / u  max  versus ( r   −   r  0 )/( r m    −   r  0 ) is con-
structed for various values of  M  (0.1, 0.5, 1.0, 2.0, 5.0, and 10.0), as shown in Fig. 
 3-4 . The relation between  u / u  max  and ( r   −   r  0 )/( r  max   −   r  0 ) is sensitive to the value 
of  M . Interestingly, when  M  is very small (say, 0.1), the velocity distribution be-
comes linear. The larger the value of  M , the more nonlinear the velocity distribu-
tion, which is also seen from its distribution. This fact means that  M  can be used 
as a parameter to characterize the infl uence of channel geometry and boundary 
conditions that cause the velocity distribution nonlinear.   

  Figure 3-4      Plot of  u/u max   as a function of ( r   −   r  0 )/( r  max   −   r  0 ) for various values of  M .    

   Example 3.4            Construct a plot of  du / dy  as a function of  y / D  for various values of 
 M . Discuss the plot and its implications.  
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116 Entropy Theory in Hydraulic Engineering

  Solution     Using equation  (3.36) , we see that a plot of  du / dy  versus  y / D  is con-
structed for various values of  M  (0.1, 0.5, 1.0, 2.0, 5.0, 10.0), as shown in Fig.  3-5 . 
It is interesting to note that  du / dy  becomes almost independent of  y / D  for very 
small values of  M .     

  Figure 3-5      Plot of  du / dy  as a function of  y / D  for various values of  M .    

  3.1.11     Testing of Velocity Distribution 

 Araújo and Chaudhry ( 1998 ) tested equation  (3.35a)  and compared it with the 
Prandtl–von Karman velocity distribution using 1,832 velocity measurements 
obtained using laser–Doppler velocimetry in fi ve experiments on rectangular 
smooth wall fl umes. They found equation  (3.35a)  to be superior in practically all 
fl ow regions, especially in those near the channel bed. Moramarco et al. ( 2004 ) 
applied equation  (3.35a)  for reconstructing velocity profi les sampled in four fl ow 
cross-sectional areas (at P. Nuovo, Rosciano, P. Felcino, and S. Lucia) during 
seven fl ood events in the upper Tiber River basin for which the depth varied 
from 0.9 to 6.7 m, discharge from 1.5 to 537 m 3 /s, and the number of observations 
at cross sections from 34 to 51, as given in Table  3-1 . For each event, the  M  value 
adopted was constant,  u m    =  0.665  u  max ,  M   =  2.13, whereas  u  max  was assumed as 
the maximum value of the velocity points sampled during each event. Fig.  3-6  
shows the velocity profi les estimated by the two-dimensional velocity distribu-
tion, with the velocity points observed along three different verticals sampled 
during the fl ood event that occurred in June 1997 at the Ponte Nuovo section:  z  
 =  19.7 m and  z   =   − 3.6 m represent the horizontal distance of the other verticals 
from  z   =  0. This fi gure shows that equation  (3.35a)  performed better in the middle 
portion of the fl ow area, whereas in the regions close to the side walls the veloc-
ity was poorly estimated (Araújo and Chaudhry  1998 ). Equation  (3.35a)  involves 
several parameters (Chiu  1989 ) that need to be estimated.    
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Vertical 1 Vertical 2 Vertical 3 Vertical 4

 y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)

4.71 0.52 6.31 0.99 6.21 1.54 6.09 1.98

4.65 0.52 6.25 0.99 6.15 1.54 6.03 1.98

4.35 0.63 5.95 1.25 5.85 1.74 5.73 2.15

3.65 0.92 5.25 1.51 5.15 1.87 5.03 2.32

2.65 1.02 4.25 1.81 4.15 2.13 4.06 2.34

1.85 0.97 3.25 1.83 3.15 2.08 3.09 2.48

1.15 0.74 1.25 1.65 2.18 2.06 2.09 2.32

0.45 0.67 0.45 0.97 1.18 1.92 1.09 1.97

0.15 0.34 0.15 0.81 0.48 1.47 0.39 1.78

0 0 0 0 0.15 1.28 0.15 1.37

0 0 0 0

Vertical 5 Vertical 6 Vertical 7 Vertical 8 Vertical 9

 y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)  y  (m)  u  (m/s)

6.07 2.66 5.89 2.37 5.76 1.97 5.66 1.42 5.36 0.88

6.01 2.66 5.83 2.37 5.7 1.97 5.6 1.42 5.3 0.88

5.71 2.58 1.89 2.41 5.4 2.03 5.3 1.4 5 0.87

5.04 2.61 0.89 1.91 4.7 1.98 4.6 1.63 4.3 1.16

4.07 2.66 0.39 1.53 3.7 2.39 3.6 1.97 3.3 1.49

3.13 2.72 0.15 1.49 2.7 2.22 2.6 1.92 2.3 1.71

2.13 2.61 0 0 1.9 2.37 1.8 1.81 1.3 1.19

1.1 2.32 1.2 2.06 1.1 1.73 0.4 0.91

0.37 1.92 0.5 1.51 0.5 1.36 0.15 0.8

0.15 1.47 0.15 1.42 0.15 0.71 0 0

0 0 0 0 0 0

Vertical  D  (m) Maximum  u  (m/s)  h  (m)  z  (m)

1 4.71 1.02 2.7  − 20.2

2 6.31 1.83 2.7  − 4.64

3 6.21 2.13 2.7  − 11.44

4 6.09 2.48 2.7  − 6.24

5 6.07 2.72 2.7 0

6 5.89 2.41 2.7 6.24

7 5.76 2.39 2.7 11.44

8 5.66 1.97 2.7 15.6

9 5.36 1.72 2.7 19.76

   Note:    Y   =  vertical distance (m) of each sampled point from the channel bed;  u   =  observed velocity 
(m/s);  D   =  water depth (m) along the vertical; maximum  u   =  maximum sampled velocity (m/s) 
along the vertical;  h   =  vertical distance (m) below the water surface where the maximum velocity 
occurs;  z   =  horizontal distance from the vertical where the maximum velocity is sampled.   

 Table 3-1      Velocity observations at Ponte Nuovo at the Tiber River, Italy, June 3, 1997.  
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118 Entropy Theory in Hydraulic Engineering

  Figure 3-6      (a) Velocity distribution, and (b) the velocity profi le at vertical 4 and the 
location of maximum and mean velocity at the Ponte Nuovo section of the Tiber River, 

Italy, June 1997.    

  3.1.12     PDF, CDF, and Entropy of Velocity in Terms of 
Entropy Parameter 

 The probability density function of velocity can be written in terms of  M  as

  f u
M

u M
M

u
u

u u( )
[exp( ) ]

exp ,
max max

max=
−

⎡
⎣⎢

⎤
⎦⎥

≤ ≤
1

0       (3.37)  

and the CDF of  u  as

  F u
Mu u

M
( )

exp( / )
exp( )

max=
− 1

      (3.38)   
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 The velocity entropy becomes

  H u
M

u M
Mu
u

m( ) ln
[exp( ) ]max max

= −
−

⎧
⎨
⎩

⎫
⎬
⎭
−

1
      (3.39)   

 The Lagrange multipliers can be expressed in terms of  M  as

  λ0
1

=
−

M
u Mmax[exp( ) ]

      (3.40)  

and

  λ2 = M
umax

      (3.41)   

 Thus,  M  plays an important role in the description of velocity distribution and 
associated characteristics.  

  3.1.13     Measures of Homogeneity of Velocity Distribution 

 Equation  (3.34)  shows that parameter  M  can be considered as a measure of the 
uniformity or homogeneity of the probability distribution of velocity, as well as 
velocity distribution. Uniformity implies that the distribution remains the same 
from one location to another for the same value of  M  and channel geometry. In 
other words, it suggests that fl ow characteristics remain the same. For wide 
channels ( r   −   r  0 )/( r  max   −   r  0 ) can be replaced by  y / D . In equation  (3.35b) , the point 
of maximum velocity can be below the water surface. Now the uniformity of the 
velocity distribution can be evaluated. 

 On an isovel with  r r=     and  u   =   u m  , equation  (3.35a)  becomes

  
u

u M
M

r r
r r

m

max max
ln [exp( ) ]= + − −

−{ }1
1 1 0

0

      (3.42)   

 With the use of  M , equation  (3.21) , when divided by  u  max , yields

  
u

u
M M

M
m

max

exp( )[exp( ) ]= − −−1
11       (3.43)   

 The left side of equation  (3.43) , given by term  u m  / u  max , describes the uniformity 
or homogeneity of the spatial velocity distribution. Equating equation  (3.42)  to 
equation  (3.43) , one obtains

  
r r

r r
M M M

M
−
−

=
− − −

−

−
0

0

11 1 1
1max

exp{ exp( )[exp( ) ] }
exp( )

      (3.44)   

 The term  ( ) ( )maxr r r r− −0 0/    , given by equation  (3.44) , is another measure of uni-
formity or homogeneity of the velocity distribution. 
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120 Entropy Theory in Hydraulic Engineering

 Equations  (3.43)  and  (3.44) , expressing  u m  / u  max  and  ( ) ( )maxr r r r− −0 0/    , respec-
tively, have  M  as a common parameter and represent different ways of describing 
the homogeneity of velocity distribution in a channel cross section. Equation 
 (3.35a)  describes the velocity distribution in space, whereas  u m  / u  max , given by 
equation  (3.43)  and  ( ) ( )maxr r r r− −0 0/    , given by equation  (3.44) , can be regarded 
as measures of homogeneity or uniformity of the velocity distribution. 

 The probability density function of dimensionless velocity,  u *  =   u / u  max , 
 f ( u / u  max ), can also be written in terms of the  M  parameter as

  f
u

u
f u u f u M M

Mu
u

M
max

max
max

( *) ( ) [exp( ) ] exp⎛
⎝⎜

⎞
⎠⎟ = = = − ⎛

⎝⎜
⎞
⎠⎟

=

−1 1

[[exp( ) ] exp( *)M Mu− −1 1

      (3.45)   

 The CDF of  u *  =   u / u  max  can be written as

  F
u

u
F u u F u

Mu
u
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1
MMu
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1
1

      (3.46)    

  3.1.14     Entropy of Velocity Distribution 

 The entropy from equation  (3.5)  can be expressed with the aid of equations  (3.10) , 
 (3.15) , and  (3.33)  as

  H u H
u

u
u( ) ln

max
max= ⎛

⎝⎜
⎞
⎠⎟ +       (3.47)  

where  H ( u / u  max ) is also an entropy function expressed as

  H
u

u
M M

max
( ) ln⎛

⎝⎜
⎞
⎠⎟ = −φ       (3.48)  

where

  φ( ) ln[exp( ) ] exp( )[exp( ) ]M M M M M= + − − − −1 1 1 1       (3.49)   

  H ( u / u  max ) is also a measure of uniformity of the spatial velocity distribution. 
 Equations  (3.48) ,  (3.45) , and  (3.49) , expressing  H ( u / u  max ) and  f ( u / u  max ),  ϕ ( M ), 

respectively, have  M  as a common parameter and represent different ways of 
describing the homogeneity of velocity distribution in a channel cross section. 
 H ( u / u  max ) given by equation  (3.48) , can be regarded as a measure of homogeneity 
or uniformity of the PDF of velocity.  

  3.1.15     More on Signifi cance of Parameter  M  

 One can now examine the dependence of velocity distribution on parameter  M . 
Fig.  3-7  shows a family of curves of ( r   −   r  0 )/( r  max   −   r  0 ) versus  u / u m  , and Fig.  3-8  
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shows a family of curves of  y / D  versus  u / u m   for various values of  M , including 
 M   =  0 and  M   →   ∞ , obtained from equations  (3.35a)  and  (3.35b) , respectively. 
Quantity ( r   −   r  0 )/( r  max   −   r  0 ) in equation  (3.35a)  can be approximated by  y / D . 
Referring to Fig.  3-7 , the linear velocity distribution in which  u   =  0 at the bed 
and  u   =   u  max  at the water surface corresponds to  M   =  0. The constant velocity 
distribution is represented by the value of  M   →   ∞ . It should be noted that the 
mean velocity for  M   =  0 and  M   →   ∞  is about the same as for equation  (3.42) . 
For  M   >  6, the velocity distribution curves intersect at about  y / D   =  0.37, and 

  Figure 3-7      Dimensionless velocity  u / u  max  versus dimensionless space coordinate 
( r   −   r  0 )/( r  max   −   r  0 ).    

  Figure 3-8      Dimensionless velocity  u / u m   versus dimensionless height  y / D  for various 
values of  M .    
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122 Entropy Theory in Hydraulic Engineering

  Figure 3-9      Probability density function  f ( u / u  max ) versus  u / u  max  for various values 
of  M .    

 u / u m   is unity. This phenomenon shows that the mean velocity in wide channels 
occurs at about  y / D   =  0.37 if  M  exceeds 6. Additional insights into the role of 
 M  is obtained by plotting equation  (3.43) ,  (3.44) ,  (3.47) , and  (3.49)  as functions 
of  M . 

   Example 3.6            Plot  u m  / u  max ,  ϕ ( M ),  H ( u / u  max ), and  ( ) ( )r r r rm− −0 0/     as functions of 
parameter  M . One may want to take  M  on the log scale and values of  M  as 1 to 
100 or perhaps 1,000. Discuss the graphs.  

  Solution     Quantity  u m  / u  max  from equation  (3.43) , as a function of  M , is graphed in 
Fig.  3-10 . It is seen from the fi gure that  u m  / u  max  increases with  M  as a deformed  S  
curve, with the point of infl ection around  M  equal to 8. When  M  becomes large, 
 u m  / u  max  tends to unity. 

    Example 3.5            Plot  f ( u / u  max ) versus  u / u  max  for various values of parameter  M , 
 M   =  0, 2, 4, 6, 8, 10, and 12. What do you conclude from this plot?  

  Solution     Using equation  (3.45) , a plot of the PDF  f ( u *) versus  u / u  max  is construct-
ed for various values of  M  (0, 2, 4, 6, 8, and 10), as shown in Fig.  3-9 . For  M   =  0, 
 f ( u / u  max ) becomes constant equal to unity, i.e., it becomes a uniform distribu-
tion and corresponds to the maximum (theoretical) value of entropy function 
 H ( u / u  max ), which is equal to zero in this case. When  M   →   ∞ ,  f ( u / u  max ) becomes 
zero, except at the point  u / u  max   =  1, where  f ( u / u  max ) tends to infi nity, and this case 
corresponds to the entropy function that has the minimum value.   
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  Figure 3-10       u m  / u  max  versus  M .    

  Figure 3-11       ϕ ( M ) versus  M .    

  Quantity  ϕ ( M ) as a function of  M  from equation  (3.49) ,  ϕ ( M )  =  1  +  ln[exp( M ) 
 −  1]  −   M  exp( M )[exp( M )  − 1]  − 1 , is graphed in Fig.  3-11 . The  ϕ ( M ) function increas-
es with  M  as a quadratic function but tends to approach one as  M  approaches 
around 8, as seen from the fi gure. 

  Quantity  H ( u / u  max ) as a function of  M  given by equation  (3.48)  expressed as 

 H
u

u
M M

max
( ) ln⎛

⎝⎜
⎞
⎠⎟ = −φ     is graphed in Fig.  3-12 . The value of  H ( u / u  max ) decreases 

with increasing  M . As  M   =  8, it approximates a value of  − 1.1, as seen in the fi gure. 
  The quantity  ( ) ( )maxr r r r− −0 0/    as a function of  M  given by equation  (3.44)  as 

 
r r

r r
M M M

M
−
−

=
− − −

−

−
0

0

11 1 1
1max

exp{ exp( )[exp( ) ] }
exp( )

    is graphed in Fig.  3-13 . As seen in 

the fi gure, as  M  approaches 8,  ( ) ( )maxr r r r− −0 0/    approaches 0.368.     
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  3.1.16     Estimation of Parameter  M  

 Chiu ( 1988 ) empirically found a relation between  H ( u / u  max ) and  u m  / u * and 
between  u m  / u  max  and  u m  / u *, where  u * is the shear velocity, as

  H
u

u
u
u

m

max

. .⎛
⎝⎜

⎞
⎠⎟ = − −0 730 0 0251

*
      (3.50)  

and

  
u

u
u
u

m m

max
. .= +0 832 0 00298

*
      (3.51)   

 Also,

  u
u

u
u

m m

max

.

.= ⎛
⎝

⎞
⎠1 283

0 956

*
      (3.52)   

  Figure 3-13       ( ) ( )r r / r r− −0 0max     as a function of  M .    

  Figure 3-12       H ( u / u  max ) versus  M .    
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 Equations  (3.50)  to  (3.52)  are based on a large set of velocity data that Chiu and 
Chiou ( 1986 ) generated by simulation using 176 rectangular channels with clear-
water fl ow having width to depth (aspect) ratios ranging from 1 to 100, slopes 
from 2  ×  10  − 5  to 2  ×  10  − 2 , and Manning ’ s  n  from 0.012 to 0.03. 

 It may be noted that  u m  / u * is related to the friction factor (Darcy–Weisbach ’ s 
 f l  , Chezy ’ s  C , or Manning ’ s  n ) as

  
u
u f

C
g

aR
n g

m

l

h

*
= = =8 1 6/

      (3.53)   

 where  u* /= τ ρ0     is the shear velocity,  τ  0   =  mean boundary shear,  u m   is the cross-
sectional mean velocity,  R h   is the hydraulic radius, and  a  is a factor equal to 1 if 
SI units are used and 1.49 if foot-pound-second units are used. 

 As  H ( u / u  max ) and  u m  / u  max  are functions of  M  only, as shown by equations 
 (3.48)  and  (3.43) , respectively, the  M  values are shown alongside the values of 
the two functions, as shown in Figs.  3-14a  and  3-14b . In Fig.  3-14a , besides the 
linear relationship between  H ( u / u  max ) and  u m  / u *, every value of  u m  / u * corre-
sponds to one value of  f l   with respect to equation  (3.53)  and every value of 
 H ( u / u  max ) corresponds to one  M  value, as shown in equation  (3.48) . Fig.  3-14b  
shows a linear relationship between  u m  / u  max  and  u m  / u *, where every value of 
 u m  / u * corresponds to one value of  f l   with respect to equation  (3.53)  and every 
value of  u m  / u  max  corresponds to one  M  value with respect to equation  (3.43) . 
These graphs illustrate that each point on the line corresponds to a unique value 
of  M  and  f 1  . 

   The friction factor  f l   can be expressed using equations  (3.53)  and  (3.43)  as

  f M
u
u

l = ⎡
⎣⎢

⎤
⎦⎥
−

8
2

φ( ) max

*
      (3.54)   

  Figure 3-14a      Relation of  u m  / u * to  H ( u / u  max ),  M , and  f l  .    
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126 Entropy Theory in Hydraulic Engineering

 Thus, the  M  values can be determined from  u m  / u *,  f l  ,  C , and  n , or directly from 
equation  (3.43)  or from the Reynolds number:

  R
u R

n
m h=
υ

      (3.55)  

where  υ  is the kinematic viscosity. From the Moody diagram in open-channel 
fl ow hydraulics, it is normally seen that when  R n   is between 500 and 2,000, the 
fl ow is in transition between laminar fl ow and turbulent fl ow. For the transitional 
range, the value of  f l   is found to be 0.04 for smooth channels and between 0.04 
and 0.08 for rough channels. The value of  f l    =  0.04 corresponds to  u m  / u * of about 
14 from equation  (3.53)  and the  M  value of about 8 in Chiu ’ s data from Fig.  3-14b . 
Likewise, the value of  f l    =  0.08 corresponds to  u m  / u *  =  10 and  M   =  7.35. This result 
means that the  M  value between 7 and 8 corresponds to the transitional range 
between laminar fl ow and turbulent fl ow and  M   >  8 in the turbulent fl ow 
( f l    <  0.04). In other words,  M  can be used for classifi cation of fl ow types. It is not 
clear if this would be true if the fl ow is sediment laden. 

 In open channels, the fl ow would tend to be turbulent, because entropy 
 H ( u / u  max ) would tend to be maximum as  M  would be between 7 and 8, and  f l   
would be about 0.03. For erodible channels, the maximum entropy is achieved 
by the adjustment of hydraulic geometry parameters (width, depth, and shape), 
friction, slope, alignment, velocity distribution, and perhaps sediment transport. 
Chiu ’ s data show that for  M  in the neighborhood of 8, channels have greater 
width-to-depth (aspect) ratios and roughness and smaller slopes. Erodible chan-
nels tend to shape the channel cross section and velocity distribution such that 
 u m  / u  max  may lie between 0.85 and 0.9 for  M  between 6 and 10 (Blaney  1937 ). For 
nonerodible channels,  H ( u / u  max ) is maximized by adjusting velocity distribution 
and fl ow depth and, hence, has a wider range of  M  values. 

 To summarize, dimensionless parameter  M  can be regarded as entropy 
number or parameter. This defi nition relates to a multitude of interesting 

  Figure 3-14b      Relation of  u m  / u * to  u m  / u  max ,  M , and  f l  .    
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hydraulic characteristics: (1) velocity distribution; (2) locations of mean and 
maximum velocities; (3)  H ( u / u  max ); (4)  u m  / u *,  f l  ,  C , and  n ; (5)  u m  / u  max ; (6)  f ( u m  / u  max ); 
(7)  ( ) ( )maxr r r r− −0 0/    ; and (8) the state of fl ow—laminar, transitional, or turbulent. 
Essentially  M  is the logarithm of the ratio of  f ( u ), or  du / dr , evaluated at  r  max  and 
 r  0  as shown by equation  (3.34) . 

 It may also be noted that the energy and momentum distribution coeffi cients 
can be related to  M . For wide rectangular channels, when  M   →   ∞  and, hence, 
entropy is minimum, the velocity is uniform everywhere, i.e.,  u   =   u m  ; then both 
 α  and  β  equal unity. Conversely, when  M   =  0, and entropy is maximum,  u  
increases linearly from zero at  y   =  0 to  u  max   =  2 u m   at  y   =  2 D , then 
 α   =  2 and  β   =  1.33. For other values of  M  between these two extremes,  α  is 
between 1 and 2, and  β  is between 1 and 1.33. Actual values of  α  and  β  can be 
determined for a given value of  M .   

  3.2     Construction of Isovels and Relation between 
( x ,  y ) Coordinates and ( r ,  s ) Coordinates 

 The velocity pattern in open-channel fl ow can be graphed using contours of 
equal velocity, called isovels. Clearly, along an isovel the velocity is constant. 
These isovels can help determine the maximum and mean velocities, as well as 
their locations and axes. Furthermore, they help describe the variation of velocity 
in the vertical and transverse directions. They graph the spatial variability of 
velocity, that is, isovels are a 2-D mapping of the velocity fi eld. 

 Chiu and Lin ( 1983 ) and Chiu and Chiou ( 1986 ) provided equations for 
transforming the ( y ,  z ) coordinates into orthogonal curvilinear coordinates ( r ,  s ), 
which seem capable of representing different features of isovels. The curvilinear 
coordinates are expressed in terms of dimensionless coordinates  Y  and  Z , which 
are expressed as

  Y
y c

D c h
y

y

=
+

+ +
      (3.56)  

  Z
B ci

=
+
2

2
ζ

      (3.57)  

  ζ = −B
z

2
      (3.58)   

 Here  D  is the depth of water at the  y -axis;  B  is the transverse distance on the 
water surface between the  y -axis and either the left or the right bank of a channel 
cross section (with 2 B  denoting the top width);  z  is the transverse coordinate 
direction;  y  is the vertical coordinate direction ( y  is selected such that it passes 
through the point of maximum velocity); and  h ,  c y  , and  c i   are coeffi cients charac-
terizing the isovel geometry (shape) and refl ecting the infl uence of channel cross 
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128 Entropy Theory in Hydraulic Engineering

section and the isovels near the bed and sides. Coeffi cients,  c y   and  c i  , are zero for 
rectangular cross sections and increase with the deviation of cross section from 
the rectangular shape. Coeffi cient  c y   is the distance between the horizontal axis 
and the channel bed, and  c i   is the distance between the channel side and the 
vertical axis. Coeffi cient  h  controls the slope and, hence, the shape of isovels at 
and near the water surface, particularly near the  y -axis and near the point of 
maximum velocity. 

 The physical meaning of  h  can be explained as follows. When  h  is less than 
or equal to zero (between  −  D  and 0), its absolute magnitude | h | signifi es that 
the actual depth of the maximum velocity  u  max  is below the water surface. When 
it is greater than 0,  h  simply shapes the isovel pattern but loses its physical 
signifi cance. 

 The curvilinear coordinates are expressed by Chiu ( 1989 ) as

  r Y Z b Z Yb
i

i= − − +( ) exp[ ]1 1       (3.59)  

  s
Z

Y Z a Ya
i

i= ± − +1
1[ ] exp[ ]       (3.60)  

where  b i   is parameter, and

  a b
D c h
B c

i i
y

i

=
+ +
+

4
2

2

2

( )
( )

      (3.61)   

 Note that  h   <  0 represents the case when the maximum velocity is below the 
water surface, and for  h   ≥  0 the maximum velocity is considered to occur at the 
water surface. 

 The two-dimensional velocity distribution, given by equation  (3.35a) , and the 
curvilinear coordinates have seven parameters:  c y  ,  c i  ,  b i  ,  h ,  r  0 ,  M , and  u  max . Using 
the geometry of fl ow and mass conservation, Araújo and Chaudhry ( 1998 ) 
derived equations for estimating these parameters where measured data are not 
needed. Their equations are given here. Let  r  0   e   be an estimate of the null velocity 
isovel  r  0 . Then, from equations  (3.56)  and  (3.59) , one can write

  r r
c

D c
B

B c
e

y

y i

bi

0 0 1
2

≈ =
+

−
+

⎛
⎝⎜

⎞
⎠⎟       (3.62)  

  A
B

c D c
b

r b ri y
i

e i e
bi= +⎛

⎝
⎞
⎠ + +

−
−⎡

⎣⎢
⎤
⎦⎥

2
2

1
1

1
0 0

1( ) ( )/       (3.63)   

 The channel cross-sectional area  A  can be expressed as

  A dy dz
y z

D

z

B

= ∫∫
=

2
0

2

( )

/

      (3.64)   
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 Recall the continuity equation:

  Q u y z dy dz
y z

D

z

B

= ∫∫
=

2
0

2

( , )
( )

/

      (3.65)   

 Integration of equation  (3.65)  leads to

  Q uh h dr dsr s

r

r s

s

= ∫∫
=

∞

2
00 0

max ( )

      (3.66)  

where  h r   and  h s   are scale factors defi ned as

  h
D c h Y Z

r T
r

y=
+ + −( ) ( )1

      (3.67)  

  h
B c Z Y

s T
s

i= + −( ) ( )2 1
2

      (3.68)  

in which

  T Y Z a b Y Zi i= − − +[( )( )]1 1 2 2 2       (3.69)   

 Equation  (3.63)  results from equations  (3.66)  through  (3.69) . The isovel for the 
null velocity  r  0  can be evaluated as

  r
c

D c h
c

D c h
y

y

y

y
0 1=

+ +
−

+ +
⎛
⎝⎜

⎞
⎠⎟

exp       (3.70)   

 Using the velocity profi le data of Nezu and Rodi ( 1986 ), Araujo ( 1994 ) pro-
posed for the surface maximum velocity

  
u
u

u Dmax . log .
*

*= ⎛
⎝

⎞
⎠ +5 91 4 81

υ
      (3.71)  

where  u * is the mean shear velocity, and  υ  is the kinematic viscosity. The 
mean shear stress on the solid boundary  τ0    can be expressed in curvilinear 
coordinates as

  τ τ0 0 0 0 0
2

0

= =
∞

∫P
s h ds s s rs

s

( ) ; ( )       (3.72)  

where  P  is the wetted perimeter. Function  τ0( )s     was also given by Chiu and Chiou 
( 1986 ). Here,

  P h ds s s rs

s

= =
∞

∫2
0

0 0 0; ( )       (3.73)  
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  τ ρ0 = gR Sh f       (3.74)  

where  R h   is the hydraulic radius. Thus, equations  (3.64)  through  (3.71)  constitute 
a system of eight nonlinear equations with eight unknowns. These parameters 
can be estimated iteratively without requiring measurements. Steps involved in 
the iterative method are the following:

   1.      Estimate a value of  h .  
  2.      Estimate a value of  c y  .  
  3.      Compute  r  0  using equation  (3.70) .  
  4.      Compute  u  max  ( u D   for  h   ≥  0) using equation  (3.71)  and  M  using equation 

 (3.43) .  
  5.      Compute  a i   and  b i   using equations  (3.59)  and  (3.61) , taking  r  ( ζ   =   B /2, 

 y   +   D )  =   r  0 .  
  6.      Compute values of  τ0     using equations  (3.73)  and  (3.74)  and verify the 

value of  c y  .  
  7.      Using equation  (3.66) , check  h . If the difference between the estimated 

and computed values of  Q  is acceptable, then the iteration is terminated; 
otherwise start again from step 1.    

 The procedure for parameter estimation is a numerical iteration. The inputs are 
fl ow cross-sectional area, channel width, fl ow depth, slope of the energy line, 
kinematic viscosity, shear velocity, and density of water. The output includes 
parameter values, mean boundary shear stress, and maximum velocity. 

 The slope of an isovel,  s r  , can be expressed by differentiating equation  (3.60)  
(Chiu  1988 ) as

  s
dy
d z

b
D c h

B c
YZ

Y Z
r i

y

i

= =
+ +
+ − −( )( )1 1

      (3.75)   

 In equation  (3.75) , quantities  Y ,  Z , and (1  −   Z ) have positive values. For  h   >  0,  y  
 <   D   +   h , (1  −   Y )  >  0 as  Y   <  1, so that isovel slopes are greater than or equal to zero 
with increasing  z . If  h   <  0, meaning that the maximum velocity occurs below the 
water surface,  Y   >  1 in the region  D   +   h   <   y   <   D . Then,  s r   is less 
than or equal to 0 so that isovels tend to curve in toward the  y -axis. If  h   =  0, the 
isovels are perpendicular to the water surface. The isovel parameters of equa-
tions  (3.56)  through  (3.58)  can be determined from velocity observations or from 
observations of discharge, slope, roughness, and cross section. Based on analysis 
of simulated data, Chiu ( 1988 ) found that  h  can be signifi cantly greater than zero 
only if  M  is between 6 and 9. When the width-to-depth ratio (aspect ratio) and 
roughness are large,  h  can be zero, smaller, or greater than zero if  M  is between 
6 and 9; then isovels may or may not be perpendicular to the water surface. If 
 M  is outside this range,  h  can only be zero or slightly less than zero; then isovels 
tend to be perpendicular to the water surface. If fl ow is turbulent and  f l   is less 
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than 0.04 (or  u m  / u *  >  14), then the  h  value can only be zero or slightly less than 
zero, and, hence, isovels are perpendicular to the water surface. Streams and 
rivers usually have values greater than zero, and they have a tendency to attain 
a value of  M  between 6 and 9. 

 Araújo and Chaudhry ( 1998 ) also used 2-D entropy-based velocity distribu-
tion. Using velocimetry in fi ve experiments with rectangular smooth wall fl umes, 
they found the entropy-based velocity distribution equation to be more accurate 
than the logarithmic velocity distribution in all fl ow regimes, especially near the 
channel wall. Because secondary fl ow is disregarded, velocity predictions in the 
upper region of near side walls are relatively less accurate. 

  Example 3.7            Consider a small rectangular channel with a fl ow depth of 0.145 m, 
width of 1.1 m and discharge of 0.04 m 3 /s. The shear velocity is 0.013 m/s. 
Determine the curvilinear coordinates, and compute the two-dimensional 
velocity distribution in the channel. Construct isovels and determine the slope of 
isovels.  

  Solution     Assume that  h   =  0.1 m and  c y    =  0.1 m. Then,

  r
c

D c h
c

D c h
y

y

y

y
0 1 0 590=

+ +
−

+ +
⎛
⎝⎜

⎞
⎠⎟
=exp .      

   u u
u D

max . log . .= ⎛
⎝

⎞
⎠ +⎡

⎣⎢
⎤
⎦⎥
=*

*
m/s5 91 4 81 0 203

υ
       

 If  u m    =  1.12 m/s,  M  can be computed from equation  (3.43)  and obtains  M   =  1.1. 
 Taking  r  ( z   =   B /2,  y   =   D )  =   r  0 ,  b i   can be computed from equation  (3.59)  as 2.35. 

Taking  c i    =  0.1,  a i   can be computed from equation  (3.61) :

  a b
D c h
B c

i i
y

i

=
+ +
+

= −
4

2
0 66

2

2

( )
( )

.        

 Checking  Q  with equation  (3.65) , one gets 0.036 m 3 /s, and the assumption seems 
appropriate. 

 With  r  0   =  0.59, the curvilinear coordinate can be determined as

  r Y Z Z Y= − − − +−( ) exp[ . ].1 2 35 12 35      

   s
Z

Y Z Y= ± − + −−1
1 0 660 66[ ] exp[ . ].        

 These results can be plotted as shown in Fig.  3-15a . The slope of isovels  s  can 
be computed from equation  (3.75) , and one obtains a contour as in Fig.  3-15b .    
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132 Entropy Theory in Hydraulic Engineering

   Example 3.8            Consider a channel 1.5 m wide that has a fl ow depth of 0.25 m, shear 
velocity of 0.032, kinematic viscosity of  υ   =  1.003  ×  10  − 6  m 2 /s , density of 1,000 kg/
m 3 , and slope of 0.001. Compute the mean velocity, mean boundary shear stress, 
and maximum velocity.  

  Solution     Take Manning ’ s  n   =  0.012,  R   =   h   =  0.25 m,  u *  =  0.032 m/s,  υ   =  1.003  ×  
10  − 6  m 2 /s. Thus,

  Figure 3-15b      Slope of isovels.    

  Figure 3-15a      Isovels of velocity.    
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 Field observations show that the velocity does not always increase monotoni-
cally with the vertical distance from the bed ( y   =  0) to the water surface ( y   =   D ), 
meaning that a unique relation between  y  and  u  may not exist. Therefore, it is 
advisable to transform  y  to  r  such that there is a unique relation between  u  and  r . 
Along the  y -axis where  z   =  0, equations  (3.56)  and  (3.59)  yield

  r
y

D h
y

D h
=

+
−

+
⎡
⎣⎢

⎤
⎦⎥

exp 1       (3.76)   

 Equation  (3.76)  can be used to characterize the spatial variation of velocity. 
Clearly, when  y   =  0,  r   =  0, and when  y   =   D ,  r   =   r  max . When  h   <  0, the value of  h  
represents the actual depth of the point below the water surface and then  r  
increases with  y  from  y   =  0 to  y   =   D   +   h , where the maximum velocity occurs at 
 r   =   r  max   =  1 and decreases from  D   +   h  to  D  (water surface), as shown in Fig.  3-16 . 

  It is seen that  r / r  max  converges to  y / D  for  h / D  exceeding unity. Differentiat-
ing equation  (3.76) , one obtains

  dr
D h

y
D

y
D h

dy=
+

−⎡
⎣⎢

⎤
⎦⎥

−
+

⎡
⎣⎢

⎤
⎦⎥

1
1 1exp       (3.77)  

  Figure 3-16       y / D  versus  r / r  max  for various values of  h / D  from  ∞  to  − 0.5.    
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or

  ( ) expD h
y
D

y
D h

dr dy+ −⎡
⎣⎢

⎤
⎦⎥

−
+

⎡
⎣⎢

⎤
⎦⎥{ } =

−

1 1
1

      (3.78)  

which can be simply written as

  h dr dyr =       (3.79)  

where

  h D h
y
D

y
D h

r = + −⎡
⎣⎢

⎤
⎦⎥

−
+

⎡
⎣⎢

⎤
⎦⎥{ }−

( ) exp1 1
1

      (3.80)   

 Coeffi cient  h r   is a scale factor required for coordinate transformation between  y  
and  r  systems. This transformation allows  h r   and  dr  to have the same length 
dimension as  dy . Using equations  (3.75)  and  (3.80) ,  h r   is obtained as

  
h

D c h Y Z

r Y Z b
D c h

b c
YZ

r
y

i
y

i i

=
+ + −

− − +
+ +
+

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

[( )( )]

1

1 1 2
2       (3.81)   

 Note that  dr  is dimensionless, but  h r dr  is an arc length on an  s -curve, correspond-
ing to an  s -curve when the center of the arc is ( Y ,  Z ). Along the  y -axis, 
 z   =  0,  c y    =  0, then equation  (3.59)  is the same as equation  (3.76) . For narrow chan-
nels,  c y   may be signifi cantly different from 0, and, hence, the minimum value of 
 c y   may not be zero. 

 The  s -curves shown in Fig.  3-1  are orthogonal to  r -curves that can be derived 
from equation  (3.60)  (Chiu and Said  1995 ):

  s
Z

Z Z b
D c h

B c
Yb D c h B c

i
y

i i

i y i i= ± − +
+ −
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⎛
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⎠⎟
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2
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⎤

⎦
⎥       (3.82)  

where  s  takes on a negative sign, provided that  y   >   D   −   h  and  h   >  0; otherwise  s  is 
positive. The isovel for null velocity  r  0  can be expressed as

  r
c

D c h
c

D c h
y

y

y

y
0 1=

+ +
−

+ +
⎡

⎣
⎢

⎤

⎦
⎥exp       (3.83)   

 The velocity gradient is

  
du
dy h

du
dr

h r f u
r

r= = −1 1[ ( )]max       (3.84)   

 For calculating the longitudinal velocity at a given point ( y ,  z ) in the cross section, 
six parameters ( c i , c y  ,  b i  ,  h, r  0 , and  k ) are needed. Following Chiu and Chiou ( 1986 ), 
these parameters can be estimated using equations  (3.56)  to  (3.58)  and  (3.75)  
without measured data, given the geometric and fl ow parameters: fl ow dis-
charge  Q , fl ow cross-sectional area  A , fl ow depth  D , wetted perimeter  P , mean 
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shear velocity  u *, slope of the energy grade line  S f  , fl uid kinematic viscosity  υ , 
and density  ρ .   

  Example 3.9            Plot patterns of isovels for  M ,  B / D  ratio, and Manning ’ s  n . Con-
sider  z  as 0 to 4 m to the right of the vertical divide. Take two sets of isovels. In 
the fi rst set, construct two patterns. (1) Take  u  max   =  5 m/s,  h / D   =   − 0.15,  B / D   =  1.0, 
Manning ’ s  n   =  0.015,  M   =  11.25, and  u m    =  3.50 m/s. (2) Take  u  max   =  2 m/s,  h / D   =  
0.5,  B / D   =  10, Manning ’ s  n   =  0.015,  M   =  9, and  u m    =  1.85 m/s. In the second set, 
construct another set of four graphs.

   1.      Take  u  max   =  2.85 m/s,  h / D   =   − 0.01,  B / D   =  1.0, Manning ’ s  n   =  0.03, 
 M   =  6.0, and  u m    =  2.50 m/s.  

  2.      Take  u  max   =  2.15 m/s,  h / D   = 0.00,  B / D   =  2.0, Manning ’ s  n   =  0.03,  M   =  5.85, 
and  u m    =  1.85 m/s.  

  3.      Take  u  max   =  1.75 m/s,  h / D   =  0.20,  B / D   =  3.0, Manning ’ s  n   =  0.03,  M   =  8.75, 
and  u m    =  1.70 m/s.  

  4.      Take  u  max   =  1.15 m/s,  h / D   =  2.20,  B / D   =  10, Manning ’ s  n   =  0.03,  M   =  7.25, 
and  u m    =  0.90 m/s.    

 What do you conclude from these two sets of isovel patterns?  

  Solution     These curves are shown in Figs.  3-17 to 3-22 . In Fig.  3-17 , the maximum 
velocity occurs below the water surface, when  h / D  is positive, then velocity 

  Figure 3-17      Velocity distribution for  u m    =  3.5 m/s,  u  max   =  5 m/s,  M   =  11.25,  B / D  
ratio  =  1.0,  h / D   =  0.15, and Manning ’ s  n   =  0.015.    
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  Figure 3-18      Velocity distribution for various values of velocity distribution for  u m    =  
1.85 m/s,  u  max   =  2.0 m/s,  M   =  9.0,  B / D  ratio  =  10,  h / D   =  0.5, and Manning ’ s  n   =  0.015.    
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  Figure 3-19      Velocity distribution for  u m    =  2.5 m/s,  u  max   =  2.85 m/s,  M   =  6.0, 
 B / D  ratio  =  1.0,  h / D   =  0.01, and Manning ’ s  n   =  0.03.    
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Two-Dimensional Velocity Distributions  137

  Figure 3-20      Velocity distribution for  u m    =  1.85 m/s,  u  max   =  2.15 m/s,  M   =  5.850, 
 B / D  ratio  =  1.0,  h / D   =  0.00, and Manning ’ s  n   =  0.03.    
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  Figure 3-21      Velocity distribution for  u m    =  1.7 m/s,  u  max   =  1.75 m/s,  M   =  8.75, 
 B / D  ratio  =  3.0,  h / D   =  2.0, and Manning ’ s  n   =  0.03.    
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138 Entropy Theory in Hydraulic Engineering

  Figure 3-22      Velocity distribution for  u m    =  0.9 m/s,  u  max   =  1.15 m/s,  M   =  7.25,  B / D  ratio 
 =  1.0,  h / D   =  2.2, and Manning ’ s  n   =  0.03.    
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decreases, expanding to the channel boundary. If  h / D  is nonpositive, as in 
Figs.  3-18  and  3-19 , then the maximum velocity occurs at the water surface. When 
 h/D  is zero, the maximum velocity occurs at the surface, as shown in Fig.  3.20 , 
and the same is true when h/D is positive as shown in Figs.  3-21  and  3-22 .          

  3.3     Estimation of Parameters of Velocity Distribution 

 If  u  max  and the statistical moments of  u  are known, the Lagrange multipliers can 
be easily determined in terms of the known moments. Another simple procedure, 
described by Chiu ( 1989 ), is briefl y outlined here. 

 On the channel bed  u   =  0,  y   =  0, and  h r    =  ( D   +   h ) e   − 1 , and  f ( u )  =  exp( λ  0 ). Then

  
du

dy
r D h= + − −{ ( ) [ ]}max exp λ0

11       (3.85)   

 The velocity distribution near the bed can be assumed to be in the laminar sub-
layer. Hence, the velocity gradient at the channel bed can be expressed as

  
du
dy

u= =τ
μ υ

0
2*

      (3.86)   
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Two-Dimensional Velocity Distributions  139

 where  τ  0  is the shear stress at the channel bed,  μ   =    υ g  is the dynamic viscosity of 
the fl uid,  u * is the shear velocity,  g  is the acceleration because of gravity, and   υ   
is the kinematic viscosity. From equations  (3.85)  and  (3.86) , parameter  λ  0  can be 
determined as

  λ
υ

0 21= +
+

⎡
⎣⎢

⎤
⎦⎥

ln
( ) maxu D h r*

      (3.87)  

in which  r  max   =  1 if  h   ≤  0;  r  max   =  ( D / h )exp[ h /( D   +   h )] if  h   >  0. 
 For wide channels  r / r  max   ≈   y / D , and, hence,  h r    =   D ,  r  max   =  1, so that

  λ
υ

0 2= ⎛
⎝

⎞
⎠ln

u D*
      (3.88)   

 For fl ow with isovels perpendicular to the water surface, parameter  λ  0  can be 
obtained with the use of  h   =  0 and  r  max   =  1 in equation  (3.87) . Now  λ  0  and  u m   can 
be used in equations  (3.10)  and  (3.21)  to obtain  λ  1  and  u  max . It may be noted that 
for clear-water fl ow the viscosity can be obtained for a given temperature, but 
for sediment-laden fl ow it varies with sediment concentration. Equations  (3.87)  
and  (3.88)  can, therefore, be used to obtain  λ  0  and   υ  , and can, in turn, yield sedi-
ment concentration at the bed.  

  3.4     Maximum and Mean Velocities 

  3.4.1     Location of Maximum Velocity 

 Equation  (3.35a)  with  r  0   =  0 can be expressed as

  u
u
M

M
r

r
= − −{ }max

max
ln [exp( ) ]1 1       (3.89)  

where  u  max  occurs and corresponds to  r   =   r  max , the maximum value of  r ;  r  is con-
stant along an isovel where velocity is  u . The ratio  r / r  max  is equal to the probabil-
ity of velocity, randomly sampled, being less than or equal to  u :

  f u du
r

r

u

( )
max0

∫ =       (3.90)   

 On the vertical axis where  u  max  occurs, designated as  y -axis,  r  can be expressed 
from equation  (3.76)  as

  r
y

D h
y

D h

y
D

h
D

y
D

h
D

=
+

−
+

⎡
⎣⎢

⎤
⎦⎥
=

+
−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

exp exp1
1

1
1

      (3.91)  

where  y  is the vertical distance from the bed and  h  can take on negative, positive, 
and zero values. Here, three cases can be distinguished. 
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  Case 1 

 The maximum velocity occurs not at the water surface but at a vertical distance 
 h  below. In this case,  h  takes on a negative value, because it is measured down-
ward from the water surface. If  h  is assigned a positive value, then  y   =   D   −   h . 
This situation means that  u  decreases from this point upward to the water surface 
and  du / dy   <  0 at  y   =   D . This situation means that  h   <  0, and  r  max  and  u  max  occur 
at  y   =   D   +   h , i.e., the upper limit of | h / D |,  h / D , is one. In that case, equation 
 (3.91)  yields  r  max   =  1, and

  
r

r
r

y
D h

y
D h

f u du
u

max
exp ( )= =

+
−

+
⎡
⎣⎢

⎤
⎦⎥
= ∫1

0

      (3.92)  

  
du
dy h

du
dr

h r f u
r

r= = −1 1[ ( )]max       (3.93)  

in which  r  max  and  f ( u ) are positive;  h r   is positive for 0  ≤   y   ≤   D   +   h  but equals  D   +  
 h  and becomes negative for  D   +   h   ≤   y   ≤   D  if  h   <  0. 

 One can express the location of the mean velocity as

  
r r
r r

y
D

h
D

y
D

h
D

m

m m

−
−

=
+

−
+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0

0 1
1

1
exp       (3.94)  

where  y m   is the vertical distance from the channel bed where velocity is the mean 
velocity. This equation shows that  y m  / D  and  h / D  are indicators of the locations 
where  u m   and  u  max  occur on the  y -axis.  

  Case 2 

  u  max  occurs at the water surface, i.e.,  h   =  0,  r  max   =  1, and equation  (3.91)  becomes

  
r

r
r

y
D

y
Dmax

exp= = −⎡
⎣⎢

⎤
⎦⎥

1       (3.95)   

 In this case,  du / dy   =  0 at the water surface, and the velocity curve intersects the 
water surface at a right angle.  

  Case 3 

  u  max  occurs at the water surface and  du / dy   >  0 at the surface, and  h   >  0. The 
maximum value of  r  is

  r
D

D h
D

D h
max exp=

+
−

+
⎡
⎣⎢

⎤
⎦⎥

1       (3.96)   
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 Thus,

  
r

r
y
D

D y
D h

r
r

y
D

D y
D hmax max

exp exp= −
+
+

⎡
⎣⎢

⎤
⎦⎥

=
−
+

⎡
⎣⎢

⎤
⎦⎥

1 or       (3.97)   

 As  h   →   ∞ ,

  r r y D/ /max →       (3.98)   

 One can also write

  
r r

r r
y
D

y
D
h
D

m

m

−
−

=
−

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0

0

1

1max

exp       (3.99)   

 In this case,  h  does not have the same physical meaning as in cases 1 and 2. 
Equations  (3.92) ,  (3.95) , and  (3.97)  show that various patterns of velocity distribu-
tions can be obtained from equation  (3.89)  by varying  r / r  max . 

 Plotting equations  (3.94)  and  (3.99)  for various values of  M , it can be seen 
from Figs.  3-23  and  3-24  that the relation between  y m  / D  and  h / D  becomes 
independent of  M  for  M   >  8 or  y m  / D , where  y m   is the value of  y  from the channel 
bed corresponding to mean velocity, becomes independent of  h / D  when  h /
 D   >  30, and for  M   >  6, it becomes  e   − 1   =  0.368. For smaller values of  h / D  (less 
than 1),  y m  / D  increases rapidly with  h / D .  y m  / D  becomes 0.16 at  h   =  0. When 
the maximum velocity occurs below the water surface, i.e.,  h   <  0,  y m  / D  de-
creases below 0.3. Equation  (3.94)  or  (3.99)  expresses the relation between  y m  / D  
and  h / D .   

  Figure 3-23      Relation between  h / D  and  y m  / D  for various values of  M  with  h   >  0.    
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  Example 3.10            Plot  y / D  versus  u / u  max  for various values of parameter  M ,  M   =  0, 
2, 4, 6, 8, 10, and 12. What do you conclude from this plot?  

  Solution     The 2-D velocity distribution equation is given by equation  (3.35a) . 
When  u  max  occurs,  r  can be expressed as a function of  y  in equation  (3.91) . 
The maximum velocity  u  max  occurs at a vertical distance  h  below the water sur-
face ( y   =   D   −   h ), thus  du / dy   <  0 at the water surface. In this case,  h   <  0 and  r  max  
and  u  max  occur at  y   =   D   −   h . Combining equations  (3.35a)  and  (3.91)  with  r   =   r  max , 
one obtains a plot of  y / D  versus  u / u  max  for various values of  M , as shown in 
Fig.  3-25 .   

  Figure 3-24      Relation between  h / D  and  y m  / D  for various values of  M  with  h   <  0.    

  Figure 3-25      Velocity ( u / u max  ) versus  y / D  for various values of  M .    
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   Example 3.11            Yen ( 1965 ) reported a set of velocity data in a cross section at the 
entrance to a bend of a trapezoidal channel. The mean velocity through the cross 
section was 3.15 ft/s (0.96 m/s). The maximum value for velocity in the data was 
3.737 ft/s (1.14 m/s), although the maximum velocity was not known or report-
ed. Check if the mean velocity reported is in accord with what one would obtain 
from the procedure outlined here.  

  Solution     Assume that the maximum velocity is the same as the maximum value 
as given:  u  max   =  3.15 ft/s. Then  u m  / u  max   =  3.15 ft/s/3.737 ft/s  =  0.83. This equation 
yields an  M  value of 6 (approximately) from Fig.  3-8 . The isovels constructed 
with the data set seem perpendicular to the water surface;  h / D  is about 0. Then 
 y m  / D  from Fig.  3-23  is 0.16. On the  y  axis ( z   =  0), the vertical passing through the 
point of maximum velocity, the  y   =  0.16 D  should have velocity  =  3.15 ft/s, mean 
velocity. This result confi rms the mean velocity reported by Yen ( 1965 ).     

  3.4.2     Determination of Maximum Velocity 

 If velocity is measured at two points  y   =  0.2 D  and  y   =  0.8 D , i.e.,  u  0.2  and  u  0.8 , 
between the water surface, then  u  max  from  u  0.2  and  u  0.8  is computed from equation 
 (3.35a)  as follows:

  u
u
M

M
r
r

0 2
1

1
0 21 1.

max .

max

ln [exp( ) ]= + −{ }       (3.100)  

  u
u
M

M
r
r

0 8
1

1
0 81 1.

max .

max

ln [exp( ) ]= + −{ }       (3.101)  

  u
u u u

MD
M

r
r

dyy

D

= + = + −{ }∫0 2 0 8
1

02
1 1. . max

max

ln [exp( ) ]       (3.102)  

  r
D

D h
D

D h
0 2

0 8
1

0 8
.

.
exp

.=
−

−
−

⎛
⎝

⎞
⎠       (3.103a)  

  r
D

D h
D

D h
0 2

0 2
1

0 2
.

.
exp

.=
+

−
+

⎛
⎝

⎞
⎠       (3.103b)  

  r
D

D h
D

D h
0 8

0 2
1

0 2
.

.
exp

.=
−

−
−

⎛
⎝

⎞
⎠       (3.104a)  

  r
D

D h
D

D h
0 8

0 8
1

0 8
.

.
exp

.=
+

−
+

⎛
⎝

⎞
⎠       (3.104b)  

  r hmax = ≥1 0if       (3.105)  

  r hmax = ≤1 0if       (3.106)  
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  r
D

D h
D

D h
hmax exp=

−
−

−
⎛
⎝

⎞
⎠ <1 0if       (3.107)  

  r
D

D h
D

D h
hmax exp=

+
−

+
⎛
⎝

⎞
⎠ >1 0if       (3.108)  

where  M  1  is the value of local  M  of a fl ow event on the  y -axis. Values of  u  max ,  M  1 , 
and  h  can be obtained from the solution of equations  (3.100) ,  (3.101) , and  (3.103b)  
to  (3.107) .  

  3.4.3     Location of the Maximum Velocity Axis 

 It is not easy to determine the location of the axis of maximum velocity in open-
channel fl ow. Velocity observations can be used to ascertain the location of the 
 y -axis on which the maximum velocity occurs. If a channel is straight and regular 
as are human-made canals, the  y -axis usually occurs at the center of the cross 
section. Field observations taken on rivers under a variety of fl ow conditions 
indicate that the position of the  y -axis is quite stable and is almost invariant with 
discharge, gauge height, and time, provided that the channel bed does not 
change signifi cantly (Chen  1998 ). Conversely, when the channel overfl ows, its 
banks are topped and water spreads in the fl oodplain, and the location of the 
 y -axis changes. The maximum cross-sectional velocity is close to the maximum 
velocity on the  y -axis. During fl oods, the maximum velocity on the water surface 
can reasonably indicate the location of the  y -axis. The maximum velocities can 
be estimated from the mean location of the  y- axis.  

  3.4.4     Relation of the Location of Maximum Velocity to M and  ϕ  

 One can gain insight into the mechanism that determines the location of maximum 
velocity below the water surface from consideration of the bed shear at the  y -axis 
expressed as

  ρ ρεgS D h
du
dy

f y( )− = =0 0       (3.109)  

  
du
dy

u
DM

M

M
y
D

u
DM

My

y

=

=

=
−

+ −{ } = −0

0

1

1 1
1max maxexp( )

[exp( ) ]
[exp( ) ]       (3.110)  

where  ρ  is the mass density of water,  g  is the acceleration caused by gravity,  S f   
is the friction slope, and  ε  0  is the momentum transfer coeffi cient at the channel 
bed and equals the kinematic viscosity of the fl uid if fl ow is laminar or has a 
viscous sublayer at the channel bed. The bed shear at the  y -axis may be assumed 
to equal the mean boundary shear (Chiu and Lin  1983 ; Chiu and Chiou  1986 ). 
One can invoke the Darcy–Weisbach relation between shear velocity  u * and fric-
tion factor  f l  , which is given by equation  (3.53) . 

c03.indd   144c03.indd   144 5/21/2014   2:12:52 PM5/21/2014   2:12:52 PM



Two-Dimensional Velocity Distributions  145

 The gradient of velocity in equation  (3.109)  can be obtained from equation 
 (3.35a) , with  r  defi ned by equation  (3.1) , and then combining equations  (3.109)  
and  (3.53) , one obtains

  1
82

0
2

−⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠

h
D

R
D f R

G Mh

l n

ε
υ

ρ
( )       (3.111)  

where  R h   is the hydraulic radius,  R n   is the Reynolds number defi ned by equation 
 (3.55) , and

  G M
M

M
( )

exp( )
=

−1
φ

      (3.112)  

in which  ϕ  is expressed in terms of  M  defi ned by equation  (3.49) . Equation  (3.112)  
sheds some light on the location of maximum velocity. 

 Consider a wide channel in which  u  max  occurs at the water surface so that 
 r / r m   in equation  (3.35a)  is  y / D  and  τ  0   =   ρ  gDS f  . Then

  
ε
υ

0 8
1

f R
G M

l n

( ) =       (3.113)   

 The quantity  ε  0 /  υ    =  1 in fl ows with a viscous sublayer. Then equation  (3.113)  
becomes

  G M
fRn( ) =
8

      (3.114a)   

 Therefore,

  ρ ρεgS D h
u
DM

Mf ( ) [exp( ) ]max− = −0 1       (3.114b)   

 This equation means that  G ( M ) and, hence,  M  vary with the product of  f l R n  . For 
laminar fl ow,  f l R n   is constant, and, hence,  G ( M ) and, in turn,  M  are constant for 
a channel cross section. Conversely,  f l R n   varies with  M ,  ϕ , or  u m  / u  max . One can 
interpret the idea that  ϕ  and  M  are constant for a channel cross section and, hence, 
control  ε  0 /  υ  ,  f l  ,  R n  ,  R h  , and  h . Therefore, a relation between  h / D  and  G ( M ) must 
exist. Chiu and Tung ( 2002 ), using regression analysis, found

  
h
D

G M= −0 2
58 3

. ln
( )

.
      (3.115)  

for the data range 1.0  ≤   M   ≤  5.6 and 0  ≤   h / D   ≤  0.61. Equation  (3.115)  can be con-
verted into an  h /( D   −   M)  relation. 

 For the South Esk River at Bridge 4 (Bridge and Jarvis  1985 ), Chiu and Tung 
( 2002 ) found that  h  increased with  u  max , but  h / D  was invariant with  u  max  or dis-
charge. The average  h / D  value was 0.48. In general, the average  h / D  and  M  are 
constant at a channel cross section. This means that in equation  (3.110) , ( ε  0 /  υ  ) (), 
( R h  / D ), and ( f l R n  )  − 1  are also constant at a channel cross section.  
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146 Entropy Theory in Hydraulic Engineering

  3.4.5     Relative Locations of  u  max  and  u m   

 If  u  max  occurs at the water surface and  M  is greater than 6,  r / r  max  in equation 
 (3.35a)  can be represented by  y / D . The location of the point where  u   =   u m   is 
 y D r r/ /= =max .0 368   , where  y     and  r     are the values of  y  and  r , respectively, where 
 u   =   u m  . To determine the point where  u   =   u m   on the  y  axis and  u  max  occurs below 
the water surface, one can write

  
u

u
M

M M M
M

r
r

m

max max

exp( )
exp( )

ln [exp( ) ]= =
−

− = + −{ }Φ
1

1 1
1 1       (3.116)  

in which  r r/ max    can be expressed as
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  y    is the location of the point on the  y -axis where the velocity is equal to the cross-
sectional mean velocity  u m    =   Q / A ; it is not the location of the point where the 
velocity equals the vertical mean on the  y -axis. The value of  y D/    is not  e   − 1   =  0.368 
if  u  max  occurs below the water surface. Equation  (3.117)  yields  y D/ = 0 16.     or 
smaller (Chiu  1988 ), even though  M   >  6 if  h   ≤  0 or  u  max  occurs below the water 
surface.  

  3.4.6     Determination of Mean Velocity 

 In hydraulics, a relation between the mean velocity and the maximum velocity 
in pipe fl ow is often expressed as

  
u

u
cm

max
=       (3.118)  

where  c  is a constant  =  0.8167 (Streeter and Wylie  1979 ). This relation can be 
obtained from Prandtl ’ s ( 1925 ) one-seventh power law velocity distribution:
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1

      (3.119)  

where  y  is the distance from the pipe wall,  r  0  is the pipe radius, and  m  is an 
exponent equal to 7. 

 In contrast with the cross-sectional mean velocity, the maximum velocity in 
a channel has received little attention. In the two-dimensional velocity distribu-
tion, the mean velocity,  u m  , can be expressed as a linear function of the maximum 
velocity,  u  max , through a dimensionless entropy parameter  M  (Chiu  1991 ). The  M  
parameter is a fundamental measure of information about the characteristics of 
the channel section, such as changes in bed form, slope, and geometric shape 
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(Chiu and Murray  1992 ), and it can be derived from the pairs of  u  max  and  u m   
measured at a channel cross section. Xia ( 1997 ) investigated the relation between 
mean and maximum velocities by using the velocity data collected in some cross 
sections of the Mississippi River. He found that the relation was perfectly linear 
along both straight reaches and river bends and that the  M  value was constant 
and equal to 2.45 and 5, respectively. Although Xia ’ s results were preliminary 
because of the limited amount of data, the relation between the mean and 
maximum velocities, as introduced by Chiu ( 1991 ), if tested on other natural 
channels, can be useful for investigating the fl ood characteristics in rivers (Mora-
marco and Singh  2001 ). 

 Another effi cient method for estimating the mean fl ow velocity was pro-
posed by Chiu and Said ( 1995 ). They estimated the location of the mean velocity 
on the vertical passing through the point of the maximum velocity. On the same 
profi le, more recently Chiu and Tung ( 2002 ) also investigated the location of the 
maximum velocity as a function of  M . If  h   =  location of maximum velocity below 
the water surface;  D   =  water depth on the vertical passing through the point of 
maximum velocity; and  y      =  location of mean velocity above the bed on the same 
vertical, they showed that at a river site,  h / D  and  y D/     were constant and 
depended on the  M  value. However, for new river sites,  M  cannot be estimated 
accurately because of limited velocity data. Moramarco et al. ( 2004 ) evaluated 
the accuracy of the linear relation between the mean and maximum velocities by 
using the data collected during a period of 20 years for four gauged sections in 
the upper Tiber River basin in central Italy. They also evaluated the velocity 
profi les at different verticals estimated through the spatial velocity distribution 
proposed by Chiu ( 1987, 1988, 1989 ) and those given by two simple approaches 
and based on the same Chiu velocity distribution, by using the velocity data 
collected during seven fl ood events. They developed a practical method, both 
for new and historical river sites, for estimating the cross-sectional mean velocity 
also when, because of high fl oods, it is diffi cult to carry out velocity measure-
ments in the lower portion of the fl ow area. 

 The relation between the mean velocity,  u m  , and the maximum velocity,  u  max , 
can be expressed as (Chiu and Said  1995 )

  u M um = ( )φ max       (3.120)  

in which

  φ M
u

u
e

e M
m

M

M
( ) = =

−
−

max 1
1

      (3.121)  

and  M  is the entropy parameter. Equation  (3.120)  shows that if a sample of pairs 
( u m  ,  u  max ) is given,  Φ ( M ) can be estimated and then so can the entropy parameter 
 M . 

 Using the velocity data collected during a period of 20 years at four gauged 
sections, three of them located along the Tiber River at 68 km (Santa Lucia), at 
109.2 km (Ponte Felcino), and at 137.4 km (Ponte Nuovo) and one section along 
the Chiascio River, a tributary of the Tiber River, at 85 km (Rosciano), Moramarco 
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et al. ( 2004 ) tested the relationship between the mean velocity and the maximum 
velocity in a channel cross section. The selected sections were equipped with a 
remote ultrasonic water-level gauge, and the velocity measurements were made 
by current meter from cableways. Depending on the cross-sectional fl ow area, 
the number of verticals carried out changed from 4 up to 10, and for each vertical 
at least 5 velocity points were sampled. Comparing the velocity points sampled 
along different verticals and applying the well-known velocity–area method 
(Herschy  1985 ), the maximum and mean velocities were estimated (Chiu and 
Said  1995 ; Xia  1997 ). Generally, the true maximum velocity is unknown, but for 
each vertical, the maximum value in the data set of velocity points sampled can 
be assumed for it (Chiu  1988 ). 

 Using pairs of  u m   and  u  max  collected at the four gauged sections, the best-fi t 
mean velocity,  u bf  , was calculated. The values of  Φ ( M ) were estimated, as shown 
in Fig.  3-26 . Therefore,  Φ ( M ) can be assumed to be constant for the four gauged 
sections, confi rming the results obtained by Xia ( 1997 ) for the Mississippi River. 
The best-fi t line relative to the mean and maximum velocity data set of the four 
gauged sections was as shown in Fig.  3-27 . As can be seen, the linear relationship 
based on equation  (3.120) 

    u b u bbf = =max, .0 665       (3.122)  

has a high correlation coeffi cient showing that parameter  Φ ( M )  =  0.665 and then 
 M   =  2.13 can be assumed to be constant within the two river reaches investigated. 
The accuracy of this linear relationship for the four gauged sections was inves-
tigated by evaluating the errors  ε  and  ε (%), which are defi ned as follows:

  u um bf= + ε       (3.123)  

  ε(%) = ⋅
−

100
u u

u
bf m

m

      (3.124)  

  Figure 3-26      Estimated values of  ϕ ( M ).    
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in which  u bf   is the mean velocity calculated by equation  (3.122) . Based on error 
analysis, Moramarco et al. ( 2004 ) concluded that  M  can be considered as an 
intrinsic parameter of a river reach. 

 Equation  (3.122)  is applicable to straight as well as curved reaches. However, 
the value of  Φ ( M ) increases slightly with increasing value of  r c  / B , where  r c   is 
loop radius at channel center, and  B  is the channel surface width. Xia ( 1997 ) 
reasoned that a relation between  b  and  r c  / B  would be useful. One can easily 
obtain a value of  r c  / B  from a map. Then, with  r c  / B  thus obtained, one can obtain 
 b  from the relation; then one can obtain the relation between  u * and  u  max . Since 
the variation in the value with increasing  r c  / B  is only small, it can be argued that 
the relations between the cross-sectional mean and maximum velocities for dif-
ferent river bends would be similar. The implication is that a relation between 
the two velocities for one river bend could be used for another river bend. 

 Comparing the relations between  u  max  and  u m   for straight and curved reaches, 
 u  max  on a straight reach is greater than that on a river bend for the same cross-
sectional mean velocity  u m  . Bhowmik ( 1979 ), for example, found under three fl ow 
discharges (29.5, 40.2, and 113.3 m 3 /s) that the average ratio  u  max / u m   values in a 
straight reach were 1.75, 1.5, and 1.5, respectively. In a river bend with  r c  / B   =  
1.90, the measured ratios were 1.50, 1.23, and 1.35, respectively. 

 To develop a practical and simple method for estimating discharge, also 
during high fl oods, Moramarco et al. ( 2004 ) assumed that equation  (3.35a) , 
written for the vertical where the maximum velocity occurs ( x   =  0), can be 

  Figure 3-27      Mean and maximum velocity data set of four gauged sections.    
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150 Entropy Theory in Hydraulic Engineering

applied to other verticals in the following form (Chiu  1988, 1989 ; Chiu and 
Murray  1992 ; Chiu and Said  1995 ; Greco  1999 ):

  u
u
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where  u i   and  D i   are the velocity and water depth along the  i th vertical, respec-
tively;  y  is the vertical distance measured from the channel bed;  N v   is the number 
of verticals sampled in the cross-sectional fl ow area;  M i  ,  h i  , and  u imax    , in this case, 
are parameters. For applying equation  (3.125) , two scenarios were tested. First, 
parameter  M i   was assumed to be constant along all verticals and its value was 
equal to 2.13;  u imax    ,  D i  , and  h i   are the maximum velocity, water depth, and depth 
of  u imax     below the water surface, respectively, on each vertical. Second, the  M i   
parameter value changed along each vertical as
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      (3.126)  

where  umi    is the mean velocity along the  i th vertical, and  u  max  is the maximum 
velocity sampled in the cross-sectional fl ow area. It was found that for the data 
collected during the fl ood events of June 1997 and November 1996 at the Ponte 
Nuovo section, equation  (3.125)  improved the accuracy of the velocity profi le 
estimation, also in the portions close to the side walls, as shown in Fig.  3-28 . It 
was thus suggested that parameter  M  could be considered a signal of the bound-
ary effects on the velocity distribution (Chiu and Said  1995 ). 

  Xia ( 1997 ) investigated the relation between the maximum velocity and the 
cross-sectional mean velocity. Using the velocity data collected from the Missis-
sippi River at fi ve gauging stations (three were on bends and two on almost 
straight reaches), he found

  u bummax =       (3.127)  

where the value of  b  varied from 1.2386 to 1.2433 for bends and 1.458 to 1.46 for 
straight reaches. He reported that  b  varied a little bit with  r c  / B , a measure of 
meandering of a river bed,  r c    =  loop radius at the channel centerline. The value 
of the maximum velocity in a straight reach is greater than in a river bend for 
the same cross-sectional mean velocity.  

  3.4.7     Estimation of Mean Velocity from Velocity Profi le along 
the  y -Axis 

 The maximum velocity on the  y -axis is the cross-sectional maximum. The ratio 
of the cross-sectional mean velocity  u m   to the vertical mean  u my   on the  y -axis can 
be expressed as
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where for  h   ≤  0,
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and for  h   ≥  0,
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      (3.130)   

 For small magnitudes of  M  and  h / D , equation  (3.128)  is not stable.   

  Figure 3-28      A comparison of the velocity profi les obtained by equations  (3.35a)  and 
 (3.125)  for the data collected during the fl ood events of June 1997 and November 1996 

at the Ponte Nuovo section.    
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  3.5     Comparison of Mean Velocity 
Estimates 

 It may be interesting to compare the error in estimating the mean velocity along 
each sampled vertical by using Chiu ’ s two-dimensional velocity distribution 
(equation  (3.35a) ) and the scenario tests. For 45 verticals sampled during 
the selected fl ood events, the mean velocity was estimated with an error less 
than 10% for 82% of the verticals, and equation  (3.35a)  for 78% of the verti-
cals. Once the mean velocity is estimated along each vertical, the cross sec-
tional mean velocity can be calculated by applying the velocity–area method. 
Then, comparison of the errors in estimating the mean velocity of the fl ow 
through equation  (3.35a)  and the two scenarios was made. Both scenarios 
were fairly accurate for most of the selected events with a percentage error of 
less than 10%. Therefore, the experimental evidence showed that equation 
 (3.125)  can be applied locally at each vertical. This result is useful in practical 
engineering concerning fl ood estimation through velocity measurements. In 
fact, in addition to the drastic reduction of the number of parameters, equation 
 (3.125)  can also be conveniently adopted during high fl oods, when it is not 
possible to collect direct velocity measurements, especially in the lower portion 
of the fl ow area. If a topographical survey of the gauged section is available 
and the location of the maximum velocity is sampled, equation  (3.125)  can be 
easily used for reconstructing the velocity profi le along each vertical of the 
fl ow area. 

 In the case that  M  is known (historical gauged sections), scenario 1 is 
more suitable for this analysis, whereas scenario 2 should be applied for 
new river sites where the velocity data are limited for estimating an accu-
rate best-fi t line. The results obtained for scenario 1 point out that the velocity 
profi le for each vertical can be estimated by only sampling the maximum 
velocity along each vertical,  u imax    . Since maximum velocities occur in the upper 
portion of the fl ow area, their sampling, for instance, by a current meter 
through cableways, can be carried out more easily, even during high fl oods. 
Once the velocity profi les are known, the cross-sectional mean velocity can be 
calculated. 

 For scenario 2, if the local parameter  M i   can be estimated, considering the 
ratio between the mean velocity occurring along each vertical and the maximum 
velocity sampled, it permits us to overcome the gap in the velocity data for new 
river sites where  M  is unknown. However, the mean velocity along each vertical 
must be known, and during high fl oods it is possible to sample the maximum 
velocity,  u  max , but the sampling of the velocity points in any portion of the fl ow 
area cannot always be easily carried out. Furthermore, sometimes the velocity 
profi les reconstructed for scenario 2 are not quite accurate in the fl ow area close 
to side walls. For this reason, a practical method for estimating the behavior of 
the mean velocity in the different portions of the fl ow area is proposed in the 
next section.  
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  3.6     Alternative Method for Estimation of the Cross-
Sectional Area Mean Velocity for New River Sites 

 Equation  (3.127)  permits the estimation of the mean velocity, once the maximum 
velocity is sampled; if the fl ow area is known, the discharge can also be calcu-
lated. However, in some cases the estimated discharge can have substantial 
errors. Besides, for newly gauged river sections, where there is a limited amount 
of velocity data for determining the  M  value, a simple technique for estimating 
discharge by the single velocity profi le passing through the point of maximum 
velocity occurring at  x   =  0 was proposed by Chiu and Said ( 1995 ). If  u  max  and  h  
are determined from the velocity profi le sampled at  x   =  0, then substituting in 
equation  (3.121) , the  M  value can be determined through the least-squares 
method (Chiu and Said  1995 ). Once  M  is estimated, on the same profi le the loca-
tion at which the velocity is equal to the cross-sectional mean,  u m  , is given (Chiu 
and Said  1995 ) by

  r
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      (3.132)  

and  y m  , on the profi le investigated, is the distance from the channel bed where 
 u   =   u m  ,  r     is the location at which the velocity is equal to the cross-sectional mean 
velocity. 

 This approach overcomes the lack of velocity data for new sites, but it does 
not substantially improve the accuracy of the linear relationship. Therefore, in 
order to have a more accurate estimate of the cross-sectional mean velocity when 
velocity point data are limited, an alternative and practical approach is as follows. 
The mean velocity along the verticals sampled in the cross-sectional fl ow area 
can be surmised as a parabolic curve:

  u x x xmi ( ) = + +α β γ2       (3.133)  

where  α ,  β , and  γ  are parameters; and  u xmi ( )     is the mean velocity along the verti-
cal located at the  x  coordinate in the transverse direction. 

 Parameters of the parabolic curve can be estimated by two simple conditions. 
The fi rst condition assumes that the maximum value of the mean velocity along 
the vertical occurs at  x   =  0, yielding

  
du x

dx
m

x

i ( )
=

=0

0       (3.134)  
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and

  umi ( )0 = γ       (3.135)   

 Equation  (3.134)  gives  β   =  0. Quantity  umi 0( )    can be obtained through the 
velocity points sampled along the vertical or by using the velocity profi le at 
 x   =  0 expressed by equation  (3.125) . The second condition allows an estimated 
 α  setting in which at the banks (left side,  x   =   x L  , and right side,  x   =   x R  ), the fl ow 
velocity is zero:

  u x x um x x x x mi L R i( ) ( );= = = + =α 2 0 0       (3.136)   

 A similar condition might be used also if velocity points are sampled along a 
vertical line close to the bank, in this case, the  x  coordinate referring to the loca-
tion where the vertical is sampled, thus permitting a more accurate estimate of 
the parabolic shape. Obviously, if the fl ow area section is asymmetric with 
respect to  x   =  0, the  α  value for the right fl ow portion is different from that on 
the left. 

 The method was applied to the velocity data collected during the selected 
fl ood events. The mean velocity along the vertical at  x   =  0 was estimated through 
Chiu ’ s velocity distribution, equation  (3.125) , once  u  max  and  h  were derived from 
the velocity points collected and considering  M   =  2.13. 

 Fig.  3-29  compares the observed mean velocity along each vertical and that 
estimated by equation  (3.116)  for the fl ood events that occurred in June 1997 at 
Ponte Nuovo. The parabolic shape adequately represented the distribution of the 
mean velocity in different portions of the fl ow area. Analogous results were also 
obtained for other events. Therefore, the parabolic shape implicitly takes into 

  Figure 3-29      Comparison of observed mean velocity along each vertical and that 
estimated by equation  (3.133)  for the fl ood events that occurred in June 1997 at 

Ponte Nuovo.    
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account the effects of side walls on the velocity distribution in the cross-sectional 
fl ow area. Once the mean velocity along each vertical is estimated, the cross-
sectional mean velocity can be derived by applying the velocity–area method. 

  The Chiu and Said technique, as defi ned by equations  (3.125)  and  (3.127) , 
was also applied to the seven selected fl ood events and then the cross-sectional 
mean velocity was estimated for each of them, considering the gauged sections 
both at historical sites (where  M   =  2.13) and new sites (where  M  was unknown). 
The depth below the water surface where  u  max  was collected,  h , was defi ned 
through the velocity points sampled on vertical at  x   =  0, whereas for the hypoth-
esis of new sites, the  M  value was determined by the least-squares method 
applied to the velocity profi le at  x   =  0, equation  (3.125) , as proposed by Chiu and 
Said ( 1995 ). 

 Comparison of the mean fl ow velocity estimated by this technique and that 
obtained by the parabolic method showed that the parabolic approach signifi -
cantly improved the estimate of the cross-sectional mean velocity. The Chiu and 
Said technique applied to historical sites had the same accuracy as that of the 
linear relationship, equation  (3.127) , whereas for new sites it was found to be 
less accurate. 

 To summarize, the linear relationship between the mean and the maximum 
fl ow velocities is found to be accurate and the value of parameter  M  can be 
surmised to be constant at any site. The percentage error in estimating the mean 
velocity by the linear relationship is nearly normally distributed. The simple 
method developed for reconstructing the velocity profi les at a river section, 
which is based on the assumption that Chiu ’ s velocity distribution can be applied 
locally, is found capable of estimating with reasonable accuracy the shape of the 
observed velocity profi les, even for high fl ood events. Finally, the practical 
approach, based on the hypothesis that the behavior of the mean velocity within 
different portions of the fl ow area follows a parabolic shape, is suitable for esti-
mating the cross-sectional mean velocity even during high fl oods.  

  3.7     Derivation of 2-D Velocity Distribution Using a 
Mathematically Sound Coordinate System 

 Although the 2-D velocity distribution as discussed has been used in a number 
of theoretical investigations, its practical usefulness is inhibited by the many 
parameters it contains. Furthermore, its basis for defi ning the coordinate system 
is less than rigorous. Therefore, according to the method of Marini et al. ( 2011 ), 
the discussion here presents a coordinate system that is mathematically sound, 
which is then applied to derive a 2-D velocity distribution that is parsimonious 
and whose parameters can be interpreted in terms of hydraulic characteristics. 
To that end, consider a 2-D domain as ( x ,  y ), where  x  represents the transverse 
direction and  y  the vertical direction (measured from the bed-upward positive). 
Thus, one can write  u   =   u ( x ,  y ), and its PDF,  f ( u ), as  f ( u ( x ,  y )), and a cumulative 
distribution function (CDF), ( F ( u )), as  F ( u ( x ,  y )). 
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  3.7.1     2-D Probability Distributions 

 Taking the partial derivatives of  F ( u ) with respect to  x  and  y , one obtains

  
∂ ( )
∂

= ( ) ∂
∂

= ( ) ∂
∂

F u
x

F u
u

u
x

f u
u
x

d
d

      (3.137a)  

  
∂ ( )
∂

= ( ) ∂
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= ( ) ∂
∂

F u
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F u
u

u
y

f u
u
y

d
d

      (3.137b)   

 Applying equation  (3.10) , equations  (3.137a)  and  (3.137b)  can be rewritten as

  
∂ ( )
∂

= ( ) ∂
∂

= + −( ) ∂
∂

F u
x

F u
u
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d
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d
d

exp λ λ1 2 1       (3.138b)   

 Equations  (3.138a)  and  (3.138b)  can be rearranged as

  exp expλ λ2 11u
u
x

F u
x

( ) ∂
∂

= −( ) ∂ ( )
∂

      (3.139a)  

  exp expλ λ2 11u
u
y

F u
y

( ) ∂
∂

= −( ) ∂ ( )
∂

      (3.139b)   

 Before proceeding further, it is convenient to denote quantity exp( λ  2  u ) by  w  and 
then calculate the partial derivative of  w  with respect to  x  and  y  as follows:

  
∂
∂

=
∂ ( )

∂
= ( ) ∂
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x
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 Substituting equations  (3.140a)  and  (3.140b)  into equations  (3.139a)  and  (3.139b) , 
the following system of equations is obtained:

  
∂
∂

= −( ) ∂ ( )
∂

w
x

F u
x

λ λ2 11exp       (3.141a)  

  
∂
∂

= −( ) ∂ ( )
∂

w
y

F u
y

λ λ2 11exp       (3.141b)   
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 Equations  (3.141a)  and  (3.141b)  can be integrated using the theory of differential 
forms (or the Leibnitz rule), which states

  
∂
∂

+ ∂
∂

= ( ) − ( )∫ w
x

x
w
y

y w x y w
x y

d d
0 0

0 0
,

( , )
, ,       (3.142)   

 Because the point with coordinates (0, 0) lies on the solution domain ’ s contour, 
 u  at this point is therefore equal to 0, and the right side of equation  (3.142)  
becomes

 w x y w w x y u w x y w x y, , , exp , exp ,( ) − ( ) = ( ) − ( ) = ( ) − ( ) = ( ) −0 0 0 12λ       (3.143)   

 The defi nite integral of the fi rst part of equation  (3.142)  can be calculated at a 
generic point of coordinates  ( , )x y     which is identifi ed by means of a polygonal 
curve that starts from the origin of axes (0, 0), passes across the point  ( , )x 0     and 
ends at  ( , )x y     (Fig.  3-30 ). The calculation yields

  
∂ ( )
∂

+ ∂ ( )
∂

= ∂ ( )
∂

− − −∫ F u
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e y
F u

x
e x
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11 1 1d d d
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yy e F u

y

0
2

1 1∫ = ( )−λ λ       (3.144)  

in which  ( , )x y     represents a point defi ned in the domain.  

  3.7.2     2-D Velocity Distribution 

 The right side of equation  (3.144)  can be equated to the right side of equation 
 (3.143)  to obtain the following expression of  w ( x ,  y ):

  w x y e F u,( ) = + ( )−1 2
1 1λ λ       (3.145)   

 Remembering that  w ( x ,  y ) is equal to exp( λ  2  u ), equation  (3.145)  can be 
rewritten as

  e e F u x yu x yλ λλ2 11 2
1( , ) ,= + ( )( )−       (3.146)  

  Figure 3-30      Polygonal curve for integration of equation  (3.142) .    

CDF of velocity 
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and then the expression of  u ( x ,  y ) can be obtained as follows:

  u x y e F u x y, ln ,( ) = + ( )( )[ ]−1
1

2
2

1 1

λ
λ λ       (3.147)   

 Integration of constraint equation  (3.6)  yields

  e u e eu
u

uλ λ λ λλ1 2 1 21

0

2
11 1− + −∫ = ⇒ = −d

max

max       (3.148)   

 Considering equation  (3.148)  and denoting  λ  2  u  max  by  G , henceforth called the 
 entropic parameter  (Chiu  1988 ), equation  (3.147)  can be rewritten as

  u x y
u

G
e F u x yG, ln ,max( ) = + −( ) ( )( )[ ]1 1       (3.149)  

in which parameter  G  can be calculated considering the constraint expressed by 
equation  (3.7) . Equation  (3.149)  is the 2-D velocity distribution in terms of  u  max , 
parameter  G , and 2-D CDF.  

  3.7.3     Mean and Maximum Velocities 

 Using the probability density function  f ( u ) defi ned by equation  (3.10) , the ratio 
between the mean velocity and the maximum velocity can be derived as an 
exponential function of  G  only. Parameter  G  is a measure of the uniformity of 
velocity distribution, and statistically speaking, the mean value of  G  is constant 
at a channel section, implying that the probability density function  f ( u / u  max ) is 
resilient and that the various fl ow patterns observable at a channel section are 
governed by the same probability distribution (Chiu  1989 ). It also shows the 
stability and reliability of equation  (3.149)  as a velocity distribution equation for 
various types of fl ows at a channel section. 

 A constraint equation used for deriving velocity distributions, for example, 
equation  (3.7) , is often referred to as the  average value of velocity , which means the 
average velocity in the geometric space ( u av  ). This average value is, however, 
different from the probabilistic value (  ū  ) defi ned by equation  (3.7) , a point often 
overlooked in the hydraulics literature. That means that for cross-sectional 
average velocity, one cannot use equation  (3.7)  but must use the following equa-
tion, which defi nes  u av  :

  u
A

u
G

e F u dAav
G

A
= + −( ) ( )[ ]∫1

1 1max ln       (3.150)  

where  A  is the total area of the two-dimensional domain. Equation  (3.150)  can 
be solved to obtain the value of  G . However, because the expression of  F ( u ) can 
be complex, the integration in equation  (3.150)  cannot be performed explicitly, 
as we will see later, and, therefore, a closed-form expression for  u av   does not seem 
easily handled. 
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 Finally, referring to a geometric domain, if  u av   and  u  max  are known, then one 
can determine fi rst the value of  G  by means of equation  (3.150) , as we explain 
later, and consequently calculate the velocity distribution by means of equation 
 (3.149) . To do so, one must defi ne the CDF in the two-dimensional case. This 
method is discussed in the next section.  

  3.7.4     Probability Distributions in Dimensionless Form 

 The cumulative probability distribution function depends on the geometry of 
the domain. When defi ning CDF, it must have certain properties: (1) It must be 
defi ned between 0 and 1; (2) it must be continuous and differentiable; and (3) its 
value on the borders must be 0, and it must have just one point at which it reaches 
the value of 1. For illustration, consider the case of a rectangular channel in which 
the distribution of velocity is symmetrical with respect to the vertical axis, as 
shown in Fig.  3-31 . The fi gure can distinguish the position of coordinates; the 
location of  u  max , which can occur on or below the water surface (depending on 
the value of  y  0 ); and the size of domain  H  (height) and  B /2 (half width). 

  It is convenient to convert this domain in a dimensionless form using the 
normalizing quantities,  B  and  H , as follows:

  ψ ξ ψ= = =y H x B y H/ / /, ,2 0 0       (3.151)  

in which one considers the ratio  u / u  max  instead of  u . A sketch of this dimen-
sionless domain is shown in Fig.  3-32 . Using the variables as defi ned and 

  Figure 3-31      Symmetrical rectangular domain.    

  Figure 3-32      Symmetrical rectangular dimensionless domain.    
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160 Entropy Theory in Hydraulic Engineering

  Figure 3-33      Three-dimensional sketch of CDF  F ( u ) ( H / B   =  0.5 and  ψ  0   =  0.8).    

through geometrical considerations explained in Appendix 3.1, one can write 
 F ( u ) as

   F u
H
B( ) = −( ) ⎛

⎝
⎞
⎠ − ⎛

⎝
⎞
⎠

⎡

⎣
⎢
⎢

− ( ) − ( )
4 1

2 2
2

2
2

2 2
20 0ξ ψ ψψ ψ

ln
ln ln

ln
ln ln ⎤⎤

⎦
⎥
⎥

      (3.152)   

 Equation  (3.152)  satisfi es all the aforementioned properties: It is continuous and 
differentiable, it varies between 0 and 1, and it reaches the value 1 when  ξ  is 
equal to 0 and  ψ  is equal to  ψ  0 . 

 The probability density function is now defi ned as the partial derivative of 
the CDF given by equation  (3.152)  with respect to both independent variables,  ξ  
and  ψ , as

  f u
F u H

B
a

H
B a a a a( ) = ∂ ( )

∂ ∂
= − −( ) −( )− − − − −

2
2 1 1 1 2 2 18 1 2 2

ξ ψ
ξ ξ ψ ψ       (3.153)  

where

  a =
− ( )
ln

ln ln
2

2 0ψ
       

 A three-dimensional sketch of  F ( u ) is shown in Fig.  3-33  for  H / B   =  0.5 and 
 ψ  0   =  0.8. The same function is represented by means of contours in Fig.  3-34 . 
Analogous sketches, related to the PDF calculated by means of equation  (3.153) , 
are in shown in Figs.  3-35  and  3-36 . 
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  Figure 3-34      Contour sketch of CDF  F ( u ) ( H / B   =  0.5 and  ψ  0   =  0.8).    

  Figure 3-35      Three-dimensional sketch of PDF  f ( u ) ( H / B   =  0.5 and  ψ  0   =  0.8).    

     The CDF  F ( u ), given by equation  (3.152) , has two parts: the fi rst one, (1  −  
 ξ  2 )  H   /   B  , expresses the dependence on  ξ , and the second part expresses the depen-
dence on  ψ . In the fi rst part, the ratio  H / B  appears as an exponent, meaning that 
when the domain is very wide and consequently the ratio  H / B  tends to 0, the 
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162 Entropy Theory in Hydraulic Engineering

  Figure 3-36      Contour sketch of PDF  f ( u ) ( H / B   =  0.5 and  ψ  0   =  0.8).    

fi rst part of  F ( u ) tends to 1 and so  F ( u ) depends only on  ψ . Therefore, when the 
domain becomes very wide, the physical intuition, that  F ( u ) must depend just 
on the  ψ  variable, is confi rmed. In this case (wide channel), equation  (3.152)  
becomes

  F u( ) = ⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠

⎡

⎣
⎢
⎢

⎤
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− ( ) − ( )
4

2 2

2
2

2 2
20 0ψ ψψ ψ

ln
ln ln

ln
ln ln

      (3.154)   

 Equation  (3.154)  allows us to estimate the velocity distribution in the one-
dimensional case when the maximum velocity occurs on or below the water 
surface. This same one-dimensional case was discussed by Chiu ( 1988 ) and Chiu 
and Hsu ( 2006 ), who proposed the following expression for  F ( u ):

  F u( ) = −⎛
⎝⎜

⎞
⎠⎟

ψ
ψ

ψ
ψ0 0

1exp       (3.155)   

 Fig.  3-37  compares  F ( u ) given by equations  (3.154)  and  F ( u ) given by equation 
 (3.155)  from Chiu ( 1988 ) for a  ψ  0  value of 0.8. This fi gure shows that both curves 
of  F ( u ) are quite comparable, suggesting that the two-dimensional theory, pre-
sented here, when applied to a one-dimensional case, represents approximately 
the formulation proposed by Chiu ( 1988 ).   

  3.7.5     Parameter  G  

 To apply the two-dimensional velocity distribution equation given by equation 
 (3.149) , parameter  G  must be evaluated by means of equation  (3.150) . Using 
equation  (3.152)  for  F ( u ), one can express equation  (3.150)  as
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 To obtain  G , equation  (3.156)  needs to be solved numerically because of its 
implicit form. This solution depends on the ratio  H / B  and the parameter  ψ  0 , as 
well as the ratio  u av  / u  max . Results of integration of equation  (3.156)  for the case 
of a wide channel ( H / B   =  0) with varying  u av  / u  max  and  ψ  0  between 0.6 and 1 are 
shown in Fig.  3-38 . In the same way, charts analogous to Fig.  3-38  for different 
values of  H / B  can be easily constructed. The entropic parameter tends to be 
invariant at a channel section, regardless of whether the fl ow is steady or unsteady 
(Chiu et al.  2005 ). Recently, by means of theoretical and experimental analysis, 
Moramarco and Singh ( 2010 ) showed that the entropic parameter is also inde-
pendent of energy or water surface slope. 

  

  3.7.6     Application to Experimental Measurements on a 
Rectangular Channel 

 Now the method as explained is applied to a real rectangular channel with mea-
sured velocity data. Bortz ( 1989 ) reported data on a rectangular channel 121.9 cm 
wide with the water level as 18.3 cm, average velocity as 71.6 cm/s, and maximum 
velocity as 78.3 cm/s. The maximum velocity occurred approximately 1 cm below 
water surface, so the value of  ψ  0  is 0.95. Data are shown in Table  3-2 . To compute 
velocity distribution in this channel, using equation  (3.152)  for  F ( u ) in equation 
 (3.150) , the following equation is obtained:

 u x y
u

G
eG

H
B, lnmax

ln
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ψ
      (3.157)   

  Figure 3-37       F ( u ) curves corresponding to equations  (3.154)  and  (3.155) .    
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164 Entropy Theory in Hydraulic Engineering

  The values of  u  max ,  H ,  B , and  ψ  0  are known, but the value of  G  needs to be 
calculated. Knowing the value of average velocity ( u av   or  u m  ), equation  (3.156)  is 
integrated numerically to yield  G   =  7.03. Then, equation  (3.157)  is applied to 
calculate the velocity for those points where measurements are available and 
results are shown in the last two columns of Table  3-2 . Results are also plotted 
in Fig.  3-39 , which shows small differences between measured data and calcu-
lated profi les with smaller values approaching the axis of symmetry. The bigger 
differences are related to boundary areas, particularly near the banks. These dif-
ferences can be explained by considering two aspects. 

  First, experimental measurements near the boundary suffer from greater 
uncertainty compared with other areas. Thus, it is likely that the measurements 
are not as precise. Second, the banks and channel bottom signifi cantly infl uence 
the velocity, and the stated 2-D velocity distribution, as well as other entropy 
methods, are based on only one constraint in the mass conservation and do not 
explicitly account for boundary effects. Nevertheless, Marini et al. ( 2011 ) showed 
that the proposed 2-D velocity distribution is remarkably accurate and is supe-
rior to the Chiu distribution.  

  3.7.7     Cumulative Probability Distribution Function in 2-D 
Arbitrary Geometry Domains 

 The CDF adequate for generic shapes must respect the same properties ex-
plained before. To that end, we need to consider the fact that whatever contour 

  Figure 3-38      The relation of  G  and  u av  / u max   for wide channel ( H / B   =  0) and varying  ψ  0 .    
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 x   
(cm)

 y   
(cm)

 u   
(cm/s)

 ξ   
( − )

 ψ   
( − )

 u / u  max   
( − )

 u m    
(cm/s)

 u m  / u  max   
( − )

0.00 0.63 56.4 0.000 0.034 0.720 51.5 0.658

0.00 0.95 57.3 0.000 0.052 0.732 55.6 0.709

0.00 1.58 59.1 0.000 0.086 0.755 60.6 0.774

0.00 1.89 63.1 0.000 0.103 0.805 62.4 0.796

0.00 3.15 64.6 0.000 0.172 0.825 67.2 0.858

0.00 3.78 67.1 0.000 0.207 0.856 68.8 0.879

0.00 6.94 72.2 0.000 0.379 0.922 73.9 0.943

0.00 11.04 74.1 0.000 0.603 0.946 76.9 0.982

0.00 14.50 76.2 0.000 0.793 0.973 78.1 0.997

0.00 15.13 76.8 0.000 0.828 0.981 78.2 0.998

0.00 15.77 77.4 0.000 0.862 0.988 78.3 0.999

0.00 16.40 78.3 0.000 0.897 1.000 78.3 1.000

0.00 17.34 78.3 0.000 0.948 1.000 78.3 1.000

0.00 18.29 78.3 0.000 1.000 1.000 78.3 1.000

19.72 0.95 54.6 0.324 0.052 0.696 55.4 0.707

19.72 2.84 63.1 0.324 0.155 0.805 66.0 0.843

19.72 6.62 69.8 0.324 0.362 0.891 73.3 0.936

19.72 14.50 72.2 0.324 0.793 0.922 77.9 0.994

19.72 16.40 74.1 0.324 0.897 0.946 78.1 0.997

19.72 18.29 75.6 0.324 1.000 0.965 78.1 0.997

39.90 0.95 50.0 0.655 0.052 0.638 54.6 0.697

39.90 2.84 61.6 0.655 0.155 0.786 65.3 0.833

39.90 6.62 66.1 0.655 0.362 0.844 72.6 0.927

39.90 14.50 67.7 0.655 0.793 0.864 77.1 0.985

39.90 18.29 67.7 0.655 1.000 0.864 77.4 0.988

51.30 0.95 46.9 0.842 0.052 0.599 53.5 0.683

51.30 2.84 56.4 0.842 0.155 0.720 64.1 0.819

51.30 6.62 62.5 0.842 0.362 0.798 71.5 0.912

51.30 14.50 62.5 0.842 0.793 0.798 76.0 0.970

 Table 3-2      Velocity measurements (based on Bortz  1989 ) and calculated velocities.  

of arbitrary geometry domain we see is defi ned by a simple equation (e.g., poly-
nomial). Such a domain is shown in Fig.  3-40 , which can distinguish the position 
of coordinates ( x  0 ,  y  0 ), the location of  u  max  that can occur on or below the water 
surface (depending on the value of  y  0 ), the size of domain  H  (height) and  B  (top 
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  Figure 3-39      Comparison between velocity data by Bortz ( 1989 ) and velocity profi les 
calculated using the 2-D velocity distribution.    

  Figure 3-40      Arbitrary geometry domain.    

c03.indd   166c03.indd   166 5/21/2014   2:12:56 PM5/21/2014   2:12:56 PM



Two-Dimensional Velocity Distributions  167

water-surface width), and the contour with equation  f ( x ). It is convenient to 
convert this domain in a dimensionless form using the normalizing quantities 
as follows:

   ξ ψ= =x B y H/ /; ;     

    ξ ψ0 0 0 0= =x B y H/ /;       (3.158)  

in which one considers the ratio  u / u  max  instead of  u . A sketch of this dimension-
less domain is shown in Fig.  3-41 . 

  Using the variables as defi ned and through geometrical considerations 
explained in Appendix 3.1, one can write  F ( u ) as

 F u
f fa a m f

( )
( ) ( )

ln
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      (3.159)  

where

  a m
H
B

Ar
A

= − = ⎛
⎝

⎞
⎠

ln
ln

;
2

0

13

ξ
      (3.160)   

 Equation  (3.159)  satisfi es all the aforementioned properties: It is continuous and 
differentiable, it varies between 0 and 1, and it reaches the value 1 when  ξ  is 
equal to  ξ  0  and  ψ  is equal to  ψ  0  at the same time and null value when  ψ  is equal 
to  f ( ξ ), for any  ξ . 

 The CDF  F ( u ), given by equation  (3.159) , has two parts: The fi rst one expresses 
the dependence on  ξ , and the second part expresses the dependence on  ψ . In the 
fi rst part, exponent  m , which is equal to  H / B  in the rectangular domain CDF, is 
modifi ed here to take into account differences in geometry. Exponent  m  is equal 
to  H / B ·( Ar / A ) 13  where  Ar / A  is the ratio between two areas:  Ar  is the area (equal 
to  H   ×   B ) of the circumscribed rectangle of the considered domain, and  A  is the 
area of the considered domain. This parameter can be derived by fi tting some 

  Figure 3-41      Arbitrary geometry dimensionless domain.    
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168 Entropy Theory in Hydraulic Engineering

experimental data (Marini et al.  2013 ). A more detailed study should be carried 
out to fi nd the physical meaning underlying this equation. Parameter  m  appears 
as a form factor because if the domain tends to a rectangle,  m  tends to  H / B  as 
well as in a rectangle domain. Therefore, when the domain becomes a rectangle, 
 f ( ξ ) is null and equation  (3.159)  becomes

  F u a a m f
( )

ln
ln ln ( )

ln
ln ln

= −[ ]{ } ⎛
⎝

⎞
⎠ − ⎛

⎝
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− − −
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2 2
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2
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2 2
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⎢
⎢

⎤

⎦
⎥
⎥

⎧
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⎩⎪

⎫
⎬
⎪

⎭⎪

f ( )ξ
      (3.161)  

where

  a m
H
B

= =ln
ln

;
2

0ξ
      (3.162)   

 Equation  (3.161)  represents the CDF for a rectangular domain where the velocity 
distribution is not symmetrical with respect to the vertical axis; the maximum 
velocity is reached at the  ξ  0 ,  ψ  0  coordinate point. The case of  ξ  0  equal to 0.5 means 
that the distribution is symmetric with respect to the vertical axis, so equation 
 (3.159)  becomes equal to equation  (3.152) , when we keep in mind the change in 
the system of coordinates that is in the middle of the rectangular domain. 

 Equation  (3.159)  is fl exible because it is valid for any shape; for its applica-
tion, just the equation of the contour is necessary. Precisely for this general valid-
ity and for strict dependence on  f ( ξ ), it is not possible to produce generalized 
diagrams useful to evaluate the CDF in a generic channel as well as Fig.  3-42 . 
For this reason, the case of a domain defi ned by a polynomial equation is 
explained in the next section. 

  Figure 3-42      CDF of domain with contour equation  (3.163)  and  m   =  2,  ξ  0   =  0.6, 
 ψ  0   =  0.8.    
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Two-Dimensional Velocity Distributions  169

  Let it be assumed that the domain contour is defi ned in dimensionless coor-
dinates, the value of exponent  m  is 2, and the velocity reaches the maximum for 
 ξ  0   =  0.6 and  ψ  0   =  0.8:

 f ( ) . . . . . .ξ ξ ξ ξ ξ ξ ξ= − + − + − −21 604 110 658 159 492 83 797 9 503 3 8566 5 4 3 2 ++ 1       (3.163)   

 The CDF derived by equation  (3.159)  for this case is plotted in Fig.  3-42 . 
 To obtain the velocity distribution, for the given CDF, defi nition of entropy 

parameter  G  is necessary. This point is explained in the next section. 

  Parameter  G  for generic geometry domain 

 It is assumed that the contour domain has equation  (3.163) . Using equation 
 (3.159)  for  F ( u ), one can specify equation  (3.156)  as
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  (3.164)   

 To obtain  G , equation  (3.164)  needs to be solved numerically because of its 
implicit form. This solution depends on exponent  m , contour equation  f ( ξ ), 
parameters  ξ  0 ,  ψ  0 , and ratio  u av  / u  max . Results of integration of equation  (3.164)  
with varying  u av  / u  max  and contour equation  (3.162) ,  ξ  0   =  0.6,  ψ  0   =  0.8,  m   =  2, are 
shown in Fig.  3-43 . In the same way, charts analogous to Fig.  3-43  for different 
contour equations, as well as values of parameters  m ,  ξ  0 , and  ψ  0 , can be easily 
constructed. The velocity distribution can be derived if the  G  value is known 
using equation  (3.149)  where  F ( u ) is defi ned by equation  (3.159) .    

  3.7.8     Application to Experimental Measurements on River 
Cross Sections 

 Now the 2-D method is applied to the velocity measurements in the cross section 
at Ponte Nuovo in the Upper Tiber River basin, Italy. Here the top water surface 
is equal to 58.3 m, maximum depth is equal to 6.71 m, average velocity is equal 
to 1.706 m/s, and the maximum velocity is equal to 2.597 m/s, which occurs 
approximately at the point with coordinate  ξ  0   =  0.54 and  ψ  0   =  0.70. The cross-
sectional contour was measured and data are shown in Table  3-3 . It was inter-
polated by means of a polynomial equation expressed as

  
f ( ) . . . . .

.

ξ ξ ξ ξ ξ ξ= − − + − +
−

1 147 0 543 98 044 275 672 321 058

197 524

8 7 6 5 4

ξξ ξ3 268 589 12 805 1+ − +. .
      (3.165)   
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170 Entropy Theory in Hydraulic Engineering

  Figure 3-43      The relation of  G  and  u av  / u max   for channel with contour equation  (3.162) , 
 m   =  2,  ξ  0   =  0.6,  ψ  0   =  0.8.    
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 x   
(m)

 y   
(m)

 ξ   
( − )

 Ψ   
( − )

0.00 6.71 0.000 1.000

8.35 1.60 0.143 0.239

10.43 0.00 0.179 0.000

14.59 0.13 0.250 0.019

18.75 0.07 0.322 0.010

31.23 0.07 0.536 0.010

37.43 0.53 0.642 0.079

42.67 0.50 0.732 0.075

47.87 0.70 0.821 0.104

49.95 0.95 0.857 0.142

58.30 6.71 1.000 1.000

 Table 3-3      Real contour coordinates.  
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  Figure 3-44      Comparison between measured contour and estimated one by means of a 
polynomial equation. The sketch is in dimensionless coordinates.    
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  Fig.  3-44  shows the real contour and interpolated contour. Nine velocity profi les 
were measured at different verticals. Data are shown in Table  3-4 . To compute 
the velocity distribution in this river cross section, we have to apply equation 
 (3.149) , in which  F ( u ) is expressed by equation  (3.159) . All parameters are known, 
except  G , which is calculated by integrating equation  (3.164)  knowing the func-
tion  f ( ξ ) expressed by equation  (3.165)  and knowing the value of  u av  . The result 
is  G   =  2.47. Calculated velocity is shown in the last two columns of Table  3-4 . 
Results are also plotted in Fig.  3-45 , which shows small differences between data 
and calculated profi les with smaller values approaching the middle of the cross 
section. Comments about these differences are the same as for the rectangular 
channel.      

  3.8     Trapezoidal Domain 

 Many natural channels approximately resemble a trapezoidal shape. It is, there-
fore, no surprise that a trapezoidal cross section is commonly used in human-
made channels. Hence, it is useful to defi ne an appropriate CDF for the case of 
trapezoidal sections. It may be noted that the rectangular domain is a special 
case of the trapezoidal domain, where sides are vertical. The CDF for the trap-
ezoidal domain, sketched in Fig.  3-46 , can be defi ned from equation  (3.161)  by 
simple geometrical considerations and must have the same properties as stated 
earlier. In assessing the CDF, the part of equation  (3.161)  that depends on  ψ  
remains unchanged, and the part that depends on  ξ  should be modifi ed because 
the geometry is different. The abscissa  ξ  for each value of  ψ  must be reduced by 
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 x   
(m)

 y   
(m)

 u   
(m/s)

 ξ   
( − )

 ψ   
( − )

 u / u  max   
( − )

 u m    
(m/s)

 u m  / u  max   
( − )

8.35 6.71 0.72 0.143 1.000 0.276 0.932 0.359

8.35 6.65 0.72 0.143 0.991 0.276 0.934 0.360

8.35 6.45 0.67 0.143 0.961 0.257 0.942 0.363

8.35 5.65 0.74 0.143 0.842 0.286 0.965 0.372

8.35 4.15 0.86 0.143 0.618 0.331 0.971 0.374

8.35 3.15 0.81 0.143 0.469 0.311 0.935 0.360

8.35 2.15 0.73 0.143 0.320 0.281 0.840 0.323

8.35 1.75 0.39 0.143 0.261 0.149 0.768 0.296

10.43 6.71 0.68 0.179 1.000 0.263 1.241 0.478

10.43 6.65 0.68 0.179 0.991 0.263 1.244 0.479

10.43 6.45 0.97 0.179 0.961 0.375 1.253 0.482

10.43 5.65 1.09 0.179 0.842 0.420 1.281 0.493

10.43 4.65 1.50 0.179 0.693 0.576 1.292 0.498

10.43 4.15 1.36 0.179 0.618 0.524 1.287 0.496

10.43 3.65 1.55 0.179 0.544 0.595 1.273 0.490

10.43 3.15 1.81 0.179 0.469 0.698 1.248 0.481

10.43 2.65 1.46 0.179 0.395 0.563 1.209 0.466

10.43 2.15 1.11 0.179 0.320 0.427 1.150 0.443

10.43 1.65 0.96 0.179 0.246 0.368 1.061 0.408

10.43 0.65 0.55 0.179 0.097 0.211 0.626 0.241

10.43 0.35 0.72 0.179 0.052 0.276 0.000 0.000

10.43 0.15 1.01 0.179 0.022 0.388 0.000 0.000

14.59 6.71 1.56 0.250 1.000 0.601 1.745 0.672

14.59 6.65 1.56 0.250 0.991 0.601 1.749 0.673

14.59 6.45 1.44 0.250 0.961 0.556 1.760 0.678

14.59 5.68 1.81 0.250 0.846 0.698 1.791 0.690

14.59 4.72 1.91 0.250 0.703 0.736 1.806 0.696

14.59 3.74 1.98 0.250 0.557 0.762 1.788 0.689

14.59 2.74 1.85 0.250 0.408 0.710 1.723 0.664

14.59 2.04 1.60 0.250 0.304 0.614 1.634 0.629

14.59 1.72 1.70 0.250 0.256 0.653 1.574 0.606

14.59 1.22 1.26 0.250 0.182 0.486 1.442 0.555

 Table 3-4      Velocity data for Ponte Nuovo River section and velocity estimated by means 
of 2-D method.  
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Continued

Table 3-4 Velocity data for Ponte Nuovo River section and velocity estimated by means 
of 2-D method. (Continued)

 x   
(m)

 y   
(m)

 u   
(m/s)

 ξ   
( − )

 ψ   
( − )

 u / u  max   
( − )

 u m    
(m/s)

 u m  / u  max   
( − )

14.59 0.52 1.29 0.250 0.077 0.498 1.081 0.416

14.59 0.28 0.97 0.250 0.042 0.375 0.814 0.313

18.75 6.71 1.83 0.322 1.000 0.704 2.105 0.811

18.75 6.65 1.83 0.322 0.991 0.704 2.109 0.812

18.75 6.45 1.93 0.322 0.961 0.743 2.121 0.817

18.75 5.68 1.86 0.322 0.846 0.717 2.155 0.830

18.75 4.72 2.10 0.322 0.703 0.807 2.170 0.836

18.75 3.74 2.10 0.322 0.557 0.807 2.151 0.828

18.75 2.74 2.13 0.322 0.408 0.820 2.083 0.802

18.75 1.74 1.86 0.322 0.259 0.717 1.930 0.743

18.75 0.74 1.80 0.322 0.110 0.691 1.566 0.603

18.75 0.42 1.39 0.322 0.063 0.537 1.313 0.506

18.75 0.22 1.23 0.322 0.033 0.472 1.037 0.399

31.23 6.71 2.53 0.536 1.000 0.974 2.529 0.974

31.23 6.65 2.53 0.536 0.991 0.974 2.533 0.975

31.23 6.45 2.53 0.536 0.961 0.974 2.545 0.980

31.23 5.68 2.50 0.536 0.846 0.961 2.580 0.994

31.23 4.72 2.60 0.536 0.703 1.000 2.597 1.000

31.23 3.74 2.55 0.536 0.557 0.981 2.577 0.992

31.23 2.77 2.56 0.536 0.413 0.987 2.504 0.964

31.23 1.77 2.53 0.536 0.264 0.974 2.331 0.897

31.23 0.72 1.83 0.536 0.107 0.704 1.803 0.694

31.23 0.42 1.23 0.536 0.063 0.472 1.313 0.505

31.23 0.22 1.28 0.536 0.033 0.492 0.000 0.000

37.43 6.71 2.25 0.642 1.000 0.865 2.424 0.933

37.43 6.65 2.25 0.642 0.991 0.865 2.427 0.935

37.43 6.45 2.20 0.642 0.961 0.846 2.439 0.939

37.43 5.65 2.36 0.642 0.842 0.910 2.475 0.953

37.43 4.68 2.45 0.642 0.697 0.942 2.490 0.959

37.43 3.72 2.38 0.642 0.554 0.916 2.469 0.951

37.43 2.72 2.33 0.642 0.405 0.897 2.390 0.920

37.43 1.72 2.05 0.642 0.256 0.788 2.196 0.846
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Table 3-4 Velocity data for Ponte Nuovo River section and velocity estimated by means 
of 2-D method. (Continued)

 x   
(m)

 y   
(m)

 u   
(m/s)

 ξ   
( − )

 ψ   
( − )

 u / u  max   
( − )

 u m    
(m/s)

 u m  / u  max   
( − )

37.43 0.88 1.61 0.642 0.131 0.621 1.746 0.672

37.43 0.68 1.39 0.642 0.101 0.537 1.479 0.569

42.67 6.71 1.86 0.732 1.000 0.717 2.144 0.825

42.67 6.65 1.86 0.732 0.991 0.717 2.147 0.827

42.67 6.45 1.75 0.732 0.961 0.672 2.159 0.831

42.67 5.65 1.91 0.732 0.842 0.736 2.193 0.845

42.67 4.68 2.10 0.732 0.697 0.807 2.208 0.850

42.67 3.72 2.10 0.732 0.554 0.807 2.187 0.842

42.67 2.68 1.70 0.732 0.399 0.653 2.105 0.810

42.67 1.68 1.68 0.732 0.250 0.646 1.905 0.734

42.67 0.85 1.26 0.732 0.127 0.486 1.421 0.547

42.67 0.65 1.14 0.732 0.097 0.440 1.086 0.418

47.87 6.71 0.99 0.821 1.000 0.381 1.626 0.626

47.87 6.65 0.99 0.821 0.991 0.381 1.629 0.627

47.87 6.45 1.29 0.821 0.961 0.498 1.639 0.631

47.87 5.65 1.23 0.821 0.842 0.472 1.670 0.643

47.87 4.65 1.71 0.821 0.693 0.659 1.684 0.648

47.87 3.65 1.70 0.821 0.544 0.653 1.662 0.640

47.87 2.65 1.56 0.821 0.395 0.601 1.582 0.609

47.87 1.65 1.14 0.821 0.246 0.440 1.378 0.531

47.87 1.05 1.01 0.821 0.156 0.388 1.055 0.406

47.87 0.85 0.72 0.821 0.127 0.276 0.801 0.308

49.95 6.71 0.84 0.857 1.000 0.322 1.326 0.511

49.95 6.65 0.84 0.857 0.991 0.322 1.329 0.512

49.95 6.45 0.96 0.857 0.961 0.370 1.338 0.515

49.95 5.65 1.23 0.857 0.842 0.472 1.367 0.526

49.95 4.65 1.49 0.857 0.693 0.574 1.379 0.531

49.95 3.65 1.35 0.857 0.544 0.521 1.358 0.523

49.95 2.65 1.30 0.857 0.395 0.502 1.278 0.492

49.95 2.15 0.80 0.857 0.320 0.306 1.197 0.461

49.95 1.65 0.64 0.857 0.246 0.247 1.051 0.405

49.95 1.30 0.54 0.857 0.194 0.208 0.851 0.328

49.95 1.10 0.44 0.857 0.164 0.169 0.610 0.235
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  Figure 3-45      Comparison between measured velocity at Ponte Nuovo and velocity 
profi les calculated by the 2-D method.    

the horizontal distance between the origin and the left side of the trapeze. In this 
way,  ξ  starts from the boundary of the cross section at every height. This distance 
is equal to (1  −   ψ )· d ·tan  α  1 , where  d  is the ratio  H / B . Furthermore, since the width 
of the channel is not constant with  ψ , the abscissa reduced by that distance 
must be divided by the width itself. The width depends on  ψ , and it is equal to 
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  Figure 3-46      Trapezoidal domains. Velocities are dimensionless with respect to 
maximum velocity.    

1  −  (1  −   ψ )· d ·(tan  α  1   +  tan  α  2 ). Parameter  a , which depends again on  ξ  0 , must be 
transformed following the same guidelines. Also the exponent of the part that 
depends on  ξ  needs to account for the differences in geometry. We call this expo-
nent  m , and we assume it to equal  H / B ·( Ar / A ) 19 , where  Ar / A  is the ratio between 
the area of the circumscribing rectangle ( Ar   =   H · B ) and the area of the cross 
section  A . Marini et al. ( 2013 ) obtained the value of the exponent by fi tting the 
data. Accordingly, the CDF is
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      (3.166)   

 Equation  (3.166)  can be used also for a rectangular section ( α  1   =   α  2   =  0 and  Ar / A   =  
1), in which case it coincides with equation  (3.161) .  

  Appendix 3.1 

 In the case where we consider a rectangular channel (where the  y  axis is the axis 
of symmetry), the cumulative probability distribution  F ( u ( x ,  y )) to be searched 
must have the following properties: (1) It must be defi ned between 0 and 1; (2) 
it must be continuous and differentiable; and (3) its value on the borders must 
be 0, and it must have just one point along the  y -axis (with the 0,  y  0  coordinate) 
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at which it reaches the value of 1. Many functions can fi t these conditions. A 
good CDF should be addressed following simple steps, and a simple equation 
should be derived, as Chiu ( 1987, 1989 ) suggested. A step-by-step explanation 
as to how equation  (3.152)  can be obtained using the system of coordinates ( ξ , 
 ψ ) is given. The equation must depend on  ξ  and  ψ , and the simplest way to do 
this is to assume a fi rst part depending on  ξ  and a second part on  ψ ; each part 
must vary from 0 to 1 in order for their product to yield 0 on the border and 1 
in the point with the 0,  ψ  0  coordinate. 

 The fi rst part has to depend only on  ξ  and must be symmetrical on the  ψ  
axis, and the derivative has to be null. The simplest equation that satisfi es these 
properties is the parabolic equation, which is written as follows:

  1 2− ξ       (3.167)   

 If the rectangular domain is very wide ( H   <  <   B ),  F  should not depend on  ξ , but 
only on  ψ  and, hence, the fi rst part should be equal to 1. This can be done by 
considering an exponent equal to  H / B  to obtain

  1 2−( )ξ H B       (3.168)   

 Equation  (3.168)  represents the fi rst part of  F ( u ) that depends only on  ξ . 
 The second part of  F ( u ) must depend only on  ψ , the value for  ψ   =  0 must be 

0, and for  ψ   =   ψ  0  must be 1. Starting from the simple case of  ψ  0   =  1, we can use 
the parabola equation written in this form:

  a a1
2

2ψ ψ+       (3.169)  

where coeffi cients  a  1  and  a  2  can be determined by imposing that for  ψ   =   ψ  0   =  1 
the equation is equal to 1 and the derivative is equal to 0. Equation  (3.169)  can 
be rewritten as follows:

  2 2ψ ψ−       (3.170)  

or in analogous form as

  4
2 2

2ψ ψ− ⎛
⎝

⎞
⎠

⎡
⎣
⎢

⎤
⎦
⎥       (3.171)   

 To consider that  ψ  0  can be less than 1, equation  (3.171)  can be modifi ed, introduc-
ing the same exponent  a  for each term (the linear and quadratic one), as

  4
2 2

2ψ ψa a

− ⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

⋅

      (3.172)  

where  a  must be a function of  ψ  0 . Considering that  a ( ψ  0 ) must have the following 
properties—it must be less than 1 for  ψ  0  varying between 0 and 1; it must become 
equal to 1 when  ψ  0   =  1; and when  ψ  is equal to  ψ  0 , equation  (3.172)  must yield 
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1—we can determine the equation of  a ( ψ  0 ) solving the following equation  (3.173)  
obtained from the third property of  a :

  
ψ ψ0 0

2

2 2
1
4

a a

− ⎛
⎝

⎞
⎠

⎡
⎣
⎢

⎤
⎦
⎥ =

⋅

      (3.173)   

 The solution of equation  (3.173)  gives the following expression for  a :

  a =
−

ln( )
ln( ) ln( )

2
2 0ψ

      (3.174)   

 Consequently, the second part, which depends on  ψ , has the following 
equation:

  4
2 2

2
2

2 2
20 0ψ ψψ ψ

ln
ln ln

ln
ln ln

( )
( )− ( )

( )
( )− ( )

− ⎛
⎝

⎞
⎠

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      (3.175)   

 The product of equations  (3.168)  and  (3.175)  gives equation  (3.152) .  

  Appendix 3.2 

 The generic domain CDF can be defi ned from the CDF equation derived for 
rectangular symmetric domain, which is the same as equation  (3.152)  but with 
another system of coordinates for abscissa:

  F u
H
B( ) = −( ) ⋅ ⋅ ⎛

⎝
⎞
⎠ − ⎛

⎝
⎞
⎠

⎡

⎣

− ( ) − ( )
1 4

2 2
2

2
2

2 2
20 0κ ψ ψψ ψ

ln
ln ln

ln
ln ln⎢⎢

⎢

⎤

⎦
⎥
⎥

      (3.176)  

where  κ  is the  ξ  coordinate in a system of coordinates on the axis of symmetry 
and the other symbols have the same meaning as explained in the text. In this 
domain, there is no axis of symmetry; therefore, putting the system of coordi-
nates in the corner, as shown in Fig.  3-30 , is better. Changing the system of 
coordinates and rescaling the domain to have the width equal to 1, the fi rst part 
of equation  (3.176)  becomes

  1 42 2−( ) → ⋅ −( )[ ]κ ξ ξ
H
B

H
B       (3.177)   

 Equation  (3.177)  must give 1 if  ξ   =   ξ  0 , where  ξ  0  can be equal to or less than 1, so 
the equation can be modifi ed by introducing for each term the same exponent  a , 
which is a function of  ξ  0  to obtain 4( ξ   a    −   ξ  2   a  ). 

 Considering that  a ( ξ  0 ) must have the following properties—it must be less 
than 1 for  ξ  0  varying between 0 and 1; it must become equal to 1 when  ξ  0   =  1; 
and when  ξ  is equal to  ξ  0 , it must yield 1—we can determine the equation of  a ( ξ  0 ) 
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by applying the third property of  a : 4( ξ   a    −   ξ  2   a  )  =  1. The solution gives the expres-
sion for  a  that can be substituted in equation  (3.177)  to obtain

  4
2

2
2

0 0⋅ −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ξ ξξ ξ

-
ln

ln
-

ln
ln

H
B

      (3.178)   

 Exponent  H / B  is a form factor that allows us to take into account the variability 
of the shape of a rectangular domain; to consider the variability of the river shape 
equation  (3.178)  needs a form factor that in case of rectangular domain again 
becomes  H / B . By fi tting velocity data, Marini et al. ( 2011 ) introduced a form 
factor that modifi es equation  (3.178)  as

  4
2

2
2

0 0

13

⋅ −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

ξ ξξ ξ
-

ln
ln

-
ln

ln

H
B

Ar
A

      (3.179)  

where  Ar / A  is the ratio between two areas:  Ar  is the area (equal to  H   ×   B ) of the 
circumscribed rectangle of the considered domain, and  A  is the area of consid-
ered domain. When this equation is applied to the rectangular domain,  Ar / A  is 
equal to 1 and equation  (3.179)  becomes equation  (3.178) . 

 The second part of equation  (3.176) , which depends on  ψ , has to be changed 
because the bottom of the domain is not a straight line, as in the rectangular 
domain but follows a curve defi ned by equation  f ( ξ ). Considering this aspect 
equation  (3.179)  becomes

  

4
2 2

4
2

2
2

2 2
20 0ψ ψ

ψ ξ

ψ ψ⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠
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⎣
⎢
⎢

⎤

⎦
⎥
⎥
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−
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ln ln

ln
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⎞
⎠⎟ − −⎛

⎝⎜
⎞
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⎡

⎣

⎢
⎢

− − ( ) ( ) − − ( )
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2
2 0

0

2

2
2

2
ψ ξ

ψ ξ ψ ξ
f

f f

⎢⎢

⎤

⎦

⎥
⎥
⎥

      (3.180)   

 The product of equations  (3.179)  and  (3.180)  gives equation  (3.159) .  

  Questions 

   Q3.1      For a set of velocity observations given in Table  3-1 , verify the hypothesis 
expressed by equation  (3.3) . For a wide channel ( r   −   r  0 )/( r  max   −   r  0 ) can be 
approximated as  y / D . How good is this approximation?  

  Q3.2      For velocity data in Q3.1, compute the PDF and CDF of velocity and plot 
them.  
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  Q3.3      For the data in Q3.1, compute the Lagrange multipliers  λ  1  and  λ  2 . Plot  λ  1  
as a function of  λ  2  for various values of  u  max . Discuss the plot.  

  Q3.4      Compute  λ  2  as a function of  u m  , plot it, and discuss the plot.  

  Q3.5      Compute  λ  1  as a function of  λ  2  for various values of  u  max , plot it, and 
discuss the plot.  

  Q3.6      Compute entropy as a function of  λ  2  for various values of  u  max , plot them, 
and discuss the plot.  

  Q3.7      Compute the PDF of velocity as a function of  λ  2  for various values of  u  max  
and  u m  , plot them, and discuss the plot.  

  Q3.8      Compute the CDF of velocity as a function of  λ  2  for various values of 
 u  max , plot them, and discuss the plot.  

  Q3.9      Compute the value of  M  for the data in Q3.1.  

  Q3.10      Compute the two-dimensional velocity distribution using the entropy-
based equation and compare it with observations in Q3.1. How good is 
the entropy-based equation?  

  Q3.11      Compute different measures of uniformity of the velocity distribution 
for the data in Q3.1. Based on these measures, comment on the velocity 
distribution.  

  Q3.12      Compute entropy of the velocity for data in Q3.1.  

  Q3.13      Construct isovels for the data in Q3.1. Also construct isovels using the 
entropy-based velocity equation and compare them.  

  Q3.14      Compute the location of maximum velocity and compare it with the 
observed location for the data in Q3.1.    
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    Chapter 4 

  Power Law and 
Logarithmic Velocity 

Distributions  

       The preceding two chapters present one-dimensional and two-dimensional 
velocity distributions in open-channel fl ow based on the entropy theory. This 
discussion is now extended to the power law and the Prandtl–von Karman uni-
versal (or logarithmic) velocity distribution equations that have been commonly 
used in hydraulic engineering. Recall that the power law velocity distribution 
can be expressed as

  u
u

y
DD

n

= ⎛
⎝⎜

⎞
⎠⎟

1/

      (4.1)  

and the Prandtl–von Karman universal velocity distribution as

  u
u
k

y
y

=
⎛
⎝⎜

⎞
⎠⎟

*
ln

0

      (4.2)  

where  u  is the velocity (m/s),  y  is the distance from the bed (m),  D  is the fl ow 
depth (m),  k  is von Karman ’ s universal constant,  u * is the shear velocity,  y  0  is a 
parameter—a very small value of  y  at which the velocity becomes almost zero, 
and (1/ n ) is the exponent. The value of  k  is equal to 0.42 for clear water, and it 
can be as low as 0.2 for sediment-laden water (Daugherty and Franzini  1977 ). 
There is some evidence that  k  may vary over a range of values as a function of 
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the Reynolds number. The term  y  0  is of the same order of magnitude as the 
viscous sublayer thickness, and its value depends on whether the boundary is 
hydraulically rough or smooth. For smooth boundary, it solely depends on kine-
matic viscosity and shear velocity, and for rough boundary, it depends on rough-
ness height. 

 The power law velocity distribution expresses the ratio of local to maximum 
velocity as a function of position where  n  is a constant on the order of 6 to 10. 
The value of  n  changes, to some extent, with the Reynolds number of fl ow. In 
many cases, the power law has been found to adequately represent the velocity 
distribution over smooth and rough surfaces. The universal velocity distribution 
is also referred to as log law velocity distribution and has been found to represent 
the velocity distribution within a turbulent boundary layer. 

  4.1     Preliminaries 

 The velocity of fl ow in an open channel varies along a vertical from zero at the 
bed to a maximum value, which may or may not occur at the water surface. At 
any point in space or in any cross section, the fl ow velocity varies with time, but 
this time variation does not follow a particular pattern and depends on the water 
and sediment infl ux. A number of investigators (Chiu  1987 ; Barbé et al.  1991 ; Xia 
 1997 ; Araújo and Chaudhry  1998 ; Choo  2000 ; Chen and Chiu  2004 ) have assumed 
that the time-averaged velocity at any point along a vertical is a random variable 
and, therefore, has a probability distribution. This same assumption is used in 
this chapter. The velocity values along the vertical are values of the random vari-
able: velocity. 

  4.1.1     Hypothesis on Cumulative Probability Distribution 
of Velocity 

 Beginning with Chiu ( 1987 ) and his associates (Chiu and Murray  1992 ; Chiu and 
Said  1995 ; Chiu and Tung  2002 ; Chiu and Hsu  2006 ), Barbé et al. ( 1991 ), Xia 
( 1997 ), Araújo and Chaudhry ( 1998 ), and Choo ( 2000 ), among others assumed 
that all values of fl ow depth  y  measured from the bed to any point between 0 
and  D  were equally likely to occur, where  D  is the fl ow depth. In reality, this is 
not highly unlikely, because at different times different values of fl ow depth do 
occur. According to these investigators, the cumulative probability distribution 
of velocity can be expressed as the ratio of fl ow depth to the point where velocity 
is to be considered and the depth up to the water surface. Then the probability 
of velocity being equal to or less than  u  is  y / D ; at any depth (measured from the 
bed) less than  y , the velocity is less than, say,  u ; thus the cumulative distribution 
function (CDF) of velocity,  F ( u )  =   P (velocity  ≤  a given value of  u ),  P   =  probability, 
can be expressed as

  F u
y
D

( ) =       (4.3a)   
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  F ( u ) denotes the CDF of velocity,  u   =  velocity (m/s),  y   =  distance from the bed, 
and  D   =  fl ow depth. The probability density function (PDF) of  u  is obtained by 
differentiating equation  (4.3a)  with respect to  u  as

  f u
dF u

du D
dy
du

or f u D
du
dy

( )
( )

( )= = = ⎛
⎝⎜

⎞
⎠⎟

−
1

1

      (4.3b)   

 The term  f ( u ) du   =   F ( u   +   du )  −   F ( u ) denotes the probability of velocity being 
between  u  and  u   +   du . As equation  (4.3b)  constitutes the fundamental hypothesis 
used by the cited investigators, as well as used in this chapter for deriving veloc-
ity distributions that use the entropy theory, it will be useful to evaluate the 
validity of this hypothesis. This hypothesis (i.e., the relation between the cumula-
tive probability  F ( u ) and the ratio  y / D ) has been tested for a number of natural 
rivers and found to be approximately true, as was shown in Chapter 2.  

  4.1.2     Shannon Entropy 

 The objective here is to determine the PDF of  u ,  f ( u ). This determination is accom-
plished by maximizing the Shannon entropy (Shannon  1948 ) of velocity,  H ( u ), 
expressed as

  H u f u f u du
uD

( ) ( )ln ( )= −∫0
      (4.4)   

 Equation  (4.4)  expresses a measure of uncertainty about  f ( u ) or the average infor-
mation content of sampled  u . Maximizing  H ( u ) is equivalent to maximizing  f ( u )
ln  f ( u ). To determine an  f ( u ) that is the least biased toward what is not known 
about velocity, the principle of maximum entropy (POME), developed by Jaynes 
( 1957a, 1957b, 1982 ), is invoked, which requires specifi cation of certain informa-
tion, called constraints, on velocity. According to POME, the most appropriate 
probability distribution is the one that has the maximum entropy or uncertainty, 
subject to these constraints. 

 The fl ow in a channel satisfi es the laws of conservation of mass, momentum, 
and energy, and these laws can be used to defi ne constraints that the velocity 
distribution must obey. For deriving the power law and logarithmic velocity 
distributions, only the law of mass conservation is found to be suffi cient.   

  4.2     One-Dimensional Power Law 
Velocity Distribution 

 The power law velocity distribution has an exponent that is usually determined 
by calibration, and its determination from physically measurable quantities has 
been elusive. 
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  4.2.1     Specifi cation of Constraints 

 For the power law velocity distribution, according to Singh ( 1998 ), the fi rst con-
straint to be specifi ed is the total probability law, which must always be satisfi ed. 
Therefore, the fi rst constraint,  C  1 , on the PDF of velocity can be written as

  C f u du
uD

1

0

1= =∫ ( )       (4.5a)   

 The second constraint is based on mass conservation:

  C uf u du u
uD

2

0

= =∫ ln ( ) ln       (4.5b)   

 Equation  (4.5b)  is the mean of the logarithmic velocity values and is the second 
constraint,  C  2 .  

  4.2.2     Maximization of Entropy 

 To obtain the least-biased probability distribution of  u ,  f ( u ), the Shannon entropy, 
given by equation  (4.4) , is maximized according to POME, subject to equations 
 (4.5a)  and  (4.5b) . To that end, the method of Lagrange multipliers is used. The 
Lagrangian function  L  then becomes

  L f u f u du f u du C u f u d
u uD D

= − − − −
⎛
⎝⎜

⎞
⎠⎟

−∫ ∫( )ln ( ) ( ) ( ) ln( ) ( )
0

0 1

0

11λ λ uu C
uD

−
⎛
⎝⎜

⎞
⎠⎟∫ 2

0

      (4.6)  

where  λ  0  and  λ  1  are the Lagrange multipliers. Recalling the Euler–Lagrange equa-
tion of calculus of variation, noting  f  as a variable and  u  as a parameter, differ-
entiating equation  (4.6)  with respect to  f , and equating the derivative to zero, one 
obtains

  
∂
∂

= = − − −L
f

f u u0 0 1ln ( ) lnλ λ       (4.7)    

  4.2.3     Probability Distribution of Velocity 

 Equation  (4.7)  leads to the entropy-based PDF of velocity as

  f u u f u u( ) exp[ ln ] ( ) exp( )= − − = − −λ λ λ λ
0 1 0

1or       (4.8)   

 The PDF of  u  contains the Lagrange multipliers  λ  0  and  λ  1 , which can be deter-
mined using equations  (4.5a)  and  (4.5b) .  

c04.indd   188c04.indd   188 5/21/2014   11:09:47 AM5/21/2014   11:09:47 AM



Power Law and Logarithmic Velocity Distributions 189

  4.2.4     Determination of Lagrange Multipliers 

 The Lagrange multipliers can be determined by substituting equation  (4.8)  in 
constraint equations  (4.5a)  and  (4.5b) . Substitution of equation  (4.8)  in equation 
 (4.4)  yields

  exp( ) ln( ) ( )ln( )λ
λ

λ λ λ
λ

0

1

1
0 1 1

1

1
1 1=

− +
= − − + + − +

− +u
uD

Dor       (4.9)  

where  u D   is the velocity at  y   =   D . Let  n   =   −  λ  1   +  1. Then substitution of equation 
 (4.9)  in equation  (4.8)  yields

  f u n
u
u

n

D
n

( ) =
−1

      (4.10)   

 Equation  (4.10)  is the PDF underlying the power law velocity distribution. For 
 n   >  1, the PDF monotonically increases from 0 to  n / u D  . The PDF, given by equa-
tion  (4.10) , was also presented by Dingman ( 1989 ) without derivation. The cumu-
lative probability distribution of velocity becomes

  F u
u
u

n

D
n

( ) =       (4.11)   

 Differentiating equation  (4.9)  with respect to  λ  1 , one obtains

  
∂
∂

= − +
− +

λ
λ λ

0

1 1

1
1

lnuD       (4.12)   

 On substituting equation  (4.8)  in equation (4.4a), one can also write

  λ λ
0

0

1= −∫ln u du
uD

      (4.13)   

 Differentiating equation  (4.13)  with respect to  λ  1 , recalling equation  (4.5b) , and 
simplifying, one obtains

  
∂
∂

= −λ
λ

0

1

lnu       (4.14)   

 Equating equation  (4.12)  to equation  (4.14)  leads to an estimate of  λ  1 :

  λ1 1
1= −
−ln lnu uD

      (4.15)   

 Therefore, the power law velocity distribution exponent  n  becomes

  n
u uD

=
−
1

ln ln
      (4.16)   

 Equation  (4.16)  shows that exponent,  n , of the power law velocity distribution 
can be estimated from the values of the logarithm of velocity at the water surface 
and the average of the logarithmic values of velocity. The higher the difference 
between these logarithm values, the lower the exponent will be.  
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  4.2.5     Velocity Distribution 

 Substituting equation  (4.10)  in equation  (4.3b)  and integrating, one obtains

  u
u

y
DD

n

= ⎛
⎝⎜

⎞
⎠⎟

1/

      (4.17)   

 Equation  (4.17)  gives the power law velocity distribution used in hydraulics. It 
has an exponent (1/ n ) that can be determined using equation  (4.16) .  

  4.2.6     Entropy of Velocity Distribution 

 The entropy (in Napiers) of the velocity distribution can be obtained by substi-
tuting equation  (4.10)  in equation  (4.4)  and using equation  (4.16) :

  H n u u u nD= − + −(ln ln ) ln ln       (4.18)   

 Equation  (4.18)  shows that for a given value of  n , the uncertainty increases as 
the difference between logarithm of the maximum velocity and the average of 
the logarithmically transformed values of the velocity increases. Taking advan-
tage of equation  (4.16) , equation  (4.18)  becomes

  H u n= + −1 ln ln       (4.19)   

 Equation  (4.19)  shows that higher average logarithmic velocity leads to higher 
uncertainty. In such situations, it is desirable that velocity is sampled more fre-
quently along the vertical.  

  4.2.7     Testing 

 One can now examine if the exponent  n  yielded by equation  (4.16)  can be a good 
approximation. To that end, eight velocity data sets are used. These data sets 
were collected by Einstein and Chien ( 1955 ). Five of these data sets (designated 
by Einstein and Chien as S-1, S-4, S-5, S-6, and S-10) are for sediment-laden fl ows, 
and three data sets (designated as C-3, C-5, and C-8) are for clear-water fl ows. 
For these eight data sets, the value of  n  is computed using equation  (4.16) , and 
the computed  n  values, respectively, are found to be 2.43, 2.03, 1.81, 2.50, 1.86, 
3.22, 3.34, and 3.20. The values of  u D   for these data sets are 6.25, 9.19, 11.42, 7.15, 
7.52, 6.58, 5.19, and 7.07 m/s. To assess the goodness of these  n  values, they are 
also obtained by fi tting the power law velocity distribution, given by equation 
 (4.17) , to these data sets by the least-squares method. The  n  values so obtained 
are, respectively, 3.46, 2.61, 2.26, 3.51, 2.67, 4.18, 5.02, and 4.18. Fig.  4-1  compares 
for a sample data set S-1 velocity values obtained by the power law with  n  com-
puted using equation  (4.16)  and  n  obtained by fi tting observed values of velocity. 
The  n  values obtained in the two ways are not the same but are comparable, 
which is remarkable. The velocity values computed in the two ways are in good 
agreement. It is observed that the  n  value obtained using equation  (4.16)  is 
underestimated. Fig.  4-2  shows the relation between  n  2  from equation  (4.16)  and 
 n  1  from calibration or fi tting, which is found to be
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  Figure 4-1      Dimensionless velocity ( u / u D  ) versus dimensionless depth ( y / D )
 for data set S-1. 

 Note: Power 1 corresponds to velocity values with exponent  n  obtained from equation 
 (4.16)  and Power 2 corresponds to velocity values obtained by fi tting. 

 Source: Data from Einstein and Chien ( 1955 ).    

  Figure 4-2      Relation between  n  obtained from equation  (4.16) ,  x   =   n  1 , and  n  obtained by 
fi tting,  y   =   n  2 , for the eight data sets of Einstein and Chien ( 1955 ).    

    n n2 11 45 0 2= −. .       (4.20)  

with an  R  2  (coeffi cient of determination) value of 0.94. This result shows that 
equation  (4.16)  provides a good fi rst approximation of  n , which can then be cor-
rected using equation  (4.20) . In this manner, fi tting or calibration can be entirely 
avoided.
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  Example 4.1          Compute and graph the probability density function underlying 
the power law velocity distribution for different values of  n  (2, 4, 6, 8, and 10).  

  Solution     Assume that  u D    =  2 m/s. Using equation  (4.10) , a plot of  f ( u ) is con-
structed for various values of  n , as shown in Fig.  4-3 . It is clear that for  n   =  2, the 
PDF of  u  becomes linear with the slope as 2/( u D  ) 2 .   

  Figure 4-3      The probability density function underlying the power law 
velocity distribution.    

   Example 4.2          Compute and graph the cumulative probability distribution under-
lying the power law velocity.  

  Solution     Using equation  (4.11) , a plot of  F ( u ) is constructed for various values 
of  n  as shown in Fig.  4-4 . It is clear that for  n   =  2, the CDF of  u  is nonlinear but 
becomes linear for  n   =  1 with the slope as 1/ u D  .   

  Figure 4-4      The cumulative probability distribution underlying power law velocity.    
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   Example 4.3          Compute entropy, plot it as a function of  n , and discuss the plot.  

  Solution     Here  ln .u = 1 469     and from equation  (4.18) ,  H u n n= + − = −1 2 469ln ln . ln    . 
A plot of  H ( u ) versus  n  is constructed, as shown in Fig.  4-5 . It is clear that as  n  
increases, the entropy of  u  decreases.   

  Figure 4-5      Entropy as a function of  n .    

  Figure 4-6      Entropy of the power law velocity distribution as a function of average 
logarithmic velocity for a given  n .    

   Example 4.4          Plot the entropy of the power law velocity distribution as a function 
of average log velocity for a given  n .  

  Solution     When entropy is plotted as a function of the average of log velocity 
for different values of  n , as shown in Fig.  4-6 , it is seen that entropy is higher for 
smaller values of  n . This phenomenon is understandable, because higher values 
of  n  make the power law velocity distribution less nonlinear and the probability 
distribution less variable.   
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194 Entropy Theory in Hydraulic Engineering

   Example 4.5          Consider a set of measurements of velocity in a river given in 
Table  4-1 . Estimate the power law exponent for this data set using equation 
 (4.16) . Using this exponent, compute the velocity using the power law distribu-
tion and compare it with the observed velocity distribution. How good is the 
match?   

  Solution     For the given data set,  D   =  0.124 ft,  u D    =  7.11 ft/s, and  ln .u = 2 469 ft/s    . 
Then from equation  (4.16) , the value of  n  is obtained as

  n
u uD

=
−

=
−

=1 1
7 11 2 469

2 031
ln ln ln . .

.    

    With this value of  n , equation  (4.17)  is used to compute velocity, which is plotted 
in Fig.  4-7 . Also plotted in the fi gure are observed velocity values.   

  Figure 4-7      Comparison of computed and observed velocity distributions.    

 y  (ft)  u  (ft/s)

0.006 2.22

0.009 2.5

0.011 2.72

0.011 2.86

0.015 2.96

0.017 3.33

0.019 3.57

0.024 3.9

0.034 4.52

 Table 4-1      Observed velocity values.  

 y  (ft)  u  (ft/s)

0.04 4.83

0.045 5.08

0.05 5.3

0.054 5.52

0.064 5.81

0.074 6.09

0.084 6.29

0.095 6.52

0.104 6.7

0.124 7.11
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  Figure 4-8      Comparison of computed and observed velocity distributions.    

   Example 4.6          For the data set in Example  4.5 , compute the power law exponent 
using equation  (4.20) . Then compute the velocity using the power law distribu-
tion and compare it with the observed velocity distribution. How good is the 
match? Is there an improvement over the velocity distribution obtained in Exam-
ple  4.5 , and if there is, then how much?  

  Solution     With the value of  n  obtained using equation  (4.20) , velocity is com-
puted and is plotted in Fig.  4-8 . Also plotted in the fi gure are computed veloci-
ties with  n  obtained from equation  (4.16)  and observed velocity values. Clearly, 
velocity values computed with  n  obtained using equation  (4.20)  are closer to ob-
served values than the computed values with  n  from equation  (4.16) .      

  4.2.8     Another Way to Estimate Power Law Velocity 
Distribution Parameters 

 The power law velocity distribution in open channels, given by equation  (4.17) , 
can be expressed as

  u ayb=       (4.21a)  

or

  u
u

y
DD

m

= ⎛
⎝⎜

⎞
⎠⎟       (4.21b)  

where  a ,  b , and  m  are parameters. The value of  m  is usually in the range of 6 to 
7 (Karim and Kennedy  1987 ). It is usually determined by the frictional resistance 
at the bed and is, in practice, not known but can be determined using the least-
squares method, if observed velocity values are available. 
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 The average and mean velocities from the power law velocity distribution 
can be written as

  u a ym
b= ( )       (4.22)  

  u a D b
max ( )=       (4.23)   

 Let  
y
D

e= −1    . Therefore,

  u
u

y
D

bm
b

max
exp( )= ⎛

⎝⎜
⎞
⎠⎟ = −       (4.24)   

 Using equation  (4.24) , we see that parameter  b  as a function of  M   =   λ  1  u  max , defi ned 
in Chapter 3, is obtained as

  b
u

u
M M

u
u

m m= − = − =ln ln ( ), ( )
max max

ψ ψ       (4.25)  

where  ψ  is some function. Then, parameter  a  is obtained as

  
a

u
y

u
y
D

D

u
De

m
b

m
b

b

m
b

= =
⎛
⎝

⎞
⎠

= −( ) ( )1       (4.26)  

which is also a function of  M . 
 It may be noted that when  u m  / u  max   =  0.8, or  M  between 7 and 8, equation 

 (4.25)  yields  b   =  1/7, a commonly used value. An increase in the value of  b  cor-
responds to a decrease in  u m  / u  max  or  M , and would lead to an increase in entropy 
 H ( u m  / u  max ).   

  4.3     One-Dimensional Prandtl–von Karman Universal 
Velocity Distribution 

 From boundary shear considerations, the classical method for describing the 
velocity profi le in wide channels entails relating velocity to fl ow depth (von 
Karman  1935 ). Thus, the well-known Prandtl–von Karman universal logarithmic 
velocity distribution can be written as

  u
u
k

y
y

= *
ln

0
      (4.27a)  
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where  k  is von Karman ’ s universal constant,  u * is the shear velocity, and  y  0  is a 
parameter. The Prandtl–von Karman velocity equation is also expressed (Daugh-
erty and Franzini  1977 ) as

  u u
u
k

y
D

D= + ⎛
⎝⎜

⎞
⎠⎟

*
ln       (4.27b)   

 Here  u gDS* =    , where  S  is the slope of the energy grade line. Equation  (4.27a)  
hypothesizes that the shear stress distribution is uniform between the channel 
bed and water surface, which is not entirely realistic. The form of equation  (4.27a)  
is similar to equation (2.70) (in Chapter 2), where both equations contain two 
parameters. It is also interesting to note that parameter  k , defi ned as  λ  1  u * in equa-
tion (2.69) (in Chapter 2), is similar to the von Karman constant. In practice, the 
values of  k  and  S  are not known. One can approximate  S  for uniform fl ow by 
the bed slope.

  Example 4.7          Velocity observations were made by Einstein and Chien ( 1955 ) in 
sediment-laden fl ow. These observations are given in Table  4-2 . Plot the Prandtl–
von Karman velocity distribution ( y / D  on the  y -axis (log-scale) and  u / u * on the 
 x -axis). One can take a very small value of  y  0  as 3.03  ×  10  − 3  ft. Also plot observed 
values on this graph. What can one conclude from this plot?   

  Solution     The Prandtl–von Karman universal velocity distribution is giv-
en by equation  (4.27a) , in which  k   =  0.214, and  y  0  is taken as 3.02  ×  10  − 3  ft, 
 u gDS* ft/s= = 0 406.    , and the channel bed slope  S   =  0.014. Calculated values 
are given in Table  4-2 . The observed velocity distribution and the Prandtl–von 
Karman velocity distribution are shown in Fig.  4-9 . It is seen that the Prandtl–von 

  Figure 4-9      Dimensionless velocity distribution ( y / D  versus  u / u *) based on measured 
data and Prandtl–von Karman velocity distribution equation. 

 Note: uobs.  =  observed velocity, and upra.  =  velocity computed using the Prandtl–von 
Karman equation.    
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 y  (ft)  y / D  u  obs  (ft/s)  u  obs ./ u *  u  pra.  (ft/s)  u  pra. / u *

0.006 0.0159 2.22 5.47 1.31 3.22

0.009 0.0225 2.5 6.15 1.96 4.84

0.011 0.0278 2.72 6.7 2.37 5.83

0.011 0.0304 2.86 7.04 2.54 6.24

0.015 0.0384 2.96 7.3 2.98 7.34

0.017 0.0437 3.33 8.2 3.22 7.94

0.019 0.0515 3.57 8.8 3.54 8.71

0.024 0.0645 3.9 9.6 3.96 9.76

0.034 0.0912 4.52 11.13 4.62 11.4

0.04 0.1045 4.83 11.9 4.88 12

0.045 0.118 5.08 12.5 5.11 12.6

0.05 0.131 5.3 13.05 5.31 13.1

0.054 0.144 5.52 13.6 5.49 13.5

0.064 0.1705 5.81 14.3 5.81 14.3

0.074 0.197 6.09 15 6.08 15

0.084 0.223 6.29 15.5 6.32 15.6

0.095 0.25 6.52 16.05 6.53 16.1

0.104 0.276 6.7 16.5 6.72 16.6

0.124 0.329 7.11 17.52 7.05 17.4

   Note:  y  (ft)  =  vertical distance measured from the channel bed for each sampled velocity;  u  obs .  =  
observed velocity (ft/s); u  pra.    =  velocity points values (ft/s) estimated by Prandtl–von Karman 
equation; and  D   =  water depth (ft) along the vertical.   

 Table 4-2      Observed and calculated values of velocity.  

Karman velocity distribution signifi cantly deviates from the observed velocity 
distribution near the bed, and, hence, it may not be suitable for representing the 
velocity profi le close to the bed.   

   Example 4.8          Plot on a rectangular graph  y / D  on the  y -axis and  u / u * on the  x -
axis using observed values in Table  4-1  near the bed, Prandtl–von Karman veloc-
ity distribution, and entropy-based velocity distribution developed in Chapter 2. 
What can one conclude from this plot?  

  Solution     Observed velocity and velocity computed by the Prandtl–von Karman 
velocity distribution and entropy-based velocity distribution derived in Chapter 
2 are plotted as shown in Fig.  4-10 . It is seen that near the bed the entropy-based 
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velocity distribution does better. In the middle portion, both the Prandtl–von 
Karman and the entropy-based velocity distribution predict the velocity well. 

  The Prandtl–von Karman velocity distribution has a value of fl ow depth ( y  0 ) 
that corresponds to the shear velocity. Determination of  y  0  has been subjective 
and is frequently determined by calibration. Other limitations of these veloc-
ity distributions have been discussed by Chiu ( 1987 ) and Singh ( 1996 ), among 
others.    

  4.3.1     Specifi cation of Constraints 

 For the Prandtl–von Karman universal velocity distribution, the constraints to 
be specifi ed are equation  (4.4)  and

  C uf u du u u
u

m

D

2

0

= = =∫ ( )       (4.28)  

where  u m   is the mean of velocity values or the cross-sectional mean velocity,  Q / A , 
where  Q  is discharge passing through a cross-sectional area  A , and  u D   is the 
velocity at  y   =   D  (fl ow depth  D  or water surface).  

  4.3.2     Probability Distribution 

 In this case, the Shannon entropy, given by equation (4.3), is maximized, subject 
to equations  (4.4)  and  (4.28) , for obtaining the least-biased probability distribu-
tion of  u ,  f ( u ). Using the method of Lagrange multipliers as before, the entropy-
based probability density function (PDF) of velocity becomes

  f u u( ) exp[ ]= − −λ λ0 1       (4.29)  

  Figure 4-10      Comparison of entropy-based velocity distribution 
(equations [2.70] and [4.27a]).    
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where  λ  0  and  λ  1  are Lagrange multipliers. The CDF of  u  is expressed as

  F u u u( ) exp( )[exp( ) exp( )]= − − − −1

1
0 1 1λ

λ λ λ*       (4.30)    

  4.3.3     Determination of Lagrange Multipliers 

 Substituting equation  (4.29)  in equation  (4.5a)  and integrating over  u *  ≤   u   ≤   u D  , 
where  u * is shear velocity, one obtains

  exp( )
exp( ) exp( )

− =
− − −

λ λ
λ λ0

1

1 1u uD*
      (4.31)   

 Equation  (4.31)  can be written as

  λ λ λ λ0 1 1 1= − − − −ln[exp( ) exp( )] lnu uD*       (4.32)   

 Differentiating equation  (4.32)  with respect to  λ  1 , one obtains

  
∂
∂

=
− − −

− − −
−λ

λ
λ λ

λ λ λ
0

1

1 1

1 1 1

1exp( ) exp( )
exp( ) exp( )

u u u
u u
D

D

* *
*

      (4.33)   

 Conversely, substitution of equation  (4.29)  in equation  (4.5a)  yields

  λ λ0

0

1= −
⎡

⎣
⎢

⎤

⎦
⎥∫ln exp( )

uD

u du       (4.34)   

 Differentiating equation  (4.34)  with respect to  λ  1 , one obtains

  
∂
∂

= −
−

−

∫

∫
λ
λ

λ

λ

0

1

0

1

0

1

u u du

u du

u

D

u

D

D

exp( )

exp( )
      (4.35)   

 Multiplying and dividing equation  (4.35)  by exp( −  λ  0 ), and recalling equation 
 (4.28) , the result is

  
∂
∂

= −
− −

− −
= −

∫

∫

λ
λ

λ λ

λ λ

0

1

0

0 1

0

0 1

u u du

u du
u

u

D

u m

D

D

exp( )

exp( )
      (4.36)   
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 Equating equation  (4.33)  to equation  (4.36) , one obtains

  u
u u u u

u u
m

D D

D

= −
− − −
− − −

1

1

1 1

1 1λ
λ λ
λ λ

exp( ) exp( )
exp( ) exp( )

* *
*

      (4.37)   

 Equation  (4.37)  expresses  λ  1  implicitly in terms of  u m  . It can also be derived as 
follows. 

 Substituting equation  (4.29)  in equation  (4.28)  and using equation  (4.31) , one 
obtains

  
λ λ λ

λ
λ

λ
λ

1
1 1

1

1

1

1b
u u u u

u u
D D

D− − + − −
−

+
−⎡

⎣⎢
⎤exp( exp( )

exp( ) exp( )
* *

*
⎦⎦⎥

= um    

    (4.38a)  

where  b  is defi ned as

  b u uD= − − −exp( ) exp( )λ λ1 1*       (4.38b)   

 Equation  (4.38a)  is the same as equation  (4.37) . Equations  (4.31)  and  (4.37)  can 
be used to determine the Lagrange parameters  λ  0  and  λ  1 . 

 The shear velocity is defi ned as  u gDS* =    , where  g  is acceleration caused 
by gravity, and  S  is channel slope. Combining equations  (4.31)  and  (4.29) , the 
result is the probability density function of velocity  u  as

  f u
u u

u
b

u
D

( )
exp( ) exp( )

exp( ) exp( )=
− − −

− = −λ
λ λ

λ λ λ1

1 1
1

1
1

*
      (4.39a)  

and then the cumulative probability distribution function can be expressed 
as

  F u
u u

u u
D

( )
exp( ) exp( )

[exp( ) exp( )]=
− − −

− − −λ
λ λ

λ λ1

1 1
1 1

*
*       (4.39b)   

 Equation  (4.39a)  shows that the PDF of the Prandtl–von Karman universal 
velocity distribution is negative exponential with parameter  λ  1  determined as 
discussed.

  Example 4.9          Plot  λ  0  as a function of  λ  1  for a given  u * and  u D  . Let  u D    =  7.11 ft/s and 
 u gDS* ft/s= = 0 406.    .  

  Solution     Using equation  (4.32) , we see that  λ  0  is computed as a function of  λ  1  
and is plotted, as shown in Fig.  4-11 . Clearly,  λ  0  is negative for  λ  1  greater than 0.4, 
and for  λ  1  greater than 2.5 the variation becomes almost linear. 
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202 Entropy Theory in Hydraulic Engineering

  It may be noted that if  u * is taken as a small quantity tending to 0, then equa-
tion  (4.39a)  simplifi es to

  f u
u
u

k ku u
u ku uD D

( )
exp( )
exp( )

exp( / )
[exp( / ) ]

=
−

− −
=

−
λ λ

λ
1 1

11 1
*

* *
      (4.40)  

and the cumulative PDF equation  (4.39b)  simplifi es to

  F u
ku u

ku uD

( )
exp( / )

[exp( / ) ]
=

−
−

*
*

1
1

      (4.41)  

where

  λ1 = − k
u*

      (4.42)  

in which  k  is the von Karman constant. Equations  (4.40)  and  (4.41)  were given, 
without derivation, by Dingman ( 1989 ) for the Prandtl–von Karman universal 
velocity distribution. 

 Equation  (4.39a)  can be written in terms of  k  and  u * as

  f u
k ku u

u k ku uD

( )
exp( / )

[exp( ) exp( / )]
=

−
− −

*
* *

      (4.43)    

   Example 4.10          Compute and graph the PDF underlying the Prandtl–von Karman 
velocity distribution. Take  k   =  0.214,  u *  =  0.406 ft/s,  u D    =  7.11 ft/s.  

  Solution     Using equation  (4.43) ,  f ( u ) is computed as a function of  u , as shown in 
Fig.  4-12 .   

  Figure 4-11      Plot of  λ  0  as a function of  λ  1  for a given  u * and  u D  .    
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  Figure 4-12      Probability density function underlying the Prandtl–von Karman 
velocity distribution.    

   Example 4.11          Compute and graph the cumulative probability distribution 
underlying the Prandtl–von Karman velocity distribution. Take  k   =  0.214,  u *  =  
0.406 ft/s,  u D    =  7.11 ft/s.  

  Solution     Using equation  (4.41) , we see that  F ( u ) is computed as a function of  u , 
as shown in Fig.  4-13 .      

  Figure 4-13      Cumulative probability distribution underlying the Prandtl–von Karman 
velocity distribution.    

  4.3.4     Entropy of Velocity Distribution 

 The entropy of the Prandtl–von Karman velocity distribution can be obtained by 
inserting equation  (4.43)  in equation  (4.4)  as

  H k ku u
k
u

u
k
u

D= − − − + − ⎛
⎝

⎞
⎠ln[exp( ) exp( / )] ln*

* *
      (4.44)   

 Equation  (4.44)  shows that the uncertainty of the velocity distribution is heavily 
infl uenced by the average velocity and the shear velocity. This infl uence means 
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that velocity should be sampled more frequently along the vertical, where the 
average velocity is high.

  Example 4.12          Plot the entropy of the Prandtl–von Karman velocity distribution 
as a function of parameters in equation  (4.44) , varying one parameter and keep-
ing others constant. Compute the entropy for the data in Example  4.5 .  

  Solution     Using equation  (4.44) ,  H ( u ) is computed as a function of  k , as shown in 
Fig.  4-14 , as a function of  u m   in Fig.  4-15 , as a function of  u D   in Fig.  4-16 , and as a 
function of  u * in Fig.  4-17 . Except for  k  less than 0.2,  H  increases linearly with  k . 
For all values of  u m  ,  H  increases linearly. Conversely,  H  decreases with  u D   rapidly 
and then becomes almost constant, whereas it declines exponentially with  u *.         

  Figure 4-14      Entropy as a function of  k .    

  Figure 4-15      Entropy as a function of  u m   (ft/s).    
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  Figure 4-16      Entropy as a function of  u D   (ft/s).    

  Figure 4-17      Entropy as a function of  u *.    

  4.3.5     Velocity Distribution 

 Substitution of equation  (4.39a)  in equation (4.4a) and then integration with 
the condition that  u   =   u * when  y   =   y  0  yields the relation between velocity and 
depth:

  
1

1 1
0

0b
u u

y y
D y

[exp( ) exp( )− − − =
−
−

λ λ*       (4.45)   

 Here  y  0  represents the depth of shear fl ow or height corresponding to shear 
velocity. Equation  (4.45)  becomes

  u
u
k

k b
y y
D y

= −
−
−

⎡
⎣⎢

⎤
⎦⎥

*
ln exp( ) 0

0
      (4.46)   
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 Clearly, equation  (4.46)  is similar to but not the same as the Prandtl–von Karman 
universal velocity distribution. However, a little algebraic simplifi cation can lead 
to the same velocity distribution equation. 

 Assuming that the exponential term [exp( k )] is much smaller than exp( ku D  / u *) 
and, hence, can be neglected, equation  (4.38b)  can be approximated as

  b ku uD≈ exp( / )*       (4.47)   

 Equation  (4.46)  then becomes

  u
u
k

k k
u
u

y y
D y

D= + ⎛
⎝

⎞
⎠

−
−

⎡
⎣
⎢

⎤
⎦
⎥

*
*

ln exp( ) exp 0

0

      (4.48)  

which can be approximated as

  u
u
k

k
u
u

y y
D y

D= ⎛
⎝

⎞
⎠

−
−

⎡
⎣⎢

⎤
⎦⎥

*
*

ln exp 0

0
      (4.49)   

 Equation  (4.49)  is based on the assumption that exp( ku D  / u *)  >   >  exp( k ), which is 
quite reasonable. 

 If it is assumed that

  y ku u DD0 exp( / )* ≈       (4.50)  

then equation  (4.49)  reduces to

  u
u
k

y
y

= ⎛
⎝⎜

⎞
⎠⎟

*
ln

0

      (4.51)  

which is the Prandtl–von Karman universal velocity distribution. 
 If equation  (4.50)  is approximately true, then this provides an explicit relation 

between  y  0  and  k ,  u D   and  D . Determination of  y  0  has been pesky. Hydraulically, 
equation  (4.50)  states that for any fl ow with a depth of  D  and the corresponding 
velocity  u D  , the channel has a particular value of  y  0  for a given  k  and  u *. In other 
words, these parameter values must be compatible with each other, and, hence, 
equation  (4.50)  can be of great signifi cance.  

  4.3.6     Testing 

 For verifying equation  (4.50) , the observed fl ow depth values are, respectively, 
0.45, 0.38, 0.36, 0.76, 0.43, 0.40, 0.58, and 0.40 m, whereas the  D  values obtained 
from equation  (4.50)  are found to be 0.62, 0.23, 0.24, 0.36, 0.34, 0.48, 0.50, and 0.38. 
The two sets of values are not exactly the same but are in reasonable agreement, 
as shown in Fig.  4-18 . The shear velocity is computed by  gDS    , and the von 
Karman constant  k  varies from 0.2 to 0.4, according to different fl ow status. No 
consistent pattern of either overestimation or underestimation is found either 
for clear-water fl ow or sediment-laden fl ow. Of course, more data need to be 
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  Figure 4-18      Relation between observed fl ow depth and depth computed from 
equation  (4.50) .    

analyzed to determine the conditions under which equation  (4.50)  would apply 
and the amount of error that can be expected with the use of equation  (4.50) . An 
important implication of equation  (4.50)  that seems to hold is that it can provide 
an estimate of  y  0  for given values of  D ,  u D  , and  u *.

   Example 4.13          Consider the measurements of velocity in a river as given in Ex-
ample  4.5 . Estimate  y  0  for the log law velocity distribution for this data set. Us-
ing this  y  0  value, compute the velocity using the Prandtl–von Karman velocity 
distribution and compare it with the observed velocity distribution. How good 
is the match?  

  Solution     Take  k   =  0.214,  y  0   =  3.02  ×  10  − 3  ft,  u gDS* .= = 0 406 ft/s   . The velocity 
computed using the Prandtl–von Karman velocity distribution compares well 
with the observed velocity, except near the bed, as shown in Fig.  4-19 .    

  Figure 4-19      Comparison of computed and observed velocity values.    
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208 Entropy Theory in Hydraulic Engineering

  Figure 4-20      Comparison of log-law computed velocity distribution and observed 
velocity values.    

  Example 4.14          For data set in Example  4.5 , compute the value of  D  using equa-
tion  (4.50) . Then compute the velocity using the log law velocity distribution and 
compare it with the observed velocity distribution. How good is the match? Is 
there a decline in the accuracy of the velocity distribution obtained in Example 
 4.13 , and if there is, then how much?  

  Solution 

    D y ku u ftD= = × × =0 0 00302 0 214 7 11 0 406 0 128exp( / ) . exp( . . / . ) . .*      

 Take ft ft/sk y u gDS= = × = =−0 214 3 02 10 0 4060
3. , . , * . .    

   Computed and observed velocities are shown in Table  4-3  and plotted in Fig. 
 4-20 . Both types of velocity distributions compare reasonably well.      

 y  (ft)  u  obs.  (ft/s)  u  pra.  (ft/s)  u  log.  (ft/s)

0.006 2.22 1.302 1.539

0.009 2.5 2.072 2.247

0.011 2.72 2.452 2.605

0.011 2.86 2.452 2.605

0.015 2.96 3.041 3.166

0.017 3.33 3.278 3.394

0.019 3.57 3.489 3.598

0.024 3.9 3.933 4.029

0.034 4.52 4.593 4.675

0.04 4.83 4.902 4.978

 Table 4-3      Observed and computed velocity values.  

 y  (ft)  u  obs.  (ft/s)  u  pra.  (ft/s)  u  log.  (ft/s)

0.045 5.08 5.125 5.198

0.05 5.3 5.325 5.396

0.054 5.52 5.471 5.540

0.064 5.81 5.793 5.859

0.074 6.09 6.069 6.132

0.084 6.29 6.309 6.370

0.095 6.52 6.543 6.602

0.104 6.7 6.714 6.773

0.124 7.11 7.048 7.105
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 In a manner similar to that in the case of the power law velocity distribu-
tion, the two parameters of the logarithmic law can be expressed in terms 
of  M  as follows. Let  y m  / D   =   e   − 1 . Then, parameters of equation  (4.51)  can be 
written as

  y D
u

u
D Mm

0

1
11 1= − −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = −

−
−exp exp[ ( ) ]

max

ψ       (4.52)  

and

  k
u
u

u
u

u
u

u
u

Mm m m m= ⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ −⎛

⎝⎜
⎞
⎠⎟ = ⎛

⎝
⎞
⎠ −

− − −

* *

1 1 1

1 1
max max

( )[ψ ψψ( )]M −1       (4.53)  

where

  
u
u

q
Du f

CD
n g

m

l* *
= = =8 1 6/

      (4.54)  

where  q  is the specifi c discharge (i.e., discharge per unit width),  f l   is the head 
loss, and  C  is 1.49 if the English system of units is used and is unity if the SI 
system is used. 

 The von Karman constant  k  is normally assumed as 0.40 or 0.42. If  M  is 
between 7 and 8,  u m  / u  max  is between 0.86 and 0.87, the aforementioned equa-
tions yield  f l   between 0.03 and 0.035, which corresponds to the Reynolds 
number equal to 2,000, which is the lower limit for turbulent fl ow in open 
channels. For turbulent fl ow, the Reynolds number is greater than 2,000, and 
 f l   is less than 0.035 (Chow  1959 ). From equation  (4.54) , if  k   =  0.4,  u m  / u  max  is 
greater than 0.86, and, hence,  M  is greater than 7. A higher value of  u m  / u  max  
means a more uniform distribution, a greater value of  M , and, hence, a lower 
value of entropy. A lower value of  M  below 7 and, hence,  u m  / u  max  below 0.86 
would increase entropy and reduce  k  from 0.3 in alluvial channels with sedi-
ment concentration in fl ow. Einstein and Chien ( 1955 ) found lower values of  k  
in sediment-laden fl ow.   

  4.4     Two-Dimensional Power Law 
Velocity Distribution 

 Following the discussion in Chapter 3, the one-dimensional (1-D) power law 
velocity distribution discussed earlier can be extended to two dimensions. Let 
the Cartesian coordinates be  y  and  z , where  y  is the vertical coordinate and  z  is 
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the transverse coordinate. Let these coordinates be transformed into another 
system of coordinates ( r ,  s ), in which  r  is uniquely related to velocity (Chiu and 
Chiou  1986 ); i.e., each isovel corresponds to one value of  r  and isovels are rep-
resented by  r -coordinate curves, and  s -coordinate curves are their orthogonal 
trajectories. Thus,  r  is a function of  y  and  z . 

 The orthogonality of  r  and  s  suggests that if  r  is determined, then  s  can be 
determined. Here,  r  varies as  r  0   ≤   r   ≤   r  max , where  r  max  is the maximum value of  r , 
and the time averaged velocity  u  is bounded by 0  ≤   u   ≤   u  max . Here  u   =  0 occurs 
along an isovel corresponding to  r   =   r  0 , where  r  0  represents the channel bed, 
including boundaries, and has a small value. Likewise, the maximum velocity 
 u  max , which may occur on or below the water surface, occurs along the isovel 
corresponding to  r   =   r  max . Thus, it is assumed that

  u W r r W u= = −( ) ( )or 1       (4.55)  

where  W  is some function. 

  4.4.1     Hypothesis 

 As both  u  and  r  are considered random variables with probability density func-
tions (PDFs) as  f ( u ) and  g ( r ), respectively, it is assumed that all values of 
 r  between  r  0  and  r  max  are equally likely to be sampled. This phenomenon 
means that the PDF of  r ,  g ( r ), can be hypothesized to be uniform on the interval 
 r  0   ≤   r   ≤   r  max :

  g r
r r

( )
max

=
−

1

0

      (4.56)   

 Now the cumulative distribution function (CDF) of velocity (i.e., the proba-
bility of velocity being less than or equal to a given value of  u ),  F ( u ), can be 
expressed as

  F u f u du f W r d W r g r dr
r r

r

u

r

W u r

r

r

( ) ( ) [ ( )] [ ( )] ( )
( )

m

= = = = −
∫ ∫ ∫

− =

0

0

0

1

0 aax − r0

      (4.57)  

where  f ( u ) is the PDF of velocity  u  and can be expressed as

  f u
dF u

du
dF u

dr
dr
du

r r
du
dr

( )
( ) ( )

( )max= = = −⎡
⎣⎢

⎤
⎦⎥

−

0

1

      (4.58)   

 The hypothesis expressed by equation  (4.56)  needs to be tested.  
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  4.4.2     Specifi cation of Constraints 

 The constraints for the one-dimensional case expressed by equations  (4.4)  and 
(4.5) can be modifi ed for the two-dimensional case as

  f u du
u

( )
max

0

1∫ =       (4.59)  

and

  ln ( ) ln
max

uf u du u
u

0
∫ =       (4.60)  

where the maximum velocity  u  max  may no longer occur at  y   =   D  (fl ow depth) or 
water surface.  

  4.4.3     Entropy-Based Probability Distribution 

 Equations  (4.6)  through  (4.17)  hold, except that  u D   is replaced by  u ma   x . To avoid 
confusion, the following is expressed. Equation  (4.8)  holds, but equation  (4.9)  is 
modifi ed as

  exp( ) ln( ) ( )lnmax
maxλ

λ
λ λ λ

λ

0

1

1
0 1 1

1

1
1 1=

− +
= − − + + − +

− +u
uor       (4.61)  

where  λ  0  and  λ  1  are the Lagrange multipliers. Differentiating equation  (4.61)  with 
respect to  λ  1 , one obtains

  
∂
∂

=
− +

−λ
λ λ

0

1 1

1
1

ln maxu       (4.62)   

 Likewise, equation  (4.13)  modifi es to

  λ λ
0

0

1= −∫ln
max

u du
u

      (4.63)  

  Example 4.15          Construct a plot of  λ  0  as a function of  λ  1  for various values of  u  max . 
Discuss the plot and its implications.  

  Solution     A plot of  λ  0  as a function of  λ  1  for various values of  u  max  (2, 4, 6, and 
8 m/s) is constructed as shown in Fig.  4-21 . It is seen that  λ  0  decreases with  λ  1  for 
increasing  u  max . For a given  λ  1  value,  λ  0  increases with increasing  u  max . 
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  Differentiating equation  (4.63)  with respect to  λ  1 , the result is

  
∂
∂

= −λ
λ

1

2
lnu       (4.64)   

 Equating equation  (4.64)  to equation  (4.62)  leads to

  λ1 1
1= −

−ln lnmaxu u
      (4.65)   

 Substitution of equation  (4.65)  in equation  (4.61)  yields

  λ0 = − + +
− +

ln[ ln ln ]
ln

ln ln
max

max

max

u u
u

u u
      (4.66)   

 The Lagrange multipliers  λ  0  and  λ  1  are expressed by equations  (4.65)  and  (4.66)  
explicitly in terms of  lnu     and  u  max .  

   Example 4.16          Construct a plot of  λ  1  as a function of  lnu     for various values of 
 u  max . Discuss the plot and its implications.  

  Solution     Using equation  (4.65) ,  λ  1  is plotted as a function of  lnu     for various val-
ues of  u  max  (2, 4, 6, and 8 m/s), as shown in Fig.  4-22 . For a given u max ,  λ  1  decreases 
with increasing  lnu   .

   f u n
u
u

n

n
( )

max

=
−1

      (4.67)  

and the CDF as

  F u
u

u

n

n
( )

max
=       (4.68)       

  Figure 4-21      Plot of  λ  0  as a function of  λ  1  for various values of  u  max  (m/s).    
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  4.4.4     Velocity Distribution 

 Substituting equation  (4.67)  in equation  (4.58) , one obtains

  
nu
u

du
dr r r

n

n

−

=
−

1

0

1

max max

      (4.69)   

 Integrating equation  (4.69)  with the condition that  u   =  0 at  r   =   r  0 , one gets

  u u
r r

r r

n
= −

−
⎛
⎝⎜

⎞
⎠⎟max

max

0

0

1

      (4.70)   

 The mean velocity  u m   can be obtained from equation  (4.70)  as

  u u
r r

r r
m

n
= −

−
⎛
⎝⎜

⎞
⎠⎟max

max

0

0

1

      (4.71)   

 Equation  (4.71)  can also be cast as

  u
u

r r
r r

m n

max max

= −
−

⎛
⎝⎜

⎞
⎠⎟

0

0

1

      (4.72)   

 For wide rectangular channels ( r   −   r  0 )/( r  max   −   r  0 ) can be approximated as  y / D . 
Therefore, equation  (4.70)  can be written as

  u u
y
D

u
u

y
D

n n
= ⎛

⎝⎜
⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟max

max

1 1

or       (4.73)   

  Figure 4-22      Plot of  λ  1  as a function of  ln u     for various values of  u max   
(2, 4, 6, and 8 m/s).    

c04.indd   213c04.indd   213 5/21/2014   11:09:55 AM5/21/2014   11:09:55 AM



214 Entropy Theory in Hydraulic Engineering

 It may be noted from equation  (4.16)  that

  n
u u n

m u u=
−

= = −1 1
ln ln

ln ln
max

maxor       (4.74)   

 Thus, exponent  n  is expressed in terms of measurable physical quantities. 
 Equation  (4.70)  or  (4.73)  is a 2-D power law velocity distribution. Taking the 

derivative of equation  (4.73) , the velocity gradient can be expressed as

  
du
dy

u m
D

y
m

m= ⎛
⎝

⎞
⎠

−
max

1 1       (4.75)   

 Defi ning  N   =   mu  max , equation  (4.75)  can be written as

  
du
dy

N
D

y
N
D

y
D

m
m

m

= ⎛
⎝

⎞
⎠ = ⎛

⎝⎜
⎞
⎠⎟

−
−1 1

1

      (4.76)   

 Likewise, one can also write from equation  (4.70) :

  du
dr

u
n r r

r r
r r

n
=

−
−

−
⎛
⎝⎜

⎞
⎠⎟

−

max
max max( )

1 1

0

0

0

1
1

      (4.77)   

 Equation  (4.72)  can be cast as

  r r
r r

u
u

m
n−

−
⎛
⎝⎜

⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟

0

0max max

      (4.78)  

which can be used as a measure of uniformity or homogeneity of the velocity 
distribution. 

 Substituting equation  (4.67)  in equation (4.3) with  u D   replaced by  u  max , 
one gets

  H u n n u n u( ) ln ( )ln ln max= − − − +1       (4.79)    

  4.4.5     Construction of Isovels and Relation between (y, z) 
Coordinates and (r, s) Coordinates 

 The discussion in Chapter 3 provides the relations between the ( y ,  z ) and ( r ,  s ) 
coordinate systems (equations (3.56)–(3.61)), and along the  y -axis where  z   =  0, it 
shows a relation between  r  and  y  (equation (3.76)):
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  r
y

D h
y

D h
=

+
−

+
⎡
⎣⎢

⎤
⎦⎥

exp 1       (4.80)   

 When  y   =  0,  r   =  0, and when  y   =   D ,  r   =   r  max . When  h   <  0, the value of  h  represents 
the actual depth of the point below the water surface and then  r  increases 
with  y  from  y   =  0 to  y   =   D   +   h , where the maximum velocity occurs at  r   =   r  max   =  
1 and decreases from  D   +   h  to  D  (water surface). Differentiation of equation  (4.80)  
yields

  dr
D h

y
D

y
D h

dy=
+

−⎡
⎣⎢

⎤
⎦⎥

−
+

⎡
⎣⎢

⎤
⎦⎥

1
1 1exp       (4.81)  

which can be simply written as

  h dr dyr =       (4.82)  

where

  h D h
y
D

y
D h

r = + −⎡
⎣⎢

⎤
⎦⎥

−
+

⎡
⎣⎢

⎤
⎦⎥{ }−

( ) exp1 1
1

      (4.83)   

 Coeffi cient  h r   is a scale factor required for coordinate transformation between 
 y  and  r  systems. This situation allows  h r   and  dr  to have the same length dimen-
sion as  dy . 

 The isovel for null velocity along  r  0  can be expressed as

  r
c

D c h
c

D c h
y

y

y

y
0 1=

+ +
−

+ +
⎡

⎣
⎢

⎤

⎦
⎥exp       (4.84)   

 The velocity gradient is

  
du
dy h

du
dr

u
nh r r

r r h r r f u
r r

n
n

r= =
−

− = −
−

−1

0
0

1

0
max

max
max

( )
( ) [ ( ) ( )] 11       (4.85)   

 For calculating the longitudinal velocity at a given point ( y ,  z ) in the cross 
section, six parameters ( c i  ,  c y  ,  b i  ,  h ,  r  0 , and  k ) (see Chapter 3) are needed. Accord-
ing to Chiu and Chiou ( 1986 ), these parameters can be estimated using equations 
(3.56) through (3.61) of Chapter 3 without measured data, given the geometric 
and fl ow parameters: fl ow discharge  Q , fl ow cross-sectional area  A , fl ow depth 
 D , wetted perimeter  P , mean shear velocity  u *, slope of the energy grade line  S f  , 
fl uid kinematic viscosity  υ , and density  ρ .

  Example 4.17          Construct a plot of  u / u  max  as a function of ( r   −   r  0 )/( r m    −   r  0 ) for vari-
ous values of  n . Discuss the plot and its implications.  

  Solution     A plot of  u / u  max  as a function of ( r   −   r  0 )/( r m    −   r  0 ) is constructed for 
various values of 1/ n , as shown in Fig.  4-23 . The function is nonlinear but tends 
toward linearity for smaller values of  n .   
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   Example 4.18          Construct a plot of  du / dy  as a function of  y / D  for various values 
of  n . Discuss the plot and its implications.  

  Solution     Using equation  (4.85) , a plot of  du / dy  as a function of  y / D  for various 
values of  m  (1.5, 2.0, 3.0, and 5.0) is constructed, as shown in Fig.  4-24 . The shape 
of the function changes from concave to convex as  m  increases.   

  Figure 4-23      A plot of  u / u max   as a function of ( r    −    r  0 )/( r m     −    r  0 ) is constructed 
for various values of  n .    

  Figure 4-24      Plot of  du / dy  as a function of  y / D  for various values of  m .    

   Example 4.19          Plot  u m  / u  max  versus  ( )/( )r r r rm− −0 0     for various values of  n . Dis-
cuss the graph.  

  Solution     Using equation  (4.71) , a plot of  u m  / u  max  versus  ( )/( )r r r rm− −0 0     for var-
ious values of  n  (2.0, 3.0, 4.0, and 5.0) is constructed, as shown in Fig.  4-25 . The 
shape of the function is convex. As  n  tends to a small value, the function tends to 
become linear.   
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  Figure 4-25      A plot of  u m  / u max   versus  ( ) ( )0 0r r r rm− −/     for various values of  n .    

   Example 4.20          Plot patterns of isovels for various values of the  B / D  ratio and 
Manning ’ s  n . Consider  z  as 0 to 4 m to the right of the vertical divide. Take two 
sets of isovels. In the fi rst set, construct four patterns:

   •      Take  u  max   =  5 m/s,  h / D   =   − 0.15,  B / D   =  1.0, Manning ’ s  n   =  0.015, and 
 u m    =  3.50 m/s.  

  •      Take  u  max   =  2 m/s,  h / D   =  0.5,  B / D   =  10, Manning ’ s  n   =  0.015, and 
 u m    =  1.85 m/s.    

 In the second set, construct another set of graphs.

   •      Take  u  max   =  2.85 m/s,  h / D   =   − 0.01,  B / D   =  1.0 ,  Manning ’ s  n   =  0.03, and 
 u m    =  2.50 m/s.  

  •      Take  u  max   =  2.15 m/s,  h / D   =  0.00,  B / D   =  2.0, Manning ’ s  n   =  0.03, and  
u m    =  1.85 m/s.  

  •      Take  u  max   =  1.75 m/s,  h / D   =  0.20,  B / D   =  3.0, Manning ’ s  n   =  0.03, and  
u m    =  1.70 m/s.  

  •      Take  u  max   =  1.15 m/s,  h / D   =  2.20,  B / D   =  10, Manning ’ s  n   =  0.03, and 
 u m    =  0.90 m/s.    

 What do you conclude from these two sets of isovel patterns?  

  Solution     Patterns of isovels for various values of the  B / D  ratio and Manning ’ s  n  
are constructed. These are shown in the following fi gures:

   •      Fig.  4-26  for  u  max   =  5 m/s,  h / D   =  -0.15,  B / D   =  1.0, Manning ’ s  n   =  0.015, 
and  u m    =  3.50 m/s;   

  •      Fig.  4-27  for  u  max   =  2 m/s,  h / D   =  0.5,  B / D   =  10, Manning ’ s  n   =  0.015, and 
 u m    =  1.85 m/s;   

  •      Fig.  4-28  for  u   max    =  2.85 m/s,  h / D   =   − 0.01,  B / D   =  1.0, Manning ’ s  n   =  0.03, 
and  u   m    =  2.50 m/s;   

  •      Fig.  4-29  for  u   max    =  2.15 m/s,  h / D   =   − 0.00,  B / D   =  2.0, Manning ’ s  n   =  0.03, 
and  u   m    =  1.85 m/s   
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  Figure 4-26      Isovels for  u  max   =  5 m/s,  h / D   =    −  0.15,  B / D   =  1.0, Manning ’ s  n   =  0.015, 
and  u m    =  3.50 m/s.    

  Figure 4-27      Isovels for  u max    =  2 m/s,  h / D   =  0.5,  B / D   =  10, Manning ’ s  n   =  0.015, and 
 u m    =  1.85 m/s.    
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  Figure 4-28      Isovels for  u max    =  2.85 m/s,  h / D   =    −  0.01,  B / D   =  1.0, Manning ’ s  n   =  0.03, 
and  u m    =  2.50 m/s.    

  Figure 4-29      Isovels for  u max    =  2.15 m/s,  h / D   =    −  0.00,  B / D   =  2.0, Manning ’ s  n   =  0.03, 
and  u m    =  1.85 m/s.    
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  Figure 4-30      Isovels with  u max    =  1.75 m/s,  h / D   =  0.20,  B / D   =  3.0, Manning ’ s  n   =  0.03, 
and  u m    =  1.70 m/s.    

  Figure 4-31      Isovels with  u max    =  1.15 m/s,  h / D   =  2.20,  B / D   =  10, Manning ’ s  n   =  0.03, 
and  u m    =  0.90 m/s.    

  •      Fig.  4-30  for  u  max   =  1.75 m/s,  h / D   =  0.20,  B / D   =  3.0, Manning ’ s  n   =  0.03, 
and  u m    =  1.70 m/s; and   

  •      Fig.  4-31  for  u  max   =  1.15 m/s,  h / D   =  2.20,  B / D   =  10, Manning ’ s  n   =  0.03, and 
 u m    =  0.90 m/s.     

 It is clear that the isovel pattern is signifi cantly affected by the changes in 
these parameters, as shown by Figs.  4-26 –4-31.      
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  4.5     Two-Dimensional Prandtl–von Karman 
Velocity Distribution 

 Following the same procedure as in the previous section, the two-dimensional 
universal velocity distribution can be derived. 

  4.5.1     Specifi cation of Constraints 

 The constraints for the two-dimensional case are expressed by equation  (4.59)  
and

  uf u du u
u

m( )
max

0
∫ =       (4.86)  

where the maximum velocity  u  max  may no longer occur at  y   =   D  (fl ow depth) or 
water surface.  

  4.5.2     Determination of Lagrange Multipliers 

 In this case, the entropy-based PDF and CDF of velocity are the same as in the 
1-D case. Substitution of equation  (4.29)  in equation  (4.4)  and integrating over 
 u *  ≤   u   ≤   u  max , where  u * is shear velocity, one obtains

  exp( )
exp( ) exp( )max

− =
− − −

λ λ
λ λ0

1

1 1u u*
      (4.87)   

 Equation  (4.87)  can be written as

  λ λ λ λ0 1 1 1= − − − −ln[exp( ) exp( )] lnmaxu u*       (4.88)   

 Differentiating equation  (4.88)  with respect to  λ  1 , one obtains

  
∂
∂

=
− − −

− − −
−λ

λ
λ λ

λ λ λ
0

1

1 1

1 1

1exp( ) exp( )
exp( ) exp( )

max

max

u u u
u u

* *
* 11

      (4.89)   

 Conversely, substitution of equation  (4.29)  in equation  (4.4)  yields

  λ λ0

0

1= −
⎡

⎣
⎢

⎤

⎦
⎥∫ln exp( )

maxu

u du       (4.90)   

 Differentiating equation  (4.90)  with respect to  λ  1 , one obtains

  
∂
∂

= −
−

−

∫

∫

λ
λ

λ

λ

0

1

0

1

0

1

u u du

u du

u

u

max

max

exp( )

exp( )

max

      (4.91)   
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 Multiplying and dividing equation  (4.91)  by exp( −  λ  0 ) and recalling equation 
 (4.86) , the result is

  
∂
∂

= −
− −

− −
= −

∫

∫

λ
λ

λ λ

λ λ

0

1

0

0 1

0

0 1

u u du

u du
u

u

D

u m

max

max

exp( )

exp( )
      (4.92)   

 Equating equation  (4.91)  to equation  (4.92) , one obtains

  u
u u u u

u u
m = −

− − −
− − −

1

1

1 1

1 1λ
λ λ

λ λ
max max

max

exp( ) exp( )
exp( ) exp(

* *
* ))

      (4.93)   

 Equation  (4.93)  expresses  λ  1  implicitly in terms of  u m  . It can also be derived as 
follows. 

 Substituting equation  (4.29)  in equation (4.5) and using equation  (4.88) , one 
obtains

 
λ λ λ

λ
λ

λ1
1 1

1

1

1

b
u u u u

u u
− − + − −

−
+

−
max max

maxexp( exp( )
exp( ) exp( )

* *
*

λλ1

⎡
⎣⎢

⎤
⎦⎥

= um       (4.94a)  

where  b  is defi ned as

  b u u= − − −exp( ) exp( )maxλ λ1 1*       (4.94b)   

 Equation  (4.94a)  is the same as equation  (4.93) . Equations  (4.88)  and  (4.93)  can 
be used to determine the Lagrange parameters  λ  0  and  λ  1 . 

 The shear velocity is defi ned as  u gDS* =    , where  g  is acceleration caused 
by gravity, and  S  is the channel slope. When we combine equations  (4.31)  and 
 (4.29) , the result is the probability density function (PDF) of velocity  u  as

  f u
u u

u
b

u( )
exp( ) exp( )

exp( ) exp( )
max

=
− − −

− = −λ
λ λ

λ λ λ1

1 1
1

1
1

*
      (4.95)  

and then the cumulative PDF can be expressed as

  F u
u u

u u( )
exp( ) exp( )

[exp( ) exp( )]
max

=
− − −

− − −λ
λ λ

λ λ1

1 1
1 1

*
*       (4.96)   

 Equation  (4.95)  shows that the PDF of the Prandtl–von Karman universal 
velocity distribution is negative exponential with parameter  λ  1 , determined as 
shown. 

 It may be noted that if  u * is taken as a small quantity tending to 0, then equa-
tion  (4.95)  simplifi es to

  f u
u

u
k ku u

u ku u
( )

exp( )
exp( )

exp( / )
[exp( / )max max

=
−

− −
=

λ λ
λ

1 1

11
*

* * −− 1]
      (4.97)  
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and the cumulative PDF equation  (4.96)  to

  F u
ku u

ku u
( )

exp( / )
[exp( / ) ]max

=
−

−
*

*
1

1
      (4.98)  

where  λ  1   =   −  k / u *, in which  k  is the von Karman constant. 
 Equation  (4.95)  can be written in terms of  k  and  u * as

  f u
k ku u

u k ku u
( )

exp( / )
[exp( ) exp( / )]max

=
−

− −
*

* *
      (4.99)    

  4.5.3     Entropy of Velocity Distribution 

 Entropy of the Prandtl–von Karman velocity distribution can be obtained by 
inserting equation  (4.99)  in equation (4.3) as

  H k ku u
k
u

u
k
u

= − − − + − ⎛
⎝

⎞
⎠ln[exp( ) exp( / )] lnmax *

* *
      (4.100)   

 Equation  (4.100)  shows that the uncertainty of the velocity distribution is heavily 
infl uenced by the average velocity and the shear velocity. This result means that 
velocity should be sampled more frequently along the vertical where the average 
velocity is high.  

  4.5.4     Velocity Distribution 

 Substitution of equation  (4.95)  in equation  (4.2)  and then integration with the 
condition that  u   =   u * when  r   =   r  0  yields the relation between velocity and 
depth:

  
1

1 1
0

0b
u u

r r
r r

[exp( ) exp( )
max

− − − = −
−

λ λ*       (4.101)   

 Here,  r  0  represents the depth of shear fl ow or height corresponding to shear 
velocity. Equation  (4.101)  becomes

  u
u
k

k b
r r

r r
= − −

−
⎡
⎣⎢

⎤
⎦⎥

*
ln exp( )

max

0

0

      (4.102)   

 Clearly, equation  (4.102)  is similar to but not the same as the Prandtl–von Karman 
universal velocity distribution. However, a little algebraic simplifi cation can lead 
to the same velocity distribution. 

 Assuming that the exponential term [exp( k )] is much smaller than exp( ku  max / u *) 
and, hence, can be neglected, equation  (4.94b)  can be approximated as

  b ku u≈ exp( / )max *       (4.103)   
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 Equation  (4.102)  then becomes

  u
u
k

k ku u
r r

r r
= + −

−
⎡
⎣⎢

⎤
⎦⎥

*
*ln exp( ) exp( / )max

max

0

0

      (4.104)  

which can be approximated as

  u
u
k

ku u
r r

r r
= −

−
⎡
⎣⎢

⎤
⎦⎥

*
*ln exp( / )max

max

0

0

      (4.105a)   

 If  M   =   ku  max / u *, equation  (4.105a)  can be written as

  
u

u M
M

r r
r rmax max

ln exp( )= −
−

⎡
⎣⎢

⎤
⎦⎥

1 0

0

      (4.105b)   

 Equation  (4.105a)  is based on the assumption that exp( ku  max / u *)  >   >  exp( k ), which 
is quite reasonable. If it is assumed that

  r ku u r0 exp( / )max max* ≈       (4.106)  

then equation  (4.105a)  reduces to

  u
u
k

r
r

= ⎛
⎝⎜

⎞
⎠⎟

*
ln

0
      (4.107)  

which is the 2-D Prandtl–von Karman universal velocity distribution in the  r ,  s  
coordinates. 

 Taking the derivative of equation  (4.107) , the velocity gradient can be 
expressed as

  
du
dr

u
k r

r= −⎡
⎣⎢

⎤
⎦⎥

* 1
0ln( )       (4.108)    

  4.5.5     Construction of Isovels and Relation between (y, z) 
Coordinates and (r, s) Coordinates 

 The discussion in Chapter 3 provides the relations between the ( y ,  z ) and ( r ,  s ) 
coordinate systems (equations [3.56] through [3.61]), and along the  y -axis where 
 z   =  0, it shows a relation between  r  and  y  (equation (3.76)):

  r
y

D h
y

D h
=

+
−

+
⎡
⎣⎢

⎤
⎦⎥

exp 1       (4.109)   

 When  y   =  0,  r   =  0, and when  y   =   D ,  r   =   r  max . When  h   <  0, the value of  h  represents 
the actual depth of the point below the water surface, and then  r  increases with 
 y  from  y   =  0 to  y   =   D   +   h , where the maximum velocity occurs at  r   =   r  max   =  1 and 
decreases from  D   +   h  to  D  (water surface). Differentiation of equation  (4.109)  
yields

  dr
D h

y
D

y
D h

dy=
+

−⎡
⎣⎢

⎤
⎦⎥

−
+

⎡
⎣⎢

⎤
⎦⎥

1
1 1exp       (4.110)  
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which can be simply written as

  h dr dyr =       (4.111)  
where

  h D h
y
D

y
D h

r = + −⎡
⎣⎢

⎤
⎦⎥

−
+

⎡
⎣⎢

⎤
⎦⎥{ }−

( ) exp1 1
1

      (4.112)   

 Coeffi cient  h r   is a scale factor required for coordinate transformation between  y  
and  r  systems. This factor allows  h r   and  dr  to have the same length dimension 
as  dy . 

 The isovel for null velocity along  r  0  can be expressed as

  r
c

D c h
c

D c h
y

y

y

y
0 1=

+ +
−

+ +
⎡

⎣
⎢

⎤

⎦
⎥exp       (4.113)   

 The velocity gradient is

  
du
dy h

du
dr

u
nh r r

r r h r r f u
r r

n
n

r= =
−

− = −
−

−1

0
0

1

0
max

max
max

( )
( ) [ ( ) ( )] 11       (4.114)   

 For calculating the longitudinal velocity at a given point ( y ,  z ) in the cross section, 
six parameters ( c i  ,  c y  ,  b i  ,  h ,  r  0 , and  k ) (see Chapter 3) are needed. According to 
Chiu and Chiou ( 1986 ), these parameters can be estimated using equations (3.56) 
through (3.61) without measured data, given the geometric and fl ow parameters: 
fl ow discharge  Q , fl ow cross-sectional area  A , fl ow depth  D , wetted perimeter  P , 
mean shear velocity  u *, slope of the energy grade line  S f  , fl uid kinematic viscosity 
 υ , and density  ρ .

  Example 4.21          Construct a plot of  λ  0  as a function of  λ  1  for various values of  u  max . 
Discuss the plot and its implications.  

  Solution     Using equation  (4.88) , a plot of  λ  0  as a function of  λ  1  is constructed for 
various values of  u  max , as shown in Fig.  4-32 . Depending on the values of  λ  1  and 
 u  max , the value of  λ  0  goes from positive to negative.   

  Figure 4-32      Plot of  λ  0  as a function of  λ  1  is constructed for various values of  u max   (m/s).    
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   Example 4.22          Construct a plot of  λ  1  as a function of  u m   for various values of  u  max . 
Discuss the plot and its implications.  

  Solution     A plot of  λ  1  as a function of  u m   for various values of  u  max  is constructed, 
as shown in Fig.  4-33 . The graph shows that for a given value of  u  max ,  λ  1  increases 
gradually with increasing  u m  , reaches a value, and then increases sharply with 
decreasing  u m  .   

  Figure 4-33      Plot of  λ  1  as a function of  u m   for various values of  u max   (m/s).    

  Figure 4-34      Plot of  u / u max   as a function of ( r    −    r  0 )/( r m     −    r  0 ) constructed for various 
values of  M .    

   Example 4.23          Construct a plot of  u / u  max  as a function of ( r   −   r  0 )/( r m    −   r  0 ) for vari-
ous values of  M . Discuss the plot and its implications.  

  Solution     Recall that  
u

u M
M

r r
r rmax max

ln exp( )= −
−

⎡
⎣⎢

⎤
⎦⎥

1 0

0

   . Then, a plot of  u / u  max  as a 

function of ( r   −   r  0 )/( r m    −   r  0 ) is constructed for various values of  M , as shown in 
Fig.  4-34 . The plot shows that for a given value of  u / u  max , ( r   −   r  0 )/( r m    −   r  0 ) in-
creases with decreasing value of  M . For a given value of  M ,  u / u  max  increases with 
increasing ( r   −   r  0 )/( r m    −   r  0 ).   
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   Example 4.24          Construct a plot of  du / dy  as a function of  y / D  for various values 
of  M .  

  Solution     Using equation  (4.114) , a plot of  du / dy  as a function of  y / D  is con-
structed for various values of  M , as shown in Fig.  4-35 .   

  Figure 4-35      Plot of  du / dy  as a function of  y / D  is constructed for various values of  M .    

  Figure 4-36      Plot  u m  / u max   versus  ( ) ( )0 0r r r rm− −/     constructed for various values of 
parameter  M .    

   Example 4.25          Plot  u m  / u  max  versus  ( )/( )r r r rm− −0 0     for various values of param-
eter  M .  

  Solution     Recall that  
u

u M
M

r r
r r

m

max max

ln exp( )= −
−

⎡
⎣⎢

⎤
⎦⎥

1 0

0

   . Plot of  u m  / u  max  versus  

( )/( )r r r rm− −0 0     is constructed for various values of parameter  M , as shown in 
Fig.  4-36 .   
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   Example 4.26          Plot patterns of isovels for  M ,  B / D  ratio, and Manning ’ s  n . Con-
sider  z  as 0 to 4 m to the right of the vertical divide. Take two sets of isovels. In 
the fi rst set, construct two graphs of isovel patterns.

   •      Take  u  max   =  5 m/s,  h / D   =   − 0.15,  B / D   =  1.0, Manning ’ s  n   =  0.015,  M   =  11.25, 
and  u m    =  3.50 m/s.  

  •      Take  u  max   =  2 m/s,  h / D   =  0.5,  B / D   =  10, Manning ’ s  n   =  0.015,  M   =  9, and 
 u m    =  1.85 m/s.    

 In the second set, construct another set of four graphs.

   •      Take  u  max   =  2.85 m/s,  h / D   =   − 0.01,  B / D   =  1.0, Manning ’ s  n   =  0.03,  M   =  
6.0, and  u m    =  2.50 m/s.  

  •      Take  u  max   =  2.15 m/s,  h / D   =  0.00,  B / D   =  2.0, Manning ’ s  n   =  0.03,  M   =  5.85, 
and  u m    =  1.85 m/s.  

  •      Take  u  max   =  1.75 m/s,  h / D   =  0.20,  B / D   =  3.0, Manning ’ s  n   =  0.03,  M   =  8.75, 
and  u m    =  1.70 m/s.  

  •      Take  u  max   =  1.15 m/s,  h / D   =  2.20,  B / D   =  10, Manning ’ s  n   =  0.03,  M   =  7.25, 
and  u m    =  0.90 m/s.    

 What do you conclude from these two sets of isovel patterns?  

  Solution     Patterns of isovels are constructed for two data sets that have different 
values of  M ,  B / D  ratio, and Manning ’ s  n  and  z  as 0 to 4 m to the right of the verti-
cal divide. Isovels are shown in these fi gures:

   •      Fig.  4-37  for  u  max   =  5 m/s,  h / D   =   − 0.15,  B / D   =  1.0, Manning ’ s  n   =  0.015, 
 M   =  11.25, and  u m    =  3.50 m/s;   

  Figure 4-37      Isovels for  u  max   =  5 m/s,  h / D   =    −  0.15,  B / D   =  1.0, Manning ’ s  n   =  0.015,  M  
 =  11.25, and  u m    =  3.50 m/s.    
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  Figure 4-38      Isovels for  u max    =  2 m/s,  h / D   =  0.5,  B / D   =  10, Manning ’ s  n   =  0.015, 
 M   =  9, and  u m    =  1.85 m/s.    

  •      Fig.  4-38  for  u  max   =  2 m/s,  h / D   =  0.5,  B / D   =  10, Manning ’ s  n   =  0.015, 
 M   =  9, and  u m    =  1.85 m/s;   

  •      Fig.  4-39  for  u  max   =  2.85 m/s,  h / D   =   − 0.01,  B / D   =  1.0, Manning ’ s  n   =  0.03, 
 M   =  6.0, and  u m    =  2.50 m/s;   
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  Figure 4-39      Isovels for  u max    =  2.85 m/s,  h / D   =    −  0.01,  B / D   =  1.0, Manning ’ s  n   =  0.03, 
 M   =  6.0, and  u m    =  2.50 m/s.    

c04.indd   229c04.indd   229 5/21/2014   11:09:59 AM5/21/2014   11:09:59 AM



230 Entropy Theory in Hydraulic Engineering

  Figure 4-40      Isovels for  u max    =  2.15 m/s,  h / D   =    −  0.00,  B / D   =  2.0, Manning ’ s  n   =  0.03, 
 M   =  5.85, and  u m    =  1.85 m/s.    

  Figure 4-41      Isovels for  u max    =  1.75 m/s,  h / D   =  0.20,  B / D   =  3.0, Manning ’ s  n   =  0.03, 
 M   =  8.75, and  u m    =  1.70 m/s.    

  •      Fig.  4-40  for  u  max   =  2.15 m/s,  h / D   =   − 0.00,  B / D   =  2.0, Manning ’ s  n   =  0.03, 
 M   =  5.85, and  u m    =  1.85 m/s;   

  •      Fig.  4-41  for  u  max   =  1.75 m/s,  h / D   =  0.20,  B / D   =  3.0, Manning ’ s  n   =  0.03, 
 M   =  8.75, and  u m    =  1.70 m/s; and   
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  •      Fig.  4-42  for  u  max   =  1.15 m/s,  h / D   =  2.20,  B / D   =  10, Manning ’ s  n   =  0.03,  
M   =  7.25, and  u m    =  0.90 m/s.     

 The isovel patterns vary with changes in these parameters.  

   Example 4.27          Plot  y / D  versus  u / u  max  for various values of parameter  M ,  M   =  0, 
2, 4, 6, 8, 10, and 12. What do you conclude from this plot?  

  Solution     Using equation  (4.10) , a plot of  y / D  versus  u / u  max  is constructed for 
various values of parameter  M , as shown in Fig.  4-43 .       

  Figure 4-42      Isovels for  u max    =  1.15 m/s,  h / D   =  2.20,  B / D   =  10, Manning ’ s  n   =  0.03, 
 M   =  7.25, and  u m    =  0.90 m/s.    
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  Figure 4-43      Plot  y / D  versus  u / u max   for various values of parameter  M .    
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  4.6     Two-Dimensional Representation of Velocity 
Using a General Framework 

 In Chapter 3, a general framework is presented for describing the entropy-based 
velocity distribution in two dimensions. However, in that framework any veloc-
ity distribution can be used. The framework involves (1) specifi cation of the 
geometric domain, (2) specifi cation of the CDF of velocity in two dimensions, 
and (3) derivation of the velocity in two dimensions. The geometric domain can 
be arbitrary, including rectangular and trapezoidal as special cases. The meth-
odology is now illustrated for the power law velocity distribution and universal 
velocity distribution using the rectangular geometric domain. 

  4.6.1     Power Law Velocity Distribution in Two Dimensions 

 Singh et al. ( 2013 ) derived 2-D power law velocity distribution, and their work 
is followed here. The procedure is the same as already discussed, and the 2-D 
domain ( x ,  y ), with  x  denoting the transverse direction and  y  the vertical direc-
tion measured from the bed, upward positive, is considered. To derive the 2-D 
velocity distribution, let  u   =   u ( x ,  y ) be the velocity distribution,  f [ u ( x ,  y )] the PDF, 
and  F [ u ( x ,  y )] the CDF. It is convenient to assume  v   =  ln( u ) (i.e.,  u   =  exp( v )). Fol-
lowing the methodology developed by Marini et al. ( 2011 ) and taking the partial 
derivatives of  F ( u ) with respect to  x  and  y , we obtain

  ∂ ( )
∂

=
∂ ( )

∂
= ( ) ( ) ∂

∂
= ( ) ∂

∂
F u

x
F e

x
F e

e
e
v

v
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f e e
v
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v v

v

v
v vd

d
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d
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      (4.115b)   

 Using equations  (4.115a)  and  (4.115b) , we can rewrite equations  (4.8)  as

  
∂ ( )

∂
= − −( ) ∂

∂
= − − −( )[ ] ∂

∂
F u

x
v e

v
x

v
v
x

vexp expλ λ λ λ0 1 0 1 1       (4.116a)  
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∂
= − −( ) ∂

∂
= − − −( )[ ] ∂

∂
F u

y
v e

v
y

v
v
y

vexp expλ λ λ λ0 1 0 1 1       (4.116b)   

 Denoting  −  λ  1   +  1  =   n , we can rewrite equations  (4.116a)  and  (4.116b)  as

  
∂

∂
( ) = ( ) ∂

∂
F u

x
nv

v
x

( )
exp expλ0       (4.117a)  
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∂
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∂
F u

y
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v
y

( )
exp expλ0       (4.117b)   

c04.indd   232c04.indd   232 5/21/2014   11:10:00 AM5/21/2014   11:10:00 AM



Power Law and Logarithmic Velocity Distributions 233

 Denoting exp( nv )  =   w , we can express the partial derivatives of  w  with respect 
to  x  and  y  as

  
∂
∂

= ( ) ∂
∂

w
x

n nv
v
x

exp       (4.118a)  

  
∂
∂

= ( ) ∂
∂

w
y

n nv
v
y

exp       (4.118b)   

 Substitution of equations  (4.118a)  and  (4.118b)  into equations  (4.117a)  and  (4.117b)  
yields the following system of equations:

  
∂
∂

= ( ) ∂
∂

w
x

n
F u

x
exp

( )λ0       (4.119a)  

  
∂
∂

= ( ) ∂
∂
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n
F u

y
exp

( )λ0       (4.119b)   

 Equations  (4.119a)  and  (4.119b)  can be integrated using the Leibniz rule:

  
∂
∂

+ ∂
∂

= ( ) − ( )∫ w
x

x
w
y

y w x y w
x y

d d
0 0

0 0
,

( , )
, ,       (4.120)   

 Because the point with coordinates (0, 0) lies on a contour in the solution domain; 
 u  at this point is equal to 0 and  v   =  ln( u )  =   −  ∞ . Consequently, the right-hand side 
of equation  (4.120)  becomes

  w x y w w x y e w x y e w x y u w x ynv n u n, , , , , ,ln( ) − ( ) = ( ) − = ( ) − = ( ) + = ( ) −( )0 0 0    

    (4.121)   

 With the use of equations  (4.119a)  and  (4.119b) , the defi nite integral on the 
left side of equation  (4.120)  is calculated at a generic point ( x y,    ) identifi ed by 
the mean of a polygonal curve that starts from (0, 0), passes across ( x , 0   ) and 
ends at ( x y,    ), so that

  
∂ ( )

∂
+ ∂ ( )

∂
= ∂ ( )

∂
=∫ ∫F u

x
ne x

F u
y

ne y
F u

y
ne y ne

x y yλ λ λ λ0 0 0 0

0 0 0
d d d

,

( , )
FF u( )       (4.122)   

 in which coordinates ( x y,    ) represent a point in the solution domain. Equating 
the right-hand side of equation  (4.122)  to the right-hand side of equation  (4.121) , 
one obtains

  w x y ne F u,( ) = ( )λ0       (4.123)   

 Because  w ( x ,  y )  =  exp( n   v ), equation  (4.123)  can be recast as

  e ne F u x ynv = ( )[ ]λ0 ,       (4.124)   
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 and recalling that  v   =  ln( u ), the expression for  u ( x ,  y ) is obtained as

  u x y ne F u x y n, , /( ) = ( )( )[ ]λ0 1       (4.125)   

 Equation  (4.125)  contains two Lagrange multipliers  λ  0  and  λ  1 , which can be 
calculated using equations  (4.5a)  and  (4.5b) . Equation  (4.13)  shows that

  u n en
max = ⋅ λ0       (4.126)   

 Therefore, combining equation  (4.126)  and  (4.125) , we see that the result is the 
2-D velocity distribution:

  u x y u F n( , ) max
/= ⋅ 1       (4.127)   

 Equation  (4.127)  is the 2-D power law velocity distribution, which depends on 
 u  max ,  n , and the 2-D CDF. The derived equation formally coincides with the equa-
tion obtained by Singh ( 2011 ) for 1-D domain, although in this case  F  is a function 
of  x  and  y . 

 Parameter  n  can be calculated by using the constraint given by equation 
 (4.5a) , which results in equation  (4.16) , which is derived by Singh ( 2011 ). In that 
case, the PDF is given by the power law equation  (4.8) . One can also use the 
approach proposed by Marini et al. ( 2011 ) for estimating  n . In that case,  n  can be 
calculated from the defi nition of average channel velocity  u av  :

  u
A

udA
A

u F dAav
A

n

A
= =∫ ∫1 1 1

max       (4.128)  

where  A  is the channel cross section. As pointed out in the literature, equation 
 (4.16)  refers to the mean of the logarithmic velocity distribution, whereas equa-
tion  (4.128)  includes the average logarithmic velocity in the channel cross section. 
Unlike   ū  , the average channel velocity has a straightforward physical meaning, 
and, consequently, it can be more effective for calculating parameter  n .  

  4.6.2     Comparison with Entropy-Based Logarithmic 2-D 
Velocity Distribution 

 Equation  (4.127)  represents an effective way to estimate velocity distribution in 
a generic 2-D domain if the CDF is properly defi ned. Starting from the same 
hypothesis but using a different constraint equation than equation (5b), Marini 
et al. ( 2011 ) obtained the following equation (logarithmic model) (given by equa-
tion (3.149) in Chapter 3):

  u x y
u

G
F eG, lnmax( ) = + −( )[ ]1 1       (4.129)   

 Similar to equation  (4.129) , equation  (4.127)  depends only on  u  max , an entropic 
parameter (here called  G ), and the 2-D CDF. Parameter  G  can be calculated using 
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the following equation, depending on the mean of velocity distribution and the 
maximum velocity (Chiu  1987 ):

  
u

u
G

G Gmax

exp( )
exp( )

=
−

−
1

1
      (4.130)  

or considering again the defi nition of average channel velocity (as given by equa-
tion (3.150) in Chapter 3). For both equations  (4.128)  and (3.150), 1-D and 2-D 
domains can be considered, depending on the assumed CDF. 

 Singh et al. ( 2013 ) analyzed both 1-D and 2-D velocity distributions for 
different confi gurations and compared them for a data set. They found that 
the velocity profi les obtained from the power law velocity distribution and 
the entropy-based logarithmic law velocity distribution were almost the 
same.  

  4.6.3     Universal Velocity Distribution in Two Dimensions 

 The same procedure as already described for the power law velocity distribution 
is followed. Denoting a 2-D domain as ( x ,  y ), where  x  represents the transverse 
direction and  y  the vertical direction (measured from the bed-upward positive), 
one can write  u   =   u ( x ,  y ), and its PDF,  f ( u ), as  f ( u ( x ,  y )) and cumulative probability 
distribution function [CDF ( F ( u )), as  F ( u ( x ,  y ))]. Then, partial differentiation of 
 F ( u ) with respect to  x  and  y  yields
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∂
= ∂

∂
= ∂
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 Inserting equation  (4.29) , equations  (4.131a)  and  (4.131b)  can be rewritten as
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 Equations  (4.132a)  and  (4.132b)  can be recast as

  exp( ) exp− ∂
∂

= ( ) ∂ ( )
∂

λ λ1 0u
u
x

F u
x

      (4.133a)  

  exp( ) exp− ∂
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λ λ1 0u
u
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F u
y

      (4.133b)   
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 It may be convenient to denote quantity exp( −  λ  1  u ) by  w  and then calculate the 
partial derivative of  w  with respect to  x  and  y  as follows:

  
∂
∂

=
∂ −

∂
= − − ∂

∂
w
x

u
x

u
u
x

exp( )
exp( )

λ
λ λ1

1 1       (4.134a)  

  
∂
∂

=
∂ −

∂
= − − ∂

∂
w
y

u
y

u
u
y

exp( )
exp( )

λ
λ λ1

1 1       (4.134b)   

 Substitution of equations  (4.133a)  and  (4.133b)  into equations  (4.134a)  and 
 (4.134b)  results in the following system of equations:

  
∂
∂

= − ∂ ( )
∂

w
x

F u
x

exp( )λ λ0 1       (4.135a)  

  
∂
∂

= − ( ) ∂ ( )
∂

w
y

F u
y

exp λ λ0 1       (4.135b)   

 Equations  (4.135a)  and  (4.135b)  can be integrated using the theory of differential 
forms that states

  
∂
∂

+ ∂
∂

= −∫ w
x

x
w
y

y w x y w
x y

d d
0 0

0 0
,

( , )
( , ) ( , )       (4.136)   

 The point with coordinates (0, 0) lies on the solution domain ’ s contour; therefore, 
 u  at this point is equal to 0; and the right side of equation  (4.136)  becomes

 w x y w w x y u w x y w x y, , , exp , exp ,( ) − ( ) = ( ) − −( ) = ( ) − ( ) = ( ) −0 0 0 11λ       (4.137)   

 Consider a generic point with coordinates ( x y,    ), which can be identifi ed by 
means of a polygonal curve starting from the origin of axes (0, 0), passing across 
the point ( x , 0   ) and ending at ( x y,    ) (see Fig. 3-28). At this point, the defi nite 
integral of the fi rst part of equation  (4.136)  can be calculated as

  

− ∂ ( )
∂

− ∂ ( )
∂

= − ∂ ( )
∂

∫ F u
y

y
F u

x
x

F u
y

x y
λ λ λ λ

λ

1 0
0 0

1 0

1

exp( ) exp( )
,

( , )
d d

eexp( ) exp( )λ λ λ0
0

1 0dy F u
y

∫ = − ( )
      (4.138)   

 Equating the right side of equation  (4.138)  to the right side of equation 
 (4.137) , one obtains the expression of  w ( x ,  y ) as

  w x y F u, exp( )( ) = − ( )1 1 0λ λ       (4.139)   

 Recalling that  w ( x ,  y ) is equal to exp( −  λ  1  u ), equation  (4.139)  can be rewritten as

  exp[ ( , )] exp( ) ,− = − ( )( )λ λ λ1 1 01u x y F u x y       (4.140)   
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 Hence, the expression of  u ( x ,  y ) can be obtained as

  u x y F u x y, ln exp( ) ,( ) = − − ( )( )[ ]1
1

1
1 0λ

λ λ       (4.141)   

 Integration of constraint equation  (4.4)  yields

  exp( ) exp( ) exp( )
max

max− − = ⇒ = − −∫ λ λ λ λ λ0 1

0

1 0 11 1u u u
u

d       (4.142)   

 Denoting  λ  1  u  max  by  G  and inserting equation  (4.142) , equation  (4.141)  can be 
rewritten as

  u x y
u

G G F u x y
,

ln exp( ) ,
max( ) =

− −( )⋅ ( )( )[ ]
1

1 1
      (4.143)  

in which parameter  G  can be calculated considering the constraint expressed by 
equation  (4.6) . Equation  (4.143)  is the 2-D universal velocity distribution in terms 
of  u  max , parameter  G , and 2-D CDF. One can now determine properties of the 2-D 
velocity distribution as discussed in Chapter 3.   

  Questions 

   Q4.1      Considering different values of exponent  n  ( n   =  1, 2, 3, 4, 5, 6, 7, 8, 9, and 
10), plot the power law velocity distribution. Which value of  n  seems 
most appropriate? Take fl ow depth as 0.5 m and  u  max  as 1.5 m/s.  

  Q4.2      Consider a set of velocity measurements as given in Table  4-4 , where  D   =  
0.122 ft and  u  max   =  8.796 ft/s. Fit the power law velocity distribution to the 
data, and determine the value of the exponent  n  using the least-squares 
method. How good is the fi t?   

  Q4.3      For the data in Table  4-4 , determine the value of exponent  n  by using the 
entropy method and also obtain the improved value of  n  by using the cor-
rection. Compute the power law velocity distribution with  n  computed 
by using the entropy method, and compare it with the observed velocity 
distribution.  

  Q4.4      Determine and plot the PDF of velocity by using the  n  values estimated 
in Q4.2 and Q4.3. Interpret the plots.  

  Q4.5      Determine and plot the CDF of velocity by using the  n  values estimated 
in Q4.2 and Q4.3. Interpret the plots.  

  Q4.6      Determine the entropy of velocity distribution by using the  n  values 
estimated in Q4.2 and Q4.3. Interpret the entropy values.  
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  Q4.7      For the data in Table  4-4 , determine the value of exponent  n  by using the 
method that involves entropy parameter  M . Now compute the power law 
velocity distribution with  n  computed as aforementioned, and compare 
it with the observed velocity distribution.  

  Q4.8      Determine and plot the PDF of velocity by using the  n  value estimated 
in Q4.7. Interpret the plot and compare it with that obtained in Q4.4.  

  Q4.9      Determine and plot the CDF of velocity by using the  n  value estimated 
in Q4.7. Interpret the plot and compare it with that obtained in Q4.5.  

  Q4.10      Determine the entropy of velocity distribution by using the  n  value 
estimated in Q4.7. Interpret the entropy value and compare it with that 
obtained in Q4.6.  

  Q4.11      Considering different values of exponent  n  ( n   =  1, 2, 3, 4, 5, 6, 7, 8, 9, and 
10), plot the power law velocity distribution. Which value of  n  seems 
most appropriate? Take fl ow depth as 0.5 m and  u  max  as 1.5 m/s.  

  Q4.12      Consider the velocity measurements given in Table  4-4 , fi t the log law or 
Prandtl–von Karman velocity distribution to the data, and determine the 
parameter values using the least-squares method. How good is the fi t?  

  Q4.13      For the data in Table  4-4 , determine the log law velocity distribution 
parameter values by using the entropy method and also the simplifi ca-
tion. Now compute the log law velocity distribution and compare it with 
the observed velocity distribution.  

  Q4.14      Determine and plot the PDF of velocity by using parameters estimated 
in Q4.12 and Q4.13. Interpret the plots.  

 y  (ft)  u  (ft/s)

0.006 2.370

0.007 2.404

0.009 2.628

0.011 2.804

0.013 3.094

0.018 3.594

0.023 4.070

0.028 4.522

0.033 4.950

0.038 5.355

0.043 5.674

 Table 4-4      Velocity measurement of Einstein and Chien ( 1955 ).  

 y  (ft)  u  (ft/s)

0.048 6.007

0.053 6.283

0.063 6.759

0.073 7.116

0.082 7.449

0.093 7.759

0.097 7.925

0.102 8.044

0.112 8.354

0.122 8.796
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  Q4.15      Determine and plot the CDF of velocity by using parameters estimated 
in Q4.12 and Q4.13. Interpret the plots.  

  Q4.16      Determine the entropy of velocity by using the parameters estimated in 
Q4.12 and Q4.13. Interpret the entropy values.  

  Q4.17      For the data in Table  4-4 , determine the log law velocity distribution 
parameters by using the method involving entropy parameter  M . Now 
compute the log law velocity distribution with parameters computed as 
stated and compare it with the observed velocity distribution.  

  Q4.18      Determine and plot the PDF of velocity by using parameters estimated 
in Q4.17. Interpret the plot and compare it with that obtained in Q4.14.  

  Q4.19      Determine and plot the CDF of velocity by using parameters estimated 
in Q4.17. Interpret the plot and compare it with that obtained in Q4.15.  

  Q4.20      Determine the entropy of velocity by using parameters estimated in 
Q4.17. Interpret the entropy value and compare it with those obtained 
in Q4.16.    
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    Chapter 5 

  Applications of 
Velocity Distributions  

       In Chapters 2, 3, and 4, velocity distributions in one and two dimensions are 
derived using the principle of maximum entropy (POME). These velocity distri-
butions are found to be useful in a variety of applications. This chapter discusses 
a sample of such applications. 

  5.1     Sampling Velocity Measurements 

 The one-dimensional velocity distribution based on the mass conservation con-
straint from Chapter 2 [given by equation (2.70)] is rewritten as
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      (5.1)  

where  u  is the fl ow velocity at a distance  y  from the bed;  D  is the fl ow depth, 
0  ≤   y   ≤   D ;  λ  1  is the Lagrange multiplier associated with the total probability; 
 λ  2  is the Lagrange multiplier associated with mass conservation constraint; 
 u D   is the fl ow velocity at  y   =   D  and is the maximum velocity;  u * is the shear 
velocity,  u gDS* =    ,  g  is the acceleration caused by gravity,  S  is the bed slope; 

c05.indd   241c05.indd   241 5/21/2014   11:10:45 AM5/21/2014   11:10:45 AM



242 Entropy Theory in Hydraulic Engineering

and  k  1   =   u * λ  2  is a parameter related to shear velocity. The mean velocity  u m   can 
be obtained from equation  (5.1)  as

  u u u um D D D= − −−exp( )[exp( ) ]λ λ
λ2 2

1

2

1
1

      (5.2)   

 Equation  (5.1)  is obtained from one-physical-constraint (mass conservation 
based), entropy-based probability density function  f ( u ), which can be rewritten 
(see Chapter 2) as

  f u u( ) exp[ ]= − +λ λ1 21       (5.3a)  

where  λ  1  and  λ  2  are the Lagrange multipliers that have been expressed in terms 
of entropy number  M  in Chapter 3 as

  λ2 =
M

umax
      (5.3b)  

and

  λ λ0 1 1
1

= − =
−

⎧
⎨
⎩

⎫
⎬
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ln
[exp( ) ] max

M
M u

      (5.4)  

where  u  max  is the maximum velocity, which may or may not occur at  y   =   D  (water 
surface) and may therefore not equal  u D  . Substitution of equation  (5.3a)  into the 
total probability constraint:

  f u du
uD

( )
0

1∫ =       

yields

  exp( )[exp( ) ]λ λ λ1 2 21 1− − =uD       (5.5)   

 Chiu ( 1987 ) commented on the usefulness of equation  (5.1)  for sampling velocity 
measurements. Because this equation is based on the uniform probability density 
function  f ( y )  =  1/ D , and  F ( y )  =   y / D , i.e., the velocity in each distance interval  dy  
has an equal probability of being measured, velocity measurements between the 
channel bed and the water surface should lead to a set of data points distributed 
according to equation  (5.3a) . This result shows that higher velocity values have 
a higher probability density of being measured. If the entire range of velocity 
has equal probability of being measured, i.e.,  f ( u )  =  1/ u D  , then the sampling 
method can be formulated as follows: 

 From the discussion in Chapter 2 (or equations  (5.1)  and  (5.3a)  here) and 
noting that  Df ( u )  =   dy / du , equation  (5.5)  can be written as

  Df u D u D y( ) exp( )exp( ) exp( )= − = − +λ λ λ λ2 1 1 21 1       (5.6)   

 Recalling that  f ( y )  =  1/ D , equation  (5.6)  can be used to write it as

  f y
D

f u
D y

( )
( )

exp( )
= =

− +
1

11 2λ λ
      (5.7)   
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 Recalling that  f ( u )  =  1/ u D  , equation  (5.7)  can be written as

  f y u D yD( ) [ { exp( ) }]= − + −λ λ1 2
11       (5.8)   

 Therefore, integration of equation  (5.8)  leads to
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      (5.9)   

 Equation  (5.8)  or  (5.9)  can constitute a basis for sampling. Equation  (5.8)  shows 
that sampling frequency increases with decreasing  y . This result is reasonable 
because the fi t of the Prandtl–von Karman universal velocity distribution (see 
Chapter 4, given by equation (4.27a) becomes less accurate as  y  and mean velocity 
 u m   decrease. In general, one would concentrate on the measurement of maximum 
velocity  u D  . The knowledge of maximum velocity allows us to determine the 
mean velocity through equation (3.118) (in Chapter 3), which yields  k  1 . Equation 
 (5.1)  has an advantage because it applies over the full range of  y  from zero to  D , 
including the point where  u   =  0 and  y   =  0, even in sediment-laden fl ows. Thus, 
equation  (5.1)  can help greatly simplify velocity measurement or sampling. 

  Example 5.1               Plot the probability density function (PDF) of  y  given by equation 
 (5.8)  and the cumulative distribution function (CDF) given by equation  (5.9) . As-
sume that 100 observations of velocity have been taken at  y   =  0.05, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 times  D , where  D   =  2 m. The sampling frequency 
at each of these fl ow depths is given in Table  5-1 .   

 y/D  y  (m) obs.  f ( y ) est.  f ( y ) obs.  F (y) est.  F ( y )

0.05 0.1 0.592 0.625 0.054 0.072

0.1 0.2 0.618 0.606 0.103 0.14

0.2 0.4 0.526 0.572 0.285 0.265

0.3 0.6 0.551 0.542 0.388 0.378

0.4 0.8 0.518 0.515 0.461 0.481

0.5 1 0.5 0.49 0.558 0.576

0.6 1.2 0.443 0.468 0.694 0.664

0.7 1.4 0.428 0.448 0.735 0.746

0.8 1.6 0.482 0.429 0.801 0.823

0.9 1.8 0.389 0.412 0.904 0.894

1 2 0.382 0.396 0.998 0.962

 Table 5-1      Flow depth and probability distribution.  
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  Figure 5-1      PDF of  y  (m).    

  Figure 5-2      CDF of  y  (m).    

  Solution     Take  u D    =  2.27 m/s,  D   =  2 m. From equation  (5.8)  and  (5.9) ,  f ( y ) and  F ( y ) 
can be computed as shown in Table  5-1 . The PDF of velocity is plotted in Fig.  5-1  
and the CDF in Fig.  5-2 .       

  5.2     Use of  k  1 –Entropy Relation for Characterizing 
Open-Channel Flows 

 Entropy of the probability density function given by equations  (5.3a)  and  (5.5)  
is expressed as

  H u u um D( ) exp( )[exp( ) ]= − + − − −λ λ λ1 1 21 1 1       (5.10)   
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 For a large set of data, Chiu ( 1987 ) related parameter  k  1  ( u * λ  2 ) to entropy (given 
by equations (3.40) and (3.41) in Chapter 3), written as

  H
u
u

H u u
*

*⎛
⎝

⎞
⎠ = −( ) ln       (5.11)  

  log . .k H
u
u

1 0 48 0 46= − ⎛
⎝

⎞
⎠*

      (5.12)   

 Lower values of  k  1  and hence higher values of entropy would be for fl ows over 
coarser channel beds and/or higher sediment concentration. Parameter  k  1  can be 
used as a criterion to classify open-channel fl ows under the infl uence of both the 
coarseness of bed material and the sediment concentration. Equations (3.16) and 
(3.21) of Chapter 3 and equation  (5.1) , when solved simultaneously, yield  k  1  and 
 u D  , without measuring  u  at any point. Thus, the entropy function  H ( u / u *) plays 
a key role in this manner of parameter estimation. 

  Example 5.2               Consider the data given in Table 3-1 in Chapter 3 for the fourth 
vertical. Determine the values of  k  1  and plot them as a function of entropy. Char-
acterize fl ows, based on the values of  k  1 .  

  Solution     First, determine the shear velocity  u gDS* =    .

  u gDS* = = × × =9 81 6 07 0 001 0 244. . . .        

 Now determine parameters  λ  1  and  λ  2 .

  λ λ1 20 254 0 179= =. .and        

 Now determine  H ( u ) and  H ( u / u *). Plot  k  1  as a function of  H ( u / u *) from equation 
 (5.12) .

  

H u u uD D( ) exp[ ]
. . exp[ . .

= − + − − +
= + − × − − +

λ λ λ1 1 22 1
0 254 2 2 72 0 254 1 0 4877
0 991

]
.=  Napier

      

  H
u
u

H u u
*

* Napier⎛
⎝

⎞
⎠ = − = − =( ) ln . ln( . ) .0 991 0 224 2 487        

 Finally, characterize fl ows.

  k H
u
u

1 0 48 0 46 0 48 0 46 2 487 0 514= − ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ = − × =exp . . exp( . . . ) . .

*
       

 The value of  k  1  is higher than the normal value, and, hence, it may suggest a 
coarse bed. Fig.  5-3  plots  k  1  as against  H ( u/u *).      
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  5.3     Energy and Momentum Coeffi cients 

 The energy coeffi cient  α  is defi ned as

  α = u
u

3

3
      (5.13)  

and the momentum coeffi cient  β  as

  β = u
um

2

2       (5.14)  

where  u3     and  u2     are the mean values of the cube of velocity ( u  3 ) and square of 
velocity ( u  2 ), respectively. In irregular channels, it is always diffi cult to obtain 
cross-sectional average velocities. As the PDF of  u  is derived using POME (equa-
tion  [5.3a] ), one can determine these expected values using equation  (5.1)  and 
the relation between mean and maximum velocities and express them in terms 
of entropy parameter  M  as

  α =
− − + − +

− +
[exp( ) ] {exp( )[ ] }

[exp( )( ) ]
M M M M M

M M
1 3 6 6 6

1 1

2 3 2

3       (5.15)  

  β =
− − + −

− +
[exp( ) ][exp( )( ) ]

[exp( )( ) ]
M M M M

M M
1 2 2 2

1 1

2

2       (5.16)   

 Thus, if  M  ( λ  2  u  max ) is known,  α  and  β  can be computed and would be constant 
for a channel section. Fig.  5-4  shows the variation of  α  and  β  with  M . 

  If the fl ow in an open channel is nonuniform, then the energy coeffi cient 
tends to vary with the fl ow depth and discharge, and, hence, from section to 
section. The total energy head  H  at a section can be written as

  Figure 5-3      Plot of  k  1  as a function of entropy.    
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  H Z
u

g
Z

Q
gA

m= + = +α α
2 2

22 2
      (5.17)  

where  Z  is the water surface elevation. Differentiating equation  (5.17)  with 
respect to  x  (the coordinate in the longitudinal direction), one obtains

  
d
dx

B
A

dD
dx

gA S S
Q

w fα α= −⎛⎝
⎞
⎠ =

−2 2 2

2

( )
      (5.18)  

where  B  is the fl ow width of the cross section at the water surface, and  S w   is the 
slope of the water surface:

  S
dZ
dx

w = −       (5.19)  

where  S f   is the slope of the energy grade line:

  S
dH
dx

Qn
CAR

f = − = ⎛
⎝

⎞
⎠2 3/       (5.20)  

where  n  is Manning ’ s roughness coeffi cient,  R  is the hydraulic radius, and  C   =  
1.49 if the British system of units is used and is unity in the SI system. 

 Equation  (5.18)  can be integrated as

  α α( ) ( )x
gA
Q

S S dx
A
A

w f

x

= − + ⎛
⎝⎜

⎞
⎠⎟∫

2 2

2
0

0
0

2

      (5.21)  

where  α  0  is  α  at  x   =  0, and  A  is  A  at  x   =  0. The ( S w   –  S f  ) term is the slope of the 
kinetic energy line in the  x- direction over distance  dx . The integral, therefore, 
represents the total change (net increase or decrease) in the fl ow kinetic energy 
between the channel section at  x   =  0 and a downstream channel section at a 
distance  x . 

  Figure 5-4      Variation of  α  and  β  with  M .    
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  Example 5.3               Consider two profi les: M-1, in which the fl ow depth increases in the 
fl ow direction, and S-1, in which the fl ow depth (or fl ow cross section) decreases 
in the fl ow direction. How do the two terms on the right side of equation  (5.21)  
vary and consequently how does  α  vary with  x ?  

  Solution     The fi rst term includes the integral term, which decreases for the M-1 
profi le where  A  increases and increases for the S-1 profi le in which  A  decreases. 
The second term increases for the M-1 profi le and decreases for the S-1 profi le. 
Thus, the gradient of the kinetic energy may change irregularly from one section 
to another, positive or negative, depending on whether the channel is narrowing 
or widening. Because  α  can be expressed in terms of entropy parameter  M , its 
value can shed light on the homogeneity of the velocity distribution.    

  Example 5.4               Consider a test section 180 cm long and 10 cm wide of a rectangu-
lar channel with a slope of 0.00156. The discharge is 669 cm 3 /s. The fl ow at the 
downstream end is a free fall; this means that it has a drawdown profi le. The 
critical section occurs at about 10 cm upstream from the brink. The fl ow is an up-
rising profi le at and near the upstream boundary of the test section. Around the 
middle of the test section, the fl ow is almost uniform. The water surface eleva-
tions are given in Table  5-2 . 

  Compute the energy grade line. Compute  α  using equation  (5.21)  and veloc-
ity distribution. Also compute  S w   and  S f  . Plot these quantities as functions of dis-
tance. What is the value of  α  at  x   =  100 cm?  S f   can be computed using Manning ’ s 
equation with  n   =  0.00891 (Chiu and Murray  1992 ).  

  Solution     Given  S w    =  0.00156,

  S
dH
dx

Qn
CAR

f = − = ⎛
⎝

⎞
⎠ =

×
×

=2 3 2 3

669 0 00891
22 1 528

0 204/ /

.
.

.        

 Taking  α  0   =  1.2,  α  can be computed using equation  (5.21) , as see in Table  5-3 . This 
result can be plotted as in Fig.  5-5 .       

x  (cm) h  (cm) 

180 2.2

160 2.25

140 2.3

120 2.35

100 2.27

 Table 5-2      Water surface elevation.  

x  (cm) h  (cm) 

80 2.21

60 2.1

40 1.8

20 1.7

0 1.3
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  5.4     Shear Stress Distribution 

 In steady uniform open-channel fl ow, shear stress  τ  is maximum at the bed, 
minimum or zero at the water surface, and the decrease from the bed to the water 
surface is monotonic. The maximum value is given as  τ 0  =   ρ  gDS   =   γ  DS ;  γ   =   ρ  g ; 
 τ   =   τ  0  at  y   =  0; 0  ≤   τ   ≤   τ  0 ;  ρ  is the fl uid mass density. The probability of shear stress 
equal to or less than a particular value  τ  can be expressed as

  F
D y

D
( )τ =

−
      (5.22)  

which is the cumulative probability distribution of  τ . Differentiation of equation 
 (5.22)  leads to the probability density function of  τ  as

  f
D

dy
d

D
d
dy

( )τ
τ

τ= − = −⎛
⎝⎜

⎞
⎠⎟

−
1

1

      (5.23)   

x (cm) a

140 1.35

120 1.21

100 1.11

80 1.2

60 1.19

40 1.21

20 1.18

 Table 5-3      Computed energy grade line in Example  5.4 .  

  Figure 5-5      Plot of  α  as a function of  S w   and  S f  , for  x   =  100 cm,  α   =  1.11.    
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 The objective is to determine  f ( τ ) using the principle of maximum entropy 
(POME). This involves maximization of entropy

  H f f d( ) ( )ln ( )τ τ τ τ
τ

= −∫0
0

      (5.24)  

subject to

  f d( )τ τ
τ

0

0
1∫ =       (5.25)  

and other constraints, such as the mean shear stress value and the variance of 
shear stress. However, for simplicity, other constraints are not used, as was done 
by Chiu ( 1987 ). Then, one obtains

  f ( ) exp[ ]τ λ= − −0 1       (5.26)  

where  λ  0  is the zeroth Lagrange multiplier corresponding to equation  (5.25) . 
Substitution of equation  (5.26)  into equation  (5.25)  yields

  f ( ) exp[ ]τ λ
τ

= − − =0
0

1
1

      (5.27)   

 Equation  (5.27)  is a uniform probability density function of  τ . Measurement of  τ  
between  y   =  0 and  y   =   D  is done according to a uniform probability distribution 
1/ D ; the shear stress data exhibit a uniform probability density function as equa-
tion  (5.27) . Equating equation  (5.27)  to equation  (5.23) , one gets the relation 
between  τ  and  y  as

  τ τ= −⎛
⎝⎜

⎞
⎠⎟0 1

y
D

      (5.28)   

 Going from planar coordinates ( y ,  z ) to curvilinear coordinates ( r ,  s ), equation 
 (5.28)  can be written as

  τ τ= − −
−

⎡
⎣⎢

⎤
⎦⎥

0
0

0

1
r r

r rmax

      (5.29)   

 Equation  (5.29)  is widely used in hydraulics and is derived by using the equation 
of motion or momentum conservation for steady, uniform, one-dimensional fl ow. 

 A shear stress distribution compatible with the velocity as a function of  r  
given by equation  (5.28)  may now be expressed in power series as

  τ
τ0

2

1 1 1= −
+

⎛
⎝⎜

⎞
⎠⎟ + +⎛

⎝
⎞
⎠ −

+
⎛
⎝⎜

⎞
⎠⎟

h
D

y
D h

h
D

y
D h

      (5.30)   

 which satisfi es the condition that  τ   =   τ  0  at  y   =  0 ;   τ   =  0 at  y   =   D   +   h,  where  u   =   u  max  
and also at  y   =   D  (water surface). Equation  (5.30)  becomes equation  (5.28)  as  h / D  
tends to negative infi nity. It can be shown, using L ’ Hospital ’ s rule, that equation 
 (5.30)  is an approximate form of the polynomial shear stress distribution:

  τ α α α= + − + −0 1 2
2( ) ( )max maxr r r r       (5.31)  

where  α  0 ,  α  1 , and  α  2  are constants that can be evaluated using boundary condi-
tions, and  r  max  is  r  when  u  is  u  max . 
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 The shear stress can also be expressed as

  τ ρε ρε τ= = = −⎛
⎝⎜

⎞
⎠⎟0 0 0 1

du
dy

du
drh

y
Dr

      (5.32)  

where  h r   is the scale factor or metric coeffi cient needed in the coordinate trans-
formation between the  y  and  r  systems. The velocity gradient can be expressed 
using equations (3.36) and (3.84) as

  
du
dy

du
drh

u
M

M
r r

M
r r

r rr

= =
−

−
+ − −

−
max

max max

[exp( ) ]
( )

[exp( ) ]
1

1 1
0

0

00

1{ }−

hr       (5.33)   

 The shear stress at the channel bed for a wide channel can be expressed as

  τ ρ ρε0 0

0

= =
=

gDS
du
dy

f

y

      (5.34)  

where  ε  0  is the momentum transfer coeffi cient at the channel bed; it is equal to 
the kinematic viscosity of fl uid in a smooth channel with the viscous sublayer 
likely to exist, and

  
du
dy

u M
DMy=

=
−

0

1max[exp( ) ]
      (5.35)   

 Substitution of equation  (5.27)  in equation  (5.24)  yields the maximum entropy 
of shear stress:

  H( ) lnτ τ= 0       (5.36)  

  Example 5.5               Construct the shear stress distribution  τ / τ  0  versus  y / D  for  h / D   =  
0.5, 0.2, 0.1, 0, –0.2, –0.4, –0.6, and –0.8, assuming  M   =  2.  

  Solution     The relation between shear stress distribution  τ / τ  0  as a function of  y / D  
for various values of  h / D  is given in Fig.  5-6 . Assume  D   =  1 m. Using equation 
 (5.30) , the ratio  τ / τ  0  is computed, as shown in Table  5-4 .        

  Figure 5-6      Shear stress distribution  τ / τ  0  versus  y / D  for  h / D .    
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  5.5     Relation between Maximum Velocity, Darcy ’ s 
Friction Factor, and Entropy Number 

 For wide rectangular channels, the shear stress can be written as

  τ ρ ρε0 0

0

= =
=

gDS
du
dy

f

y

      (5.37)  

where  ε  0  is the momentum transfer coeffi cient at the channel bed. Here it is 
implied that the velocity gradient in equation  (5.37)  remains fi nite at the channel 
bed.  ε  0  equals the kinematic viscosity if the channel bed is smooth such that the 
viscous sublayer exists. From equation (3.33) with  r   =   y / D , then

  
du
dy

u M
DMy=

=
0

max[exp( )]
      (5.38)   

 Thus, with the use of the right side of equation  (5.38) , equation  (5.37)  can be 

expressed as  
ε
υ

0
2

=
gD S M

u M
f

max exp( )
   , and  u  max  is replaced with  u m  / u  max  and  u m  / u * using 

equations (3.43) and (3.53). According to the Darcy–Weisbach equation,  S f   can be 

expressed as  S f
D

u
g

f l
m= 1

2

2

   . Summarizing the above relations,  
ε
υ

0     can be expressed 
as

  
ε
υ

0
2

8
= ⎛
⎝

⎞
⎠ =
−u

u
R

F M
f R

F M
m n

m

l n

m* ( ) ( )
      (5.39)  

where  f l   is the friction factor,  R n   is the Reynolds number,  υ  is the kinematic vis-
cosity, and

 y/D  h/D   =  0.5  h/D   =  0.2  h/D   =  0.1  h/D   =  0  h/D   =  –0.2  h/D   =  –0.4

0 2.000 1.400 1.200 1.000 0.600 0.200

0.1 1.773 1.192 1.000 0.810 0.438 0.083

0.2 1.560 1.000 0.818 0.640 0.300 0.000

0.3 1.360 0.825 0.655 0.490 0.188 –0.050

0.4 1.173 0.667 0.509 0.360 0.100 –0.067

0.5 1.000 0.525 0.382 0.250 0.038 –0.050

0.6 0.840 0.400 0.273 0.160 0.000 0.000

0.7 0.693 0.292 0.182 0.090 –0.013 0.083

0.8 0.560 0.200 0.109 0.040 0.000 0.200

0.9 0.440 0.125 0.055 0.010 0.038 0.350

1 0.333 0.067 0.018 0.000 0.100 0.533

 Table 5-4      Values of  τ / τ  0  as a function of  y / D  for various values of  h / D .  
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  F M
M

M M
m( )

exp( )
( )

=
− 1

φ
      (5.40)   

 For a smooth channel,  ε  0 / υ   =  1. When  R n   increases,  f l   decreases, and, hence,  M  
and  f l R n   remain constant. Thus,  M  can be determined from the product of  R n   and 
 f l   or  u m  / u *. If a channel is rough, then it adjusts  ε  0 / υ  beside  f l   to keep  M  constant 
when  R n   changes. 

  Example 5.6               Compute the shear stress for a wide rectangular channel where 
 u  max   =  2.72 m/s,  D   =  6.07 m, and  M   =  0.478.  

  Solution     Here,

  
du
dy

u M
DMy=

−= =
×

×
=

0

2 72 0 487
6 07 0 487

1 497max[exp( )] . exp( . )
. .

. s 1       

  τ ρ ρε0 0

0

3 22 05 10= = = ×
=

−gDS
du
dy

f

y

. /kgm s            

  5.6     Discharge Measurements 

 During high fl ows, such as fl oods, reliable discharge data are often lacking. It is, 
therefore, desirable to have a method that requires only velocity sampling. Dis-
charge involves mean velocity and cross-sectional area. The cross-sectional area 
can be determined from its relation to water level. In unsteady fl ow, the rating 
curve or the relation between discharge and water level is looped, which com-
plicates discharge estimation. 

 Chiu et al. ( 2005 ) presented methods for discharge measurements using the 
entropy-based velocity equations derived in Chapter 3. Following their work 
here, a general form of velocity distribution (given by equation [3.35a]) can be 
written as

  
u

u M
M

r r
r r

m

max max

ln [exp( ) ]= + − −
−{ }1

1 1 0

0

      (5.41)  

where  M  is the dimensionless parameter,  u m   is the mean velocity,  r     is the value 
of  r  where  u   =   u m  ,  u ma   x  is the maximum velocity in the channel cross section,  r  max  
is the value of  r , where  u   =   u  max ,  r  0  is the value of  r  where  u   =  0. The curvilinear 
coordinate  r  is related to  y  as

  r
y

D h
y

D h
=

+
−

+
⎡
⎣⎢

⎤
⎦⎥

exp 1       (5.42)  

where  h  is a parameter related to the shape and slope of the isovels. 
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 The cumulative probability distribution function  F ( u ) (CDF) of velocity  u , 
0  ≤   u   ≤   u  max , corresponding to equation  (5.41) , can be written as

  F u
M

M
u

u
( )

exp( )
exp

max

=
−

⎛
⎝⎜

⎞
⎠⎟ −

⎡
⎣⎢

⎤
⎦⎥

1
1

1       (5.43)   

 Differentiating equation  (5.43)  and noting that the PDF of  u / u  max ,  f ( u / u m   ax )  =  
 u  max  f ( u ), one obtains

  f
u

u
u f u

M
M

Mu
umax

max
max

( )
[exp( ) ]

exp⎛
⎝⎜

⎞
⎠⎟ = =

−
⎛
⎝⎜

⎞
⎠⎟1

      (5.44)   

 Equation  (5.44)  has only one parameter  M . The mean value of  u / u  max  can be 
obtained from equation  (5.41)  as

  
u

u
M

M M
m

max

exp( )
exp( )

= =
−

−φ
1

1
      (5.45)   

 Equation  (5.45)  has been found to be stable under a variety of fl ow types—steady 
or unsteady. 

 The question arises as to the invariance of  M  or  ϕ  under various fl ow condi-
tions. For velocity data collected by the U.S. Geological Survey for the Alleghany 
River at Natrona, near Pittsburgh, Pennsylvania, during 1974–1994, Chiu et al. 
( 2005 ) found  ϕ  to be 0.79 with  u  max  obtained at the mean distance from the refer-
ence point, and 0.81 if  u  max  was obtained at one standard deviation plus or minus 
of the mean distance. 

 Chiu ( 1988, 1991 ), Chiu and Said ( 1995 ), and Chiu and Tung ( 2002 ) related 
the following quantities to  M : (1)  u m  / u  max  or  ϕ ; (2)  h / D  or  ϕ  1 , where  h  is the dis-
tance below the water surface at which maximum velocity occurs; (3)  u m  / u D   or 
 ϕ  2 ,  u D   is the velocity at the water surface; (4)  u um y/     or  ϕ  3 ,  uy    is the mean value 
of  u  on the  y -axis; (5)  y m  / D ,  y m   or  ϕ  4 ,  y m   is the mean value of  y  on the  y -axis where 
 u   =   u m  ; (6)  y Du/     or  ϕ  5 ,  yu     is the value of  y  where  u   =   u m  ; and (7) the energy and 
momentum coeffi cients. The relationships of these equations with  M  are shown 
in Fig.  5-7 . 

  Figure 5-7      Relations of different quantities with  M .    
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  Leopold et al. ( 1995 ) discussed the notion that the maximum point velocity 
is usually about 25 to 50% higher than the average point velocity for the cross 
section. This observation translates into an  M  value between 2 and 5. Chiu and 
Tung (2005) showed that in this range  u  max  occurs below the water surface. In 
that case,  ϕ  4  and  ϕ  5  quickly approach 0.368, and  F ( u ) can be represented by  y / D . 
Once  M  is determined, the seven quantities listed can be obtained, or vice versa. 
Since  M  is constant for a cross section, these quantities are also constant. Thus, 
in sampling velocity on the  y -axis, the following methods for discharge measure-
ments are suggested:

   1.       u  max : By measuring or estimating  u  max , the cross-sectional mean velocity 
can be determined as 

   u um = maxφ       (5.46)   

 because  ϕ  is regarded as invariant. Given the cross-sectional area, dis-
charge for known  u m   can be determined.  

  2.      Velocity at a single point on the water surface: The velocity measured at 
the water surface can be used to estimate  u  max  as 

   u u M M
h
D

h
D

Dmax ( ) ln [exp( ) ] exp= ÷ + −
+

−
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

1 1
1

1
1

1

1
⎭⎭
⎪

      (5.47)   

 Equation  (5.47)  is equivalent to equation  (5.41) . Chiu and Tung ( 2002 ) 
related  h / D  in equation  (5.47)  to  M : 

   
h
D

M
M

=
−

=0 2
58 3

1
1. ln

.
exp( )

φ φ       (5.48)   

 Noting that  u  max   =   u m  / ϕ , equation  (5.47)  becomes 

   
u
u

M M
h
D

h
D

m

D

= ÷ + −
−

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=φ ln [exp( ) ] exp1 1

1

1
1

1

1
φφ2       (5.49)   

 Since both  ϕ  and  h / D  are functions of  M , the  u m  / u D   ratio is also a function 
of time, and this ratio is constant for a given cross section. Therefore, 

   u um D= φ2       (5.50)    

  3.       uy    : The cross-sectional mean velocity can be written as 

   u um y= φ3       (5.51)   

  uy     can be determined by taking a couple of velocity observations on the 
 y -axis. If just one observation is taken, then it should be at  y   =   ϕ  5  D , where 
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 u uy=    . For two observations, velocities  u  0.2  and  u  0.8 , should be sampled at 
 y   =  0.8 D  and  y   =  0.2 D . Then the average velocity should be estimated.  

  4.      Single velocity sampling: The cross-sectional mean velocity  u m   can be 
measured by observing velocity at  y   =   ϕ  4  D  on the  y -axis.    

 Now the location of the  y -axis (vertical) on which the maximum velocity 
occurs needs to be found. In natural channels, it may not occur in the middle 
of the cross section, but its average location does not seem to change with dis-
charge and water level for fl ows confi ned within the main channel. Both the 
maximum velocity on the water surface and the maximum velocity within the 
entire channel cross section tend to occur on the same  y -axis. The velocity dis-
tribution tends to be quite uniform in the vicinity of the point at which  u  max  
occurs. The  y -axis therefore is highly informative in that it yields the magnitude 
and location of  u  max , which are required to estimate  ϕ ,  M ,  h / D , and other con-
stants at the channel cross section. Furthermore, the correlation between  u m   
and  u  max  and  uy     on the  y -axis is maximum. This phenomenon means that the 
cross-sectional mean velocity  u m   can be estimated from  u  max  or  uy     without sam-
pling velocity on other verticals. For the data collected in the channel cross 
section of South Esk River at Bridge 2 (Bridge and Jarvis  1985 ) over a four month 
period from December 14, 1978, to April 14, 1979, Chiu et al. ( 2005 ) found  ϕ  3  to 
be 0.86. The correlation was high near the  y -axis but decreased toward the 
channel banks. 

  Example 5.7               The U.S. Geological Survey collected data during 1986 to 2000 at 
Skagit River at Mount Vernon, Washington, DC. The cross-sectional area, ob-
served by acoustic Doppler current profi ler (ACDP), was 578 m 2 . From a plot of 
the observed mean and maximum velocities, it was found that  ϕ   =  0.64, and  M   =  
1.80 from equation  (5.48) . Compute  ϕ  1 ,  ϕ  2 ,  ϕ  3 ,  ϕ  4 ,  ϕ  5 ,  α , and  β  using Fig.  5-7 . Com-
pute  u m   and  Q .  

  Solution     With the aid of Fig.  5-7 ,  ϕ  1   =  0.51,  ϕ  2   =  0.76,  ϕ  3   =  0.73,  ϕ  4   =  0.09,  ϕ  5   =  0.21, 
 α   =  1.475, and  β   =  1.5. The velocity distribution was determined by regression, 
which yielded  u  max   =  1.41 m/s. The mean velocity  u m    =   u  max  ϕ   =  0.9 m/s. There-
fore, discharge  Q   =  520 m 3 /s, which is only 1% less than the observed value of 
525 m 3 /s. 

 When  M   =  1.80,  h/D   =   ϕ  1   =  0.51 and a single velocity sample  u D   is used in equa-
tion  (5.47) , the maximum velocity below the water surface,  u  max   =  1.43 m/s. The 
mean velocity  u m    =  0.64  u  max   =  0.915 m/s. Then,  Q   =  529 m 3 /s, which is only 0.8% 
greater than the observed value. 

 The mean velocity and discharge can also be estimated using  ϕ  2 . For  ϕ  2   =  
0.76 at  M   =  1.8,  u D    =  1.20 m/s,  u m    =  0.91 m/s from multiplication of 0.76 and 
1.20 m/s. Alternatively,  ϕ  4   =   y m  / D   =  0.09 at  M   =  1.8,  u m   occurs at  y   =  0.09 D   =  0.31 m, 
since  D   =  3.4 m. At  y   =  0.31 m,  u m    =  0.9 m/s from Fig.  5-8 , which is about the 
same. For April 21, 1999,  u D   in equation  (5.47)  gives  u  max   =  1.44 m/s, and  u m    =  
0.92 m/s. For  A   =  560 m 3 /s and observed  Q   =  520 m 3 /s; both values are quite 
comparable.      
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  5.7     Determination of Discharge at Remote Locations 

 Discharge estimation depends on local hydraulic conditions, which are defi ned 
by recording the water level at a gauged section. Local stage monitoring is fairly 
straightforward and relatively inexpensive compared with the cost to carry out 
both fl ow velocity measurements and topographic surveys of river cross sec-
tions, especially for remote sites or with unsuitable access. Therefore, it seems 
logical to convert stage records into discharge values through a reliable rating 
curve; however, the water level–discharge relationship may be unknown for 
some hydrometric sites. Moreover, if unsteady fl ow effects occur, a value of stage 
does not correspond to a single value of discharge (Herschy  1985 ). This difference 
is represented as a loop in the rating curve whose amplitude depends on how 
much the inertial and pressure forces infl uence the fl ood propagation (Mora-
marco and Singh  2000 ). In addition, velocity measurements are often available 
for low fl ows, so the rating curve extrapolation for higher stages cannot be reli-
able because of changes that occur in hydraulic and geometric characteristics of 
the river where the gauged cross section is located. The local discharge estima-
tion from observed stages has also been approached by considering the hydraulic 
conditions observed at some distance away. 

 A simpler and more practical method was developed by Moramarco and 
Singh ( 2001 ), which, without adopting a fl ood routing procedure and using only 
the water levels observed at a local site, allows for a quick estimation of fl ow 
conditions through the assessment of two parameters linked to the discharge 
values recorded at a hydrometric section some distance away. However, the 
method investigated only the case of translation and attenuation of the peak fl ow, 
and thus it cannot be applied for reaches where the tributaries produce large 
contributions. This work was extended by Moramarco et al. ( 2004 ) by relating 
the stage recorded at a site of interest to discharge values observed some distance 
upstream. Also, they considered the case when signifi cant lateral infl ows occur 

  Figure 5-8      Relation between mean and maximum velocities.    
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that affect an increase of both the peak fl ow and the volume at the downstream 
section. 

 Following the entropy-based relation between mean and maximum veloci-
ties expressed by equation  (5.46) , and recalling that  ϕ ( M ) remains more or less 
constant (Xia  1997 ), Moramarco and Singh ( 2001 ) surmised a direct proportional-
ity between upstream and downstream velocities as

  
u

u
u

u
mU

U

mD

Dmax max

∝       (5.52)  

where subscripts  U  and  D  represent quantities for the upstream and downstream 
sections, respectively. This, then, suggests a link between upstream and down-
stream discharges expressed as

  Q t
A t
A t

Q tD
D

U
U( ) = ( )

( )
( )α       (5.53)   

 Equation  (5.53) , under the assumption that the contribution of lateral infl ows is 
negligible, was verifi ed using several fl ood events of different magnitudes 
recorded at two gauged sections of the Upper Tiber River, Italy, where the rating 
curve was unknown at the downstream section (Moramarco and Singh  2001 ). 

 Discrepancies between observed values and those computed by equation 
 (5.53)  were modifi ed to take account of the wave travel time (Moramarco and 
Singh  2001 ). For a river reach where the stage and the surveyed stage–area rela-
tion are given at the two ends, where the discharge is known at the upstream 
section, for the case without lateral infl ows, the discharge at the downstream end 
can be determined as

  Q t
A t

A t T
Q t TD

D

U L
U L( ) = ( )

−( )
−( ) +α β       (5.54)   

 where  Q D   and  Q U   are the downstream and upstream discharges, respectively;  A D   
and  A U   are the effective downstream and upstream cross-sectional fl ow areas, 
respectively;  T L   is the wave travel time depending on the wave celerity,  c , that is 
referred to as the peak discharge velocity; and  α  and  β  are parameters. The effec-
tive fl ow area can be different from the surveyed area, both because of the par-
ticular morphologic characteristics of the river reach and the presence of a 
hydraulic structure close to the gauged section. In fact, around the zones of the 
river next to a weir or a bridge, there are areas of the cross section in which the 
water accumulates but is not being actively conveyed; hence, only a portion of 
the fl ow area contributes to the conveyance of water in the downstream direction 
(U.S. Army Corps of Engineers  1995, 2001 ). Equation  (5.54)  is based on the for-
mulation by Chiu ( 1991 ) where the cross-sectional mean fl ow velocity,  u m  , is 
expressed as a function of maximum velocity,  u  max , through a dimensionless 
parameter  M , as equation  (5.45) . The method allows a quick estimation of the 
fl ow conditions at the site of interest, even if the rating curve is unknown and 
only the stage is monitored. Although equation  (5.54)  appears to be adequate for 
relating the discharges at local and remote sites, it needs to be further verifi ed 
on sites where lateral infl ows can be signifi cant. 
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  5.7.1     Accounting for Wave Travel Time 

 Moramarco and Singh ( 2001 ) assessed the relationship using fi ve fl ood events of 
different magnitudes and durations. The relative stage data were recorded with 
a time interval of 0.5 h at the gauged sections of Santa Lucia and Ponte Felcino, 
along the Tiber River, Italy, which subtend drainage areas of 935 km 2  and 
2,035 km 2 , respectively. The peak discharge received a signifi cant contribution of 
lateral infl ow ranging from 13% to 53%. 

  Example 5.8               Obtain data for fl ood events for a drainage basin. Compute the con-
tribution of lateral infl ow as percentage of peak fl ow.  

  Solution     Assume that the increase in discharge downstream from that upstream 
is all contributed by lateral fl ow. Thus, the lateral infl ow is computed by  Q d    −   Q u  , 
as shown in Table  5-5 .      

Q u   (m 3 /s) Q d   (m 3 /s) q p   (%) 

December 1990 349.17 439.61 20.57

February 1991 276.13 600.28 54.00

January 1994 107.89 270.79 60.16

December 1995 407.08 418.50 2.73

December 1998 62.84 113.80 44.78

 Table 5-5      The percentage of lateral infl ow.  

  5.7.2     Estimation of Travel Time 

 The estimation of the wave travel time,  T L  , was based on the stage hydrographs 
observed at the upstream (Santa Lucia) and downstream (Ponte Felcino) sections. 
Because of lateral infl ows, the shape of the downstream hydrograph can change 
signifi cantly from the upstream one. For this reason,  T L   can be assumed as the 
time shift necessary to overlap the rising limb and the peak region of the two 
dimensionless stage hydrographs. At a gauged section of the dimensionless 
stage,  h *( t ), is given by

  h t
h t h
h h

b

p b
*( )

( )= −
−

      (5.55)  

where  h b   and  h p   represent the minimum and the maximum values of the observed 
stage hydrograph, respectively. Specifi cally,  T L   is estimated by minimizing the 
mean square of the residuals,  h t h t Td u L*( ) *( )− −    , in the rising limb and the peak 
region. 

 Parameters  α  and  β  can be obtained by linear regression. Equation  (5.54)  has 
been found suitable for all the events examined independently from the lateral 
infl ow contribution. Therefore,  α  and  β  can be considered as characteristic 
parameters of the fl ood event; they are constant during the event but change 
from one event to another. 
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  Example 5.9               Compute the time of travel for fl ood events on a drainage basin.  

  Solution     The maximum and minimum observed stages upstream and down-
stream are given in Table  5-6 . The dimensionless stages  h td*( )    and  h tu*( )    are com-
puted using equation  (5.55) . By the trial and error method, the time of travel  T L   is 
computed by minimizing  h t h t Td u L*( ) *( )− −    , and the results are shown in Table  5-6 .      

 hu
p ( )m     hu

b ( )m     hd
p ( )m     hd

b ( )m     T L   (hr)

December 1990 349.17 8.23 439.61 4.38 2

February 1991 276.13 22.74 600.28 23.00 4

January 1994 107.89 35.65 270.79 47.81 3

December 1995 407.08 16.28 418.50 22.56 3

December 1998 62.84 16.66 113.80 29.87 4.5

 Table 5-6      Computed time of travel for each fl ood event.  

  5.7.3     Estimation of Parameters  α  and  β  

 When the downstream rating curve is unknown, for estimating  α  and  β  two 
particular fl ow conditions are considered: base fl ow and peak discharge (Mora-
marco and Singh  2001 ). To that end, because of the linear relationship, one can 
write the following:

  Q t
A t

A t T
Q t Td b

d b

u b L
u b L( )

( )
( )

( )=
−

− +α β       (5.56a)  

  Q t
A t

A t T
Q t Td p

d p

u p L
u p L( )

( )
( )

( )=
−

− +α β       (5.56b)  

where  t p   and  t b   are, respectively, the time when peak stage and base fl ow occur 
at the downstream section. In particular,  t b   is assumed as the time just before the 
hydrograph rising limb. Therefore, once  Q d   ( t b  ) and  Q d   ( t p  ) are known,  α  and  β  
can be obtained as

  α =
−

−
− −

−

Q t Q t
A t

A t T
Q t T

A t
A t T

Q

d p d b

d p

u p L
u p L

d b

u b L
u

( ) ( )
( )

( )
( )

( )
( )

(tt Tb L−
⎡

⎣
⎢

⎤

⎦
⎥)

      (5.57)  

  β α= −
−

−Q t
A t

A t T
Q t Td b

d b

u b L
u b L( )

( )
( )

( )       (5.58)   

 Base fl ow can be computed easily if the downstream gauged section, although 
not equipped for velocity measurements during high fl ood events, allows 
workers to carry out wading measurements. Otherwise, assuming that the mean 
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velocity is unchanged between the upstream and downstream sections,  Q d   ( t b  ) 
can be computed as the product between the upstream mean velocity, estimated 
through  Q u   ( t b    −   T L  ), and the downstream fl ow area  A d   ( t b  ). This assumption can 
result in signifi cant errors in the computed base fl ow, but, as shown later, this 
value has a negligible infl uence on reconstructing the downstream discharge 
hydrograph for high stages, which are of the most interest in the hydrological 
practice. Finally, if a control structure, like a weir, identifi es the downstream 
section, the hydraulic laws can be used to determine  Q d   ( t b  ). The value of base 
fl ow can be assumed to be known. 

  Example 5.10               Compute parameters  α  and  β  for a number of fl ood events for a 
drainage basin.  

  Solution     To compute parameters  α  and  β ,  t p   and  t b   are fi rst obtained from the 
fl ow hydrograph. The value of  T L   is taken from Example  5.9 . The fl ow and area 
are shown in Table  5-7  for each corresponding time. Then, coeffi cients  α  and  β  
can be computed using equations  (5.57)  and  (5.58) . For example, using the event 
of December 1990,  t p    =  29.5 h,  t b    =  80 h, and 

  

α =
−

−
− −

−

Q t Q t
A t

A t T
Q t T

A t
A t T

Q

d p d b

d p

u p L
u p L

d b

u b L
u

( ) ( )
( )

( )
( )

( )
( )

(tt Tb L−
⎡

⎣
⎢

⎤

⎦
⎥

= −

−

)

. .
.
.

.
.
.

.

400 94 54 54
142 25
128 74

349 2
27 68
22 36

41 8⎡⎡
⎣⎢

⎤
⎦⎥

= 1 15.

      

  
β α= −

−
−

= − ×

Q t
A t

A t T
Q t Td b

d b

u b L
u b L( )

( )
( )

( )

. .
.
.

54 54 1 15
27 68
22 36

41.. .8 9 0= −
       

 Computations for other events are shown in Table  5-7 .     

 t p    
(hr)

 t b    
(hr)

 Q d  ( t p  )  
(m 3 /s)

 Q d  ( t b  )  
(m 3 /s)

 Q u  ( t p  – T L  )  
(m 3 /s)

 Q u  ( t b  – T L  )  
(m 3 /s)

December 1990 29.50 80.00 400.94 54.54 349.20 41.80

February 1991 81.00 123.00 593.82 76.61 276.1 45.00

January,1994 33.00 85.00 240.72 67.26 107.9 46.1

December 1995 32.50 96.00 424.16 41.54 407.10 27.60

December 1998 13.00 48.00 120.62 43.92 62.8 25.80

 Table 5-7      Estimation of parameters  α  and  β .  

Continued
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  5.7.4     Consideration for Lateral Flow 

 The downstream peak discharge,  Q d   ( t p  ), can be surmised as the contribution of 
two main elements: (a) the upstream discharge delayed for the wave travel time 
 T L  ,  Q u   ( t p    −   T L  ), with its attenuation caused by fl ood routing along the reach of 
length  L ; and (b) the lateral infl ow,  q p L , during the time interval ( t p    −   T L  ,  t p  ). 
Therefore, the following relationship can be assumed for  Q d   ( t p  ) (Moramarco and 
Singh  2001 ):

  Q t Q t T Q q Ld p u p L p( ) [ ( ) ]= − − +*       (5.59)   

 It is clear that equation  (5.59)  is a simplifi cation but is found suitable for estimat-
ing  Q d   ( t p  ). The upstream peak discharge attenuation,  Q *, can be estimated by 
the Price formula (Price  1973 ):

  Q
K

L T
Q

Q Q Q
tL

u
p u

p

*
*

= + −−

( / ) ( )3
1 1

2

2
Δ

      (5.60)  

where  Δ   t  * is time interval,  K   =   L /2 BS  0  is the attenuation parameter for peak 
discharge at the downstream end, and  S  0  and  B  are the bed slope and the mean 
river width, respectively. The last factor on the right-hand side of equation 
 (5.60)  is the curvature at the peak of the upstream hydrograph,  Qu

p   ;  Q  1  and 
 Q   − 1  are the discharges at  Δ   t  * to either side of the peak, with  Δ   t  * equal to one fi fth 
of the time to peak of the infl ow hydrograph (Raudkivi  1979 ). Equation  (5.60)  
yields satisfactory results when the fl ood hydrograph is suffi ciently symmetrical 
about the peak, and this condition often occurs in natural channels (Raudkivi 
 1979 ). 

  Example 5.11               Compute the upstream peak discharge using the Price for-
mula. Then compute the downstream peak discharge as a sum of two main 
components.  

  Solution     We are given that  L   =  44.61 km,  B   =  35 m,  S  0   =  0.002, and  K   =   L /2 BS  0   =  
318.  T L   is given in Example  5.9 . 

Table 5-7 Estimation of parameters α and β. (Continued)

 A d  ( t p  )  
(km 2 )

 A d  ( t b  )  
(km 2 )

 A u  ( t p  – T L  )  
(km 2 )

 A u  ( t b  – T L  )  
(km 2 )   α    β  

December 1990 142.25 27.68 128.74 22.36 1.15 –9.00

February 1991 209.89 35.12 105.11 27.72 1.09 –2.10

January 1994 84.5 31.99 48.04 24.18 1.50 –23.90

December 1995 150.29 23.16 147.27 15.99 1.00 –0.20

December 1998 49.65 23.65 31.03 15.14 1.19 –5.60
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 Using the Price formula, the upstream peak discharge can be computed as

  
Q

K
L T

Q
Q Q Q

tL
u
p u

p

*
( / ) ( )

( . / )
.

.

= + −

= +

−
3

1 1
2

3

2

318
44 61 2

349 17
371 89

Δ *
3383 08 2 349 17

6
16 32

. * .
.

− =
      

and using equation  (5.59) , the downstream peak discharge is

  Q t Q t T Q q Ld p u p L p( ) [ ( ) ] [ . . ] . . /= − − + = − + =* m s3349 2 16 3 90 41 423 31       

  
Q t Q t T Q q L

m s
d p u p L p( ) [ ( ) ]

[ . . ] . . /

= − − +
= − + =

*

349 2 16 3 90 41 423 31 3        

 Computations for other events are shown in Table  5-8 .    

 Qu
p     

(m 3 /s)
  Δ t *  
(hr)

 Q  1   
(m 3 /s)

 Q   − 1   
(m 3 /s)

 Q *  
(m 3 /s)

 Q d    
(m 3 /s)

December 1990 349.17 5.9 371.89 383.08 16.3 423.31

February 1991 276.13 16.2 82.81 211.11 62.4 537.88

January 1994 107.89 6.6 94.81 203.66 19.8 250.99

December 1995 407.08 6.5 351.49 412.48 46.8 371.70

December 1998 62.84 2.6 110.42 119.58 31.7 82.10

 Table 5-8      Computation of upstream and downstream peak discharge using the Price 
formula.  

  To estimate  q p L , the continuity equation is considered:

  
∂
∂

+ ∂
∂

=Q
x

A
t

q       (5.61)  

where  q p   is the lateral infl ow per unit channel length. Equation  (5.61)  can be 
expressed in the characteristic form as

  
dA
dt

q=       (5.62a)  

  
dx
dt

c
Q
A

= = ∂
∂

      (5.62b)  

where  c  is the kinematic celerity, the characteristic path in the space-time. 
Based on the assumption that  T L   is the time to match the rising limb, the peak 
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region of the upstream and downstream dimensionless hydrographs  c  can be 
assumed as

  c
L
TL

=       (5.63)   

 Therefore, along the characteristic corresponding to the downstream stage peak 
(Moramarco and Singh  2000 ), the following relationship holds:

  
A t A t T

T
qD p U p L

L
p

( ) ( )− −
=       (5.64)   

 Moramarco and Singh ( 2001 ) considered 12 fl oods for the Tiber River and for 
the Timia River reach and 8 for the Chiascio River, all in Italy, including the Tiber 
River reach between the Santa Lucia and Ponte Felcino sections, the Timia River 
between the Azzano and Cantalupo sections, and the Chiascio River between 
the Branca and La Chiusa sites. The selected river reaches present very different 
characteristics, both for the drainage interbasin and for the branch itself. The 
annual average precipitation is practically invariant for the subtended basins and 
ranges from 700 to 1,600 mm. Floods are normally caused by widespread pre-
cipitation in the form of rain occurring in the November–May period. For these 
equipped river reaches, fl ood events with different lateral infl ow contributions 
were selected. 

 To test the reliability of the discharge estimation method, the discharge 
hydrographs of all selected events observed at the downstream end of the inves-
tigated river reaches were considered as a benchmark. Assuming that the rating 
curve is unknown at each downstream section ,  the discharge hydrographs of the 
selected fl ood events were estimated starting from the monitored local stages, 
and the discharges and water levels were sampled at its upstream end, that is, 
Santa Lucia for the Tiber River, Azzano for the Timia River, and Branca for the 
Chiascio River. 

 The fl ow hydrographs for all events were simulated by the model, and the 
accuracy did not depend on the magnitude of the contribution of lateral infl ows. 
The  α  parameter was found to range from 0.62 to 1.55 and was similar to that 
obtained by the fl ood events used to test equation  (5.54) . The absolute percentage 
error in peak discharge was found not to exceed 10%, except for two events 
where the error was less than 9%. The percentage error in the time to peak was 
nonzero for only 2 of the 12 events simulated. The discharge hydrograph shape 
was well reproduced for all selected events. 

 The cross-sectional area  A  may be estimated in three ways:

   1.      In terms of gauge height: 

   A a G b c= −1 1
1( )       (5.65)   

 where  G  is the gauge height and  a  1  ,   b  1 , and  c  1  are coeffi cients. Equation 
 (5.65)  is suitable for stable channel beds that are free of scour and 
deposition.  
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  2.      In terms of fl ow depth on the  y -axis: 

   A a d b c= −2 2
2( )       (5.66)   

 where  d  is the water depth on the  y  axis and  a  2 ,  b  2 , and  c  2  are coeffi cients. 
Equation  (5.66)  is suitable for erodible channels subject to scour or sedi-
ment deposition.  

  3.      In terms of width: 

   A a Bd b c= −3 3
3( )       (5.67)   

 where  B  is the channel width at the water surface, and  a  3 ,  b  3 , and  c  3  are 
coeffi cients. Equation  (5.67)  is suitable for frequently changing main 
channels. Parameters  a  3 ,  b  3 , and  c  3  are used to adjust the zero of the staff 
gauge to low fl ow. Chiu and Chen ( 2003 ) argue that equation  (5.67)  is 
superior to equation  (5.65)  or  (5.66) .

  Example 5.12               Consider a 23-km-long reach of the Tiber River in central Italy 
between the upstream section at Ponte Felcino and the downstream section at 
Torgiano. The reach has a slope of 0.0014 and the average width  B   =  45 m. The 
fl ow cross-sectional area for the upstream section is 2,035 km 2  and for the down-
stream section is 2,170.2 km 2 . Determine fl ow cross-sectional area in three ways: 
in terms of (1) gauge height, (2) fl ow depth, and (3) fl ow width. Which way yields 
the cross-sectional area closer to the observed value?  

  Solution     Given that  B   =  45 m and  d   =  1.68 m, take  G   =  10 m,

   •     Using equation  (5.65) ,  A a G b c= − = − =1 1
1 52 21 143 10 4 3 2 069( ) ( . ) ,. km      ,

  •     Using equation  (5.66) ,  A a d b c= − = + =2 2
2 3 22 143 1 68 1 5 2 046( ) ( . . ) ,. km      , and

  •     Using equation  (5.67) ,  A a Bd b c= − = × + =3 3
0 5 23 151 45 1 68 126 2 144( ) ( . ) ,. km       . 

 The solution using equation  (5.67)  is closer to the observation than the solutions 
from equation  (5.65)  or  (5.66) .          

  5.8     Determination of Flow Depth Distribution 

 One of the main problems in fl ow monitoring is the diffi culty of carrying out 
velocity measurements for high stages that are, however, fundamental to achieve 
a reliable rating curve at a river gauging site. The diffi culty in the real world is 
twofold. First, sampling velocity points in the lower portion of fl ow area may 
entail serious dangers for the operator during measurement. Second, there is a 
need for a rapid and simple measurement method when hydraulic conditions 
are changing rapidly. Velocity sampling during fl oods can be achieved by moni-
toring the maximum fl ow velocity,  u  max , which can be easily sampled for high 
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stages, because its location occurs in the upper portion of the fl ow area (Mora-
marco et al.  2004 ; Fulton and Ostrowski  2008 ). Additionally, this information can 
be an index to depth distribution in the cross section. Moramarco et al. ( 2011 ) 
show that there is a strong relationship between mean velocity  u m   and mean 
velocity and that this relationship holds for different river geometric and hydrau-
lic characteristics (Corato et al.  2011 ; Moramarco et al.  2011 ). Since monitoring of 
the maximum velocity, which often coincides with the maximum fl ow velocity, 
can be done by using noncontact survey technology as fi xed radar sensors or 
handheld radar units (Lee et al.  2002 ; Costa et al.  2006 ; Fulton and Ostrowski 
 2008 ; Plant et al.  2009 ), this relationship has much potential in hydrologic 
practice. 

 It is known that the estimation of fl ood discharge, based on entropy-based 
velocity profi les, is sensitive to the accuracy in estimating the fl ow cross-sectional 
area and the changes occurring therein during fl oods. During high fl oods, the 
geometric characteristics of river sections may change because of sediment depo-
sition and degradation and transport. From the point of view of hydrologic 
practice, it would be desirable to determine if there exists a nexus between 
surface-water velocity distribution and water depths in the fl ow cross-sectional 
area. The nexus would permit fl ow monitoring during high fl oods through the 
sampling of surface fl ow velocities from which the cross-sectional geometry of 
the river site might be determined. Lee et al. ( 2002 ) estimated water depths from 
recorded surface velocities by using a noncontact radar sensor, but their method 
requires the knowledge of hydraulic quantities, such as energy slope and Man-
ning ’ s roughness. Moramarco et al. ( 2013 ) used POME for estimating the PDF of 
water depth as a function of the cumulative probability distribution function of 
the surface maximum fl ow velocity, and the discussion here follows their work. 

  5.8.1     Probability Distribution of Flow Depth 

 It is assumed that the fl ow depth monotonously increases from zero at the banks 
to a maximum value  D  in the middle of the channel and the maximum fl ow 
velocity is at the water surface denoted as  u  max    S  . Let the fl ow depth from the 
bank be denoted by  h  where the surface-water velocity is denoted by  u s  . It is 
hypothesized that the probability of fl ow depth being less than or equal to  h  is 
 u S  / u  max   S   so that the cumulative probability distribution (CDF) is

  F h
u

u
S

S

( )
max

=       (5.68)   

 The probability density function (PDF)  f ( h ) can be written as

  f h
dF h

dh
dF h
du

du
dh u

du
dhS

S

S

S( )
( ) ( )

max
= = = 1

      (5.69)   

 For deriving  f ( h ), two constraints are considered for simplicity:

  f h dh
D

( )
0

1∫ =       (5.70)  
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and

  hf h dh h
D

m( )
0
∫ =       (5.71)  

where  h m   is the mean fl ow depth in the river cross section. Maximizing entropy 
using the method of Lagrange multipliers discussed in the preceding Chapters 
2, 3, and 4, the PDF of  h  is

  f h h( ) exp( )= − −λ λ0 1       (5.72)  

where  λ  0  and  λ  1  are the Lagrange multipliers. 
 Substitution of equation  (5.72)  in equation  (5.70)  yields

  exp( ) [ exp( )]λ
λ

λ0
1

1
1

1= − − D       (5.73)   

 It can be shown that

  h
D D

D
m =

−
− −

+
exp( )

exp( )
λ

λ λ
1

1 11
1

      (5.74)    

  5.8.2     Depth Distribution 

 Using equation  (5.72)  in equation  (5.69) , the result is

  
dh
du

D
h uS S

=
− −

−
1 1

1 1

exp( )
exp( ) max

λ
λ λ

      (5.75)   

 Integrating equation  (5.75)  between [0,  D ] for  h  and [0,  u  max    S  ] for  u , one obtains

  h
D

u
u

S
S=

− −
+⎡

⎣⎢
⎤
⎦⎥
−1 1

1
1

1
1

λ
λ

ln
exp( )

max

      (5.76)   

 Denoting W  =   λ  1  D , which can be considered anentropy fl ow depth parameter, 
equation  (5.76)  becomes

  h x
D
W

D
u

u x
S

S( ) ln
exp( )

( )
max

=
− −

+⎡
⎣⎢

⎤
⎦⎥
−λ1

11
1       (5.77)  

which represents an entropy-based fl ow depth distribution in natural channels, 
where  W  is a parameter and  x  is the left and right horizontal distance from the 
 y -axis ( x   =  0). Equation  (5.77)  is similar in form to that obtained by Chiu ( 1988 ) 
for the fl ow velocity profi le along the  y- axis for a wide channel. Therefore, if the 
surface velocity distribution is known, it is possible to have information about 
the cross-sectional bathymetry by using equation  (5.77) , which allows for esti-
mating the fl ow depth distribution across the river site. 
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 An important insight can be obtained from equation  (5.74) , i.e., the relation-
ship between  D  and  h m  :

  
h
D

W
W W

Wm =
−

− −
− =

exp( )
exp( )

( )
1

1 θ       (5.78)   

 The cross-sectional fl ow area,  A , can be computed by integrating equation  (5.77)  
along the river cross section. For a speedy estimation of the fl ow area, the fol-
lowing relationship can be applied:

  A h w W Dwm T T= = θ( )       (5.79)  

where  w T   is the top channel width. 
 Equation  (5.78)  shows that observations of ( H m  ,  D ) allow us to determine 

 θ ( W ) and, hence, the fl ow depth entropy parameter  W . For estimation of  θ ( W ), 
equation  (5.77)  can be integrated across the whole fl ow area. For ease of practical 
applications, integration can be done in discrete form as

  

h
w

D
W

W
u

u x

D
w W

W

m
T S

S

w

T

T

=
− −

+⎡
⎣⎢

⎤
⎦⎥

=
− −

−

∫1 1
1

1

0

ln
exp( )

( )

ln
exp( )

max

11
1

1

1 u
x

S j
j

j

N

max
+⎡

⎣⎢
⎤
⎦⎥
−

=
∑ Δ

      (5.80)   

 Coupling equation  (5.78)  and equation  (5.80) , a little algebraic manipulations 
yields

  

1 1
1

1

1

1

w W
W

u
x W

W

T S j
j

j

N

ln
exp( )

[ ( )]

exp( )
ex

max

− −
+⎡
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⎤
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=

=
−

−

=

−∑ Δ θ

pp( )− −
+⎡

⎣⎢
⎤
⎦⎥
−

W W1
1

1
      (5.81)   

 which can be evaluated numerically, once all water-surface velocities are known. 
If the channel width,  w T  , can be directly measured or obtained from satellite 
imagery (Bjerklie et al.  2005 ), no assumption about channel geometry is neces-
sary for estimating  θ ( W ). 

 To signifi cantly reduce the sampling period during measurement, Mora-
marco et al. ( 2011 ) assumed that the use of equation  (5.77)  requires only sampling 
of the maximum surface velocity point,  u  max    S  , and approximated the behavior 
of the maximum velocity by representing the cross-sectional fl ow area by an 
elliptical or parabolic profi le shape:

  u x u
x
x

parabolic

elliptiS S
S

( )
.max= − ⎛⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
=

1
1

0 5

2 α α
α

with
cc

⎧
⎨
⎩

      (5.82)  

where  x S    =   x LS   or  x S    =   x RS   represents the distance from the left or right sidewall 
of the vertical, respectively, with reference to the  y- axis ( x   =  0), along which the 
maximum surface velocity,  u  max    S  , is sampled. As shown by Moramarco et al. 
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( 2011 ), the parabolic profi le should be used for narrow river sections. This con-
fi guration results from Chezy ’ s formula, wherein it is assumed that the friction 
slope remains constant over all vertical subsections in which the overall section 
is divided (Chow  1959 ). Therefore, surmising that the relation between mean 
velocities of subsections is the same, one gets  ( / ) /maxu u h DS =    . Considering 
equation  (5.82) , the depth distribution implicitly assumed is a power-law 
relation:

  
h
D

x
xS

b

= −1       (5.83)  

with  b   =  2. It is noted that equation  (5.83)  is similar to the power law relation for 
channel cross sections proposed by Dingman and Bjerklei ( 2006 ) for hydrological 
applications of remote sensing, i.e.,

  
h
D

Y
x

wT

b

= −1
2

*
* /

      (5.84)  

where the bank at full width,  wT*   , and the corresponding maximum depth,  Y *, 
are considered along with exponent  b , which might also assume values as high 
as 5 for some cases. With the use of equation  (5.78) , exponent  b  in equation  (5.83)  
as well as in the power law relation of channel cross section in equation  (5.84)  
can be expressed in terms of  θ ( W ) as

  b
W

W
=

−
θ
θ
( )

( )1
      (5.85)    

  5.8.3     Discharge Estimation 

 It was shown in the preceding section that the mean fl ow velocity,  u m ,  can be 
estimated by sampling the maximum velocity,  u  max , using a linear entropic rela-
tionship. Therefore, discharge,  Q , can be estimated by the product  u m    A , with  A  
estimated by integrating equation  (5.77)  along the river cross section.   

  5.9     Determination of Entropy Parameter from 
Hydraulic and Geometric Characteristics 

 It was shown in Chapter 2 that there exists a linear relationship between mean 
fl ow velocity and maximum velocity through what is termed an entropic param-
eter  M . As shown in the preceding sections, parameter  M  represents an intrinsic 
river characteristic and is used in a number of hydraulic applications. Therefore, 
the knowledge of  M  can be fundamental to overcoming the problem of making 
velocity measurements during high fl oods. Moramarco and Singh ( 2010 ) inves-
tigated the entropic linear relation by expressing the  M  value in terms of hydrau-
lic and geometric characteristics, and the discussion here is based on their work. 

c05.indd   269c05.indd   269 5/21/2014   11:10:50 AM5/21/2014   11:10:50 AM



270 Entropy Theory in Hydraulic Engineering

 The relation between mean velocity,  u m   or  u   , and maximum velocity,  u  max , 
sampled at a river cross section is given by equation  (5.45) :

  φ M
u

u
( ) =

max
      (5.86)   

 Equation  (5.86)  shows that  u m   and  u  max  together can determine  ϕ ( M ) and then 
the entropy parameter  M . To determine the dependence of  ϕ ( M ) and, hence, of 
 M  on hydraulic and geometric characteristics,  u     and  u  max  should be expressed 
through these characteristics. The mean velocity  u     can be expressed using 
Manning ’ s equation as

  u
n

R Sf= 1 2 3       (5.87)  

where  n  is the Manning roughness,  R  is the hydraulic radius, and  S f   is the energy 
slope. 

 To determine  u  max  along the  y -axis, the dip-modifi ed logarithmic law for the 
velocity distribution in smooth, uniform, open-channel fl ow, proposed by Yang 
et al. ( 2004 ), is considered. Whatever the velocity distribution to be applied for 
the analysis proposed here, the choice of the distribution should be based both 
on its simplicity in application and its ability to take account of the likelihood 
that  u  max  may occur below the water surface. The distribution used here is based 
on two logarithmic depths, one from the bed, ln( y / y  0 ), and the other one from 
the water surface, ln(1 –  y / D ):

  u y u
k

y
y k

y
D

( ) ln ln= + −⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥*

1
1

0

α
      (5.88)  

where  y  is the distance from the bottom;  u * is the shear velocity,  u *  =  (g RS f  ) 0.5  
( g  is the gravitation acceleration,  R  is the hydraulic radius, and  S f   is the energy 
slope);  k  is the von Karman constant, whose value is typically 0.41;  α  (dimension-
less) is the dip-correction factor, depending only on the relative distance of the 
maximum velocity location from the river bottom,  y  max , to the water depth,  D , 
along the  y- axis where  u  max  is sampled; and  y  0  represents the location where the 
log velocity profi le predicts the zero-velocity. 

 To obtain a formulation for  u  max , equation  (5.88)  is differentiated with respect 

to  y  and the derivative is equated to 0,  
du
dy u u=

=
max

0   , thus obtaining for the 
 y -axis

  
du
dy

u
k y D yu u=

= −
−

⎛
⎝⎜

⎞
⎠⎟
=

max

* 1
0

α
      (5.89)   

 Equation  (5.89)  yields the location from the bottom where the maximum velocity 
occurs,  y  max , as

  y
D

max = +1 α
      (5.90)   
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 Substitution of equation  (5.90)  in equation  (5.88)  and a little algebraic manipula-
tion yields an expression for the maximum fl ow velocity as

  u
u
k

D
y k

umax ln
( )

ln=
+

⎛
⎝⎜

⎞
⎠⎟
+ −

+
⎛
⎝

⎞
⎠

*
*

0 1
1

1
1α

α
α

      (5.91)   

 Now inserting equations  (5.87)  and  (5.91)  in equation  (5.88) ,  ϕ ( M ) can be expressed 
in terms of hydraulic and geometric characteristics of a river site as
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α
α
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      (5.92)   

 Equation  (5.92)  shows that  ϕ ( M ) is independent of the fl ood dynamic repre-
sented by the energy slope,  S f  . This observation may be the key to the under-
standing why  ϕ ( M ) is always found more or less constant at gauged river sites. 
That is, whatever the fl ood condition (kinematic, diffusive, or dynamic) happen-
ing along the river, it does not seem to infl uence  ϕ ( M ). 

 From equation  (5.88) ,  α  can be expressed as

  α =
−

=
D y

y
h

y
amax

max max
      (5.93)  

which is the ratio of two depths, with  h a   representing the location of  u  max  below 
the water surface. Introducing equation  (5.93)  in equation  (5.92) , one gets
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      (5.94)   

 For large rivers,  u  max  can be assumed to occur at the water surface,  h a    =  0, or just 
below it. Then, equation  (5.94)  becomes

  φ( )
ln max

M
e

e M
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y
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0

      (5.95)   

 Depending on the location of  u  max , equation  (5.94)  or  (5.95)  expresses a direct 
relationship between the entropic parameter  M  and the hydraulic and geometric 
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characteristics of the river section. A similar expression can be obtained if  u    is 
expressed by Chezy ’ s equation in that the term  R n1 6 /     is replaced by Chezy ’ s 
coeffi cient,  C .  

  Questions 

   Q5.1      Determine the frequency of sampling velocity at a distance from the bed 
equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 times fl ow depth. 
Assume that the channel fl ow is 2.5 m deep.  

  Q5.2      For a given set of fl ow measurements given in Table  5-9 , determine the 
Lagrange multipliers  λ  1  and  λ  2  appearing in the velocity equation and 
then determine the entropy of velocity.   

  Q5.3      For a specifi ed value of  u *, determine  H ( u / u *).  

  Q5.4      For  M   =  4, 6, 8, and 10, determine the energy distribution coeffi cient  α  
and the momentum distribution coeffi cient  β .  

  Q5.5      For a given  Q , determine  S w   and  S f  .  

  Q5.6      For a given  Q ,  S w  , and  S f  , determine  d  α / dx .  

 y  (ft)  u  (ft/s)  y  (ft)  u  (ft)

0.003 2.471 0.038 4.485

0.004 2.457 0.046 4.746

0.005 2.925 0.056 4.834

0.006 2.869 0.066 5.113

0.008 3.270 0.045 5.113

0.010 3.427 0.076 5.113

0.013 3.699 0.091 5.479

0.016 3.884 0.106 5.514

0.020 4.066 0.126 5.835

0.025 4.212 0.151 5.849

0.030 4.415 0.176 6.073

   Source:   Data from Einstein and Chien  1955 .   

 Table 5-9      Velocity data from experiment.  
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  Q5.7      Determine  τ  0  as a function of  D  for a given  S f  .  

  Q5.8      Determine  τ  as a function of  r  for given  τ  0 ,  r  0 , and  r  max .  

  Q5.9      For given discharge measurements, plot  u m   and  u  max  and determine  M .    
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    Chapter 6 

  Velocity Distribution in 
Pipe Flow  

       Full fl ow in pipes is treated differently from fl ow in open channels because of 
the absence of a free water surface in full pipe fl ows. Pipes are usually circular, 
and, hence, their geometry is analytically expressed in simple form. Pipes are 
manufactured and are much smoother than natural channels. The fl ow in pipes 
is usually axially symmetric. In pipes, the velocity is zero at the pipe wall, and 
the velocity gradient has a fi nite value. The maximum velocity  u  max  occurs at the 
center of pipe, where the velocity gradient is zero. Chapters 2 to 5 discuss veloc-
ity distributions in natural channels and their application, and this chapter 
focuses on velocity distributions in pipes. 

  6.1     Derivation of Velocity Distribution 

 After the discussion in Chapter 2 on 1-D velocity distribution and in Chapter 3 
on 2-D velocity distribution in open channel fl ow, the velocity ( u ) distribution in 
pipe fl ow can be described in a similar manner. Let  ξ  denote the distance from 
the wall,  ξ  0  the distance from the boundary where  u  is minimum  =  0, and  ξ  max  
the distance from the boundary where  u  is maximum  =   u  max . It is assumed that 
the time-averaged velocity is a random variable. Then, the cumulative probabil-
ity distribution (CDF) of velocity (i.e., the probability of velocity being less than 
or equal to a given value of  u ),  F ( u ), can be expressed (Chiu et al.  1993 ) as
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  F u f u du
u

( ) ( )
max

= −
−

= ∫ξ ξ
ξ ξ

0

0 0

      (6.1)  

and the probability density function (PDF) of  u ,  f ( u ), as

  
f u

du
d( )

max

=

⎛
⎝⎜

⎞
⎠⎟

−

−

ξ
ξ ξ

1

0

      (6.2)   

 Thus,  u  (0  ≤   u   ≤   u  max ) monotonically increases with  ξ  (0  ≤   ξ  0   ≤   ξ  max ), which is a 
dimensionless independent variable—a function of cylindrical or Cartesian coor-
dinates in the physical plane. 

 The Shannon entropy of the PDF of  u  can be expressed as

  H u f u f u du
u

( ) ( )ln ( )
max

= − ∫
0

      (6.3)   

 To derive  f ( u ) using the principle of maximum entropy (POME), one maximizes 
entropy  H ( u ) subject to specifi ed constraints. The fi rst constraint is taken as the 
total probability:

  f u du
u

( )
max

0

1∫ =       (6.4)  

and the second constraint is based on mass conservation:

  uf u du u u
u

m( )
max

0
∫ = =       (6.5)  

where  u     or  u m   is the cross section mean velocity defi ned as  Q / A ,  Q  is the dis-
charge, and  A  is the cross-sectional area. 

 Maximization of entropy given by equation  (6.3) , subject to equations  (6.4)  
and  (6.5) , using the method of Lagrange multipliers, results in  f ( u ):

  f u u( ) exp[ ]= − +λ λ1 21       (6.6a)  

where  λ  1  and  λ  2  are the Lagrange multipliers. The CDF of  u  becomes

  F u u( ) exp( )[exp( ) ]= − −1
1 1

2
1 2λ

λ λ       (6.6b)   

 Following the discussion in Chapter 3, the Lagrange multipliers are defi ned as

  exp( ) [exp( ) ]maxλ λ λ1 2 2
11 1− = − −u       (6.7a)  
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and

  u u u um = − −−
max max maxexp( )[exp( ) ]λ λ

λ2 2
1

2

1
1

      (6.7b)  

where  u m   is the mean velocity. Defi ning  M   =   λ  2  u  max , which is called the entropy 
number, and coupling equation  (6.6a)  with equation  (6.2) , the velocity distribu-
tion is obtained as

  
u

u M
M

max max

ln [exp( ) ]= + − −
−

⎧
⎨
⎩

⎫
⎬
⎭

1
1 1 0

0

ξ ξ
ξ ξ

      (6.7c)   

 Equation  (6.7c)  is a 2-D velocity distribution equation. 
 The quantity  f ( u ) du  defi nes the probability of velocity being between  u  and 

 u   +   du , which can be obtained from velocity measurements. If  ξ  is generated by 
random sampling and then substituted in equation  (6.7c) , then values of  u  can 
be obtained for determining  f ( u ) du . It should be noted that equation  (6.6a)  is an 
exponential PDF of  u  within the range (0,  u  max ), whereas equation  (6.1)  relates to 
the uniform PDF of  ξ  in the range ( ξ  0 ,  ξ  max ). Equation  (6.1) , with the value of 
( ξ   −   ξ  0 )/( ξ  max   −   ξ  0 ), gives the probability of velocity as equal to or less than  u . 
Thus, it can guide in the selection of a suitable expression for  ξ  to fi t a particular 
fl ow system. In pipe fl ow, isovels are concentric circles. Therefore,  ξ  should be

  ξ π π
π

= − = − ⎛
⎝

⎞
⎠

R r
R

r
R

2 2

2

2

1       (6.8)  

where  r  is the radial distance from the center of the pipe cross section, and  R  is 
the radius of the pipe. Therefore, it is hypothesized that the CDF of  u  in pipe 
fl ow can be expressed as

  F u
r
R

( ) = − ⎛
⎝

⎞
⎠1

2

      (6.9)  

and

  f u du
r

R
dr( ) = − 2

2
      (6.10)   

 Combining equation  (6.8)  with equation  (6.7c) , the velocity distribution becomes

  u
u
M

M
r
R

= + − − ⎛
⎝

⎞
⎠

⎡
⎣
⎢

⎤
⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

max ln [exp( ) ]1 1 1
2

      (6.11)   

 Equation  (6.11)  is the velocity distribution for fl ow in circular pipes. 
 Equation  (6.8)  is the ratio of area in which velocity is equal to or less than 

 u ( ξ ) to the total area of the pipe cross section, and defi nes the  ξ -coordinate in 
terms of the  r -coordinate. With  ξ  0   =  0 and  ξ  max   =  1, equation  (6.7c)  yields  u  at the 
wall ( ξ   =  0) or  r   =   R  as  u   =  0. Thus, it satisfi es this boundary condition. 

c06.indd   279c06.indd   279 5/21/2014   11:11:12 AM5/21/2014   11:11:12 AM



280 Entropy Theory in Hydraulic Engineering

  Example 6.1             Construct isovels for fl ow in a pipe, taking  R   =  1 m, maximum ve-
locity  u  max   =  5.5 m/s, and mean velocity  u m    =  3 m/s.  

  Solution     For given values of mean and maximum velocities,  M ( λ  2  u  max ) can be 
solved for equation  (6.7b) :  M   =  0.548. Using equation  (6.11) ,  u  is computed for 
each value of  r . As shown in Fig.  6-1 , isovels are circular.     

  Example 6.2             Take different values of  r  and compute probabilities of correspond-
ing velocities.  

  Solution     Assume that  R   =  1, and let  r  change from 0 to 1. Then,  f ( u ) can be com-
puted from equation  (6.10)  as

  f u du
r

R
dr( ) = − 2

2
      

with the results shown in Table  6-1 . 
  Differentiating equation  (6.7c)  with respect to  ξ , one gets

  du
d

u
M

M
M

mξ
ξ ξ

ξ ξ ξ ξ
= + − −

−
⎧
⎨
⎩

⎫
⎬
⎭

−
−

−
max

max

[exp( ) ]
[exp( ) ]

1 1
10

0

1

0

      (6.12)  

  Figure 6-1      Isovels of fl ow in a pipe.    

r(m)
-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

c06.indd   280c06.indd   280 5/21/2014   11:11:12 AM5/21/2014   11:11:12 AM



Velocity Distribution in Pipe Flow 281

or

  
du
dr

u
M

r
R

M

M
r
R

= −
−

+ − − ⎛
⎝

⎞
⎠

⎡
⎣
⎢

⎤
⎦
⎥

⎡
⎣
⎢

max
[exp( ) ]

[exp( ) ]

2
1

1 1 1

2

2       (6.13)   

 Now, using  ξ  0   =  0 and  ξ  max ,  du / d  ξ  at  ξ   =  1( r   =  0) yields  du / d  ξ   =  0. Thus, equation 
 (6.12)  satisfi es both boundary conditions. Equation  (6.13)  shows that  du / dr   =  0 
at  r   =  0. At  r   =   R  (pipe wall), Equation  (6.8)  shows that  ξ  varies with 1  −  ( r / R ) 2 , 
not 1  −  ( r / R ). Hence, the velocity in pipe fl ow of axial symmetry given by equa-
tion  (6.7c)  varies with 1  −  ( r / R ) 2 . This is seen from  Figs. 6-2 and 6-3 . At the wall, 
 r   =   R , equation  (6.13)  becomes

   
du
dr

u M
MRr R

⎛
⎝

⎞
⎠ = −

−
=

2 1max[exp( ) ]
      (6.14)  

which is fi nite. Applying L ’ Hospital ’ s rule,  M  approaches 0, equation  (6.13)  
becomes  − 2 u  max  r / R  2 , and equation  (6.14)  becomes  − 2 u  max / R . 

 With the use of equations  (6.7a)  and  (6.7b) , equation  (6.6a)  can be written as

  f u
M

u M
M

u
u

u u( )
[exp( ) ]

exp ,
max max

max=
−

⎡
⎣⎢

⎤
⎦⎥

≤ ≤
1

0       (6.15)   

 The mean velocity  u m   can be written as

  
u

u
M

M M
m

max

exp( )
exp( )

=
−

−
1

1
      (6.16)   

 Fig.  6-3  plots  u / u  max  versus 1  −  ( r / R ) for various values of  M  (0, 2, 4, 6, 8, 
and 10).      

r f ( u ) 

0 0

0.1 0.2

0.2 0.4

0.3 0.6

0.4 0.8

 Table 6-1      Computed probabilities of corresponding 
velocities for Example  6.2 .  

r f ( u ) 

0.5 1

0.6 1.2

0.7 1.4

0.8 1.6

0.9 1.8

1 2
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  6.2     Comparison with Prandtl–von Karman 
Velocity Distribution 

 The Prandtl–von Karman universal velocity distribution in pipe fl ow of axial 
symmetry can be expressed as

  
u u

u k
r
R

max ln
− = − −⎛

⎝
⎞
⎠*

1
1       (6.17)  

where  u * is the shear velocity, and  k  is the von Karman constant (0.4). Equation 
 (6.17)  does not fulfi ll the condition that  u   =  0 at  r   =   R , indicating that it is not 

  Figure 6-2      Velocity distribution  u / u  max  versus 1  −  ( r / R ) in a physical plane for  M   =  0, 
2, 4, 6, 8, 10, 12, and 14.    

  Figure 6-3      Velocity distribution  u / u  max  versus  ξ  (1  −  ( r / R ) 2 ) in a physical plane for 
 M   =  0, 2, 4, 6, 8, 10, 12, and 14.    
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valid at or near the wall. Furthermore, differentiating equation  (6.17)  with respect 
to  r , one gets

  
du
dr

u
k

R
r
R

u
k R r

=
−⎛

⎝
⎞
⎠

=
−

* *
1

1

1
( )

      (6.18)   

 Equation  (6.18)  shows that  du / dr  is not equal to 0 when  r   =  0 and does not fulfi ll 
this boundary condition either. This situation means that this equation is not 
accurate at the pipe center either. 

 Equation  (6.17)  does not apply at walls ( r   =   R ). This phenomenon may be 
true because the velocity is assumed to vary with distance ratio  r / R , but in the 
entropy-based formulation, the velocity varies with the area ratio ( r / R ) 2 . Apply-
ing L ’ Hospital ’ s rule to equations  (6.13)  and  (6.14)  at  M   =  0, one obtains  du / dr  is 
 − 2 u  max / R  at  r   =   R , respectively. Also, from equation  (6.11) , one gets

  u u
r
R

= − ⎛
⎝

⎞
⎠

⎡
⎣
⎢

⎤
⎦
⎥max 1

2

      (6.19)   

 Thus, equation  (6.19)  shows that the velocity in pipe is maximum when  r   =  0, 
that is, at the center, and decreases from this maximum value, reaching zero at 
the boundary, that is,  r   =   R . 

  Example 6.3             Calculate and plot  du / dr  as a function of  r / R . What do you con-
clude from this graph?  

  Solution     Equation  (6.13)  states the relationship between  du / dr  and  r / R . Assume 
that  R   =  1 m, and  u  max   =  1 m/s. Thus,  du / dr  can be computed from equation  (6.13)  
for different  M  values. A plot  du / dr  as a function of  r / R  is shown in Fig.  6-4 .      

  Figure 6-4      Plot of  du / dr  as a function of  r / R .    
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  6.3     Darcy–Weisbach Equation 

 The head loss in pipe fl ow caused by friction is often evaluated by the Darcy–
Weisbach equation:

  h f
L
D

u
g

f l
m=
2

2
      (6.20)  

where  h f   is the head loss caused by friction,  f l   is the friction factor,  L  is the pipe 
length,  D  is the pipe diameter, and  g  is the acceleration caused by gravity. For 
applying equation  (6.20) , an estimate of  f l   is needed. For smooth pipes, the 
Moody diagram, as shown in Fig.  6-5 , gives a unique relation between  f l   and the 
Reynolds number:

   N
u D

R
m=
υ

      (6.21)  

where  υ  is the kinematic viscosity. For rough pipes,the diagram relates  f l   to  N R   
for each value of the relative roughness  k s  / D ,  k s    =  roughness height, as shown in 
Fig.  6-5 . However, tables available for  k s   do not encompass the wide range of 
roughness height values for pipe materials. This lack makes the estimation of  f l   
and hence  h f   by the Moody diagram diffi cult.  

  Figure 6-5      Moody diagram.  
   Source:  http://en.wikipedia.org/wiki/File:Moody_diagram.jpg  (accessed November 13, 

2013). Created by S Beck and R Collins, University of Sheffi eld. 
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  6.4     Head Loss and Friction Factor 

 Recall that the wall shear can be obtained by equating the sum of pressure and 
gravity forces to the frictional resistance as

  τ γ ρ γ γ ρ0
2= = = =R S u R

h
L

gh f h
f* ,       (6.22)  

where  ρ  is the mass density of water,  γ  is the weight density of water,  R h   is the 
hydraulic radius equal to  D /4,  D  is the pipe diameter,  u * is the shear velocity 
equal to

  u gR Sh f* = ( ) .0 5       (6.23)  

and  S f   is the energy gradient expressed as  h f  / L . Balancing the shear force with 
the diffusion of momentum at the pipe wall, one can write

  τ ρε0 0= −⎛
⎝

⎞
⎠ =

du
dr r R

      (6.24)  

where  ε  0  is the momentum transfer coeffi cient at the wall, which equals the 
kinematic viscosity for laminar fl ow or turbulent fl ow with a viscous sublayer 
(i.e., the pipe is hydraulically smooth). If the pipe is rough, then in turbulent 
fl ow  ε  0  is greater than   υ   and depends on the pipe roughness and fl ow turbulence. 
Using equation  (6.14)  in equation  (6.24) , one gets

  τ ρε0 0
2 1

=
−u M

MR
max[exp( ) ]

      (6.25)   

 Substituting equation  (6.25)  in equation  (6.22) , one obtains the head loss caused 
by friction over the pipe length as

  h
M
M

u
u

Du L
D

u
g

f
m m m=

− ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

− −

32
1

2

1 1
0

2[exp( ) ]

max υ
ε
υ

      (6.26)   

 Comparing equation  (6.26)  with equation  (6.20) , and using equation  (6.16) , one 
obtains

  f
M
M

u
u

Du F M
N

l
m m m

R

=
− ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ =

− −

32
1

32
1 1

0[exp( ) ] ( )

max υ
ε
υ

ε00

υ
⎛
⎝

⎞
⎠

      (6.27)  

where

  F M
M

M M
M

m( )
exp( )

exp( )
exp( )

=
−

−
−

1

1
1

      (6.28)   
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 Equation  (6.28)  shows that  F m  ( M ) increases with  M , as shown in Fig.  6-6 . 
  Equation  (6.27)  yields the friction factor in terms of  M ,  N R  , and ( ε  0 / υ ) for 

turbulent fl ow in rough pipes. The entropy parameter is refl ective of the velocity 
patterns and, in turn, of the rates of energy and momentum transport. In fl ow 
in smooth pipes, there exists a viscous sublayer at the wall and, hence,  ε  0   =   υ . 

 For laminar fl ow,  ε  0   =   υ  and  f l    =  64/ N R  ; equation  (6.27)  yields  F m  ( M )  =  2 or 
from equation  (6.28) ,  M   =  0. As  M  tends to 0, equation  (6.16) , with the use of 
L ’ Hospital ’ s rule, gives  u  max   =  2 u m  . Then, equation  (6.7c) , with  ξ  defi ned by equa-
tion  (6.8) , yields

  u
u

r
Rmax

= − ⎛
⎝

⎞
⎠1

2

      (6.29)  

which is the same as the parabolic velocity distribution derived by applying the 
momentum equation to a viscous Newtonian fl uid, as shown in Fig.  6-7 . Equat-
ing equation  (6.25)  to equation  (6.22) , one gets

  Figure 6-6       F m  ( M ) versus  M .    

  Figure 6-7       u / u  max  versus  r / R .    
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   u
gS Rf

max =
2

4υ
      (6.30)   

 Equation  (6.30)  expresses  u  max  in terms of  γ ,  S f  , and  R .  

  6.5     Relation of Mean Velocity, Maximum Velocity, 
and Friction Coeffi cient to  M  

 From experimental measurements, Nikuradse ( 1932 ) empirically derived

  u
u

u
u

m m

max

. .= + ⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

− −

1 17 1 9 02
1 1

*
      (6.31)  

where the ratio  u m  / u * can be written in terms of friction factor  f 1   as

  
u
u f

m

l*
= 8

      (6.32)   

 Combining equations  (6.31)  and  (6.32) , one obtains an expression for the 
friction factor  f l   as

  f
u

u
l

m= ⎛
⎝⎜

⎞
⎠⎟ −

⎡

⎣
⎢

⎤

⎦
⎥

−

0 0983 1 17 1
1 2

. .
max

      (6.33)  

or

  f
M M M M

M M M
l =

+ − −
− +

⎡
⎣
⎢

⎤
⎦
⎥0 0983

0 17 1 17 1
1

2

.
. exp( ) exp( ) .

exp( ) exp( )
      (6.34)   

 Equation  (6.34)  is graphed in Fig.  6-8  and shows that  f l   decreases as  M  increases 
and  M  is obtained as  u m  / u  max  from equation  (6.33) . For a given  Q  and pipe diam-
eter  D ,  u m   can be obtained. If  u  max  is measured at the center,  M  and then  f l   can be 
determined. From equations  (6.34)  and  (6.27) , one gets  ε  0 / υ  as

   ε
υ

0 0 00307
1 0 17 1 17 1

=
+ − −

−
.

( )
. exp( ) exp( ) .

exp( ) exp(
N

F M
M M M M

M M M
R

m )) +
⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥1

2

      (6.35)   

 Equation  (6.35)  is plotted in Fig.  6-9  for different values of the Reynolds 
number  N R  . 

  In smooth pipe fl ow,  ε  0 / υ   =  1. Then equation  (6.35)  yields a relation between 
 M  and  N R   as shown in Fig.  6-10 . Then equation  (6.34)  yields a relation between 
 f l   and  N R   as shown in Fig.  6-9 . Recall Prandtl ’ s relation:
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  Figure 6-8       f l   as a function of  M .    

  Figure 6-9       ε  0 / υ  as function of  N R   for various values of  M .    

  Figure 6-10      Relation between  M  and  N R  .    
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1

2 0 8
f

N f
l

R l= −log( ) .       (6.36)   

 Equation  (6.36)  is also plotted in Fig.  6-11 . The agreement with  f l   obtained from 
equation  (6.29)  with  ε  0 / υ  is close. 

  Conversely, if  M  is expressed as a function of  N R   from equation  (6.35) , then 
equation  (6.33)  yields the relation between  u m  / u  max  and  N R  , as shown in Fig.  6-12 . 
Also plotted in this fi gure are data from Hanks ( 1968 ) indicating a good agree-
ment for fl ows in turbulent fl ow. This agreement suggests that for turbulent fl ow 
in smooth pipes,  M  and  u  max  and, therefore, the velocity distribution can be 
derived from  N R   and  Q / A  using  Figs. 6-11 and 6-12 . 

  For rough pipes,  ε  0 / υ  increases with  N R   for a given  M  value, or decreases 
with  M  for a given value of  N R  , as shown in Fig.  6-13 . Thus, it is essential 
to determine  M  for evaluating  f l   for a given  N R  . One way to accomplish this 
determination is to measure  u  max , obtain  u m    =   Q / A , and then determine using 
equation  (6.16) .   

  Figure 6-11      Relation between  f l   and  N R  .    

  Figure 6-12      Relation between  u m  / u  max  and  N R  .    
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  6.6     Relation of Friction Coeffi cient, Manning ’ s  n , 
and  M  

 Equation  (6.33)  relates  f l   to  M . This relation means that  M  can be estimated given 
 f l  , which may be determined using Manning ’ s equation:

  u
n

R S R D S h Lm h f h f f= = =β 2 3 1 2 4/ / , / , /       (6.37)  

where  β   =  1 if length is measured in meters (MKS system) and 1.49 if measured 
in feet (British system). Combining equation  (6.37)  with the Darcy–Weisbach 
equation, one obtains

  f gn Dl = − −12 7 2 2 1 3. /β       (6.38)  

where  n  is Manning ’ s roughness coeffi cient. Substitution of equation  (6.38)  in 
equation  (6.34)  yields  M . Then this value of  M  and  u m    =   Q / A  can be inserted in 
equation  (6.11)  to give  u  max . With  M  and  u  max  so obtained, equation  (6.7c)  can be 
used to describe the velocity distribution in fl ow in pipes whether smooth or 
rough. The value of  M  achieved from equation  (6.27)  can also be used to deter-
mine  ε  0 / υ  from equation  (6.35)  for a given  R N  . 

 For rough pipes, the velocity distribution given by equation  (6.7c)  with  u / u m   
versus [1  −  ( r / R )] is plotted in Fig.  6-14 . Also plotted are Nikuradse ’ s ( 1932 ) data 
and the Prandtl–von Karman velocity distribution. The difference between the 
two equations is near the wall and in the center. Fig.  6-15  plots the velocity gra-
dient versus  r / R  for equations  (6.13)  and  (6.18) . The main difference again is near 
the wall and the center. To further evaluate equation  (6.7c) , Fig.  6-16  plots the 
velocity distribution and a set of experimental data. The agreement between 
computed and measured values is quite close.     

  Figure 6-13       ε  0 / υ  versus  M  for various values of  N R  .    
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  Figure 6-14       u / u m   versus [1  −  ( r / R )].    

  Figure 6-15      Velocity gradient versus  r / R .    

  Figure 6-16      Velocity distribution and a set of experimental data.    
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  6.7     Uncertainty in  M ,  f l  ,  n , and Velocity Distribution 

 Parameters  M  and  u  max  may be subject to uncertainty and, in turn, the velocity 
distribution given by equation  (6.7c) . Since  u m   is reasonably accurately deter-
mined by  u m    =   Q / A ,  u  max  can be obtained from a given  M  and  u m   using equa-
tion  (6.16) . Thus, the uncertainty in the velocity distribution depends on the 
uncertainty in  M , unless  u  max  is measured independently. Using equations 
 (6.7c)  and  (6.16) , the velocity  u  at distance  r  from the pipe center can be 
written as

  
u u

M
r
R

M M M
m=

+ − − ⎛
⎝

⎞
⎠

⎡
⎣
⎢

⎤
⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

− −

ln [exp( ) ]

exp( )[exp( ) ]

1 1 1

1

2

1 −− 1
      (6.39)   

 For evaluating the uncertainty in the velocity distribution, let  M  be a random 
variable and, hence, also  u  can be a random variable. The fi rst-order approxima-
tion of the conditional mean of  u  at  r  is

  
U u

M
r
R

M M M
m=

+ − − ⎛
⎝

⎞
⎠

⎡
⎣
⎢

⎤
⎦
⎥

⎧
⎨
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⎫
⎬
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− −

ln [exp( ) ]

exp( )[exp( ) ]

1 1 1

1

2

1 −− 1
      (6.40)  

where  M    is the mean of  M , which is independent of  r , and  U  is the approxima-
tion of mean  u m  .  U  is an effective measure of uncertainty and can be expressed 
in terms of mean and variance of  M  as

  
s
s

P P P
P

P
P

u
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2

2
1 2 3

4
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6
= × + −       (6.41)  

where
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  P M M M M M
r
R
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2
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where  sM
2     is the variance of  M . Equation  (6.41)  is plotted against  r / R  for various 

values of  M   . As  M     increases,  s su M
2 2/     tends to have the same order of magnitude 

and to be almost independent of  M    and  r / R . With decreasing  M   ,  s su M
2 2/     changes 

rapidly, as shown in Fig.  6-17 . 
  If  M  is evaluated from  f l ,  its mean and variance can be determined from  f l  . 

Using equation  (6.31) , the fi rst-order approximation of the mean and variance of 
 f l   can be expressed as

  f
M M M M

M M M
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0 0983 1 17
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s
s

M M M

M M M M
f

M

l
2

2 2
0 053

1

2 2 1
=

− +
− + −

×

.
exp( ) exp( )

[ exp( ) exp( ) exp( ) ]

[[ . exp( ) exp( ) . ]0 17 1 17 1

2

M M M M+ − −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

      (6.43)   

 If  f l   is determined from Manning ’ s  n , then the mean and the variance of  f l   can 
be determined from equation  (6.38)  as

  f n Dl = − −12 7 2 2 1 3. ( ) /β       (6.44)  

  s s gn Df ul
2 2 2 1 325 4= − −( . )/β       (6.45)  

  Figure 6-17       s su M
2 2/     against  r / R  for various values of  M   .    
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where  n     and  sn
2     are the mean and variance of Manning ’ s  n . For a particular pipe 

material, a range of Manning ’ s  n  can be obtained from tables (Chow  1959 ), and 
these tables can be used to obtain  n    and  sn

2   . Then,  fl     and  s fl
2     can be determined 

from equation  (6.44)  and  (6.45) . Then from equation  (6.42)  and  (6.43) ,  M    and  sM
2     

can be obtained. Equation  (6.36)  can be used to determine the uncertainty in  u  
obtained from equation  (6.7c) .  

  Questions 

   Q6.1      Plot the cumulative probability distribution function of velocity as a func-
tion of distance from the wall. Compare the plot with observations given 
in Table  6-2 .   

  Q6.2      Plot the probability density function of velocity as a function of distance 
from the wall. Compare the plot with observations given in Table  6-2 .  

  Q6.3      Given the pipe diameter  R   =  1 m, plot the CDF as a function of radius 
from the center of the plot and compare it with observations.  

  Q6.4      For the pipe in Q6.3, plot the PDF of velocity as a function of distance 
from the wall. Compare the plot with observations.  

  Q6.5      Plot  u m   versus  u  max  and compute the entropic parameter  M .  

  Q6.6      Compute  u  as a function of distance from the center using the Prandtl–
von Karman velocity equation and compare it with observations.  

  Q6.7      Plot  h f   as a function of  u m  . Interpret the plot.  

  Q6.8      Plot  u m  / u  max  versus  u m  / u *. Interpret the plot.  

  Q6.9      Plot  f l   as a function of  u m  / u  max . Interpret the plot.  

(1  −  r)/ R  u  (m/s)

0.03 0.51

0.05 0.65

0.06 0.73

0.07 0.79

0.11 0.83

0.13 0.89

0.17 0.94

0.21 0.99

 Table 6-2      Velocity distribution.  

(1  −  r)/ R  u  (m/s)

0.33 1.12

0.4 1.13

0.47 1.16

0.59 1.19

0.69 1.2

0.82 1.21

0.91 1.2

1 1.19
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  Q6.10      Plot  U  as a function of  r / R  for different values of  u m   and  M . Interpret the 
plot.  

  Q6.11      Plot the ratio of the variance of velocity to the variance of  M  as a function 
of  r / R  for various values of mean  M . Interpret the plot.  

  Q6.12      Plot the mean of  f l   as a function of mean  M .  

  Q6.13      Plot the variance of  f l   as a function of mean  M .    
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    Chapter 7 

  Grain Size Analysis and 
Distribution  

       Grain size analysis has many practical applications in geotechnical engineering, 
fl uvial geomorphology, and hydraulic engineering. For example, it is used to 
characterize depositional processes within sedimentary environments (Swan et 
al.  1979a, 1979b ). The analysis can lead to describing the grain size distribution 
and its properties, such as mean grain size, median, mode, standard deviation 
(SD), skewness, and kurtosis. Each property can be used as a measure of different 
aspects of depositional environments (Blatt et al.  1980 ) and in turn fl uvial pro-
cesses. Full et al. ( 1983 ) used entropy to defi ne the aggregate properties of grain 
size distribution. This chapter discusses grain size analysis, distribution, and 
grading. 

  7.1     Grain Size Distribution 

 In grain size analysis, the range of grain sizes is divided into class intervals, and 
for each interval the relative frequency or proportion is determined. A plot of 
relative frequency versus grain size is the grain size distribution. The grain size 
distribution is a statistical distribution in which the cumulative relative fre-
quency or probability is expressed as a function of diameter ( d ) of particles. The 
cumulative relative frequency is the fraction or percentage of particles fi ner than 
a given diameter. The grain size distribution is often referred to as the grading 
curve. 
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300 Entropy Theory in Hydraulic Engineering

  7.1.1     Class Intervals for Frequency Analysis 

 Discrete data are often grouped in classes and analyzed in the form of frequency 
histograms or cumulative frequency distributions. When we are constructing 
histograms, we need to answer two questions. The fi rst is the number of class 
intervals to be used for constructing a histogram, and the second is the class 
interval size. The answers to these two questions infl uence the quality of infor-
mation or data extracted for subsequent analysis, such as estimation of moments, 
discriminant functions, factor analysis, and determination of quantiles. To illus-
trate this point, consider two extreme cases. In the fi rst case, all data are grouped 
in one class and the class interval clearly is too wide. The second case involves 
too many class intervals, with the result that class intervals have vanishingly 
sparse data. Folk ( 1966 ), Swan et al. ( 1979a ), Full et al. ( 1983 ), and others have 
discussed the effect of class interval size. Furthermore, it frequently happens, 
even when the number of class intervals is appropriate, that some class intervals 
have too many data and others too few. Random perturbations may signifi cantly 
affect the low class frequency portion of the distribution but not so much the 
high-frequency portion. 

 Conversely, high-frequency class intervals may contain more data than 
needed in terms of precision and meaning loss of information, and it may be 
worthwhile to subdivide the class intervals for testing for polymodality. When 
different data sets are compared, the issues of class intervals with too many 
frequencies and those with too few become even more important. One way to 
address these issues and remedy the underlying diffi culties is to use variable 
class interval sizes. Examples of variable class interval sizes include percentile-
based size measures (Inman  1952 ; Folk and Ward  1957 ), or graphic mean (Folk 
and Ward  1957 ). The objective of using unequal width class intervals is to maxi-
mize the amount of information that can be extracted from the data and its fre-
quency distribution. The entropy theory provides a way to determine class 
intervals that will maximize information. 

 Entropy gives a measure of the degree of contrast among class intervals in 
the frequency histogram. If the class interval frequencies are considerably differ-
ent, the entropy value is low. Conversely, a high entropy value characterizes the 
histogram with small differences among interval frequencies. Thus, the entropy 
method can be used to defi ne the optimal interval width to best characterize the 
histogram. 

 Traditional methods of generating class intervals include arithmetic (A), phi 
(TP), log-arithmetic (LA),  Z -scores (ZS), and log  Z -scores (LZS) methods. In the 
arithmetic method, intervals are of equal width. In grain size analysis, the scale 
is in millimeters and, therefore, the width is also in millimeters. The phi method, 
which is frequently used in geology and sedimentology, scales as ( − log 2  mm), 
containing intervals each quarter-phi unit wide. In the log 2  domain, the intervals 
are of equal width. In the log-arithmetic method, the arithmetic scale is trans-
formed to the log 10  space, and in the log space (i.e., log millimeter), the intervals 
are of equal width. The  Z -score method (Mazzullo and Ehrlich 1980) assumes 
that pooled data have a higher density near the mean and that the data are 
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normally distributed. In this method, intervals are defi ned such that each interval 
has the same frequency. This difference means that intervals would be narrower 
near the mean and progressively wider away from the mean. In the log- Z  scores 
method, data are fi rst logarithmically transformed by taking the base of loga-
rithm as 10, and then the ZS method is applied. Fig.  7-1  shows these methods. 
It may be noted that the maximum entropy method is independent of most 
common transformations (e.g., log, square, or square root).   

  7.1.2     Feature Extraction 

 It may be worthwhile to compare different data sets and compare different 
methods of interval sizing. In this manner, the entropy of the total system can 
be computed using different methods, and by comparing total system entropies, 
the method of interval sizing can be identifi ed. The information contained within 
a particular data set can be quantifi ed by entropy. Consider data sets consisting 
of observations on different characteristics, such as size, shape, hydrologic analy-
ses, or chemical analyses, which may have similar geologic information. The 
question arises: Which variable(s) are best suited for a clear and unambiguous 
analysis? To answer this question, one can use entropy as a numerical measure, 
and this criterion is termed  feature extractor . 

 For feature extractor, the concept of relative entropy is defi ned as the ratio 
of the sample entropy to the maximum possible entropy, which is obtained when 
class intervals in the sample have equal frequencies or is equal to the natural 
logarithm of the number of class intervals. Thus, the relative entropy of the entire 

  Figure 7-1      Example of the partition of an arbitrary pooled collection of distributions 
using the traditional phi (TP), arithmetic (A), log (base 10) arithmetic (LA),  Z -scores 

(ZS), and maximum entropy (ME) methods.    
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data set consisting of a number of samples is the sum of calculated sample entro-
pies divided by the maximum possible sample entropy and the number of 
samples. Consider two sets of samples (data). For one set, the relative entropy 
is low, and for the other, it is high. The lowest relative entropy can be zero, and 
the highest can be one. Lower values of relative entropy refl ect data with greater 
contrasts among samples, and higher values refl ect smaller variation among 
samples. This, then, suggests that the set containing the lowest relative entropy 
has the greatest potential for a clear, unambiguous analysis. In this manner, the 
data set with the highest potential can be identifi ed. Now, the question is: How 
can we maximize the information contained in that data set? 

 Consider a data set consisting of stream sediment samples from drainage 
basins. One may quantify the sediment size by using Fourier series containing 
harmonics. A greater magnitude of the harmonic implies greater contribution to 
the total size. In this manner, each sample can be represented by a set of harmonic 
amplitudes. Each harmonic represents a different scale of size variability, and 
hence different harmonics correspond to different amounts and types of informa-
tion, as shown in Fig.  7-2 . (The fi rst harmonic represents an error measurement.) 
Thus, the problem is to determine a few harmonics that are likely to carry the 
most information. One can then use class frequencies of these harmonic ampli-
tudes and compute relative entropy. A plot of relative entropy versus harmonics 
indicates the harmonic with the lowest entropy.   

  7.1.3     Sorting Index 

 Grain size analysis often involves sorting sediment particles and then deriving 
sediment characteristics, such as sediment grain size distribution, moments, and 
depositional features. Sorting qualitatively means that the way the mass of sedi-
ment particles is arranged among classes is defi ned somewhat arbitrarily. Fre-
quently used terms are  poorly sorted  and  well sorted . When most of the material 
is sorted in one class, the distribution is considered well sorted, and when the 

  Figure 7-2      Relative entropy versus number of harmonics.    
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material is evenly distributed, it is considered poorly sorted. The arrangement 
of particles among classes refl ects two properties: (1) evenness in the distribution 
of sediment mass and (2) spread of sediment size distribution. The standard 
deviation, as a measure of spread, can describe both these properties if the grain 
size distribution is normal but cannot if the distribution is not normal. Consider, 
for example, three cases shown in Figs.  7-3 to 7-5 . In Figs.  7-3  and  7-4 , the stan-
dard deviation is the same but the evenness with which the material is distrib-
uted is quite different. Likewise, in Figs.  7-4  and  7-5 , the evenness is the same 
but the standard deviation is quite different. Thus, the standard deviation mea-
sures the spread but not the evenness. 

    The  standard deviation  (SD) can be considered a measure of sorting. A higher 
value of SD indicates poor sorting. However, it does not distinguish between a 
fi ne-grained distribution and a coarse-grained distribution because the two dis-
tributions may have equal degrees of sorting. 

  Figure 7-3      Histogram of the hypothetical size analysis (standard deviation: 2.0).    

  Figure 7-4      Histogram of the hypothetical size analysis (standard deviation: 2.0).    

  Figure 7-5      Histogram of the hypothetical size analysis (standard deviation: 6.0).    
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 Although  skewness  is a measure of asymmetry of the distribution, it cannot 
be used to identify like distributions. Consider two very different distributions. 
One of the distributions belongs to fi ne- to medium-grained sands, and a sub-
stantial very fi ne and mud fraction, and the other distribution belongs to medium- 
to very coarse-grained sands with less important fi ne grains. It is not uncommon 
to see that these distributions have the same value of skewness. Fig.  7-6  illus-
trates this distribution characteristic. 

   Kurtosis  is a measure of the distribution peakedness or fl atness, as shown in 
Fig.  7-6 . Friedman ( 1962 ) showed that most sand grain distributions were lep-
tokurtic as a result of mixing of a predominant grain size with small amounts of 
coarse and fi ner material. However, two distributions may have the same kur-
tosis, but one may be more leptokurtic than the other. That is, one may be more 
concentrated in the fi ne sand to mud range than the other, which may be more 
platykurtic and multimodal. Another example is that the one distribution is less 
peaked and medium- to coarse-grained, and the other is highly peaked and 
bimodal in the sand and clay (mud) parts of the size range. 

 There are several sorting indexes, such as Udden ’ s index of sorting (Udden 
 1914 ), Baker ’ s grading factor (Baker  1920 ), Trask ’ s measure of sorting (Trask 
 1932 ), and Niggli ’ s index of sorting (Niggli  1935 ). However, these indexes essen-
tially measure the spread of the grain size distribution, as pointed out by Krum-
bein and Pettijohn ( 1938 ). Sharp and Fan ( 1963 ) proposed a sorting index based 
on the entropy concept, which captures the evenness of the distribution and is 
described here. 

 Let  f i   be the fraction observed in the  i th class, and let  N  be the number of 
classes. We defi ne a constant  k , which depends on the scale specifi ed. The sorting 
index,  S i  , expressed in percentage is defi ned as

  S k f f fi i i
i

N

i
i

N

= + =
= =
∑ ∑100 110

1 1

log ,       (7.1)   

 This index equals 100 when all  f i   are equal to either 1 or 0. It becomes 0 if all 
 f i   have the same value given the maximum number of allowable classes and 

the properly adjusted  k  value. Clearly, the term  f fi i
i

N

log10
1=

∑     is equal to the 

negative of the Shannon entropy or negentropy and becomes maximum when 
all  f i   are equal.  S i   is independent of the position of classes and uses all the data. 

 For any size scale split into arbitrary classes, the value of  k  can be computed 
as follows. Let  N  be the allowed number of classes. For  f i    =  1/ N ,  S i   can be set 
equal to 0. Then,

  0 100
1

10
1

= + ⎛
⎝

⎞
⎠

=
∑k f

N
i

i

N

log       (7.2)  

which yields

  k
N

= 100

10log
      (7.3)   
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  Figure 7-6      Pairs of grain size distribution profi les with the same or similar standard 
deviation (sd.), skewness (sk.) and kurtosis (k.) values.    
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 As an example, consider setting up a sorting scale for sediment on the Went-
worth scale in units on the  ϕ  scale, which is a logarithmic expression of the 
Wentworth scale. Consider a  ϕ  range of  − 10 to  + 10, thus giving classes of  N   =  20. 
In this case,  f i    =  1/20  =  0.05, corresponding to the poorest sorted sediment. Then, 
constant  k  for this scale is

  k = = =100
20

100
1 301

76 862
10log .

.        

 Thus, the sorting index is

  S f fi i i
i

N

= + × =
=
∑100 76 862 0 000232510

1

. log .        

 This sorting index is for scales ranging from  − 10 to 10 ϕ  at class intervals of 1 ϕ . 
The sorting index can be used to make inferences about the nature of ancient 
sediment deposits or to investigate variations in sedimentary rocks.  

  7.1.4     Characterizing Grain Size Distribution 

 Granulometric analysis of sediments is used to determine environment-diagnostic 
descriptors of grain size distributions. Some of the descriptors include mean 
grain size, phi-standard deviation, phi-skewness, and phi-kurtosis of the distri-
bution. Each parameter measures different aspects of depositional environments. 
It has been frequently assumed that the grain size distributions are approxi-
mately normal or lognormal. These summary measures are relevant under this 
assumption but do not provide a complete summary of data for each grain size 
distribution. The question is the loss of information involved in the use of these 
statistics. Full et al. ( 1983 ) used entropy to defi ne the aggregate properties of each 
grain size distribution. Forrest and Clark ( 1989 ) used variate analysis to charac-
terize grain size distributions. 

  7.1.4.1     Univariate Case 

 Let  X  be the random variable defi ning the grain size and let the grain size 
population be divided into  N  (phi) classes or class interval sizes  Δ  x i  ,  i   =  1, 2, …, 
 N , i.e.,  X  takes on values  X   =  { x i  ,  i   =  1, 2, …,  N }. For simplicity, a constant class 
interval size is often used, i.e.,  Δ  x i  ,  =   Δ  x ,  i   =  1, 2, …,  N . Let  p i   be the proportion 
of grains in the  i th phi class interval. Thus, the probability distribution  P  of 
grain size  X  is  P   =  { p i  ,  i   =  1, 2, …,  N }. The Shannon entropy  H ( X )  =   H ( P ) can be 
defi ned as

  H X p pi i
i

N

( ) log= −
=
∑

1

      (7.4)   

  H ( X ) is a measure of the grain size distribution over  N  intervals. The maximum 
value of  H ( X ) is log  N . Then, the more equally distributed the instances of  p i   are, 
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the closer  H ( X ) would be to the maximum entropy log  N . The difference between 
the maximum entropy and the distribution entropy is

  

I X N H X N p p

p N p p

i i
i

N

i
i

N

i i
i

N

( ) log ( ) log log

log log

= − = +

= + =

=

= =

∑

∑ ∑
1

1 1

pp Npi i
i

N

log( )
=
∑

1

      (7.5)  

where  I ( X ) is a measure of inequality or regularity of the distribution and is so 
called. 

 Using the regularity or inequality statistic, it is possible to determine an 
optimum number of categories,  M ,  M   <   N . This determination is accomplished 
by maximizing between-class regularity and minimizing within-class regularity, 
yielding an optimal classifi cation into  M  categories. For example, if for a sample 
there are  N   =  20 phi intervals, then a classifi cation into, say,  M   =  5 categories 
would produce the optimal classifi cation of intervals resulting in the maximum 
entropy histogram. 

 In the univariate characterization, all samples are classifi ed into the same 
number of class intervals. The choice of  M  categories or classes is also the same 
for all samples. Full et al. ( 1983 ) reasoned that the same  M  value may not be 
optimal for individual samples. Forrest and Clark ( 1989 ) addressed this problem 
using multivariate analysis.  

  7.1.4.2     Multivariate Case 

 Let there be  K  samples and  N  phi class intervals. If  p ij   defi nes the proportion of 
the total grains (of all  K  samples) in row  i  (sample  i ) and column  j  (class interval); 
 i   =  1, 2, …,  K  (number of samples);  j   =  1, 2, …,  N  (number of class intervals);  p j   
is the frequency value (of grains) in phi class interval  j ,  p i   is the frequency value 
(of sand grains) in the phi class interval  j  that is in sample row  i , such that  p i    =  
 p ij  / p j  ;  p ij   is the proportion of the total population (of all  K  samples) in row  i  and 
column  j . The inequality statistic can be expressed as

  I X p p Kpj
j

N

i i
i

K

( ) log=
= =
∑ ∑

1
2

1
      (7.6)   

 Here

  p pi
i

K

j
j

N

= =
∑ ∑= =

1 1

1 1;       (7.7)   

 Here  I ( X ) denotes the inequality in the distribution of class interval values 
across all samples weighted by the frequency of sand grains in each phi 
category. 

 The weighted inter-row inequality value permits us to calculate between-
group (of samples) inequality  I B  ( X ) as
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  I X p p
p

K K
B j

j

N

jr
jr

rr

R

( ) log
/

=
= =
∑ ∑

1
2

1
      (7.8)  

where  r  is the number of groupings, and  I B  ( X ) is the between-group inequality. 
 All samples are allocated to a group based on the shared grain size distribu-

tion characteristics. Thus,  K  samples are grouped into  R  classes by maximizing 
between-class entropy and minimizing within-class entropy. The optimum 
number of groups is achieved when the between-class entropy starts to grow at 
a signifi cantly decreasing rate with the addition of more classes.   

  7.1.5     Derivation of Grain Size Distributions 

  7.1.5.1     Normal Distribution 

 The normal distribution is frequently used for describing the grain size distribu-
tion. To derive this distribution using entropy, let the grain size be represented 
by a random variable  X  with probability density function  f ( x ), where  x  is a spe-
cifi c value of  X . In this case, the constraint equations are

  E x m[ ] =       (7.9)  

  E x m or E x m[ ] [( ) ]2 2 2 2 2= + − =σ σ       (7.10)  

where  m  is the mean of  X , and  σ  2  is the variance of  X . Furthermore,

  f x dx( )
−∞

∞

∫ = 1       (7.11)   

 The Shannon entropy is expressed as

  H f x f x dx= −
−∞

∞

∫ ( )ln ( )       (7.12)   

 Equation  (7.12)  is maximized, subject to equations  (7.9) ,  (7.10) , and  (7.11) , in order 
to obtain the least biased  f (x). Hence the Lagrangian  L  is expressed as

  

L f x f x dx f x dx xf x dx= − − − −
⎡

⎣
⎢

⎤

⎦
⎥ −

−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫( )ln ( ) ( ) ( ) ( )λ λ0 11 1 −−
⎡

⎣
⎢

⎤

⎦
⎥

− − −
⎡

⎣
⎢

⎤

⎦
⎥

∞

∫

m

x f x dx mλ σ2
2

0

2 2( )

      (7.13)   

 Differentiating equation  (7.13)  with respect to  f ( x ) and equating the derivative to 
0, one gets

  
∂

∂
= ⇒ = − − −L

f x
f x x x

( )
( ) exp( )0 0 1 2

2λ λ λ       (7.14)   
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 Equation  (7.14)  is the distribution based on the principle of maximum entropy 
(POME) with  λ  0 ,  λ  1 , and  λ  2  as parameters. These parameters are determined 
using equations  (7.9)  through  (7.11)  as

  exp( )− − − =
−∞

∞

∫ λ λ λ0 1 2
2 1x x dx       (7.15)  

  x x x dx mexp( )− − − =
−∞

∞

∫ λ λ λ0 1 2
2       (7.16)  

  x x x dx m2
0 1 2

2 2 2exp( )− − − = +
−∞

∞

∫ λ λ λ σ       (7.17)   

 Equation  (7.15)  can be expressed as

 exp( ) exp( ) exp expλ λ λ λ
λ

λ λ
λ

0 1 2
2 1

2

2
2

1

24 2
= − − = ⎛

⎝⎜
⎞
⎠⎟

− +⎡

−∞

∞

∫ x x dx x
⎣⎣⎢

⎤
⎦⎥−∞

∞

∫
2

dx       (7.18)   

 Taking  t x= +λ λ
λ

2
1

22
   , equation  (7.18)  can be written as

  exp( )
exp

exp( )
exp

λ

λ
λ

λ

λ
λ

λ
0

1
2

2

2

2

1
2

2

2

2
4 4=

⎛
⎝⎜

⎞
⎠⎟

− =

⎛
⎝⎜

⎞
⎠⎟

−∞

∞

∫ t dt ππ       (7.19)   

 A little algebraic manipulation yields the following:

  λ
σ

λ
σ1 2 2 2

1
2

= − =m
;       (7.20)   

 Substituting equation  (7.17)  in equation  (7.11) , one obtains

  f x
x m

( ) exp= − −⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

1
2

1
2

2

πσ σ
      (7.21)  

which is the probability density function of the normal distribution and corre-
sponds to the case when mean and variance of grain sizes are known. It may be 
remarked that normal distribution can also be derived using only the variance 
as a constraint, because variance includes mean (Krstanovic and Singh  1988 ).  

  7.1.5.2     Lognormal Distribution 

 Let there be a normal random variable  Y  over the interval ( −  ∞ ,  ∞ ) and another 
random variable  X  related to  Y  as  Y   =  ln  X . If  Y  is normally distributed, then  X  
would be lognormally distributed over the interval (0,  ∞ ). The constraint equa-
tions are equation  (7.11)  and
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  E y m E x E y my x[ ] [ ] [exp( )]= = =or       (7.22)  

  E y m E x E x my y[ ] [ ] [(ln )]2 2 2 2 2= + = −σ or       (7.23)   

 Equation  (7.12)  is maximized, subject to equations  (7.11) ,  (7.22) , and  (7.23) , to 
obtain the least biased  f (x). Hence the Lagrangian  L  is expressed as

 

L f x f x dx f x dx x f x dx= − − − −
⎡

⎣
⎢

⎤

⎦
⎥ −

−∞

∞

−∞

∞

∫ ∫( )ln ( ) ( ) ( ) (ln ) ( )λ λ0 11 1
−−∞

∞

∞

∫

∫

−
⎡

⎣
⎢

⎤

⎦
⎥

− − −
⎡

⎣
⎢

⎤

⎦
⎥

m

x f x dx m

x

y yλ σ2
2

0

2 2(ln ) ( )

      (7.24)   

 Differentiating equation  (7.24)  with respect to  f ( x ) and equating the derivative to 
0, one gets

  
∂

∂
= ⇒ = − − −L

f x
f x x x

( )
( ) exp[ ln (ln ) ]0 0 1 2

2λ λ λ       (7.25a)  

or

  f x x x x x x x( ) exp( ) exp( log log ) exp( ) log= − − = −− − −λ λ λλ λ λ
0 2 0

1 1 2       (7.25b)   

 Equation  (7.25b)  is the POME-based distribution with  λ  0 ,  λ  1 , and  λ  2  as parame-
ters, which can be determined by substitution of equation  (7.25b)  in equations 
 (7.9) ,  (7.22) , and  (7.23)  as

  exp[ ln (ln )− − − =
∞

∫ λ λ λ0 1 2
2

0

1x x dx       (7.26)  

  ln exp[ ln (ln )x x x dx my− − − =
∞

∫ λ λ λ0 1 2
2

0

      (7.27)  

  (ln ) exp[ ln (ln ) ]x x x dx my y
2

0 1 2
2

0

2 2− − − = +
∞

∫ λ λ λ σ       (7.28)   

 A little algebraic manipulation yields (Singh  1998 ):

  λ π λ λ
λ0 2

1
2

2

1
2

1
2

1
4

= − + −
ln ln

( )
      (7.29)  

  λ
σ1 21= −
my

y
      (7.30)  

  λ σ2 2

1
2

=
y

      (7.31)   
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 Substituting equation  (7.29)  to  (7.31)  in equation  (7.25a) , one obtains

  f x
x

x m

y

y

y

( ) exp
ln

= −
−⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

1
2 2

2

πσ σ
      (7.32)  

which is the probability density function of the lognormal distribution and 
corresponds to the case when mean and variance of logarithmic values are 
known.    

  7.2     Soil Characteristics Using Grading Entropy 

 Lorincz ( 1986 ) derived the grading curve entropy and investigated different soil 
characteristics using the curve entropy. He established a relation between grading 
entropy and dry bulk density of granular materials (Lorincz  1990 ), investigated 
segregation of granular media and fi lter properties (Lorincz  1993a ), and charac-
terized piping and suffusion phenomena. Building on this work, Lorincz and his 
associates (Lorincz et al.  2005 ) quantifi ed grading entropy caused by soil crush-
ing, Lorincz et al. ( 2008 ) presented entropy criteria for granular fi lters, Lorincz 
et al. ( 2005 ) discussed particle breakage, Imre et al. ( 2008 ) characterized sand 
mixtures, and Imre et al. ( 2009 ) developed a general dry density law for sands. 
The discussion here draws from the investigations of Lorincz and his associates. 
The grading entropy theory has been used to defi ne particle migration criteria 
(Lorincz  1993b ; Lorincz et al.  2008 ), explain the particle breakage process (Lorincz 
et al.  2009 ), and construct the transfer function between soil physical properties 
and the grading curve (Imre et al.  2009 ). 

  7.2.1     Background and Defi nitions 

 In the traditional method of determining the grain size distribution of a soil, 
sieve analysis is done to construct the grading curve of the soil sample. In other 
words, a grading curve is measured by sieving, in which the hole diameters have 
a multiplier of two. Thus, a particular sieve mesh is characterized by a specifi c 
diameter, and the next sieve mesh diameter is twice as much, and so on. Usually 
the sieve mesh diameters are incremented by a multiplication factor of two when 
going upward. For example, if one sieve mesh diameter is 0.05mm, then the next 
higher mesh diameter is 0.1 mm, the next higher is 0.2 mm, the next higher is 
0.4 mm, and so on. The mesh diameter may vary over several orders of magni-
tude (Lorincz et al.  2005 ). For purposes of discussion here, the minimum diam-
eter, denoted as  d  min , is taken as the height of the silicon–oxygen (SiO 4 ) tetrahedron 
(2  − 22  mm) (Imre  1995 ). 

 When sieve analysis is done, the soil sample particles are divided into frac-
tions by sieves. Let there be  N  fractions (also equal to the number of sieves);  N  
is the number of fractions between the fi nest and the coarsest, and the fractions 
are numbered by increasing integers. A fraction is defi ned as a set of particles 
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passing through one sieve but retained by the next sieve. For convenience, frac-
tions are indexed by increasing integers, as shown in Fig.  7-6 . It may be noted 
that for a particular soil sample the particles may fall in one of the sieves rather 
than all of them. If the serial number of the coarsest fraction is denoted as  i  max  
and the serial number of the fi nest fraction is  i  min , the total number of fractions 
 N  of the soil sample can be expressed as

  N i i= − +max min 1       (7.33)   

 The smallest fraction can be between grain diameter  d   =   d  1  and  d   =   d  2 ; say  d  1   =  
0.05 and  d  2   =  0.1. The  i th fraction can be expressed in terms of its relative fre-
quency, denoted as  x i  . Note this is a measured quantity equal to the weight of 
particles of the  i th fraction divided by the total weight of the soil sample. The 
relative frequencies,  x i  ,  i   =  1, 2, …,  N , are independent. Thus,

  x x Ni
i

N

i
=
∑ = ≥ ≥

1

1 0 1, ,       (7.34)   

 Here the number of fractions,  N , is between the coarsest fraction and the fi nest 
one. It is convenient to number the fractions by increasing integers and to index 
them by a serial number  i   =  1, 2, …, 27. 

 With this convention, the diameter range of the  i th fraction,  d i  , can be defi ned 
as

  2 20
1

0
i id d d≤ ≤ +       (7.35)  

where  d  0  is the elementary cell width (or diameter), which can be an arbitrary 
value and is usually taken as the height of the SiO 4  tetrahedron ( d  0   =  2  − 22 ) (Imre 
 1995 ). Equation  (7.35)  allows us to specify the diameter of different fractions or 
cells that can be expressed in terms of the minimum grain diameter  d  min   =  2  i    − 1  d  0 , 
as shown in Table  7-1  (from bottom to top in ascending order). 

  Lorincz ( 1990 ) tested soil fractions with a sieve test that had the following 
mesh sizes:  d  min   =  0.063, 0.125, 0.25, 0.5, 1, 2, 4, 8, … mm; each subsequent fraction 
had a double width or diameter of the immediately lower diameter fraction. He 
suggested and applied the width of the elementary cell as  d  0   =  2  − 17  mm. 

 Statistical cell systems are defi ned as primary and secondary, also known as 
real and imaginary, respectively. The reason for defi ning two cell (fraction) 
systems is that statistical cells or fractions are not uniform, but a uniform cell 
system is needed for the statistical entropy of a discrete distribution, thus invok-
ing a double cell system. In this notion, probabilities are computed exclusively 
from fraction information, with the assumption of a uniform distribution in a 

Fraction 0 1 2 22 23 24

Diameter  d  (mm) 2  − 22 –2  − 21 … … 1–2 2–4 4–8

 Table 7-1      Fraction properties.  
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fraction. A primary statistical cell system is analogous to a sieve and is enumer-
ated by the fraction of soil grains retained by its mesh. That is why it is called a 
real cell system and is so used henceforth. Thus, a real cell system is defi ned by 
successive multiplication with a factor of 2, the same as the base of logarithm in 
the entropy defi nition. Each cell system is assumed to have a uniform width, i.e., 
its mesh size or diameter remains the same. If the width of the elementary cell 
can be taken as  d  0 , the mesh diameter of the  i th cell system (or sieve) can be 
determined by

  d d i Ni
i= =−2 1 21

0, , , ,…       (7.36)   

 In this sense, the real cell system can be generalized as a geometric progression 
with a factor of 2, defi ning the pattern that classical sieve hole diameters would 
follow. The defi nition of real cell system is illustrated in Fig.  7-7 . 

  If the fractions are numbered by a serial number  i  ( i   =  1 2, …,  N ) then equa-
tion  (7.36)  applies, and its diameter range is defi ned by equation  (7.35) . Thus, 
there is a fraction grid, and within each fraction or cell system, there is an elemen-
tary cell grid, as shown in Fig.  7-7 . The corresponding fraction is embedded in 
its grid system or elementary system. 

 A secondary or imaginary cell system does not really exist or is not visible 
as the real cell system. Here is also the reason why “imaginary” is adopted rather 
than “secondary.” As an example, consider an  i th fraction, and let us imagine 
that there exists a set of cells whose mesh size is linearly increased from  d i   to  d i    +   1  
with an increment of  d  0 . The mesh diameter of the  j th imaginary cell within the 
 i —the real cell,  d ij  , can be expressed as

  d d j i d j Cij i i= + − =( ) , , ,0 1 2 …       (7.37a)  

  Figure 7-7      Defi nition of an imaginary (secondary) cell system.    
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where  d ij   represents the diameter of the  j th imaginary cell within the  i th real cell 
and  C i   is the number of elementary cells of width  d  0  between  d i   and  d i    +   1 , which 
can be computed as

  C
d d

d
d d

d
i

i i i i
i= − = − =

+ −
−

1

0

0
1

0

0

12 2
2       (7.37b)   

 Just as the real cell system is generalized as a geometric progression, the imagi-
nary cell system can be generalized as an arithmetic progression with an incre-
ment of  d  0 . Another important assumption associated with the imaginary cell 
system is that the soil particles within each fraction are uniformly distributed 
among the corresponding imaginary cells. 

 Once the real and imaginary cell systems are defi ned, the concept of a grading 
curve set is defi ned as a set of possible distribution functions where the grain 
distribution is uniform within each of the  N  fractions given the minimum cell 
width  d  min  (Imre et al.  2008 ). Let us assume that a sieve analysis is done and the 
soil sample is divided into  N  different fractions, the total weight of the soil 
sample is  M , and the weight associated with the  i th fraction is  M i  . Then the rela-
tive frequency of the  i th fraction can be expressed as

  x
M
M

i
i=       (7.38)   

 Furthermore, as grains are assumed to be uniformly distributed within each 
fraction, the relative frequency of the  j th imaginary cell within the  i th real frac-
tion,  p ij  , is

  p
x
C

j Cij
i

i
i= =, , , ,1 2 …       (7.39)   

 With appropriate modifi cation, equation  (7.39)  can be defi ned over all integers 
from 1 to  N  for  i  and from 1 to  C N   for  j . Thus,

  p
x
C

j C

C j C
ij

i

i
i

i N

=
≤ ≤

≤ ≤

⎧
⎨
⎪

⎩⎪

1

0
      (7.40)   

 As  pij
i j,
∑ = 1    , equation  (7.40)  can be considered as a bivariate probability mass 

function accounting for weight as well as diameter of sediment particles. When 
sieve analysis is done, a contingency table can be fi lled easily whose entries are 
 p ij   computed using equation  (7.40) , as shown in Table  7-2 .   

  7.2.2     Grading Entropy 

 The concept of grading entropy, proposed by Lorincz ( 1986 ), is actually a specifi c 
application of statistical entropy to the grading curve. Let ( X ,  Y ) be a joint 
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distributed random vector with probability mass function  p ( x ,  y ), and marginals 
 p X  ( x ),  p Y  ( y ) of  X  and  Y , respectively. The Shannon entropy  S ( X ) of random vari-
able  X  measuring the uncertainty of  X  or the amount of information contained 
in it is defi ned as

  S X p x p x
x

( ) ( )log ( )= −∑       (7.41a)   

 Likewise, for random variable  Y , the Shannon entropy is

  S Y p y p y
y

( ) ( )log ( )= −∑       (7.41b)  

and the joint entropy  S ( X ,  Y ) of random vector ( X ,  Y ) measuring the joint 
uncertainty or the total amount of information conveyed by the vector ( X ,  Y ) is 
defi ned as

  S X Y p x y p x y
yx

( , ) ( , )log ( , )= − ∑∑       (7.42)   

 As stated previously, with an appropriate extension the relative frequency of 
the  j th imaginary cell within each fraction in sieve analysis can be considered as 
a bivariate joint distribution whose probability mass function is given by equa-
tion  (7.40)  and also in Table  7-2 . Applying this bivariate distribution to the joint 

Real Cell 
System ( i )

Imaginary Cell System ( j )

1 2 3 …  C N    − 1  C N  

1  
x
C

1

1
   0 0 … 0 0

2

 
x
C

2

2

   

 
x
C

2

2
   0 … 0 0

3  
x
C

3

3
    

x
C

3

3
    

x
C

3

3
   … 0 0

… … … … … 0 0

 N   −  1  
x
C

N

N

−

−

1

1
    

x
C

N

N

−

−

1

1
    

x
C

N

N

−

−

1

1
   …  

x
C

N

N

−

−

1

1
   0

 N  
x
C

N

N
    

x
C

N

N
    

x
C

N

N
   …  

x
C

N

N
    

x
C

N

N
   

   Note:    C i    =  2  i    − 1 ,  x
M
M

i
i=    ,  ∑ =xi 1   .   

 Table 7-2      Contingency table of bivariate probability mass function.  
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Shannon entropy (equation  [7.42] ), the grading entropy (Lorincz  1986 ) can be 
derived as

  

S p p p p p pij ij
j

C

i

N

ij ij
j

C

i i
i

NN i

= − = − = −
== =

⋅ ⋅
=

∑∑ ∑log log log2
11

2
1

2
1
∑∑∑

∑
=

= − + + +

= −

i

N

i

i

i

i

i

i

i

i

i

i

i

i

i
i

i

x
C

x
C

x
C

x
C

x
C

x
C

C
x
C

1

2 2 2log log log…

llog2
1

x
C

i

ii

N

=
∑

      (7.43)   

 Now consider a special case where the soil is composed of a single fraction, 
say,  x i    =  1 and  x j    =  0 for all  j   ≠   i . Then the grading entropy of this soil is

  S C
C C

Ci
i i

i= − =1 1
2 2log log        

 Since  C i    =  2  i    − 1 , equation  (7.43)  becomes

  S S ii
i

0 2
12 1: log= = = −−        

 This kind of grading entropy is also referred to as the eigen-entropy of fraction 
 i  and can be denoted as  S   =   S  0   i  . The eigen-entropies of different fractions com-
puted by equation  (7.43)  are listed in the last row of Table  7-2 . One point that 
should be noted is that because the base of logarithm in equation  (7.43)  is selected 
as 2, the eigen-entropy can be expressed by a very simple function,  i   −  1, and  i  
is just the index of the fraction. This is one of the reasons for selecting 2 as the 
base. Another reason is that if we consider a binary distributed random variable, 
the Shannon entropy (equation  [7.41] ) has a maximum value of 1 when the base 
is 2. 

 Equation  (7.43)  is a concave function of relative frequency  x i  , and its concav-
ity can be confi rmed by the negative defi nite Hessian matrix of the second-order 
partial derivatives of  S  with respect to  x i  , as shown:
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. . . .
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  Example 7.1          Compute the eigen-entropy of the fraction between sieves of 1-mm 
and 2-mm sizes.  

  Solution   First, the number of elementary cells is computed (with  d  0   =  2  − 17  mm):

  C =
−

=−

2 1
2

2
17

17mm mm
mm

       

 Then, the eigen-entropy can be written as

  S0
1 2

172
2

17− = =
log
log

       

 In a similar manner, the eigen-entropy of fraction 2–4 mm is 18, and so forth.  

   Example 7.2          Compute eigen-entropy values of the fractions from 0 to 24.  

  Solution 

  S
C

ii
i

0
2

= =ln
ln

      

 The results are shown in Table  7-3 . It is independent of the cell width.   

Fraction 0 1 2 . . . 24

 S  0 0 1 2 . . . 24

 Table 7-3      Eigen-entropy values in Example  7.2 .  

  The grading entropy has a maximum value whose local maximum is also the 
global maximum. Now let us maximize the grading entropy with respect to 
the relative frequency  x i   corresponding to the real (or primary) cell system. 

Considering the total probability constraint,  xi
i

N

=
∑ =

1

1    , this maximization problem 
can be formulated as

  maximize S C
x
C

x
C

i
i

i

i

ii

N

= −
=
∑ log2

1

      (7.44)  

subject to the constraint

  xi
i

N

=
∑ =

1

1       (7.45)   

 The maximization can be achieved using the method of Lagrange multipliers 
where the Lagrange function  L  is expressed as

  L S C
x
C

x
C

xi
i

i

i

i
i

i

N

i

N

= + × = − + −⎛
⎝⎜

⎞
⎠⎟==

∑∑λ λconstraint log2
11

1       (7.46)  
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318 Entropy Theory in Hydraulic Engineering

where  λ  is the Lagrange multiplier corresponding to the total probability con-
straint. Now differentiating the Lagrange function  L  with respect to the relative 
frequencies,  x i  , and equating the derivative to zero, one obtains

  
∂
∂

= − +⎡
⎣⎢

⎤
⎦⎥
+ = − −L

x
x
C

x
x C C

x
Ci

i

i
i

i i i

i

i

log
( / )log

log
log

2
2

2
2

1 1 1
2

λ ++ =λ 0       (7.47)   

 It is known that the relative frequency of the imaginary cells within a fraction 
is a constant, ( x i  / C i  ), but may vary among different fractions. Equation  (7.47)  
shows that the grading entropy can be maximized if the frequency of each imagi-
nary cell regardless of fractions corresponding to the real cell system is constant, 
that is,

  
x
C

i

i

= cons       (7.48)  

where cons  =  constant. Considering  C i    =  2  i    − 1  equation  (7.48)  can be rewritten as

  x x x xN
N

1 2 3
2 11 2 2 2

= = = = −…       (7.49)   

 Equation  (7.49)  can be further generalized as

  x xi
i= −2 1

1       (7.50)   

 Equation  (7.50)  indicates that the grading entropy is maximized under the condi-
tion that grains are uniformly distributed among different imaginary cells and 
that they double the relative frequency  x i   of each real cell from the bottom to the 
top of the sieve system. Substituting  x i   into the total probability constraint (equa-
tion  [7.45] ), one obtains

  2 2
1 2 2

1 2
11

1
1

1
1

1
1

1
i

i

N
i

i

N N

x x x−

=

−

=

−

∑ ∑= = − ×
−

=       (7.51)   

 The second equality in equation  (7.51)  is based on the formula for the sum of 
geometric progression. Solving for  x  1 , one gets

  x
N1
1

2 1
=

−
      (7.52)   

 The above derivation concludes that the maximum point of the grading 
entropy is [ x  1   x  2  …  x N  ], whose coordinates can be computed from equation  (7.50)  
and  (7.52) . 

  Example 7.3          Assume that a soil system is mixed with two neighboring fractions. 
Compute the relative frequency for each fraction leading to the maximum grad-
ing entropy.  
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  Solution   For the two neighboring fractions 1 and 2, let  x  1  and  x  2  denote their 
relative frequencies, respectively. Since there are only two fractions, we have

  x x1 2 1+ =        

 Using equation  (7.50) , we can further have

  x x2 12=        

 It is easy to obtain  x  1   =  1/3 and  x  2   =  2/3. This result shows that in the case of two 
neighboring fractions, the proportions of fractions leading to the maximum grad-
ing entropy are 2/3 coarser and 1/3 fi ner fractions.    

  7.2.3     Simplex for Characterization of Grading Entropy 

 The concept of grading entropy can be explained from a geometric point of view 
in terms of the concept of simplex. In geometry, a  simplex  is a generalization of 
the notion of a triangle or tetrahedron to an arbitrary dimension. A single point 
may be regarded as 0-simplex. In one dimension, a line may be regarded as 
simplex; in two dimensions, a simplex is a triangle, referred to as 2-simplex; in 
three dimensions, it is a tetrahedron, referred to as 3-simplex; and in four dimen-
sions, it is a  pentachoron , referred to as 4-simplex. Thus, an  n -dimensional  polytope  
is a convex hull of  n   +  1 vertices. Thus, a simplex may be defi ned as the smallest 
convex set composing the given vertices. A regular  n -simplex can be constructed 
from a regular ( n   −  1) simplex by connecting a new vertex to all original vertices 
by common edge length. If any point in the simplex is assumed as the origin, 
then the other  n  points defi ne vector directions that span the  n -dimensional 
vector space. A simplex is a geometric fi gure comprising  n  points (or vertexes) 
in ( n   −  1) dimensions, and all their interconnections. 

 Consider  n  points  p  1 ,  p  2 ,…,  p n  . The standard  n   −  1 dimensional simplex is a 
subset of  R n   given by

  Δn
n

n
i

i

n

ip p p p R p p i−

=

= ∈ = ≥⎧
⎨
⎩

⎫
⎬
⎭

∑1
1 2 3

1

1 0[ ] ,� for all       

where  R n   represents the  n -dimensional real space and [ p  1 ,  p  2 ,…,  p n  ] represents a 
point in  R n  . 

 Specifi cally, the standard 0-, 1-, 2-, and 3-simplexes are point, unit line 
segment, equilateral triangle, and tetrahedron, respectively. The geometrical 
images of simplexes with dimension less than 3 are presented in Fig.  7-8 . The 
dimension of a simplex is defi ned as its degree of freedom. Taking the equilateral 
triangle as an example, there are in total of three variables (or points). Among 
them, two are free variables (points), so its dimension is 2. 
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  Figure 7-8      Standard simplex images with dimension less than three.      Note:   The 
dimension of a simplex is defi ned as its degree of freedom. 

  The vertices of a standard  n   −  1 simplex are  e  1 ,  e  2 , …,  e n  , which are given as

  

e

e

e

en

1

2

3

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1

=
=
=

=

[ ]
[ ]
[ ]

[ ]

�
�
�

�
�

      (7.53)   

 Since vertexes  e  1 ,  e  2 , …,  e n   also compose the usual basis of  R n  , any point in  R n   can 
be represented by  e  1 ,  e  2 , …,  e n  , of course, including points within the  n   −  1 stan-
dard simplex. An arbitrary point  P  of the  n   −  1 standard simplex can be repre-
sented by a linear combination of  e  1 ,  e  2 , …,  e n   as

  P p e p e p e= + +1 1 2 2 3 3       (7.54)   

 The  n  scalars  p  1 ,  p  2 ,  p  3 , …,  p n   are called the rectangular coordinates of point  P  
relative to the usual basis of  R n  , which are also the barycenter coordinates of  P  
with respect to the vertexes of the  n   −  1 standard simplex. 

 Recalling that the sum of nonnegative relative frequencies  x i   of fractions cor-
responding to the real cell system is also equal to unity, it can be found that there 
exists a one-to-one relationship between grading curves with  N  fractions and 
points of  N   −  1 standard simplex. Furthermore, the relative frequencies  x i   are 
identifi ed with the barycenter coordinates of the standard simplex points with 
respect to the vertexes of the simplex. 

 Among all the faces of a standard simplex, the vertexes (0-faces) and edges 
(1-faces) play an important role in the concept of grading entropy, as is explained 
in what follows. For an  n   −  1 standard simplex, there are in total  n  vertexes and 

 
n

2
⎛
⎝⎜

⎞
⎠⎟

    edges, which can be expressed as

 i P p p p p R p p j in
n

i j-vertex for all∈ ∈ = = ≠{[ ] ,1 2 3 1 0…       (7.55)  

 ij P p p p p R p p p k i or jn
n

i j k-edge for all∈ ∈ + = = ≠{[ ... ] ,1 2 3 1 0       (7.56)   

 Consider a subset of  n   +  1 points that defi ne an  n -simplex. Then the convex 
hull of the subset is called a face of the simplex. Faces are simplexes (simplices) 
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themselves. For example, the convex hull of a subset of size ( m   +  1) of the ( n   +  
1) defi ning points is an  m -simplex and is referred to as an  m -face of the  n -simplex. 
The 0-faces are called vertexes (vertices), the 1-faces are called edges, the ( n   −  1) 
faces are called facets, and the sole  n -face is the entire simplex itself. In general,  

the number of  m  faces is equal to the binomial coeffi cient  
n

m

+
+

⎛
⎝⎜

⎞
⎠⎟

1
1

   . 

 Taking the standard 2-simplex as an example, it represents a segment of the 
plane  x   +   y   +   z   =  1 intersected by a triangle prism as shown in Fig.  7-9 . There are 
in total three vertexes and three edges whose functions can be derived from 
equation  (7.55) , together with equation  (7.56) , and are also shown on the right 
side of Fig.  7-9 . 

  As illustrated previously, only the simplex with a dimension less than three 
can be visualized in a two or three Cartesian rectangular plane. In practice, points 
of standard 2- and 3-simplexes are plotted in ternary and quaternary diagrams 
as illustrated in Fig.  7-10 . The advantage of so doing is twofold. First, it is much 
more readable as compared to displaying them directly in the Cartesian rectan-
gular plane. Second, the quaternary diagram can display the 3-simplex, which 
is intractable directly in the Cartesian rectangular plane. 

  Now an explicit description about how to read the barycenter coordinates of 
a point within the ternary and quaternary diagrams is given. In a ternary diagram, 
the values of each vertex, denoted by A, B and C, without loss of generality, 
increase from 0 to 100% (or 1) when moving in the counterclockwise (or clock-
wise) direction. To get the barycenter coordinates of any point within the ternary 
diagram, draw lines passing through the point and parallel to each side of the 
triangle, and then extend these lines to meet the triangle sides. Two intersection 
points are obtained on each side; the intersection point, which gives the smaller 
value (the fi rst intersection point along the increasing direction), along that side 
is selected. Hence, this method gives the three barycenter coordinates corre-
sponding to the point. 

  Figure 7-9      Standard 2-simplex and its vertexes (vertices) and edges.    

c07.indd   321c07.indd   321 5/21/2014   11:24:29 AM5/21/2014   11:24:29 AM



322 Entropy Theory in Hydraulic Engineering

 In a quaternary diagram, using A, B, C, and D to denote the vertexes of the 
tetrahedron, the same procedure can be extended to obtain coordinates of a point 
within it with only a little modifi cation. Here a fourth vertex, D, is added above 
the bottom face consisting of A, B, and C, such that the values of D coordinates 
increase from 0 to 100% (or 1) as we move from A, B, C to D. Now, to get the D 
coordinates of the point, take the values at which the plane containing the point 
and parallel to the bottom face ABC cuts the faces DAC, DAB, and DCB. This 
step invariably gives the same value at different edges, i.e., edges DA, DB, and 
DC. This value is just the D coordinates for which we are searching. Then, to get 
the coordinates corresponding to A, B, and C, draw planes passing through the 
point and parallel to all the other faces except the bottom one. These planes meet 
at two points, with each side of the bottom triangle. Then one uses the same 
method to get the coordinates of A, B, and C as that in the ternary diagram. 

 If one wants to plot the ternary and quaternary diagram in the Cartesian 
rectangular plane, all the coordinates corresponding to the ternary and quater-
nary diagram system should be projected to 2-D and 3-D Cartesian planes, 
respectively. After defi ning ternary and quaternary diagrams, which can be gen-
erated from the procedure of obtaining coordinates from them, we can project 
the coordinates. In the ternary diagram case, it is assumed that [ T A    T B   T  C  ] repre-
sent the barycenter coordinates of the point within the ternary diagram, and 
[ C X    C Y  ] represent the corresponding Cartesian rectangular coordinates, as shown 
in Fig.  7-11 . 

  The projection from the ternary coordinates to the rectangular coordinates 
can be expressed as

  C T TX A B= + °cos60       (7.57a)  

  C TY B= °sin60       (7.57b)   

 However, the projection from the quaternary coordinates to the Cartesian 
rectangular coordinates is much more complicated than that from ternary to 

  Figure 7-10      Ternary and quaternary diagrams displaying 2- (left) and 3- (right) 
simplexes.    
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Cartesian. For simplicity, an illustrative graph is shown in Fig.  7-11  and a detailed 
derivation is omitted, and only the projection relationship function is given here. 
Using [ Q  A   Q  B   Q  C   Q  D ] to represent the quaternary coordinates and [ C  X   C  Y   C  Z ] to 
denote the corresponding Cartesian coordinates, the projection is represented 
[not shown] by

  C Q Q Q WX B A D= + ° + °cos cos60 30       (7.58a)  

  C Q Q WY A D= ° + °sin sin60 30       (7.58b)  

  C QZ D= °sin2 60       (7.58c)  

where  W  can be computed as

  W = °⎛
⎝

⎞
⎠ + ⎛⎝

⎞
⎠

1
2

30
1
2

2 2

tan        

  Example 7.4          Assume a point [0.6, 0.4] in the Cartesian rectangular coordinates 
system. Project this point into the ternary coordinates system.  

  Solution   From equation  (7.57a)  and  (7.57b) , one can have

  
T T

T
A B

B

+ ° =
° =

⎧
⎨
⎩

cos .
sin .

60 0 6
60 0 4

       

 Solving these equations, one obtains

  T TA B= =0 4619 0 3691. , .        

  Figure 7-11      Projection from ternary coordinates to Cartesian coordinates.    
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 Therefore,

  T T TC A B= − − = − − =1 1 0 4619 0 3691 0 1690. . .           

  7.2.4     Grading Entropy Coordinates 

 The grain size distribution entails the integrated cell system, which couples the 
real cell system with the imaginary cell system. In other words, the imaginary 
cell system is built in the real cell system or the real cell system includes the 
imaginary cell system. The grading entropy defi ned by equation  (7.43)  contains 
two different terms,  x i   and  C i  , corresponding to the real cell system and the 
imaginary cell system, respectively. It is, therefore, intuitive to split the grading 
entropy into two parts, which leads to the grading entropy coordinates. Expand-
ing equation  (7.43) , one obtains

  

S C
x
C

x
C

x x C

x x x

i
i

i

i

ii

N

i i i
i

N

i i

= − = − −

= − +

= =
∑ ∑log [log log ]

log

2
1

2 2
1

2 ii i
i

N

i

N

C

S S

log2
11

0

==
∑∑

= +Δ

      (7.59)  

where  Δ  S  and  S  0  are called entropy increment and base entropy, respectively. 
 Properties of entropy increment and base entropy are now discussed. First, 

the entropy increment  Δ  S  is given by

  ΔS x xi i
i

N

= −
=
∑ log2

1

      (7.60)   

 Equation  (7.60)  shows that entropy increment is the statistical entropy of the 
grading curve in terms of fractions (real cell system). Thus, it possesses all the 
properties of the Shannon entropy, including symmetry and concavity. The sym-
metric property of  Δ  S  is apparent, as it remains invariant for any permutation of 
 x  1 ,  x  2 , …,  x n  . The concavity can be confi rmed by its negative defi nite Hessian 
matrix, which is the same as that for the grading entropy. Usually the range of 
entropy increment  Δ  S  is of interest. 

 Consider the extreme case where the soil is composed of a single fraction, 
say  x i    =  1 and  x j    =  0 for all  j   ≠   i . Then, the entropy increment  Δ  S  of this soil is

  ΔS = − =1 1 02log       (7.61)   

 Equation  (7.61)  shows that the entropy increment  Δ  S  disappears at the vertexes 
of the standard  N   −  1 simplex, which is related to the soil mixture consisting of 
only a single fraction. In this case, the entropy increment  Δ  S  disappears and the 
grading entropy  S  reduces to the base entropy. The maximum value of entropy 
increment  Δ  S , subject to equation  (7.45) , can be determined using the method of 
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Lagrange multipliers. For maximization of equation  (7.60) , the Lagrangian func-
tion  L  is constructed as

  L x x xi i
i

N

i
i

N

= − + −⎛
⎝⎜

⎞
⎠⎟= =

∑ ∑log2
1 1

1λ       (7.62)  

where  λ  is the Lagrange multiplier corresponding to the total probability con-
straint. Differentiating the Lagrange function  L  with respect to the relative fre-
quencies,  x i  , and equating the derivative to zero, one obtains

  
∂
∂

= − +
⎛
⎝⎜

⎞
⎠⎟
+ =L

x
x

i
ilog

log
2

2

1
2

0λ       (7.63)   

 Equation  (7.63)  yields that the maximum of  Δ  S  is reached when

  xi = =
−

2
1

22
λ

log cons       (7.64)  

where cons  =  constant. Substituting equation  (7.64)  into the total probability 
constraint equation  (7.45) , one obtains

  x Nxi
i

N

i
=
∑ = =

1

1       (7.65a)   

 Therefore,

  x
N

i =
1

      (7.65b)   

 Substituting equation  (7.65b)  in equation  (7.60)  yields the maximum entropy 
increment  Δ  S  as

  ΔS x x
N N

Ni i
i

N

i

N

= − = − =
= =
∑ ∑log log log2

1
2

1
2

1 1
      (7.66)   

 Therefore, the maximum value of entropy increment  Δ  S  is log 2   N , which is 
also referred to as the global maximum of  Δ  S  over the whole simplex, in the 
sense that there is no additional constraint but only the total probability con-
straint. The global maximum entropy increment  Δ  S  is obtained at the point 
where all relative frequencies  x i   of real cell fractions are equal to 1/ N . In other 
words, the entropy increment  Δ  S  is maximized when the grains are uniformly 
distributed among all fractions. This result is different from the maximum 
point of grading entropy  S , where grains are uniformly distributed among dif-
ferent imaginary cells leading to doubled relative frequency  x i   of each fraction 
(corresponding to the real cell system) from the bottom to the top of the sieve 
system. This discussion also suggests that the range of  Δ  S  is from 0 to log 2   N . 
Obviously the range of entropy increment  Δ  S  depends on  N , the total number 
of fractions. 
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 The base entropy  S  0  is given as

  S x Ci i
i

N

0 2
1

= −
=
∑ log       (7.67a)   

 Recalling the defi nition of eigen-entropy given by equation  (7.43) , equation 
 (7.67a)  can be rewritten as

  S x Si i
i

N

0 0
1

=
=
∑       (7.67b)   

 It can be seen from equation  (7.67b)  that the base entropy  S  0  is the arithmetic 
mean of the eigen-entropies weighted by the relative frequencies  x i   of the real 
cell fractions. One can fi nd the range of base entropy  S  0  by rewriting equation 
 (7.67b)  as

  S x S x S x S x Si i
i

N

N0 0
1

1 0 2 0 1 0= = + + +
=

+∑ min min max…       (7.68)   

 where  S  0min  and  S  0max  are the eigen-entropies of the fi nest and coarsest fractions 
of the soil mixture, respectively. One should note that  S  0min  and  S  0max  are not 
always equal to  S  01  and,  S  0   N  , respectively. They assume the same values if and 
only if the grading curve set is defi ned over the integral cell system where the 
minimum sieve mesh diameter  d  min  and maximum sieve mesh diameter  d  max  are 
 d  0  and  d N  , respectively. 

 Equation  (7.68)  satisfi es the following inequalities:

  x S x S x S S SN1 0 2 0 0 0 0min min min min+ + + = ≤…       (7.69a)  

  x S x S x S S SN1 0 2 0 0 0 0max max max max+ + + = ≥…       (7.69b)   

 Thus, the range of base entropy  S  0  is from  S  0min  to  S  0max . 
 Graphs of grading entropy  S  and its two ingredients, entropy increment  Δ  S  

and base entropy  S  0 , help explain their properties. For 2-simplex corresponding 
to the soil mixed by no more than three fractions, graphs of grading entropy  S , 
entropy increment  Δ  S  and base entropy  S  0  are shown in Fig.  7-12 , where several 
points are worthy of note. First, the maximum points of the grading entropy  S  
and entropy increment  Δ  S  do not coincide with each other. The contour map of 
the entropy increment  Δ  S  indicates that its maximum value is reached at the 
center of the 2-simplex. This situation is consistent with the conclusion derived 
theoretically that the entropy increment  Δ  S  is maximized when grains are uni-
formly distributed among all fractions  x i  . 

  Conversely, the contour map of the grading entropy  S  shows that its maximum 
value is reached at the point close to the vertexes with large indexes and far away 
from those with small indexes. This result is also consistent with the previous 
observation that grading entropy  S  has a maximum value when the relative 
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frequency  x i   of each fraction is doubled successively from bottom to top. Second, 
the symmetry and concavity of entropy increment  Δ  S  can be visualized in the 
second graph of the last column in Fig.  7-12 . From this graph, one can also see 
that the lower boundary of  Δ  S  appears at the edges of the simplex. Third, the 
eigen-entropy  S  0   i   increases from the fi rst vertex to the last one as shown 
in the graph located at the bottom right corner of Fig.  7-12 , which corresponds 
to the fi nest and coarsest fractions, respectively. 

 As already shown, the entropy increment  Δ  S  is dependent on the total 
number of fractions  N , whereas the maximum value of base entropy  S  0  is  S  0max , 
which is also determined by  N . It becomes much more convenient if the entropy 
increment  Δ  S  can be normalized to be independent of  N  and the base entropy  S  0  
can be constrained to a fi xed interval for a different number of fractions. This 
situation is discussed now. 

  Figure 7-12      Grading entropy  S  (1st row) and its two components (2nd row for  Δ  S  and 
3rd row for  S  0 ) of standard 2-simplex.    
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 The base entropy  S  0  is normalized as

  
A

S S
S S

x S

N N
x i

i i
i

N

i
i

N

= −
−

=
−

− −
=

−
−=

=

∑
∑0 0
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0
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1

0

1 0
1

1
1min

max min

( )
      (7.70)  

where  A  is the normalized base entropy, also known as the relative base entropy. 
 The entropy increment  Δ  S  can also be normalized as

  B
S
N N

x xi i
i

N

= = −
=
∑Δ

log log
log

1
2

1

      (7.71)   

 Actually, one can also normalize the entropy increment  Δ  S  by log 2   N  as

  ′ = −
=
∑B

N
x xi i

i

N1

2
2

1log
log       (7.72)   

 After normalization, the range of normalized base entropy  A  is constrained 
between 0 and 1 and the normalized entropy increment  B  is independent of  N  
and assumes values between 0 and log 2   N /log  N   =  1/log 2 (or  B  ′  between 0 and 
1 for the second normalization strategy). It can be seen that the normalized 
entropy coordinates do not change their shape and properties but only the range, 
as illustrated in Fig.  7-13 . Comparison of Fig.  7-12  with Fig.  7-13  shows that the 
shapes of images for base entropy  S  0  and entropy increment  Δ  S  are invariant, 
but the range is not. 

   Example 7.5 

        Consider a grading curve of a soil consisting of four fractions,  N   =  4. Let the 
smallest fraction be between grain diameter of  d   =  0.0625 mm and  d   =  0.125 mm. 
Compute grading entropy  A  and  B .  

  Solution 
 The relative frequencies of fractions are equal to  x i    =  1/4. The base entropy  S  0  is 
now computed as

  S x i S ii
i

N

i
0 01

1 1

4

1
1
4

1 1
1
4

0 1 2 3 1 2 5= − + = − + = + + + + =
= =
∑ ∑( ) ( ) [ ] .        

 The entropy increment  Δ  S  is computed as

  ΔS x xi i
i

N

= − = − × × × ⎛
⎝

⎞
⎠ =

=
∑1

2
1

2
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1
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1
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2 00
1log
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log .        

 Now the normalized base entropy or relative base entropy  A  is given as

  
A

x i

N

ii
i

N

i

N
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== =
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 The normalized entropy increment  B  is computed as

  B
S
N

= = =Δ
log log

.
1

2
1 44           

  7.2.5     Grading Entropy Map 

 The grading entropy actually determines a projection from the standard  N   −  1 
dimensional simplex (or the grain distribution set) to the two-dimensional space 
of the grading entropy coordinates, as illustrated in Fig.  7-14  for standard 
2-simplex and 3-simplex where the grid sampled points within the standard 2- 
and 3-simplexes are mapped into a 2-dimensional entropy coordinate space. The 
grading entropy map can be defi ned as

   f S SN: [ ]Δ Δ− →1 0       (7.73)  

  Figure 7-13      Normalized entropy increment  B  (1st row),  B ’ (2nd row), and base entropy 
 A  (3rd row).    
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and the normalized grading entropy map is defi ned as

  f A BN: [ ]Δ − →1       (7.74)   

 An interesting phenomenon is observed if the grading entropy map, includ-
ing normalized and nonnormalized, is plotted with increasing resolution, which 
means projecting more and more points within the simplex onto the two-
dimensional entropy coordinate space. The resulting nonnormalized and nor-
malized entropy diagrams for standard 2- and 3-simplexes are shown in Figs. 
 7-15  and  7-16 , respectively. From these entropy diagrams, one can empirically 
conclude that under the grading entropy projection a simplex is mapped onto a 
closed region with an analytic maximum boundary and minimum boundary 
composed of several curve segments. Actually, this conclusion has a theoretical 
basis. If we consider the defi nition of base entropy  S  0  (from equation  [7.67a] ) and 
entropy increment  Δ  S  (from equation  [7.60] ) (or normalized base entropy  A  and 

  Figure 7-14      Projection of points within 2- and 3-simplexes to grading entropy.    
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entropy increment  B ), they are both analytic over the whole simplex. Because of 
this analytic property of the grading entropy coordinates, the entropy diagram 
is compact and, thus, has maximum and minimum boundaries, which are ana-
lyzed following. 

   Actually, not only the entropy diagram for 2-simplex and 3-simplex but also 
that for all other simplexes regardless of their dimension, the pattern of the 
diagram is the same as that shown in Fig.  7-17 . A similar pattern indicates that 
the diagram has a maximum boundary and minimum boundary, which are 
formed by some curve segments. The maximum of the normalized diagram is a 
constant for different simplexes, which is 1/log 2 (approximately 1.443), as 

  Figure 7-15      Non-normalized grading entropy diagrams for standard 2- and 
3-simplexes.    

  Figure 7-16      Normalized grading entropy diagrams for standard 2- and 3-simplexes.    
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derived previously, whereas in the nonnormalized entropy diagram, the 
maximum is not constant but varies with the total number of fractions  N  because 
the maximum entropy increment is log 2   N  when grains are uniformly retained 
by each sieve mesh corresponding to the real cell system. 

  The graphs in the fi rst row of Fig.  7-17  display an increasing trend of the 
normalized entropy increment  Δ  S  as  N  increases from left to right. Furthermore, 
the minimum boundaries always span over edges of the simplex, which means 
that the soil mixture is composed of, at most, two fractions. This fact can be seen 
explicitly from the nonnormalized entropy diagram, where the  S  0  axis intercepts 
in the diagram correspond to the eigen-entropies of the grain distribution set 
defi ned over the integrated cell system. There are in total  N  intercepts, and the 
eigen-entropies are actually the grading entropy at vertexes of the simplex, 
which reduce to the base entropy. As the normalization procedure just changes 
the value of entropy coordinates rather than the shape, the minimum boundaries 
in the normalized entropy diagram are also related to the edges of the simplex. 
The fact that minimum boundary is reached at the edges of the simplex has 
already been confi rmed by the images of entropy increment for the case of 
2-simplex in Figs.  7-12  and  7-13 . 

 Now we discuss some properties of the entropy diagram analytically, espe-
cially for the maximum and minimum boundaries, as they are important in 
different applications of the grading entropy, including construction of transfer 
functions. They can provide valuable guidelines as to where to collect data for 
purposes of constructing transfer functions in a much more effi cient way than 
that used in traditional methods. 

 First, the maximum boundary of the normalized entropy diagram, which is 
also referred to as the maximum  B  line, can be analyzed by maximizing the 
normalized entropy increment  B  conditioned on a specifi c  A  (Lorincz  1986 ). This 
analysis is achieved by maximizing

  maximize B
N

x xi i
i

N

= −
=
∑1

2
1log

log       

  Figure 7-17      Grading entropy diagrams for 2-, 3-, 4-, and 5-simplexes.    
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subject to equations  (7.45)  and  (7.70) . The maximization can be done using the 
method of Lagrange multipliers as follows:

  L
N

x x x x i Ai i
i

N

i
i

N

i
i

N

= − + −⎛
⎝⎜

⎞
⎠⎟
+ − −

= = =
∑ ∑ ∑1

1 1
2

2
1

1
1

2
1log

log ( ) (λ λ NN −⎡
⎣⎢

⎤
⎦⎥

1)       (7.75)  

where  λ  1  and  λ  2  are the Lagrange multipliers corresponding to the total probabil-
ity constraint and the specifi c  A  constraint, respectively. 

 Now differentiating the Lagrange function  L  with respect to the relative fre-
quency,  x i  , and equating the derivative to zero, one obtains

  
∂
∂

= − +⎛
⎝⎜

⎞
⎠⎟
+ + −L

x N
x i

i
i

1 1
1

2
2

2
1 2

log
log

log
( )λ λ       (7.76)   

 Equation  (7.76)  can be rearranged as

  log log [ ( )]
log

2 1 2 1
1

2
x N ii = + − −λ λ       (7.77)   

 Then, differentiating the Lagrange function  L  with respect to Lagrange multipli-
ers and equating the derivative to zero, one can have

  xi
i

N

− =
=
∑ 1 0

1

      (7.78)  

and

  x i A Ni
i

N

( ) ( )− − − =
=
∑ 1 1 0

1

      (7.79)   

 Equations  (7.77)  to  (7.79)  constitute a system of  N   +  2 equations with  N   +  2 
unknowns and can be solved. 

 Because our purpose is to derive an analytical formula for the maximum 
boundary of the normalized entropy diagram, we are interested only in the 
relative frequencies  x i  . To that end, we consider two extreme cases where  A  is 
equal to 0 and 1, respectively. As already shown,  A  is equal to 0 if and only if 
 x  1   =  1,  x i    =  0 for all  i   ≠  1 and  A  is equal to 1 if and only if  x N    −   1   =  1,  x i    =  0 for all 
 i   ≠   N . These two cases are related to two different kinds of soil mixture that 
are composed of a single fi nest fraction and a single coarsest fraction, respec-
tively. Now one solves the system whose parameter  A  assumes a value falling 
in the open interval (0, 1). In this situation, all the relative frequencies  x i   are 
nonzero, which means that the soil mixture is composed of  N  different frac-
tions corresponding to an inner point of the standard simplex. From equation 
 (7.77) , one obtains

  xi

N i
=

+ − −
2

1 2
2

1
1

2
log [ ( ]

log
λ λ       (7.80)   
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 For the specifi c case when  i  is equal to 1,  x  1  can be expressed as

  x
N

1

1 1
1

22
1 2

2=
+ − −log [ ( ]

log
λ λ       (7.81)   

 Dividing equation  (7.80)  by equation  (7.81) , one can have

  x
x
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λ gg ( )N i−1       (7.82)   

 Rearranging equation  (7.82)  as

  x xi
N i= + −2 1 2 1

1
log [ ( )]λ λ       (7.83)  

and letting  a N= 2 2λ ln    , equation  (7.83)  can be rewritten as

  x a xi
i= −1

1       (7.84)   

 As  a = 2 2 2λ log    , it can assume positive values, and the limit of  a  is 0 as  λ  2  tends to 
negative infi nity as much as possible. Equation  (7.84)  indicates that for the nor-
malized entropy increment  B  line, two terms,  x  1  and  a , must be determined fi rst. 
Substituting equation  (7.84)  into the total probability constraint equation  (7.45) , 
the following is obtained:

  x a xi
i

N
i

i
i

N

=

−

=
∑ ∑= =

1

1

1

1       (7.85)   

 The right side of equation  (7.85)  is the sum of the fi rst  N  terms of a geometric 
progression with factor  a . Equation  (7.85)  can also be rewritten, if and only if  a  
 ≠  1, as

  x
a

a
xi

i

N

N
=
∑ = −

−
=

1
1

1
1

1       (7.86)   

 Therefore,

  
x

a

a
ai
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N N1
1

1

1 1
1

= = −
−−

=
∑       (7.87)   

 It may be emphasized that the second equality is correct if and only if  a   ≠  1. 
 After obtaining  x  1 , one can further obtain  x i   using the recursive expression 

as shown in equation  (7.84) . Now only the value of  a  remains to be determined. 
Recall that the third equation in the system  (7.79)  has not been used so far. Sub-
stituting equation  (7.86)  into equation  (7.79) , one gets

  x i a i x A Ni
i

N
i

i

N

( ) ( ) ( )− = − = −
=
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=
∑ ∑1 1 1

1

1
1

1

      (7.88)   
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 Rearranging equation  (7.88)  as

  a i
A N
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i
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− = −∑ 1

1

1
1
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      (7.89)  

and noting that  x ai

i

N

1
1

1

1= −

=
∑     from equation  (7.87)  and inserting into equation 

 (7.89) , one obtains
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 Equation  (7.90)  can be rewritten as

  a i A Ni

i

N
−

=

− − − =∑ 1

1

1 1 0[( ) ( )]       (7.91)   

 The positive zero of the above polynomial (equation  [7.91] ) is just the value 
that we are searching for when  A  is not equal to either 0 or 1. Therefore, the 
positive root of polynomial equation  (7.91)  determines the formula for the 
maximum boundary of the normalized entropy increment  B  line conditioned by 
a specifi c  A . The images of polynomial equation  (7.91)  for different  N  and  A , 
including the two extreme cases, are shown in Fig.  7-18 . Graphs in the fi rst row 
of this fi gure show that when  A  is equal to 0, the single real root of polynomial 
equation  (7.91)  is exactly 0, which leads to  x  1   =  1,  x i    =  0 for all  i   ≠  1, whereas 
graphs in the last row indicate that there is no positive root for polynomial equa-
tion  (7.91)  when  A  is equal to 1. Therefore, in the extreme case when  A  assumes 
1, polynomial equation  (7.91)  cannot be used to determine the maximum value 
of normalized entropy increment  B . When  A  assumes a value falling between 0 
and 1, there is only one positive root for polynomial equation  (7.91) , as shown 
in the middle two rows of Fig.  7-18 . Actually this is not only an empirical conclu-
sion but also has a theoretical basis. 

  According to Descartes ’  rule of signs, the maximum number of possible posi-
tive zeroes for a polynomial like equation  (7.91)  is equal to the number of times 
the signs of the polynomial coeffi cients change from positive to negative or from 
negative to positive when arranging the polynomial in its standard format. 
Examination of coeffi cients  i   −  1  −   A ( N   −  1) of polynomial equation  (7.91)  shows 
that the signs of these coeffi cients change only once from negative to positive as 
 i  increases from 1 to  N . That means that coeffi cients of polynomial equation  (7.91)  
are all negative when  i  is no more than  A ( N   −  1)  +  1 and are all positive when  i  
is greater than  A ( N   −  1)  +  1. According to Descartes ’  rule of signs, polynomial 
equation  (7.91)  has one and only one positive root, which determines the 
maximum normalized entropy increment  B  given  A  between 0 and 1. From the 
aforementioned analysis, the procedure used to determine the maximum  B  line 
can be generalized as discussed following. Assume that the normalized base 
entropy  A  increases from 0 to 1 linearly with some increment, which can be any 
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arbitrary positive value less than 1. Then for each  A , the optimal relative fre-
quency  x i   can be computed separately for different cases. If  A   =  0, then  x  1   =  1, 
and  x i    =  0 for all  i   ≠  1. If  A   =  1, then  x N    =  1, and  x i    =  0 for all  i   ≠   N . If 0  <   A   <  1, 
then fi rst, one solves for the positive zero of the polynomial given by equation 
 (7.91) . Then the relative frequency  x  1  of the fi nest fraction is calculated by equa-
tion  (7.87) . Finally, all the other relative frequencies  x i  ,  i   =  2, 3, …,  N , are computed 
using recursive equation  (7.84) . Then, the optimal normalized entropy increment 
 B  is computed using its defi nition, i.e., equation  (7.72) . 

 The optimal normalized entropy increment  B  lines for 2-, 3-, 4-, and 
5-simplexes, which correspond to the soil mixtures composed by 3, 4, 5, and 6 
fractions, respectively, are computed, as shown in Fig.  7-19 . In this fi gure, the 
image for the grain distribution corresponding to the maximum grading entropy 
 S  is also depicted as a round dot. Obviously, the grain distributions related to 
maximum entropy increment  Δ  S  (or  B ) and maximum grading entropy  S  are 

  Figure 7-18      Polynomial and its positive root.    
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different. Actually, from equations  (7.50)  and  (7.51) , one can also see that the 
maximum grading entropy  S  is just a specifi c case of maximum entropy incre-
ment  B  when  a   =  2, which corresponds to different  A  values for different sim-
plexes. That is why the image for the grain distribution related to the maximum 
grading entropy  S  lies on the maximum entropy increment  B  line. 

  The maximum normalized entropy increment  B  line is also seen to be sym-
metric about  A   =  0.5, as shown in Fig.  7-19 . That means that the value of  B  for a 
given  A  is the same as that for 1  −   A . If one determines the positive zeroes of 
polynomial equation  (7.91)  for  A  and for 1  −   A , it is easy to fi nd the underlying 
theoretical reason for observation of such a symmetry. For illustrative purposes, 
the graph of polynomial equation  (7.91)  for 6-simplex ( N   =  7) is plotted in the 
real Cartesian rectangular plane, as shown in Fig.  7-20 . One can see from this 
fi gure that the positive zero  a  for polynomial equation  (7.91)  varies from 0 to 
positive infi nity (infi nity means no positive real zero for polynomial equation 
 [7.91]  when  A  is equal to 1) as  A  varies from 0 to 1, as shown by the left line. 
If we substitute  A  by 1  −   A  in the polynomial equation  (7.91) , the analogous 

  Figure 7-19      Maximum normalized entropy increment  B  line (blue outer enveloping 
line) and the image of the maximum grading entropy  S  point (green spot).    

  Figure 7-20      Reciprocal relationship between positive zeroes of two polynomials 
indicated for  N   =  7.    
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graph is presented as the right line in Fig.  7-19 . The positive zero for the two 

polynomials, i.e.,  x i A Ni
i

N

( ) ( )− − − =
=
∑ 1 1 0

1

    and  x i A Ni
i

N

( ) ( )( )− − − − =
=
∑ 1 1 1 0

1

    is 

reciprocal of each other. In other words, if the positive zero of the fi rst polynomial 
is  a , then that for the later one will be 1/ a . 

  Proceeding further, assuming that given  A   =   A  1   ≠  0.5, the positive zero for 
polynomial equation  (7.91)  is  a  1 , then the positive zero of this polynomial given  
 A   =  1  −   A  1  is 1/ a  1 , denoted as  a  2 . Then, the optimal grain distributions for these 
two cases with respect to the maximum normalized entropy increment  B  given 
normalized base entropy  A  are
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      (7.92)  

where since  A  1   ≠  0.5, which means that neither  a  1  nor  a  2  is equal to 1,  x  1  and  ′x1     
can be computed as
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1

1
1

= −
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      (7.93)  

  ′ =
−
−

x
a
aN1

2

2

1
1

      (7.94)   

 Replacing  a  2  by 1/ a  1  in equation  (7.94) , one can have
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 At the same time,  x N   is expressed as

  x a x a
a
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N
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      (7.96)   

 Therefore,

  ′ =x xN1       (7.97)   

 Furthermore, one can also fi nd

  ′ = ′ = = −x a x
a

x xN N2 2 1
1

1
1

      (7.98)   

 Following the same method, one can have

  

′ =
=

′ =

−x x

x x

N

N

3 1

1

… …       (7.99)   
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 If relative frequencies  x i  , corresponding to the maximum entropy increment 
 B  given the normalized base entropy  A  as a natural sequence series, are consid-
ered, then the previous analysis shows that the relative frequencies correspond-
ing to that given 1  −   A  as the normalized entropy increment are a series produced 
by rearranging the natural one in the reverse sequence. The normalized entropy 
increment  B  is not related to the sequence of relative frequencies  x i  , however, the 
normalized base entropy  A  is. Therefore, all permutations of relative frequencies 
 x i   corresponding to maximum  B  conditional on  A  do not change the value of  B . 
The images for all the permutations deviate from the maximum  B  line but still 
fall on the same horizontal line in the normalized entropy diagram, as shown in 
Fig.  7-21 , except for the one in which the relative frequencies  x i   are arranged in 
the reverse sequence, whose image point regresses back to the maximum  B  line 
again. The two image points falling on the maximum  B  line are symmetric about 
 A   =  0.5 in the normalized grading entropy diagram. 

  The maximum  B  line depends on the total number of fractions  N , because 
the positive zero of the polynomial equation  (7.91)  is dependent on  N . Fig.  7-22  
shows the maximum  B  line for different numbers of fractions  N  varying from 2 
to 100. The fi gure shows that the difference in the maximum  B  line for different 

  Figure 7-21      Image points (cross) of relative frequency x i  corresponding to the 
maximum normalized entropy increment  B  for different specifi c normalized base 
entropies  A  (0, 0.2, 0.4, 0.6, 0.8, and 1.0 from bottom to top) and all its possible 

permutations.    

  Figure 7-22      Maximum  B  lines for  N  varying from 1 to 100 in the normalized grading 
entropy diagram (red, blue, and gray lines are for  N  varying from 2 to 10, 11 to 20, and 

21 to 100, respectively).    

c07.indd   339c07.indd   339 5/21/2014   11:24:36 AM5/21/2014   11:24:36 AM



340 Entropy Theory in Hydraulic Engineering

  Figure 7-23      Maximum  B  lines (red lines) for  N  varying from 1 to 10 and the 
corresponding images (round dots) for maximum grading entropy points (as  N  varying 

from 2 to 10, the color of lines and spots becomes darker).    

 N  values is not so much and is even negligible for small  N . It follows that in 
practice the maximum  B  line can be approximated by that for small  N , for 
example  N   =  2. In Fig.  7-23 , the maximum entropy  S  point for different  N  values 
varying from 2 to 10 is graphed on the corresponding maximum  B  line. Results 
show that as  N  increases the maximum grading entropy point moves far away 
from the maximum normalized entropy increment  B  point along the right half 
branch of the corresponding maximum  B  line. 

   Now the minimum boundary of (normalized) grading entropy map, also 
referred to as the minimum  B  line, is analyzed. From the exploratory analysis of 
the entropy map, it is already known that the minima of normalized entropy 
increment  B  appear at the edges of the simplex as shown in Figs.  7-12, 7-13 , and 
 7-17 . These fi gures show that the global minima always appear at the vertexes 
of the simplex, which is mapped onto the  A -axis intercepts in the normalized 
grading entropy map or the  S  0 -axis intercepts in the nonnormalized grading 
entropy map. Taking the  N   −  1 standard simplex as an example, which corre-
sponds to the soil mixture composed of at most  N  fractions, its  i -vertex is 
expressed as  x i    =  1 and  x j    =  0, for all  j   ≠   i , then the normalized base entropy  A  
and entropy increment  B  can be computed as

  A i
N

x k
i

N
k

k

N

( ) ( )=
−

− = −
−=

∑1
1

1
1
11

      (7.100)  

  B i
N

x xk k
k

N

( )
log

log= − =
=
∑1

02
1

      (7.101)   

 These results confi rm the observation in the exploratory analysis that the ver-
texes of the simplex corresponding to the uniform soil are mapped onto the  A -
axis intercepts in the normalized grading entropy map. If we look at the  ij -edge 
of this simplex, the analysis shows that all the points on the  ij -edge are mapped 
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onto a closed interval in terms of the normalized base entropy  A , and this interval 
is given by

  [ , ], . ., ,A A
i

N
j

N
i j i e

−
−

−
−

⎡
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⎤
⎦⎥

1
1

1
1

      (7.102)   

 For a specifi c case, the 1 N -edge is mapped onto interval [0, 1]. Then, for any 
point on the  ij -edge, which can be expressed as  x i    +   x j    =  1 and  x k    =  0 for all  k   ≠   i  
or  j , it is mapped onto the point given by

  
x i x j

N N
x x x xi j

i i j j
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2       (7.103)  

on the normalized grading entropy map. Thus far, the minimum boundaries of 
the normalized grading entropy map can be computed. However, in practice 
Imre et al. ( 2008, 2009 ) state that not all the minimum  B  lines need to be computed 
and the image of the 1 N -edge can be used as an acceptable approximation to the 
minimum  B  line, which for standard 2-, 3-, 4-, and 5-simplex is plotted in Fig. 
 7-24 , where the approximate minimum  B  line is highlighted by a blue line. 

   Example 7.6          Consider a grading curve with seven fractions. Compute the grad-
ing entropy coordinates  A  and  B . Let the eigen-entropy of the smallest fraction 
be  S  01   =  10.  

  Solution   The relative frequencies of fractions are equal:

  xi =
1
7

       

 The base entropy  S  0  is computed as

  S x i S ii
i

N

i
0 01

1 1

7

1
1
7

1 10 13 00= − + = − + =
= =
∑ ∑( ) ( ) .        

 The entropy increment  Δ  S  is computed as

  ΔS x xi i
i

N

= − = − × × × ⎛
⎝

⎞
⎠ =

=
∑1

2
1

2
7

1
7

1
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2 807
1log
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log . nats        

  Figure 7-24      Minimum  B  line for standard 2-, 3-, 4-, and 5-simplex from left to right, 
where the blue line is the minimum  B  line corresponding to the 1 N -edge of the simplex.    
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 For the normalized base entropy  r , the relative base entropy  A  is given as

  
A

x i

N

ii
i

N

i=
−

−
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−
== =

∑ ∑( ) ( )
.

1

1

1
7

1

6
0 501 1

7

       

 The normalized entropy increment  B  is calculated as

  B
S= =Δ

log
.

7
1 443           

  7.2.6     Inverse Image of Grading Entropy Map 

 There are two different kinds of points in the normalized or nonnormalized 
grading entropy map: regular points and critical points. Critical points are 
referred to as the points on the maximum entropy increment  Δ  S  line or the nor-
malized maximum entropy increment  B  line. Otherwise the points are referred 
to as regular points. 

 The inverse images of critical points are easy to obtain. Recalling the method 
for deriving the maximum  B  line, it is easy to fi nd that the method is also suit-
able for fi nding the inverse images of critical points. For ease of understanding, 
the method is restated as follows. For example, we want to fi nd the inverse image 
of point [ A   B ] on the maximum  B  line. Then, its inverse image can be found on 
different paths according to the value of normalized base entropy  A , as in the 
preceding section. 

 The inverse images of the maximum  B  line for 2- and 3-simplexes, which 
correspond to soil mixtures composed of three and four different fractions, 
respectively, are shown in Fig.  7-25 . In this fi gure, the inverse images for the 

  Figure 7-25      Optimal grading curve line (inverse image of the maximum  B  line) (red 
line), the inverse image of maximum grading entropy  S  point (green point), and the 

inverse image of maximum entropy increment point (blue point) for 2- and 3-simplexes.    
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maximum grading entropy  S  point and the maximum entropy increment  B  point 
are also depicted on the optimal grading curve line by green and blue points, 
respectively. Obviously, they are different points as already derived using the 
method of Lagrange multipliers. Fig.  7-25  also shows that the inverse images of 
the maximum  B  line, also known as optimal points, constitute a continuous line 
connecting vertex 1 and vertex  N  of the standard  N   −  1 simplex. 

  The inverse images of regular points can be determined theoretically from 
the following system of equations, which corresponds to the defi nition of simplex, 
also known as the total probability constraint equation  (7.45) , and the defi nition 
of normalized grading entropy coordinates given by equations  (7.71)  and  (7.72) . 
These equations constitute a system defi ning an  N   −  3 dimensional manifold. 
However, it is not easy to solve this system theoretically. One feasible alternative 
is to fi nd its numerical solution. 

 Generally, the lookup table approximation method can be used to derive the 
approximate numerical solution for this system. One strategy is to sample the 
standard  N   −  1 simplex using a regular grid, as shown in the right graph of Fig. 
 7-26 , then compute the normalized grading entropy coordinates  A  and  B  for each 
grid, so that a lookup table can be constructed. Next, if one wants to fi nd the 
inverse image for a given [ A   B ], then one just needs to scan the lookup table and 
locate the acceptable approximate solution. One problem involved in this method 
is that it becomes intractable as the number of fractions increases. 

  Another alternative strategy is to construct the lookup table in a random way, 
which means sampling the  N   −  1 simplex and all possible subsimplexes, includ-
ing continuous and noncontinuous, corresponding to continuous-graded grading 
curve and gap-graded grading curve, respectively (continuous-graded grading 
curve refers to the case, for example, where there are three cells and the fraction 
for each cell is nonzero, whereas for the gap-graded grading curve the fraction 
for the second cell is zero). The result of random sampling is shown in the right 
graph of Fig.  7-26 . Numerical experiments show that the random approximation 
method yields more or less the same result as that produced by the gridded 
approximation method for small simplexes. Furthermore, the random approxi-
mation method outperforms the former one signifi cantly, expecially for higher 

  Figure 7-26      Two different sampling strategies for the lookup table approximation 
method (left for grid sampling and right for random sampling).    
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dimensional simplexes. The former method cannot give an accurate solution, 
even for a simplex with a dimension higher than 4. 

 Comparison between these two different methods is shown in Fig.  7-27 , 
where the approximation numerical solution for the inverse images of  B   =  1.2, 
 A   =  0.3, 0.5, and 0.7 are depicted. Results indicate that both methods yield 
numerical solutions for the system of grading entropy inverse image equations 
with an acceptable accuracy, even though the same “out of memory” problem 
appears quickly as the number of fractions increases. However, the inverse image 
of regular points is not valuable for pratical applications of grading entropy. One 
is always interested in the optimal  B  line and its inverse image and the optimal 
point line or optimal grading curves. 

   Example 7.7          Let  N   =  3,  A   =  0.2, and  B   =  0.9. Compute  x  1 ,  x  2 , and  x  3 .  

  Solution   As discussed earlier, it is diffi cult to get the theoretical solution for the 
inverse image of a regular point [0.2, 0.9]. Therefore, one can resort to the lookup 
table approximation method, as detailed earlier. Using that method, one can ob-
tain the relationship between the regular point [0.2, 0.9] and its inverse image, as 

  Figure 7-27      Inverse images computed by grid lookup table approximation (upper) 
and random lookup table approximation for 2- and 3-simplex for different grading 

entropy coordinates.     Note:   Green:  A   =  0.7,  B   =  1.2; red:  A   =  0.5,  B   =  1.2; 
blue:  A   =  0.3,  B   =  1.2. 
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shown in Fig.  7-28 . All the points on the line in the left of the fi gure are projected 
onto the same point in the grading entropy map, as shown in the right of the 
fi gure. 

  The inverse image of a grading entropy diagram can also be shown in terms 
of grading curve. Some interesting observations are found if the optimal grading 
curves for a different normalized entropy increment  A  are plotted. Assuming 
that the grading curve space of interest can be defi ned as  d  0   =  2  − 4  and  N   =  6, the 
optimal grading curves for different normalized base entropy  A  can be plotted in 
a semilogarithmic coordinate system, as shown in Fig.  7-29 . The optimal grading 
curve is convex if  A   >  0.5, linear if  A   =  0.5, and concave if  A   <  0.5. 

  As stated, the inverse image of the maximum  B  line plays an important role 
in the application of grading entropy. The inverse images of the maximum  B  
line are also known as the optimal grading curves. Actually, the optimal grading 
curve or grading distribution follows a fractal distribution (Einav  2007 ) whose 
distribution function is expressed as

  F d
d d
d d

n n

n n
( ) min

max min

= −
−

− −

− −

3 3

3 3       (7.104)  

  Figure 7-28      Sampling strategy and image points of relative frequency corresponding to 
maximum normalized entropy increment B.    

  Figure 7-29      Optimal grading curves for different normalized entropy increments 
 d  0   =  2  − 4  and  N   =  6.    
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where  d  is the grain diameter and  n  is the fractal dimension. This result can be 
shown if we take into account the defi nition of the real cell system and the 
inverse image of the maximum normalized entropy increment  B  line. The defi ni-
tion of a real cell system states that the diameter range of the particles retained 
by the  i th fraction is

  2 21i i id d d− < ≤min min       (7.105)   

 The distribution function  F ( d ) represents the relative frequencies of particles 
whose diameter is no more than  d . Therefore, the relative frequency of the  i th 
fraction can be expressed as

  x d d d F d F di
i i i i= < ≤ = −− −prob( ) ( ) ( )min min min min2 2 2 21 1       (7.106)   

 Using the defi nition of the fractal distribution function, the two terms on the 
right side of equation  (7.106)  can be written as
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 Therefore, the relative frequency  x i   can further be expressed as
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 Now recalling the procedure about how to derive the maximum  B  line, the 
optimal relative frequency  x i   can be computed as  x i    =   a i    − 1  x  1 , where  a  is the positive 
root of polynomial equation  (7.109) . If
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      (7.110)   

 one observes that the optimal grading curves have the same form as the fractal 
distribution. When  A   =  0.5,  a  is equal to 1 regardless of the value of the number 
of fractions  N , and the fractal dimension is equal to three. Thus, it can be stated 
that the optimal grading curve corresponding to the global maximum entropy 
increment  B  is fractal distributed with a fractal dimension of three.    

  7.2.7     Revisiting Grading Entropy Coordinates 

 Here the geometric and physical meaning of the normalized grading entropy 
coordinates is analyzed to understand the concept of grading entropy from 
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another perspective. Equations  (7.70)  and  (7.72)  for the normalized grading 
entropy coordinates are recalled:

  Normalized base entropy A
N

x ii
i

N

=
−

−
=
∑1

1
1

1

( )       

  Normalized entropy increment B
N

x xi i
i

N

= −
=
∑1

2
1log

log        

 First, the geometric meaning of normalized base entropy  A  is analyzed. For 
this part, we begin with the statement that the normalized base entropy is a 
measure of the subarea of the corresponding grading curve. As stated earlier, 
because particle diameters always span several orders of magnitude, to effec-
tively and conveniently describe the wide range of data, a base 2 logarithmic  ϕ  
scale is a widely used way to represent the grain size information. For a given 
grain size diameter  d  in millimeters, the  ϕ  scale can be computed as

  φ = − log2 d       (7.111)   

 Then, using the  ϕ  scale as the horizontal coordinate and the percentage of 
particles passing though the sieve mesh with the corresponding diameter as 
the vertical coordinate, the empirical grain distribution can be depicted using 
a stairs format plot, which is widely used to plot the emperical probability dis-
tribution in statistical exploratory data analysis. The resulting grain distribu-
tion curve is like that in Fig.  7-30 . The subarea of the grain curve can be 
computed as

  Figure 7-30      The geometric meaning of normalized base entropy  A .    
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 Substituting the defi nition of normalized base entropy, one gets

  S N A N A Nsubarea = − − − = − −1 1 1 1( ) ( )( )       (7.113)   

 Rearranging equation  (7.113) , one obtains

  A
S
N

= −
−

1
1

subarea       (7.114)   

 where  S  subarea / N   −  1 is exactly the average height of the stairs in the grain distri-
bution curve. 

 Sometimes the grain distribution curve can also be plotted in the same semi-
logarithmic coordinates as those in Fig.  7-29 . In this case, the subarea of the grain 
distribution curve can be approximated by (1  −   A )( N   −  1). Regardless of the kind 
of grain distribution curve adopted, the aforementioned analysis indicates that 
the normalized base entropy  A  is a quantitative measure of the area below the 
grading curve. It follows that the possible grading curves with the same  A  have 
the same subarea of the grain distribution curve and any two of them may deviate 
from each other in such a way that equal areas can be found below and above. For 
example, the grading entropy point for  A   =  0.7,  B   =  1.2 has two different original 
images, i.e., two different grain distribution curves. Both of them have the same 
normalized entropy increment:  A   =  0.7. Therefore, they also have the same subarea 
below the grain distribution curve, and they deviate from each other in the way 
that equal areas can be found below and above, as shown in Fig.  7-31 . 

  The physical meaning of the normalized base entropy  A  is a measure of the 
stability of the grain structure (Lorincz  1986 ; Lorincz et al.  2008 ). When mapping 
the grading curves of different soils onto the normalized grading entropy map, 
we see that all grading curves with stable structure fall into the area where  A  is 
greater than or equal to 2/3 and all those with unstable structure fall into the 
area with  A  less than 2/3 (Fig.  7-32 ). 

  Now another mathematical meaning of the normalized entropy increment  B  
is given, from which the intitutive physical meaning of  B  can be generalized. As 
already determined, the normalized entropy increment  B  is nothing but the 
application of the Shannon entropy to the real cell system. Therefore, it can be 
considered as a measure of uncertainty of the grain distribution and has the 
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  Figure 7-31      Behavior of different grading curves with the same normalized base 
entropy  A .    

global maximum value when particles are uniformly distributed among all frac-
tions, which corresponds to the most uniform grading curve represented by a 
linear line in the semilogarithmic coordinate system, as shown in Fig.  7-29 . 

 Conversely, the normalized entropy increment  B  (or entropy increment  Δ  S ) 
can be shown as the logarithmic geometric mean of relative frequencies  x i   
weighted by themselves. The generalized geometric mean of relative frequencies 
 x i   weighted by themselves is expressed as
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      (7.115)   

  Figure 7-32      Particle migration zones (the grain structure is stable with  A   ≥  2/3 and 
unstable with  A   <  2/3).    
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 Taking the logarithm of both sides of equation  (7.115) , one obtains

  ln logGM x xi i
i

N

=
=
∑ 2

1

      (7.116)   

 Recalling the defi nition of normalized entropy increment, equation  (7.116)  can 
also be rewritten as

  B
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x xi i
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2
2
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 Rearranging equation  (7.117) , one can get

  − =
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∑B N x xi i
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      (7.118)   

 Therefore, equation  (7.116)  can be written as

  ln ln ln
ln

ln ln
GM B N B

GM
N

= − = −2
2

or       (7.119)   

 Equation  (7.119)  expressses the relationship between generalized weighted geo-
metric mean  GM  and  B  and shows that the normalized entropy increment  B  is 
a kind of rescaled and logarithmic transformed geometric mean of relative fre-
quencies  x i  . Then, the maximum  B  line in the normalized grading entropy map 
can be assigned an intuitive but useful geometric explanation. Before giving this 
explanation, it is better to know the section of the standard  N   −  1 simplex when 
 A  is a constant, which can be an arbitrary value falling between 0 and 1. For 
convenience, we call this section an  A -section. The  A -section of a standard  N   −  1 
simplex can be represented by equations  (7.45)  and  (7.70) :

  A
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x ii
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1
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( )        

 These equations defi ne an  N   −  2 dimensional hyperplane in the  N   −  1 dimen-
sional Euclidean space generated by the  N   −  1 dimensional simplex, intersecting 
the 1 N  edge of the simplex at a distance  A  from the 1 vertex. For different  A  
values, the  A -sections are a series of parallel hyperplanes, as shown in Fig.  7-33 , 
where the  A -sections corresponding to different  A  for 2- and 3-dimensional sim-
plexes are presented. 

  Now we give an intuitive explanation of the maximum line. First we consider 
the global maximum  B  point, which is related to  A   =  0.5. As is known, the geo-
metric mean is greater than or equal to the arithmetic mean, and the equality is 
met if and only if the particles are uniformly distributed, i.e.,  x i    =  1/ N . At this 
time, the geometric mean reaches its global minimum value, and thus the nor-
malized entropy increment  B  also reaches its global maximum point. Thus, it can 
be concluded that the normalized entropy increment is maximized when the 
weighted geometric mean of relative frequencies  x  1  is minimized. This situation 
would result in the global optimal grain distribution, which is the most uniform 
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  Figure 7-33       A -sections corresponding to different  A  values for standard 2- and 
3-simplexes.    

one in the possible grading curve space. The same holds if the maximum  B  point 
is not the global maximum one but some other point on the maximum  B  line 
deviating from the peak. In such a case, the geometric meaning of this maximum 
 B  can be explained as it is met when the weighted geometric mean of relative 
frequencies  x i   on the corresponding  A -section is minimized, and it would result 
in an optimal grading curve, which is the most uniform in this section. Therefore, 
the intersection point of the  A -section with the optimal grading curve line (as 
shown in Fig.  7-34 ) is related to the most uniform grain distribution among all 
distributions in this section.   

  7.2.8     Extension Property of the Entropy Diagram 

 The extension property of the entropy diagram is referred to as the cascade struc-
ture of the nonnormalized maximum entropy increment  Δ  S  line in the grading 
entropy diagram. The grading curve space has already been defi ned by specifying 
the minimum particle diameter  d  0  and the maximum number of fractions  N . That 

  Figure 7-34       A -sections corresponding to different  A  values for standard 2- and 
3-simplexes and the optimal grading curve line (solid bold black line).    
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means we have defi ned an  N   −  1 dimensional simplex. The largest simplex, 
together with all its continuous subsimplexes, has a lattice or cascade structure, 
as shown in the left graph of Fig.  7-35 . Since the maximum entropy increment 
line is most important in the application of grading entropy, one can easily fi nd 
that the maximum entropy increment lines for the largest simplex and all its 
continuous subsimplexes have the same cascade structure when plotting the 
maximum  Δ  S  line on the nonnormalized entropy diagram, as in the right graph 
of Fig.  7-35 . However, such a cascade structure disappears in the normalized 
grading entropy diagram because of the fact that the range of both normalized 
base entropy and entropy increment are independent of  N . Such an extension 
property of the maximum entropy increment  Δ  S  line in the nonnormalized 
grading entropy diagram plays an important role in the application of grading 
entropy. The method of constructing a transfer function between soil physical 
property and the corresponding grading curve is inspired by this property.   

  7.2.9     Application of Grading Entropy Theory 

 The so-called geometrical criterion for particle migration has always been dis-
cussed in terms of different parameters of the grain size distribution. Grading 
entropy coordinates can also be used for characterizing piping and suffusion 
phenomena, which are common in the leachate collection system of landfi lls 
(Lorincz et al.  2009 ). Laboratory test results show that the normalized grading 
entropy diagram can be divided into three different zones, i.e., the piping zone, 
stable zone, and stable with suffusion zone, where  A   =  2/3 is the boundary 
between the stable and unstable zones, as shown in Fig.  7-36 . In the unstable 
zone, where  A  is less than 2/3, the coarse particles fl oat in the matrix of the fi ner 
ones. Otherwise, in the stable zone with  A   ≥  2/3, the coarse particles form a 
permanent skeleton (Lorincz et al.  2009 ). 

  Grading entropy can also be used to explain the procedure of the particle 
breakage process (Lorincz et al.  2008 ). Crushing tests performed by Lorincz et al. 

  Figure 7-35      Cascade structure of the largest simplex and its continuous subsimplex 
(left) and the cascade structure of the maximum entropy increment  Δ  S  lines 

corresponding to the largest simplex and its subsimplex (right).    
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( 2005 ) showed that the grading entropy path always moves along the right half 
branch of the maximum normalized entropy increment  B  line and approaches 
the global maximum point. If the  A  value of the initial grading distribution is less 
than 0.5, after the fi rst 10 crushings, the grading entropy point jumps abruptly 
from the left branch to the right branch, whether the initial grading entropy point 
is on the maximum entropy increment  B  line or not, and then for further crushing 
the grading entropy point moves along the maximum  B  line in its increasing 
direction but never reaches the global maximum  B  point. This procedure can be 
shown in Fig.  7-36  whose data are from Lorincz et al. ( 2008 ). Another well-
designed crushing test, also conducted by Lorincz ( 1986 ), showed that during 
particle breakage the grading entropy path fi rst moves to the right branch of the 
maximum  B  line, and then it moves along this line in its increasing direction until 
reaching the global maximum  B  point. The test results are shown in Fig.  7-37 . 

  Figure 7-36      Grading entropy paths for different crushing tests.    

  Figure 7-37      Grading entropy variations with the number of crushing tests.     
 Source:   Adapted from Lorincz et al.  2008 . 
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354 Entropy Theory in Hydraulic Engineering

  Another valuable application of grading entropy is to construct a transfer 
function between grading curves and their corresponding physical properties. 
Imre et al. ( 2009 ) used the extension property of the normalized maximum 
entropy increment line in the grading entropy diagram to construct the dry 
density transfer function. The procedure can be generalized in four steps. The 
fi rst step is to defi ne the large simplex, which can describe the space of possible 
grading curves of interest by specifying the minimum particle diameter  d  0  and 
the total number of fractions  N . 

 In the second step, all the continuous subsimplexes are selected and the 
optimal grading curves (the inverse image of the maximum normalized entropy 
increment  B  line) are specifi ed for each subsimplex. In the third step, the soil 
physical property of interest is measured for each of the optimal grading curves. 
Finally, this physical property is interpolated in the 2-dimensional space of the 
nonnormalized grading entropy diagram, which means that the preliminary 
transfer function is constructed. According to Imre et al. ( 2009 ), the interpolated 
isoline is almost linear in the 2-dimensional space, as shown in Fig.  7-38 . Then 
the physical property for any unknown continuous graded grain distribution can 

  Figure 7.38      Sampling points for transfer function construction based on grading 
entropy theory.    
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be predicted using this preliminary transfer function. As is already known, the 
optimal grading curve represents a kind of most uniform distribution, so the 
extreme value for such properties is lost when using this method. Compared 
with traditional methods, the most attractive advantage of this method is that it 
is much more effi cient, because the required number of measurements is small.    

  Questions 

   Q7.1      Collect grain size data from a sieve analysis. Plot the grain size distribu-
tion and compute the mean, standard deviation, coeffi cient of variation, 
coeffi cient of skewness, and coeffi cient of kurtosis.  

  Q7.2      Determine the grain size distribution for the data in Q7.1 using the 
method of moments and determine its goodness.  

  Q7.3      Determine the grain size distribution for the data in Q7.1 using entropy 
and determine its goodness. Then, compare this distribution with that in 
Q7.2.  

  Q7.4      Compute the eigen-entropy of the fraction between sieves of 2 mm and 
4 mm, and between 4 mm and 8 mm.  

  Q7.5      Compute eigen-entropy values of the fractions from 2 to 10.  

  Q7.6      Assume that a soil system is mixed with two neighboring fractions, such 
that one fraction is twice the size of the other fraction. Compute the rela-
tive frequency for each fraction leading to the maximum grading entropy.  

  Q7.7      Assume a point [0.4, 0.6] in the Cartesian rectangular coordinate system. 
Project this point into the ternary coordinate system.  

  Q7.8      Consider a grading curve of a soil consisting of three fractions,  N   =  3. Let 
the smallest fraction be between the grain diameter of  d   =  0.05 mm and 
 d   =  0.15 mm. Compute grading entropy  A  and  B .  

  Q7.9      Consider a grading curve with six fractions. Compute the grading entropy 
coordinates  A  and  B . Let the eigen-entropy of the smallest fraction be  S  01  
 =  10.  

  Q7.10      Let  N   =  3,  A   =  0.3, and  B   =  0.8. Compute  x  1 ,  x  2 , and  x  3 .    
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    Chapter 8 

  Suspended Sediment 
Concentration 
and Discharge  

       Sediment transport is a vast subject and has attracted a lot of attention of hydrau-
lic engineers for more than a century. Its allure continues today. A massive 
compendium edited by Garcia ( 2008 ) provides perhaps the most up-to-date 
account of the discipline of sedimentation engineering. The suspended sediment 
discharge in a river can be computed from the knowledge of mean sediment 
concentration and mean fl ow velocity. Chapters 2 through 5 present derivations 
of entropy-based velocity distributions. Using entropy, Chiu et al. ( 2000 ) pre-
sented mathematical models of sediment concentration and Choo ( 2000 ) pre-
sented models of sediment discharge. The work of these investigators is followed 
in this chapter. 

 The total sediment discharge can be divided into suspended sediment dis-
charge and bed-load sediment discharge, which are summed to estimate the total 
sediment discharge in open channels (Einstein  1950 ). The suspended load is 
composed of sediment particles that are lifted into the body of fl ow by turbu-
lence, where they remain and are transported downstream. With the balance 
between turbulent diffusion of the grains upward and gravitational settling of 
the grains downward, an equilibrium distribution of suspended sediment con-
centration can be developed. Conversely, the bed load is the portion of the sedi-
ment carried near the bed by the physical processes of intermittent rolling, 
sliding, and saltation of individual grains at various random locations in the bed, 
so that the sediment remains in contact with the bed most of the time. Here, the 
focus is on suspended sediment transport. 
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  8.1     Preliminaries 

  8.1.1     Defi nition of Sediment Discharge 

 Let  A  denote the fl ow cross-sectional area with depth  D  and width  W , which can 
be written as

  A dxdy
WD

= ∫∫
00

      (8.1)  

where  x  is the transverse coordinate along which width is measured, and  y  is 
the vertical coordinate, which is measured along fl ow depth. The suspended 
sediment discharge for a channel cross section  A  can be expressed as

  Q C x y u x y dy dx u CAs

WD

m= =∫∫ ( , ) ( , )
00

      (8.2a)  

where  C  is sediment concentration varying in  x  and  y ,  u  is the velocity varying 
in  x  and  y ,  u m   is the cross-sectional mean velocity, and  C    is the cross-sectional 
mean sediment concentration. 

 Assuming that  C  and  u  are uniform in  x  and vary only in  y , not in  x , i.e., 
 C ( x ,  y )  =   C ( y ) and  u ( x ,  y )  =   u ( y ), then equation  (8.2a)  can be written in one dimen-
sion on a unit-width basis as

  q C y u y dys

D

= ∫ ( ) ( )
0

      (8.2b)   

 Equation  (8.2b)  shows that computation of suspended sediment discharge entails 
two components: distribution of sediment concentration and distribution of 
velocity. The distribution of sediment concentration in fl ow can be expressed in 
two ways: using the theory of sediment transport or empirically, and using the 
entropy theory. Likewise, the velocity distribution can be expressed either using 
a standard velocity distribution, such as the Prandtl–von Karman universal 
velocity distribution or power law velocity distribution, or it can be derived 
using entropy. Thus, sediment discharge can be computed with the use of entropy 
in three ways:

   1.      The velocity distribution is determined by a standard formula and the 
concentration distribution by an entropy-based equation.  

  2.      The velocity distribution is determined by an entropy-based equation 
and the concentration distribution by a standard formula.  

  3.      The velocity distribution and the concentration distribution are both 
determined by entropy-based equations.    

 These three ways are discussed in this chapter.  
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  8.1.2     Governing Equation for Sediment Concentration 

 The simplest differential equation describing the distribution of sediment con-
centration along a vertical axis can be expressed as

  − =εs s
dC
dy

w C       (8.3)  

in which  ε   s   is the diffusion coeffi cient for sediment transfer,  y  is the vertical dis-
tance measured from the channel bed,  C  is the sediment concentration at  y , and 
 w s   is the settling velocity of sediment particles or particle fall velocity. The left 
side of equation  (8.3)  describes the upward sediment transport by diffusion, and 
the right side describes the downward transport by gravity.  

  8.1.3     Particle Fall Velocity 

 The particle fall velocity of a sand particle,  w s  , smaller in diameter than approxi-
mately 100  μ m (Stokes range) in a clear fl uid can be written as

  w
s gd

s
s=

−⎡
⎣⎢

⎤
⎦⎥

1
18

1 2( )
υ

      (8.4)  

where  d s   is the particle size or diameter,  g  is the acceleration caused by gravity, 
 s   =   ρ   s  / ρ  is the specifi c gravity of sediment,  ρ  is the fl uid density,  ρ   s   is the sedi-
ment density, and  υ  is the kinematic viscosity. 

 For suspended sediment particles of diameter in the range 100–1,000  μ m, 
Zanke ( 1978 ) proposed an expression for  w s   as

  w
d

s gd
s

s

s= +
−⎛

⎝⎜
⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
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10
1

0 01 1
1

3

2

0 5υ
υ

. ( ) .

      (8.5)   

 For larger particles ( > 1,000  μ m), van Rijn ( 1984 ) computed  w s   as

  w s gds s= −1 1 1 0 5. [( ) ] .       (8.6)   

 In equations  (8.4)–(8.6) ,  d s   is the representative particle diameter of suspended 
sediment particles, but it may be signifi cantly smaller than  d  50 . 

 Cheng ( 1997 ) related the settling velocity  w s   to sediment and fl uid proper-
ties as

  w d ds s = + −υ( . ) .25 1 2 52 1 5*       (8.7)  

where

  d
g

ds
s*

( ) /

=
−⎡

⎣⎢
⎤
⎦⎥

ρ ρ
ρυ2

1 3

      (8.8)   
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  Example 8.1          Compute the settling velocity for different sediment sizes. Take 
 ρ   s    =  2.6  ×  10 3  kg/m 3 , and  υ   =  1.03  ×  10  − 6  m 2 /s.  

  Solution 

 For md w
s gd d

s s
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 For smaller particle sizes, Cheng ’ s equation is used:
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 Fig.  8-1  plots the settling velocity as a function of particle diameter. The equations 
from Cheng ( 1997 ), Stokes ( 1851 ), and Zanke (1978) are comparable, but the 
equation from van Rijn ( 1984 ) signifi cantly overestimates the settling velocity.     

  Figure 8-1      Settling velocity as a function of a particle diameter.    
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  8.1.4     Diffusion Coeffi cient for Sediment Transport 

 The diffusion coeffi cient  ε   s   in equation  (8.3)  is often expressed as

  ε βεs m=       (8.9)  

where  β  is a coeffi cient whose value is about unity, varying a little along the 
vertical between the channel bed and the water surface (Vanoni  1975 ), and  ε   m   is 
the diffusion coeffi cient for momentum transfer, which can be expressed as

  ε τ
ρ

τ
τm

du
dy

u
du
dy

= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

− −1

2

0

1

*       (8.10)  

where  ρ  is the fl uid density,  u * is the shear velocity  τ ρ0 /    , and  τ  is the shear 
stress given as

  τ τ= −⎛
⎝⎜

⎞
⎠⎟0 1

y
D

      (8.11)  

in which  τ  0  ( ρ  gDS  0 ) is the boundary shear at  y   =  0,  g  is the acceleration caused 
by gravity,  S  0  is the bed slope,  y  is the vertical distance from the channel bed, 
and  D  is the fl ow depth. Therefore, substitution of equation  (8.11)  in equation 
 (8.10)  yields

  εm u
y
D

du
dy

= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−

*2

1

1       (8.12)   

 It may be noted that for a two-dimensional velocity distribution as described 
in Chapter 3, the  y -coordinate corresponds to the  r -coordinate in the curvilinear 
coordinate system, and hence equation  (8.11)  needs to be modifi ed as

  τ τ= − −
−

⎛
⎝⎜

⎞
⎠⎟0

0

0

1
r r

r rmax

      (8.13)  

where  r  max  is the value of  r  corresponding to the maximum velocity isovel, and 
 r  0  is the value of  r  corresponding to the zero or minimum velocity isovel. 

 It is possible to introduce a scale factor that permits the coordinate transfor-
mation between y and  r . Let that scale factor be  h r  , which will permit us to make 
the product  drh r   have the same unit (length) as  dy  in the coordinate transforma-
tion between  y  and  r . The scale factor can also be regarded as a metric coeffi cient. 
Then, equation  (8.10)  can be written as

  ε τ
ρ

τ
τm

r

du
dy

u
du

drh
= ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

− −1

2

0

1

*       (8.14)   

 With the substitution of equation  (8.13)  in equation  (8.14) , one gets

  εm
r

u
r r

r r
du

drh
= − −

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−

*2 0

0

1

1
max

      (8.15)   
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 Equation  (8.15)  shows that the diffusion coeffi cient for momentum transfer 
depends on the velocity gradient, which, in turn, depends on the velocity distri-
bution equation used to compute the gradient. 

  Example 8.2          Compute and plot  τ / τ  0  versus  y / D . (Take  y / D  on the  y -axis.)  

  Solution   It is seen from equation  (8.11)  as  
τ
τ0

1= −
y
D

   , showing a linear variation. 

The relation between  τ / τ  0  and  y / D  is computed as shown in Table  8-1  and plot-
ted as shown in Fig.  8-2 .      

y/D  τ / τ  0 y/D  τ / τ  0 

0 1 0.6 0.4

0.1 0.9 0.7 0.3

0.2 0.8 0.8 0.2

0.3 0.7 0.9 0.1

0.4 0.6 1 0

0.5 0.5

 Table 8-1      Values of  τ / τ  0  versus  y / D .  

  Figure 8-2      Plot of  τ / τ  0  versus  y / D .    

  8.1.5     Velocity Gradient 

 The velocity distribution can be expressed in many different ways. For purposes 
of discussion in this chapter, it is expressed in three ways: (1) power law, 
(2) Prandtl–von Karman universal velocity distribution, and (3) entropy based. 
The fi rst two are discussed in Chapter 4, and the third in Chapters 2 and 3. For 
the sake of completeness, the power law velocity distribution can be expressed as

  u ayb=       (8.16)  
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where  a  is a proportionality factor, and  b  is an exponent; both can be treated as 
parameters. From equation  (8.16) , the velocity gradient  du / dy  can be written as

  
du
dy

ab
y b

= −1       (8.17)   

 If the velocity distribution is the Prandtl–von Karman universal velocity 
distribution,

  u
u
k

y
y

= ⎛
⎝⎜

⎞
⎠⎟

*
ln

0

      (8.18)  

where  u * is the shear velocity,  k  is the von Karman universal constant, and  y  0  is 
a parameter or the shear depth—a small value. From equation  (8.18) , the velocity 
gradient can be obtained as

  
du
dy

u
ky

= *
      (8.19)   

 The one-dimensional entropy-based velocity distribution, given by equation 
(2.70) (from Chapter 2), can be recast as

  u
u
k

k
u
u

y
D

D= + ⎛
⎝

⎞
⎠ −

⎡
⎣⎢

⎤
⎦⎥{ }*

*1
11 1ln exp       (8.20)  

where  u * is shear velocity  gDS0    ,  s  0  is bed slope, and  k  1  is a parameter. Equation 
 (8.20)  gives velocity as monotonically increasing from the bed to the water 
surface, which is always true. To account for situations where the maximum 
velocity may occur below the water surface, the entropy-based velocity distribu-
tion, given by equation (3.35a) (from Chapter 3) can be recast in the curvilinear 
coordinates as

  u
u
M

M
r r

r r
= + − −

−
⎡
⎣⎢

⎤
⎦⎥

max

max

ln {exp( ) }1 1 0

0

      (8.21a)  

which can also be written as

  u
u
M

M
y
D

= + −⎡
⎣⎢

⎤
⎦⎥

max ln {exp( ) }1 1       (8.21b)  

where  u   =   u  max  at  r   =   r  max ;  r  0  is the minimum value of  r  at which  u   =  0;  u  is the 
velocity at  r ;  M  is the entropy number and equals  λ  2  u  max ;  λ  2  is the Lagrange mul-
tiplier associated with the mean velocity constraint, and  r  is the space with which 
 u  increases. It may noted that equation  (8.20)  is based on the hypothesis that the 
average velocity in any vertical is equal to  q / A  (where  q   =  discharge per unit 
width and  D  is the fl ow depth):

  
Q
A

q
D

f u du
u

= = ∫ ( )
0

      (8.22)   
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 Therefore, the average velocity  u m   ( Q / A ) can be written as

  
u

u
M M

M
m

max

exp( )[exp( ) ]= − −−1
11       (8.23)   

 The velocity gradient can be obtained from equation  (8.21b)  as

  
du
dy

u
DM

M M
y
D

= − + −{ }−max [exp( ) ] [exp( ) ]1 1 1
1

      (8.24)   

 In the  r -coordinate, the velocity gradient from equation  (8.21a)  becomes

  du
dy

du
drh

u
DM

M M
r r

r rr

= = − + − −
−{ }−max

max
[exp( ) ] [exp( ) ]1 1 1 0

0

1

      (8.25)  

where

  h
dy
dr

y
r

y
D h

r = = −
−

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
−

1
1

      (8.26)   

 It may also be noted that the velocity gradient on the channel bed, where 
 u   =  0,  y   =  0, and viscous shear exists, can be expressed as

  
du
dy D

u

y=

= = =
0 1

0
21

exp( )λ
τ
μ υ

*
      (8.27)  

where  μ  and  υ  are the dynamic and kinematic viscosities, respectively, and  λ  1  is 
the Lagrange multiplier from equation  (8.27) , which results in

  λ υ
1 2= ln

u D*
      (8.28)   

 It may be noted that  r  along the  y -axis (where  u  max  and  r  max  occur) with  z   =  0 
can be defi ned as

  r
y

D h
y

D h
=

−
−

−
⎛
⎝⎜

⎞
⎠⎟exp 1       (8.29)  

where  h  is the distance from the water surface to the maximum velocity and acts 
as a parameter. 

  Example 8.3          Compute and plot  y / D  on the  y -axis and  τ / τ  0  and also  u / u * on the 
 x -axis for different values of  h / D  ( −  ∞ ,  − 0.5, 0.0, and 0.2) and  M   =  1 using entropy-
based equations.  

  Solution   For each value of  h / D , the value of  r  is computed from equation  (8.29) : 

 r
y

D h
y

D h
=

−
−

−
⎛
⎝⎜

⎞
⎠⎟exp 1    . To include the effect of  h  in equation  (8.29)  to fi ne-tune 
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the velocity gradient, the polynomial shear-stress equation can be used. If  u  max  
occurs below the water surface, where  h   ≥  0 and  r  max   =  1, then the shear stress 
distribution consistent with equation  (8.29)  can be expressed in the power series 
form as

  τ
τ0

2

1 1 1= −
−

⎛
⎝⎜

⎞
⎠⎟ + −⎛

⎝
⎞
⎠ −

−
⎛
⎝⎜

⎞
⎠⎟

h
D

y
D h

h
D

y
D h

       

 It satisfi es the condition that  τ   =   τ  0  at  y   =  0;  τ   =  0 at  y   =   D   −   h  where  u   =   u  max  and 
also at  y   =   D . If  u  max  occurs on the water surface, where  h   ≤  0 and  r  max   =   D /( D   −   h ),

  τ
τ0

2

1= −
−
−

⎛
⎝⎜

⎞
⎠⎟ + −⎛

⎝
⎞
⎠

−
−

⎛
⎝⎜

⎞
⎠⎟

h
D

D y
D h

h
D

D y
D h

      

  The dimensionless velocity distribution can be obtained from equation  (8.21b) :

  
u

u M
M

r r
r rmax max

ln {exp( ) }= + − −
−

⎡
⎣⎢

⎤
⎦⎥

1
1 1 0

0

       

 Then,  τ / τ  0  and  u / u  max  are computed, as shown in Tables  8-2  and  8-3 , respectively. 
Fig.  8-3  plots the velocity and shear distributions for  M   =  1. It is clear that  h / D  has 
a signifi cant infl uence on  u / u  max  as well.     

Values of   τ  /  τ   0 

 y / D  h / D   =   −  ∞  h / D   =   − 0.5  h / D   =  0.0  h / D   =  0.2

0 1.000 1.000 1.000 1.000

0.2 0.800 0.693 0.640 0.600

0.3 0.700 0.560 0.490 0.438

0.4 0.600 0.440 0.360 0.300

0.5 0.500 0.333 0.250 0.188

0.6 0.400 0.240 0.160 0.100

0.7 0.300 0.160 0.090 0.038

0.8 0.200 0.093 0.040 0.000

0.9 0.100 0.040 0.010  − 0.013

1 0.000 0.000 0.000 0.000

1.1  − 0.100  − 0.027 0.010 0.038

1.2  − 0.200  − 0.040 0.040 0.100

1.3  − 0.300  − 0.040 0.090 0.188

1.4  − 0.400  − 0.027 0.160 0.300

1.5  − 0.500 0.000 0.250 0.438

1.6  − 0.600 0.040 0.360 0.600

 Table 8-2      Values of  τ / τ  0  versus  y / D  for various values of  h .  
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Values of  u / u  max 

 y / D  h / D   =   −  ∞  h / D   =   − 0.5  h / D   =  0.0  h / D   =  0.2

0 0.000 0.000 0.000 0.000

0.2 0.295 0.461 0.568 0.660

0.3 0.416 0.600 0.712 0.805

0.4 0.523 0.706 0.812 0.898

0.5 0.620 0.788 0.882 0.957

0.6 0.709 0.853 0.931 0.993

0.7 0.790 0.904 0.965 1.012

0.8 0.865 0.944 0.985 1.017

0.9 0.935 0.976 0.997 1.012

1 1.000 1.000 1.000 1.000

1.1 1.061 1.018 0.997 0.981

1.2 1.119 1.031 0.989 0.958

1.3 1.174 1.040 0.976 0.930

1.4 1.225 1.045 0.960 0.900

1.5 1.275 1.046 0.941 0.867

1.6 1.322 1.045 0.920 0.832

 Table 8-3      Values of  u / u  max  versus  y / D  for various values of  h .  

  Figure 8-3      Velocity and shear stress distributions for  M   =  1.    

   Example 8.4          Compute velocity gradients using the three velocity distributions 
and plot them. Take  y / D  on the  y -axis and  du / dy  on the  x -axis. Take  D   =  1 m/s, 
 u  max   =  10 m/s,  u *  =  9 m/s,  M   =  3.7,  k   =  2.26, and  b   =  2.5.  
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  Solution   Fig.  8-4  shows  du / dy  versus  y / D . From equation  (8.17) , the power law 
equation is

   
du
dy

abyb= −1        

 From the Prandtl–von Karman equation  (8.18) ,

  
du
dy

u
k y

= * 1
       

 From the entropy-based equation  (8.24) ,

  
du
dy

u
DM

M M
y
D

= − + −{ }−max [exp( ) ] [exp( ) ]1 1 1
1

       

 The velocity gradient is computed as shown in Table  8-4 . Fig.  8-4  shows  du / dy  
versus  y / D . 

Values of  du / dy 

 y / D 
Power law  

(s  − 1 )
Prandtl–von Karman  

(s  − 1 )
Entropy-based  

(s  − 1 )

0.1 37.68 39.70 39.25

0.2 28.55 19.85 21.67

0.3 24.28 13.23 14.96

0.4 21.64 9.93 11.43

0.5 19.79 7.94 9.24

0.6 18.40 6.62 7.76

0.7 17.30 5.67 6.69

0.8 16.40 4.96 5.88

0.9 15.65 4.41 5.24

 Table 8-4      Velocity gradients of three velocity distributions.   

  Figure 8-4      Velocity gradient for the three distributions.    
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  The power law velocity gradient is signifi cantly different from the Prandtl–
von Karman velocity gradient, as well as the entropy-based velocity gradient, 
which are close to each other.  

   Example 8.5          For a set of measured velocity data collected by Einstein and Chien 
( 1955 ), given in Table  8-5 , plot  y / D  on the  y -axis and  u / u * on the  x -axis for the 
three velocity distribution equations. Also plot on the same graph observed val-
ues. Taking  k   =  0.214,  y  0   =  3.02  ×  10  − 3  ft,  u *  =  0.406 ft/s,  u  max   =  7.11 ft/s.   

Velocity  u / u *

 y / D Observed Power law Prandtl–von Karman Entropy-based

0.016 5.470 4.038 3.22 3.377

0.023 6.150 4.803 4.84 4.395

0.028 6.700 5.339 5.83 5.113

0.030 7.040 5.583 6.24 5.439

0.038 7.300 6.275 7.34 6.352

0.044 8.200 6.694 7.94 6.895

0.052 8.800 7.266 8.71 7.621

0.065 9.600 8.132 9.76 8.680

0.091 11.130 9.670 11.4 10.436

0.105 11.900 10.351 12 11.165

0.118 12.500 10.999 12.6 11.831

0.131 13.050 11.589 13.1 12.414

0.144 13.600 12.151 13.5 12.951

0.171 14.300 13.221 14.3 13.928

0.197 15.000 14.212 15 14.780

0.223 15.500 15.121 15.6 15.521

0.250 16.050 16.010 16.1 16.213

0.276 16.500 16.822 16.6 16.818

0.329 17.520 18.366 17.4 17.903

 Table 8-5      Comparison of observed velocity values with those computed using three 
velocity distribution equations.  

  Solution   The velocity distribution is computed, as shown in Table  8-5 , using

 Power law equation
* *

: ,
u
u

a
u

yb=       

where  u *  =  0.406 ft/s,  a   =  0.406, and  b   =  0.5.
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 Prandtl von Karman equation
*

− =: ln ,
u
u k

y
y

1

0
      

where  y  0   =  3.02  ×  10  − 3  ft, and  k   =  0.214.

 Entropy-based equation
*

: ln {exp( ) } ,
u
u k

M
y
D

= + −⎡
⎣⎢

⎤
⎦⎥

1
1 1       

where  M   =  3.72. 
 Fig.  8-5  shows a plot of  y / D  versus  u / u * for the three equations. The velocity 

profi le computed from the power law is generally larger than the observation for 
the below 0.3 y / D  depth. The Prandtl–von Karman velocity profi le fi ts the obser-
vation best in this case.     

  Figure 8-5      Comparison of three velocity distributions for experimental data due to 
Einstein and Chien (1955).    

  8.1.6     Diffusion Coeffi cient for Momentum Transfer 

 For the power law velocity, one combines equations  (8.17)  and  (8.10) , obtaining

  εm

b

u
y
D

y
ab

= −⎛
⎝⎜

⎞
⎠⎟

−

*2
1

1       (8.30)   

 The mean value of the diffusion coeffi cient for momentum transfer can now be 
written as

  εm

bu D
ab b b

=
− −

−*2 1

2 3( )( )
      (8.31)   
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 Likewise, one combines equations  (8.19)  and  (8.10) , obtaining the Prandtl–
von Karman universal velocity distribution:

  εm ku y
y
D

= −⎛
⎝⎜

⎞
⎠⎟* 1       (8.32)  

which then yields the mean value of the diffusion coeffi cient for momentum 
transfer:

  εm
ku D= *

6
      (8.33)   

 In a similar manner, coupling equations  (8.24)  and  (8.10)  for the entropy-
based velocity distribution, the diffusion coeffi cient is obtained as

  εm
Mu D

u M
M

y
D

y
D

=
−

− ⎛
⎝⎜

⎞
⎠⎟ +{ } −⎛

⎝⎜
⎞
⎠⎟

*2 1
1

1 1 1
max exp( )

[exp( ) ]       (8.34)   

 Equation  (8.34)  leads to the mean diffusion coeffi cient value:

  εm
Mu D

u M
=

−
+⎡

⎣⎢
⎤
⎦⎥

*2

6
3

1
1

max exp( )
      (8.35)   

  Example 8.6          Compute and plot  ε   m   as a function of dimensionless depth  y / D  us-
ing three velocity distributions: power law, Prandtl–von Karman, and entropy 
based, using the data given by Einstein and Chien ( 1955 ) for  S   −  4 series. Using 
 k   =  0.214,  y  0   =  3.02  ×  10  − 3  ft,  u *  =  0.406 ft/s, and  u  max   =  7.11 ft/s. Mean values of 
 ε   m   (ft 2 /s) are  ε   m    =  6.331  ×  10  − 3  for power law,  ε   m    =  3.937  ×  10  − 3  for Prandtl–von 
Karman equation, and  ε   m    =  6.245  ×  10  − 3  for the entropy-based equation.  

  Solution   From equations  (8.30) ,  (8.32) , and  (8.34) ,  ε   m   is computed as shown in 
Table  8-6 . Fig.  8-6  plots  ε   m   (m 2 /s) as a function of dimensionless depth  y / D . It can 
be seen from the fi gure that  ε   m   fi rst increases from bottom up to about half of the 
depth and then starts to decrease up to the water surface. The  ε   m   value computed 

  Figure 8-6      Plot of  ε   m   (m 2 /s) as a function of dimensionless depth  y / D .    
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from equation  (8.34)  increases the fastest and has the biggest peak value, and the 
one computed from equation  (8.30)  has the smallest increasing gradient and the 
smallest maximum value.       

  8.2     Sediment Concentration 

  8.2.1     Deterministic Equations 

 As shown in equation  (8.9) , the diffusion coeffi cient  ε   s   can be replaced by  β  ε   m  . 
Using equation  (8.10) , the solution of equation  (8.3)  yields

  
C
C

w
u

du
dy

dys
y

0
2

0

1

0

= − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−

∫exp
β

τ
τ*

      (8.36)  

where  C  0  is  C  at  y   =  0. Depending on the mathematical description of  u  and  τ , 
different models of  C  as a function of  y  can be obtained. The well-known Rouse 
equation can be derived from equation  (8.3) :

  
C
C

D y
y

a
D aa

=
−

−
⎛
⎝⎜

⎞
⎠⎟

η

      (8.37)  

where  a   =  a small value of  y ;  C a    =   C  at  y   =   a ;  D  is the water depth; and

  η
β

= v
ku

s

*
      (8.38)  

where  v s   is the settling velocity of sediment particles. In the derivation of equa-
tion  (8.37) , the shear stress was expressed by equation  (8.11)  and the velocity by 

 y / D 
Eq.  (8.34)   

(m 2 /s)
Eq.  (8.32)   

(m 2 /s)
Eq.  (8.30)   

(m 2 /s)

0 0.0008 0.0000 0.0000

0.1 0.0037 0.0030 0.0041

0.2 0.0059 0.0053 0.0052

0.3 0.0074 0.0069 0.0056

0.4 0.0083 0.0079 0.0055

0.5 0.0086 0.0082 0.0051

0.6 0.0082 0.0079 0.0045

0.7 0.0071 0.0069 0.0036

0.8 0.0054 0.0053 0.0026

0.9 0.0030 0.0030 0.0014

1 0 0 0

 Table 8-6      Values of  ε   m   for various values of  y / D .  
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the Prandtl–von Karman equation  (8.18) . Equation  (8.37)  does not hold at or near 
the channel bed and is less than adequate at the water surface. Because the sedi-
ment concentration near the bed is maximum, equation  (8.37)  would not satis-
factorily represent the depth-averaged sediment concentration near the bed. 

 Solution of the diffusion equation for transport of solids in one-dimensional 
steady fl ow can be written as

  C C
v ys

s

= −⎡
⎣⎢

⎤
⎦⎥

0 exp
ε

      (8.39)  

where  C  0  is  C  at  y   =  0. In deriving equation  (8.39) , we assume that the diffusion 
coeffi cient is constant and depth averaged. 

  Example 8.7          Compute and plot  C / C  0  versus  y / D  using equation  (8.36)  with the 
power law, Prandtl–von Karman, and entropy-based velocity distributions and 
for a set of measured sediment concentrations collected by Einstein and Chien 
( 1955 ). Take the value of  β   =  1,  D   =  1 m/s,  u  max   =  10 m/s,  u *  =  9 m/s,  M   =  3.7, 
 k   =  2.26, and  b   =  2.5.  

  Solution   For  β   =  1,
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dy
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is computed as in Example  8.4  for three equations.

 Power law equation
*

: exp ( )C
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Entropy-based equation

*
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exp [exp(maxC
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w
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) ] [exp( ) ]− + −{ }⎡
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⎦
⎥

−

∫ 1 1 1
1

0

       

 With the results from Example  8.4 , the value of  C / C  0  is computed as shown in 
Table  8-7 . 

  Fig.  8-7  plots  C / C  0  versus  y / D  corresponding to the power law, Prandtl–von 
Karman, and entropy-based velocity distributions. With  β  set to be 1, the dimen-
sionless sediment concentrations computed from power law and entropy-based 
equations are similar, and they coincide in the fi gure. The sediment concentration 
values computed from the Prandtl–von Karman law are smaller than those from 
the other two methods.   
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Values of  C / C  0 

 y / D Power law Prandtl–von Karman Entropy-based

0.1 1.54E–03 3.00E–05 1.41E–03

0.2 2.37E–06 9.01E–10 1.98E–06

0.3 3.65E–09 2.70E–14 2.79E–09

0.4 5.62E–12 8.11E–19 3.94E–12

0.5 8.66E–15 2.43E–23 5.54E–15

0.6 1.33E–17 7.30E–28 7.81E–18

0.7 2.05E–20 2.19E–32 1.10E–20

0.8 3.16E–23 6.58E–37 1.55E–23

0.9 4.87E–26 1.97E–41 2.18E–26

1 7.50E–29 5.92E–46 3.07E–29

 Table 8-7      Value of  C / C  0  versus  y / D .  

  Figure 8-7      Plot of  C / C  0  versus  y / D  corresponding to the power law, Prandtl–von 
Karman, and entropy-based velocity distributions.    

   Example 8.8          Compute and plot  C / C  0  versus  y / D  using equation  (8.37)  with the 
power law, Prandtl–von Karman, and entropy-based velocity distributions and 
for a set of measured sediment concentrations collected by Einstein and Chien 
( 1955 ). Here, compute the value of  β .  

  Solution   By curve fi tting,  β   =  2.08 for power law, 3.29 for Prandtl–von Karman 
equation, and 2.31 for the entropy-based equation. Taking  D   =  1 m/s,  u  max   =  
10 m/s,  u *  =  9 m/s,  M   =  3.7,  k   =  2.26, and  b   =  2.5. Then, substituting in equation

  
C
C
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u

du
dy
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0

1

0

= − ⎛
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Observed  C / C  0 Computed  C / C  0 

 y / D Observed Power law Prandtl–von Karman Entropy-based

0.136 0.065 19.003 13.980 31.256

0.141 0.070 0.012 0.012 0.018

0.095 0.078 0.051 0.049 0.066

0.086 0.089 0.069 0.066 0.087

0.072 0.104 0.107 0.103 0.130

0.044 0.126 0.251 0.245 0.283

0.022 0.147 0.505 0.500 0.536

0.017 0.173 0.594 0.589 0.622

0.010 0.200 0.725 0.721 0.746

0.007 0.234 0.806 0.803 0.821

 Table 8-8      Values of  C / C  0  versus  y / D .  

  Figure 8-8      Plot of  C / C  0  versus  y / D  corresponding to the power law, Prandtl–von 
Karman, and entropy-based velocity distributions and measured values.    

values of  C / C  0  are computed for various values of  y / D , as shown in Table  8-8 . 
Fig.  8-8  plots  C / C  0  versus  y / D  corresponding to the power law, Prandtl–von 
Karman, and entropy-based velocity distributions and measured values.      

  8.2.2     Use of Entropy for Derivation of the Suspended Sediment 
Concentration Equation 

 Representing the shear stress by equation  (8.13)  and the velocity distribution by 
equation (8.21), solution of equation  (8.36)  yields (Chiu et al.  2000 )
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  C
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      (8.40)  

in which  C  0  is  C  at  y   =   y  0 , and  ζ  is

  ς
β β φ

λ=
− −

=
− −

=
w u M

u M
w u M

u M
Gs s mmax[ exp( )] [ exp( )]1 1

2 2* *
      (8.41)  

  φ = = =
−

−u
u

u
u

M
M M

m

max max

exp( )
exp( ) 1

1
      (8.42)  

  G
M

M
=

− −1 exp( )
φ

      (8.43)  

  λ
β

= w u
u
s m

*2       (8.44)  

where  u m   is the mean velocity of fl ow. Equation  (8.40)  describes the variation of 
concentration in both the vertical and transverse directions. 

 Equation  (8.40)  can take on different forms along a channel vertical ( z   =  0). 
For wide open channels ( r   =   y / D ),

  C
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  u
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M

M
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= + −{ }max ln [exp( ) ]1 1       (8.46)   

 If  h   <  0,  r  max   =  1, and  r  0   =  0,
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  u
u
M

M
y

D h
y

D h
= + −

+
−

+
⎡
⎣⎢

⎤
⎦⎥{ }max ln [exp( ) ] exp1 1 1       (8.48)   

 If  h   ≤  0,  r  0   =  0, and  u  max  occurs on the water surface but the channel is not wide, 
then
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  u
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D y
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= + −
−
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⎡
⎣⎢

⎤
⎦⎥{ }max ln [exp( ) ] exp1 1       (8.50)   

 Choo ( 2000 ) tested equations  (8.45) ,  (8.47) , and  (8.49)  using fl ume and fi eld 
data and found good agreement. There was a slight disagreement near the bed 
with lower than observed sediment concentration. He recommended using equa-
tion  (8.40)  in place of equation  (8.45)  or  (8.47) , especially when the maximum 
velocity occurs below the water surface. 

  Example 8.9          Compute and plot sediment concentration using equation  (8.40)  for 
different sediment sizes for the experimental data given by Einstein and Chien 
( 1955 ). Also plot the observed values.  

  Solution 
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  C / C  0  is computed by
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 Fig.  8-9  plots sediment concentration using equation  (8.40)  for different sediment 
sizes for the experimental data given by Einstein and Chien ( 1955 ) shown in 
Table  8-9 . 

 y  (ft)  C  (g/l) y (ft) C (g/l)

0.0245 268 0.0475 87.8

0.0265 278 0.0554 43.3

0.0295 188.5 0.0654 33

0.0335 170 0.0754 20.4

0.0395 142 0.0883 13.7

 Table 8-9      Sediment concentration data given by Einstein 
and Chien ( 1955 ).  
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  Figure 8-9      Plot of sediment concentration using equation  (8.33)  for different sediment 
sizes for the experimental data given by Einstein and Chien ( 1955 ).    

   Now the concentration corresponding to the mean velocity can be computed. 
Consider the case of wide open channels. Using  r r=    , the location at which the 
velocity is equal to the cross-sectional mean velocity can be obtained as equation 
 (8.21a) :
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is a dimensionless function of  M . 
 Substituting equation  (8.51)  in equation  (8.40)  and letting  C   =   C u   at  r r=    , one 

gets
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      (8.53)  

where  ζ  is the exponent. Equation  (8.53)  is an analytical relation as a function of 
 M  and  ζ  and permits calculation of the sedimentation concentration ratio using 
mean velocity, channel slope, and hydraulic radius, without any concentration 
data.  
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   Example 8.10          Compute and plot  C u  / C  0  as a function of  M  for  ζ   =  2, 1, 1/2, 1/4, 
1/8, 1/16, 1/32, and 1/64.  

  Solution   For different values of  ζ ,  C u  / C  0  can be computed using
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as shown in Table  8-10 . Fig.  8-10  plots the relation between  C u  / C  0  versus  M  for 
 ζ   =  2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64.    

Values of  C u  / C  0 

 M  ζ   =  2  ζ   =  1  ζ   =  1/2  ζ   =  1/4  ζ   =  1/8  ζ   =  1/16  ζ   =  1/32

0.1 0.230 0.479 0.692 0.832 0.912 0.955 0.977

0.2 0.210 0.458 0.677 0.823 0.907 0.952 0.976

0.5 0.158 0.397 0.630 0.794 0.891 0.944 0.972

1 0.091 0.302 0.550 0.741 0.861 0.928 0.963

2 0.024 0.155 0.393 0.627 0.792 0.890 0.943

3 0.005 0.069 0.263 0.513 0.716 0.846 0.920

4 0.001 0.028 0.169 0.411 0.641 0.800 0.895

5 0.000 0.011 0.105 0.324 0.569 0.755 0.869

6 0.000 0.004 0.065 0.254 0.504 0.710 0.843

7 0.000 0.002 0.039 0.198 0.446 0.667 0.817

8 0.000 0.001 0.024 0.155 0.393 0.627 0.792

9 0.000 0.000 0.015 0.121 0.347 0.589 0.768

10 0.000 0.000 0.009 0.094 0.307 0.554 0.744

 Table 8-10      Values of  C u  / C  0  versus  M  for various values of  ζ .  

  Figure 8-10      Relation between  C u  / C  0  versus  M  for  ζ   =  2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 
and 1/64.    
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  The sediment concentration  C  0  at the bed needs to be determined, however. 
For a given  M  and  ζ  obtained from simple input, equation  (8.53)  yields  C u  / C  0 . 
From sediment concentration measured at  r r=     or  y y=     (where  u   =   u m  ),  C  0  is 
obtained by dividing  C u   by  C u  / C  0 . Furthermore, substitution of the boundary 
condition in equation  (8.40)  and  C   =   C  0.2 ,  r   =   r  0.2 ;  C   =   C  0.5 ,  r   =   r  0   .   5 ; and  C   =   C  0.8 , 
 r   =   r  0.8  yields

  C C
M

0 0 2 1
4

= +⎡
⎣⎢

⎤
⎦⎥

.
exp( ) ς

      (8.54)  

  C C M0 0 5 1= +. [ exp( )]ς       (8.55)  

  C C M0 0 8 4= +. [ exp( )]ς       (8.56)   

 These equations can be used to describe the sediment concentration 
distribution. 

 The relationship between  C  and  C D   (sediment concentration at the water 
surface) can be derived from equation  (8.40)  as

  C C M C kD D0
101 1 10= + × × =[ exp( ) ]       (8.57)   

 One can now examine the effect of velocity distribution on the sediment 
concentration. To that end, the velocity gradient is given by equation  (8.25) , 
which can be recast with  r  0   =  0 as

  du
dy

u M
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h M
r

r
m
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+ −{ }−[exp( ) ]
[ (exp( ) )

max max

1
1 1

1

φ
      (8.58)  

where  ϕ   =   u m  / u  max . Note that  r  max  for  h   ≤  0 is unity, and is  r  for  y   +   D  for  h   >  0. 
The scale factor  h r   is given by equation  (8.26) . Therefore, equation  (8.3)  with the 
use of equation  (8.58) , becomes

  
C
C

I
y
D

h
D

M
0
= − ⎛

⎝⎜
⎞
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⎡
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⎤
⎦⎥

exp , ,ς       (8.59)   

 Equation  (8.59)  permits us to evaluate the effect of  h ,  ζ , and  M  on  C . Parameter 
 h  tends to increase discharge and is a measure of the effect of the location of 
maximum velocity. Parameter  M  refl ects the effect of the overall local channel 
section characteristics. Parameter  ζ  is defi ned by equation  (8.41) . 

  Example 8.11          Compute and plot  C  as a function of  y  for  D   =  0.115 m,  d   =  1.300 mm, 
 u *  =  0.406 m/s,  C  0   =  675.8 g/l for the data of Einstein and Chien ( 1955 ). Use equa-
tions  (8.37) ,  (8.40) , and  (8.59) .  

  Solution   For  D   =  0.171 m,  d   =  0.105 mm,  u *  =  0.04 m/s,  C  0   =  675.8 g/l,  C  is com-
puted as shown in Table  8-11 . Fig.  8-11  plots  C  as a function of  y .    
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Observed  C Computed  C 

 y  (m)
Observed  

(g/l)
Eq.  (8.37)   

(g/l)
Eq.  (8.40)   

(g/l)
Eq.  (8.59)   

(g/l)

0.007 194.000 235.872 168.229 197.848

0.008 197.500 191.538 145.690 176.456

0.009 174.500 143.398 119.218 149.781

0.010 150.000 101.696 93.881 122.438

0.012 102.400 64.723 68.467 92.902

0.014 64.250 38.696 47.691 66.889

0.017 40.500 24.930 34.936 49.947

0.020 23.650 15.416 24.796 35.891

0.023 16.080 10.074 18.256 26.541

0.027 8.780 6.220 12.858 18.662

 Table 8-11      Values of  C  as a function of  y .  

  Figure 8-11       C  as a function of  y  for  D   =  0.171 m,  d   =  0.105 mm,  u *  =  0.04 m/s, 
 C  0   =  675.8 g/l.    

 Source:   Data from Chiu et al.  2000 . 

   Example 8.12          Compute and plot the effect of  M  on  C / C m  .  

  Solution   The mean sediment concentration can be computed from

  C
D

Cdym = ∫1        

 C can be computed from equation  (8.59) , in which

  I
y
D

h
D

M
M

r
M

r
r

dr
d

, ,
exp( )

(exp( ) )
max max

⎛
⎝⎜

⎞
⎠⎟ = + −⎡

⎣⎢
⎤
⎦⎥{ }−1 1

0

1τ
τ yy

dy
y

0
∫       
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  ς
β β φ

λ=
− −

=
− −

=
w u M

u M
w u M

u M
Gs s mmax[ exp( )] [ exp( )]1 1

2 2* *
      

  λ
β

= v u
u
s

*2       

  G
M

M
=

− −1 exp( )
φ

       

 For  h   ≥  0,  r  max   =  1

  τ
τ0

2

1 1 1= −
−

⎛
⎝⎜

⎞
⎠⎟ + −⎛

⎝
⎞
⎠ −

−
⎛
⎝⎜

⎞
⎠⎟

h
D

y
D h

h
D

y
D h

       

 For  h   ≤  0,  r
D

D h
max = −

   

  τ
τ0

2

1= −
−
−

⎛
⎝⎜

⎞
⎠⎟ + −⎛

⎝
⎞
⎠

−
−

⎛
⎝⎜

⎞
⎠⎟

h
D

D y
D h

h
D

D y
D h

       

 The values of  C/C m   computed at various values of  y/D  for different values of  M  
are shown Table  8-12  and plotted in Figure  8-12 .    

Normalized Depth

 y / D  M   =  6  M   =  4  M   =  2  M   =  0

0.000 18.287 11.538 8.606 6.114

0.100 1.841 2.425 3.245 3.633

0.200 1.243 1.364 1.568 2.030

0.300 0.956 0.912 0.844 1.050

0.400 0.770 0.651 0.476 0.490

0.500 0.631 0.476 0.270 0.199

0.600 0.517 0.348 0.149 0.066

0.700 0.417 0.246 0.076 0.016

0.800 0.320 0.161 0.033 0.002

0.900 0.215 0.085 0.009 0.000

1.000 0.000 0.000 0.000 0.000

 Table 8-12      Values of  C / C m   versus  y / D  for various values of  M .  
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   Example 8.13          Compute and plot the effect of  ζ  or particle size on sediment 
concentration.  

  Solution   Using the results from Examples 8.9 and 8.10,  C / C m   as a function of  ζ  is 
computed, as shown in Table  8-13 . Fig.  8-13  shows the effect of  ζ  or particle size 
on sediment concentration.    

  Figure 8-12      Effect of  M  on  C / C m  .    

Values of C/C m 

y/D  ς   =  2.47  ς   =  5.14  ς   =  8.07

0.000 11.850 84.612 193.062

0.100 2.356 0.365 0.015

0.200 1.356 0.121 0.003

0.300 0.924 0.058 0.001

0.400 0.671 0.031 0.000

0.500 0.499 0.018 0.000

0.600 0.371 0.010 0.000

0.700 0.268 0.006 0.000

0.800 0.180 0.003 0.000

0.900 0.098 0.001 0.000

1.000 0.000 0.000 0.000

 Table 8-13      Values of  C / C m   as a function of  ζ .  
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   Example 8.14          Compute and plot the effect of  ζ  and  h / D  on sediment concentra-
tion for  M   =  3.  

  Solution   Taking

  r
y

D h
y

D h
=

−
−

−
⎛
⎝⎜

⎞
⎠⎟exp 1       

and using results from Example  8.13 , values of  C / C m   are computed as shown in 
Table  8-14 . Fig.  8-14  shows the effect of  ζ  and  h / D  on sediment concentration for 
 M   =  3.       

  Figure 8-13      Effect of  ζ  or particle size on sediment concentration.    

Values of  C / C m  

 h / D   =  0  h / D   =  0.4

 y / D  ζ   =  0.5  ζ   =  1  ζ   =  2  ζ   =  4  ζ   =  0.5  ζ   =  1  ζ   =  2  ζ   =  4

0.000 2.421 4.908 14.047 41.556 2.615 5.925 20.680 76.814

0.100 1.561 2.041 2.429 1.243 1.508 1.970 2.287 0.939

0.200 1.327 1.475 1.269 0.339 1.272 1.402 1.157 0.241

0.300 1.185 1.175 0.806 0.137 1.132 1.110 0.726 0.095

0.400 1.078 0.972 0.551 0.064 1.027 0.915 0.493 0.044

0.500 0.987 0.815 0.388 0.032 0.940 0.765 0.345 0.021

0.600 0.903 0.683 0.272 0.016 0.860 0.640 0.242 0.010

0.700 0.820 0.562 0.185 0.007 0.780 0.527 0.164 0.005

0.800 0.728 0.444 0.115 0.003 0.693 0.416 0.102 0.002

0.900 0.609 0.310 0.056 0.001 0.580 0.291 0.050 0.000

1.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Table 8-14      Values of  C / C m   for various values of  y / D .  

Continued
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Values of  C / C m  

 y / D 

 h / D   =   − 1  h / D   =   −  ∞ 

 ζ   =  0.5  ζ   =  1  ζ   =  2  ζ   =  4  ζ   =  0.5  ζ   =  1  ζ   =  2  ζ   =  4

0.000 2.437 4.956 14.199 41.798 1.980 3.373 7.570 19.641

0.100 1.568 2.052 2.433 1.227 1.528 2.009 2.687 2.475

0.200 1.331 1.478 1.263 0.331 1.332 1.528 1.553 0.826

0.300 1.187 1.175 0.798 0.132 1.202 1.243 1.029 0.363

0.400 1.078 0.970 0.544 0.061 1.100 1.041 0.721 0.178

0.500 0.986 0.811 0.380 0.030 1.011 0.879 0.515 0.091

0.600 0.901 0.678 0.266 0.015 0.928 0.741 0.365 0.046

0.700 0.817 0.557 0.179 0.007 0.844 0.613 0.250 0.021

0.800 0.724 0.438 0.111 0.003 0.751 0.485 0.157 0.008

0.900 0.604 0.304 0.053 0.001 0.629 0.340 0.077 0.002

1.000 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000

Table 8-14 Values of C/Cm for various values of y/D. (Continued)

  Figure 8-14      Effect of  ζ  and  h / D  on sediment concentration for  M   =  3.    

  8.3     Entropy-Based Derivation of Sediment 
Concentration Distribution 

 One can also use the principle of maximum entropy (POME) to directly derive 
the sediment concentration distribution. To that end, entropy of the sediment 
concentration can be expressed as

  H C f C f C dC
C

C

D

( ) ( )ln ( )= ∫
0

      (8.60)  
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where  C D   is the sediment concentration at the water surface  y   =   D . Equation  (8.60)  
can be maximized subject to

  f C dC
C

C

D

( )
0

1∫ =       (8.61)  

  Cf C dC C
C

C

D

( )
0

∫ =       (8.62)   

 Following the method of Lagrange multipliers,

  f C b b C( ) exp[ ]= +1 2       (8.63)  

where  b  1  and  b  2  are the Lagrange multipliers. Substitution of equation  (8.63)  in 
equation  (8.61)  yields

  exp( ) [exp( ) exp( )]b b b C b CD1 2 2 0 2
1= − −       (8.64)   

 The cumulative distribution function of  C , yet to be determined, can be 
hypothesized as

  F C
D y

D
y
D

r r
r r

f C dC
m C

C

D

( ) ( )=
−

= − = − −
−

= ∫1 1 0

0
      (8.65)   

 Substitution of equation  (8.63)  in equation  (8.65)  yields

  C
C
N

N N N K
r r

r r
= − − −

−{ }0 0

0

ln exp( ) [exp( ) exp( / )]
max

      (8.66)  

in which  N   =   b  2  C  0 , designated as the entropy parameter for sediment transport, 
similar to  M  in the case of velocity distribution. The ratio of sediment concentra-
tion at the bottom ( C  0 ) to that at the water surface ( C D  ) can be defi ned as 
 K   =  ( C  0 / C D  ). 

 Using equation  (8.60) ,  (8.62) , and  (8.63) , we obtain the mean concentration 
as follows:

  C Cf C dC C N
C

C

D

= =∫ ( ) ( )
0

0Φ       (8.67)  

where

  Φ =
− − −

−

exp( ) exp( / ) [exp( ) exp( / )]

exp( ) exp( / )

N
K

N K
N

N N K

N N K

1 1

      (8.68)   
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388 Entropy Theory in Hydraulic Engineering

 One can calculate the mean concentration in two ways. First, equation  (8.66)  
can be used to obtain ( N ,  K ) using the least-squares method, and equation 
 (8.67)  can be used to obtain  C    . Second, equation  (8.40) , together with equation 
 (8.67) , can be used to determine  C   . 

  Example 8.15          Compute and plot the mean concentration for the data of 
Coleman ( 1986 ), given in Table  8-15 , using equation  (8.67)  with equation  (8.66) , 
and equation  (8.67)  with equation  (8.40) . Compare with the measured data.
  D   =  0.105 m.   

  Solution   Using equation  (8.67) , fi rst  N  and  k  are computed from equation  (8.66) , 
obtaining  N   =  2.46 and  k   =  0.78. Also one can use the results of Example  8.9  and 
combine equations  (8.40)  and  (8.67)  for computing the mean concentration, 
as shown in Table  8-15 . Fig.  8-15  plots the mean concentration for the data of 
Coleman ( 1986 ).   

Mean concentration

Observed Eq.  (8.67) Eq.  (8.40) 

5.00E–05 4.50E–05 5.80E–05

5.30E–04 1.70E–04 3.40E–04

7.50E–04 4.30E–04 8.60E–04

1.10E–03 7.00E–04 1.40E–03

1.20E–03 7.70E–04 1.54E–03

1.50E–03 2.20E–03 2.32E–03

1.10E–03 2.70E–04 5.40E–04

1.90E–03 9.30E–04 1.86E–03

1.30E–03 3.90E–04 7.80E–04

2.40E–03 1.60E–03 3.20E–03

2.50E–03 7.60E–04 1.52E–03

2.80E–03 7.00E–04 1.40E–03

3.00E–03 1.20E–03 2.40E–03

3.10E–03 1.30E–03 2.60E–03

3.10E–03 1.60E–03 3.20E–03

3.20E–03 1.60E–03 3.20E–03

3.20E–03 1.70E–03 3.40E–03

3.20E–03 2.90E–03 2.90E–03

 Table 8-15      Mean concentration.  
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   Example 8.16          Compute and plot concentration and fl ow velocity for the data 
given by Coleman ( 1986 ) for experimental run 12.  D   =  0.162 m,  C  0   =  0.013 g/l, 
 M   =  6.9, and  ζ   =  0.7.  

  Solution   Substituting the given parameter values in equation  (8.40) , the con-
centration is computed as shown in Table  8-16 . Fig.  8-16  plots the concentration 
and fl ow velocity. For  D   =  0.162 m,  u  max   =  1.033 m/s,  M   =  7.069, fl ow velocity is 
computed using equation (8.21), as shown in Table  8-17 . Fig.  8-17  plots the fl ow 
velocity.        

  Figure 8-15      Plot of mean sediment concentration.    

Concentration

 y  (m)
Observed  

(g/l)
Equation  (8.40)   

(g/l)

0.006 0.013 0.019

0.012 0.008 0.010

0.018 0.006 0.007

0.024 0.004 0.005

0.03 0.004 0.004

0.046 0.003 0.003

0.069 0.002 0.002

0.091 0.001 0.001

0.122 0.001 0.001

0.137 0.000 0.000

0.152 0.000 0.000

0.162 0.000 0.000

 Table 8-16      Values of concentration.  
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  Figure 8-16      Concentration versus fl ow depth.    

Depth Flow velocity

 y  (m)
Observed  

(m/s)
Equation  (8.21)   

(m/s)

0.006 0.598 0.574

0.012 0.669 0.679

0.018 0.731 0.741

0.024 0.796 0.785

0.03 0.83 0.819

0.046 0.912 0.884

0.069 0.964 0.947

0.091 1.004 0.989

0.122 1.052 1.034

0.137 1.058 1.052

0.152 1.045 1.068

0.162 1.033 1.078

 Table 8-17      Observed and computed fl ow velocity.  

  Figure 8-17      Plot of concentration and fl ow velocity.    
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  8.4     Suspended Sediment Discharge 

  8.4.1     Entropy-Based Velocity Distribution and Empirical Sediment 
Concentration Distribution 

 The sediment concentration distribution given by equation  (8.39)  can be expressed 
in a slightly general form as

  C C
w y as

m

= −
−⎡

⎣⎢
⎤
⎦⎥

0 exp
( )
ε

      (8.69)  

where  ε   m   is expressed by equation  (8.12) . 
 Recalling from Chapter 2, the cumulative probability distribution of time-

averaged velocity  u  can be expressed as

  F u
y
D

( ) =       (8.70)   

 Differentiation of equation  (8.70)  yields

  f u
D

dy
du

( ) = 1
      (8.71)  

or

  
du
dy Df u

dy Df u du= =1
( )

( )or       (8.72)   

 Integrating equation  (8.72) , one can write

  y D f u du
u

= ∫ ( )
0

      (8.73)   

 Recalling from Chapter 2, the entropy-based velocity distribution can be written 
as

  f u u( ) exp( )= +λ λ0 2       (8.74)  

where  λ  0  and  λ  2  are the Lagrange multipliers. 
 The quantity  ε   m   can be written as

  ε
τ

m
fS

D y
D du dy

u
D y

D du dy
u

D y
D

Df=
−⎛

⎝⎜
⎞
⎠⎟ =

−⎛
⎝⎜

⎞
⎠⎟ =

−⎛
⎝⎜

⎞
⎠⎟

1 12 2

/ /
* * (( )u       (8.75)   

 Therefore, equation  (8.69)  can be cast as

  C C
w y a

u D y f u
s= −

−
−

⎡
⎣⎢

⎤
⎦⎥

0 2exp
( )

( ) ( )*
      (8.76)   
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 If  a  tends to 0, equation  (8.76)  becomes

  C C
w y

u D y f u
s= −
−

⎡
⎣
⎢

⎤
⎦
⎥0 2exp

( ) ( )*
      (8.77)   

 The sediment discharge given by equation (8.2) can now be written as

  q DC
w y

u D y f u
uf u dus

s
uD

= −
−

⎡
⎣
⎢

⎤
⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭∫0 2

0

exp
( ) ( )

( )
*

      (8.78)   

 Now consider fi rst the exponential part in equation  (8.78) :

  exp
( ) ( )

( ) exp
( )

( )
−

−
⎡
⎣
⎢

⎤
⎦
⎥ = =

−

−

∫w y
u D y f u

G u
w D f u du

u D D f u d

s
s

u

*
*

2
0

2 uu f u
u

0
∫

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥( )

      (8.79)   

 Equation  (8.74)  can be written as

  F u u du u
u

( ) exp( ) [exp( ) exp( )]= + = + −∫ λ λ
λ

λ λ λ0 2

0 2
0 2 0

1
      (8.80)   

 Inserting equation  (8.74)  in equation  (8.79) , one obtains

  G u
w
u

u

u

s( ) exp
[exp( ) exp( )]

[exp( ) ex
= −

+ −

− + −*2
2

0 2 0

2
0 2

1

1
1

λ
λ λ λ

λ
λ λ pp( )] exp( )λ λ λ0 0 2{ } +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

u
      (8.81)   

 Equation  (8.81)  can be simplifi ed as

  G u
w
u

u
J u

Js( )
[ exp( )]

[ exp( )]
, exp( )≈ −

− −
− +

⎤
⎦
⎥ = +1

1
2

2

0 2
2 0

*
λ

λ λ
λ λ       (8.82)   

 Equation  (8.78) , with the use of equation  (8.82) , can be written as

  q DC
w
u

u
J u

uf u dus
s

uD

= −
− −

− +
⎧
⎨
⎩

⎫
⎬
⎭

∫0 2
2

0 20

1
1

*
[ exp( )]

[ exp( )]
( )

λ
λ λ

      (8.83)   

 Equation  (8.83)  can be partitioned into three components as

  

q DC uf u du DC
w
u

uf u
J u

du

DC
w

s

u
s

u

s

D D

= −
− +

+

∫ ∫0

0

0 2
0 20

0

( )
( )

[ exp( )]* λ λ

uu
uf u u
J u

du
uD

*2
2

0 20

( )exp( )
[ exp( )]

−
− +∫

λ
λ λ

      (8.84)   
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 The fi rst part  I  can be written as

  I uf u du u u
u

m

D

= = =∫ ( )
0

      (8.85)  

where  u     or  u m   is the mean velocity. According to equation  (8.84) , the  DC  0  part 
can be taken out of  I ,  II , and  III . 

 The second part  II  can be expressed as

  II
w
u

uf u
J u

dus
uD

= −
− +∫ *2

0 20

( )
[ exp( )]λ λ

      (8.86)   

 Equation  (8.86)  can be simplifi ed as

  II A
u

J u
f u du

u u
J u

uD

− =
− +

=
+

− +∫ [ exp( )]
( )

exp( )
[ exp( )λ λ

λ λ
λ λ0 20

0 2

0 2 ]]
du

uD

0
∫       (8.87)   

 Equation  (8.87)  can be written as

  II A
u

J u J u du
uD

− = − − + + − +∫λ
λ λ

λ
λ λ

2
0 2

2
0 2

0

1
ln[ exp( )] ln[ exp( )]       (8.88)   

 Now consider the integral part in equation  (8.88) , which can be simplifi ed by 
taking only the fi rst two parts in the exponential function expansion:

  ln[ exp( )]
( )

ln
.

,J u du
G u G u

G J− + ≈ − − −⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

= −∫ λ λ λ
λ

λ
0 2

2

2

2

2 72
1−− λ0       (8.89)   

 Substituting equation  (8.89)  in equation  (8.88) , one obtains

  II A
u

J u G u
G u uD

− = − − + − − −⎛
⎝

⎞
⎠λ

λ λ
λ

λ λ
2

0 2
2
2 2

2

0

1
2 72

ln[ exp( )] ( )ln
.

      (8.90)   

 Equation  (8.90)  yields

  
II A

u
J u

G u
G u

D
D

D
D

− = − − +

− − −⎛
⎝

⎞
⎠ +

λ
λ λ

λ
λ λ

2
0 2

2
2 2

21
2 72

ln[ exp( )]

( )ln
.

11
2 722

2λ
G

G
ln

.
⎛
⎝

⎞
⎠

      (8.91)   

 Now consider the third part,  III .

  III
uf u u
J u

du
u

J u

uD

=
−

− +
=

− +∫
( )exp( )
exp( )

exp( )
exp(

λ
λ λ

λ
λ λ

2

0 20

0

0 2 ))
du

uD

0
∫       (8.92)   
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 Equation  (8.92)  can be simplifi ed as follows:

  III
u J u

J u
uD

=
− +

− − − −∫exp( )
ln[ exp( )]

ln( )λ
λ λ

λ λ
λ λ0

0 2

2 2
0 2

0

1
1       (8.93)   

 Equation  (8.93)  can be solved as

  
III

u
J u

G u
G u

D
D

D
D

= − +{
+ − −

exp( ) ln[ exp( )]

( )ln
.

λ
λ

λ λ

λ
λ λ

0
2

0 2

2
2 2

21
2 722 2 722

2
⎛
⎝

⎞
⎠ −

⎛
⎝

⎞
⎠}G G

λ
ln

.

      (8.94)   

 Thus, the sediment discharge can be written as

  q DC I II IIIs = + +0[ ]       (8.95)   

 Conversely, using equations  (8.23) ,  (8.40) ,  (8.67) , and  (8.10) ,  Q s   can be 
written as

  Q u CA u M C N A u AC Ns m m= = =max ( ) ( ) ( )Φ Φ Φ0 0       (8.96)   

  Φ ( N ) is a useful parameter, and knowing  A  and  u m  ,  Q s   can be estimated.  

  8.4.2     Power Law Velocity Distribution and Entropy-Based 
Sediment Concentration Distribution 

 The sediment concentration is given by equation  (8.66) , with ( r   −   r  0 )/( r  max   −   r  0 )  =  
 y / D :

  C
C
N

N N N K
y
D

= − −{ }0 ln exp( ) [exp( ) exp( / )]       (8.97)   

 The power law velocity distribution is given by equation  (8.16) . Therefore, 
the sediment discharge can be expressed as

  q
C a
N

y N N N K
y
D

dys
b

D

= − −{ }∫0

0

ln exp( ) [exp( ) exp( / )]       (8.98)   

 Equation  (8.98)  can be solved numerically.  

  8.4.3     Prandtl–von Karman Velocity Distribution and 
Entropy-Based Sediment Concentration Distribution 

 The sediment concentration is given by equation  (8.97) . The Prandtl–von Karman 
velocity distribution is given by equation  (8.18) . Therefore, the sediment dis-
charge can be expressed as
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  q
C u
Nk

N N N K
y
D

y
y

dys

D

= − − +⎧
⎨
⎩

⎫
⎬
⎭∫0

00

*
ln exp( ) [exp( ) exp( / )]       (8.99)   

 Equation  (8.99)  can be solved numerically.  

  8.4.4     Entropy-Based Velocity Distribution and Sediment 
Concentration Distributions 

 The entropy-based sediment distribution is given by equation  (8.40) , with three 
special cases prescribed by equations  (8.45) ,  (8.47) , and  (8.49) . Corresponding to 
these equations, the entropy-based velocity distributions are given by equations 
 (8.46) ,  (8.48) , and  (8.50) . Then the sediment concentration can be determined. 

  Example 8.17          Compute the suspended sediment discharge using equations 
 (8.96) ,  (8.98) , and  (8.99)  for the data in Examples 8.5 and 8.15. From example  8.15 , 
 D   =  0.162 m,  u  max   =  1.033 m/s,  u *  =  0.095 m/s,  C  0   =  0.013 g/l,  M   =  6.9,  ζ   =  0.7, and 
 N   =  2.4.  

  Solution   From equation  (8.96) ,

  qs = =1 033 6 9 0 013 2 4 34 88. ( . ) . ( . ) . /Φ Φ g s        

 From equation  (8.98) ,

  q y
y

dys =
× − −{ }0 013 1 033

2 4
2 4 2 4 1

0 162
2 5

0

0 1. .
.

ln exp( . ) [exp( . ) ]
.

.
. 662

32 35∫ = . /g s        

 From equation  (8.99) ,

  q
y y

y
s =

× − − +⎧
⎨
⎩

⎫
⎬

0 013 0 095
2 4

2 4 2 4 1
0 162 0 05

. .
.

ln exp( . ) [exp( . ) ]
. . ⎭⎭

=∫ dy
0

0 162

33 97
.

. /g s          

  Example 8.18          Use equation  Q u CAs m=     to compute the suspended sediment dis-
charge using different velocity and sediment concentration methods and com-
pare each method.  

  Solution   The mean velocity and the mean sediment concentration for each 
method are computed as given in Table  8-18 . Using equations  (8.96) ,  (8.98) , and 
 (8.99) , specifi c suspended sediment discharge is computed as given, along with 
observations, in Table  8-19 . The computed suspended sediment discharge is 
smaller than the observed sediment discharge, and between them, the discharge 
computed by entropy-based velocity and empirical sediment concentration is 
much smaller than that computed by other methods.       
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Velocity (m/s) Sediment Concentration (g/l)

Obs. Entropy Prandtl Power Obs. Rouse Entropy

4.377 4.364 4.275 4.271 31.051 10.054 28.820

5.703 5.684 5.862 5.682 54.308 15.698 46.304

5.647 5.719 5.647 5.587 70.620 20.933 56.144

4.622 4.641 4.653 4.515 97.166 26.653 65.312

5.522 5.573 5.618 5.361 156.470 43.537 138.000

4.985 5.052 4.901 4.970 14.642 7.879 12.329

4.985 5.235 4.903 4.999 29.834 15.279 29.083

4.869 5.250 5.076 4.990 37.850 14.325 28.505

4.922 5.254 5.120 4.887 66.251 28.324 50.602

4.753 5.000 4.821 4.737 95.268 38.745 76.551

4.776 4.707 4.635 4.747 19.349 16.961 16.038

5.184 5.341 5.196 5.123 77.267 53.361 65.516

4.599 4.785 4.576 3.497 136.741 100.507 115.418

5.238 5.244 5.199 4.965 145.879 101.526 120.714

4.985 4.983 5.028 4.440 249.375 132.950 185.411

4.299 4.343 4.199 3.723 265.437 150.556 202.200

 Table 8-18      Mean velocity and sediment concentration values.  

Obs. Equation  (8.96) Equation  (8.98) Equation  (8.99) 

135.92 43.88 123.08 123.21

309.73 89.22 263.08 271.44

398.81 119.72 313.66 317.07

449.12 123.70 294.86 303.93

864.00 242.62 739.81 775.33

72.99 39.80 61.27 60.42

148.72 79.99 145.39 142.60

184.30 75.20 142.24 144.70

326.06 148.82 247.28 259.08

452.83 193.72 362.60 369.07

92.42 79.83 76.14 74.33

400.59 285.03 335.61 340.44

628.85 480.88 403.64 528.12

764.05 532.43 599.34 627.56

1,243.15 662.53 823.25 932.31

1,141.10 653.87 752.81 848.94

 Table 8-19      Computed suspended sediment discharge (g/s).  
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  Questions 

   Q8.1      For given particle size as: 54  μ m, 176  μ m, and 1,879  μ m, choose a proper 
law to compute the settling velocity.  

  Q8.2      For a known set of velocity data,  D   =  1.49 ft,  u  max   =  0.409 ft/s,  u *  =  0.04 ft/s, 
and  k   =  2.26, compute the velocity gradient for the power law, Prandtl–
von Karman universal law, and entropy-based velocity distribution. Plot 
and discuss it.  

  Q8.3      Compute the diffusion coeffi cient for momentum transfer for three equa-
tions using the data in Q8.2. Plot and discuss it. Also compute the mean 
value.  

  Q8.4      Compute the sediment concentration using the Rouse equation for 
 D   =  1.49 ft,  u *  =  0.04 ft/s, and  β   =  1.  

  Q8.5      For a given set of sediment concentration data (Table  8-20 ), compute  ζ  
using equation  (8.41) . Then compute  C / C  0  using equation  (8.40) . Plot it 
and compare with observations. Take  d s    =  0.94 mm.   

  Q8.6      For data used in Q8.5, compute  C u  / C  0  using equation  (8.53) .  

  Q8.7      For data used in Q8.5, compute  C / C  0  using equations  (8.37) ,  (8.40) , and 
 (8.59) . Plot and compare each method.  

  Q8.8      For sediment concentration data in Q8.5, verify the hypothesis on the 
cumulative probability distribution in equation  (8.65) . Plot it and discuss.  

  Q8.9      For the aforementioned data, compute the  N  and  K  value in equation 
 (8.66)  using the least-squares method.  

  Q8.10      Compute the mean value of the sediment concentration using equations 
 (8.40)  and  (8.67) .  

  Q8.11      Compute the sediment concentration distribution using equation  (8.66)  
with  N  and  K  computed from Q8.9. Compare the results with those of 
Q8.5. Discuss the results.    

( h   −   y )/ y 
Total  C   

(g/l) ( h   −   y )/ y 
Total  C   

(g/l)

14.15 328 6.66 117

12.96 295 5.53 76.5

11.5 263 4.52 45.1

9.95 230.5 3.78 28.1

8.25 167.3 2.98 14.2

 Table 8-20      Sediment concentration versus dimensionless 
depth.  
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    Chapter 9 

  Sediment Concentration in 
Debris Flow  

       A  debris fl ow  is a dense, poorly sorted, solid–fl uid mixture. It commonly includes 
more than 50% sediment by volume, and the sediment particles may range in 
size from clay to boulders several meters in diameter (Major and Pierson  1992 ). 
In mountainous regions, debris fl ows are caused by prolonged heavy rainfall 
occurring over saturated hillslopes, earthquakes, and human activities. In debris 
fl ow, debris or rocks concentrate at the head of fl ow and move downhill with 
high concentration and strong destructive force and continue to fl ow downhill 
and through channels, increasing in volume and sediment concentration with 
the addition of water, sand, mud, trees, boulders, and other material. Debris 
fl ows can transport huge volumes of sediment, have a strong erosive force, and 
grow during the movement of gathering debris eroded from the torrent bed or 
banks. These fl ows are so powerful that they destroy whatever comes in their 
way, i.e, they kill people and animals; destroy roads, bridges, railway tracks, 
homes, and other property; and fi ll reservoirs. 

 Two fundamental factors govern debris fl ow and its characteristics: sediment 
concentration and sediment particle size (Egashira et al.  2001 ). Typical debris 
fl ow problems are the formation, movement, and deposition of debris; fl ooding 
zones; and damage assessment, among others. To address these problems, the 
equilibrium sediment concentration and its vertical distribution are needed. 
Debris fl ows, involving mixtures of debris and water, exhibit characteristics that 
are different from those of water fl ow. A physically based hydraulic model can 
be constructed for modeling debris fl ow. However, uncertainties in debris fl ow 
variables and parameters of such a model may limit its potential. 
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 This chapter discusses the determination of sediment concentration distribu-
tion in debris fl ow using entropy. Lien and Tsai ( 2003 ) were probably the fi rst to 
use entropy for debris fl ow modeling, and their work is followed here in this 
chapter. 

  9.1     Notation and Defi nition 

 Consider a steady uniform debris fl ow over an erodible bed, as shown in Fig. 
 9-1 , in which the depth of fl ow is  h  0 , and the sediment concentration decreases 
monotonically from a maximum value of  c m   at the channel bottom to an arbitrary 
value of  c h   at the water surface. Let  c ( y ) be the sediment concentration at a verti-
cal distance  y  (0  ≤   y   ≤   h  0 ) from the channel bed. The sediment concentration is 
defi ned in dimensionless terms as the volume of sediment divided by the volume 
of the fl uid–sediment mixture. Thus, it is expressed as a fraction or in percent by 
volume. For entropy-based formulation, it is assumed that the time-averaged 
sediment concentration  C  is a random variable.   

  9.2     Entropy Theory 

 Determination of debris fl ow concentration using the entropy theory entails 
(1) defi nition of the Shannon entropy, (2) specifi cation of constraints, (3) maxi-
mization of entropy, (4) determination of the Lagrange multipliers, (5) determi-
nation of probability density function and maximum entropy, (6) sediment 
concentration distribution, and (7) equilibrium sediment concentration. Each of 
these components is discussed in the next sections. 

  9.2.1     Shannon Entropy 

 The Shannon entropy (Shannon,  1948 ) of concentration  C ,  H ( C ), can be 
expressed as

  Figure 9-1      Uniform debris fl ow.    
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  H C f c f c dc
c

c

h

m

( ) ( )ln ( )= − ∫       (9.1)  

where  c ,  c h    ≤   c   ≤   c m  , is the value of random variable  C ,  c m   is the maximum 
value of  C  or concentration at the bed,  c h   is the concentration at the water 
surface,  f ( c ) is the probability density function (PDF) of  C , and  H  is the entropy 
of  f ( c ) or  C . Equation  (9.1)  is a measure of uncertainty of variable  C . The quan-
tity  f ( c ) dc  defi nes the probability of sediment concentration between  c  and 
 c   +   dc . The objective is to derive  f ( c ) by maximizing  H , subject to specifi ed con-
straints, in accordance with the principle of maximum entropy (POME) 
(Jaynes  1957 ).  

  9.2.2     Specifi cation of Constraints 

 Since  f ( c ) is a PDF, it must satisfy

  f c dc
c

c

h

m

( )∫ = 1       (9.2)  

which is the total probability theorem. One of the simplest constraints is the 
mean or equilibrium sediment concentration by volume, denoted as  c     or  c D  . 
This constraint may be known or obtained from observations, and can be 
expressed as

  cf c dc E c c c
c

c

D

h

m

( ) [ ]∫ = = =       (9.3)   

 For purposes of simplicity, more constraints are not used.  

  9.2.3     Maximization of Entropy 

 The entropy  H  of  C , given by equation  (9.1) , can be maximized, subject to equa-
tions  (9.2)  and  (9.3) , in accordance with POME. This step is achieved by using 
the method of Lagrange multipliers. To that end, the Lagrangian function  L  is 
expressed as

  L f c f c dc f c dc cf c dc
c

c

c

c

ch

m

h

m

h

= − − − −
⎛

⎝⎜
⎞

⎠⎟
−∫ ∫( )ln ( ) ( ) ( ) ( )λ λ0 11 1

cc

D

m

c∫ −
⎛

⎝⎜
⎞

⎠⎟
      (9.4)  

where  λ  0  and  λ  1  are the Lagrange multipliers. Differentiating equation  (9.4)  with 
respect to  f , while recalling the Euler–Lagrange calculus of variation, noting  f  as 
a variable and  C  as a parameter and equating the derivative to zero, one obtains

  
∂
∂

= ⇒ − − −L
f

f c c0 0 1ln ( ) λ λ       (9.5)   
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 Equation  (9.5)  results in

  
f c c a c ab

a b c

( ) exp( ) exp( ) ,
exp( ), exp( )

= − − = − =
= − =

−λ λ λ
λ

λ
0 1 1

0

1

      (9.6)   

 Equation  (9.6)  is the POME-based least biased PDF of sediment concentration  C . 
There are two unknowns,  λ  0  and  λ  1 , in equation  (9.6)  that can be determined with 
the use of equations  (9.2)  and  (9.3) . The Lagrange multiplier  λ  1  is associated with 
mean concentration, and  λ  0  is associated with the total probability. These multi-
pliers have opposite signs:  λ  1  is positive, and  λ  0  is negative.  

  9.2.4     Determination of Lagrange Multipliers 

 Substitution of equation  (9.6)  in equation  (9.2)  yields

  exp( )− − =∫ λ λ0 1 1c dc
c

c

h

m

      (9.7)   

 Integration of equation  (9.7)  gives

  exp( )
exp( ) exp( )

− =
− − −

λ
λ

λ λ0
1

1 1c ch m
      (9.8)   

 Taking the logarithm of equation  (9.8) , the result is

  λ λ λ λ0 1 1 1= − + − − −ln ln[exp( ) exp( )]c ch m       (9.9a)   

 For  c h    =  0, equation  (9.8)  simplifi es to

  λ λ λ0 1 11= − + − −ln ln[ exp( )]cm       (9.9b)   

 Differentiating equation  (9.9a)  with respect to  λ  1 , one gets

  
∂
∂

= − −
− − −
− − −

λ
λ λ

λ λ
λ λ

0

1 1

1 1

1 1

1 c c c c
c c

h h m m

h m

exp( ) exp( )
exp( ) exp( )

      (9.10)   

 Furthermore, equation  (9.7)  can also be cast as

  λ λ0 1= −∫ln exp( )c dc
c

c

h

m

      (9.11)   

 Differentiating equation  (9.11)  with respect to  λ  1 , multiplying both the numerator 
and the denominator by exp( −  λ  0 ) and recalling equation  (9.3) , one obtains
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∂
∂

= −
− −

− −
= −

∫

∫

λ
λ

λ λ

λ λ

0

1

0 1

0 1

c c dc

c dc

cc

c

c

c D
h

m

h

m

exp( )

exp( )
      (9.12)   

 Equating equation  (9.10)  to equation  (9.12) , the result is the mean sediment 
concentration:

  c
c c c c

c c
D

h h m m

h m

= +
− − −
− − −

1

1

1 1

1 1λ
λ λ
λ λ

exp( ) exp( )
exp( ) exp( )

      (9.13a)   

 Equation  (9.13a)  contains  λ  1  as the only one unknown. Because equation  (9.13a)  
is implicit in  λ  1 , it can be solved numerically for the unknown  λ  1 . With the sub-
stitution of  λ  1  so obtained in equation  (9.9a) , one can obtain  λ  0 . The mean sedi-
ment concentration is expressed in terms of the minimum sediment concentration 
at the water surface and the maximum concentration at the bed. Interestingly, if 
 c h    =  0, equation  (9.13a)  reduces to

  c
c c

c
D

m m

m

= −
−

− −
1

11

1

1λ
λ
λ

exp( )
exp( )

      (9.13b)    

  9.2.5     Determination of Probability Density Function and 
Maximum Entropy 

 Substitution of equation  (9.8)  in equation  (9.6)  produces the PDF of  C ,  f ( c ), in 
only one unknown  λ  1  as

  f c
c

c ch m

( )
exp( )

exp( ) exp( )
=

−
− − −

λ λ
λ λ

1 1

1 1
      (9.14a)  

and the cumulative distribution function of  C ,  F ( c ), as

  F c
c c

c c
h

h m

( )
exp( ) exp( )

exp( ) exp( )
=

− − −
− − −

λ λ
λ λ

1 1

1 1
      (9.14b)   

 The maximum entropy of  C  is obtained by inserting equation  (9.14a)  in equa-
tion  (9.1) :

  H C c c ch m D( ) ln ln[exp( ) exp( )]= − + − − − +λ λ λ λ1 1 1 1       (9.15)  

which is expressed in terms of the Lagrange multiplier  λ  1 , mean sediment 
concentration  c D  , lower limit of concentration,  c h  , and upper limit of concentra-
tion  c m  . 
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  Example 9.1          Compute and plot  f ( c ) as a function of  λ  1 .  

  Solution   Assume that  c h    =  0 and  c   =  0.7. Then, for different values of  λ  1  (0.1, 1.0, 
5.0, and 10.0),  f ( c ) is computed using equation  (9.14a) , as given in Table  9-1  and 
shown in Fig.  9-2 . It is seen that when  λ  1   =  0.1,  f ( c ) tends to be uniform with 
 f ( c   =  0)  =  1.48. As  λ  1  increases,  f ( c ) tends to be more exponential. When  λ  1   =  10,  f ( c ) 
approaches 0 quickly. Fig.  9-2  plots the PDF of  C .    

 c  λ  1   =  0.1  λ  1   =  1  λ  1   =  5  λ  1   =  10

0 1.479 1.986 5.156 10.009

0.1 1.464 1.797 3.127 3.682

0.2 1.450 1.626 1.897 1.355

0.3 1.435 1.472 1.150 0.498

0.4 1.421 1.332 0.698 0.183

0.5 1.407 1.205 0.423 0.067

0.6 1.393 1.090 0.257 0.025

0.7 1.379 0.986 0.156 0.009

0.8 1.365 0.893 0.094 0.003

0.9 1.352 0.808 0.057 0.001

1 1.338 0.731 0.035 0.000

 Table 9-1     Values of  f ( c ) for different values of  λ  1 .  

  Figure 9-2      Plot of  f ( c ) as a function of  λ  1 .    
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 c  λ  1   =  0.1  λ  1   =  1  λ  1   =  5  λ  1   =  10

0 0.000 0.000 0.000 0.000

0.1 0.147 0.189 0.406 0.633

0.2 0.293 0.360 0.652 0.865

0.3 0.437 0.515 0.801 0.951

0.4 0.580 0.655 0.892 0.983

0.5 0.721 0.782 0.946 0.994

0.6 0.861 0.896 0.980 0.998

0.7 1.000 1.000 1.000 1.000

 Table 9-2      Values of  F ( c ) for different values of  λ  1 .  

  Figure 9-3      Plot of  F ( c ) as a function of  λ  1 .    

   Example 9.2          Compute and plot  F ( c ) as a function of  λ  1 .  

  Solution   Assume that  c h    =  0 and  c m    =  0.7. Then, for different values of  λ  1  (0.1, 1.0, 
5.0, and 10.0),  F ( c ) is computed using equation  (9.14b) , as shown in Table  9-2  and 
Fig.  9-3 . For  λ  1   =  0.1,  F ( c ) becomes linear.    

   Example 9.3          Compute and plot  λ  0  as a function of  λ  1  for various values of  c h   
and  c m  .  

  Solution   Assume that  c h    =  0.3, for  c m    =  0.5, 0.7, and 1,  λ  0  is computed using equa-
tion  (9.9a)  for various values of  λ  1  from 0 to 10, as shown in Table  9-3  and Fig.  9-4 . 

   Assume that  c m    =  0.7, for  c h    =  0, 0.1, 0.3, and 0.5, compute  λ  0  using equation 
 (9.9a)  for  λ  1  increasing from 0 to 10, as shown in Table  9-4  and Fig.  9-5 .    
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  Figure 9-4      Plot of  λ  0  as a function of  λ  1  for various values of  c m   and  c h    =  0.3.    

 λ  1  c m    =  0.5  c m    =  0.7  c m    =  1

0  − 1.65  − 1  − 0.43

1  − 2.008  − 1.410  − 0.986

2  − 2.403  − 1.890  − 1.576

3  − 2.794  − 2.357  − 2.129

4  − 3.183  − 2.812  − 2.649

5  − 3.568  − 3.255  − 3.140

6  − 3.950  − 3.687  − 3.607

7  − 4.329  − 4.109  − 4.053

8  − 4.705  − 4.521  − 4.483

9  − 5.078  − 4.925  − 4.899

10  − 5.448  − 5.321  − 5.303

 Table 9-3      Values of  λ  0  for different values of  c m  .  
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  Figure 9-5      Plot of  λ  0  as a function of  λ  1  for various values of  c h   and  c m    =  0.7.    

 λ  1  c h    =  0  c h    =  0.1  c h    =  0.3  c h    =  0.5

0  − 0.4  − 0.55  − 1  − 1.67

1  − 0.686  − 0.896  − 1.410  − 2.208

2  − 0.976  − 1.252  − 1.890  − 2.803

3  − 1.229  − 1.579  − 2.357  − 3.394

4  − 1.449  − 1.881  − 2.812  − 3.983

5  − 1.640  − 2.161  − 3.255  − 4.568

6  − 1.807  − 2.419  − 3.687  − 5.150

7  − 1.953  − 2.661  − 4.109  − 5.729

8  − 2.083  − 2.888  − 4.521  − 6.305

9  − 2.199  − 3.102  − 4.925  − 6.878

10  − 2.303  − 3.305  − 5.321  − 7.448

 Table 9-4      Values of  λ  0  for different values of  c h  .  

   Example 9.4          Compute and plot  c D   as a function of  λ  1  for various values of  c h   
and  c m  .  

  Solution   Assume that  c h    =  0.3, for  c m    =  0.5, 0.7, and 1.  c D   is computed using 
equation  (9.13a)  for various values of  λ  1  from 0 to 10, as shown in Table  9-5  and 
Fig.  9-6 . 

   Now assume that  c m    =  0.7, for  c h    =  0, 0.1, 0.3, and 0.5. Then,  c D   is computed 
using equation  (9.13a)  for various values of  λ  1  from 0 to 10, as shown in Table 
 9-6  and Fig.  9-7 .      
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  Figure 9-6      Plot of  c D   as a function of  λ  1  for various values of  c m   and  c h    =  0.3.    

 λ  1  c m    =  0.5  c m    =  0.7  c m    =  1

0 0.400 0.5 0.65

1 0.397 0.487 0.609

2 0.393 0.474 0.571

3 0.390 0.461 0.536

4 0.387 0.449 0.505

5 0.384 0.437 0.478

6 0.380 0.427 0.456

7 0.377 0.417 0.438

8 0.374 0.408 0.422

9 0.372 0.400 0.410

10 0.369 0.393 0.399

 Table 9-5      Values of  c D   for different values of  c m  .  

 λ  1  c h    =  0  c h    =  0.1  c h    =  0.3  c h    =  0.5

0 0.35 0.4 0.400 0.5

1 0.309 0.370 0.397 0.487

2 0.271 0.341 0.393 0.474

3 0.236 0.315 0.390 0.461

4 0.205 0.290 0.387 0.449

5 0.178 0.269 0.384 0.437

6 0.156 0.250 0.380 0.427

7 0.138 0.234 0.377 0.417

8 0.122 0.220 0.374 0.408

9 0.110 0.208 0.372 0.400

10 0.099 0.199 0.369 0.393

 Table 9-6      Values of  c D   for different values of  c h  .  
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  Figure 9-7      Plot of  c D   as a function of  λ  1  for various values of  c h   and  c m    =  0.7.    

  9.2.6     Sediment Concentration Distribution 

 It is hypothesized that the probability of sediment concentration being less than 
or equal to a given value  c  is ( h  0   −   y )/ h  0 . Then the cumulative distribution func-
tion of  C ,  F ( c ), can be written as

  F c
h y

h
y
h

( ) =
−

= −0

0 0

1       (9.16)   

 Differentiating equation  (9.16)  with respect to  C  gives the PDF of  C ,  f ( c ), as

  dF c f c
h

dy
dc

f c h
dc
dy

( ) ( ) ( )= = − = −
⎛
⎝⎜

⎞
⎠⎟

−
1

0
0

1

or       (9.17)   

 The PDF given by equation  (9.17)  must satisfy the constraints defi ned by equa-
tions  (9.2)  and  (9.3) . Therefore, substituting equation  (9.14a)  in equation  (9.17) , 
one gets

  exp( ) [exp( ) exp( )]− = − − − −λ
λ

λ λ1
1 0

1 1
1

c dc
h

c c dyh m       (9.18)   

 Integration of equation  (9.18) , with the limit,  c   =   c m   at  y   =  0, yields

  
c

c
y
h

c
cm

h

m

= − − + − ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ − −⎡

⎣⎢
⎤
⎦⎥{ }1

0μ
μ μ μln exp( ) exp exp( )       (9.19)  

where  μ   =   λ  1  c m   is a dimensionless entropy parameter. Equation  (9.19)  expresses 
the sediment concentration distribution as a function of longitudinal distance  y . 
For  μ   =   − 50 to  + 50 (at an interval of 10),  c / c m   is plotted as a function of  y / h  0 , 
as shown in Figs.  9-8a  and  9-8b . As  μ  tends to zero,  c / c m   decreases linearly 
with  y / h  0 . When  μ  approaches  ± 50,  c / c m   becomes independent of  y / h  0 . This 
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independence suggests that parameter  μ  can be regarded as a measure of the 
uniformity of sediment concentration distribution. Equation  (9.19)  does not 
apply at the forefront of debris fl ow, where, because of large boulders and fl ow 
disturbance, the concentration is unsteady. 

   Now the dimensionless equilibrium sediment concentration can be derived. 
Inserting equation  (9.14a)  in equation  (9.3)  and integrating with the condition 
that  C   =   c m   at  y   =  0 and  C   =   c h   at  h   =   h  0 .

  
c
c c

c
c

c c

c c

c
cD

m m

h

m
h m

h m

h

m= +
− −

− −
= +

−
1

1
1

1

1 1

1 1λ

λ λ

λ λ μ

exp( )

exp( )

exp μμ

μ

c
c

c
c

h

m

h

m

−⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

− −⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1

1 1exp
      (9.20)   

  Figure 9-8a      Plot of  y / h  0  versus  c / c m   for various values of positive  μ .    

  Figure 9-8b      Plot of  y / h  0  versus  c / c m   for various values of minus  μ .    
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  Example 9.5          Compute and plot  c D  / c m   as a function of  μ  for various values of  c h   
and  c m  .  

  Solution   For  c h  / c m    =  0, 0.1, 0.2, 0.3, 0.4, and 0.5,  c D  / c m   is computed using equation 
 (9.20) , as shown in Table  9-7  and Fig.  9-9 .      

  9.2.7     Equilibrium Sediment Concentration 

 Debris fl ow is caused in three ways: (1) The gully bed material is mobilized or 
the sediment particles from the gully bed are entrained by water runoff; (2) a 
natural dam formed by a landslide fails; and (3) a landside block is liquefi ed. 

 μ  c h /c m    =  0  c h /c m    =  0.1  c h /c m    =  0.2  c h /c m    =  0.3  c h /c m    =  0.4  c h /c m    =  0.5

0 0.492 0.543 0.595 0.646 0.697 0.748

1 0.418 0.483 0.547 0.609 0.670 0.729

2 0.343 0.422 0.498 0.571 0.641 0.709

3 0.281 0.368 0.454 0.536 0.615 0.690

4 0.231 0.325 0.416 0.505 0.590 0.672

5 0.193 0.290 0.385 0.478 0.569 0.655

10 0.100 0.200 0.300 0.399 0.499 0.597

20 0.050 0.150 0.250 0.350 0.450 0.550

30 0.033 0.133 0.233 0.333 0.433 0.533

40 0.025 0.125 0.225 0.325 0.425 0.525

50 0.020 0.120 0.220 0.320 0.420 0.520

 Table 9-7      Values of  c D /c m   for various values of  c h /c m  .  

  Figure 9-9      Plot of  c D  / c m   as a function of  μ  for various values of  c h   and  c m  .    
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Takahashi ( 1978 ) theoretically derived a relation for computing the equilibrium 
sediment concentration of debris fl ow occurring in the fi rst way, which can be 
expressed as

  cD
s

=
− −

ρ θ
ρ ρ φ θ

tan
( )(tan tan )

      (9.21)  

in which  θ  is the angle of inclination of the channel bed from the horizontal;  ϕ  
is the angle of internal friction;  ρ   s   is the density of sediment; and  ρ  is the density 
of water. Although equation  (9.21)  is widely used for calculating the equilibrium 
sediment concentration  c D   at the forefront part of debris fl ow, in a steady uniform 
state it yields unrealistic results in some cases. 

  Example 9.6          Consider an example (Lien and Tsai  2003 ) where tan  ϕ   =  0.756, 
tan  θ   =  0.466 ( θ   =  25 degrees),  ρ   s    =  2.6 g/cm 3 , and  ρ   =  1 g/cm 3 . Compute  c D  .  

  Solution   For these values,  c D   obtained from equation  (9.21)  is  c D    ≈  1.0. This value 
implies that  c D   is greater than unity, which obviously is unrealistic, for fl ow can-
not occur when the sediment concentration is that high.  

   Example 9.7          Compute and plot  c D  / c m   as a function of tan  θ  (%) ( θ   =  0.06).  

  Solution   Take  c m    =  0.756,  ρ   s    =  2.6 g/cm 3 . Then,  c D  / c m   is computed using equation 
 (9.21) , as shown in Table  9-8 , and Fig.  9-10a . 

   From experimental fl umes, Ou and Mizuyama ( 1994 ) developed an empirical 
relation for global sediment concentration using the channel bed slope as the 
principal factor:

  c
C

DT
m

=
+

4 3
1 4 3

1 5

1 5

. (tan )

. (tan )

.

.

θ
θ

      (9.22)  

tan  θ  c m    =  0.5  c m    =  0.6  c m    =  0.7  c m    =  0.8  c m    =  0.9

0 0.000 0.000 0.000 0.000 0.000

10 0.127 0.126 0.124 0.123 0.121

20 0.323 0.312 0.303 0.294 0.286

30 0.522 0.496 0.473 0.451 0.432

40 0.705 0.658 0.618 0.582 0.550

50 0.864 0.795 0.736 0.686 0.642

60 1.000 0.909 0.833 0.769 0.714

 Table 9-8      Values of  C DT   as a function of tan  θ  (%) ( θ   =  0–60) for various values of  c m  .  
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  Figure 9-10a      Plot of  c D /c m   as a function of tan  θ  (%) (0–60).    

where  c DT   is the average global sediment concentration of debris fl ow. This equa-
tion has been found to yield reasonable values of concentration, even at higher 
channel-bed slopes.  

   Example 9.8          Compute and plot  c DT   as a function of tan  θ  (%) ( θ   =  0–60) for vari-
ous values of  c m  .  

  Solution   For  c m    =  0.5, 0.6, 0.7, 0.8, and 0.9,  c DT   is computed using equation  (9.22) , 
as shown in Table  9-8 , and Fig.  9-10b  plots  C DT   as a function of tan  θ  (%) ( θ   =  0–60) 
for various values of  c m  .   

  Figure 9-10b      Plot of  C DT   as a function of tan  θ  (%) ( θ   =  0–60).    

c09.indd   413c09.indd   413 5/21/2014   11:12:32 AM5/21/2014   11:12:32 AM



414 Entropy Theory in Hydraulic Engineering

  Using the concept developed by Bagnold ( 1954 ) and experimental data of 
Takahashi ( 1978 ) and Ou and Mizuyama ( 1994 ), Lien and Tsai ( 2000 ) derived an 
equilibrium sediment concentration equation for simulating the forefront part as 
well as the global average of debris fl ow. This equation was further modifi ed by 
Lien and Tsai ( 2003 ) as follows. 

 At the dynamic equilibrium condition, the sediment concentration in fl ow 
tends to attain saturation because of the balance in particle exchange between 
fl ow and channel bed. Under this condition, the effective shear stress in debris 
fl ow that acts on sediment particles resting on the channel bed is balanced by 
the critical shear stress of the particles. This phenomenon means that sediment 
particles are in incipient motion. One can then express

  T F c− =tanα τ       (9.23)  

where

  T c c ghs D= − +[( ) ] sinρ ρ θ0       (9.24)  

  F gc hs D= −( ) cosρ ρ θ0       (9.25)  

in which tan  α  is the dynamic friction coeffi cient varying from 0.32 to 0.75;  T  is 
the particle shear stress;  F  is the normal stress; and  τ   c   is the critical stress for the 
incipient motion of grains in the channel bed. 

  Example 9.9          Compute and plot  F ,  T , and  τ   c   as a function of  θ .  

  Solution   The average sediment concentration  c D   is computed by equation  (9.21) , 
and substituting in equations  (9.24)  and  (9.25) ,  F  and  T  can be computed. Then, 
 τ   c   can be computed by equation  (9.23) , as shown in Table  9-9  and Fig.  9-11 , which 
plots  F ,  T , and  τ   c   as a function of  θ . Let  h  0   =  1 m,  ρ   s    =  2.6 g/cm 3 . 
   

 θ T F  τ   c  

0 0.000 0.000 0.000

10 1.991 1.632 0.963

20 4.671 3.616 2.393

30 8.158 5.635 4.608

40 11.938 6.712 7.709

50 15.126 6.387 11.103

60 17.578 5.244 14.275

 Table 9-9      Values of  F ,  T , and  τ   c   as a function of  θ .  
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  Figure 9-11      Plot of  F ,  T , and  τ   c   as a function of  θ .    

  For the incipient motion of uniformly sized bed material, Shields ( 1936 ) 
expressed the internal friction as

  θ
τ

ρ ρ
=

−
c

s sgd( )
      (9.26)  

where  θ  is called the Shields parameter, representing the angle of inclination of 
the channel bed from the horizontal;  τ   c   is the shear stress; and  d s   is the particle 
diameter. If the fl ow is fully developed,  θ  yielded by equation  (9.26)  ranges from 
0.04 to 0.06. Inserting equations  (9.24)–(9.26)  in equation  (9.23) , one obtains

  
c
c

D

m

= + + ± + + −1
2

1 1 42[( ) ( ) ]χ β χ β α       (9.27)  

where

  χ
ρ θ

ρ ρ α θ
=

− −
tan

( )(tan tan )cm s
      (9.28)  

and

  β
η

θ α θ
=

−cm cos (tan tan )
      (9.29)  

where  η  is a parameter obtained experimentally, and tan  α  is the dynamic friction 
coeffi cient shown in equation  (9.23) . If tan  θ   =  tan  α , the equilibrium concentra-
tion is then given by

  
c
c

D

m s

=
+ −

1
1 1η ρ ρ ρ θ[( )/ ]( / sin )

      (9.30)   
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  Example 9.10          Take  η   =  0.04. Compute and plot  c D  / c m   versus tan  θ  (%) using equa-
tion  (9.27) .  

  Solution    c D  / c m   is computed using equation  (9.27) , and  χ  and  β  are computed us-
ing equations  (9.28)  and  (9.29)  for different values of tan  θ  (%), as shown in Table 
 9-10  and Fig.  9-12a .    

tan  θ  χ  β  c D /c m  

0 0.000 0.084 0.000

10 0.156 0.100 0.140

20 0.385 0.125 0.324

30 0.752 0.167 0.548

40 1.438 0.248 0.738

50 3.180 0.455 0.837

60 16.534 2.057 0.884

 Table 9-10       c D  / c m  ,  χ  and  β  for different values of tan  θ  (%).  

  Figure 9-12a      Plot of  c D  / c m   versus tan  θ  (%) using equation  (9.27) .    

   Example 9.11          Take  η   =  0.04. Compute and plot  c D  / c m   versus tan  θ  (%) using equa-
tion  (9.30) .  

  Solution    c D  / c m   is computed using equation  (9.30)  for different values of tan  θ  
(%), as shown in Table  9-11  and Fig.  9-12b .    
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tan  θ  c D /c m  

0 0.000

10 0.609

20 0.754

30 0.818

40 0.853

50 0.875

60 0.889

 Table 9-11      Values of  C D  / c m   for various values of tan  θ  (%).  

  Figure 9-12b      Plot of  c D  / c m   versus tan  θ  (%) using equation  (9.30) .    

   Example 9.12          Compute and plot  c / c m   as a function of  y / h  0 .  

  Solution   Combining equation  (9.30)  with equation  (9.19) , and taking 
 η   =  0.04,  c / c m   is computed as a function of  y / h  0 , as shown in Table  9-12  and 
Fig.  9-13 .       

  Figure 9-13      Plot of  c / c m   as a function of  y / h  0 .    
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  Questions 

   Q9.1      Let  μ  be 0.5,  − 5, 1, and 5, and let  y / h  0  be 0.5. Compute  c / c m  . Now take 
 y / h  0   =  0.2, 0.4, and 0.6 and  E   =   − 5 and  + 5 and compute  c / c m  . What do 
these values of  c / c m   say about its sensitivity to  y / h  0  and  μ ?  

  Q9.2      Let  F ( c ) be hypothesized as  F c
y
h

( ) = −1
0

   . Plot and explain this hypothesis. 

How realistic is this hypothesis?  

  Q9.3      Let tan  ϕ   =  0.8, tan  θ   =  0.5,  ρ   s    =  2.65 g/cm 3 , and  ρ   =  1 g/cm 3 . Compute the 
equilibrium concentration of debris fl ow  c DT  .  

  Q9.4      Let tan  θ   =  0.5 and  c m    =  0.5. Compute the average global concentration of 
debris fl ow  c DT  . Take  h  0   =  1 m.  

  Q9.5      Consider the dynamic friction coeffi cient tan  α   =  0.5,  h  0   =  2 m, the Shields 
parameter  θ   =  0.05,  c D    =  0.5. Compute the normal stress  F , the grain shear 
stress  T , and the critical shear stress for incipient motion of grain  τ   c  .  

  Q9.6      Compute  c D  / c m  , taking  n   =  0.04,  c m    =  0.8,  θ   =  10°, and tan  α   =  0.5.  

  Q9.7      Consider  θ   =  5°,  c m    =  0.5,  ϕ   =  40°. Compute the value of  c D  . Take  c h  / c m    =  
0.1. Compute the value of  μ . Compute the value of  c DT  . Use  c D  / c m   
and compute  μ . Also, compute  c D  / c m   using equation  (9.30)  and then 
compute  μ .  

  Q9.8      Consider  ϕ   =  40°,  θ   =  10°,  c m    =  0.6, and compute the value of  c D  . Take 
 c h  / c m    =  0.1. Compute the value of  μ . Compute the value of  c DT  . Use  c D  / c m   
and compute  μ . Also, compute  c D  / c m   using equation  (9.30)  and then 
compute  μ .  

 y / h  0 5° 9° 11.5°

0.1 0.920 0.971 0.999

0.2 0.836 0.938 0.999

0.3 0.749 0.902 0.998

0.4 0.658 0.860 0.997

0.5 0.562 0.810 0.995

0.6 0.461 0.751 0.994

0.7 0.356 0.675 0.992

0.8 0.244 0.573 0.989

0.9 0.126 0.411 0.985

1 0.000 0.000 0.000

 Table 9-12      Plots of  y / h  0  as a function of  c / c m  .  
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  Q9.9      Consider  ϕ   =  40°,  θ   =  12°,  c m    =  0.6, and compute the value of  c D  . Take 
 c h  / c m    =  0.1. Compute the value of  μ . Compute the value of  c DT  . Use  c D  / c m   
and compute  μ . Also, compute  c D  / c m   using equation  (9.30)  and then 
compute  μ .  

  Q9.10      Consider  ρ   s    =  2.45 g/cm 3 ,  c m    =  0.5, tan  ϕ   =  0.75, and compute the value of 
 c D  . Take  c h  / c m    =  0.1. Compute the value of  μ . Compute the value of  c DT  . 
Use  c D  / c m   and compute  μ . Also, compute  c D  / c m   using equation  (9.30)  and 
then compute  μ .    
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    Chapter 10 

  Downstream Hydraulic 
Geometry  

       The term “hydraulic geometry” connotes the relationships between the mean 
stream channel form and discharge, both at a station and downstream along a 
stream network in a hydrologically homogeneous basin. The channel form 
includes the mean cross-sectional geometry (width and depth), and the hydraulic 
variables, including the mean slope, mean friction, and mean velocity for a given 
infl ux of water and sediment to the channel and the specifi ed channel boundary 
conditions. 

 Hydraulic geometry relations are of two types: downstream hydraulic geom-
etry relations and at-a-station hydraulic geometry relations. The concept of 
downstream hydraulic geometry involves spatial variation in channel form and 
process observed at  bankfull  stage or at a constant frequency of fl ow; this fre-
quency may be taken as a two-year recurrence interval. The at-a-site hydraulic 
geometry entails mean values over a certain period of time, such as a week, a 
month, a season, or a year. In this case also, measurements should be made at 
the bankfull stage. Each type has been the subject of much interest and discus-
sion in hydraulic and hydrologic literature. They are of great practical value in 
prediction of alluvial channel behavior, such as scour and fi ll, and channel defor-
mation; layout of river training works; design of stable canals and intakes, river 
fl ow control works, irrigation schemes, and river improvement works; channel 
management; river restoration; modeling aquatic biota production systems; 
fl ow and sediment routing; fl ood estimation; and drainage net confi gurations. 
These relations can also be used to discriminate among different types of river 
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sections (Richards  1976 ) as well as in planning for resource and impact assess-
ment (Allen et al.  1994 ). This chapter discusses the derivation of downstream 
hydraulic geometry relations using entropy in conjunction with minimum energy 
dissipation rate. 

  10.1     Hydraulic Geometry Relations 

 Leopold and Maddock ( 1953 ) expressed the hydraulic geometry relationships for 
a channel in the form of power functions of discharge as

  B aQ d cQ V kQb f m= = =, ,       (10.1a)  

where  B  is the channel width;  d  is the fl ow depth;  V  is the fl ow velocity;  Q  is the 
fl ow discharge; and  a ,  b ,  c ,  f ,  k , and  m  are parameters. Also added to equation 
 (10.1a)  are

  n NQ S sQp y= =,       (10.1b)  

where  n  is Manning ’ s roughness factor,  S  is slope, and  N ,  p ,  s , and  y  are param-
eters. Exponents  b ,  f ,  m ,  p , and  y  represent, respectively, the rate of change of the 
hydraulic variables  B ,  d ,  V ,  n , and  S  as  Q  changes; and coeffi cients  a ,  c ,  k ,  N , and 
 s  are scale factors that defi ne the values of  B ,  d ,  V ,  n , and  S  when  Q   =  1. 

 The hydraulic variables, width, depth, and velocity, satisfy the continuity 
equation:

  Q BdV=       (10.2a)   

 Therefore, the coeffi cients and exponents in equation  (10.1a)  satisfy

  ack b f m= + + =1 1,       (10.2b)   

 Using measurements, exponents  b ,  f ,  m ,  p , and  y , and  a ,  c ,  k ,  N , and  s  are deter-
mined either graphically or by using regression analysis. 

  Example 10.1          Flow characteristics of Shaver Creek, in central Pennsylvania, 
corresponding to mean annual fl ood (2.3-year recurrence interval) measured by 
Brush ( 1961 ) are given in Table  10-1 . Plot on a log-log paper fl ow width, depth, 
velocity, and slope as a function of discharge and fi t straight lines. How good is 
the fi t of these lines? Compute parameters (exponent and proportionality coef-
fi cient) of the relations between discharge and fl ow characteristics. Check if the 
sum of exponents equals 1.   
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  Solution     The width, depth, and velocity were plotted against discharge on a 
log-log paper and straight lines were fi tted, as shown in Fig.  10-1 . The values of 
slopes (exponents) and intercepts (proportionality coeffi cients) were then deter-
mined as shown following: 

 a 1.4926

 b 0.4658

 c 0.3116

 f 0.3258

 k 2.2356

 m 0.2029

 It is noted that  ack   =  1.4926  ×  0.3116  ×  2.2356  =  1.040, and  b   +   f   +   m   =  0.4658  +  
0.3258  +  0.2029  =  0.995. It is found that width is strongly related to discharge, 
depth is less strongly related, and velocity is even less strongly related.     

Station 
no.

Mean 
annual 

fl ood,  Q  2.3  
(ft 3 /s)

Bankfull 
width,  B  

(ft)

Bankfull 
depth,  d  

(ft)

Bankfull 
velocity,  V  

(ft/s)

Slope, 
 S   

(ft/ft)

Drainage 
area,  A d   

(mi 2 )

Length of 
stream,  L  

(mi)

1 115 16 1.4 5.1 0.021 1.83 1.8

2 171 16 1.44 7.4 0.029 3.01 2.9

3 246 19 2.19 6.3 0.032 4.71 3.5

4 300 19 2.42 6.6 0.021 6.11 4.8

5 420 22 2.54 7.5 0.0055 9.14 6.7

6 520 26 2.05 9.7 0.0042 11.92 8

7 720 35 2.55 8.1 0.0019 17.54 9.3

8 960 40 2.59 9.2 19 25.41 10.1

9 1,260 38 2.56 12.9 0.0022 35.7 11

10 1,600 43 3.2 11.6 0.002 47.6 12.1

11 1,680 50 4.07 8.3 0.0012 49.38 13.1

12 1,840 55 4.27 7.8 0.001 55.01 14.6

   Source:   Data from Brush ( 1961 ).   

 Table 10-1      Measurements of fl ow characteristics of Shaver Creek, Pennsylvania.  
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  Figure 10-1      Relation of width, depth, and velocity to discharge for Shaver Creek, 
Pennsylvania.    

(a)

(b)

(c)
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  10.2     Preliminaries 

  10.2.1     Type of Analyses 

 Richards ( 1982 ) has noted that the downstream hydraulic geometry involving 
channel process and form embodies two types of analyses, both of which are 
expressed as power functions of the form (Rhoads  1991 ) given by equations 
 (10.1a)  and  (10.1b) . The fi rst type of analysis is typifi ed by the works of Leopold 
and Maddock ( 1953 ) and Wolman ( 1955 ), who formalized a set of relations, such 
as equations  (10.1a)  and  (10.1b) , to relate the downstream changes in fl ow prop-
erties (width, mean depth, mean velocity, slope, and friction) to the mean dis-
charge. This type of analysis describes the regulation of fl ow adjustment by 
channel form in response to the increase in discharge downstream and has been 
applied at particular cross sections as well as in the downstream direction. 

 The second type of analysis is a modifi cation of the original hydraulic geom-
etry concept and entails variation of channel geometry for a particular reference 
discharge downstream with a given frequency. Implied in this analysis is an 
assumption of an appropriate discharge that is the dominant fl ow controlling 
channel dimensions (Knighton  1987 ; Rhoads  1991 ). For example, for perennial 
rivers in humid regions, the mean discharge or a discharge that approximates 
bankfull fl ow ( Q b  ), such as  Q  2  and  Q  2.33,  with a return period of 2 and 2.33 years, 
respectively, is often used in equations  (10.1a)  and  (10.1b) . This concept is similar 
to that embodied in the regime theory (Blench  1952, 1969 ). It should, however, 
be noted that the coeffi cients and exponents are not constrained by the continuity 
equation when the selected discharge substantially differs from the bankfull 
fl ow. Conversely, Stall and Yang ( 1970 ) related hydraulic geometry to fl ow fre-
quency and drainage area.  

  10.2.2     Mean Values of Hydraulic Variables 

 The mean values of the hydraulic variables of equations  (10.1a)  and  (10.1b)  are 
known to follow, according to Langbein ( 1964 ) and Yang et al. ( 1981 ), among 
others, necessary hydraulic laws and the principle of the minimum energy dis-
sipation rate (or stream power). As a consequence, these mean values are func-
tionally related and correspond to the equilibrium state of the channel. This state 
is regarded as the one corresponding to the maximum sediment-transporting 
capacity. The implication is that an alluvial channel adjusts its width, depth, 
slope, velocity, and friction to achieve a stable condition in which it is capable of 
transporting a certain amount of water and sediment. In other words, the average 
river system tends to develop in such a way as to produce an approximate equi-
librium between the channel and the water and sediment it must transport 
(Leopold and Maddock  1953 ). Knighton ( 1977 ) observed that at cross sections 
undergoing a systematic change, the potential for adjustment toward some form 
of quasiequilibrium in the short term is related to the fl ow regime and channel 
boundary conditions and that the approach to quasiequilibrium or establishment 
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of a new equilibrium position is relatively rapid. Parker ( 1979 ) has stated that 
the scale factors,  a ,  c , and  k , vary from locality to locality but the exponents,  b ,  f , 
and  m , exhibit a remarkable degree of consistency and seem independent of 
location and only weakly dependent on channel type.  

  10.2.3     Calibration of Power Relations 

 The empirical hydraulic geometry relations expressed by equations  (10.1a)  and 
 (10.1b)  have been calibrated for a range of environments, using both fi eld obser-
vations and laboratory simulations. Dury ( 1976 ) confi rmed the validity of power 
function relations using extended sets of data at the 1.58-year mean annual dis-
charge. Chong ( 1970 ) stated, without a fi rm basis, that hydraulic geometry rela-
tions of equations  (10.1a)  and  (10.1b)  were similar over varying environments. 
Parker ( 1978 ) analyzed the cause of this systematic behavior for gravel-bed 
rivers. It seems that the regional generalizations proposed in the literature are 
acceptable for rivers that have achieved “graded-time” equilibrium. Analyzing 
a subalpine stream in a relatively homogeneous environment, Phillips and Harlin 
( 1984 ) found that hydraulic exponents were not stable over space. Knighton 
( 1974 ) emphasized variations in exponents as opposed to mean values. Rhodes 
( 1978 ) noted that the exponent values for high-fl ow conditions can be vastly dif-
ferent from those for low-fl ow conditions. 

 Using data from 318 alluvial channels in the midwestern United States and 
50 piedmont sites, Kolberg and Howard ( 1995 ) showed that the width-discharge 
exponents ranged from 0.35 to 0.46 for groups of streams with width to depth 
(aspect) ratios less than 45. For groups of streams with width to depth ratios 
greater than 45, the width-discharge exponent decreased to a value below 0.15, 
suggesting a systematic variation in the exponents and a diminished infl uence 
of channel shape. 

 Klein ( 1981 ) found that the value  b   =  0.5 was a good average. The low  b  values 
normally occur for small basins under lower fl ows and for very large basins 
under very high fl ows. Thus, the  b   =  0.5 value, being a good average, tends to 
smooth out deviations from the average. The value of  b  ranged from 0.2 to 
0.810. 

 This discussion shows that the exponents and coeffi cients of hydraulic geom-
etry relations of equations  (10.1a)  and  (10.1b)  vary from location to location on 
the same river and from river to river, as well as from high-fl ow range to low-
fl ow range. This phenomenon occurs, because the infl ux of water and sediment 
and the constraints (boundary conditions) that the river channel is subjected to 
vary from location to location, as well as from river to river. This means that for 
a fi xed infl ux of water and sediment, a channel exhibits a family of hydraulic 
geometry relations in response to the constraints imposed on the channel. It is 
these constraints that force the channel to adjust its allowable hydraulic vari-
ables. For example, if a river is leveed on both sides, then it cannot adjust its 
width and is, therefore, left to adjust other variables, such as depth, friction, 
slope, and velocity. Likewise, if a canal is lined, then it cannot adjust its friction. 
This aspect does not seem to have been fully explored in the literature. 
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  Example 10.2          Compare the exponents determined in Example  10.1  with those 
reported in the previously discussed literature. What can then be said about the 
Shaver Creek fl ow characteristics?  

  Solution     The exponents determined in Example  10.1  compare well with the val-
ues reported in the literature. In the case of Shaver Creek, width seems to have 
a greater control than depth, and depth has a greater control than velocity. This 
situation suggests that this creek should be shallow.  

Exponents Coeffi cients

Stream station  b  f  m  b   +   f  a  c  k  Ac 

Rock 0.62 0.26 0.12 0.88 1.92 0.49 1.07 0.93

Galena 0.71 0.22 0.07 0.93 2.1 0.54 0.88 1.13

Fox 0.57 0.29 0.14 0.86 2.33 0.41 1.05 0.96

Des Plaines 0.67 0.24 0.09 0.91 1.71 0.58 1.02 0.98

Kankabee 0.47 0.35 0.18 0.82 4.56 0.42 0.52 1.92

Vermilion (Illinois 
River basin)

0.48 0.35 0.17 0.83 5.38 0.3 0.62 1.61

Mackinaw 0.56 0.35 0.09 0.91 2.65 0.34 1.11 0.9

Henderson Creek 0.3 0.69 0.01 0.99 8.16 0.08 1.51 0.66

Spoon 0.45 0.47 0.08 0.92 3.76 0.19 1.39 0.72

La Moine 0.49 0.39 0.12 0.88 3.24 0.42 0.74 1.36

Sny 0.41 0.35 0.24 0.76 7.7 0.26 0.49 2.02

Sangamon 0.5 0.25 0.25 0.75 3.94 0.79 0.32 3.12

Kaskaskia 0.5 0.37 0.13 0.87 3.17 0.49 0.64 1.55

Vermilion (Wabash 
River basin)

0.33 0.37 0.3 0.7 8.84 0.38 0.3 3.36

Embarras 0.5 0.28 0.22 0.78 3.06 0.86 0.38 2.64

Little Wabash 0.36 0.33 0.31 0.69 9.13 0.69 0.16 6.32

Big Muddy 0.4 0.44 0.16 0.84 8.16 0.32 0.38 2.62

Big Bay Creek 0.38 0.49 0.13 0.87 6.23 0.31 0.52 1.93

 Table 10-2      Values of hydraulic geometry exponents (after Stall and Fok  1968 ).  

   Example 10.3          The values of hydraulic geometry exponents for a number of 
streams in Illinois, computed by Stall and Fok ( 1968 ), are given in Table  10-2 . 
Compute mean, standard deviation, and coeffi cient of variation of these expo-
nents. What do the variations in the exponent values mean hydraulically?   
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  Solution     The values of mean, standard deviation, and coeffi cient of variation of 
hydraulic geometry exponents are computed as shown in Table  10-3 . The coef-
fi cient of variation of the  m  exponent is the highest and that of the exponent is the 
lowest, suggesting that width is less variable than depth and that velocity is most 
variable among the three hydraulic variables.   

StatisticHEADING?

Exponents Coeffi cients

 b  f  m  b   +   f  a  c  k  Ac 

Mean 0.483 0.361 0.156 0.844 4.780 0.437 0.728 1.929

Standard deviation 0.113 0.112 0.081 0.081 2.593 0.201 0.391 1.370

Coeffi cient of variation 0.233 0.311 0.521 0.096 0.542 0.460 0.538 0.710

 Table 10-3      Computed mean, standard deviation, and coeffi cient of variation of 
hydraulic geometry exponents for Example  10.3 .  

   Example 10.4          The values of hydraulic geometry exponents for a number of riv-
ers in the United States, computed by Stall and Yang ( 1970 ), are given in Table 
 10-4 . Compute mean, standard deviation, and coeffi cient of variation of these 
exponents. What do the variations in the exponent values mean hydraulically? 
Compare the exponent values with those reported by Leopold and Maddock 
( 1953 ) for Midwestern rivers as  b   =  0.5,  f   =  0.4,  m   =  0.10, and  b   +   f   =  0.90; and theo-
retical values by Leopold and Langbein ( 1962 ) as  b   =  0.55,  f   =  0.36,  m   =  0.09, and 
 b   +   f   =  0.91.   

Exponents

Stream/station
Width  

 b 
Depth  

 f 
Velocity  

 m 
Area  
 b   +   f 

Merrimack 0.55 0.36 0.09 0.91

Susquehanna 0.56 0.3 0.13 0.87

Roanoke 0.52 0.36 0.12 0.88

Big Sandy 0.46 0.34 0.2 0.8

White 0.45 0.46 0.1 0.9

Sangamon 0.9 0.3 0.21 0.79

Neches 0.48 0.47 0.04 0.95

Colorado 0.59 0.25 0.16 0.84

Tuolume 0.54 0.41 0.06 0.95

Skagit 0.46 0.32 0.22 0.78

Naqke 0.54 0.3 0.16 0.84

Rogue 0.49 0.35 0.15 0.84

   Source:   Data from Stall and Yang  1970 .   

 Table 10-4      Values of hydraulic geometry exponents.  
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  Solution     The values of mean, standard deviation, and coeffi cient of variation of 
the exponents  b ,  f , and  m  are computed as shown Table  10-5 . Clearly, the velocity 
exponent has the greatest variability and the depth exponent, the least variability. 
The  b  exponent is closer to the average value reported in the literature, and the 
velocity exponent is further from the average value. What is interesting is that 
different rivers seem to exhibit hydraulic similarity when viewed in terms of 
their geometry.     

Exponents

Width  
 b 

Depth  
 f 

Velocity  
 m 

Area  
 b   +   f 

Mean 0.545 0.352 0.137 0.863

Standard deviation 0.120 0.067 0.058 0.058

Coeffi cient of variation 0.221 0.189 0.422 0.067

 Table 10-5      Computed values of mean, standard deviation, and coeffi cient of variation 
of the exponents  b ,  f , and  m  for Example  10.4 .  

  10.2.4     Theories of Hydraulic Geometry 

 A multitude of approaches have been used for deriving functional relationships 
among hydraulic variables for hydraulic geometry or equations  (10.1a)  and 
 (10.1b)  (Singh  2003 ). These approaches are based on the following theories: 
(1) empirical theory (e.g., regression theory [Leopold and Maddock  1953 ] and 
regime theory [Blench  1952 ]); (2) tractive force theory (Lane  1955 ) and its 
variants—threshold channel theory (Li  1974 ) and stability theory (Stebbings 
 1963 ); (3) hydrodynamic theory (Smith  1974 ); (4) thermodynamic entropy theory 
(Yalin and Da Silva  1997, 1999 ); (5) minimum extremal theories (e.g., minimum 
channel mobility theory [Dou  1964 ], minimum energy dissipation rate theory or 
its simplifi ed versions of minimum unit stream power theory [Yang and Song 
 1986 ] and minimum stream power theory [Chang  1980, 1988 ; Yang et al.  1981 ], 
minimum energy dissipation theory [Rodriguez-Iturbe et al.  1992 ], minimum 
energy degradation theory [Brebner and Wilson  1967 ], minimum entropy pro-
duction theory [Leopold and Langbein  1962 ], principle of least action [Huang 
and Nanson  2000 ], and minimum variance theory [Langbein  1964 ]); and 
(6) maximum extremal theories (maximum friction theory [Davies and Suther-
land  1983 ], maximum sediment discharge theory [White et al.  1982 ], maximum 
sediment discharge and Froude number theory [Ramette  1980 ], and maximum 
entropy theory [Deng and Zhang  1994 ]). Most of these hypotheses have been 
used for deriving downstream hydraulic geometry relations, but empirical, the 
minimum variance, and tractive force theories have also been applied to at-a-
station hydraulic geometry. Each hypothesis leads to unique relations between 
channel form parameters and discharge, and the relations corresponding to one 
hypothesis are not necessarily identical (in terms of exponents and proportional-
ity constants) to those corresponding to another hypothesis.   
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  10.3     Derivation of Hydraulic Geometry Relations 

 Langbein ( 1964 ), Yang et al. ( 1981 ), and Singh et al. ( 2003a, 2003b ), among others, 
emphasized that equations  (10.1a)  and  (10.1b)  correspond to the case when the 
channel is in equilibrium state. Langbein ( 1964 ) hypothesized that when a 
channel adjusts its hydraulic variables corresponding to this state, the adjust-
ment is shared equally among the hydraulic variables. Using the principle of 
maximum entropy and minimum stream power, Deng and Zhang ( 1994 ) derived 
morphological equations, assuming that for a given discharge the fl ow depth 
and width were independent variables among fi ve hydraulic variables. However, 
in practice the channel is seldom in an equilibrium state, which means that the 
adjustment among hydraulic variables is unequal. The exact proportion in which 
the adjustment are shared among variables is not clear. Nevertheless, two points 
seem logical. First, there is a family of hydraulic geometry relations, depending 
on the adjustment of hydraulic variables. Second, the adjustment can explain the 
variability in the parameters (scale and exponents) of these relations. These two 
points are pursued in the next sections. 

  10.3.1     Defi ning Stream Power 

 Yang ( 1972 ) defi ned the unit stream power (USP) as the time rate of potential 
energy expenditure per unit weight of water in an alluvial channel. Simply put, 
the unit stream power is the velocity–slope product that has the dimensions of 
power per unit weight of water. Thus, USP, denoted as  P w  , is expressed as

  P VSw =       (10.3)  

where  V  is the average fl ow velocity, and  S  is the energy slope. Stream power 
(SP) is the rate of energy dissipation caused by fl ow of water:

  SP Q S= γ       (10.4)  

where  γ  is the weight density of water, and  Q  is the discharge of water. It should 
be noted that SP can be obtained by integrating USP over a given cross section. 

 If a channel is assumed to be rectangular with  h  as the depth of fl ow and  B  
as the width of fl ow, then the fl ow cross-sectional area is  A   =   Bh , the wetted 
perimeter is  P   =   B   +  2 h , and the hydraulic radius is  R   =   A / P   =  ( Bh )/( B   +  2 h ). If 
the channel is wide rectangular, then  R   ≅   h   =  depth of fl ow. The fl ow discharge 
in equation  (10.4)  can be obtained from either Manning ’ s or Chezy ’ s or the 
Darcy–Weisbach equation. For wide rectangular channels, these equations can 
be written, respectively, as

  Q
n

AR S
n

Bh S= =1 12 3 1 2 5 3 1 2/ / / /       (10.5)  

  Q CA RS CBh S= = 3 2/       (10.6)  
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  Q
g
f

A RS
g
f

Bh S= =2
2

2
2 3 2/       (10.7)  

where  n  is Manning ’ s roughness coeffi cient,  C  is Chezy ’ s roughness coeffi cient, 
 f  is the Darcy–Weisbach friction factor, and  g  is acceleration caused by gravity. 
Equating equation  (10.5)  to equation  (10.6) , and equation  (10.6)  to equation  (10.7) , 
one obtains

  C
n

h C g f= =1
2 21 6/ ; /       (10.8)   

 Equations  (10.5)  to  (10.7)  can be expressed in a general from as

  Q Bh S= α β       (10.9)  

in which  α  is a roughness measure, and  β  is an exponent. For Manning ’ s equa-
tion,  α   =  1/ n , and  β   =  5/3; for Chezy ’ s equation,  α   =   C , and  β   =  3/2; and for 
Darcy–Weisbach equation,  α   =  2(2 g / f ) 0.5 , and  β   =  3/2. 

 The energy slope  S  can be expressed from equation  (10.9)  as

  S
Q
B h

=
2

2 2 2α β       (10.10)   

 Thus, using equations  (10.4)  and  (10.10) , the stream power of a channel is 
expressed as

  SP
Q

B h
=

γ
α β

3

2 2 2       (10.11)   

 In equation  (10.11) , there are fi ve variables:  Q ,  S ,  B ,  α , and  h ; of these vari-
ables,  Q ,  α ,  h , and  B  are on the right side of the equation, and  Q  and  S  through 
SP are on the left side. Three of these variables,  α ,  B , and  h , are controlling vari-
ables or constraints for a given discharge. It may be noted that the slope term  S  
is not an independent variable here, because it is imbedded in the stream power 
and, hence, it is not considered as a controlling variable. Furthermore, from a 
practical point of view, a natural river can easily adjust its width, depth, velocity, 
and roughness because of changing discharge, but the longitudinal slope takes 
a very long time, years, if not centuries, to adjust (Yang  1996 ). Therefore, the 
longitudinal profi le or slope is generally treated as constant over a short period 
of time. Because of this time scale difference,  S  is not considered as a variable 
when compared with velocity, depth, width, and roughness.  

  10.3.2     Hypothesis 

 A channel responds to the infl ux of water and sediment coming from its water-
shed by the adjustment of SP. Indeed Yang ( 1972 ) found USP to be the dominat-
ing factor in the determination of total sediment concentration. Yang ( 1986, 1996 ) 
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also related sediment load and channel geometry adjustment to SP. The spatial 
rate of adjustment of SP along a river, denoted by  R S  , can be expressed as

  R
d SP

dx
d Q S

dx
S = ( ) = ( )γ

      (10.12)  

where  x  is the space coordinate along the direction of fl ow. 
 It is hypothesized that for a given infl ux of discharge from the watershed the 

channel adjusts or minimizes its stream power by adjusting the three controlling 
variables: depth, width, and friction. This hypothesis is similar to the one pro-
posed by Langbein ( 1964 ) in his theory of minimum variance. Therefore, substi-
tution of equation  (10.6)  in equation  (10.12)  yields

  R
d Q S

dx
d

dx
Q
B h

Q
d

dx B h
S = = ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝

⎞
⎠

( )γ γ
α

γ
αβ β

3

2 2 2
3

2 2 2

1
      (10.13)   

 Equation  (10.13)  yields

  R
Q

B h
d
dx

Q
B h

dB
dx

Q
B h

dh
dx

S = − − − +

2 2 23

3 2 2

3

2 3 2

3

2 2 2 1α
α γ

α
γβ

αβ β β       (10.14)   

 The right side of equation  (10.14)  has three parts, designated as  R  1 ,  R  2 , 
and  R  3 :

  R
Q

B h
d
dx

1

3

3 2 2

2
= −

γ
α

α
β       (10.15)  

  R
Q

B h
dB
dx

2

3

2 3 2

2
= −

γ
α β       (10.16)  

  R
Q

B h
dh
dx

3

3

2 2 2 1

2
= − +

βγ
α β       (10.17)   

 Equation  (10.15)  can be interpreted as the spatial rate of adjustment of fric-
tion, equation  (10.16)  as the spatial rate of adjustment of width, and equation 
 (10.17)  as the spatial rate of adjustment of fl ow depth.  

  10.3.3     Defi nition of Probability 

 Dividing equations  (10.15)  to  (10.17)  by the total spatial rate of adjustment of SP, 
one gets

  P
R
R

Q
B h

d dx
d SP dxS

α β

γ
α

α= =1
3

3 2 2

2 [ / ]
[ ( )/ ]

      (10.18)  

  P
R
R

Q
B h

dB dx
d SP dx

B
S

= =2
3

2 3 2

2γ
α β

[ / ]
[ ( )/ ]

      (10.19)  
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  P
R
R

Q
B h

dh dx
d SP dx

h
S

= = +
3

3

2 2 2 1

2βγ
α β

[ / ]
[ ( )/ ]

      (10.20)   

 Equation  (10.18)  can be interpreted as the proportion of the adjustment of stream 
power by friction, equation  (10.19)  as the proportion of the adjustment of stream 
power by channel width, and equation  (10.20)  as the proportion of the adjust-
ment of stream power by fl ow depth. These proportions can be considered 
equivalent to probabilities.  

  10.3.4     Principle of Maximum Entropy 

 According to the principle of maximum entropy (Jaynes  1957 ), any system in 
equilibrium state under steady constraints tends to maximize its entropy. When 
a river reaches a dynamic (or quasidynamic) equilibrium, the entropy should 
attain its maximum value. The principle of maximum entropy (POME) states 
that the entropy of a system is maximum when all probabilities are equal, i.e., 
the probability distribution is uniform. Applying this principle to a river in its 
dynamic equilibrium, the following must, therefore, be true:

  P P PB hα = =       (10.21)   

 Equation  (10.21)  holds, of course, under the stipulation that there are no con-
straints imposed on the channel and can be interpreted to mean that the self-
adjustment of SP ( γ  QS ) is equally shared among  α ,  B , and  h . This interpretation 
is supported by Williams ( 1967, 1978 ), who found from an analysis of data from 
165 gauging stations that a channel adjusted all its hydraulic parameters ( B ,  h , 
 S , and  V ) in response to changes in the infl ux of water and sediment and that 
self-adjustments were realized in an evenly distributed manner among factors. 
Equation  (10.21)  is similar to the concept embodied in the minimum variance 
theory (Langbein  1964 ).  

  10.3.5     Different Scenarios 

 Equation  (10.21)  involves probabilities of three variables, meaning that any two 
of the three cases of adjustment in hydraulic variables may coexist, as well as 
the probability that all three cases may coexist. These confi gurations of adjust-
ment indeed occur in nature (Wolman  1955 ). Thus the equality among three 
probabilities raises four possibilities and, hence, leads to four sets of equations 
(Singh et al.  2003a ): (1)  P   α    =   P B  , (2)  P B    =   P h  , (3)  P   α    =   P h  , and (4)  P   α    =   P B    =   P h  . It 
should be noted that all four possibilities can occur in the same river in different 
reaches, or in the same reach at different times, or in different rivers at the same 
time, or at different times. In order to enumerate the consequences of these pos-
sibilities, one can use the general discharge equation  (10.9) , or Manning ’ s equa-
tion  (10.5) , or Chezy ’ s equation  (10.6) , or the Darcy–Weisbach equation  (10.7) . 
It is, however, more informative to use a specifi c discharge–resistance relation 
than the general discharge–resistance relation. Survey of literature shows that 
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Manning ’ s equation is more commonly used in hydraulic and river engineering 
in general and more specifi cally in investigations on hydraulic geometry (for 
example, Leopold and Wolman  1957 ; Wolman and Brush  1961 ; Stall and Fok 
 1968 ; Bray  1982 ). Furthermore, the data that could be found on alluvial rivers 
and canals contain Manning ’ s  n  a lot more than Chezy ’ s  C  or Darcy–Weisbach ’ s 
 f . For these reasons, Manning ’ s equation is used in this chapter. Consequently, 
possibility  P   α   is replaced by  P n  . Expressing then equations  (10.18)  to  (10.20)  for 
Manning ’ s equation, one gets

  P
R
R

n Q
B h

dn dx
d SP dx

n
S

= =1
3

2 10 3

2 γ
/

[ / ]
[ ( )/ ]

      (10.22)  

  P
R
R

n Q
B h

dB dx
d SP dx

B
S

= = −2
2 3

3 10 3

2 γ
/

[ / ]
[ ( )/ ]

      (10.23)  

  P
R
R

n Q
B h

dh dx
d SP dx

h
S

= = −3
2 3

2 13 3

10
3

γ
/

[ / ]
[ ( )/ ]

      (10.24)    

  10.3.6     Primary Morphological Equations for Different Scenarios 

 The four possibilities for spatial stream power adjustment lead to primary mor-
phological equations, which are needed for deriving downstream hydraulic 
geometry relations. The morphological equations are, therefore, derived fi rst. 

  10.3.6.1     Possibility I:  P B    =   P n   

 Equating equation  (10.22)  for  P n   to equation  (10.23)  for  P B  , one gets

  
dn
dx

n
B

dB
dx

= −       (10.25)   

 Equation  (10.25)  hypothesizes that the spatial change in stream power is accom-
plished by an equal spatial adjustment between fl ow width  B  and resistance 
expressed by Manning ’ s  n . This possibility occurs in wide rectangular channels 
where the fl ow depth is not a controlling variable but the roughness and the fl ow 
width are. The downstream ends of the Brahmaputra River before joining the 
Bay of Bengal in India and Bangladesh and of the Mississippi River before joining 
the Gulf of Mexico in the United States are examples. The hypothesis can be 
considered a limiting case and presumably holds under the equilibrium condi-
tion. However, such a condition is not always achieved, and, therefore, the 
spatial change in stream power is accomplished by an unequal adjustment 
between  B  and  n . To that end, equation  (10.25)  is modifi ed as

  
dn
dx

wn
B

dB
dx

= −       (10.26)  
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where  w  is a weighting factor, 0  ≤   w , which accounts for the proportion in which 
the adjustment in stream power is shared between  B  and  n . For the special case 
where the adjustment is shared equally between  B  and  n ,  w   =  1. 

 Integration of equation  (10.26)  yields

  nB C B C nw w= = −
1 1

1or * /       (10.27)  

where  C  1  and  C1*    are constants of integration. For the limiting case ( w   =  1), equa-
tion  (10.27)  becomes

  nB C B C n= = −
1 1

1or *       (10.28)   

 Parameter  C  1  or  C1*    can be labeled as a primary morphological coeffi cient and 
equation  (10.27)  or  (10.28)  as a primary morphological equation.  

  10.3.6.2     Possibility II:  P B    =   P h   

 Here  P B   is given by equation  (10.23)  and  P h   by equation  (10.24) . This case hypoth-
esizes that the spatial variation in stream power is accomplished by an equal 
spatial adjustment between fl ow depth and fl ow width. This possibility occurs 
in channels where the roughness is fi xed, say, by lining, and the controlling 
variables are fl ow depth and width. Examples of such cases are the channels 
used for recreation, and trapezoidal channels that have attained a kind of equi-
librium condition. The hypothesis can be considered as a limiting case and will 
hold under the equilibrium condition. Such a condition is, however, seldom 
achieved, and, therefore, the spatial change in stream power is accomplished by 
an unequal adjustment between  h  and  B . Using  r  as a weighting factor, 0  ≤   r , 
which accounts for the proportion in which the adjustment of stream power is 
shared between  h  and  B , one obtains

  
B

h
C h C B

r
r

5 3 2 2
3 5

/( )
( )/*= =or       (10.29)  

where  C  2  and  C2*    are constants of integration. For the limiting case ( r   =  1), where 
the adjustment is equally shared, equation  (10.29)  reduces to

  
B

h
C or h C B5 3 2 2

3 5
/

/*= =       (10.30)   

 Parameter  C  2  or  C2*    can be designated as a primary morphological coeffi cient, 
and equation  (10.29)  or  (10.30)  as a primary morphological equation. It is inter-
esting to note that equation  (10.29)  resembles the basic form of the regime equa-
tion expressed as

  
B
h

φ

ϕ=       (10.31)  

where  ϕ   =  3/5 and  ϕ = 1 2/ *C    . 
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  Example 10.5          Using the data from Table  10-1 , check whether equation  (10.30)  is 
valid. Compute the values of  C  2  and determine its spread.  

  Solution     The values of  C  2  are computed as shown in Table  10-6 .  C  2  has a mean of 
6.603 and standard deviation of 1.772, and its range is remarkably narrow.     

 B  (ft)  h  5/3  (ft)  C  2   =   B/h  5/3 

16 1.752 9.132

16 1.836 8.713

19 3.693 5.145

19 4.362 4.356

22 4.728 4.653

26 3.308 7.859

35 4.760 7.354

40 4.885 8.189

38 4.791 7.932

43 6.949 6.188

50 10.375 4.819

55 11.239 4.894

 Table 10-6      Computed values of  C  2 , from Example  10.5 .  

  10.3.6.3     Possibility III:  P n    =   P h   

 Here  P n   is given by equation  (10.22)  and  P h   by equation  (10.24) . This case hypoth-
esizes that the spatial variation in stream power is accomplished by an equal 
spatial adjustment between fl ow depth and resistance. Examples of such a pos-
sibility are a laboratory fl ume with fi xed walls, canals, leveed rivers, and so on. 
This hypothesis can be considered as a limiting case and holds under the equi-
librium condition. Such a condition is not always attained, and, therefore, the 
spatial change in stream power is accomplished by an unequal adjustment 
between  h  and  n . Using  J  as a weighting factor, 0  ≤   J , which accounts for the 
proportion in which the adjustment of stream power is shared between  n  and  h , 
one gets

  n C h h C nJ J= =− −
3

5 3
3

3 5( )/ /( )*or       (10.32)  

where  C  3  and  C3*    are constants of integration. For the limiting case ( J   =  1), where 
the adjustment is equally shared,  J   =  1, equation  (10.32)  reduces to

  nh C h C n5 3
3 3

3 5/ /*= = −or       (10.33)   

 Parameter  C  3  or  C3*    can be considered as a primary morphological coeffi cient and 
equation  (10.32)  or  (10.33)  as a primary morphological equation.  
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  10.3.6.4     Possibility IV:  P n    =   P B    =   P h   

 Equation  (10.27)  relates  n  and  B , equation  (10.29)  relates  B  and  h , and equation 
 (10.32)  relates  n  and  h . The fi rst two equations can be used to eliminate  n  and  h  
in equation  (10.5)  and express  B  as a function of  Q . Similarly, equations  (10.29)  
and  (10.32)  can be used to eliminate  B  and  n  in equation  (10.5)  and express  h  as 
a function of  Q . Likewise, all three equations can be used to express  V  as a func-
tion of  Q . Thus, three primary morphological equations  (10.27)  or  (10.28) ,  (10.29)  
or  (10.30) , and  (10.32)  or  (10.33) ; and their three corresponding primary morpho-
logical coeffi cients,  C  1 ,  C  2 , and  C  3  (or  C1*    ,  C2*    , and  C3*    ), are obtained. Equation 
 (10.27)  can also be obtained by combining equations  (10.29)  and  (10.32) , or equa-
tion  (10.28)  can be obtained by combining equations  (10.30)  and  (10.33) .    

  10.4     Downstream Hydraulic Geometry Equations for 
a Given Discharge 

 If discharge  Q  and slope  S  of a river are known, then substitution of primary 
morphological equations  (10.27) ,  (10.29) , and  (10.32)  in equation  (10.5)  leads to 
equations for the hydraulic geometry of a river. 

  10.4.1     Possibility I: Hydraulic Geometry Relations for Width, 
Roughness, and Velocity 

 This possibility ( P B    =   P n  :  nB w    =   C  1 ) leads to hydraulic geometry relations for  B , 
 V , and  n . To derive these relations, three steps are involved:

   1.      Substitution of equation  (10.27)  in equation  (10.5)  leads to the expressions 
for  B ,  V , and  n  in terms of  Q  and  S :

  B C Q S C C hB
w w

B
w= =+ − + − +1 1 1 2 1

1
5 3 1 1/( ) /[ ( )] / /( ), ( )       (10.34)  

  V C Q S C C CV
w w w

V n B= =+ + −2 5 1 5 6 1 2 3 3 5/[ ( )] /[ ( )] / /, [ ( ) ]       (10.35)  

  n C Q S C C hn
w w w w

n
w w w= =− + + + +/( ) /[ ( )] /( ) /[ ( )], ( )1 2 1

1
1 1 5 3 1       (10.36)   

 Equations  (10.34)  to  (10.36)  contain  S , which can be eliminated with the use of a 
sediment transport relation.  

  2.       S  can be expressed in terms of discharge, using a sediment transport 
relation. To that end, from the Engelund and Hansen sediment trans-
port equation (Engelund and Hansen  1967 ), the channel slope  S  can be 
expressed (Knighton  1998 ) as

  S C Qs z=       (10.37)   

 where  C s   is a coeffi cient,  z   =   − 2/5 for gravel-bed rivers and  z   =   − 1/6 for sandy 
rivers. Such a relation is useful if  S  is unknown. This step leads to one set of 
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hydraulic geometry relations for gravel-bed rivers and another set for sandy or 
alluvial rivers.  

  3.      Substitution of equation  (10.37)  in equation  (10.34)  leads to an expression 
for  B  in terms of  Q  alone (Knighton  1998 ):

  B C Q C
C

C
BS

z
w

BS
B

S
w= =

−( )
+

+( )

1 2
1

1 2 1,       (10.38)      

 Substitution of  z   =   − 2/5 and  z   =   − 1/6 into equation  (10.34)  yields

  B C Q QBS
w= − +( )

6
5 1 for gravel-bed rivers       (10.39)  

  B C QBS
w= +( )

13
12 1 for sandy rivers       (10.40)   

 Likewise, with use of equation  (10.37) , equation  (10.35)  can be simplifi ed for 
 V  as

  V C Q C C CVS

w
w

VS V S
w= =

−
+( ) +( )[ ]

5 1
3 1 5 6 1( ) for gravel-bed rivers       (10.41)  

  V C QVS

w
w=

−
+( )

60 5
36 1 for sandy rivers       (10.42)   

 Similarly, inserting equation  (10.39)  in equation  (10.38) , one gets an expression 
for  n  as

  n C Q C C CnS

w
w

nS n S
w w= =

−
+( ) +( )[ ]
6

5 1 2 1( ) for gravel-bed rivers       (10.43)  

  n C QnS

w
w=

−
+( )

13
12 1 for sandy rivers       (10.44)   

 For the special case,  w   =  1, equations  (10.38)  to  (10.39)  reduce, respectively, to

  B C
Q
S

C C hB B= = −
0 5

1 4 1
0 5 5 6

.

/
. /, ( )       (10.45)  

  B C Q C
C

C
BS BS

B

S
w= =⎛

⎝⎜
⎞
⎠⎟+( )

3
5

1 2 1 for gravel-bed rivers       (10.46)  

  B C QBS=
13
24 for sandy rivers       (10.47)  

  V C Q S C C CV V n B= = ( )−1 5 5 12 3 5 2 5 1
,       (10.48)  

  V C Q C C CVS VS V S= =
2
3 5 12( ) for gravel-bed rivers       (10.49)  

  V C QVS=
55
72 for sandy rivers       (10.50)  

  n C
S
Q

C C hn n= =
1 4

1 2 1
1 2 5 6

/

/
/ /, ( )       (10.51)  
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  n C Q C C CnS nS n S= =
−3
5 1 4( ) for gravel-bed rivers       (10.52)  

  n C QnS=
−13
24 for sandy rivers       (10.53)   

 In this possibility, the change in stream power is accomplished by the adjust-
ment between channel width and roughness. For the three variables, the values 
of exponents,  b ,  p , and  m , are given in Tables  10-7, 10-8a, and 10-8b . Equations 
 (10.39)  and  (10.40)  show that the channel width varies with discharge raised to 
the power [ b   =  6/{5(1  +   w )} for gravel-bed rivers and  b   =  13/{12(1  +   w )} for sandy 
rivers] from some positive value greater than zero to a value of 1, and the scale 
factor  C B   varies with fl ow depth. Thus, one can infer that the  b  exponent has a 
range of 0 to 1. The precise value of  b  depends on the value of  w , meaning the 
proportion in which the spatial change of stream power is accomplished by the 
adjustment between  B ,  n , and  V . When  w   =  1, the channel width varies with 
the discharge raised to the power of 0.5, as shown by equation  (10.45)  for gravel-
bed rivers and 0.6 for sandy rivers, as shown by equation  (10.46) . This exponent 
value of 0.5 is about the average value reported in the literature (Klein  1981 ). 
However, one should note that in equation  (10.34) , slope also appears with an 
exponent of  − 1/[2(1  +   w )]. If the channel slope is constant, then the slope 

Possibility I II III I  +  II  +  III

 b  for  B W.F.  =  0 1 ( w   =  0) 1 ( r   =  0) 1 ( w   =   r   =  0)

W.F.  =  1 0.5 ( w   =  1) 0.5 ( r   =  1) 1/3 ( w   =   r   =  1)

W.F.  =   ∞ 0 ( w   =   ∞ ) 0 ( r   =   ∞ ) 0 ( w   =   r   =   ∞ )

 f  for  h W.F.  =  0 0 ( r   =  0) 3/5 ( J   =  0) 0 ( J   =   r   =  0)

W.F.  =  1 3/10 ( r   =  1) 3/10 ( J   =  1) 1/5 ( J   =   r   =  1)

W.F.  =   ∞ 3/5 ( r   =   ∞ ) 0 ( J   =   ∞ ) 0 ( J   =   r   =   ∞ )

 m  for  V W.F.  =  0 0 ( w   =  0) 0 ( r   =  0) 2/5 ( J   =  0) 0 ( w   =   J   =   r   =  0)

W.F.  =  1 1/5 ( w   =  1) 1/5 ( r   =  1) 7/10 ( J   =  1) 7/15 ( w   =   J   =   r   =  1)

W.F.  =   ∞ 2/5 ( w   =   ∞ ) 2/5 ( r   =   ∞ ) 1 ( J   =   ∞ ) 1 ( w   =   J   =   r   =   ∞ )

 p  for  n W.F.  =  0 0 ( w   =  0)  − 1 ( J   =  0) 0 ( J   =   w   =  0)

W.F.  =  1  − 0.5 ( w   =  1)  − 0.5 ( J   =  1)  − 1/3 ( J   =   w  =  1)

W.F.  =   ∞  − 1 ( w   =   ∞ ) 0 ( J   =   ∞ )  − 1 ( J   =   w   =   ∞ )

Equation No.  (10.34)  to 
 (10.36) 

 (10.54)  to 
 (10.56) 

 (10.72)  to 
 (10.74) 

 (10.90)  to  (10.93) 

   Note:   W.F. denotes the weighting factor. The weighting factors are zero, unity, and infi nity for 
different possibilities. Usually these factors have values between the limiting values.   

 Table 10-7      Values of exponents  b ,  f ,  m , and  p  for three limiting cases, with slope 
explicitly appearing in hydraulic geometry relations.  
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Possibility I II III I  +  II  +  III

 b  for  B W.F.  =  0 13/12 ( w   =  0) 13/12 ( r   =  0) 13/12 ( w   =   r   =  0)

W.F.  =  1 13/24 ( w   =  1) 13/24 ( r   =  1) 13/36 ( w   =   r   =  1)

W.F.  =   ∞ 0 ( w   =   ∞ ) 0 ( r   =   ∞ ) 0 ( w   =   r   =   ∞ )

 f  for  h W.F.  =  0 0 ( r   =  0) 13/20 ( J   =  0) 0 ( J   =   r   =  0)

W.F.  =  1 13/40 ( r   =  1) 13/40 ( J   =  1) 13/60 ( J   =   r   =  1)

W.F.  =   ∞ 13/20 ( r   =   ∞ ) 0 ( J   =   ∞ ) 0 ( J   =   r   =   ∞ )

 m  for  V W.F.  =  0  − 5/36 ( w   =  0)  − 1/12 ( r   =  0) 7/20 ( J   =  0)  − 1/12 ( J   =   r   =  0)

W.F.  =  1 55/72 ( w   =  1) 2/15 ( r   =  1) 27/40 ( J   =  1) 19/45 ( J   =   r   =  1)

W.F.  =   ∞ 5/3 ( w   =   ∞ ) 7/20 ( r   =   ∞ ) 1 ( J   =   ∞ ) 1 ( w   =   J   =   r   =   ∞ )

 p  for  n W.F.  =  0 0 ( w   =  0)  − 13/12 ( J   =  0) 0 ( J   =   w   =  0)

W.F.  =  1  − 13/24 ( w   =  1)  − 13/24 ( J   =  1)  − 13/36 ( J   =   w  =  1)

W.F.  =   ∞  − 13/12 ( w   =   ∞ ) 0 ( J   =   ∞ )  − 13/12( J   =   w   =   ∞ )

Equation No.  (10.38) , 
 (10.41) , and 
 (10.43) 

 (10.57) , 
 (10.59) , and 
 (10.61) 

 (10.75) , 
 (10.77) , and 
 (10.79) 

 (10.94) ,  (10.96) , 
 (10.98) , and 
 (10.100) 

   Note:   W.F. denotes the weighting factor. The weighting factors are zero, unity, and infi nity for 
different possibilities. Usually these factors have values between the limiting values.   

 Table 10-8a      Values of exponents  b ,  f ,  m , and  p  for three limiting cases, with slope 
expressed as a function of discharge with the power of  − 1/6.  

component of the equation merges with coeffi cient  C B  . This phenomenon shows 
that the scale factor  C B   varies from one location to another and also with time 
through fl ow depth. Otherwise, slope can be expressed as a function of discharge 
raised to the power of  z   =   − 2/5 and  − 1/6 for gravel-bed rivers and for sandy 
rivers, respectively. Then in this case, under the special condition with weighting 
factor  w   =  1, the width varies with discharge raised to the power of 0.6 and 0.5, 
for sandy rivers and for gravel-bed rivers, respectively, which exponent values 
also fall within the range reported in the literature. 

    The average fl ow velocity varies with the discharge raised to the power from 
zero to 2/5, as shown in Table  10-7 , and the scale factor  C V   varies with fl ow 
depth. The precise value of exponent  m  depends on the value of the weighting 
factor  w . For the limiting case  w   =   ∞ ,  m   =  2/5, and for the special case  w   =  1,  m  
is 1/5 as shown by equation  (10.48) , which is in the range of the values reported 
in the literature. In this case, slope also appears in equations  (10.35)  and  (10.48) , 
in which case the power of slope varies from 0 to 5/6. If the slope is expressed 
as a function of discharge with the power of  − 1/6, then the exponent  m  varies 
from  − 5/36 ( − 0.14) to 5/3. Most of the values reported in the literature lie within 
the derived range. 

 Manning ’ s  n  varies with discharge raised to the power varying from  − 1 to 0, 
as shown in Table  10-7 , and the scale factor  C n   varies with fl ow depth. The expo-
nent  p  in this case depends on the value of  w . The exponent value of  − 0.5 is for 
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the special case  w   =  1. This range of exponent values encompasses the values 
reported in the literature. Again, if  S  appearing in equation  (10.43)  is expressed 
as a function of  Q  with the exponent of  − 1/6, then the exponent of  Q  for  n  varies 
from  − 13/12 to 0.0. In this case, the reported range of exponent values is  − 0.54 
to 0.03 (Knighton  1975 ). 

 It is clear that the exponent values of  b ,  m , and  p  do not possess fi xed values; 
rather they vary over certain ranges dictated by the way the adjustment of 
stream power is distributed among variables. Depending on the value of  w , the 
derived exponent values encompass the whole ranges of values reported in 
the literature. Furthermore, the scale parameters are variant, depending on the 
channel hydraulics. Indeed this observation should help with regionalization 
of scale parameters. 

 Four sets of hydraulic geometry expressions are obtained. In the fi rst set are 
expressions corresponding to possibility I, wherein the channel adjusts its width, 
roughness, and velocity to accommodate changes in discharge and sediment 
load. To facilitate discussion, the values of exponents  b ,  f ,  m , and  p  for three cases 
(one special and two limiting cases) when the weighting factors are zero, unity, 
and infi nity, are tabulated for all three possibilities and their combination in 
Tables  10-7, 10-8a, and 10-8b . It should be pointed out that the limiting case 
of infi nity is only a theoretically generalized case for the factors  r ,  w , and  J , 

Possibility I II III I  +  II  +  III

 b  for  B W.F.  =  0 6/5 ( w   =  0) 6/5 ( r   =  0) 6/5 ( w   =   r   =  0)

W.F.  =  1 3/5 ( w   =  1) 3/5 ( r   =  1) 2/5 ( w   =   r   =  1)

W.F.  =   ∞ 0 ( w   =   ∞ ) 0 ( r   =   ∞ ) 0 ( w   =   r   =   ∞ )

 f  for  h W.F.  =  0 0 ( r   =  0) 18/25 ( J   =  0) 0 ( J   =   r   =  0)

W.F.  =  1 9/25 ( r   =  1) 9/25 ( J   =  1) 6/25 ( J   =   r   =  1)

W.F.  =   ∞ 18/25 ( r   =   ∞ ) 0 ( J   =   ∞ ) 0 ( J   =   r   =   ∞ )

 m  for  V W.F.  =  0  − 1/3 ( w   =  0)  − 1/5 ( r   =  0) 7/25 ( J   =  0)  − 1/5 ( J   =   r   =  0)

W.F.  =  1 2/3 ( w   =  1) 1/25 ( r   =  1) 16/25 ( J   =  1) 9/25 ( J   =   r   =  1)

W.F.  =   ∞ 5/3 ( w   =   ∞ ) 7/25 ( r   =   ∞ ) 1 ( J   =   ∞ ) 1 ( w   =   J   =   r   =   ∞ )

 p  for  n W.F.  =  0 0 ( w   =  0)  − 6/5 ( J   =  0) 0 ( J   =   w   =  0)

W.F.  =  1  − 3/5 ( w   =  1)  − 3/5 ( J   =  1)  − 2/5 ( J   =   w  =  1)

W.F.  =   ∞  − 6/5 ( w   =   ∞ ) 0 ( J   =   ∞ )  − 6/5( J   =   w  =  ∞ )

Equation No.  (10.38) ,  (10.41) , 
and  (10.43) 

 (10.57) ,  (10.59) , 
and  (10.61) 

 (10.75) ,  (10.77) , 
and  (10.79) 

 (10.94) ,  (10.96) , 
 (10.98) , and 
 (10.100) 

   Note:   W.F. denotes the weighting factor. The weighting factors are zero, unity, and infi nity for 
different possibilities. Usually the values of these factors have values between the limiting 
values.   

 Table 10-8b      Values of exponents  b ,  f ,  m , and  p  for three limiting cases, with slope 
expressed as a function of discharge with the power of  − 2/5.  
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respectively, for the lack of knowledge of the values of their upper limits, which 
should be far less than infi nity.  

  10.4.2     Possibility II: Hydraulic Geometry Relations for Width, 
Depth, and Velocity 

 This possibility ( P B    =   P h  :  B   =   C  2  h  5/3   r  ) leads to the hydraulic geometry relations for 
 B ,  h , and  V  in terms of  Q . The derivation of these relations follows the same three 
steps as discussed in possibility I. Substitution of equation  (10.29)  in equation 
 (10.5)  leads to the expressions for  B ,  h , and  V  in terms of  Q  and  S: 

  B C Q S C n CB
r r

B
r r= =+ − + +1 1 1 2 1

2
1 1/( ) /[ ( )] /[ ], [ ( ) ]       (10.54)  

  h C Q S C n Ch
r r r r

h
r r= =+ − + +3 5 5 3 2 5 5

2
3 5 5/( ) /[ ( )] /[ ], [ ( )]       (10.55)  

  V C Q S C n CV
r r r r

V B= =+ + + + − −2 5 1 3 1 2 10 1 3 5 2 5/[ ( ) [ ( ) ]/[ ( )] / /, ( )       (10.56)   

 Substitution of equation  (10.37)  with  z   =   − 2/5 and  z   =   − 1/6 into equations  (10.54)  
to  (10.56)  yields

  B C Q C
C

C
BS

r
BS

B

S
r= =⎛

⎝⎜
⎞
⎠⎟

+( )
+( )

6
5 1

1 2 1 for gravel-bed rivers       (10.57)  

  B C QBS
r= +( )

13
12 1 for sandy rivers       (10.58)  

  h C Q C C ChS

r
r

hS h S
r r= =+( ) − +( )[ ]

18
25 1 3 2 5 5( ) for gravel-bed riverss       (10.59)  

  h C QhS

r
r= +( )

13
20 1 for sandy rivers       (10.60)  

  V C Q C C CVS

r
r

VS V S
r r= =

−
+( ) +( )+[ ] +( )[ ]

7 5
25 1 3 1 2 10 1( ) for gravel-beed rivers       (10.61)  

  V C QVS

r
r=

−
+( )

21 5
60 1 for sandy rivers       (10.62)   

 For the special case  r   =  1, equations  (10.54)  to  (10.62)  reduce, respectively, to

  B C
Q
S

C nCB B= =
1 2

1 4 2
1 2

/

/
/, ( )       (10.63)  

  B C Q C
C
C

BS BS
B

S

= =⎛
⎝⎜

⎞
⎠⎟

3
5

1 4 for gravel-bed rivers       (10.64)  

  B C QBS=
13
24 for sandy rivers       (10.65)  

  h C
Q
S

C C nh h= = −
3 10

3 20 2
3 10 3 10

/

/
/ /, ( )       (10.66)  

  h C Q C C ChS hS h S= = −
9
25 3 20( ) for gravel-bed rivers       (10.67)  
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  h C QhS=
13
40 for sandy rivers       (10.68)  

  V C Q S C C CV V n B= = −1 5 2 5 3 5 2 5 1/ / / /, [( ) ( ) ]       (10.69)  

  V C Q C C CVS VS V S= =
1

25 2 5( ) for gravel-bed rivers       (10.70)  

  V C QVS=
2

15 for sandy rivers       (10.71)   

 This is the most investigated possibility. In this case, exponent  b  of discharge 
is found to vary from 0 to 1, as shown in Table  10-7 , and scale factor  C B   varies 
with fl ow resistance. The precise value of  b  depends on the weighting factor  r , 
which specifi es the proportion for adjustment of stream power among  B ,  h , and 
 V . For the special case  r   =  1, where the adjustment is equally proportioned, 
 b   =  0.5. The width–discharge relation is found to depend on the slope of the 
channel,  S . If  S  is expressed as a function of discharge with an exponent of  − 1/6, 
then the range of  b  becomes 0 to 13/12. These values of  b  encompass the entire 
range of values reported in the literature. 

 The value of exponent  f  varies from 0 to 3/5 (when  r  ranges from 0 to  ∞ ), 
shown in Table  10-7 ; the scale factor  C h   is dependent on the fl ow resistance. The 
precise value depends on the value of  r . For the special case  r   =  1, the value of  f  
is 3/10. If the slope is expressed in terms of discharge with the power of  − 1/6, 
then the value of  f  ranges from 0 to 13/20 (when  r  ranges from 0 to  ∞ ). These 
derived exponent values encompass the reported range. 

 The value of exponent  m  varies from 0 to 2/5, as shown in Table  10-7 ; the 
scale factor  C V   is dependent on the fl ow depth. The exact value of  m  depends on 
the value of  r . For the special case  r   =  1, the value of  m  is 1/5. If the slope is 
expressed in terms of discharge with the power of  − 1/6, then the  m  exponent 
varies from  − 1/12 to 7/20 (when  r  ranges from 0 to  ∞ ). Thus, the derived expo-
nent values are seen to envelop the reported range. 

 For the downstream geometry of 72 streams from a variety of exponents, 
Park ( 1977 ) reported the range of  b  as 0.03 to 0.89 with modal class as 0.4 to 0.5; 
the range of  f  as 0.09 to 0.70 with modal class as 0.3 to 0.4; and the range of  m  as 
 − 0.51 to 0.75 with modal class as 0.1 to 0.2. Thus, the derived exponents are in 
the reported ranges. This discussion illustrates that the values of exponents  b ,  f , 
and  m  do not possess fi xed values; rather they vary over certain ranges dictated 
by the way the adjustment of stream power is distributed among variables. Fur-
thermore, the scale parameters are variant, depending on the channel hydraulics. 
This observation should be helpful with regionalization of scale factors.  

  10.4.3     Possibility III: Hydraulic Geometry Relations for Depth, 
Roughness, and Velocity 

 Under this possibility ( P n    =   P h  :  C  3   =   nh  5   J   /3 ), the hydraulic geometry relations result 
for  h ,  B , and  n  in terms of  Q . Following the same three steps as under possibility 
I, these relations are derived for gravel-bed and alluvial rivers. Substitution of 
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equation  (10.32)  in equation  (10.5)  and a little algebraic manipulation yield the 
following:

  h C Q S C C Bh
J J

h B
J J= =+ − + + − +3 5 5 3 2 5 5 3 5 5 3 5 5/[ ] /[ ( )] /[ ] /[ ], ( )       (10.72)  

  V C Q S C C BV
J J J

V n= = ( )+( ) +[ ] +[ ] − −2 5 5 1 3 10 1 3 5 2 5/ ( ) / ( ) / /,       (10.73)  

  n C Q S C C Bn
J J

n
J J= =− + + + +1 1 1 2 1

3
1 1 1 1/[ ] /[ ( )] /[ ] /[ ], ( )       (10.74)   

 Substitution of equation  (10.37)  with  z   =   − 2/5 and  z   =   − 1/6 into equations  (10.72)  
to  (10.74)  yields

  h C Q C C ChS
J

hS h S
J= =+( ) − +( )[ ]

18
25 1 3 2 5 5( ) for gravel-bed rivers       (10.75)  

  h C QhS
J= +( )

13
20 1 for sandy rivers       (10.76)  

  V C Q C C CVS

J
J

VS V S
J= =

+
+( ) +( )[ ]

7 25
25 1 3 10 1( ) for gravel-bed riverss       (10.77)  

  V C QVS

J
J=

+
+( )

20 7
20 1 for sandy rivers       (10.78)  

  n C Q C C CnS
J

nS n S
J= =

−
+( ) +( )[ ]
6

5 1 1 2 1( ) for gravel-bed rivers       (10.79)  

  n C QnS
J=

−
+( )

13
12 1 for sandy rivers       (10.80)   

 For the special case  J   =  1, equations  (10.72)  to  (10.80)  reduce to

  h C
Q
S

C B Ch h= = −
3 10

3 20
3 10

3
3 10

/

/
/ /, ( )       (10.81)  

  h C Q C C ChS hS h S= = −
9
25 3 20( ) for gravel-bed rivers       (10.82)  

  h C QhS=
13
40 for sandy rivers       (10.83)  

  V C Q S C C BV V n= = −7 10 3 20 3 5 2 5/ / / /, ( )       (10.84)  

  V C Q C C CVS VS V S= =
16
25 3 20( ) for gravel-bed rivers       (10.85)  

  V C QVS=
27
40 for sandy rivers       (10.86)  

  n C
S
Q

C B Cn n= =
0 25

0 5
0 5

3
0 5

.

.
. ., ( )       (10.87)  

  n C Q C C CnS nS n S= =
−3
5 1 4( ) for gravel-bed rivers       (10.88)  

  n C QnS=
−13
24 for sandy rivers       (10.89)   
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 The value of exponent  f  varies from 0 to 3/5 (when  J  ranges from  ∞  to 0), as 
exhibited in Table  10-7 , and scale factor  C h   depends on the channel width. The 
exact value depends on the value of weighting factor  J . For the special case 
 J   =  1, the value of  f  becomes 3/10, as shown by equation  (10.81) . Equations  (10.72)  
and  (10.83)  contain a slope term. When the slope is expressed in terms of dis-
charge with the power of  − 1/6, then the  f  exponent varies from 0 to 13/20 (when 
 J  ranges from 0 to  ∞ ), as seen in Table  10-8a . The exponent values, thus, derived 
cover the whole range reported in the literature. 

 The value of exponent  m  varies from 2/5 to 1, as exhibited in Table  10-1 , and 
the scale factor  C V   depends on the channel width. This exact value depends on 
the value of the weighting factor  J . For the special case  J   =  1, the exponent  m  
assumes the value of 7/10, as shown by equation  (10.84) . Equations  (10.77)  and 
 (10.84)  contain a slope term. When this slope term is expressed in terms of dis-
charge with the power of  − 1/6, the  m  exponent varies from 7/20 to 1, as exhibited 
in Table  10-8a . These exponent values encompass the range reported in the 
literature. 

 The value of exponent  p  varies from 0 to  − 1 (as  J  ranges from 0 to  ∞ ), as 
shown in Table  10-7 , and the scale factor depends on the channel width. The 
precise value depends on the value of  J . For the special case  J   =  1, the  p  exponent 
becomes  − 0.5, as shown by equation  (10.87) . Equations  (10.74)  and  (10.87)  contain 
a slope term, which, when expressed in terms of discharge with the power of 
 − 1/6, results in the value of  p  ranging from  − 13/12 to 0 (as  J  ranges from 0 to 
 ∞ ), as shown in Table  10-8a . The exponent values thus derived encompass the 
reported range. 

 This discussion shows that exponents  f ,  m , and  p  do not possess fi xed values; 
rather, they vary over certain ranges, depending on the way the adjustment of 
stream power is distributed among variables. Furthermore, the scale parameters 
are variant, depending on channel hydraulics, and this observation should help 
with regionalization of scale parameters.  

  10.4.4     Possibility IV: Hydraulic Geometry Relations for Depth, 
Width, Roughness, and Velocity 

 The objective is to derive hydraulic geometry relations for  B ,  h ,  V , and  n  in terms 
of  Q  under this possibility. Following the same three steps as under possibility 
I, these relations are derived for gravel-bed and alluvial rivers. Substitution of 
equations  (10.27) ,  (10.29) , and  (10.32)  in equation  (10.5)  results in

  B C Q S C C CB
w r w r

B
r w r= =+ + − + + + +1 1 1 2 1

1 2
1 1/[ ] /[ ( )] /[ ], [ ( ) ]       (10.90)  

  h C Q S C C Ch
r Jr r r Jr r

h
r J= =+ + − + + − +3 5 5 5 3 2 5 5 5

3 2
1 3 5 5/[ ] /[ ( )] /[, [ ( ) ] rr r+5 ]       (10.91)  

  V C Q SV

wJ
wJ J w w r

wJ
wJ J w w=

+
+ +

−
+ +

⎡
⎣⎢

⎤
⎦⎥

−
+ +

+
+

3
5

2
5

2
3 1

3
5

1
2 2

1
3 1( ) ( ) ( ++

⎡
⎣⎢

⎤
⎦⎥ −=r

V n BC C C) / /, [ ( ) ]2 3 3 5       (10.92)  

  n C Q S C C Cn
wJ wJ J w wJ wJ J w

n
w J wJ wJ= =− + + + +/[ ] /[ ( )] / / /[, [( ) ( ) ]2

1
1

3
1 ++ +J w]       (10.93)   
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 Substitution of equation  (10.37)  with  z   =   − 2/5 and  z   =   − 1/6 into equations  (10.90)  
to  (10.91)  yields

  B C Q C
C

C
BS

w r
BS

B

S
w r= =⎛

⎝⎜
⎞
⎠⎟

+ +( )
+ +( )

6
5 1

1 2 1 for gravel-bed riverss       (10.94)  

  B C QBS
w r= + +( )

13
12 1 for sandy rivers       (10.95)  

  h C Q C C ChS

r
Jr r

hS h S
r Jr r= =+ +( ) − + +( )[ ]

18
25 1 3 2 5 5 5( ) for gravel-bedd rivers       (10.96)  

  h C QhS

r
Jr r= + +( )

13
20 1 for sandy rivers       (10.97)  

  
V C Q C C CVS

wJ
wJ J w w r

VS V S

wJ
wJ J w= = ( )

+
+ +

−
+ +

⎛
⎝⎜

⎞
⎠⎟ −

+ +

3
25

7
3

6 4
1

3
5

1
2 2(( )

+
+ +( )

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

1
3 1 w r for gravel-bed rivers

    
  (10.98)  

  V C QVS

wJ
wJ J w w r=

+
+ +( )

−
+ +( )

⎛
⎝⎜

⎞
⎠⎟

1
5

7
4

13
4

13
6 1 for sandy rivers       (10.99)  

  n C Q C C CnS

wJ
wJ J w

nS n S
wJ wJ J w= =

−
+ +( ) + +( )[ ]
6

5 2( ) for gravel-bed riivers       (10.100)  

  n C QnS

wJ
wJ J w=
−

+ +( )
13

12 for sandy rivers       (10.101)   

 For the special case  w   =   J   =   r   =  1, equations  (10.90)  to  (10.101)  reduce to

  B C
Q
S

C C CB B= =
1 3

1 6 1 2
1 3

/

/
/, ( )       (10.102)  

  B C Q C
C
C

BS BS
B

S

= =⎛
⎝⎜

⎞
⎠⎟

2
5

1 6 for gravel-bed rivers       (10.103)  

  B C QBS=
13
36 for sandy rivers       (10.104)  

  h C
Q
S

C C Ch h= = −
1 5

1 10 2
0 2

3
0 2

/

/
. ., [( ) ( ) ]       (10.105)  

  h C Q C C ChS hS h S= = −
6
25 1 10( ) for gravel-bed rivers       (10.106)  

  h C QhS=
13
60 for sandy rivers       (10.107)  

  V C Q S C C CV V n B= = −7 15 4 15 3 5 2 5 1/ / / /, [( ) ( ) ]       (10.108)  

  V C Q C C CVS VS V S= =
9

25 4 151( ) for gravel-bed rivers       (10.109)  

  V C QVS=
19
45 for sandy rivers       (10.110)  

  n C
S
Q

C C Cn n= =
1 6

1 3 1 3
1 3

/

/
/, [ ]       (10.111)  
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  n C Q C C CnS nS n S= =
−2
5 1 6( ) for gravel-bed rivers       (10.112)  

  n C QnS=
−13
36 for sandy rivers       (10.113)   

 The coeffi cients  C B   ,   C h  ,  C V  , and  C n   in equations  (10.107)  to  (10.113)  are defi ned in 
terms of morphological coeffi cients  C  1,   C  2 , and  C  3  as

  C C CB = [ ] /
1 2

1 3       (10.114)  

  C C Ch = −( ) ( ). .
2

0 2
3

0 2       (10.115)  

  C C C CV = [( ) ( ) ( )/ / /
1

1 3
2

2 5
3

1 5       (10.116)  

  C C Cn = ( ) ( )/ /
1

1 3
3

1 3       (10.117)   

 Here  C B  ,  C h  ,  C V  , and  C n   are the coeffi cients associated with fl ow width, depth, 
velocity, and Manning ’ s  n , respectively, and depend on  C  1 ,  C  2 , and/or  C  3 , given, 
respectively, by equations  (10.27) ,  (10.29) , and  (10.32) . Because the discharge 
 Q   =   BhV , equations  (10.90)  to  (10.101)  or  (10.102)  to  (10.113)  show that the sum 
of exponents of  Q  equals 1. Similarly, the sum of exponents of  S  from these equa-
tions equals 0. 

 The value of exponent  b  varies from 0 to 1, as exhibited in Table  10-7 . The 
exact value depends on the values of the weighting factors. For the special case 
 w   =   r   =  1, the value of  b  becomes 1/3, as shown by equation  (10.102) . Equations 
 (10.90)  and  (10.102)  contain a slope term; when this slope is expressed in terms 
of discharge with a power of  − 1/6, then the exponent varies from 0 to 13/12, 
as shown in Table  10-8a . These values encompass the range reported in the 
literature. 

 The value of exponent  f  varies from 0 to 1/5, as shown in Table  10-7 . For the 
special case  J   =   r   =  1, the value of  f  becomes 1/5, as shown by equation  (10.105) . 
Equations  (10.91)  and  (10.105)  contain a slope term. When slope is expressed in 
terms of  Q  with a power of  − 1/6, the exponent  f  varies from 0 to 13/60, as shown 
in Table  10-8a . These exponent values cover the reported range. 

 The value of exponent  m  varies from 0 to 1, as seen in Table  10-7 . For the 
limiting case,  w   =   J   =   r   =  1, the  m  exponent value becomes 7/15, as shown by 
equation  (10.108) . Equations  (10.92)  and  (10.108)  contain a slope term. When the 
slope is expressed in terms of discharge with the power of  − 1/6, the value of the 
 m  exponent varies from  − 1/12 to 1, as shown in Table  10-8a . These exponent 
values cover the range reported in the literature. 

 The value of exponent  p  varies from  − 1 to 0, as shown in Table  10-7 . For the 
special case,  J   =   w   =  1, the value of  p  becomes  − 1/3, as shown by equation  (10.111) . 
Equations  (10.93)  and  (10.111)  contain a slope term, which, when expressed in 
terms of  Q  with the power of  − 1/6, leads to the value of  p  ranging from  − 13/12 
to 0, as seen in Table  10-8a . 

 This discussion shows that the values of the  b ,  f ,  m , and  p  exponents are not 
fi xed; rather, they vary over certain ranges, as exhibited by equations  (10.103)  to 
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 (10.113) . The variation is indeed continuous and is dictated by the way the adjust-
ment of stream power is distributed among variables. Under this possibility, the 
adjustment occurs simultaneously in river width, depth, velocity, and roughness. 
The fourth possibility is most general and leads to hydraulic geometry expres-
sions where the channel adjusts its width, depth, velocity, and roughness to 
accommodate changes in discharge. 

  Example 10.6          Based on the exponent values given in Tables  10-2 and 10-4 , what 
interpretations can be made regarding different possibilities that the rivers under 
consideration may be satisfying?  

  Solution     In Table  10-2 , the value of exponent  b  ranges from 0.30 to 0.71. A high 
value of the exponent implies that a large change in discharge leads to a relatively 
small change in width. This change happens in large basins under high fl ows or 
in small basins under low fl ows. That is, width does not exercise as much control. 
In this case, the depth and velocity exercise a greater control. An example of such 
a case is a very wide river. In a similar fashion, the infl uence of exponents  f  and 
 m  can be evaluated. The value of the  f  exponent ranges from 0.22 to 0.69, and the 
value of the  m  exponent varies from 0.01 to 0.31. A higher value of the  f  exponent 
implies that a large change in discharge results in a relatively small change in 
depth. This change happens in very wide rivers. If the  m  exponent is very low, 
say 0.01, then a small change in discharge leads to a large change in velocity, as, 
for example, is the case in steeply sloping channels. In Table  10-4 , the value of  b  
varies from 0.45 to 0.9, the value of  f  from 0.25 to 0.47, and the value of  m  from 
0.06 to 0.22. Similar conclusions can be drawn in this case as well.     

  Questions 

   Q10.1      Flow characteristics of Standing Stone Creek, in central Pennsylvania, 
corresponding to mean annual fl ood (2.3-year recurrence interval) meas-
ured by Brush ( 1961 ) are given in Table  10-9 . Plot on a log–log paper 
fl ow width, depth, velocity, and slope as a function of discharge and 
fi t straight lines. How good is the fi t of these lines? Compute param-
eters (exponent and proportionality coeffi cient) of the relations between 
discharge and fl ow characteristics. Check if the sum of exponents 
equals 1.   

  Q10.2      Compare the exponents determined in Q10.1 with those reported in the 
literature, as given in Table  10-10 . What can then be said about the Stand-
ing Stone Creek fl ow characteristics?  

  Q10.3      Determine if the morphological equation  (10.3)  relating width and depth 
of fl ow is valid. Compute the spread of the associated coeffi cient.  
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Station no.

Mean 
annual 

fl ood,  Q  2.3  
(ft 3 /s)

Bankfull 
width,  B  

(ft)

Bankfull 
depth,  d  

(ft)

Bankfull 
velocity,  V  

(ft/s)
Slope, S  

(ft/ft)

Drainage 
area,  A d   

(mi 2 )

Length of 
stream,  L  

(mi)

1 64 8 1.3 6.2 0.034 0.88 1

2 290 15 1.58 12.15 0.015 5.78 2.9

3 490 23 2.17 9.82 0.017 10.73 4.5

4 820 35 2.29 10.2 0.011 20.69 6.8

5 1,260 47 2.66 10.1 0.0038 34.27 10

6 2,150 8 2.47 15.1 0.0015 66.01 13.9

7 2,800 68 2.92 21.4 0.0024 92.63 17.7

8 3,000 75 5.19 7.7 0.012 99.88 20.1

9 3,300 100 3.7 8.9 0.001 109.72 24.7

10 3,800 100 3.18 12 0.001 133.3 28

   Source: Data from Brush  1961 .   

 Table 10-9      Measurements of fl ow characteristics of Standing Stone Creek, 
Pennsylvania.  

Source

Exponents

Remarks b  F  m  p  y 

Langbein ( 1964 ) 0.23 0.42 0.35  − 0.07 — Theory of minimum variance

Li ( 1974 ) 0.24 0.46 0.30 0.0 Tractive force theory

 Table 10-10      Theoretically derived values of hydraulic geometry exponents as reported 
in the literature.  

  Q10.4      Collect the values of hydraulic geometry exponents given in the chapter 
as well as from the literature. Then, plot a histogram of each exponent 
and compute the mean, standard deviation coeffi cient of variation, and 
coeffi cient of skewness of each exponent.  

  Q10.5      Compare the mean values of hydraulic geometry exponents computed 
in Q10.4 with what is normally used in the literature, as given in Table 
 10-10 . What does the spread in each exponent value mean hydraulically? 
Comment on the hydraulic signifi cance of the coeffi cient of skewness of 
each exponent value.   

  Q10.6      Different possibilities for hydraulic geometry adjustments have been dis-
cussed in the chapter. List these possibilities and the environments under 
which they occur. What is the most common possibility and why?  
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  Q10.7      Hydraulic geometry adjustments respond to geological and climatic 
characteristics. The size of a river is also determined by these character-
istics. Which possibility is more likely for which geological and climatic 
regime and why?  

  Q10.8      Human-made changes also affect river or channel hydraulic geometry. 
Assume that a river is leveed for a certain portion, as is the case for many 
rivers in the United States. Which possibility is more likely for such a 
river and why?  

  Q10.9      In the Indian subcontinent, there are large irrigation canal systems. What 
possibility is more likely for such canals and why?  

  Q10.10      Assume that some of the canals in Q10.9 are lined. What possibility is 
then more likely for such canals and why?    
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    Chapter 11 

  At-a-Station 
Hydraulic Geometry  

       The previous chapter discusses downstream hydraulic geometry relations 
between the mean stream channel form and discharge along a stream network 
in a hydrologically homogeneous basin. This chapter extends the discussion to 
at-a-station hydraulic geometry relations. 

  11.1     Hydraulic Geometry Relations 

 Leopold and Maddock ( 1953 ) defi ned at-a-station hydraulic geometry as the 
relations of the mean stream channel form and hydraulic variables with dis-
charge at a station on a stream. The channel form includes the mean cross-
sectional geometry (e.g., the width, depth, and wetted parameter), and the 
hydraulic variables include the mean slope, mean friction, mean velocity, and 
suspended sediment load for varying infl uxes of water and sediment to the 
channel and the specifi ed channel boundary conditions. 

 Hydraulic geometry relations are of great practical value in prediction of 
alluvial channel behavior, such as scour and fi ll, and channel deformation; layout 
of river training works; design of stable channels, canals, and intakes, river fl ow 
control works, irrigation schemes, and river improvement works; channel man-
agement; river restoration; modeling aquatic biota production systems; fl ow 
and sediment routing; fl ood estimation; and drainage net confi gurations. The 
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exponents of these relations can also be used to discriminate between different 
types of river sections (Richards  1976 ) and rivers in different types of landscapes, 
as well as in planning for resource and impact assessment (Allen et al.  1994 ). The 
at-a-station hydraulic geometry can be used to differentiate between the channel 
forms corresponding to the natural state and restored forms of a river. For 
example, one can determine the state of a restored river after a certain period of 
time, say 5, 10, or 15 years. In a similar vein, one can determine the effect of 
climate change on channel form by relating climate-related changes in runoff and 
land use to transport, turnover, retention, and sedimentation of nutrients and 
fi ne-grained material from land to sea. At-a-station hydraulic geometry relations 
have, therefore, been a subject of much interest and discussion in hydraulic and 
hydrologic literature. 

 Leopold and Maddock ( 1953 ) expressed the hydraulic geometry relation-
ships in the form of power functions of discharge as

  B aQ d cQ V kQb f m= ……… = ……… =, . , .       (11.1)  

where  B  is the channel width;  d  is the fl ow depth;  V  is the fl ow velocity;  Q  is the 
fl ow discharge; and  a ,  b ,  c ,  f ,  k , and  m  are parameters. Also added to equation 
 (11.1)  are

  n NQ S sQp y= ……… =, .       (11.2)  

where  n  is Manning ’ s roughness factor;  S  is the bed slope; and  N ,  p ,  s , and  y  are 
parameters. Exponents  b ,  f ,  m ,  p , and  y  represent, respectively, the rate of change 
(in the logarithmic domain) of the hydraulic variables  B ,  d ,  V ,  n , and  S  as  Q  
changes; and coeffi cients  a ,  c ,  k ,  N , and  s  are scale factors that defi ne the values 
of  B ,  d ,  V ,  n , and  S  when  Q   =  1. The at-a-station hydraulic geometry entails mean 
values over a certain period of time. 

  Example 11.1          Flow characteristics of Brandywine Creek, at Cornog, Pennsylva-
nia, measured by Wolman ( 1955 ), are given in Table  11-1 . Plot on a log-log paper 
fl ow width, depth, velocity, friction factor, and slope as a function of discharge 
and fi t straight lines. How well do these lines fi t? Compute parameters (exponent 
and proportionality coeffi cients) of the relations between discharge and fl ow 
characteristics. Check if the sum of exponents equals 1.   

  Solution     The relations given by equations  (11.1)  and  (11.2)  are plotted on log-log 
paper as shown in Fig.  11-1 . The best fi tted lines are determined and their expo-
nents and intercepts are found, as shown in Table  11-2 . Note that  ack   =  30.592  ×  
0.2048  ×  0.1599  =  1.002  ≈  1.00 and  b   +   f   +   m   =  0.0851  +  0.3718  +  0.5424  =  0.999  ≈  1.00. 
It is seen that depth and velocity are most strongly related to discharge, width, 
and roughness are weakly related, and slope is poorly related to discharge.    
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Date
Discharge 

 Q  (ft 3 /s)
Width, 
 B  (ft)

Mean 
depth, 
 d  (ft)

Mean 
velocity, 
 V  (ft/s)

Cross-
sectional 
area (ft 2 )

Slope 
of water 
surface, 
 S  (ft/ft)

Manning ’ s 
roughness, 

 n 

8/1/1951 10.3 23.5 0.82 0.53 19.3 0.0033 0.14

8/6/1951 8.6 41 0.41 0.5 17 0.0033 0.094

8/11/1951 12.9 41 0.48 0.64 19.6 0.0033 0.082

9/7/1951 14.7 41.5 0.52 0.69 21.4 0.0333 0.8

9/10/1951 5.7 39.5 0.34 0.44 13.6 0.0033 0.094

4/27/1952 304 49.6 1.56 3.92 77.6 0.0034 0.034

4/28/1952 830 55.8 2.44 6.1 136 0.0037 0.027

5/27/1952 73.4 44 0.9 1.86 39.5 35 0.044

7/8/1952 19.4 43 0.57 0.79 24.4 0.0034 0.075

7/9/1952 322.4 47.7 2.09 3.22 100 0.0033 0.043

7/11/1952 35 42.7 0.79 1.04 35.09 0.0034 0.071

   Note:   Drainage area  =  25.7 mi. 2 , and length of reach  =  645 ft.  
  Source:   Data from Wolman  1955 .   

 Table 11-1      Measurements of fl ow characteristics of Brandywine Creek at Cornong, 
Pennsylvania.  

 a 30.592  c 0.2048  k 0.1599  N 0.2934  s 0.0053

 b 0.0851  f 0.3718  m 0.5424  P  − 0.356  y  − 0.065

 Table 11-2      Exponents and intercepts of best-fi tted lines from Example  11.1 .  

c11.indd   459c11.indd   459 5/21/2014   11:14:29 AM5/21/2014   11:14:29 AM



460 Entropy Theory in Hydraulic Engineering

(a)

(b)

(c) 

 Figure 11-1      Relations of width, depth, velocity, roughness, and slope to discharge for 
Brandywine Creek at Cornong, Pennsylvania.            
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(d)

(e)

Figure 11-1, Continued
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Date
Discharge 

 Q  (ft 3 /s)
Width, 
 B  (ft)

Mean 
depth, 
 d  (ft)

Mean 
velocity, 
 V  (ft/s)

Cross-
sectional 
area (ft 2 )

Slope 
of water 
surface, 
 S  (ft/ft)

Manning ’ s 
roughness, 

 n 

7/21/1951 218.4 98 1.47 1.51 144.4 0.0075 0.034

7/31/1951 124.9 93 1.34 0.94 124.5 — —

8/7/1951 128.7 93 1.28 1.08 119 0.0078 0.045

8/13/1951 191.5 97 1.47 1.35 142.6 0.0074 0.039

8/20/1951 646.7 101 2.78 2.3 281 0.0076 0.035

8/27/1951 115.8 92 1.17 1.08 107.6 0.0074 0.042

9/8/1951 107.2 91 1.14 1.04 103.7 0.0076 0.043

9/15/1951 385.7 100 1.9 2 190.1 76 0.031

4/27/1952 1,410 109 4.17 3.1 455 0.0032 —

4/28/1952 2,420 121 4.42 4.52 535 — —

5/26/1952 2,190 125 4.52 3.87 565 0.0028 —

7/10/1952 1,310 113 4.14 2.8 468.2 — —

8/8/1952 864.3 103.4 3.02 2.75 312.9 — —

   Note:   Drainage area  =  259 mi. 2 , and length of reach  =  758 ft.  
  Source:   Data from Wolman  1955 .   

 Table 11-3      Measurements of fl ow characteristics of Brandywine Creek at Lenape, 
Pennsylvania.  

   Example 11.2          Flow characteristics of Brandywine Creek at Lenape, Pennsylva-
nia, measured by Wolman ( 1955 ), are given in Table  11-3 . Plot on a log-log paper 
fl ow width, depth, velocity, friction factor, and slope as a function of discharge 
and fi t straight lines. How well do these lines fi t? Compute parameters (expo-
nent and proportionality coeffi cients) of the relations between discharge and 
fl ow characteristics. Check if the sum of exponents equals 1. Compare these coef-
fi cients and exponents with those computed in Example  11.1  and comment on 
the differences.   

  Solution     Width, depth, velocity, roughness, and slope are plotted against dis-
charge on a log-log paper and straight lines are fi tted, as shown in Fig.  11-2 . The 
values of slope (exponents) and intercepts (coeffi cients of proportionality) are 
determined as given in Table  11-4 . Note that  ack   =  61.195  ×  0.1299  ×  0.1225  =  0.974 
and  b   +   f   +   m   =  0.0847  +  0.4659  +  0.4528  =  1.003 which is close to 1.00.      
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(a)

(b)

(c) (d)

  Figure 11-2      Relations of width, depth, velocity, roughness, and slope to discharge for 
Brandywine Creek at Lenape, Pennsylvania.    

 a 61.195  c 0.1299  k 0.1225  N 0.0927  s 0.0381

 b 0.0847  f 0.4659  m 0.4528  P  − 0.167  y  − 0.314

 Table 11-4      Exponents and coeffi cients for Example  11.2 .  
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  11.2     Preliminaries 

 The mean values of the hydraulic variables of equations  (11.1)  and  (11.2)  are 
known to follow necessary hydraulic laws and the principle of the minimum 
energy dissipation rate or stream power (Langbein  1964 ; Yang et al.  1981 ). These 
mean values correspond to the equilibrium state of the channel at a station. The 
implication is that an alluvial channel adjusts its width, depth, slope, velocity, 
and friction to achieve a stable condition, which is regarded as the one corre-
sponding to the maximum sediment transporting capacity. The average river 
system tends to develop in a manner that produces an approximate equilibrium 
between the channel and the water and sediment it must transport (Leopold and 
Maddock  1953 ). Cheema et al. ( 1997 ) determined stable width of an alluvial 
channel using the hypothesis that an alluvial channel attains a stable width when 
the rate of change of unit stream power with respect to its width is at a minimum. 
This means that an alluvial channel with stable cross section has the ability to 
vary its width at a minimum consumption of energy per unit width per unit 
time. Knighton ( 1977 ) observed that at cross sections undergoing a systematic 
change, the potential for adjustment toward some form of quasiequilibrium in 
the short term is related to the fl ow regime and channel boundary conditions 
and that the approach to quasiequilibrium or establishment of a new equilibrium 
position is relatively rapid. 

  11.2.1     Discontinuities 

 Richards ( 1973 ) showed that there may be discontinuities in hydraulic geometry 
relations at the bankfull stage and there may be nonlinear response by the depen-
dent variables to a change in discharge below the bankfull stage. The power 
function model of equations  (11.1)  and  (11.2)  is not a general model. The rates of 
change of both depth and velocity are related to the rate of change of roughness, 
which itself is a function of channel geometry. Richards ( 1973 ) suggested that a 
log-quadratic function may be more appropriate than a log-linear function, in 
particular, for depth–discharge and velocity–discharge relations. However, the 
power function model is now widely accepted in the literature.  

  11.2.2     Change in Behavior 

 The at-a-station stream behavior can change signifi cantly over a short period of 
time as a result of irregular or more gradual adjustment of channel form to fl ow 
conditions. Boundary geology, geomorphology, and discharge have dominant 
infl uences among all independent variables. Braided reaches have steeper slopes 
than do undivided reaches, and slopes are steeper in meandering than in straight 
reaches. 

 The exponents and coeffi cients of at-a-station hydraulic geometry relations 
of equations ( 11.1  and  11.2 ) vary with time as well as from high fl ow range to 
low fl ow range. The variations occur because the infl ux of water and sediment 
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and the boundary conditions (called constraints) that the river is subjected to 
vary with time. This statement means that for varying infl ux of water and sedi-
ment, a channel at a given station may exhibit a range of exponents and scale 
factors in hydraulic geometry relations in response to the constraints imposed 
on the channel. It is these constraints that force the channel to adjust its allowable 
hydraulic variables. For example, if a river section has a pavement at the bottom, 
then it cannot adjust its depth and is, therefore, left to adjust other variables, 
such as width. Likewise, if the section is lined, then it cannot adjust its width 
and friction.  

  11.2.3     Interaction among Hydraulic Variables 

 Using variations in at-a-station hydraulic geometry, Knighton ( 1974 ) explained 
interactions of measurable hydraulic variables with changes in discharge and 
modifi cation in channel form at systematically selected stations in a single river 
system. The rate of width adjustment is infl uenced by the cohesiveness of the 
bank material, and through its effect on the energy loss, it, in turn, infl uences the 
rate of change of the mean velocity. Resistance decreases rapidly with increasing 
discharge where the grain roughness is the dominant element but is less domi-
nant where channel curvature and form roughness exert additional effects that 
persist for greater increases of depth. The rate of velocity increase varies accord-
ingly. The degree of intersectional variation in hydraulic relations casts doubts 
on the validity of defi ning a mean value. The variation is systematically related 
to channel pattern; straight reaches are distinguishable from meander and 
braided reaches in terms of the rates of change of width, velocity, resistance, and 
slope. Pools and riffl es may add a further distinction.  

  11.2.4     Variations in Geometry Relations 

 Investigating the variation in the width–discharge relation, Knighton ( 1974 ) 
found that in channels with cohesive banks and no marked downstream varia-
tion in bank erodibility, the at-a-station rate of change of channel width was 
principally controlled by bank material and composition, particularly the silt–
clay content. The deposition of noncohesive sediment in the form of point bars 
and central islands permit the stream to increase its rate of change of width at a 
cross section. This situation means that meandering and braided reaches can be 
distinguished from straight reaches on the basis of the  b -exponent value. This 
adjustment would reduce the velocity range. The way in which width changes 
with discharge affects how a stream spends its energy. In an area of homoge-
neous surfi cial material, streams may be expected to have at-a-station hydraulic 
geometries with relatively uniform width–discharge relations. Knighton ( 1974 ) 
found an average value of  b   =  0.03 for straight channel sections, and average 
 b   =  0.24 for meandering or braided sections. Wolman ( 1955 ) examined temporal 
variations in hydraulic geometry at individual stations. Myrick and Leopold 
( 1963 ) investigated the hydraulic geometry of a small estuary.  
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  11.2.5     Channel Types 

 Richards ( 1976 ) used hydraulic geometry exponents to discriminate between 
channel types of river sections, using data from pool and riffl e sections. He used 
several width–discharge curves to cover a wide range of discharges up to the 
bankfull stage. He concluded that the chances of a natural river section exhibiting 
constant values of the parameters over a full range of within-bank fl ows were 
extremely limited. Merigliano ( 1997 ) focused on the scour and fi ll dynamics at 
cross sections and how this is related to the exponent ratio  m / f . 

 Schumm ( 1960 ) noted that changes in width and depth with increasing dis-
charge may occur either by erosion of banks and bed or by progressing the fi lling 
of a stable channel. When banks are more readily eroded than the bed,  b   >   f , and 
when the reverse is true,  f   >   b . For stable channels under normal conditions,  f   >  
 b  indicates a tendency for the cross section to become proportionally deeper and 
narrower with respect to increasing discharge (lower  B / d ). If  b   >   f , the width-to-
depth ratio increases with discharge and the tendency is toward a wider shallow 
channel. For stable channels, rectangular and parabolic channels will have 
decreased width-to-depth ratios. The rate of decrease is greater for rectangular 
channels than for other shapes. Straight and meandering channels seem to be 
similar in their response to increasing discharge. Braided channels appear dis-
tinctly different from these two. Average values of at-a-station relationships 
should not be used as a basis for comparing different stream systems. 

 The objective of this section is to apply the theory of minimum energy dis-
sipation rate and the principle of maximum entropy to derive at-a-station 
hydraulic geometry relations. Inherent in the derivation is an explanation for 
self-adjustment of channel morphology. It is shown that by combining the 
hypotheses based on the principles of maximum entropy and minimum energy 
dissipation rate, a family of hydraulic geometry relations is obtained. This family 
may encompass many of the hydraulic geometry relations derived using differ-
ent hypotheses. Singh and Zhang ( 2008a, b ) derived at-a-station hydraulic geom-
etry using the theory of minimum energy dissipation rate and the principal of 
maximum entropy.  

  11.2.6     Theories of Hydraulic Geometry 

 As discussed in Chapter 10, there are many theories for deriving functional 
relationships among hydraulic variables for hydraulic geometry or equations 
 (11.1)  and  (11.2) . Most of these theories have been used for deriving downstream 
hydraulic geometry relations, but empirical, minimum variance, and tractive 
force theories have also been applied to at-a-station hydraulic geometry, and 
other theories can also be extended to at-a-station hydraulic geometry relations. 
Each hypothesis leads to unique relations between channel form parameters and 
discharge, and the relations corresponding to one hypothesis are not necessarily 
identical (in terms of exponents and proportionality constants) to those corre-
sponding to another hypothesis. 

 Langbein ( 1964 ) proposed the minimum variance hypothesis to defi ne the 
hydraulic geometry of a river channel at a given cross section in response to 
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changing discharge. Knighton ( 1977 ) provided an alternative derivation of the 
hypothesis. Assuming the slope to be invariant, the channel formed in stable 
materials attains a cross section with width varying as the 0.55 power of the mean 
depth ( b   =  0.55 f ) (Nizery and Braudeau  1955 ), the velocity increases as the 0.35 
power, depth as the 0.42 power, and width as the 0.23 power of the discharge. 
If the velocity and depth increase in this manner, the resistance factor (Darcy–
Weisbach ’ s) decreases as the 0.28 power of the discharge at constant slope, 
whereas the Manning resistance factor would decrease as the 0.07 power of the 
discharge, suggesting that the assumption of a constant resistance factor would 
not be unduly restrictive. Applying the minimum variance hypothesis to defi n-
ing the regime characteristics of the lower Namoi–Gwydir drainage basin in 
Australia, Riley ( 1978 ) found the power of width as 0.48, the power of 0.30 for 
depth, and the power of 0.22 for velocity. Williams ( 1978 ) tested the minimum 
variance hypothesis on 165 observed cross sections on natural rivers in the 
United States. For fl ow conditions ranging from 2.83  ×  10  − 4  to 1,980 m 3 /s, widths 
from 0.31 to 579 m, mean depths from 0.031 to 10.7 m, and the median bed-
material sizes ( d  50 ) from 0.06 to 100 mm, he found 0.00  ≤   b   ≤  0.82 [width (m)], 
0.10  ≤   f   ≤  0.78 [depth (m)], and 0.03  ≤   m   ≤  0.81 [velocity (m/s)]. The hypothesis 
was found to predict the average exponents reasonably accurately. 

 Using the threshold channel cross-sectional shape and assuming incipient 
motion conditions on noncohesive channel boundary for channel forming dis-
charge in the tractive force theory, Li ( 1975 ) derived the power of 0.24 for the 
width, 0.46 for depth, and 0.30 for velocity and compared them with Judd and 
Peterson ’ s ( 1969 )  b   =  0.18,  f   =  0.51, and  m   =  0.31 based on fi eld observations.  

  11.2.7     Triaxial b-m-f Diagram 

 Park ( 1977 ) analyzed exponent data, collected from literature, of hydraulic geom-
etry for 139 at-a-station sites from Brazil, Germany, Great Britain, Malaysia, 
Norway, Puerto Rico, and the United States. By plotting the three exponents in 
a triaxial diagram, he examined variations within and between major climatic 
areas. Plotting histograms of frequencies of three exponents ( b ,  m , and  f , ) sepa-
rately, he found that the width exponent data had a strongly negatively skewed 
distribution, ranging in value from 0 to 0.59, but most observations were in the 
range of 0.00 to 0.10, different from the theoretical value of 0.23. The depth expo-
nent showed a similar range of values with a modal class of 0.3 to 0.4, close to 
the theoretical value of 0.42 (Leopold and Langbein  1962 ). The velocity exponent 
ranged from 0.07 to 0.71 and was less normally distributed, with a modal class 
of 0.40 to 0.5; the theoretical value of 0.35 was outside this range. The general 
tendency for the at-a-station exponent was for the velocity to increase more 
rapidly relative to discharge than did the mean depth, whereas width varied 
little. Park ( 1977 ) examined simultaneous variations of exponents and found the 
three exponents to be interrelated. There was signifi cant scatter caused by bank 
material composition, sediment properties, channel symmetry associated with 
planform variations, and fl ow regime and fl ow variability. He examined the 
exponents from natural, proglacial, semiarid, humid temperate, tropical streams, 
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fl umes, and estuaries. The pattern of variation was quite different from one 
group to another. Thus, grouping by climate environments offered few clues, 
suggesting that local controls were more important. These controls include bank 
material, composition, the difference between meandering and braided reaches 
and between pool and riffl e sections, fl ow magnitude at low fl ow conditions, 
suspended sediment load, channel stability and lateral migration, channel stabi-
lization, modifi cation measures, and temporal fl uctuations around some quasi-
equilibrium state. It is not surprising that there is a wide range of combinations 
of the three exponents because of factors controlling variations in streams, along 
streams, and between streams, casting doubt on the use of mean values of expo-
nents to characterize the hydraulic geometry of particular areas. 

 In discussing Park ’ s ( 1977 ) fi ndings, Rhodes ( 1978 ) divided the triaxial 
diagram into 10 areas by plotting 5 lines representing:

   1.      constant values of the width/depth ratios ( b   =   f  ),  
  2.      competence ( m   =   f  ),  
  3.      Froude number ( m   =   f /2),  
  4.      velocity–cross-sectional area ratio ( m   =   b   +   f  ), and  
  5.      slope/roughness ratio ( m   =  2 f /3).    

 He showed that those channels represented by points within one area respond 
similarly to changes in discharge regardless of the specifi c values of the expo-
nents. In this way, the  b-m-f  diagram can help interpret hydraulic geometry. For 
587 sets of exponent data, he found  b   =  0.00 to 0.84,  f   =  0.01 to 0.84, and  m   =  0.03 
to 0.99. Rivers may perform their primary functions in a large variety of ways. 
The mean values of  b  and  m  deviate much more from the theoretical values than 
does  f . Emphasis should be on how streams are different in terms of their hydrau-
lic geometry. The data set analyzed is biased toward straight reaches. 

 Rhodes ( 1977 ) reported that the  b- f-m  diagram may be used for representa-
tion and interpretation of at-a-station hydraulic geometry. It allows an empirical 
classifi cation of channel cross sections. Lewis ( 1966 ) showed that hydraulic 
geometry relations obtained for intermediate to high discharges did not describe 
the relationship of width, depth, and velocity to discharges less than 1 ft 3 /s, 
because low discharges are incapable of modifying channel cross sections.   

  11.3     Derivation of At-a-Station Hydraulic 
Geometry Relations 

 Langbein ( 1964 ) and Yang et al. ( 1981 ), among others, emphasized that equations 
(11.1 and  11.2 ) correspond to the case when the channel is in equilibrium state. 
Langbein hypothesized that when a channel adjusts its hydraulic variables cor-
responding to this state, the adjustment is shared equally among the hydraulic 
variables. For varying discharge, morphological relations involve fi ve hydraulic 
variables: width, depth, velocity, friction, and slope. In practice, a channel cross 
section is seldom in an equilibrium state; this phenomenon means that the 
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adjustment among hydraulic variables is unequal. The exact proportion in which 
the adjustment is shared among variables is not clear. Therefore, it can be hypoth-
esized that hydraulic geometry relations depend on the adjustment of hydraulic 
variables, and the adjustment can explain the variability in the parameters (scale 
and exponents) of these relations or the variation in at-a-station hydraulic geom-
etry. This hypothesis is pursued in the next sections. 

 Yang ( 1972 ) defi ned the unit stream power (USP) as the time rate of potential 
energy expenditure per unit weight of water in an alluvial channel or simply the 
velocity–slope product ( VS ) that has the dimensions of power per unit weight 
of water. Thus, stream power (SP) is obtained by integrating USP over a given 
cross section and is the rate of energy dissipation caused by water:

  SP VAS Q S= =γ γ       (11.3)  

where  V  is the average fl ow velocity,  S  is the energy slope,  γ  is the weight density 
of water, and  Q  is the discharge of water. A channel responds to the infl ux of 
water and sediment coming from its watershed by the adjustment of  SP . Indeed, 
Yang ( 1972 ) found USP to be the dominating factor in the determination of 
the total sediment concentration. Yang ( 1976, 1986, 1996 ) also related sediment 
load and the channel geometry adjustment to SP. Thus, the temporal rate of 
adjustment of  SP  in a river cross section,  R S  , can be expressed (Singh and Zhang 
 2008a ) as

  R
d SP

dt
d Q S

dt
S = =( ) ( )γ

      (11.4)  

where  t  is time. 
 If a channel is assumed to be rectangular, with  h  as the depth of fl ow and  B  

as the width of fl ow, then the fl ow cross-sectional area  A   =   Bh , the wetted perim-
eter  P   =   B   +  2 h , and the hydraulic radius  R   =   A / P   =   Bh /( B   +  2 h ). If the channel 
is wide rectangular, then  R   ≅   h   =  depth of fl ow. The fl ow discharge in equation 
 (11.3)  can be obtained from Manning ’ s equation  (11.5a) , or Chezy ’ s equation 
 (11.5b) , or Darcy–Weisbach ’ s equation  (11.5c) . For wide rectangular channels, 
these equations can be written, respectively, as

  Q
n

AR S
n

Bh S= =1 12 3 1 2 5 3 1 2/ / / /       (11.5a)  

  Q C A RS CBh S= = 3 2/       (11.5b)  

  Q
g

f
A RS

g
f

Bh S f Bh S f
g

fy y
Dw Dw

y

= = = =2
2

2
2

2
23 2 3 2/ / ;       (11.5c)  

where  n  is Manning ’ s roughness coeffi cient,  C  is Chezy ’ s roughness coeffi cient, 
 f y   is the Darcy–Weisbach friction factor, and  g  is acceleration caused by gravity. 
From equations  (11.5a)  to  (11.5c) , we see that

  C
n

h C g fy= =1
2 21 6/ ; /       (11.6)   
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 Equations  (11.5a)  to  (11.5c)  can be expressed in a general kinematic form as

  Q Bh S= α β       (11.7)  

in which  α  is a roughness measure, and  β  is an exponent. For Manning ’ s equa-
tion,  α   =  1/ n , and  β   =  5/3; for Chezy ’ s equation,  α   =   C , and  β   =  3/2; and for 
Darcy–Weisbach ’ s equation,  α   =  2(2 g / f y  ) 0.5  or  α   =   f DW  , and  β   =  3/2. 

 Using equations  (11.3)  and  (11.7) , the stream power of a channel is expressed as

  SP = γ α βBh S3 2/       (11.8)   

 On the right side of equation  (11.8) , there are four variables:  α ,  B ,  h , and  S . 
When discharge changes, a river cross section can adjust its width, depth, veloc-
ity, roughness, and slope, or a combination thereof. Thus, it is hypothesized that 
for time-varying infl uxes of discharge, the channel cross section adjusts or mini-
mizes its stream power by adjusting these four variables. This hypothesis is 
similar to the one proposed by Langbein ( 1964 ) in his theory of minimum vari-
ance and is analogous to the one used by Singh et al. ( 2003a, b ) for downstream 
hydraulic geometry (Singh and Zhang  2008a, b ). Therefore, substitution of equa-
tion  (11.8)  in equation  (11.4)  yields

 
d

dt
R h S

dB
dt

BS h
dh
dt

Bh S
d
dt

S
( ) / / /SP = = + + +−γα γα β γ α γαβ β β3 2 3 2 1 3 2 3

2
BBh S

dS
dt

β 1 2/       (11.9)   

 Equation  (11.9)  expresses the change in stream power in time. It is constituted 
by four parts, designated as  R  1 ,  R  2 ,  R  3 , and  R  4 , and can be recast as

  
d

dt
R R R R RS

( )SP = = + + +1 2 3 4       (11.10)  

where  R i  ,  i   =  1, 2, 3, and 4, is defi ned as

  R h S
dB
dt

R BS h
dh
dt

R Bh S
d
dt

R1
3 2

2
3 2 1

3
3 2

4
3
2

= = = =−γα γα β γ α γβ β β/ / /; ; ; αα βBh S
dS
dt

1 2/        

  R  1  expresses the temporal adjustment of width;  R  2 , the temporal adjustment of 
depth;  R  3 , the temporal adjustment of friction; and  R  4 , the temporal adjustment 
of slope. Dividing by the total rate of adjustment SP,  R S  , one gets

  P
R
R

h S dB dt
d SP dt

B
S

= =1
3 2γα β / ( )

( )
/

/
      (11.11)  

  P
R
R

BS h dh dt
d SP dt

h
S
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−

2
3 2 1γα β β/ ( )

( )
/

/
      (11.12)  

  P
R
R

Bh S d dt
d SP dtS

α

βγ α
= =3

3 2/ ( )
( )

/
/

      (11.13)  
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  P
R
R

h S dS dt
d SP dt

S
S

= =4
1 23

2
γα β / ( )

( )
/

/
      (11.14)   

 In equations  (11.11)  to  (11.14) , respectively,  P B   can be interpreted as the pro-
portion of the temporal change of SP caused by the temporal rate of adjustment 
of width;  P h  , the proportion of the temporal change of SP caused by the temporal 
rate of adjustment of depth;  P   α  , the proportion of the temporal change of SP 
caused by the temporal rate of adjustment of friction; and  P S  , the proportion of 
the temporal change of SP caused by the temporal rate of adjustment of slope. 
Singh et al. ( 2003a, b ) used the same concept for downstream hydraulic 
geometry. 

 According to the principle of maximum entropy (Jaynes  1957 ), any system 
in equilibrium state under steady constraints tends to maximize its entropy. 
When a river cross section reaches a dynamic (or quasidynamic) equilibrium, the 
entropy should attain its maximum value. The principle of maximum entropy 
(POME) states that the entropy of a system is maximum when all probabilities 
are equal, i.e., the probability distribution is uniform. Applying this principle 
to a river cross section in dynamic equilibrium, equation  (11.10) , therefore, 
suggests

  P P P PB h S= = =α       (11.15)   

 Equation  (11.15)  holds, of course, under the stipulation that there are no con-
straints imposed on the channel section and can be interpreted to mean that the 
self-adjustment of SP is equally shared among  B ,  h ,  α , and  S . This interpretation 
is supported by Williams ( 1967, 1978 ) who found from an analysis of data from 
165 gauging stations in the United States that a channel cross section adjusted 
all its hydraulic parameters ( B ,  h ,  S , and  V ) in response to changes in the infl ux 
of water and sediment and that self-adjustments were realized in an evenly 
distributed manner among factors. Equation  (11.15)  is similar to the concept 
embodied in the minimum variance theory (Langbein  1964 ). 

 Equation  (11.15)  involves probabilities of four variables, meaning that any 
adjustment in hydraulic variables in combinations of two, three, or four may 
occur. These combinations give rise to different confi gurations of adjustment, 
which indeed occur in nature (Wolman  1955 ). Thus the equality among four 
probabilities yields 11 possibilities and hence leads to 11 sets of equations: (1) 
 P B    =   P h  , (2)  P B    =   P   α  , (3)  P B    =   P S  , (4)  P h    =   P   α  , (5)  P h    =   P S  , (6)  P   α    =   P S  , (7)  P B    =   P h    =   P   α  , 
(8)  P B    =   P   α    =   P S  , (9)  P B    =   P h    =   P S  , (10)  P h    =   P   α    =   P S  , and (11)  P B    =   P h    =   P   α    =   P S  . 

 It should be noted that all 11 possibilities can occur in the same river cross 
section at different times, or in different river cross sections at the same time or 
at different times. These different possibilities refl ect the dynamic and morpho-
logical responses of channels to changing discharge and sediment infl ux. Con-
sidering velocity, depth, shear, resistance, and stream power as independent 
variables for investigating the minimum variance theory, Williams ( 1978 ) 
explored 11 cases that are similar in spirit to the above 11 possibilities. For group-
ing channels based on such response, Rhodes ( 1977 ) partitioned the  b-m-f  diagram 
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into 10 areas based on 5 lines representing constant values of (1) width/depth 
ratio ( b   =   f  ), (2) competence ( m   =   f  ), (3) Froude number ( m   =   f /2), (4) velocity/
cross-sectional area ratio ( m   =   b   +   f  ), and (5) slope/roughness ratio ( m   =  2 f /3). 
The channels represented by the points in the same area respond similarly to 
changes in discharge regardless of the specifi c values of the exponents. Discount-
ing possibility 11 (the most general one), the 10 possibilities interestingly have 
some relationship to the 10 areas of Rhodes ( 1977 ). In the case of downstream 
hydraulic geometry, Singh et al. ( 2003a, b ) considered bed slope as constant, and 
of course the discharge was constant. As a result, they investigated only four 
possibilities. 

 Field observations by Leopold and Maddock ( 1953 ), Wolman ( 1955 ), and 
others show that the variation in slope  S  is small as compared with velocity, 
depth, width, and roughness. Therefore, slope may be assumed as constant. 
Under this assumption, equation  (11.15)  reduces to

  P P PB h= = α       (11.16)   

 Equation  (11.16)  suggests that adjustment in hydraulic variables occurs in four 
possible confi gurations: (1)  P B    =   P h  , (2)  P B    =   P   α  , (3)  P h    =   P   α  , and (4)  P B    =   P h    =   P   α  . 
This situation constitutes a special case of the general case presented earlier. In 
other words, confi gurations 1 and 2 are the same as possibilities 1 and 2, 
confi guration 3 is the same as possibility 4, and confi guration 4 is the same 
as possibility 7 of the general case. These possibilities can also be visualized 
from physical reasoning. Width and depth are related to the energy expenditure 
within a channel and are related to boundary sediment and sediment discharge 
(Colby  1961 ; Maddock  1969 ). The width–depth ratio is closely related to sedi-
ment transport (Schumm  1968 ) and to boundary sediments (Schumm  1960 ), 
especially for noncohesive bed sediments (Riley  1975 ). This ratio is also used as 
a measure of channel shape. Hydraulic radius or fl ow depth for wide rectangular 
channels is a measure of hydraulic effi ciency. Channel slope is controlled by bed 
material strength and fl ow impinging force. Breaks in channel slope along a cross 
section refl ect channel boundary roughness, channel size, and geometric shape. 
Channel roughness is a function of bed form and grain size constituting the bed 
and determines the energy loss. Different possibilities refl ect the variations in 
these channel characteristics in response to the boundary conditions and the 
infl ux of fl ow and sediment discharge. Riley ( 1975 ) divided 19 variables into four 
groups, which can be related to four possibilities in the special case as already 
enumerated. 

 To enumerate the consequences of these possibilities, one can either use the 
general discharge equation  (11.7)  or Manning ’ s equation  (11.5a) , or Chezy ’ s equa-
tion  (11.5b) , or Darcy–Weisbach ’ s equation  (11.5c) . Survey of the literature shows 
that Manning ’ s equation is used more commonly in hydraulic and river engi-
neering in general and more specifi cally in investigations on hydraulic geometry 
(e.g., Leopold and Wolman  1957 ; Wolman and Brush  1961 ; Stall and Fok  1968 , 
1970; Bray  1979 ). However, one may use a general discharge–resistance relation 
and then specialize using specifi c discharge–resistance equations. 
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  11.3.1     Morphological Equations 

 Morphological equations, refl ecting the adjustment of hydraulic variables for 
accommodating the temporal adjustment of stream power, arise when only two 
hydraulic variables are considered at a time. This method leads to seven possi-
bilities and the corresponding number of primary morphological equations, 
which are derived following. In general, it may be noted that the shape and 
longitudinal profi le of a river in quasiequilibrium are determined by the discharge 
and sediment concentration and the characteristics of the bank material. The 
initial size, shape, and resistance of the material provided by the river depends 
on the sediment concentration (Wolman  1955 ). A river exhibits such local varia-
tions as being alternately wide and narrow, straight and meandering, deep and 
shallow. River cross sections tend to be approximately semielliptical, trapezoidal, 
or triangular, and increasing discharge results in increased velocity, depth, and 
width. It is interesting to note that Williams ( 1978 ) grouped 165 at-a-station cross 
sections into fi ve classes, depending on the bank fi rmness. In all fi ve cases, the 
slope was considered constant. It may be emphasized that the form of equations 
is similar if the adjustment of stream power is considered in the spatial domain. 

  11.3.1.1     Possibility I:  P B    =   P h   

 Here  P B   is given by equation  (11.11)  and  P h   by equation  (11.12) . Equating these 
two equations, one obtains

  
dh
dt

h
B

dB
dt

= 1
β

      (11.17a)   

 Equation  (11.17a)  hypothesizes that the temporal change in stream power is 
accomplished by an equal temporal adjustment between fl ow depth  h  and fl ow 
width  B . This possibility occurs when the cross section has a fi xed roughness and 
fl ow is controlled by width and depth. An example is stable irrigation canals 
where increased discharge leads to increased depth and increased width. In such 
canals, banks and beds are relatively stable and, hence, the changes in roughness 
and slope are not pronounced. Another case is Blue Creek, which is a stream 
fl owing exclusively from the Sand Hills of Nebraska with a bed of 0.4- to 0.7-mm 
sand; it is almost devoid of fi ner sizes but with a mixture of fi ne material in the 
bank with the help of vegetation. It has cohesive banks with particles with a 
median diameter of 0.1 mm (Wolman and Brush  1961 ), and, hence, has stable 
banks. With changing discharge, both fl ow depth and width vary. This hypoth-
esis can be considered as a limiting case and holds under the equilibrium condi-
tion. Such a condition, however, is seldom achieved, and, therefore, temporal 
change in stream power is accomplished by an unequal adjustment between  B  
and  h . To account for the proportion in which the adjustment of stream power 
is shared between  h  and  B , equation (17a) is modifi ed by introducing a weighting 
factor,  r ,  r   ≥  0:

  
dh
dt

r h
B

d
dt

=
β

Β
      (11.17b)   
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 Integration of equation  (11.17b)  yields

  
B

h
C h C B

r Bh Bh
r

β
β

/
*= =or       (11.18a)  

where  C Bh   or  CBh*     is a constant of integration. For the limiting case,  r   =  1, equation 
 (11.18a)  reduces to

  B C h h C BBh Bh= =β βor * /1       (11.18b)   

 Parameter  C Bh   or  CBh*     can be designated as a primary morphological coeffi cient, 
and equation  (11.18a)  or (11.18b) can be designated as a primary morphological 
equation.  

  11.3.1.2     Possibility II:  P B    =   P   α   

 Here  P B   is given by equation  (11.11)  and  P   α   by equation  (11.13) . Equating these 
two equations, one obtains

  α αdB
dt

B
d
dt

=       (11.19a)   

 Equation  (11.19a)  hypothesizes that the temporal change in stream power is 
equally shared by temporal adjustments between fl ow width  B  and friction rep-
resented by  α . This possibility occurs when the cross section has variable rough-
ness and fl ow is controlled by width and roughness. An example is a river with 
coarse bank material (say, 2 mm in diameter) in which higher discharge leads to 
bank erosion and, therefore, higher width but the depth remains practically 
constant and the roughness also increases. Wolman and Brush ( 1961 ) discussed 
the case of the Platte River in Nebraska, where the braided channel is made up 
of shifting and stable islands. At some cross sections, banks are covered with 
coarse grass and contain fi ne material, and the river is a mile wide and an inch 
deep. With increasing discharge, the width increases and so does roughness, but 
the depth remains almost constant. The hypothesis in this case can be considered 
as a limiting case and holds under the equilibrium condition. Such a condition, 
however, is seldom achieved, and, therefore, temporal change in stream power 
is accomplished by an unequal adjustment between  B  and  α . To account for the 
proportion in which the adjustment of stream power is shared between  B  and  α , 
equation  (11.19a)  is modifi ed by introducing a weighting factor,  w ,  w   ≥  0:

  
d
dt

w
B

dB
dt

α α=       (11.19b)   

 Integration of equation  (11.19b)  gives

  α αα α= =c B B cB
w

B
wor * 1       (11.20a)  

where  C   α    B   or  C Bα*     is a constant of integration. For the limiting case,  w   =  1,
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  α αα α= =c B B cB Bor *       (11.20b)  

where  C   α    B   or  C Bα*     can be designated as a morphological constant and equation 
 (11.20a)  or (11.20b) as a morphological equation.  

  11.3.1.3     Possibility III:  P B    =   P S   

 Here  P B   is given by equation  (11.11)  and  P S   by equation  (11.14) . Equating these 
two equations, one obtains

  S
dB
dt

B
dS
dt

= 3
2

      (11.21a)   

 Equation  (11.21a)  hypothesizes that the temporal change in stream power is 
equally shared by temporal adjustments between fl ow width  B  and friction slope 
by  S . This possibility occurs when the cross section has constant roughness and 
fl ow is controlled by width and slope. An example is a river cross section transit-
ing from straight to meandering where width varies and the slope changes. This 
is a highly local possibility. This hypothesis can be considered as a limiting case 
and holds under the equilibrium condition. Such a condition, however, is seldom 
achieved, and, therefore, temporal change in stream power is accomplished by 
an unequal adjustment between  B  and  S . To account for the proportion in which 
the adjustment of stream power is shared between  B  and  S , equation  (11.21a)  is 
modifi ed by introducing a weighting factor,  I ,   I    ≥  0:

  
1 2

3S
dS
dt

I dB
B

=       (11.21b)   

 Integration of equation  (11.21b)  gives

  S c B B C SSB
I

SB
I= =2 3 3 2or * /       (11.22a)  

where  C SB   or  CSB*     is a constant of integration. For the limiting case,  I   =  1,

  S C BSB=
2

3       (11.22b)   

  C   α    B   or  C Bα*     can be designated as a morphological constant, and equation  (11.22a)  
or (11.22b) as a morphological equation.  

  11.3.1.4     Possibility IV:  P h    =   P   α   

 Here  P h   is given by equation  (11.12)  and  P   α   by equation  (11.13) . Equating these 
two equations, one obtains

  
1
α

α βd
dt h

dh
dt

=       (11.23a)   

 Equation  (11.23a)  hypothesizes that the temporal change in stream power is 
equally shared by temporal adjustments between fl ow depth  h  and friction 
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represented by  α . This possibility occurs when the cross section has fi xed width 
and variable roughness and fl ow is controlled by depth and friction. An example 
is wide fl at channels with steep banks of fi ne material (Wolman  1955 ). Another 
example is stable, approximately rectangular irrigation canals. In such canals, 
depth varies with discharge and so does roughness, but width remains essen-
tially unchanged. This hypothesis can be considered as a limiting case and holds 
under the equilibrium condition. Such a condition, however, is seldom achieved, 
and, therefore, temporal change in stream power is accomplished by an unequal 
adjustment between  h  and  α . To account for the proportion in which the adjust-
ment of stream power is shared between  h  and  α , equation  (11.23a)  is modifi ed 
by introducing a weighting factor,  J ,  J   ≥  0:

  
1
α

α βd
dt

J
h

dh
dt

=       (11.23b)   

 Integration of equation  (11.23b)  gives

  α αα
β

α
β= =C h h Ch

J
h

Jor * /1       (11.24a)  

where  C   α    h   or  C hα*     is a constant of integration. For the limiting case,  J   =  1,

  α αα
β

α
β= =C h h Ch

J
h

Jor * 1       (11.24b)   

  C   α    h   or  C hα*     can be designated as a morphological constant, and equation  (11.24a)  
or (11.24b) can be designated as a morphological equation.  

  11.3.1.5     Possibility V:  P h    =   P S   

 Here  P h   is given by equation  (11.12)  and  P S   by equation  (11.14) . Equating these 
two equations, one obtains

  
1 2

3S
dS
dt h

dh
dt

= β
      (11.25a)   

 Equation  (11.25a)  hypothesizes that the temporal change in stream power is 
equally shared by temporal adjustments between fl ow depth  h  and friction slope 
 S . This possibility occurs when the cross section has fi xed width and fi xed rough-
ness and fl ow is controlled by depth and slope. This situation can occur locally 
at certain cross sections where the channel is stable, but because of a certain bed 
form, such as a pool or riffl e, the depth changes and so does the slope. This 
hypothesis can be considered as a limiting case and holds under the equilibrium 
condition. Such a condition, however, is seldom achieved, and, therefore, tem-
poral change in stream power is accomplished by an unequal adjustment between 
 h  and  S . To account for the proportion in which the adjustment of stream power 
is shared between  h  and  S , equation  (11.25a)  is modifi ed by introducing a weight-
ing factor,  K ,  K   ≥  0:

  
1 2

3S
dS
dt

K
h

dh
dt

= β
      (11.25b)   
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 Integration of equation  (11.25b)  gives

  S C h h C sSh
K

Sh
K= =2 3 3 2β βor * ( )       (11.26a)  

where  C Sh   or  CSh*     is a constant of integration. For the limiting case,  K   =  1,

  S C h h C SSh SH= =2 3 3 2/( ) /*β βor       (11.26b)   

  C Sh   or  CSh*     can be designated as a morphological constant, and equation  (11.26a)  
or (11.26b) can be designated as a morphological equation.  

  11.3.1.6     Possibility VI:  P S    =   P   α   

 Here  P S   is given by equation  (11.14)  and  P   α   by equation  (11.13) . Equating these 
two equations, one obtains

  S
d
dt

dS
dt

α α= 3
2

      (11.27)   

 Equation  (11.27)  hypothesizes that the temporal change in stream power is 
equally shared by temporal adjustments between friction (or bed) slope  S  and 
slope friction represented by  α . This possibility occurs when the cross section 
has fi xed width and variable roughness and fl ow is controlled by friction slope 
and friction. In a channel cross section with heterogeneous bank and bed sedi-
ment, a channel adjusts its roughness and slope because of changing discharge. 
This hypothesis can be considered as a limiting case and holds under the equi-
librium condition. Such a condition, however, is seldom achieved, and, therefore, 
temporal change in stream power is accomplished by an unequal adjustment 
between  S  and  α . To account for the proportion in which the adjustment of 
stream power is shared between  S  and  α , equation  (11.27)  is modifi ed by intro-
ducing a weighting factor,  F ,  F   ≥  0:

  
1 2

3S
dS
dt

F d
dt

=
α

α
      (11.28)   

 Integration of equation  (11.28)  gives

  S C C SS
F

S
F= =α αα α2 3 3 2or *       (11.29a)  

where  C S    α   or  CSα*     is a constant of integration. For the limiting case,  F   =  1,

  S C C SS S= =α αα α2 3 3 2or *       (11.29b)   

  C S    α   or  CSα*     can be designated as a morphological constant, and equation  (11.29a)  
or (11.29b) can be designated as a morphological equation.  
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  11.3.1.7     Possibilities VII–XI:  P B    =   P h    =   P   α  ,  P B    =   P   α    =   P S  ,  P B    =   P h    =   P S  , 
 P h    =   P   α    =   P S  , and  P B    =   P h    =   P   α    =   P S   

 Morphological equations (11.18a or 11.18b), (11.20a or 11.20b), (11.22a or 11.22b), 
(11.24a or 11.24b), (11.26a or 11.26b), and (11.29a or 11.29b) are the primary equa-
tions and correspond to possibilities I to VI. Possibilities VII to XI are obtained by 
combining possibilities I to VI, and therefore, possibilities VII to XI do not lead to 
primary morphological equations. However, by combining the six primary equa-
tions in accordance with combined possibilities, different hydraulic geometry 
relations are obtained. For example, equation  (18a)  relates  h  and  B , equation  (20a)  
relates  α  and  B . These fi rst two equations can be used to eliminate  α  and  h  in 
possibility VII and express  B  as a function of  Q . This result corresponds to possibi-
lity VII. In a similar manner, other equations can be used to express  h  as a func-
tion of  Q ,  V  as a function of  Q ,  S  as a function of  Q , and  α  as a function of  Q .   

  11.3.2     Derivations of Relations 

 Substitution of morphological equations  (11.18a) ,  (11.20a) ,  (11.22a) ,  (11.24a) , 
 (11.26a) , and  (11.29a)  in equation  (11.5)  leads to equations for at-a-station hydrau-
lic geometry. Eleven sets of hydraulic geometry expressions were derived. In the 
fi rst set are expressions corresponding to possibility I, wherein the channel 
adjusts its width, depth, and velocity to accommodate changes in discharge (and 
sediment load). Possibility II corresponds to the case where the channel adjusts 
its width, velocity, and friction to accommodate changes in discharge. In possibil-
ity III the channel adjusts its width, slope, and velocity for accommodating 
changes in discharge. Possibility IV leads to hydraulic geometry expressions 
where the channel adjusts its depth, velocity, and roughness to accommodate 
changes in discharge. Possibility V results in hydraulic geometry equations where 
the depth, velocity, and slope are adjusted to accommodate changes in discharge. 
In possibility VI are hydraulic geometry expressions wherein the channel adjusts 
its velocity, friction, and slope to accommodate changes in discharge. 

 The remaining possibilities, VII to XI, result from combinations of the afore-
mentioned six possibilities. Possibility VII corresponds to the case where the 
channel adjusts its width, depth, velocity, and friction to accommodate changes 
in discharge. In possibility VIII the channel adjusts its width, friction, slope, and 
velocity for accommodating changes in discharge. Possibility IX leads to hydrau-
lic geometry expressions where the channel adjusts its width, depth, velocity, 
and slope to accommodate changes in discharge. Possibility X leads to hydraulic 
geometry equations that express the adjustment of depth, friction, velocity, and 
slope in response to the variation in discharge. Possibility XI results in hydraulic 
geometry equations showing the adjustment of width, depth, friction, slope, and 
velocity in response to changes in discharge. 

 A short discussion of each set of hydraulic geometry relations is in order. To 
facilitate discussion, the values of exponents  b ,  f ,  m ,  p , and  y  for three cases (one 
special and two limiting cases) when the weighting factors are zero, unity, and 
infi nity, are tabulated for all 11 possibilities in Table  11-5 . It should be pointed 
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Possibility Exponent  b Exponent  f Exponent  m Exponent  p Exponent  y 

I: RE  r   =  0  r   =  1  r   →    ∞   r   =  0  r   =  1  r   →    ∞   r   =  0  r   =  1  r   →    ∞   r   =  0  r   =  1  r   →    ∞   r   =  0  r   =  1  r   →    ∞  

ME 1 1/2 0 0 3/10 3/5 0 1/5 2/5 — — — — — —

CE/DWE 1 1/2 0 0 1/3 2/3 0 1/6 1/3 — — — — — —

II: RE  w   =  0  w   =  1  w   →    ∞   w   =  0  w   =  1  w   →    ∞   w   =  0  w   =  1  w   →    ∞   w   =  0  w   =  1  w   →    ∞   w   =  0  w   =  1  w   →    ∞  

ME 1 1/2 0 — — — 0 1/2 1 0 –1/2 –1 — — —

CE/DWE 1 1/2 0 — — — 0 1/2 1 0 1/2 1 — — —

III: RE  I   =  0  I   =  1  I   →    ∞   I   =  0  I   =  1  I   →    ∞   I   =  0  I   =  1  I   →    ∞   I   =  0  I   =  1  I   →    ∞   I   =  0  I   =  1  I   →    ∞  

ME 1 3/4 0 — — — 0 1/4 1 — — — 0 1/2 2

CE/DWE 1 3/4 0 — — — 0 1/4 1 — — — 0 1/2 2

IV: RE  J   =  0  J   =  1  J   →    ∞   J   =  0  J   =  1  J   →    ∞   J   =  0  J   =  1  J   →    ∞   J   =  0  J   =  1  J   →    ∞   J   =  0  J   =  1  J   →    ∞  

ME — — — 3/5 3/10 0 –2/5 3/10 1 0 –1/2 –1 — — —

CE/DWE — — — 2/3 1/3 0 1/3 1/6 0 0 1/2 1 — — —

V: RE  K   =  0  K   =  1  K   →    ∞   K   =  0  K   =  1  K   →    ∞   K   =  0  K   =  1  K   →    ∞   K   =  0  K   =  1  K   →    ∞   K   =  0  K   =  1  K   →    ∞  

ME — — — 9/15 9/20 0 2/5 11/20 1 — — — 0 1/2 2

CE/DWE — — — 2/3 1/2 0 1/3 1/2 1 — — — 0 1/2 2

VI: RE  F   =  0  F   =  1  F   →    ∞   F   =  0  F   =  1  F   →    ∞   F   =  0  F   =  1  F   →    ∞   F   =  0  F   =  1  F   →    ∞   F   =  0  F   =  1  F   →    ∞  

ME — — — — — — 1 5/4 2 –1 –3/4 0 0 1/2 2

CE/DWE — — — — — — 1 5/4 2 1 3/4 0 0 1/2 2

VII: RE  r   =   w  
 =   J  
 =  0

 r   =   w  
 =   J  
 =  1

 r   =   w   =  
 J   →    ∞  

 r   =   w  
 =   J  
 =  0

 r   =   w  
 =   J  
 =  1

 r   =   w   =  
 J   →    ∞  

 r   =   w  
 =   J  
 =  0

 r   =   w  
 =   J  
 =  1

 r   =   w  
 =   J   →  
  ∞  

 r   =   w  
 =   J  
 =  0

 r   =   w  
 =   J  
 =  1

 r   =   w   =  
 J   →    ∞  

 r   =   w  
 =   J  
 =  0

 r   =   w  
 =   J  
 =  1

 r   =   w   =   J  
 →   ∞ 

ME 1 1/3 0 0 1/5 0 –3/5 7/15 1 0/0 –1/3 –1 — — —

 Table 11-5      Theoretically derived values of hydraulic geometry exponents  b ,  f ,  m ,  p , and  y  for different confi gurations under the con-
dition that weighting factors equal 0, 1, and  ∞ .  

Continued
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Possibility Exponent  b Exponent  f Exponent  m Exponent  p Exponent  y 

CE/DWE 1 1/3 0 0 2/9 0 –2/3 4/9 1 0/0 1/3  1 — — —

VIII: RE  w   =  
 I   =   F  
 =  0

 w   =  
 I   =   F  
 =  1

 w   =   I   =  
 F   →    ∞  

 w   =  
 I   =   F  
 =  0

 w   =  
 I   =   F  
 =  1

 w   =   I   =  
 F   →   ∞ 

 w   =  
 I   =   F  
 =  0

 w   =  
 I   =   F  
 =  1

 w   =   I  
 =   F   →  
  ∞  

 w   =  
 I   =   F  
 =  0

 w   =  
 I   =   F  
 =  1

 w   =   I   =  
 F   →    ∞  

 w   =  
 I   =   F  
 =  0

 w   =  
 I   =   F  
 =  1

 w   =   I   =   F  
 →    ∞  

ME 1 3/7 0 — — — 0 34/63 1 0 –3/7 0 0/0 2/7 2

CE/DWE 1 3/7 0 — — — 0 34/63 1 0 3/7 0 0/0 2/7 2

IX: RE  r  =  I 
 =  K  
 =  0

 r  =  I 
 =  K  
 =  1

 r  =  I  =  
K   →    ∞  

 r  =  I 
 =  K  
 =  0

 r  =  I 
 =  K  
 =  1

 r  =  I  =  
K   →    ∞  

 r  =  I 
 =  K  
 =  0

 r  =  I  =  
K   =  1

 r  =  I  =  
K   →    ∞  

 r  =  I 
 =  K  
 =  0

 r  =  I 
 =  K  
 =  1

 r  =  I  =  
K   →    ∞  

 r  =  I 
 =  K  
 =  0

 r  =  I 
 =  K  
 =  1

 r  =  I = K  
 →    ∞  

ME 1 3/7 0 0 9/35 0 0 17/70 1 — — — 0/0 2/7 2

CE/DWE 1 3/7 0 0 2/7 0 0 5/18 1 — — — 0/0 2/7 2

X: RE  J   =   K  
 =   F  
 =  0

 J   =   K  
 =   F  
 =  1

 J   =   K   =  
 F   →    ∞  

 J   =   K  
 =   F  
 =  0

 J   =   K  
 =   F  
 =  1

 J   =   K   =  
 F   →    ∞  

 J   =   K  
 =   F  
 =  0

 J   =   K  
 =   F  
 =  1

 J   =   K   =  
 F   →    ∞  

 J   =   K  
 =   F  
 =  0

 J   =   K  
 =   F  
 =  1

 J   =   K   =  
 F   →    ∞  

 J   =   K  
 =   F  
 =  0

 J   =   K  
 =   F  
 =  1

 J   =   K   =   F  
 →    ∞  

ME — — — 1/3 1/7 0 2/5  
0/0

26/35  ∞ / ∞ 0 –3/7 0 0/0 2/7 2

CE/DWE — — — 2/3 2/7 0 1/3 5/7  ∞ / ∞ 0 3/7 0 0/0 2/7 2

XI: RE  r   =   w  
 =   I   =  
 J   =   K  
 =   F  
 =  0

 r   =   w  
 =   I   =  
 J   =   K  
 =   F  
 =  1

 r   =   w   =  
 I   =   J   =  
 K   =   F  
 →    ∞  

 r   =   w  
 =   I   =  
 J   =   K  
 =   F  
 =  0

 r   =   w  
 =   I   =  
 J   =   K  
 =   F  
 =  1

 r   =   w   =  
 I   =   J   =  
 K   =   F  
 →    ∞  

 r   =   w  
 =   I   =  
 J   =   K  
 =   F  
 =  0

 r   =   w  
 =   I   =   J  
 =   K   =  
 F   =  1

 r   =   w  
 =   I   =   J  
 =   K   =  
 F   →    ∞  

 r   =   w  
 =   I   =  
 J   =   K  
 =   F  
 =  0

 r   =   w  
 =   I   =  
 J   =   K  
 =   F  
 =  1

 r   =   w   =  
 I   =   J   =  
 K   =   F  
 →    ∞  

 r   =   w  
 =   I   =  
 J   =   K  
 =   F  
 =  0

 r   =   w  
 =   I   =  
 J   =   K  
 =   F  
 =  1

 r   =   w   =   I  
 =   J   =   K   =  
 F   →    ∞  

ME 1 3/10 0 0 9/50 0 0 13/25 1 0/0 3/10 0 0/0 1/5 2

CE/DWE 1 3/10 0 0 1/5 0 0 2/5 1 0/0 3/10 2 0/0 1/5 2

   Note:   RE Resistance equation, ME  =  Manning ’ s equation, CE  =  Chezy ’ s equation, and DWE  =  Darcy–Weisbach equation.   

Table 11-5 Theoretically derived values of hydraulic geometry exponents b, f, m, p, and y for different confi gurations under the con-
dition that weighting factors equal 0, 1, and ∞. (Continued)
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out that the limiting case of infi nity is only a theoretically generalized case for 
the factors  r ,  w ,  I ,  J ,  K , and  F  for the lack of knowledge of the values of their 
upper limits, which should be far less than infi nity. Table  11-6  gives ranges of 
values, as well as mean values of the exponents reported in the literature. Table 
 11-7  gives the exponent values derived using other theories. In the discussion 
that follows, only Manning ’ s equation will be considered for economy of space. 

     11.3.2.1     Possibility I:  P B    =   P h  ,  B   =   C Bh h   β /   r   or  h C BBh
r= * /b    

 The general morphological equation for this possibility is given by equation 
 (11.18a)  or the special form by equation  (11.18b) . Substitution of equation  (11.18a)  
in equation  (11.7)  yields equations for  B ,  h , and  V :

  B
C
S

Q C Q C
C
S

Bh
r r

r
B

r
B

Bh
r

= ⎛
⎝⎜

⎞
⎠⎟

= = ⎛
⎝

+
+ +

α α1 2

1 1
1 1 1 1

1 2/

/( )
/( ) /( )

/
, ⎜⎜

⎞
⎠⎟

+1 1/( )r

      (11.30)  

 h
C S

Q C Q C
Bh

r r
r r

h
r r

h= ⎛
⎝⎜

⎞
⎠⎟ = =

+
+ +1 1

1 2

1
1 1

α α

β
β β

/

/[( ) ]
/[( ) ] /[( ) ] ,

CC SBh

r r

1 2

1

/

/[( ) ]
⎛
⎝⎜

⎞
⎠⎟

+ β

      (11.31)  

 h C Q Sr r
Bh

r r r r r= + + − − + − + +α β β β β β β β( )/[( ) ] ( )/[( ) ] ( )/[( ) ] (( )1 1 1 1 rr r
V

r r

V
r r

Bh

C Q

C C

)/[ ( )] ( )/[( ) ]

( )/[ ( )]

,

( )

2 1 1 1

1 1

β β β

β βα

+ − +

− + −

=
= (( )/[( ) ] ( )/[ ( ) ]β β β βr r r r rS− + + +1 2 1

      (11.32)   

 If Manning ’ s equation  (11.5a)  is used in place of equation ( 11.7 , then with 
 α   =  1/ n  and  β   =  5/3, equations  (11.30)  to  (11.32)  reduce to

  B C Q C
nC
S

B
r

B
Bh

r r

= = ⎛
⎝⎜

⎞
⎠⎟

+
+

1 1
0 5

1 1
/( )

.

/( )

,       (11.33)  

  h C Q C
n

C S
h

r
r

h

Bh

r
r

= =
⎛
⎝⎜

⎞
⎠⎟

+( )
+( )3

1 5
1

2

3
1 5

,       (11.34)  

  V C Q C
n C

SV

r
r

V

r
r

Bh

r
r

r

= = ⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

+

+
+( ) +

+2
5 1

5 3
5 1

2
1 5

5 3
101 1( ) ( )

, (( )1+r       (11.35)   

 For the special case  r   =  1, equations  (11.33)  to  (11.35)  become

  B C Q C
nC
S

B B
Bh= = ⎛

⎝
⎞
⎠

0 5
0 5

0 5
.

.

.

,       (11.36)  

  h C Q C
n

C S
h h

Bh

= = ⎛
⎝⎜

⎞
⎠⎟

3 10
0 5

3 10
/

.

/

,       (11.37)  

  V C Q C
n C

SV V
Bh

= = ⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

2 10
4 5 1 5

2 51 1/
/ /

/,       (11.38)   
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 Table 11-6      Range of at-a-station hydraulic geometry exponent values reported by different investigators.  

Source

No. 
datasets 

used

Exponents

Remarks b  f  m  p  y 

Park ( 1977 ) 139 0.00–0.59  
(0.0–0.1)

0.06–0.73  
(0.3–0.4)

0.07–0.71  
(0.4–0.5)

  Data from U.S., U.K., 
Brazil, and other 
countries

Rhodes ( 1978 ) 587 0.00–0.84 0.01–0.84 0.03–0.99 Worldwide

Myrick and Leopold ( 1963 ) 6 0.04–0.14  
(0.09)

0.08–0.18  
(0.13)

0.78  
(0.78)

Tidal channel to 
Potomac River

Leopold and Miller ( 1956 ) 10 0.09–0.34  
(0.26)

0.23–0.61  
(0.33)

0.24–0.45  
(0.32)

Ephemeral channels

Wolman ( 1955 ) 7 0.00–0.08  
(0.04)

0.32–0.46  
(0.41)

0.46–0.69  
(0.55)

–0.40 to –0.10  
(–0.20)

–0.03–0.15  
(0.05)

Brandywine Creek, 
Pennsylvania

Wolman ( 1955 ) 2 0.16–0.22  
(0.19)

0.30–0.45  
(0.38)

0.42–0.48  
(0.45)

Brandywine Creek, 
Pennsylvania

Leopold and Maddock ( 1953 ) 20 0.06–0.59  
(0.26)

0.06–0.63  
(0.40)

0.07–0.55  
(0.34)

Great Plains and 
Southwest

Stall and Fok ( 1968 ) 18 0.13–0.49  
(0.29)

0.28–0.52  
(0.45)

0.15–0.40  
(0.26)

Sangamon River basin 
and Midwest
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Stall and Yang ( 1970 ) 37 0.00–0.40  
(0.12)

0.31–0.71  
(0.47)

0.07–0.92  
(0.41)

Roanoke River basin

Riley ( 1978 ) 8 0.41–0.50  
(0.42)

0.30–0.70  
(0.41)

0.12–0.22  
(0.16)

Gwydir River, 
Australia

Riley ( 1978 ) 9 0.15–0.49  
(0.35)

0.36–0.67  
(0.48)

0.08–0.39  
(0.17)

Namoi River, Australia

Riley ( 1978 ) 5 0.19–0.40  
(0.35)

0.49–0.56  
(0.52)

0.08–0.25  
(0.13)

Barwon River, 
Australia

Virmani ( 1973 ) 11 0.08–0.19  
(0.13)

0.38–0.54  
(0.43)

0.37–0.52  
(0.43)

Bear River basin, 
Rocky Mountain 
region

Virmani ( 1973 ) 8 0.08–0.18  
(0.14)

0.32–0.57  
(0.40)

0.30–0.59  
(0.46)

Peace River basin, 
Canada

Virmani ( 1973 ) 15 0.08–0.38  
(0.16)

0.29–0.66  
(0.45)

0.32–0.58  
(0.39)

Athabasca River basin, 
Canada

Williams ( 1978 ) 165 0.00–0.82 0.10–0.78 0.03–0.82 Contiguous U.S.

   Note:   The values within parentheses are mean values; the range of values within parentheses is the modal class.   

c11.indd   483
c11.indd   483

5/21/2014   11:14:33 A
M

5/21/2014   11:14:33 A
M



484 Entropy Theory in Hydraulic Engineering

 If Chezy ’ s equation  (11.5b)  is used, then  α   =   C  and  β   =  3/2 and equations  (11.30)  
to  (11.32)  become

  B C Q C
C
CS

B
r

B
Bh

r r

= = ⎛
⎝⎜

⎞
⎠⎟

+
+

1 1
0 5

1 1
/( )

.

/( )

,       (11.39)  

  h C Q C
C CS

h
r r

h
Bh

r r

= = ⎛
⎝⎜

⎞
⎠⎟

+
+

2 3 1
0 5

2 3 11/[ ( )]
.

/[ ( )]

,       (11.40)  

  V C Q C C C SV
r r

V
r r

Bh
r r r= =+ + + − + +/[ ( )] ( )/[ ( )] /[ ( )] ( ), ( )3 1 3 2 3 1 3 1 3 2 //[ ( )]6 1+r       (11.41)   

 For the special case  r   =  1, equations  (11.39)  to  (11.41)  become

  B C Q C
C

CS
B B

Bh= = ⎛
⎝

⎞
⎠

0 5
0 5

1 2
.

.

/

,       (11.42)  

  h C Q C C CSh h Bh= = −1 3 0 5 1 3/ . /, ( )       (11.43)  

  V C Q C C C SV V Bh= = −1 6 5 6 1 6 5 12/ / / /, ( )       (11.44)   

 If the Darcy–Weisbach relation  (11.5c)  is used, then with  α   =   f y   and  β   =  3/2, 
the exponents of discharge for  B ,  h , and  V  remain the same as in the case of 
Chezy ’ s equation and Chezy ’ s coeffi cient  C  is replaced by  f y  . Therefore, the 
hydraulic geometry relations are not repeated.  

  11.3.2.2     Possibility I: Hydraulic Geometry Relations for Width, Depth, 
and Velocity 

 This possibility is perhaps the most investigated and frequently occurring pos-
sibility. Equations  (11.33)  to  (11.35)  show that the channel width varies with 
discharge raised to the power  b   =  1/(1  +   r ), the depth varies with discharge raised 
to the power  f   =  3 r /[5(1  +   r )], and velocity varies with discharge raised to the 
power  m   =  2 r /[5(1  +   r )]. The values of exponents  b ,  f , and  m  depend on the 
weighting factor  r , which specifi es the proportion for adjustment of stream 
power between  B ,  h , and  V , as shown in Fig.  11-3 . When the weighting factor  r  
tends to 0,  b ,  f , and  m , respectively, take on 1, 0, and 0, and when  r  tends to   ∞  ,  b , 

Source

Exponents

Remarks b  F  m  p  y 

Langbein ( 1964 ) 0.23 0.42 0.35 –0.07 — Theory of minimum variance

Li ( 1975 ) 0.24 0.46 0.30 0.0 Tractive force theory

 Table 11-7      Theoretically derived values of hydraulic geometry exponents as reported in 
the literature.  
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 Figure 11-3      Variation of exponents with weighting factors for different possibilities.            
Continued
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Figure 11-3, Continued

 f , and  m  take on, respectively, 0, 3/5, and 2/5 (see equations  (11.33) – (11.35) ). For 
the special case  r   =  1, where the adjustment is equally proportioned,  b   =  0.5, 
 f   =  3/10, and  m   =  1/5. Scale factors,  C B  ,  C h  , and  C V   vary with fl ow resistance and 
slope. Thus, the derived equations show that the values of exponents,  b ,  f , and 
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 m  do not possess fi xed values; rather they vary over certain ranges dictated by 
the way the adjustment of stream power is distributed among variables.  

 For the at-a-station hydraulic geometry of 139 streams from a variety of 
environments, Park ( 1977 ) reported the range of  b  as 0.0 to 0.59 with modal class 
as 0.0 to 0.1; the range of  f  as 0.06 to 0.73 with modal class as 0.3 to 0.4; and the 
range of  m  as 0.07 to 0.71 with modal class as 0.4 to 0.5. Thus, the derived expo-
nents are in the reported ranges.    

  11.4     Possibilities II to XI 

  11.4.1     Possibility II 

  Possibility II:  P B    =   P   α  ,  α   =   C   α    B B w   

 Inserting equation  (11.20a)  in equation  (11.7)  and a little algebraic manipulation 
lead to

  B C S h Q C Q C C S hB
w w

B
w

B B= = =− + + + −( ) , ( ). /( ) /( ) /( ) . /
α

β
α

β0 5 1 1 1 1 1 1 0 5 1 (( )1+w       (11.45)  

  
α α

β
α

α

= =+ − + + − + +( ) ,/( ) /( ) /( ) /[ ( )] /( )C h Q S C Q

C
B

w w w w w w w w w1 1 1 1 2 1 1

== + − + − +( ) /( ) /( ) /[ ( )]C h SB
w h w w w

α
β1 1 1 2 1

      (11.46)  

 V C S h Q C Q C C hw w
V

w w
V B

w w= = =− + + + − +
α

β
α

β0 5 1 1 1 1 1 1. /( ) /( ) /( ) [ ( )]/, ( ) (( ) /[ ( )]1 1 2 1+ +w wS       (11.47)   

 For Manning ’ s equation ( α   =  1/ n ,  β   =  5/3), equations  (11.45)  to  (11.47)  reduce to

  

B C S h Q C Q C C S hB
w w

B
w

B B= = =− + + + −( ) , ( ). /( ) /( ) /( ) . /
α

β
α

β0 5 1 1 1 1 1 1 0 5 1 (( )

/ / / /,

1

1 2 5 3

1
1 1

1
1

1
1 2 5

1 1

+

+
+ += ⎛

⎝⎜
⎞
⎠⎟ = =

w

B

w
w

B
w

B
B

B
C S h

Q C Q C
C S hα α

33

1
1⎛

⎝⎜
⎞
⎠⎟

+w       (11.48)  

  
n C h S Q C QB

w w w w w w w w= =+ + + − + +( ) ,/( ) /[ ( )] /[ ( )] /( ) /( )
α α

1 1 5 3 1 2 1 1 1 1

CC C h SB
w w w w w

α α= + + +( ) /( ) /[ ( )] /[ ( )]1 1 5 3 1 2 1
      (11.49)  

 V C S h Q C Q C C hw w
V

w w
V B

w w= = =+ + − + + −
α α

0 5 2 3 1 1 1 1 2 1 5. / /( ) /( ) /( ) [ ( ), ( ) ]]/[ ( )] /[ ( )]3 1 1 2 1+ +w wS       (11.50)   

 For special case  w   =  1, equations  (11.48)  to  (11.50)  become

  B C S h Q C Q C C S hB B B B= = =− −( ) , ( ). / / / / . / /
α α

0 5 5 3 1 2 1 2 1 2 0 5 5 3 1 2       (11.51)  

  n C h S Q C Q C C h SB B= = =− − − −( ) , ( )/ / / / / / / /
α α α α

1 2 5 6 1 4 1 2 1 2 1 2 5 6 1 4       (11.52)  

  V C S h Q C Q C C h SV V B= = = −
α α

0 5 2 3 1 2 1 2 1 2 1 6 1 4. / / / / / /, ( )       (11.53)   
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 For Chezy ’ s equation  (11.5b)  with  α   =   C ,  β   =  3/2), equations  (11.45)  to  (11.47)  
become

  B C S h Q C Q C C S hB
w w

B
w

B B= = =− + + +( ) , (. / /( ) /( ) /( ) . /
α α

0 5 3 2 1 1 1 1 1 1 0 5 3 2 )) /( )− +1 1 w       (11.54)  

  
C C h S Q C QB

w w w w w w w w w= =+ − + − + + +( ) /( ) /[ ( )] /[ ( )] /( ) /( )
α α

1 1 5 3 1 2 1 1 1 ,,

( ) /( ) /[ ( )] /[ ( )]C C h SB
w w w w w

α α= + − + − +1 1 5 3 1 2 1
      (11.55)  

 V C S h Q C Q C C hw w
V

w w
V B

w w= = =+ + + + −
α α

0 5 1 2 1 1 1 1 3 1 10. / /( ) /( ) /( ) [ ( ), ( ) ww w wS]/[ ( )] /[ ( )]6 1 1 2 1+ +       (11.56)   

 For the special case,  w   =  1, equations  (11.54)  to  (11.56)  become

  B C S h Q C Q C C S hB B B B= = =− −( ) , ( ). / / / / . / /
α α

0 5 3 2 1 2 1 2 1 2 0 5 3 2 1 2       (11.57)  

  C C h S Q C Q C C h SB B= = =− − −( ) , ( )/ / / / / / / /
α α α α

1 2 5 6 1 4 1 2 1 2 1 2 5 6 1 4       (11.58)  

  V C S h Q C Q C C h SV V B= = = −
α α

0 5 1 2 1 2 1 2 1 2 1 3 1 4. / / / / / /, ( )       (11.59)    

  Possibility II: Hydraulic Geometry Relations for Width, Roughness, 
and Velocity 

 In this possibility, the change in stream power is accomplished by the adjustment 
between channel width and roughness. Equations  (11.48)  to  (11.50)  show that the 
channel width varies with discharge raised to the power  b   =  1/(1  +   w ), the veloc-
ity varies with discharge raised to the power  m   =   w /(1  +   w ), and Manning ’ s  n  
varies with discharge raised to the power  p   =   −  w /(1  +   w ). The precise values of 
 b ,  m , and  p  depend on the value of the weighting factor  w , as shown in Fig.  11-3 , 
meaning the proportion in which the spatial change of stream power is accom-
plished by the adjustments among  B ,  n , and  V . When the weighting factor varies 
from a value of zero to a value tending to  ∞ ,  b  varies from 1 to 0,  m  varies from 
0 to 1, and  p  varies from 0 to  − 1. When  w   =  1,  b   =  0.5,  m   =  0.5, and  p   =   − 0.5. The 
value of  b   =  0.5 is signifi cantly higher than the average value reported in the 
literature (Table  11-6 ). Scale factors  C B  ,  C   α  , and  C V   vary with fl ow depth and slope. 
The exponent values of  b ,  m , and  p  do not possess fi xed values; rather they vary 
over certain ranges, depending on the way the adjustment of stream power is 
distributed among variables. Most of the exponent values reported in the litera-
ture lie within the derived range. For example, the range of exponent  p  reported 
by Knighton ( 1974 ) is  − 0.54 to 0.03.   

  11.4.2     Possibility III 

  Possibility III:    P B    =   P S  ,  S   =  C SB B  2   I   /3  or  B C SSB
I= 3/2*     

 Inserting equation  (11.22a)  in equation  (11.7)  and a little algebraic manipulation 
lead to
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 B C h Q CI
SB

I I
B

I= =− + − + − + + − +α αβ3 3 3 2 3 3 3 3 3 1 3 3/( ) /[ ( )] /( ) /( ) /( )( ) , (( ) /[ ( )] /( )C hSB
I I− + − +3 2 3 3 3β       (11.60)  

  
S C h Q C Q

C

I I
SB

I I I I
S

I I= =− + + − + + +α β2 3 3 3 3 3 2 3 1 2 3/( ) /( ) /( ) /( ) /( )( ) ,

SS
I I

SB
I I IC h= − + + − +α β2 3 3 3 2 3/( ) /( ) /( )( )

      (11.61)  

  
V C h Q CI

SB
I I I I I I w

V= =+ + − + − + +α β β3 3 3 2 3 1 3 3/( ) /[ ( )] [( )( ) ]/( ) /( )( ) QQ

C C h

I I w

V
I

SB
I w I w I I I w

/( )

/( ) /([ ( ) [( )( ) ]/[ ]

,

( )

+

+ + + + − += α β3 3 3 2 3
      (11.62)   

 For Manning ’ s equation,  α   =  1/ n  and  β   =  5/3. Equations  (11.60)  to  (11.62)  
become

  
B n C h Q C Q

C

I
SB

I I
B

I

B

= =
=

+ − + − + + +3 3 3 2 3 5 3 3 3 1 3 3/( ) /[ ( )] /( ) /( ) /( )( ) ,

nn C hI
SB

I I3 3 3 2 3 5 3/( ) /[ ( )] /( )( )+ − + − +
      (11.63)  

  
S n C h Q C QI I

SB
I I I I

S
I I= =+ + − + + +2 3 3 3 10 3 3 2 3 1 2 3/( ) /( ) /[ ( )] /( ) /( )( ) ,,

( )/( ) /( ) /[ ( )]C n C hS
I I

SB
I I I= + + − +2 3 3 3 10 3 3

      (11.64)  

  
V n C h Q CI

SB
I I I I I I= =− + + + − + +3 3 3 2 3 6 3 15 3 3 3/( ) /[ ( )] [ ( ) ]/[ ( )] /( )( ) VV

I I

V
I

SB
I w I I I

Q

C n C h

/( )

/( ) /([ ( ) [ ( ) ]/[ ]

,

( )

+

− + + + − +=

3

3 3 3 2 6 3 15 3
      (11.65)   

 For the special case  I   =  1, equations  (11.63)  to  (11.65)  become

  B
nQ

h C
C Q C

n
h CSB

B B
SB

= ⎛
⎝⎜

⎞
⎠⎟

= = ⎛
⎝⎜

⎞
⎠⎟5 3 1 2

3 4
3 4

5 3 1 2

3 4

/ /

/
/

/ /

/

,       (11.66)  

  S n C h Q C Q C n C hSB S S
I

SB= = =− −1 2 3 4 5 6 1 2 1 2 1 2 3 4 5 6/ / / / / / /( ) , ( )       (11.67)  

  V n C h Q C Q C n C hSB V V SB= = =− − −3 4 3 8 1 4 1 4 1 4 3 4 3 8 1 4/ / / / / / / /( ) , ( )       (11.68)   

 For Chezy ’ s relation,  α   =   C  and  β   =  3/2, equations  (11.60)  to  (11.62)  become

  
B C C h Q C QI

SB
I I I

B
I= =− + − + − + + +3 3 3 2 3 9 2 3 3 3 3 3/( ) /[ ( )] /[ ( )] /( ) /( )( ) ,,

( )/( ) /[ ( )] /[ ( )]C C C hB
I

SB
I I= − + − + − +3 3 3 2 3 9 2 3

      (11.69)  

  S C C h Q C Q C C C
I
I

SB I I
I
I

S

I
I

s

I
I

SB= ( ) = = ( )−
+ +

−
+ + +

−
+ +

2
3

3
3

3
3

2
3

2
3

2
3

3
3, II Ih

−
+
3

3       (11.70)  

  V C C h Q C Q C C CI
SB

I
I
I

I
I

V

I
I

V
I

SB= = =+ +
−

+ + + + +
3

3

3
2 3

3 2
2 3 3 3

3
3

3
2 3( ) ( ) (, II

I
Ih) ( )

3 2
2 3

−
+       (11.71)   

 For the special case  I   =  1, equations  (11.69)  to  (11.71)  become

  B
Q

Ch C
C Q C Ch C

SB
B B SB= ⎛

⎝⎜
⎞
⎠⎟ = = −

3 2 1 2

3 4
3 4 3 2 1 2 3 4

/ /

/
/ / / /, ( )       (11.72)  
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  S C C h Q C C C hSB S SB= =− − − − −1 2 3 4 3 4 1 2 1 2 3 4 3 4/ / / / / / /( ) , ( )       (11.73)  

  V C C h Q C Q C C C hSB V V SB= = =
3
4

3
8

1
8

1
4

1
4

3
4

3
8

1
8,       (11.74)    

  Possibility III: Hydraulic Geometry Relations for Width, Velocity, 
and Slope 

 For weighting factor  I   =  0,  b   =  1,  m   =  0, and  y   =  0; and when the weighting factor 
tends to   ∞  ,  b   =  1,  m   =  1, and  y   =  1, as shown by equations  (11.63)  to  (11.65) . These 
equations show that the channel width varies with discharge raised to the power 
 b   =  3/(3  +   I ), the velocity varies with discharge raised to the power  m   =   I /(3  +   I ), 
and slope varies with discharge raised to the power  p   =  2 I /(3  +   I ). The exact 
exponent values depend on the value of the weighting factor  I , as shown in Fig. 
 11-3 . For the special case,  I   =  1, the value of  b  becomes 3/4, as shown by equation 
 (11.66) , the  m  exponent assumes a value of 1/4, as shown by equation  (11.68) , 
and the  y  exponent becomes 0.5, as shown by equation  (11.67)  (see Table  11-5 ); 
for this special case, the value of  m  is lower than the average value reported in 
the literature, whereas the value of  y  is higher than that reported by Wolman 
( 1955 ). The exponent values thus derived cover the whole range reported in the 
literature. Scale factors  C B  ,  C V  , and  C S   depend on the channel roughness and fl ow 
depth. This discussion shows that exponents  b ,  m , and  y  do not possess fi xed 
values; rather, they vary over certain ranges, depending on the way the adjust-
ment of stream power is shared among variables.   

  11.4.3     Possibility IV 

  Possibility IV:  P h    =   P   α  ,  α   =   C   α    h h J    β   or  h C h
/J= 1

a
ba*     

 Inserting equation  (11.24a)  in equation  (11.7)  and a little algebraic manipulation 
lead to

  h
C BS

Q C Q C
C BSh

J J
h

J
h

h

= ⎛
⎝⎜

⎞
⎠⎟ = = ⎛

⎝
+( ) +( ) +( )1 1

1 2

1
1

1
1

1
1

1 2
α

β β β

α
/ /, ⎜⎜

⎞
⎠⎟

+( )
1
1J β

      (11.75)  

  α α α α α= ⎛
⎝

⎞
⎠ = = ⎛+ + + + +( ) , ( )/ /C

BS
Q C Q C C

BS
h

J

J
J

J
J

J
J

h
J

1
1

1 2

1 1 1
1

1
1 2

1 1
⎝⎝

⎞
⎠

+
J

J1
      (11.76)  

 V C
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S Q C Qh
J

J
J J

J
J

V= ⎛
⎝

⎞
⎠ =+

+ −
+ +

+ −
+( )( ) ( ) ( ) ( )

α
β

β β
β β

β β
β

1
1

1
1

1
2 1

1
11 JJ

J
V h

J

J
J JC C

B
S

β β
β

α
β

β β
β β

+ −
+ +

+ −
+ += ⎛

⎝
⎞
⎠

1
1

1
1

1
1

1
2 11( ) ( ) ( ) ( ), ( )     

  (11.77)   

 For Manning ’ s equation,  α   =  1/ n  and  β   =  5/3, equations  (11.75)  to  (11.77)  
reduce to

  h
C BS

Q C Q C
C BSh

J J
h

J
h

h

= ⎛
⎝⎜

⎞
⎠⎟ = = ⎛

⎝
+( ) +( ) +( )1 1

1 2

3
5 1

3
5 1

3
5 1

1 2
α α

/ /, ⎜⎜
⎞
⎠⎟

+( )
3

5 1J
      (11.78)  
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  n C BS Q C Q C C BSh
J

J
J

J
J

J
J

h
J= ( ) = = (

−
+ +

−
+

−
+

−
+( ) , ( )/ /

α α α α

1
1 1 2 1 1 1

1
1 1 2 )) +

J
J1       (11.79)  

 V C
B

S Q C Qh
J

J
J J

J
J

V

J

= ⎛
⎝

⎞
⎠ =+

−
+ +

−
+

−

( )( ) ( ) ( ) ( )
α

3
1 5

5 2
5 1
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5 2
5 1

5 21 55 1
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5 1

5 2
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10 11( ) ( ) ( ) ( ), ( )J

V h
J

J
J JC C

B
S+ +

−
+ += ⎛

⎝
⎞
⎠α     

  (11.80)   

 For the special case  J   =  1, equations  (11.78)  to  (11.80)  reduce to

  h
C BS

Q C Q C
C BSh

h h
h

= ⎛
⎝⎜

⎞
⎠⎟ = = ⎛

⎝⎜
⎞
⎠⎟

1 1
1 2

3 10
3 10 3 10

1 2

3 10

α α
/

/
/ /

/

/

,       (11.81)  

  n C BS Q C Q C C BSh h= ( ) = = ( )− − − −
( ) , ( )/ /

α α α α

1
2 1 2

1
2

1
2

1
2

1
2 1 2

1
2       (11.82)  

  V C
B

S Q C Q C C
B

Sh V V h= ⎛
⎝

⎞
⎠ = = ⎛

⎝
⎞
⎠( ) , ( )α α

3
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3
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3
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3
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3
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3
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3
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1 1
00       (11.83)   

 For Chezy ’ s equation,  α   =   C  and  β   =  3/2, equations  (11.75)  to  (11.77)  reduce to

  h
C BS

Q C Q C
C BSh

J J
h

J
h

h

= ⎛
⎝⎜

⎞
⎠⎟ = = ⎛

⎝
+( ) +( ) +( )1 1
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      (11.84)  

  C C
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Q C Q C C
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      (11.85)  

  V C Q C CC SV
J

V h= =+
1

3 1 1 2 1 2( ) / /,       (11.86)   

 For the special case  J   =  1, equations  (11.84)  to  (11.86)  become

  h
C BS

Q C Q C
C BSh

h h
h
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⎝⎜

⎞
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Q C Q C C
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      (11.88)  

  V C
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S Q C Q C C
B

Sh V V h= ⎛
⎝
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1 1
      (11.89)    

  Possibility IV: Hydraulic Geometry Relations for Depth, Velocity 
and Roughness 

 Equations  (11.78)  to  (11.80)  show that the fl ow depth varies with discharge raised 
to the power  f   =  3/[5(1  +   J )], the velocity varies with discharge raised to the power 
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 m   =  (5 J   −  2)/[5(1  +   J )] and Manning ’ s  n  varies with discharge raised to the power 
 p   =   J /(1  +   J ). The precise values of  f ,  m , and  p  depend on the weighting factor  J , 
which specifi es the proportion for adjustment of stream power among  h ,  n , and 
 V , as shown in Fig.  11-3 . In limiting cases, exponent  f  varies from 1 to 0,  m  from 
 − 2/5, and  p  from  − 1 to 0 when the weighting factor varies from  J   =  0 to  J   =   ∞ , as 
shown in Table  11-5 . These derived exponent values encompass the range 
reported by Wolman ( 1955 ), as shown in Table  11-6 . For the special case  J   =  1, 
where the adjustment is equally proportioned,  f   =  0.3 as seen in equation  (11.81) , 
 m   =  3/10 as shown by equation  (11.83) , and  p  is  − 1/2, as exhibited by equation 
 (11.82) ; the  f  value is close to what Langbein ( 1964 ) found using the principle of 
minimum variance; and the  m  value is the same as derived by Li ( 1975 ) using 
the tractive force theory. Scale factors  C h  ,  C V  , and  C   α   vary with fl ow resistance 
and slope. This discussion illustrates that the values of exponents  f ,  m , and  p  do 
not possess fi xed values; rather, they vary over certain ranges dictated by the 
way the adjustment of stream power is distributed among variables.   

  11.4.4     Possibility V 

  Possibility V:  P h    =   P S  ,  S   =   C Sh h  2 β    K   /3  or  h C SSh
/ K= 3 (2 )* b     

 Inserting equation  (11.26a)  in equation  (11.7)  and a little algebraic manipulation 
lead to
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 For Manning ’ s equation,  α   =  1/ n  and  β   =  5/3, equations  (11.90)  to  (11.92)  
reduce to
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 For the special case  K   =  1, equations  (11.93)  to  (11.95)  become
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 For Chezy ’ s equation,  α   =   C  and  β   =  3/2, equations  (11.90)  to  (11.92)  become
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 For the special case  K   =  1, equations  (11.99)  to  (11.101)  reduce to
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  V CC C Q C Q C CC Ch s V V h s= = =
1
2

1
2

1
2

1
2

1
2

1
2,       (11.104)    

  Possibility V: Hydraulic Geometry Relations for Depth, Velocity, 
and Slope 

 Equations  (11.93)  to  (11.95)  show that the fl ow depth varies with discharge raised 
to the power  f   =  9/[5(3  +   K )], the velocity varies with discharge raised to the 
power  m   =  (6  +  5 K )/[5(3  +   K )], and slope varies with discharge raised to the 
power  y   =  2 K /(3  +   K ). The precise values of  f ,  m , and  y  depend on the weighting 
factor  K , which specifi es the proportion for adjustment of stream power among 
 h ,  S , and  V , as shown in Fig.  11-3 . In limiting cases, exponent  f  varies from 9/15 
to 0,  m  varies from 2/5 to 1, and  y  varies from 0 to 2, when the weighting factor 
varies from  K   =  0 to  K   =   ∞  (Table  11-5 ). The  m  value of 0.4 (for  K   =  0) is the same 
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as that reported in the literature (Singh  2003 ; Singh and Zhang,  2008a, b ). The 
derived exponent values are seen to envelop the reported range, as seen in Table 
 11-6 . The precise exponent values depend on the value of  K , which specifi es the 
proportion for adjustment of stream power among  h ,  S , and  V . For the special 
case  K   =  1, where the adjustment is equally proportioned,  f   =  9/20, as seen in 
equation  (11.99) ,  m  is 11/20 as seen in equation  (11.101) , and  y  is 1/5, as exhibited 
by equation  (11.100) ; the  f  value is about as large as that derived by Langbein 
( 1964 ) using the theory of minimum variance. Scale factors  C h  ,  C V  , and  C S   vary 
with width and resistance. Thus it is seen that the values of exponents  f ,  m , and 
 y  do not possess fi xed values; rather they vary over certain ranges, dictated by 
the way the adjustment of stream power is distributed among variables.   

  11.4.5     Possibility VI 

  Possibility VI:  P S    =   P   α  ,  S   =   C S    α   α  2   F   /3  or  a a= 3 (2 )C SS
/ F*     

 Inserting equation  (11.29a)  in equation  (11.7)  and a little algebraic manipulation 
lead to
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 For Manning ’ s equations,  α   =  1/ n  and  β   =  5/3, equations  (11.105)  to  (11.107)  
reduce to
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  V C Q C h C CV

F
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+
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3 2
3 3 2, /

α       (11.110)   

 For the special case  F   =  1, equations  (11.108)  to  (11.110)  reduce to

  n C B h Q C Q C C B hS S= = =− −
α α α α

3 8 3 4 5 4 3 4 3 4 3 8 3 4 5 4/ / / / / / / /,       (11.111)  

  S C B h Q C Q C C B hS S S S= ( ) = = ( )− − − −
α α

3 4 1 2 5 2 1 2 1 2 3 4 1 2 5 6/ / / / / / / /,       (11.112)  

  V C Q C h C CV V S= =5 4 2 3/ /, α       (11.113)   

c11.indd   494c11.indd   494 5/21/2014   11:14:36 AM5/21/2014   11:14:36 AM



At-a-Station Hydraulic Geometry  495

 For Chezy ’ s equation,  α   =   C  and  β   =  3/2, equations  (11.111)  to  (11.113)  reduce to
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3 2
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 For the special case,  F   =  1, equations  (11.114)  to  (11.116)  reduce to

  C C B h Q C Q C C B hS S= = =− − − − − −
α α α α
3 8 3 4 9 8 3 4 3 4 3 8 3 4 9 8/ / / / / / / /,       (11.117)  

  S C B h Q C Q C C B hS S S S= ( ) = = ( )− − − −
α α

3 4 1 2 3 4 1 2 1 2 3 4 1 2 3 4/ / / / / / / /,       (11.118)  

  V C Q C h C CV V S= =5 4 1 2/ /, α       (11.119)    

  Possibility VI: Hydraulic Geometry Relations for Velocity, Roughness, 
and Slope 

 Equations  (11.108)  to  (11.110)  show that slope varies with discharge raised to the 
power  y   =  2 F /(3  +   F ), the velocity varies with discharge raised to the power 
 m   =  [3  +  2 F ]/(3  +   F )], and Manning ’ s  n  varies with discharge raised to the power 
 p   =  3/(3  +   F ). In limiting cases, when the weighting factor  F   =  0, exponents  m   =  
2,  p   =   − 1, and  y   =  0; and when  F  tends to  ∞ ,  m   =  1,  p   =  0, and  y   =  2. These derived 
exponent values encompass the reported range (Table  11-6 ). The precise values 
of  m ,  p , and  y  depend on the weighting factor  F , which specifi es the proportion 
for adjustment of stream power among  V ,  n , and  S , as shown in Fig.  11-3 . For 
the special case  F   =  1, where the adjustment is equally proportioned,  m   =  5/4, as 
seen in equation  (11.116) , the value of  f  is  − 3/4 as shown by equation  (11.114) , 
and  F  is 1/2, as exhibited by equation  (11.115) . Scale factors  C V  ,  C n  , and  C  p  vary 
with the fl ow depth and width. This discussion illustrates that the values of 
exponents  m ,  p , and  y  do not possess fi xed values; rather they vary over certain 
ranges, depending on the way the adjustment of stream power is distributed 
among variables.   

  11.4.6     Possibility VII 

  Possibility VII:  P B    =   P h    =   P   α  ,  B   =   C Bh h   β /   r  ,  α   =   C   α    B B w  , or  α   =   C   α    h h J    β   

 Substitution of equations  (11.18a) ,  (11.20a) , and  (11.24a)  in equation  (11.7)  
leads to
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 For Manning ’ s equation,  α   =  1/ n  and  β   =  5/3, equations  (11.120)  to  (11.123)  
reduce to

  
B C C S Q C Q

C C

B
w

Bh

r
w r w r w r

B
w r

B B

= =

=

−
+ + + +

−
+ +( ) + + + +

−

α
γ

α

1
1 1

1
2 1

1
1

1
1

1

,

11 1
1

2 1+ + + +
−

+ +( )w r
Bh

r
w r w rC S

      (11.124)  

  
h C C S Q C QBh h

r
r rJ r rJ

r
r rJ

h

r
r= =

−
+ +( )

−
+ +( ) + +( ) + +( )α

3
5 1

3
10 1

3
5 1

3
5 1 rrJ

h Bh h

r
r rJ r rJC C C S

( )

−
+ +( )

−
+ +( )=

,

( )α

3
5 1

3
10 1

      (11.125)  

  V
C C

Q C Q C
C CB h

w r r rJ
V

w r r rJ
V

B

= = =
−

+ +
−

+ +( )
−

+ +
−

+ +( )1 11
1

1
3

5 1
1

1
1

3
5 1 ,

hh

      (11.126)  

  
n C C S Q C QB

J
J w Jw

h

w
J w Jw

wJ
J w Jw

Jw
J w Jw

Jw
J w J= =

−
+ +

−
+ + + +

−
+ +

−
+ +

α α α
2( ) ww

B

J
J w Jw

h

w
J w Jw

wJ
J w JwC C C S

,

( )
α α α=

−
+ +

−
+ + + +2

      (11.127)   

 For the special case  J   =   r   =   w   =  1, equations  (11.124)  to  (11.127)  become

  B C C S Q C Q C C C SB B B B Bh= = =− − − −
α α
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 For Chezy ’ s equation,  α   =   C  and  β   =  3/2, equations  (11.120)  to  (11.123)  reduce to
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 For the special case  r   =   w   =   J   =  1, equations  (11.132)  to  (11.135)  reduce to
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α α
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  Possibility VII: Hydraulic Geometry Relations for Width, Depth, 
Velocity, and Roughness 

 Equations  (11.124)  to  (11.126)  show that the fl ow width varies with discharge 
raised to the power  b   =  1/(1  +   w   +   r ), depth varies with discharge raised to the 
power  f   =  3 r /[5(1  +   r   +   rJ )], velocity varies with discharge raised to the power 
 m   =  1  −  [1/(1  +   w   +   r )]  −  {3/[5(1  +   r   +   rJ )]}, and Manning ’ s  n  varies with discharge 
raised to the power  p   =   Jw /( J   +   w   +   Jw ). The precise values of  b ,  f ,  m , and  p  depend 
on the weighting factors  r ,  w , and  J , which specify the proportion for adjustment 
of stream power among  B ,  h ,  V , and  n , as shown in Fig.  11-3 . The value of expo-
nent  b  varies from 0 to 1, exponent  f  varies from 0 to 1/5 to 0,  m  varies from  − 3/5 
to 1, and  p  varies from  − 1 to 0, as exhibited in Table  11-5 , as the weighting factors 
 w ,  r , and  J  vary from 0 to  ∞ . For the special case  w   =   r   =   J   =  1, the value of  b  
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becomes 1/3, as shown in equation  (11.122) ,  f  becomes 1/5, as shown in equation 
 (11.123) , the  m  exponent value becomes 7/15, as shown in equation  (11.123) , and 
the value of  p  becomes  − 1/3, as shown in equation  (11.125) . The derived expo-
nent values encompass the range reported in the literature (Singh  2003 ; Singh 
and Zhang,  2008a, b ; Table  11-6 ). The discussion shows that the values of the  b , 
 f ,  m , and  p  exponents are not fi xed; rather, they vary over certain ranges, as 
exhibited in equations  (11.122)  to  (11.125) . The variation is indeed continuous 
and is dictated by the way the adjustment of stream power is distributed among 
variables. Under this possibility, the adjustment occurs simultaneously in river 
width, depth, velocity, and roughness.   

  11.4.7     Possibility VIII 

  Possibility VIII:  P B    =   P   α    =   P S  ,  α   =   C   α    B B w  ,  S   =   C S    α   α  2   F   /3 , or  S   =   C SB B  2   I   /3  

 Substitution of equations  (11.20a) ,  (11.22a) , and  (11.29a)  in equation  (11.7)  
lead to
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 For Manning ’ s equation,  α   =  1/ n  and  β   =  5/3, equations  (11.140)  to  (11.143)  
reduce to
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 For the special case  I   =   w   =   F   =  1, equations  (11.144) - (11.147)  become
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34
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 For Chezy ’ s equations,  α   =   C  and  β   =  3/2, equations  (11.140)  to  (11.143)  
reduce to
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 For the special case  I   =   F   =   w   =  1, equations  (11.152)  to  (11.155)  become

  B C C h Q C Q C C C hB SB B B B SB= = =
− − − −

( ) , ( )/ /
α α

1 2
3
7

9
14

3
7

3
7 1 2

3
7

9
14       (11.156)  

c11.indd   499c11.indd   499 5/21/2014   11:14:36 AM5/21/2014   11:14:36 AM



500 Entropy Theory in Hydraulic Engineering
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  S C C h Q C Q C C C hS SB S S S SB= = =− − − −
α α
3 7 3 7 10 27 2 7 2 7 3 7 3 7 10 27/ / / / / / / /,       (11.158)  

  V C C h Q C Q C C C hS V V S= = =α α
1 2 1 2 34 63 34 63 1 2 1 2/ / / / / /,       (11.159)    

  Possibility VIII: Hydraulic Geometry Relations for Width, Velocity, 
Roughness, and Slope 

 Equations  (11.144)  to  (11.147)  show that the width varies with discharge raised 
to the power  b   =  3/[3( I   +  3 w   +  3)], velocity varies with discharge raised to the 
power  m   =  [3 w /(3  +  3 w   +   Fw )]  −  { FI /[(3 I   +  3 F   +  3 FI )]}, Manning ’ s  n  varies with 
discharge raised to the power  p   =   − 3 w /(3  +  3 w   +   Fw ), and slope varies with dis-
charge raised to the power  y   =  (2 FI )/(3 I   +  3 F   +   FI ). The precise values of  b ,  m ,  p , 
and  y  depend on the weighting factors  w ,  I , and  F , which specify the proportion 
for adjustment of stream power among  B ,  V ,  n , and  S , as shown in Fig.  11-3 . In 
limiting cases, exponent  b  varies from 0 to 1,  m  varies from 0 to 1,  p  varies from 
0 to  − 3/7 to 0, and  y  varies from 0 to 2  C V  , when  w   =   F   =   I   =  0 to  w   =   F   =   I   =   ∞ . 
For the special case  w   =   F   =   I   =  1, where the adjustment is equally proportioned, 
 b   =  3/7, as seen in equation  (11.142) , the value of  m  is 17/32, as shown in equa-
tion  (11.145) , the value of  p  is  − 3/7, and  y   =  2/7, as exhibited in equation  (11.143) . 
These derived exponent values encompass the reported range, as shown in Table 
 11-6 . The precise values of  b ,  m ,  p , and  y  depend on the weighting factors  w ,  F , 
and  I , which specify the proportion for adjustment of stream power among  B ,  n , 
 S , and  V . Scale factors  C B  ,  C n  ,  C V  , and  C p   vary with fl ow resistance and depth. 
This discussion shows that the values of exponents,  b ,  m ,  p , and  y  do not possess 
fi xed values; rather they vary over certain ranges dictated by the way the adjust-
ment of stream power is distributed among variables.   

  11.4.8     Possibility IX 

  Possibility IX:  P B    =   P h    =   P S  ,  B   =  C  Bh h   β /   r  ,  S   =   C Sh h  2 β    K   /3 , or  S   =   C SB B  2   I   /3  

 Substitution of equations  (11.18a) ,  (11.22a) , and  (11.26a)  in equation  (11.7)  
lead to
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 For Manning ’ s equation,  α   =  1/ n  and  β   =  5/3, equations  (11.159)  to  (11.163)  
reduce to
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 For the special case  r   =   k   =   I   =  1, equations  (11.163)  to  (11.167)  become
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 For Chezy ’ s equation,  α   =   C  and  β   =  3/2, equations  (11.160)  to  (11.163)  reduce to
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 For the special case  I   =   r   =   K   =  1, equations  (11.172)  to  (11.175)  reduce to
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  Possibility IX: Hydraulic Geometry Relations for Width, Depth, Velocity, 
and Slope 

 Equations  (11.164)  to  (11.167)  show that the width varies with discharge raised 
to the power  b   =  3/( I   +  3 r   +  3), depth varies with discharge raised to the power 
 f   =  9 r /(15  +  15 r   +  5 rK ), velocity varies with discharge raised to the power  m   =  1 
 −  [3/(3  +  3 rI )]  −  [9 r /(15  +  15 r   +  5 rk )], and slope varies with discharge raised to 
the power  y   =  (2 IK )/(3 I   +  3 K   +   KI ). The precise values of  b ,  f ,  m , and  y  depend 
on the weighting factors  r ,  I , and  K , which specify the proportion for adjustment 
of stream power among  B ,  h ,  V , and  S , as shown in Fig.  11-3 . The value of expo-
nent  b  varies from 0 to 1, exponent  f  varies from 0 to 9/35 to 0, exponent  m  varies 
from 0 to 1, and exponent  y  varies from 0 to 2, as shown in Table  11-5 . These 
values encompass the range reported in the literature, as shown in Table  11.3 . 
For the special case  r   =   I   =   K   =  1,  b   =  3/7, as shown in equation  (11.169) ,  f   =  9/35, 
as shown in equation  (11.168) ,  m   =  11/35, as shown in equation  (11.171) , and 
 y   =  2/7, as shown in equation  (11.170) . This discussion shows that the values of 
the  b ,  f ,  m , and  y  exponents are not fi xed; rather they vary over certain ranges, 
as exhibited by equations  (11.166)  to  (11.167) . The variation is indeed continuous 
and is dictated by the way the adjustment of stream power is distributed among 
variables. Under this possibility, the adjustment occurs simultaneously in river 
width, depth, velocity, and slope.   

  11.4.9     Possibility X 

  Possibility X:  P h    =   P   α    =   P S  ,  α   =   C   α    h h J    β  ,  S   =   C S    α   α  2   F   /3 , or  S   =   C Sh h  2 β    K   /3  

 Substitution of equations  (11.24a) ,  (11.26a) , and  (11.29a)  in equation  (11.7)  
lead to
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 For Manning ’ s equation,  α   =  1/ n  and  β   =  5/3, equations  (11.180)  to  (11.183)  
reduce to
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 For the special case  J   =   K   =   F   =  1, equations  (11.184)  to  (11.187)  become
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 For Chezy ’ s equation,  α   =   C  and  β   =  3/2, equations  (11.180)  to  (11.183)  reduce to
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J K

J K
J K

V h Sh h
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= =+ +
+ +

+ +
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( ) , ( )/ ( )/ /
α α
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3 1
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3 11
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 For the special case  J   =   K   =   F   =  1, equations  (11.192)  to  (11.195)  become

  h C C B Q C Q C C C Bh Sh h h h Sh= ( ) = = ( )− − − − − −
α α

1 2 2 7 2 7 2 7 2 7 1 2 2 7 2/ / / / / / / /, 77       (11.196)  

  C C C B Q C Q C C C Bh S h S= = =− − − −( ) , ( )/ / / / / / / /
α α α α α α

1 2 3 7 3 7 3 7 3 7 1 2 3 7 3 7       (11.197)  

  S C C B Q C Q C C C BS Sh Sh Sh S Sh= ( ) = = ( )− −
α α

3 7 2 7 2 7 2 7 3 7 2 7/ / / / / /,       (11.198)  

  V C QV= 5 7/       (11.199)    

  Possibility X: Hydraulic Geometry Relations for Depth, Roughness, 
Slope, and Velocity 

 Equations  (11.184)  to  (11.187)  show that the fl ow depth varies with discharge 
raised to the power  f   =  9/[9(3  +  3 J   +   K )], velocity varies with discharge raised to 
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the power  m   =  [3 J /(3 J   +   FJ   +  3)]  +  [6/{5(3  +  3 J   +   K )}]  +  [ FK /( FK   +  3 K   +  3 F )], Man-
ning ’ s  n  varies with discharge raised to the power  p   =  3 J /(3 J   +   FJ   +  3), and slope 
varies with discharge raised to the power  y   =  (2 FK )/(3 F   +  3 K   +   KF ). The precise 
values of  f ,  m ,  p , and  y  depend on the weighting factors  J ,  K , and  F , which specify 
the proportion for adjustment of stream power among  h ,  V ,  n , and  S , as shown 
in Fig.  11-3 . The value of exponent  f  varies from 0 to 1,  m  varies from 2/5 to an 
undefi ned value,  p  varies from 0 to 2, and  y  varies from 0/0 to 2, as exhibited in 
Table  11-5 . These values encompass the range reported in the literature, as shown 
in Table  11-6 . The exact exponent values depend on the values of the weighting 
factors. For the special case  J   =   K   =   F   =  1,  f   =  9/35, as shown in equation  (11.188) , 
 m   =  26/35, as shown in equation  (11.191) ,  p   =   − 3/7, as shown in equation  (11.189) , 
and  y   =  2/7 from equation  (11.190) . Thus, it is seen that the values of the  f ,  m ,  p , 
and  y  exponents are not fi xed; rather they vary over certain ranges, as exhibited 
in equations  (11.184)  to  (11.187) . The variation is indeed continuous and is dic-
tated by the way the adjustment of stream power is distributed among variables. 
Under this possibility, the adjustment occurs simultaneously in river depth, 
velocity, slope, and roughness.   

  11.4.10     Possibility XI 

  Possibility XI:  P B    =   P h    =   P   α    =   P S  ,  B   =   C Bh h   β /   r  ,  α   =   C   α    B B w  ,  S   =   C SB B  2   I   /3 , 
 S   =   C Sh h  2 β    K   /3 ,  α   =   C   α    h h J    β  , or  S   =   C S    α   α  2F/3  

 Substitution of equations  (11.18a) ,  (11.20a) ,  (11.22a) ,  (11.24a) ,  (11.26a) , and  (11.29a)  
in equation  (11.7)  lead to
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  V
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3 3 3
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3 3 3β β β β       (11.204)   
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 For Manning ’ s equation,  α   =  1/ n  and  β   =  5/3, equations  (11.200)  to  (11.204)  
reduce to
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 For the special case  r   =   J   =   I   =   K   =   F   =   w   =  1, equations  (11.205)  to  (11.209)  become
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  h C C C Q C Q C C C CBh h Sh h h Bh h Sh= = =− −( ) , ( )/ / / / / /
α α

1 2 9 50 9 50 9 50 1 2 9 50       (11.211)  

  n C C C Q C Q C C C CB h S B h S= = =− − − − − −( ) , ( )/ / / / /
α α α α α α α α

1 2 3 10 3 10 3 10 1 2 3//10       (11.212)  

  S C C C Q C Q C C C CSB Sh S S S SB Sh S= = =( ) , (/ / / / / / / / /3 2 3 2 3 2 1 5 1 5 1 5 3 2 3 2 3
α α

22 1 5) /       (11.213)  

  V
C C

Q
B h

= 1 13 25/       (11.214)   

 For Chezy ’ s equation,  α   =   C  and  β   =  3/2, equations  (11.200)  to  (11.204)  reduce to
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 For the special case  I   =   J   =   K   =   F   =   w   =  1, equations  (11.215)  to  (11.219)  become
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  h C C C Q C Q C C C CBh h Sh h h Bh h Sh= = =− −( ) , ( )/ / / / / /
α α

1 2 1 5 1 5 1 5 1 2 1 5       (11.221)  

  C C C C Q C Q C C C CB h S B h S= = =− −( ) , ( )/ / / / / /
α α α α α α α α

1 2 3 10 3 10 3 10 1 2 3 10       (11.222)  

  S C C C Q C Q C C C CSB Sh S S S SB Sh S= = =( ) , (/ / / / / / / / /3 2 3 2 3 2 1 5 1 5 1 5 3 2 3 2 3
α α

22 1 5) /       (11.223)  

  V
C C

Q
B h

= 1 19
70       (11.224)    

  Possibility XI: Hydraulic Geometry Relations for Width, Depth, 
Roughness, Slope, and Velocity 

 Equations  (11.205)  to  (11.209)  show that the fl ow width varies with discharge 
raised to the power  b   =  3/(3  +  3 w   +  3 r   +   I ), depth varies with discharge raised to 
the power  f   =  9 r /(15  +  15 r   +  15 rJ   +  5 rK ), velocity varies with discharge raised to 
the power  m   =  1  −  [3/(3  +  3 w   +  3 r   +   I )]  +  [9 r /(15  +  15 r   +  15 rJ   +  5 rK )], Manning ’ s 
 n  varies with discharge raised to the power  p   =   − 3 wJ /(3 w   +  3 J   +  3 wJ   +   FJw ), and 
slope varies with discharge raised to the power  y   =  (2 FIK )/(3 IK   +  3 FK   +  3 FI   +  
 FJw ). The precise values of  b ,  f ,  m ,  p , and  y  depend on the weighting factors  r ,  w , 
 I ,  J ,  K , and  F , which specify the proportion for adjustment of stream power 
among  b ,  h ,  V ,  n , and  S , as shown in Fig.  11-3 . The value of exponent  b  varies 
from 0 to 1, exponent  f  varies from 0 to 9/50 to 0,  m  varies from 0 to 1,  p  varies 
from an undefi ned value to 2, and  y  varies from an undefi ned value to 2, as 
shown in Table  11-5 . These values encompass the range reported in the literature 
(Singh,  2003 ; Singh and Zhang,  2008a, b ), as shown in Table  11-6 . The exact 
exponent values depend on the values of the weighting factors. For the special 
case  r   =   w   =   I   =   J   =   K   =   F   =  1,  b   =  3/10, as shown in equation  (11.210) ,  f   =  9/50, 
as shown in equation  (11.211) ,  m   =  13/25, as shown in equation  (11.214) , 
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 p   =   − 3/10, as shown in equation  (11.212) , and  y   =  1/5, as shown in equation 
 (11.213) , as shown in Table  11-1 . This discussion shows that the values of the  b , 
 f ,  m ,  p , and  y  exponents are not fi xed; rather they vary over certain ranges, as 
exhibited by equations  (11.205)  to  (11.209) . The variation is indeed continuous 
and depends on the way the adjustment of stream power is distributed among 
variables. Under this possibility, the adjustment occurs simultaneously in river 
width, depth, velocity, slope, and roughness.    

  Questions 

   Q11.1      Flow characteristics of Brandywine Creek, at Embreeville, Pennsylvania, 
measured by Wolman ( 1955 ), are given in Table  11-8 . Plot on a log-log 
paper fl ow width, depth, velocity, friction factor, and slope as a function 
of discharge and fi t straight lines. How well do these lines fi t? Compute 
parameters (exponent and proportionality coeffi cients) of the relations 
between discharge and fl ow characteristics. Check if the sum of expo-
nents equals 1.   

Date
Discharge 

 Q  (ft 3 /s)
Width, 
 B  (ft)

Mean 
depth, 
 d  (ft)

Mean 
velocity, 
 V  (ft/s)

Cross-
sectional 
area (ft 2 )

Slope 
of water 
surface, 
 S  (ft/ft)

Manning ’ s 
roughness, 

 n 

7/30/1951 73.8 76.5 1.15 0.84 88 0.00043 0.04

8/3/1951 57 76 1.11 0.69 84 0.00036 0.044

8/14/1951 81.6 77.5 1.21 0.87 93.5 0.00042 0.038

9/7/1951 79.7 78 1.18 0.86 92.1 0.00035 0.036

9/10/1951 51.9 78 1.05 0.63 82.2 0.00031 0.043

9/15/1951 160.5 79 1.49 1.36 118.4 0.00043 0.03

4/28/1952 2,340 88 5.26 5.05 463.1 0.00069 0.024

5/26/1952 1,075 84 3.64 3.98 305.7 0.0006 0.028

6/6/1952 319.2 81 1.98 2 160.4 59 0.028

8/7/1952 259.8 81 1.87 1.71 151.9 0.0006 0.032

9/19/1952 540 81 2.31 2.91 186.8 0.00061 0.022

12/16/52 191.7 80 1.62 1.47 130 0.0007 0.037

   Note:   Drainage area  =  117 mi. 2 , and length of reach  =  850 ft.  
  Source:   Data from Wolman  1955 .   

 Table 11-8      Measurements of fl ow characteristics of Brandywine Creek at Embreeville, 
Pennsylvania.  
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Date
Discharge 

 Q  (ft 3 /s)
Width, 
 B  (ft)

Mean 
depth, 
 d  (ft)

Mean 
velocity, 
 V  (ft/s)

Cross-
sectional 
area (ft 2 )

Slope 
of water 
surface, 
 S  (ft/ft)

Manning ’ s 
roughness, 

 n 

7/24/1951 98.5 60 1.23 1.34 73.6 0.00098 0.042

7/30/1951 80.2 61 1.1 1.2 67 0.00097 0.041

8/3/1951 68.2 60 1.1 1.04 66 0.0009 0.046

8/20/1951 312 64 2.05 2.38 131.1 0.0012 0.038

8/27/1951 66.4 60.5 1.08 1.02 65.1 0.00085 0.045

4/27/1952 1,117 67 3.42 4.8 229 — —

4/28/1952 2,400 75.5 4.93 6.46 372 0.00062 0.017

5/26/1952 1,750 69 4.02 6.33 277 — —

7/10/1952 1,036 71.6 3.12 4.64 223 — —

8/7/1952 293.9 64.5 2.02 2.26 130 — —

9/19/1952 623 67.5 2.84 3.24 192.4 — —

   Note:   Drainage area  =  134 mi. 2 , and length of reach  =  403 ft.  
  Source:   Data from Wolman,  1955 .   

 Table 11-9      Measurements of fl ow characteristics of Brandywine Creek at Wawaset, 
Pennsylvania.  

  Q11.2      Flow characteristics of Brandywine Creek at Wawaset, Pennsylvania, 
measured by Wolman ( 1955 ), are given in Table  11-9 . Plot on a log-log 
paper fl ow width, depth, velocity, friction factor, and slope as a function 
of discharge and fi t straight lines. How well do these lines fi t? Compute 
parameters (exponent and proportionality coeffi cients) of the relations 
between discharge and fl ow characteristics. Check if the sum of expo-
nents equals 1. Compare these coeffi cients and exponents with those 
computed in Q 11.1 and comment on the differences.   

  Q11.3      Compare the exponents determined in Q11.1 with those reported in the 
literature cited. What can then be said about the Brandywine Creek fl ow 
characteristics?  

  Q11.4      Compare the exponents determined in Q11.2 with those reported in the 
literature cited. What can then be said about the Brandywine Creek fl ow 
characteristics?  

  Q11.5      Determine the morphological equations relating width and depth of fl ow, 
width and Manning ’ s  n , and fl ow depth and Manning ’ s  n  and check if 
the derived equations are valid. Compute the spread of the associated 
coeffi cients.  
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  Q11.6      Collect the values of hydraulic geometry exponents given in the chapter 
as well as from the literature. Then, plot a histogram of each exponent 
and compute the mean, standard deviation, coeffi cient of variation, and 
coeffi cient of skewness of each exponent.  

  Q11.7      Compare the mean values of hydraulic geometry exponents computed in 
Q11.1 and Q11.2 with what is normally used in the literature, as given in 
Table  11-5 . What does the spread in each exponent value mean hydrauli-
cally? Comment on the hydraulic signifi cance of the coeffi cient of skew-
ness of each exponent value.  

  Q11.8      Different possibilities for hydraulic geometry adjustments have been dis-
cussed in the chapter. List these possibilities and the environments under 
which they occur. What is the most common possibility and why?  

  Q11.9      Hydraulic geometry adjustments respond to geological and climatic 
characteristics. The size of a river is also determined by these character-
istics. Which possibility is more likely for which geological and climatic 
regime and why?  

  Q11.10      Human-made changes also affect river or channel hydraulic geometry. 
Assume that a river is leveed for a certain portion, as is the case for many 
rivers in the United States. Which possibility is more likely for such a 
river and why?  

  Q11.11      On the Indian subcontinent, there are large irrigation canal systems. 
What possibility is more likely for such canals and why?  

  Q11.12      Assume that some of the canals in Q10.9 are lined. What possibility is 
then more likely for such canals and why?    
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    Chapter 12 

  Longitudinal River Profi le  

       The longitudinal profi le of a river is linked with the distribution of energy gradi-
ent along the river. The distribution of energy gradient is needed for design of 
river training works, analysis of channel changes, modeling of regime rivers, 
investigations of morphology and landscapes of rivers, sediment transport, navi-
gation, and fl ood control. The energy gradient depends on a number of factors, 
including sediment size, water discharge, sediment load, geological conditions, 
human intervention, and climatic conditions. Some of these factors are interac-
tive. For example, the fl ow and sediment load that a river carries depend on the 
conditions in its basin, which, in turn, depend on human activities and geology. 
Likewise, climate determines land use, which then infl uences sediment load and 
fl ow to the river and its formation. These factors have inherent uncertainties, and 
so do their interactions. Thus, it would be logical to state that there is inherent 
randomness in the energy gradient distribution. This randomness permits us to 
derive longitudinal river profi les using entropy, and this phenomenon consti-
tutes the subject matter of this chapter. 

  12.1     Longitudinal Profi les 

 Field observations of longitudinal profi les of rivers suggest that the profi les are 
concave, convex, or straight, as shown in Fig.  12-1 . Concave profi les are most 
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common in nature, whereas convex profi les are found in arid areas or over 
certain river reaches. Straight profi les are observed for reaches with uniform 
fl ow, sediment, and boundary conditions. Such profi les are found in the down-
stream reaches of large rivers, such as the Yangtze, the Mississippi, the Ganges-
Brahmaputra, and the Nile.   

  12.2     Energy Gradient 

 Consider an alluvial reach of length  L  with a total elevation of  Y  over the reach 
length. Let the longitudinal distance measured from the upstream end of the 
reach be denoted as  x  and the elevation above the downstream end be denoted 
as  y . The energy gradient may be denoted by  S  with its specifi c value  s  defi ned 
as  s   =   dy / dx . For most rivers, the discharge increases and the sediment concentra-
tion and sediment particle size decrease along the longitudinal distance in the 
direction of fl ow. Therefore, the energy gradient also decreases downstream, and 
 s  is the highest at the upstream end and the lowest at the downstream end. 
It is assumed that the channel bed slope for a gradually varied fl ow can be 

  Figure 12-1      Longitudinal river profi les: Concave, convex, and straight.      Note:    x  is the 
longitudinal distance, and  y  is the elevation with respect to a datum. 
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approximated by the energy gradient. Cao and Chang ( 1988 ) used entropy theory 
for deriving the energy gradient distribution.  

  12.3     Derivation of Longitudinal Profi les 

 It may be useful to nondimensionalize variables to be used here. When we defi ne 
the normalizing quantities  L  as the river reach length and  Y  0  as elevation at the 
upstream end, the dimensionless distance can be expressed as  x *  =   x / L , and the 
dimensionless elevation as  y *  =   y / Y  0 . In dimensionless terms, slope  s   =   dy / dx  
can be defi ned as  s *  =   dy */ dx *. 

  12.3.1     Shannon Entropy 

 It is assumed that the temporally averaged energy gradient  S  is a random vari-
able. Taking  S  as a continuous variable, its Shannon entropy  H  (Shannon  1948 ) 
can be expressed as

  H s f s f s ds
s

s

d

u

( ) ( )ln ( )= −∫       (12.1)   

 where  s  is the value of random variable  S ,  f ( s ) is the probability density function 
(PDF) of  S ,  H  is the entropy of  f ( s ) or  S ,  s u   is the value of slope at the upstream 
end, and  s d   is the value of slope at the downstream end. Equation  (12.1)  is a 
measure of uncertainty of  f ( s ) of variable  S . The objective is to derive  f ( s ) by 
maximizing  H , subject to specifi ed constraints on  S , in accordance with the prin-
ciple of maximum entropy (POME) (Jaynes  1957 ). Maximization of  H  makes  f ( s ) 
as uniform as possible, simultaneously satisfying the constraints as a river profi le 
tends toward the state of dynamic equilibrium corresponding to its entropy 
being maximum.  

  12.3.2     Specifi cation of Constraints 

 For purposes of simplicity, two constraints are specifi ed. The fi rst constraint is 
the total probability theorem that  f ( s ) must satisfy and can be formulated as

  f s ds
s

s

d

u

( )∫ = 1       (12.2)   

 The second constraint can be expressed as the mean energy gradient or mean 
value of  S  as

  sf s ds E S s s
s

s

m

d

u

( ) [ ]∫ = = =       (12.3)  

where  E  is the expectation operator, and  s     or  s m   is the mean energy gradient.  
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  12.3.3     Maximization of Entropy 

 To obtain the least biased  f ( s ) that satisfi es equations  (12.2)  and  (12.3) , equation 
 (12.1)  is maximized following POME. This step is achieved by using the 
method of Lagrange multipliers. To that end, the Lagrangian function  L  is 
expressed as

  L f s f s ds f s ds sf s ds
s

s

s

s

sd

u

d

u

d

= − − − −
⎛

⎝⎜
⎞

⎠⎟
−∫ ∫( )ln ( ) ( ) ( ) ( )λ λ0 11 1

ss

m

u

s∫ −
⎛

⎝⎜
⎞

⎠⎟
      (12.4)  

where  λ  0  and  λ  1  are the Lagrange multipliers. Differentiating equation  (12.4)  with 
respect to  f , while recalling the Euler–Lagrange equation of calculus of variation, 
noting  f  as variable and  s  as parameter, and equating the derivative to zero, one 
obtains

  
∂
∂

= ⇒ − − −L
f

f s s0 0 1ln ( ) λ λ       (12.5)    

  12.3.4     Probability Distribution of Energy Gradient 

 Equation  (12.5)  yields

  f s s( ) exp( )= − −λ λ0 1       (12.6)   

 Equation  (12.6)  is the POME-based PDF of longitudinal slope  S . The Lagrange 
multipliers  λ  0  and  λ  1  can be determined using equations  (12.2)  and  (12.3) .  

  12.3.5     Determination of Lagrange Multipliers 

 Substitution of equation  (12.6)  in equation  (12.2)  yields

  exp( ) [exp( ) exp( )]λ
λ

λ λ0
1

1 1
1= − − −s sd u       (12.7)  

which defi nes the partition function. Taking the logarithm of equation  (12.7) , the 
result is

  λ λ λ λ0 1 1 1= − + − − −ln ln[exp( ) exp( )]s sd u       (12.8)  

which defi nes a relation between  λ  0  and  λ  1 . Differentiating equation  (12.8)  with 
respect to  λ  1 , one obtains

  
∂
∂

= − −
− − −
− − −

λ
λ λ

λ λ
λ λ

0

1 1

1 1

1 1

1 s s s s
s s

d d u u

d u

exp( ) exp( )
exp( ) exp( )

      (12.9)   

 Conversely, substitution of equation  (12.6)  in equation  (12.2)  also yields

  λ λ0 1= −∫ln exp( )s ds
s

s

d

u

      (12.10)   
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 Differentiating equation  (12.10)  with respect to  λ  1  yields

  
∂
∂

= −
−

−

∫

∫

λ
λ

λ

λ

0

1

1

1

s s ds

s ds

s

s

s

s
d

u

d

u

exp( )

exp( )
      (12.11)   

 When multiplying and dividing equation  (12.11)  by exp( −  λ  0 ), one can express 
the result as

  
∂
∂

= −
− −

− −
= −

∫

∫

λ
λ

λ λ

λ λ

0

1

0 1

0 1

s s ds

s ds
ss

s

s

s m
d

u

d

u

exp( )

exp( )
      (12.12)   

 Equating equation  (12.9)  to equation  (12.12) , the result is

  s
s s s s

s s
m

d d u u

d u

= +
− − −
− − −

1

1

1 1

1 1λ
λ λ
λ λ

exp( ) exp( )
exp( ) exp( )

      (12.13)   

 Equation  (12.13)  expresses the relation between the mean slope and the upstream 
and downstream slopes. It is an implicit expression for  λ  1  in terms of  s m   and can 
be solved numerically for any unknown  λ  1 . 

  Example 12.1             For  s d    =  0.001,  s u    =  0.088, and  s m    =  0.045, compute  λ  1   =  using equa-
tion  (12.13) . Plot  λ  1  as a function of  s m  . To what kind of curve does this function 
correspond?  

  Solution     We are given that  s d    =  0.001,  s u    =  0.088, and  s m    =  0.045. Substituting these 
values in equation  (12.13)  and solving it numerically, one obtains  λ  1   =   − 0.793. 
Table  12-1  shows values of  λ  1  for different values of  s m  . Fig.  12-2  plots  λ  1  as a 

 λ  1  s m   λ  1  s m  

 − 300 0.085 0.5 0.044

 − 100 0.078 1 0.044

 − 10 0.051 5 0.041

 − 5 0.048 10 0.038

 − 1 0.045 50 0.020

 − 0.5 0.045 100 0.011

 − 0.1 0.045 500 0.003

0.1 0.044 1,000 0.002

 Table 12-1      Values of  λ  1  for different values of  s m  .  
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function of  s m  . It is seen that  λ  1  becomes zero at about  s m    =  0.043, and, hence, the 
curve changes from concave to convex. 

   In natural channels, rivers, or streams, bed slopes are quite small, usually less 
than 1%. Of course, in upper reaches, depending on the geology, slopes can be 
quite high, especially in mountainous streams. It is interesting to observe that as 
mean slope increases beyond about 0.043, the value of  λ  1  goes from positive to 
negative.     

  Figure 12-2      Plot of  λ  1  as a function of  s m  .    

  12.3.6     Maximum Entropy and Probability Distribution 

 Substitution of equation  (12.7)  in equation  (12.6)  leads to the PDF of  S  as

  f s
s

s sd u

( )
exp( )

exp( ) exp( )
=

−
− − −
λ λ
λ λ

1 1

1 1
      (12.14a)   

 Equation  (12.14a)  has only one unknown Lagrange multiplier,  λ  1 , which can 
be obtained by numerically solving equation  (12.13) . The CDF of  S  can be 
written as

  F s
s s
s s

d

d u

( )
exp( ) exp( )
exp( ) exp( )

=
− − −
− − −

λ λ
λ λ

1 1

1 1

      (12.14b)   

 Substituting equation  (12.14a)  in equation  (12.1) , one gets the maximum 
entropy as

  H s s s sm d u( ) ln ln[exp( ) exp( )]= − + − − −λ λ λ λ1 1 1 1       (12.15)   
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  Example 12.2             For  s d    =  0.001,  s u    =  0.088, and  s m    =  0.045, compute the PDF of  S  using 
equation  (12.14a)  and plot it.  

  Solution      λ  1   =   − 0.793, as computed in Example  12.1 . Note that the value of  f ( s ) at 
 s   =  0 is

  f s
s ss

d u

( )
exp( ) exp( )

.= =
− − −

=0
1

1 1

11 9
λ

λ λ        

 Using equation  (12.14a) , we see that the PDF of  S ,  f ( s ), is computed and tabulated 
in Table  12-2  and is shown in Fig.  12-3 . It is a negative exponential function.     

 s  f ( s )  S  f ( s )

0 11.9 0.05 11.442

0.01 11.811 0.06 11.352

0.02 11.717 0.07 11.262

0.03 11.625 0.08 11.173

0.04 11.533 0.088 11.102

 Table 12-2      Values of  f ( s ) for various values of  s .  

  Figure 12-3      Plot of  f ( s ) versus  s .    

   Example 12.3             For  s d    =  0.001,  s u    =  0.088, and  s m    =  0.045, compute the CDF of  S  using 
equation  (12.14b)  and plot it.  

  Solution     For  λ  1   =   − 0.793,  F ( s ) is computed as a function of  s , as shown in Table 
 12-3 , and Fig.  12-4  plots  F ( s ) versus  s .     
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   Example 12.4             Compute the probability of  S  less than or equal to 0.02, 0.03, 0.04, 
0.05, 0.06, 0.07, and 0.08. Use equation  (12.14b) .  

  Solution     For  λ  1   =   − 0.793, as computed in Example  12.1 , the values of probability 
are computed for given  s  values, as tabulated in Table  12-4 .    

  Figure 12-4      Plot of  F ( s ) versus  s .    

 s  F ( s )  s  F ( s )

0 0 0.05 0.572

0.01 0.107 0.06 0.686

0.02 0.224 0.07 0.799

0.03 0.341 0.08 0.911

0.04 0.457 0.088 1.000

 Table 12-3      Values of  F ( s ) for various values of  s .  

 s  F ( s )  =   P ( D   ≤   s )

0.02 0.224

0.03 0.341

0.04 0.457

0.05 0.572

0.06 0.686

0.07 0.799

0.08 0.911

 Table 12-4      Probability values for given s values.  
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   Example 12.5       Compute entropy of  S  using equation  (12.15)  for  s d    =  0.001, 
 s u    =  0.088, and  s m    =  0.045. First, compute the value of  λ  1 , noting that  s m   and  λ  1  are 
related by equation  (12.13) . 

     Solution    

  

H s s s sm d u( ) ln ln[exp( ) exp( )]
( . . ) ln

= − − − − −
= − × −

λ λ λ λ1 1 1 1

0 793 0 045 00 793 0 793 0 001 0 793 0 088
2 835

. ln[(exp( . . ) exp( . . )]
.

− × − ×
= Napier

        

   Example 12.6             Compute and plot  H ( S ) as a function of  s m  . Note that  s m   and  λ  1  are 
related by equation  (12.13) .  

  Solution      H ( S ) is computed as a function of  s m   using equation  (12.15) , as shown 
in Table  12-5 , and then  H ( S ) is plotted as shown in Fig.  12-5 , which shows that  H  
decreases with increasing  s m  .     

 s m   H ( s )  s m   H ( s )

0.0458 0.874 0.0451 2.352

0.0457 0.986 0.0450 2.816

0.0456 1.103 0.0449 3.410

0.0455 1.357 0.0448 4.239

0.0454 1.642 0.0447 4.823

0.0453 1.969 0.0446 7.038

0.0452 2.152

 Table 12-5      Values of  H ( S ) for given values of  s m  .  

  Figure 12-5      Plot of  H ( S ) as a function of  s m  .    
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   Example 12.7             Compute and plot  H ( S ) as a function of  λ  1 . Note that  λ  1  and  s m   are 
related by equation  (12.13) .  

  Solution     Values of  H ( S ) are computed as a function of  λ  1 , as shown in Table  12-6 , 
and Fig.  12-6  plots  H ( s ). It is seen that  H  increases with increasing  λ  1 .       

 λ  1  s m   H  λ  1  s m   H 

 − 2 0.046 0.874  − 1 0.045 2.352

 − 1.8 0.046 1.103  − 0.8 0.045 2.816

 − 1.6 0.046 1.357  − 0.6 0.045 3.410

 − 1.4 0.045 1.642  − 0.4 0.045 4.239

 − 1.2 0.045 1.969  − 0.2 0.045 5.643

 Table 12-6      Values of  H ( S ) as a function of  λ  1  and the corresponding  s m  .  

  Figure 12-6      Plot of  H ( S ) as a function of  λ  1 .    

  12.3.7     Distribution of Energy Gradient 

 The energy gradient decreases from one point to another in the downstream 
direction, i.e.,  s d    ≤   s   ≤   s u  ,  s ( x ) is a decreasing function of the longitudinal distance, 
0  ≤   x   ≤   L . It is assumed that the probability of any value of  x  being sampled is 
the same as that of another value. Thus, the probability of an energy gradient 
being equal to or less than a given value can be expressed as

  F s
x s
L

( )
( )= −1       (12.16)  
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where  F ( s ) is the cumulative distribution function. Differentiating equation 
 (12.16)  yields the PDF of  S  as

  f s ds
L

dx f s
L

dx
ds

L
ds
dx

( ) ( )= − = − = ⎛
⎝

⎞
⎠

−1 1 1or       (12.17)   

 The PDF of  S  given by equation  (12.17)  must satisfy the constraints defi ned by 
equations  (12.2)  and  (12.3) . 

 Equating equation  (12.17)  to equation  (12.14a) , one gets

  
λ λ
λ λ

1 1

1 1

1exp( )
exp( ) exp( )

−
− − −

= −
s

s s
ds

L
dx

d u
      (12.18)   

 Integration of equation  (12.18)  with the condition  s   =   s u   at  x   =  0, leads to

  s
s

x
L

s s

u

d u

=
+ − − −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1

1 11

1

1
λ

λ

λ
ln

exp( )

[exp[ ( )] ]
      (12.19a)   

 Equation  (12.19a)  defi nes the longitudinal slope or energy distribution for 
concave profi les. For convex profi les, the boundary condition changes in that 
 s d    >   s u  . However, equation  (12.19a)  remains the same except for a change of 
limits as

  s
s

x
L

s s

d

u d

=
+ −⎛

⎝
⎞
⎠ − − −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1

1 1 11

1

1
λ

λ

λ
ln

exp( )

[ exp[ ( )]]
      (12.19b)   

  Example 12.8             For  s d    =  0.001,  s u    =  0.088,  s m    =  0.045, and  λ  1  computed from equation 
 (12.13) , compute  s  as a function of  x / L  and plot the slope relation.  

  Solution     For  λ  1   =   − 0.793, values of  s  are computed as a function of  x / L , as given 
in Table  12-7 , and Fig.  12-7  plots  s  as a function of  x / L . The profi le looks like a 
concave profi le.     

x/L s x/L s

0 0.088 0.2 0.071

0.01 0.087 0.3 0.063

0.05 0.084 0.5 0.045

0.1 0.080 1 0.001

 Table 12-7      Values of  s  corresponding to  x / L .  
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  Figure 12-7      Plot of  s  versus  x / L .    

   Example 12.9             For  s d    =  0.0032,  s u    =  0.00028,  s m    =  0.0017, and  λ  1  computed from 
equation  (12.13) , compute  s  as a function of  x / L  and plot the slope relation.  

  Solution     The value of  λ  1  is computed from equation  (12.13)  and is found as 
 λ  1   =   − 0.01. Then,  s  is computed as a function of  x / L , as shown in Table  12-8 . Fig. 
 12-8  plots the slope relation.     

x/L s x/L s

0 0.0003 0.2 0.0009

0.01 0.0003 0.3 0.0012

0.05 0.0004 0.5 0.0017

0.1 0.0006 1 0.0032

 Table 12-8      Values of  s  corresponding to  x / L  in Example  12.9 .  

  Figure 12-8      Plot of  s  versus  x / L .    
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  Equations  (12.19a)  and  (12.19b)  express the longitudinal distribution of 
the energy gradient. Note that  s   =   dy / dx . Therefore, equation  (12.19a)  can be 
written as

  
dy
dx

s
x
L

s s

u

d u

=
−

+ − − −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1

1 11

1

1
λ

λ

λ
ln

exp( )

[exp[ ( )] ]
      (12.20)   

 Integrating equation  (12.20)  with the condition  y   =   Y  0  at  x   =  0, one gets

  
y Y s x

x x
L

s s

x L s

u d u

d

= − + − + − − −{ }
+ −

0
1 1

1

1

1
1 1

λ λ
λ

λ

ln [exp( ( )) ]

{ [exp( ( −− − −su )) ] }1 1

      (12.21)   

 Taking the limit of equation  (12.18)  where  s d   approaches  s u  , one gets

  lim
s s

m
d u

s s
→

=       (12.22)   

 This result means that  s m    =   s u    =   s d  . The implication is that the energy gradient of 
the river reach tends to attain the mean value  s m  . Then, the longitudinal profi le 
is straight and can be obtained by the integration of equation  (12.22)  with the 
integration constant  Y  0  as

  y Y s xm= −0       (12.23)   

  Example 12.10             For  s d    =  0.001,  s u    =  0.088,  s m    =  0.045,  L   =  70 km, and  λ  1  computed 
from equation  (12.13) , compute  y  as a function of  x  and plot the relation.  

  Solution     The value of  λ  1  is computed using equation  (12.23)  and is found to 
be  − 0.793, and values of  y  versus  x  are computed as shown in Table  12-9 . 
Fig.  12-9  plots the elevation versus distance, where the profi le looks like a con-
cave profi le.     

 x  (km)  y  (m)  x  (km)  y  (m)

0 3.080 30 1.013

1 2.993 40 0.576

2 2.907 50 0.262

5 2.656 60 0.070

10 2.264 70 0.000

20 1.576

 Table 12-9      Values of elevation  y  at different distances  x .  
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   Example 12.11             For  s d    =  0.0032,  s u    =  0.00028,  s m    =  0.0017,  L   =  160 km, and  λ  1  com-
puted from equation  (12.13) , compute  y  as a function of  x / L  and plot the relation.  

  Solution     The value of  λ  1  is computed using equation  (12.13)  and is found to be 
 − 0.01. Then, values of  y  versus  x  are computed as shown in Table  12-10 . Fig.  12-10  
plots the elevation versus distance. The profi le looks like a convex profi le.     

  Figure 12-9      Dimensionless concave longitudinal profi le.    

 x  (km)  y  (m)  x  (km)  y  (m)

0 0.068 120 0.021

5 0.067 130 0.016

10 0.065 140 0.011

50 0.052 150 0.006

100 0.031 160 0.000

110 0.026

 Table 12-10      Values of  y  at different distances  x .  

  Figure 12-10      Dimensionless convex longitudinal profi le.    
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   Example 12.12             Consider a river reach 250 km long,  s m    =  0.00065, and  Y  0   =  0.9773. 
Compute  y  as a function of  x / L  and plot the relation.  

  Solution     Using equation  (12.23) , elevation y is computed for different distances, 
as given in Table  12-11 . Fig.  12-11  plots the elevation versus distance. The profi le 
looks like a straight profi le.        

 x  (km)  y  (m)  x  (km)  y  (m)

0 0.9773 100 0.9123

10 0.9708 150 0.8798

20 0.9643 200 0.8473

50 0.9448 250 0.8148

 Table 12-11      Values of  y  at different distances  x .  

  Figure 12-11      Dimensionless uniform longitudinal profi le.    

  12.4     Longitudinal Channel Profi le from Fall Entropy 

 Using entropy-based geomorphological analysis, Fiorentino et al. ( 1993 ) derived 
the longitudinal bed profi le of a channel as a function of fall in elevation as

  Y H= − +α β αln       (12.24)  

where  Y  is the fall in elevation from the source to the outlet of the main channel 
of the drainage basin whose entropy is  H , and  α  is a parameter. Treating  α  ln  β  
and  α  as regression constants, Fiorentino et al. ( 1993 ) obtained the best fi t line 
for the plot of elevation drop against entropy for each link of the main stream 
and found that equation  (12.24)  explained more than 90% of the variance in the 
fall in elevation for all basins considered.  
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  Questions 

   Q12.1      Consider a river reach 68 km long where the upstream slope is 0.088 and 
the downstream slope is 0.001. Take the mean slope as 0.050. Compute 
the values of the Lagrange multipliers  λ  0  and  λ  1 . Then compute the lon-
gitudinal profi le of the reach. What does the profi le look like? Compute 
the slope entropy.  

  Q12.2      Consider a 10-km-long river reach where the upstream slope is 0.02, the 
downstream slope is 0.08, and the mean slope is 0.040. Compute the 
values of the Lagrange multipliers  λ  0  and  λ  1 . Then compute the slope 
profi le and the longitudinal profi le of the reach. What does the profi le 
look like? Compute the slope entropy.  

  Q12.3      Consider a 10-km-long river reach where the upstream slope is 0.08, the 
downstream slope is 0.02, and the mean slope is 0.050. Compute the 
values of the Lagrange multipliers  λ  0  and  λ  1 . Then compute the slope 
profi le and the longitudinal profi le of the reach. What does the profi le 
look like? Compute the slope entropy.  

  Q12.4      Consider a 160-km-long reach of the Zijiang River, China, where the 
upstream slope is 0.000212, the downstream slope is 0.000315, and the 
mean slope is 0.0002635. Compute the values of the Lagrange multipliers 
 λ  0  and  λ  1 . Then compute the slope profi le and the longitudinal profi le of 
the reach. What does the profi le look like? Compute the slope entropy.  

  Q12.5      What factors determine the bed slope of a river reach?  

  Q12.6      Why and under what conditions is a river section bed concave, fl at, or 
convex?  

  Q12.7      Does the river bed slope change with the river size, and if yes, then why?  

  Q12.8      Can a river have different slope profi les in different reaches? If the answer 
is yes, then why?    
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    Chapter 13 

  Design of Alluvial 
Channels  

       The design of an alluvial channel involves determining the cross-sectional shape 
of the channel that is stable. In nature, cross-sectional shapes take on different 
forms that are irregular and complicated. These shapes are often approximated 
as rectangular, triangular, trapezoidal, or parabolic. Chow ( 1959 ) pointed out that 
natural channel sections are in general very irregular, varying from an approxi-
mate parabola to an approximate trapezoid. King ( 1939 ) also found that a para-
bolic section approximates the form assumed by many natural streams and old 
canals. Henderson ( 1966 ) divided cross-sectional shapes of stable alluvial chan-
nels in two types, as shown in Fig.  13-1 . A type 1 channel is characterized by two 
curved banks with a constant depth and a fi nite width section in between at the 
bottom, whereas a type 2 channel consists of two curves that meet at the bed 
and extend to the point of the highest fl ow depth. Thus, if the fi nite width at the 
bottom in type 1 is reduced to a point, it reduces to type 2. 

  In the simplest case of channel design, it is assumed that the channel is 
unlined and carries only water and when the channel is fl owing bankfull, the 
sediment particles along the perimeter of this channel are in a state of impend-
ing motion. This means that the channel is a threshold channel. Therefore, the 
knowledge of the threshold is needed for designing a stable channel with 
threshold banks and mobile bed and is important for design of irrigation canals 
and channelization works and for determining the channel response to fl ow 
regulation. 
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 There are a number of approaches to design of stable channels. One of the 
commonly used approaches is the tractive force approach introduced by Glover 
and Florey ( 1951 ). This approach results in a cosine profi le, which is widely cited 
in the sediment transport literature (Simons and Senturk  1976 ). Although the 
cosine profi le for the shape of a threshold bank has been supported by a number 
of investigations (Parker  1978 ; Ikeda et al.  1988 ; Pizzuto  1990 ), it is not accepted 
universally. For example, Mironenko et al. ( 1984 ) suggested a parabolic shape, 
whereas Ikeda ( 1981 ), Diplas ( 1990 ), and others simulated the shape using an 
exponential function. 

 This chapter discusses the application of entropy theory to the design of 
stable channels of type 2. The application of entropy to channel design has been 
presented by Cao and Knight ( 1995a, 1995b, 1997 ), and Cao and Chang ( 1988 ), 
and this chapter draws from their works. 

  13.1     Channel Cross Section 

 The shape of a channel is assumed to be curved, as shown in Fig.  13-1 b. Thus, 
the distribution of transverse slopes needs to be determined. This determination 
then leads to the cross-sectional bank profi le. It is assumed that the dimensions 
and shape depend on the discharge and boundary sediment size or angle of 
repose of particles. Furthermore, the two bank profi le curves on the sides of the 
centerline meet at the centerline at the bottom, and the shape curve must satisfy 
the continuity at the meeting point. The shape on either side of the centerline is 
the same. The elevation from the horizontal datum to the bank is denoted as  y,  
varying from 0 to  D  at the water surface (0  ≤   y   ≤  D).  

  Figure 13-1      Stable channel types.    

(a) Type1

(b) Type2
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  13.2     Notation 

 Let  x  be the lateral distance from the centerline, varying from 0 to  W , where  W  
is the half channel width from the centerline. Then, the total width would be 2 W  
or  B . The fl ow depth is denoted by  h , varying from 0 to  h c  , which equals  D , where 
 D  is the bankfull fl ow depth at the centerline. The transverse slope is denoted 
by  s   =  tan  θ   =   dy / dx,  varying from 0 to  s  0 , where  s  0  is the submerged coeffi cient 
of friction,  y  is the elevation of the bank at  x ,  s  0  is the maximum slope equal to 
the angle of repose  μ , the angle of internal friction for sediment, or the static 
coeffi cient of Coulomb friction, as shown in Fig.  13-2 . It is assumed that the 
transverse slope increases monotonically from the centerline to the water surface. 
Furthermore, the transverse slope is found to vary from one cross section to 
another. In other words, it has spatial variability. Therefore, it is not unduly 
restrictive to assume that the transverse slope is a random variable denoted by 
 S  whose specifi c value is denoted by  s .   

  13.3     Shannon Entropy 

 The Shannon entropy (Shannon  1948 ) of the transverse slope  S  can be 
expressed as

  H S f s f s ds
s

( ) ( )ln ( )= −∫
0

0

      (13.1)  

where  s  is the value of random variable  S ,  f ( s ) is the probability density function 
(PDF) of  S , and  H  is the entropy of  f ( s ) or  S.  Equation  (13.1)  is a measure of 
uncertainty of  f ( s ) of variable  S . The objective is to derive  f ( s ) by maximizing  H , 

  Figure 13-2      Half channel width and notations.    
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subject to specifi ed constraints, in accordance with the principle of maximum 
entropy (POME) (Jaynes  1957 ). 

 Two cases are considered. In the fi rst case, no constraints other than the total 
probability on the transverse are imposed. In the second case, an average slope 
constraint is imposed. It may be noted that the fi rst case is a limiting case of the 
more general second case.  

  13.4     Entropy Method, Case 1: No Constraint 

  13.4.1     Specifi cation of Constraints 

 For purposes of simplicity, the constraint that  f ( s ) must satisfy is formulated as

  f s ds
s

( )
0

0

1∫ =       (13.2)  

which is the total probability theorem. In a sense, this is really not a constraint, 
because all probability distributions must satisfy equation  (13.2) .  

  13.4.2     Probability Density Function and Maximum Entropy 

 The least biased probability distribution function  f ( s ) is obtained by maximizing 
the entropy given by equation  (13.1) , subject to equation  (13.2) . This step is done 
by using the method of Lagrange multipliers where the Lagrangian function  L  
can be   expressed as

  L f s f s ds f s ds
s s

= − − − −
⎛
⎝⎜

⎞
⎠⎟∫ ∫( )ln ( ) ( ) ( )

0

0

0

0 0

1 1λ       (13.3)  

where  λ  0  is the Lagrange multiplier. Differentiating equation  (13.3)  with respect 
to  f , while recalling the Euler–Lagrange calculus of variation, noting that  f  is 
variable and  s  is parameter, and equating the derivative to zero, one obtains

  
∂
∂

= ⇒ − − =L
f

f s0 00ln ( ) λ       (13.4)   

 Equation  (13.4)  yields

  f s( ) exp( )= −λ0       (13.5)   

 Equation  (13.5)  is a uniform PDF of transverse slope  S . The cumulative distribu-
tion function (CDF) of  S  is obtained by integrating equation  (13.5)  as

  F s s( ) exp( )= −λ0       (13.6)   
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 The maximum entropy of  S  is obtained by inserting equation  (13.5)  in equation 
 (13.1) :

  H S( ) = λ0       (13.7)  

which is expressed in terms of the Lagrange multiplier  λ  0  and is constant.  

  13.4.3     Determination of Lagrange Multipliers 

 Substitution of equation  (13.5)  in equation  (13.1)  yields

  exp( )− =λ 0
0

1
s

      (13.8)   

 Therefore,

  λ0 0= ln s       (13.9)   

 Substitution of equation  (13.8)  in equation  (13.5)  leads to the PDF of  S  as

  f s
s

( ) = 1

0

      (13.10)   

 Likewise, substitution of equation  (13.8)  in equation  (13.6)  yields the CDF 
of  S :

  F s
s
s

( ) =
0

      (13.11)   

 Similarly, substitution of equation  (13.8)  in equation  (13.7)  yields

  H S s( ) ln= 0       (13.12)    

  13.4.4     Distribution of Transverse Slope 

 At any lateral distance from the centerline less than  x , the transverse slope at 
that distance is less than  s . It can then be reasoned that all values of  x  between 
0 and  W  along the  x -axis are equally likely to be sampled or have the same prob-
ability of occurrence. Then the probability of transverse slope that is equal to or 
less than  s  is  x / W . The CDF of  S  can then be expressed in a simple form as

  F s
x

W
( ) =       (13.13)   

 Differentiating equation  (13.13)  yields the PDF of  S  as

  f s ds
W

dx f s
W

dx
ds

W
ds
dx

( ) ( )= = = ⎛⎝
⎞
⎠

−1 1 1

or       (13.14)   
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 The PDF given by equation  (13.5)  must satisfy the constraint defi ned by equation 
 (13.2) . Inserting equation  (13.5)  in equation  (13.14) , one gets

  
1 1

0s W
dx
ds

=       (13.15)   

 Integration of equation  (13.15)  yields

  s
s
W

x= 0       (13.16)   

 Equation  (13.16)  expresses the distribution of transverse slope as a function 
of transverse distance and satisfi es the condition that  s   =  0 at  x   =  0 and  s   =   s  0  at 
 x   =   W .  

  13.4.5     Cross-Sectional Shape 

 Recalling the defi nition of slope,  s   =   dy / dx , and equating it to equation  (13.16) , 
one gets

  
dy
dx

s
W

x= 0       (13.17)   

 Integrating equation  (13.17)  with the condition that  s   =  0 at  x   =  0, the bank profi le 
becomes

  y
s
W

x= 0 2

2
      (13.18)   

 Equation  (13.18)  gives the elevation of the right bank or water margin as a func-
tion of transverse distance  x  from the centerline up to  x   =   W . This is the shape 
function  y   =   y ( x ). At  x   =   W ,  y   =   D,  which is also the fl ow depth at the centerline 
 h c   and is given by equation  (13.18)  as

  D h
s W

c= = 0

2
      (13.19)   

 Subtracting equation  (13.18)  from equation  (13.19) , one gets the lateral distribu-
tion of local water fl ow depth as

  h D y
s

W
x
W

= − = −⎛
⎝⎜

⎞
⎠⎟

0
2

2
      (13.20)   

 The aspect ratio  B / D   =  2 W / D  then becomes

  
B
D s
= 4

0
      (13.21)   
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 Equation  (13.19)  specifi es the depth at the centerline, and equation  (13.20)  
specifi es the boundary elevation from the bed. Taking the difference of these two 
equations results in the lateral distribution of fl ow depth  h ( x ) as a function of 
lateral distance as

  h x
s W x

W
( ) = − ⎛⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

0
2

2
1       (13.22)   

 Noting that  hdx   =   dA , the cross-sectional area  A  can be obtained by integrating 
equation  (13.22)  as

  A s W= 2
3

0
2       (13.23a)   

 For  s  0   =  0.5, the aspect ratio given by equation  (13.23a)  can be written as

  
B
h s

B W
c

= = =
4

8 2
0

,       (13.23b)  

where  B   =  water surface width. Then, the cross-sectional area can be 
defi ned as

  A
W h

s
hc= = ⎛

⎝⎜
⎞
⎠⎟
=

2
2
2

0

2

3
8
3

16
3

      (13.24)   

 Now the wetted perimeter  P w   is computed as follows: Consider an arc element 
of wetted perimeter  dPw   =  ( dx  2   +   dy  2 ) 1/2 . From equation  (13.17) ,  dy   =   x  2  s  0 /(2 W ). 
Therefore,  dy   =   xs  0 / W , and

  dP dx
xs
W

dx
x s
W

dx
s
W

W
s

w = ⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥ = +⎡

⎣⎢
⎤
⎦⎥

= ⎛⎝
⎞
⎠

2 0
2 1 2 2

0
2

2
0

2

0
2

1
/

++⎡
⎣⎢

⎤
⎦⎥

x dx2       (13.25a)   

 Integrating equation  (13.25a)  leads to

  
P

W
s

s s s s

h
s

s s s s

w

c

= + + + +

= + + + +

0
0 0

2
0 0

2

0
2 0 0

2
0 0

2

1 1

2
1 1

{ ln[ ]}

{ ln[ ]}
      (13.25b)   

 The hydraulic radius  R  can now be expressed as

  R
s L
P

h
s Pw

c

w

= =2
3

8
3

0
2 2

0

      (13.25c)     
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  13.5     Entropy Method, Case 2: One Constraint 

  13.5.1     Specifi cation of Constraints 

 In this case, two constraints are defi ned. The fi rst constraint is given by equation 
 (13.2) , and the second constraint is expressed by the mean value of  S  as

  sf s ds E S s s
s

m( ) [ ]
0

0

∫ = = =       (13.26)  

where  s sm=     is the mean transverse slope of the entire cross section, and  E  is the 
expectation operator.  

  13.5.2     Probability Density Function and Maximum Entropy 

 To obtain the least-biased  f ( s ) that satisfi es equations  (13.2)  and  (13.26) , equation 
 (13.1)  is maximized according to POME. This maximization is achieved by using 
the method of Lagrange multipliers. To that end, the Lagrangian function  L  is 
expressed as

  L f s f s ds f s ds sf s ds
s s s

= − − − −
⎛
⎝⎜

⎞
⎠⎟
−∫ ∫ ∫( )ln ( ) ( ) ( ) ( )

0

0

0

1

0

0 0 0

1 1λ λ −−
⎛
⎝⎜

⎞
⎠⎟

sm       (13.27)  

where  λ  0  and  λ  1  are the Lagrange multipliers. Differentiating equation  (13.27)  
with respect to  f , while recalling the Euler–Lagrange calculus of variation, noting 
that  f  is variable and  s  is parameter, and equating the derivative to zero, one 
obtains

  
∂
∂

= ⇒ − − − =L
f

f s s0 00 1ln ( ) λ λ       (13.28)   

 Equation  (13.28)  yields

  f s s( ) exp( )= − −λ λ0 1       (13.29)   

 Equation  (13.29)  is the POME-based PDF of transverse slope  S . It may be noted 
that  f ( s )  =  exp( −  λ  0 ) at  s   =  0. The CDF of  S  is obtained by integrating equation 
 (13.29) :

  F s s( ) [exp( ) exp( )]= − − − −1

1
0 0 1λ

λ λ λ       (13.30)   

 The maximum entropy of  S  is obtained by inserting equation  (13.29)  in equa-
tion  (13.1) :

  H s sm( ) = +λ λ0 1       (13.31)  

which is expressed in terms of the Lagrange multipliers  λ  0  and  λ  1  and mean 
transverse slope  s m  .  
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  13.5.3     Determination of Lagrange Multipliers 

 Substitution of equation  (13.29)  in equation  (13.2)  yields

  exp( )
exp( )

− =
− −

λ λ
λ0

1

1 01 s
      (13.32)   

 Therefore,

  λ λ λ0 1 1 01= − + − −ln ln[ exp( )]s       (13.33)   

 Differentiating equation  (13.33)  with respect to  λ  1 , one gets

  
∂
∂

= − +
−

− −
λ
λ λ

λ
λ

0

1 1

0 1 0

1 0

1
1
s s

s
exp( )
exp( )

      (13.34)   

 Furthermore, substitution of equation  (13.29)  in equation  (13.2)  also yields

  λ λ0 1

0

0

= −∫ln exp( )s ds
s

      (13.35)   

 Differentiating equation  (13.35)  with respect to  λ  1  yields

  
∂
∂

= −
− −

− −
= −

∫

∫

λ
λ

λ λ

λ λ

0

1

0 1

0

0 1

0

0

0

s s ds

s ds

s

s

s m

exp( )

exp( )

      (13.36)   

 Equating equation  (13.34)  to equation  (13.36) , the result is

  s
s s

s
m = −

−
− −

1
11

0 1 0

1 0λ
λ
λ

exp( )
exp( )

      (13.37)   

 Thus, equation  (13.37)  is implicit in  λ  1  and can be solved numerically for unknown 
 λ  1 . 

 Substitution of equation  (13.32)  in equation  (13.29)  leads to the PDF of  S  as

  f s
s
s

( )
exp( )
exp( )

=
−

− −
λ λ

λ
1 1

1 01
      (13.38)   

 At  s   =  0,  f ( s )  =   λ  1 /[1 − exp( −  λ  1  s  0 )]. Equation  (13.38)  has only one unknown Lagrange 
multiplier  λ  1 . Likewise, the CDF becomes

  F s
s
s

( )
exp( )
exp( )

=
− −
− −

1
1

1

1 0

λ
λ

      (13.39)   

 Fig.  13-3  shows a plot of  f ( s ) as well as  F ( s ) with  s  0   =  0.5 for different values of 
 λ  1 . As  λ  1  increases to  − 0.1, the PDF tends to become uniform.  
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  Figure 13-3      Probability density function (a) and cumulative probability distribution 
function (b) of  s  for  s  0  = 0.5.    

(a)

(b)

  Example 13.1          Consider  s  0   =  0.5 and  λ  1   =   − 10. Compute the probability of  S  less 
than or equal to 0.2, 0.3, and 0.4.  

  Solution     Using equation  (13.39)  with  s  0   =  0.5 and  λ  1   =   − 10, the probability of  S  
being less than or equal to 0.2, 0.3, and 0.4 is shown in Table  13-1 .     

s  F ( s )  =   P ( S   ≤   s )  P ( S   ≥   s )  =  1  −   F ( s )

0.2 0.043 0.957

0.3 0.129 0.871

0.4 0.364 0.636

 Table 13-1      Computation of probability of  S  being less 
than or equal to 0.2, 0.3, and 0.4, Example  13.1 .  
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  13.5.4     Distribution of Transverse Slope 

 Inserting equation  (13.29)  in equation  (13.14) , one gets

  
λ λ

λ
1 1

1 01
1exp( )

exp( )
−

− −
=

s
s W

dx
ds

      (13.40)   

 Integration of equation  (13.40)    yields

  −
−

− −
= +

exp( )
exp( )

λ
λ
1

1 01
1s

s W
x cons       (13.41)  

where cons is the constant of integration. Using the boundary condition,  s   =  0 at 
 x   =  0, one obtains

  cons = −
− −

1
1 1 0exp( )λ s

      (13.42)   

 Substitution of equation  (13.42)  in equation  (13.41)  gives

  − − − − = − − −− −[ exp( )] exp( ) [ exp( )]1 11 0
1

1 1 0
1λ λ λs s

x
W

s       (13.43)   

 Equation  (13.43)  can be simplifi ed as

  s
x

W
s= − − − −{ }1

1 1
1

1 0λ
λln [ exp( )]       (13.44)   

 Equation  (13.44)  can also be written as

  s
s

s
x

W
s

=
− −

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

1

11

1 0

1 0 1 0
λ

λ

λ λ
ln

exp( )

exp( ) [exp( ) ]
      (13.45)   

 Equation  (13.45)  expresses the distribution of transverse slope as a function of 
transverse distance and satisfi es the condition that  s   =  0 at  x   =  0 and  s   =   s  0  at  x   =  
 W . The Lagrange multiplier  λ  1  is obtained from the solution of equation  (13.37)  
for the specifi ed mean slope, which should be related to hydraulic and geometric 
parameters. 

  Example 13.2          For  λ  1   =   − 10 and  s  0   =  0.5,  W   =  1 m, compute the value of  s  at  x   =  0.1, 
0.3, 0.5, and 1.  

  Solution     Using equation  (13.45) , one obtains the following:

x 0.1 0.3 0.4 0.5 1

s 0.276 0.381 0.409 0.431 0.5
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  13.5.5     Characteristics of Slope Distribution 

 The transverse slope  s  is plotted as a function of dimensionless distance  x / W  for 
various values of  λ  1  ( λ  1   =   − 0.1,  − 1,  − 5,  − 10,  − 20,  − 30, and  − 50) (Fig.  13-4 ). It is seen 
that when  λ  1   =  0,  s  becomes infi nite and the bank becomes vertical. Conversely, 
if  λ  1  is infi nite (negative),  s  becomes zero, meaning that the bank becomes 
horizontal.   

  13.5.6     Cross-Sectional Shape 

 Recalling the defi nition of slope,  s   =   dy / dx , and equating it to equation  (13.45) , 
one gets

  
dy
dx x

W
s

x
W

=
− − −

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
= − − − −1 1

1 1

1
1 1

1
1 0

1λ λ λ
ln

[ exp( )]
ln [ exp( λλ1 0s )]{ }       (13.46)   

 Integrating equation  (13.46)  with the condition that  s   =  0 at  x   =  0, the bank profi le 
becomes

  y
W x

W
x

W
= −⎛

⎝
⎞
⎠ −⎛

⎝
⎞
⎠ −

⎡
⎣⎢

⎤
⎦⎥αλ

α α
1

1 1 1ln       (13.47)  

where  α   =  1  −  exp( −  λ  1  s  0 ). Equation  (13.47)  gives the elevation of the right bank 
or water margin as a function of transverse distance  x  from the centerline up to 
 x   =   W . This is the shape function  y   =   y ( x ). At  x   =   W ,  y   =   D,  which is also the fl ow 
depth at the centerline  h c  , and is given by equation  (13.47)  as

  Figure 13-4      Lateral slope as a function of dimensionless distance for various values of 
 λ  1  and  s  0   =  0.5.    
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  D
W= − − −
αλ

α α
1

1 1 1( )[ln( ) ]       (13.48)   

 Subtracting equation  (13.47)  from equation  (13.48) , one gets the lateral distribu-
tion of local water fl ow depth as

  h
W x

W
x

W
= − − − − − −⎛

⎝
⎞
⎠ −

⎡
⎣⎢

⎤
⎦⎥{ }αλ

α α α α
1

1 1 1 1 1 1( )[ln( ) ] ( ) ln       (13.49)   

  Example 13.3          Plot  α  as a function of  λ  1  for  s  0   =  0.5.  

  Solution     Here  α   =  1  −  exp( −  λ  1  s  0 ). The values of  α  for various values of  λ  1  for 
 s  0   =  0.5 are given in Table  13-2 . Fig.  13-5  plots  α  as a function of  λ  1 .    

  Figure 13-5      Plot of  α  as a function of  λ  1  for  s  0   =  0.5.    

 λ   1   α 

0 0

 − 1  − 0.649

 − 2  − 1.718

 − 3  − 3.482

 − 5  − 11.182

 − 7  − 32.115

 Table 13-2      Computation of  a  as a function of  λ  1  for 
 s  0  = 0.5, Example  13.3 .  

c13.indd   547c13.indd   547 5/21/2014   11:15:45 AM5/21/2014   11:15:45 AM



548 Entropy Theory in Hydraulic Engineering

   Example 13.4          Select a value of  α  from the plot in Fig.  13-5  for Example  13.3 . 
Take  s  0   =  0.5, and get a value of  λ  1  accordingly. Then compute the value of  D  for 
 W   =  1, 2, 3, 4, and 5 m.  

  Solution     For  α   =   − 20,  λ  1   =  [1/ s  0 ]ln[1/(1  −   α )]  =   − 0.6089. Using equation  (13.48) , 
the values of  D  for various values of  W  are computed as tabulated in Table  13-3 .   

 W  (m)  D  (m)

1 0.353

2 0.705

3 1.058

4 1.410

 Table 13-3      Computation of values of D for various values 
of W, Example  13.4 .  

   Example 13.5          For various values of  W  and  x , compute values of  y  for  s  0   =  0.5. 
Select the value of  α .  

  Solution     As in Example  13.4 ,  α   =   − 20,  λ  1   =   − 6.089. Using equation  (13.47) , the 
values of  y  are computed and tabulated in Table  13-4 .   

 Table 13-4      Values of y (in meters) for different values of x and W.  

 x  (m)  W   =  1 m  x  (m)  W   =  2 m  x  (m)  W   =  3 m  x  (m)  W   =  4 m  x  (m)  W   =  5 m

0.1 0.002 0.2 0.005 0.3 0.007 0.4 0.010 0.5 0.012

0.2 0.025 0.4 0.050 0.6 0.075 0.8 0.100 1.0 0.125

0.3 0.054 0.6 0.109 0.9 0.163 1.2 0.217 1.5 0.272

0.5 0.126 1.0 0.253 1.5 0.379 2.0 0.505 2.5 0.631

1 0.353 2.0 0.705 3.0 1.058 4.0 1.410 5.0 1.763

   Example 13.6          Compute  h  for selected values of  W  and  α  from Examples  13.4  and 
 13.5 .  

  Solution     Using equation  (13.49)  for  s  0   =  0.5, values of  h  are computed for selected 
values of  W  and  α , as tabulated in Table  13-5 .   

 x  (m)  W   =  1 m  x  (m)  W   =  2 m  x  (m)  W   =  3 m  x  (m)  W   =  4 m  x  (m)  W   =  5 m

0.1 0.350 0.2 0.700 0.3 1.050 0.4 1.401 0.5 1.751

0.2 0.328 0.4 0.655 0.6 0.983 0.8 1.310 1.0 1.638

0.3 0.298 0.6 0.596 0.9 0.895 1.2 1.193 1.5 1.491

0.5 0.226 1.0 0.453 1.5 0.679 2.0 0.905 2.5 1.131

1 0.000 2.0 0.000 3.0 0.000 4.0 0.000 5.0 0.000

 Table 13-5      Values of h (in meters) for different values of x and W.  
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  Now the effect of  λ  1  on the bank profi le of a threshold channel can be numeri-
cally evaluated. For  λ  1  between 1 and 50 and  s m    =  0.5, this effect is shown in 
Fig.  13-6 . This fi gure shows that the bank profi le is a curve with two boundary 
conditions where  y   =  0 at  x   =  0, and  dy / dx   =   s  0  at  x   =   W . The shape approaches 
a trapezoidal shape as  λ  1  becomes large. The curvature of the bank profi le 
increases, but the slope of the bank profi le decreases with decreasing  λ  1 . Further-
more, the larger value of  λ  1  decreases the aspect ratio (width/depth).   

  13.5.7     Lagrange Multiplier  λ  1  and Its Effect 

 The physical meaning of the Lagrange multiplier  λ  1  is now explored. Consider 

two extreme cases: when  lim
λ1 0

0
→

=s
x

W
s     tends to 0 and when  λ  1  tends to infi nity. 

The fi rst extreme case corresponds to case 1, which was dealt with earlier. To that 
end, L ’ Hospital ’ s rule of limit theory is applied to equation  (13.44) . First, equation 
 (13.44)  is rewritten as

  s s
x

W
s

x
W

= − −⎛
⎝

⎞
⎠ +⎡

⎣⎢
⎤
⎦⎥0

1
1 0

1
1

λ
λln exp( )       (13.50)   

 Taking the limit when  λ  1   →  0,

  lim lim
ln exp( )

(
λ λ

λ
λ

λ
λ1 10

0
0

1
1 0

1
1

1

→ →
= −

−⎛
⎝

⎞
⎠ +⎡

⎣⎢
⎤
⎦⎥s s

d
d

x
W

s
x

W
d

d
))

      (13.51)   

  Figure 13-6      Elevation of a bank profi le as a function of dimensionless distance for 
different values of  λ  1  and  s  0   =  0.5.    
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 Equation  (13.51)  can be written as

  lim lim
exp( )

exp( )
λ λ

λ

λ1 10
0

0

0 1 0

1 0

1

1
→ →

= −
−⎛

⎝
⎞
⎠

−⎛
⎝

⎞
⎠ +

s s
s

x
W

s

x
W

s
x

W

      (13.52)   

 Equation  (13.52)  becomes

  lim
λ1 0

0
→

=s
x

W
s       (13.53)   

 Likewise, equation  (13.50)  with  λ  1   →   ∞  yields

  lim
λ

μ
1

0
→∞

= →s       (13.54)   

 Equation  (13.54)  shows that the transverse slope approaches a horizontal line 
 s   =   μ  as  λ  1  increases to a large value, as seen from Fig.  13-4 . 

 The boundary elevation above the bed at the center of these two cases is 
obtained by expressing  s   =   dy / dx  and integrating equations  (13.53)  and  (13.54) , 
respectively, as

  lim
λ1 0

2

0
2→

=y
x
W

s       (13.55)  

which is the same as equation  (13.19) .

  lim
λ

μ
1→∞

=y x       (13.56)   

 Equation  (13.55)  expresses a simple parabolic bank profi le as  λ  1  approaches zero. 
Equation  (13.56)  results in a trapezoidal bank profi le as  λ  1  approaches a large 
value. 

 The centerline channel depth  h c    =   D  is obtained by inserting  x   =   W  in equa-
tions  (13.55)  and  (13.56)  as

  lim
λ1 0

0
2→

=h
W

sc       (13.57)  

which is the same as in equation  (13.20) .

  lim
λ

μ
1→∞

=h Wc       (13.58)   

 The aspect ratios can now be given as

  lim
λ1 0 0

2 4
→

⎛
⎝

⎞
⎠ =

W
D s

      (13.59)  

which is the same as in equation  (13.21) .
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  lim
λ μ1

2 2
→∞

⎛
⎝

⎞
⎠ =

W
D

      (13.60)   

 Equations  (13.59)  and  (13.60)  show that the aspect ratio increases twofold as  λ  1  
decreases from a large value to zero.   

 Let

  λ βτ1 = *       (13.61)  

where  β  is an empirical coeffi cient and  τ * is the dimensionless effective Shields 
parameter defi ned as

  τ τ τ
τ

* = − c

c

      (13.62)  

where  τ  is the actual Shields parameter (shear stress) and  τ   c   is the critical 
Shields parameter. Thus, the use of equation  (13.61)  requires computation of  τ  
and  τ   c  . 

 Although the physical basis of equation  (13.61)  is not yet developed, Chang 
( 1988 ) notes that a fl at-bed upper regime fl ow is caused when  τ * is larger than 
25. A trapezoidal channel is formed when  λ  1   <   − 50, which would correspond to 
 β   =   − 2 for an upper-regime fl at-bed fl ow. If  τ   =   τ   c  ,  τ *  =  0; this equivalence corre-
sponds to the channel being at threshold. In this case, equation  (13.61)  yields 
 λ  1   =  0. If equations  (13.61)  and  (13.62)  are correct, then equation  (13.55)  leads to 
the shape of a threshold channel and equation  (13.56)  gives the shape of a fl at 
bed in the upper-regime fl ow condition, i.e.,  λ  1   <   − 50.   

  13.6     Comparison with Two Bank Profi les 

 In the hydraulics literature, bank profi les of straight threshold channels have 
been expressed using a variety of equations (Henderson  1966 ; Diplas and Vigilar 
 1992 ). The bank profi les of threshold channels given by Diplas and Vigilar ( 1992 ) 
and the U.S. Bureau of Reclamation (USBR) (Henderson  1966 ) are approximated 
by the entropy method for the case of  λ  1  tending to zero. It may be interesting 
to compare the cross-sectional area  A , the depth at the centerline  h c   (or  D ), and 
the aspect ratio 2 W / h c   of these two approaches with those given by the entropy 
method. Following the same procedure as for case 1, the lateral distribution of 
fl ow depth  h ( x ) as a function of the lateral distance, cross-sectional area  A , aspect 
ratio, wetted perimeter, and hydraulic radius can be derived. 

 It may be noted that the entropy method yields a parabolic form of the bank 
profi le, given by equation  (13.55) . The simple parabolic form seems to play a 
very important role in science. Examples where such a form has been used 
include Einstein ’ s most celebrated equation of the special theory of relativity 
( E   =   mc  2 , where  E   =  energy,  m   =  mass, and  c   =  speed of light); the kinetic energy 
equation (KE  =   mv  2 /2, where KE  =  kinetic energy,  m   =  mass, and  v   =  velocity); 
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the acceleration of uniform circular motion ( a c    =   v  2 / r , where  a c    =  acceleration, 
 v   =  velocity, and  r   =  radius); and equation of distance traveled in a straight line 
motion ( l   =   at  2 /2, where  l   =  distance,  t   =  time, and  a   =  acceleration), among others. 

 According to Diplas and Vigilar ( 1992 ) (the D–V approach), the dimension-
less cross-sectional area  A * can be expressed as

  A B* *= 0 69.       (13.63)  

where  A A hc* /= 2    and

  B
B
h

s s s
c

* = = − + − +16 1814 44 3206 43 5548 21 14960
3

0
2

0. . . .       (13.64)   

 Therefore,

  A hc= 0 69.       (13.65)   

 From the aspect ratio given by equation  (13.64) ,  B / h c    =  8.42 for  s  0   =  0.5, one 
obtains

  h D
B

s Bc = = =
8 42

0 24 0
.

.       (13.66)   

 Following the USBR approach,  h c   can be obtained as

  
h
h

x
hc c

= ⎛
⎝⎜

⎞
⎠⎟cos

tanφ
      (13.67)  

where  ϕ   =  the friction angle of the boundary material, which is taken as equal to 
 s  0 . When  x   =   W  and  h   =  0, equation  (13.62)  yields ( x  tan ϕ )/ h c    =  0, resulting in

  h
Ws

B
s

c = =2 0 0

π π
      (13.68)   

 The aspect ratio,  B / h c  , can be obtained for  s  0  as

  
B
h sc

= =π
0

6 28.       (13.69)  

  A
h
s

h Bc c= =2 22

0 π
      (13.70)  

where  h   =  local depth,  h c    =  centerline depth, and  x   =  lateral distance from the 
channel center. 

 Cao and Knight ( 1997 ) compared the entropy method (designated here as 
the C–K method) with the Diplas and Vigilar (D–V) and the USBR method, as 
shown in Table  13-6 . For  s  0   =  0.5, the entropy method is closer to the D–V method 
than to the USBR method. The entropy method yields results between the 
maximum values caused by the D–V method and the minimum values caused 
by the USBR method. 
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  It may now be worthwhile to investigate the relationships among the shape 
of the bank profi le, hydraulic parameters, and boundary material diameter or 
submerged static friction factor  s  0 . To that end, it is convenient to use dimension-
less quantities. The dimensionless profi le can be expressed from equations  (13.55)  
and  (13.59)  as  

  y
s

x* *= ⎛
⎝⎜

⎞
⎠⎟

0
2

2

4
      (13.71)  

where  y *  =   y / h c   and  x *  =   x / h c  . Fig.  13-7  shows dimensionless elevation versus 
dimensionless lateral distance for several values of  s  0 . Likewise, the dimension-
less channel width  B * versus  s  0  and the dimensionless cross-sectional area  A * 
versus  s  0  are shown for three methods in  Figs. 13-8 and 13-9 , respectively. Here 
 B *  =   B / h c  ,  A A hc* /= 2   , and  h c    =  geometry depth at the channel center. The dimen-
sionless width and dimensionless area decrease with increasing  s  0  for all three 
methods. The D–V method yields the highest values, the USBR method the 
smallest values, and the entropy method in between for  s  0   >  0.44. However, for 
 s  0   <  0.44, this statement is not true. For smaller values of  s  0 , the entropy method 
is closer to the D–V method, but for higher values, it is closer to the USBR 
method.     

  Figure 13-7      Bank profi les of threshold channels for different values of  s  0 .    
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parameter D–V method

Entropy method 
(C–K) USBR method

 h c  0.24  s  0  B ,  s 0  =  0.5 0.25  s  0  B 0.32  s  0  B 

 A 0.69  Bh c  0.67  Bh c  0.64  Bh c  

 B/h c  Equation  (13.66) 4/ s  0  π / s  0 

 B/h c , s  0   =  0.5 8.42 8.0 6.28

 Table 13-6      Comparison of the entropy method with the D–V and USBR methods.  
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  13.7     Evaluation of Entropy-Based Bank Profi les of 
Threshold Channels 

 A threshold channel means that at every point along the boundary the actual 
shear stress equals the critical shear stress. To evaluate the entropy-based equa-
tions, the following parameters are defi ned on the side slopes and on the level: 
dimensionless critical shear stress, dimensionless stress depth, dimensionless 
local depth, dimensionless actual shear stress, dimensionless actual stress depth, 
and shear stress distribution. 

  Figure 13-8      Dimensionless channel width as a function of submerged static friction 
coeffi cient for the entropy, D–V, and USBR approaches.    
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  Figure 13-9      Dimensionless cross-sectional area as a function of submerged static 
friction coeffi cient for the entropy, D–V, and USBR approaches.    

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0.4 0.5 0.6 0.7 0.8 0.9 1

A
*

S0

Entropy

USBR

D-V

c13.indd   554c13.indd   554 5/21/2014   11:15:46 AM5/21/2014   11:15:46 AM



Design of Alluvial Channels 555

  13.7.1     Dimensionless Critical Shear Stress 

 This parameter is the same as the critical Shields parameter and can be defi ned 
for the side slopes as  

  τ
τ

ρ ρ ρcs
cs

s

cs

gd
h S

d
*

( )
=

−
= 0

*
      (13.72)  

and on the level as  

  τ
τ

ρ ρ ρco
co

s

co

gd
h S

d
*

( )
=

−
= 0

*
      (13.73)  

where  τ   cs    =   ρ  gh cs S  0   =  the critical shear stress on the slopes;  τ   c  0    =   ρ  gh co S  0   =  the criti-
cal shear stress on the level;  h cs    =  the critical shear stress depth on the slope; 
 h co    =  the critical stress depth on the level;  ρ *  =  ( ρ   s    −   ρ )/ ρ   s  ;  ρ   =  the density of water; 
 ρ   s    =  the density of sediment;  S  0   =  the streamwise slope; and  d   =  diameter of sedi-
ment particles.  

  13.7.2     Dimensionless Shear Stress Depth 

 The dimensional shear stress depth is defi ned on the slope as  

  h
h
h

h Dcs
cs

c
c* ,= =       (13.74)  

and on the level as

  h
h
h

h Dco
co

c
c* ,= =       (13.75)  

where  hcs*    and  hco*     are the dimensionless depths related to critical stress on the side 
slopes and the critical stress on the level, respectively.  

  13.7.3     Dimensionless Local Depth 

 The dimensionless local depth is defi ned as  

  h
h
hc

* =       (13.76)  

and the dimensionless depth at the centerline as

  h
h
h

c
c

c

* = = 1       (13.77)  

where  h  is the local depth and  h c   is the depth at the center of the threshold 
channel. Thus,  h * and  hc*    are the dimensionless depths related to the local geom-
etry and the geometry centerline, respectively.  

c13.indd   555c13.indd   555 5/21/2014   11:15:46 AM5/21/2014   11:15:46 AM



556 Entropy Theory in Hydraulic Engineering

  13.7.4     Dimensionless Actual Shear Stress 

 The dimensionless actual shear stress is defi ned on the slope as  

  τ
τ

ρ ρ ρas
as

s

as

gd
h S

d
*

( )
=

−
= 0

*
      (13.78)  

and the dimensionless actual shear stress is defi ned on the level as

  τ τ
ρ ρ ρao

ao

s

ao

gd
h S

d
*

( )
=

−
= 0

*
      (13.79)  

where  τ   as    =   ρ  gh as S  0   =  the actual shear stress on the slope, and  τ   ao    =   ρ  gh ao S  0   =  the 
actual shear stress on the level.  

  13.7.5     Dimensionless Actual Stress Depth 

 The actual shear stress depth is defi ned on the slope as  

  h
h
h

h Das
as

c
c* ,= =       (13.80)  

and the actual shear stress depth is defi ned on the level as

  h
h
h

h Dao
ao

c
c* ,= =       (13.81)  

where  h as    =  the actual stress depth on the slope and  h ao    =  the actual stress depth 
on the level.  

  13.7.6     Shear Stress Distribution 

 Ikeda ( 1982 ) derived a dimensionless shear stress distribution on a slope as

  K = − + + −
−

ψ φ θ φ θ ψ φ θ θ
ψ φ

tan cos (tan cos tan sin sin )
( tan )t

.2 2 2 2 2 2 2 0 5

1 aanφ
      (13.82)  

where  K h hcs co cs co cs co= = =τ τ τ τ* */ / /    ;  ϕ   =  the angle of repose of sand;  θ   =  the lateral 
inclination of the side (bank) slope; and  ψ   =  the ratio of lift force to drag force 
acting on a boundary particle. Ikeda ( 1982 ) considered the effects of viscous 
sublayer turbulence, drag and lift forces, static friction, and submerged weight 
of the particle. He balanced the forces acting on a side slope particle at the thresh-
old of motion lying on a plane that is tangential to the bank at an angle  θ  with 
respect to the horizontal. It can be noted that tan ϕ   =   s  0   =  submerged coeffi cient 
of friction. Equation  (13.82)  can be recast as

  K
s s s

s s
= − + + −

−
cos [ ( tan tan )

( )

.θ ψ ψ θ θ
ψ

0 0
2 2

0
2 2 2 0 5

0 01
      (13.83)   
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 The value of  ψ , the lift force to drag force ratio, needs to be specifi ed. Experi-
mental investigations of Einstein and El-Sammi ( 1949 ), Chepil ( 1958 ), Coleman 
( 1967 ), Christensen ( 1972 ), Davies and Samad ( 1978 ), and others showed that 
 ψ  varied from  − 0.4 to 0.9. Ikeda ( 1982 ) suggested a value of  ψ  as 0.4, whereas 
Diplas and Vigilar ( 1992 ) suggested a value of  ψ  as 0.85. Christensen ( 1972 ) 
showed that  ψ  decreases as the particle sizes increases. For the range of particles 
encountered in river engineering (0.4  <   s  0   <  1.0), a relationship between  ψ  and 
 s  0  was expressed by Cao and Knight ( 1997 ) as

  ψ = −1 15 0 75 0. . s       (13.84)  

where  ψ   =  0.85 for  s  0   =  0.4 (Diplas and Vigilar ’ s [ 1992 ] recommendation), and 
 ψ   =  0.4 for  s  0   =  1 (Ikeda ’ s [ 1982 ] recommendation).   

  13.8     Local Boundary Stress by Different Methods 

 Lundgren and Jonsson ( 1964 ) compared fi ve methods for calculating the local 
boundary shear stress in a channel and showed that the area method provided 
a satisfactory approximation to the true shear stress distribution. Accordingly, 
the actual stress acting on a slope  τ   a   can be expressed as

  τ γ γa a nS h S h
j

= = −⎛
⎝⎜

⎞
⎠⎟0 0 1

2
      (13.85)  

where  h a    =   h n  (1 −  j /2)  =  actual stress depth on the boundary;  j   =   Ch n  ; and  C   =  
curvature of the boundary calculated as

  C

d
dx=

+

tan

( tan )

θ

θ1 2
      (13.86)  

and  h n    =  the depth measured along the normal given as

  h hn = +( tan ) .1 2 0 5θ       (13.87)    

  13.9     Channel Shape 

 Using  τ  0   =   γ  h c S  0 , equation  (13.85)  can be normalized as  

  h
h
h

h
j

h
h

j
a a

a a
n

c

* * ( tan )= = = = −⎛
⎝⎜

⎞
⎠⎟ = + −⎛

⎝⎜
⎞
⎠⎟τ τ

τ
θ

0 0

21
2

1
1 1

2
*       (13.88)  

where  h h ha a c* = /     where  h  and  h c   are geometry depths of bank and channel center, 
respectively. 
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 Now the entropy-based shape equation  (13.22)  can be normalized as  

  h
s x

*
*= − ⎛⎝
⎞
⎠1

2
0

2

      (13.89)  

where  x *  =   x / h c  . Equation  (13.88)  can be expressed with tan θ   =   s  0  x / W  (equation 
 [13.53] ) and  W   =  2 h c  / s 0   (equation  [13.57] ) as  

  h h s
x s h s x

s
a*

. [ ( / ) ]
[ (

.

= + ⎛⎝
⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

− +
+

*
* * *

1
2

1 0 25 1 2
1

0
2

2 0 5
0
2

0
2 2

00
2 2 1 52x* / ) ] .

⎧
⎨
⎩

⎫
⎬
⎭

      (13.90)   

 The dimensionless channel geometry can be calculated using equation  (13.71) . 
The dimensionless critical shear stress distribution can be determined using 
equations  (13.50)  and  (13.73) ,  (13.74)  and  (13.77) , and  (13.84) , and the actual stress 
depth distribution using equation  (13.68) . It can be assumed that the critical 
shear stress at the centerline of the channel is the same as the actual stress at 
the same point. Fig.  13-10  shows the dimensionless shear stress versus dimen-
sionless lateral distance. This fi gure shows that in the center of the channel the 
geometry depth is higher than the shear stress depth, but for part of the bank 
the reverse holds. The actual stress depth coincides with the critical stress depth 
reasonably well.   

  13.10     Design of Threshold Channels 

 The variables to be considered when designing a threshold alluvial channel 
include discharge  Q , channel bed material characteristic  d  or  s  0 , streamwise slope 
 S  0 , depth at the channel center  h c  , and top width of the channel  B . In general, the 

  Figure 13-10      Dimensionless depth as a function of dimensionless lateral distance. 
 Note:    h1* = the dimensionless critical stress depth   ,  h2* = the dimensionless actual stress

   , and  h3* = the dimensionless geometry depth   .    depth
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fi rst two variables ( Q  and  d  or  s  0 ) are known, and the latter three ( S  0 ,  h c  , and  B ) 
as well as the bank shape  y ( x ) have to be determined. 

 The wetted perimeter  P  can be obtained by doing arc integration of an 
element:

  dP dy dx= +( ) /2 2 1 2       (13.91)  

where  y   =   s  0  x  2 /(2 W ). Hence,

  dP
s
W

x
W
s

= ⎛⎝
⎞
⎠ + ⎛⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

0 2

0

2 1 2/

      (13.92)   

 Integration of equation  (13.92)  yields the wetted perimeter of a threshold 
channel as

  P
W
s

s s s s= + + + +
0

0 0
2

0 0
21 1{ ln[ ]}       (13.93)   

 The hydraulic radius is obtained from the division of equation  (13.24)  by 
equation  (13.93) :

  R
A
P

s W P= = 2 30
2 /( )       (13.94)   

 If  Q  and  d  or  s  0  are specifi ed, a threshold channel can be designed using a 
trial and error method as follows:

   1.      Assume a depth at the center of the channel,  h c  .  
  2.      For the given sediment particle diameter, obtain a threshold Shields 

parameter.  
  3.      Calculate the streamwise slope  S  0  using

  τ
γ
γ γ

=
−

h S
d

c

s

0

( )
      (13.95)    

  4.      Calculate the Darcy–Weisbach friction factor  f l   using an appropriate sedi-
ment resistance relation, such as the White–Paris–Bettes (W–P–B) equa-
tion (White et al.  1980 ).  

  5.      Compute the average cross-sectional velocity:

  h f
l
d

v
g

S lf l= =
2

0
2

      (13.96)    

  6.      Compute the half width,  W  using equation  (13.22) .  
  7.      Calculate the cross-sectional area using equation  (13.24) .  
  8.      Calculate discharge  Q c   by multiplying the mean velocity from step 5 by 

the cross-sectional area from step 6. If the computed discharge equals 
the given discharge, then center depth and semiwidth are reasonable, 
otherwise repeat steps.  

  9.      Determine the channel shape or depth distribution using equation  (13.56)  
or equation (13.23).
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  Example 13.7          According to Cao and Knight ( 1997 ), consider the boundary sedi-
ment diameter  d  50   =  0.8 mm,  s  0   =  0.5, and  Q   =  0.05, 0.1, 0.15, 0.2, 0.3, 0.4, and 
0.5 m 3 /s. Assume that the depth at the center of the channel,  h c    =  0.156 m. Com-
pute  s  0 ,  B , and  h c  , and compare them with those based on the D–V and USBR 
methods.  

  Solution     Given particle size, shear stress can be found from the Shields diagram 
shown in Fig.  13-11 , which is  τ   =  0.09. Then, using equation  (13.94) ,  s  0  is com-
puted and one obtains 4.615  ×  10  − 4 . Then the friction factor  f l   is computed and 
one obtains 5.11  ×  10  − 5 . Substituting in the Darcy–Weisbach equation, the average 
cross-sectional velocity is obtained as 0.376 m/s. Then, by using equations  (13.22)  
and  (13.24) ,  B  and  A  are computed as  B   =  1.248 m and  A   =  0.13 m 2 . Thus,  Q  is com-
puted as  Q   =   vA   =  0.049 m 3 /s. It is then seen that the assumption of depth 0.156 m 
is appropriate. Calculated values are shown in Table  13-7 . Fig.  13-12  shows the 
boundary elevation  y  (between 0 and 0.5 m) versus the lateral distance  x  (be-
tween 0 and 2 m) for various values of discharge  Q . Table  13-8  gives parameters 
of threshold channels. Fig.  13-13  shows design bank profi les by the D–V, entropy, 
and USBR approaches for  Q   =  0.05 m 3 /s.             

  Figure 13-11      Shields diagram. 
 Source:   Figure 2.43 from Vanoni ( 2006 ). Reproduced with permission.    

c13.indd   560c13.indd   560 5/21/2014   11:15:47 AM5/21/2014   11:15:47 AM



Design of Alluvial Channels 561

  Figure 13-12      Boundary elevation (between 0 and 0.5 m) versus lateral distance 
(between 0 and 2 m) for various values of discharge  Q .    

 Q  (m 3 /s)  s  0  (10  − 4 )  B  (m)  h c   (m)

0.05 4.615 1.248 0.156

0.1 3.333 1.728 0.216

0.15 2.657 2.168 0.271

0.2 2.286 2.52 0.315

0.3 1.865 3.088 0.386

0.4 1.614 3.568 0.446

0.5 1.446 3.984 0.498

 Table 13-7      Values of  Q ,  s 0  ,  B , and  h c  .  

 Q  (m 3 /s) Investigator  s  0  (10  −  )  B  (m)  h c   (m)

0.05 Diplas & Vigilar 3.69 1.322 0.157

Cao & Knight 4.66 1.249 0.156

USBR 5.43 1.055 0.168

0.1 Diplas & Vigilar 2.67 1.87 0.217

Cao & Knight 3.37 1.728 0.216

USBR 3.95 1.452 0.230

0.15 Diplas & Vigilar 2.21 2.211 0.262

Cao & Knight 2.75 2.091 0.261

USBR 3.28 1.749 0.278

0.2 Diplas & Vigilar 1.93 2.53 0.300
Cao & Knight 2.43 2.393 0.299
USBR 2.87 1.996 0.317

 Table 13-8      Parameters of threshold channels.  
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  Figure 13-14      Comparison of computed top width and observed top width for 
Stebbings ’ s data for  s  0   =  0.51.    

  Figure 13-13      Design bank profi les by the D–V, entropy, and USBR approaches for  
Q   =  0.05 m 3 /s.    

  13.11     Evaluation Using Laboratory Data 

 Stebbings ( 1963 ) conducted small-scale experiments, which can be used to evalu-
ate the top width and cross-sectional area obtained from the entropy method. 
The channel boundary material had a diameter of  d  50   =  0.88 mm and  s  0   =  0.51. 
The aspect ratio was  B / h c  , and the channel width  B  and cross-sectional area are 
obtained from equations  (13.22)  and  (13.24) . The average aspect ratio for 34 
experiments was 7.31, and it was 7.8 for the entropy method, 8.3 for the D–V 
method, and 6.16 for the USBR method.  Figs. 13-14 and 13-15  show predicted 
and observed  B  and  A  for Stebbings ’ s data.    
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  13.12     Determination of Friction Factor 

 White et al. ( 1980 ) developed a method for determining frictional resistance of 
alluvial channels and tested it on a wide range of fi eld and experimental fl ume 
(0.04- to 68-mm sand sizes) data. In natural channels, characteristics related to 
the composition of bed and banks, irregularities, shape, and sediment transport 
vary signifi cantly. The White et al. method involves the following steps:

   1.      Compute the shear velocity  v * (m/s) as  

  v gdSf* =       (13.97)   

 where  g  is the acceleration caused by gravity (m/s 2 ),  d  is the mean depth  f  fl ow 
(m), and  S f   is the friction slope ( v * 2 /( gd )).  

  2.      Compute the dimensionless grain size  D gr   as

  D D g
s

gr s
g=
−⎡

⎣⎢
⎤
⎦⎥

1
2

1 3

υ

/

      (13.98)   

 where  D s   is the sediment diameter (m),  s g   is the specifi c gravity of sediment  ρ   s  / ρ , 
 ρ  is the fl uid density (kg/liter),  ρ   s   is the sediment density (kg/liter), and  υ  is the 
kinematic viscosity (m 2 /s).  

  3.      For  D s    =   D  35  (bed material), calculate parameter  n  and  a  as

  If then andD n agr ≥ = =60 0 0 17, .       (13.99)  

  If then1 60 1 0 0 56 10≤ ≤ = −D n Dgr gr, . . log       (13.100)  

  a
Dgr

= +0 23
0 14

.
.       (13.101)    

  Figure 13-15      Comparison of computed cross-sectional area with observed cross-
sectional area for Stebbings ’ s data for  s  0   =  0.51.    
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  4.      Compute the sediment mobility  F fg   for fi ne grains as  

  F
v

sD s
fg

s g

=
−
*

[ ( )] .1 0 5       (13.102)    

  5.      Compute the sediment mobility in general  F gr   as

  
F a

F a D
gr

fg gr

−
−

= − −1 0 0 76 1 0
1

10
1 7

. . [ .
exp[(log ) ]

]
.       (13.103)    

  6.      Compute the mean velocity  u m   (m/s) as  

  F
v

gD s
u

d D
gr

s g

m n=
−

−*2

0 5
10

1

1 32 10[ ( )]
[

log ( / )
].       (13.104)    

  7.      Compute the friction factor as

  λ = ⎛
⎝⎜

⎞
⎠⎟8

2v
um

*
      (13.105)       

  13.13     Type I Channels 

 The cross section of a type I stable channel is shown in Fig.  13-16 . The cross 
section consists of three parts: the central zone, the right bank, and the left bank. 
It is assumed, for purposes of simplicity, that the left and right banks are sym-
metric and hence that only one bank needs to be modeled. The previous discus-
sion shows that the entropy-based bank profi le is threshold, i.e, for a given 
discharge every point on the bank profi le corresponds to a state wherein sedi-
ment is at a threshold. Field and experimental data show that river cross sections, 
unlined irregular canals, and irrigation furrows tend to become parabolic, sup-
porting the entropy-based construct (Ikeda  1981 ; Mironenko et al.  1984 ). 

  The bank profi le equations for type II channels are derived in the preceding 
section. The equations for type I bank profi le are similar; therefore, they are given 
without derivation, in terms of notation given in Fig.  13-16 . 

  Figure 13-16      Cross section of a stable channel of type 1.    

B
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hJ hJ
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Ab Ab
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  13.13.1     Bank Profi le Equations 

 The cross-sectional transverse slope  s  1  of the right bank ( x   >   b /2) can be 
expressed as

  
dy
dx

s
s
L

x
b= = −⎛

⎝
⎞
⎠1

0

2
      (13.106)   

 Integration of equation  (13.106)  with the condition that  y   =  0 at the center 
( x   =  0), making the boundary elevation of the bank region above the bed at 
the center, yields

  y
s
L

x
b

b = −⎛
⎝

⎞
⎠

0
2

2 2
      (13.107)   

 The depth at the channel center,  h c  , can be expressed as

  h
s L

c = 0

2
      (13.108)   

 The lateral distribution of depth  h ( x ) in the bank region can be written as

  h x
s L x b

L
b ( )

.= − −⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

0
2

2
1

0 5
      (13.109)   

 The cross-sectional area of the bank region,  A b  , can be written as

  A s Lb =
2
3

0
2       (13.110)   

 The wetted perimeter of the banks can be written as

  P
L
s

s s s sb = + + + +
0

0 0
2

0 0
21 1{ ln[ ]}       (13.111)   

 The hydraulic radius of the bank regions is

  R
s L
P

b
b

= 2
3

0
2

      (13.112)    

  13.13.2     Cross-Sectional Geometry 

 The bank profi le equations can be normalized by the depth of channel at the 
centerline  h c   given by equation  (13.108) :  

  y s x
b

b*
*= −⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

1
4 2

0

2

      (13.113)  

  h s x
b

b*
*= − −⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

1
1
4 2

0

2

      (13.114)  

where  y y hb b c* = /    ;  h h x hb b c* ( )= /    ; and [ x   −  ( b /2)]*  =  [ x   −  ( b /2)]/ h c  . Likewise,
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  ( )B b
s

− =*
4

0

      (13.115)  

  A
s

b* =
8

3 0

      (13.116)  

  P
s

s s s sb* { ( ) ln[ ( ) ]}/ /= + + + +2
1 1

0
2 0 0

2 1 2
0 0

2 1 2       (13.117)  

and

  R
s

s s s s
b*

{ ( ) ln[ ( ) ]}/ /
=

+ + + +
4

3 1 1
0

0 0
2 1 2

0 0
2 1 2

      (13.118)  

where ( B   −   b )*,  Ab*    ,  Pb*    , and  Rb*     are dimensionless width, area, wetted perimeter, 
and hydraulic radius of the bank regions, respectively. 

 For a stable cross-section,  dy / dx   =  0 in the bed region, i.e., the depth should 
be constant and equal to that at the junction points:

  
h
h

c

J

= 1       (13.119)   

 The lateral profi le of a straight channel in dynamic equilibrium can be obtained 
by equations  (13.114)  and  (13.119) , which can be expressed in dimensionless form 
by the following parameters:  

  B b
s

* *= + 4

0

      (13.120)  

  P
P
b

bb*
*

*= +
⎛

⎝
⎜

⎞

⎠
⎟1

*
      (13.121)  

  A
s a

a
s b

b*
*

*
*

*= +⎡
⎣⎢

⎤
⎦⎥

= +⎡
⎣⎢

⎤
⎦⎥

1
8

3
1

8
30 0

      (13.122)  

  R s b
P
b

b

* *

*

=
+

+

1
8

3

1

0

*
      (13.123)  

where  b *  =   b / h c    =  the dimensionless channel center bed width;  B *  =   B / h c    =  the 
dimensionless total width;  P *  =   P / h c    =  the dimensionless wetted perimeter; 
 A A hc* / the dimensionless cross-sectional area= =2    ;  R *  =   R / h c    =  the dimen-
sionless hydraulic radius;  a h b bc* * *= =*     the dimensionless center bed area; 
 h h hc c c* = = =/ the dimensionless channel center bed depth1    ; and  P P hb b c* = =/ the 

   .  dimensionless wetted perimeter of the bank zoones
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  13.13.3     Center Bed Width 

 As the equations for the geometry of stable channels depend on  h c   or  h J  , it must 
be computed fi rst. The center bed width can be expressed as (Cao and Knight 
 1997 ):

  h
d

S
c

c=
−

ρ τ
β

* *
( )0 1

      (13.124)  

where  τc*    is the critical Shields parameter for uniform boundary material;  ρ *  =  
[( ρ   s    −   ρ )/ ρ ]; and  ρ   s   and  ρ  are the densities of sediment and water, respectively. 
For gravel-bed rivers, the critical value of the Shields shear stress is taken as 
0.06, but it is found to be too high. The average value of 0.034 seems more 
appropriate.

  
h
h

c

cJ

=
−
1

1 β
      (13.125)  

where  h cJ    =   τ   cJ  /( ρ  gs )  =  the shear depth at junction points. When  β   =  0.15, then 
 h c  / h cJ    =  1.176 (Shiono and Knight  1991 ). 

 Parker ( 1978, 1979 ) presented a relation between the average center bed 
Shields parameter  τb*    and the critical Shields parameter  τc*    for self-formed gravel 
channel as  

  τ τb cc* *=       (13.126)  

where  c  is approximately equal to 1.2.  

  13.13.4     Design Steps 

 Equation  (13.124)  gives the centerline depth of a stable channel. The bank shape 
is determined using equations  (13.113) to (13.118) . The width of the center bed 
region is yet to be determined. The variables involved include discharge  Q , bed 
material characteristics of the channel boundary  D s   or  s  0 , streamwise water 
surface slope  S  0 , depth at the channel center  h c  , surface width of the channel  B , 
and width of the center region  b . The fi rst three variables  Q ,  D s  , and  S  0  are known 
or given; the other three variables  h c  ,  B,  and  b  are to be determined. If the stream-
wise slope is given as input, the steps for a stable channel design are as follows:

   1.      Compute the depth of the center bed region,  h c  , using equation  (13.124) .  
  2.      Compute the dimensionless width, area, wetted perimeter, and hydraulic 

radius of the bank region using equations  (13.115) to (13.118) .  
  3.      Assume a value of channel width  b .  
  4.      Compute the dimensionless width, wetted perimeter, area, and hydraulic 

radius of the full cross section using equations  (13.120) to (13.123) .  
  5.      Compute the dimensions of hydraulic geometric parameters.  
  6.      Compute the average cross-sectional velocity using an appropriate resist-

ance, such as the W–P–B formula.  

c13.indd   567c13.indd   567 5/21/2014   11:15:50 AM5/21/2014   11:15:50 AM



568 Entropy Theory in Hydraulic Engineering

  7.      Compute discharge by multiplying the velocity obtained in step 6 with 
the area obtained in step 5. Compare the calculated discharge with the 
given discharge, and if both discharge values agree, then the channel 
geometry parameters are obtained correctly. If not, then adjust the value 
of  b  in step 5 and repeat steps 4 to 6.  

  8.      Determine the channel profi le, once  b  and  y  are obtained.    

 In some cases, streamwise slope is unknown, but sediment concentration is 
specifi ed. First, an initial value of the slope is assumed. Then the sediment con-
centration is calculated using an appropriate sediment transport relation. If the 
calculated concentration matches the specifi ed concentration, then the stream-
wise slope is correct. If not, the slope is adjusted and steps are repeated. 

  Example 13.8          Consider a channel with well-graded sediment (diameter 
 d   =  1.3 mm and  d  90   =  1.79 mm),  s  0   =  0.6, the longitudinal water surface slope  
S  0   =  0.002146 (1/466), and discharge  Q   =  0.00826 m 3 /s. Parameters of the center-
line depth are given as  τc* .= 0 034    and  β   =  0.15. Design the channel. Ikeda ( 1981 ) 
reported  B   =  0.6480 m and  h cr    =  0.0359 m.  

  Solution     With given  d ,  S  0 , and  τc*   , from equation  (13.124) ,  h c    =  0.039   m.

  ( ) .B b
s

− = =*
4

6 667
0

   

    A
s

b* .= =8
3

4 444
0

   

    Assume the channel width  b  as 0.5 m.

  b
b
hc

* = = 12 82.    

    B b
s

* *= + =4
19 488

0

.    

    A
b s b

*
* *

= +⎡
⎣⎢

⎤
⎦⎥
=1

1
8

3
0 105

0

.    

    Compute the shear velocity as

  v gdSf* m/s= = 0 029.    

    Compute the dimensionless grain size as

  D D g
s

gr s
g=
−⎡

⎣⎢
⎤
⎦⎥

= <
1

5 19 60
2

1 3

υ

/

.    

    Thus,

  n Dgr= − =1 0 0 56 0 59910. . log .    
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    a
Dgr

= + =0 23
0 14 0 241

.
. .    

    Compute the sediment mobility   as

  F
v

sD s
fg

s g

=
−

=*
[ ( )]

.
.1

0 821
0 5    

    Computing the sediment mobility from equation  (13.103) , one obtains 
 F gr    =  0.629. Then the mean velocity can be obtained from equation  (13.104) , 
 v   =  1.954 m/s. Thus,  Q   =   vA   =  0.008 m 3 /s, comparable to  Q   =  0.00826 m 3 /s.  
b   =  0.5 m and  B   =  0.76 m, as shown in Fig.  13-17  for the right side of the 
channel bank.     

  Figure 13-17      Right channel bank.    

  13.13.5     Effect of Gradation of Boundary Material 

 In natural rivers, boundary bed materials are usually heterogeneous. Using labo-
ratory data collected by Ikeda ( 1981 ) and Ikeda et al. ( 1988 ) for the evaluation of 
the effect of gradation on the channel width and depth, Cao and Knight (1987) 
developed a procedure for design of stable channels. Flow is characterized as 
hydraulically smooth if the particle Reynolds number Re*  =   v * d  50 / υ   <  5.5 and 
rough for Re*  >  51 (Ikeda  1981 ). As  ξ   =   d  90 / d  50  increases, the stable width is more 
sensitive to the nonuniform distribution of sand diameter. Thus, the fi rst step is 
to compute the nonuniform sediment threshold condition. For  d i    >   d  50 , Hayashi 
et al. ( 1980 ) used  

  τ τci c
id

d

* *
log

log
=

⎛
⎝⎜

⎞
⎠⎟

8
8

50

      (13.127)  

where  d  50  is the median size of the boundary material mixture;  d i   is a size larger 
than  d  50 ;  τc*    and  τci*     are the critical Shields parameters of uniform size  d i   or of the 
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same size in the mixture. If the boundary material is uniform, then  d i    =   d  50  and 
 τ τci c* *=    . This situation means that banks are stable, but the center region may not 
be stable. 

 The depth at the junction points can be obtained by inserting equation 
 (13.127)  into equation  (13.124) :

  h
d

S
c

c=
−

τ ρ ξ ξ
β

* [log / log( )]
( )

* 50
2

0

8 8
1

      (13.128)  

where  ξ   =   d  90 / d  50   =  the boundary gradation. Equation  (13.128)  indicates four 
parameters  ξ ,  S  0 ,  d  50 , and  β , upon which  h c   depends. 

 Egiazaroff ( 1965 ) proposed another condition for nonuniform material:

  τci
id

d

* .

log

=
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

0 1

19

50

2       (13.129)   

 For uniform  d i    =   d  50 , equation  (13.129)  reduces to a constant value  τci* .= 0 0612   . 
Taking the critical value of the threshold Shields stress  τc*    as 0.035 for hydrauli-
cally rough channels, equation  (13.129)  becomes

  τci
id

d

* .

log

=
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

0 0556

19

50

2
      (13.130)   

 Inserting equation  (13.130)  in equation  (13.124) , one gets

  h
d

S
c = −

[ . ]/[log( )]
( )

90 0556 19
1
50

2

0

ρ ξ ξ
β

*
      (13.131)   

 Equation  (13.131)  shows that the depth increases and width decreases with 
increasing gradation. For size gradation equal to 5, depths may be twice the 
depths for uniform bed material. With  h c   obtained using equation  (13.131)  or 
 (13.128) , the design procedure is the same as before.   

  Questions 

   Q13.1      Consider a one-constraint case. Let  s  0   =  0.3 and  λ  1   =   − 8. Compute the 
probability of  S  less than or equal to 0.1, 0.15, 0.2, and 0.25.  

  Q13.2      For  λ  1   =   − 8,  s  0   =  0.3, and  W   =  1 m, compute the value of  s  at  x   =  0.1, 0.2, 
0.4, 0.6, 0.8, and 1.  

  Q13.3      Plot  α  as a function of  λ  1  for  s  0   =  0.2, 0.3, 0.4, and 0.5. What can be con-
cluded from this plot?  
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  Q13.4      First select a value of  α . Then taking  s  0   =  0.3, obtain a value of  λ  1 . Then 
compute the value of  D  for  W   =  1, 2, 3, 4, and 5 m.  

  Q13.5      For various values of  W  and  x , compute values of  y  for  s  0   =  0.3. Select 
the value of  α .  

  Q13.6      Compute  h  for selected values of  W  and  α .  

  Q13.7      Consider a channel 4 m wide with the submerged coeffi cient  s  0  as 0.3. 
Assume that there are no constraints that the probability density function 
of bank slope has to satisfy other than the total probability law. Compute 
the angle of internal friction for sediment, depth at the channel center, 
aspect ratio, cross-sectional area, wetted perimeter, and hydraulic radius.  

  Q13.8      If the sediment diameter is 0.4 mm and the streamwise slope is 3.5  ×  10  − 4 , 
compute the threshold Shields parameter for the given boundary sedi-
ment diameter.  

  Q13.9      Using the USBR and Diplas and Vigilar methods, compute the channel 
parameters of Q13.1 and compare them with the values obtained using 
the entropy method.  

  Q13.10     Consider the channel of Q13.7. The PDF of  S  must now satisfy the 
mean slope constraint of value 0.25. Compute the channel parameters. 
Compare these parameter values with those obtained in Q13.7 and Q13.9. 
Comment on the comparative values.  

  Q13.11     Consider a channel with a fl ow depth of 1 m, bed slope of 0.002,  D  35   =  
0.08 mm,  υ   =  1.57  ×  10  − 5  m 2 /s, and  s g    =  2.65. Compute the friction factor 
using the W–P–B method.    
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    Chapter 14 

  Water-Level Monitoring 
Networks  

       Data are required for the effi cient planning, design, operation, and manage-
ment of virtually all water resource systems, including water supply reservoirs, 
recreation and fi sheries facilities, fl ood control structures, and hydroelectric 
plants, to name but a few. The purpose of data collection is to collect informa-
tion because decision making in water resources project design and evaluation 
is closely linked to the amount of information available. If enough accurate and 
relevant information is available, the likelihood of an underdesign or overde-
sign is reduced. Thus, economic losses can be minimized, resulting in an overall 
increase in the benefi t-cost ratio. However, it is not always easy to quantita-
tively defi ne the optimum level of information needed for planning, design, 
and development of a specifi c project in a watershed. This situation is largely 
caused by the diffi culty in developing cost and benefi t functions of hydraulic 
and hydrologic information. This diffi culty then leads to the diffi culty of achiev-
ing an optimum balance between the economic risk caused by inadequate 
information and the cost of a network capable of providing the required 
information. 

 Data are measured by monitoring networks. There is a signifi cant body of 
literature on environmental monitoring networks, including hydrometric, hydro-
logic, and water quality. Many studies have applied the entropy theory to assess 
and optimize data collection networks (e.g., water quality, rainfall, streamfl ow, 
hydrometric, temperature, wind, elevation data, and landscape). Alfonso ( 2010 ) 
and Alfonso et al. ( 2010a, b ) dealt with water-level monitoring, which has received 
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much less attention, and their work is discussed in this chapter. The objective of 
this chapter, therefore, is to present entropy-based methods for designing water-
level monitoring networks. The methods can be easily applied to evaluating and 
designing other types of networks. 

  14.1     Design Considerations 

 A methodology for data collection network design must take into account the 
information of each monitoring station or potential monitoring station in the 
network. A station with higher information content would generally be given a 
higher priority over other stations that have lower information contents. The 
information content of a station must, however, be balanced with site-specifi c 
uses and users of the data collected at the station. For example, a station that is 
used by one user might be given a lower priority than a station that has diverse 
uses. Burn and Goulter ( 1991 ) developed a data collection network design frame-
work that considers such issues. 

 In general, a framework for network design or evaluation considers a range 
of factors, including (1) objectives of sampling, (2) variables to be sampled, (3) 
locations of measurement stations, (4) frequency of sampling, (5) duration of 
sampling, (6) uses and users of data, and (7) socioeconomic considerations. Effec-
tive monitoring is also related to these factors. Evaluation of a network has two 
modes: number of gauges and their location (space evaluation), and time interval 
for measurement (time evaluation). The information in one mode may be supple-
mented by the other with appropriate transfer mechanisms and by cross-
correlation structure (space–time tradeoff). Space–time evaluation of networks 
should not be considered as fi xed but should periodically be subject to revision 
and should, therefore, be evolutionary. Uslu and Tanriover ( 1979 ) analyzed the 
entropy concept for the delineation of optimum sampling intervals in data col-
lection systems, both in space and time. 

 All designs, whether of the network or the monitoring program, must be cost 
effective in gathering data and cost effi cient in obtaining information from data. 
These two requirements call for evaluating the performance of a network. Such 
an evaluation must consider benefi ts of monitoring with respect to the objectives 
of monitoring and the cost, both marginal and average, of obtaining those ben-
efi ts. Sometimes it is the budget that controls the design of a network and moni-
toring program. Then, the problem reduces to one of obtaining the greatest 
benefi t (most information) for the available budget. 

 Even though there are many considerations for the network evaluation and 
design, here we only focus on the fundamental theme, i.e., selecting an optimum 
number of stations and their optimum locations. Other considerations, such as 
the cost of placing new stations and their operational cost, are not included. 
Nevertheless, they can be easily incorporated into the objective by introducing 
an additional penalty function. The crucial point is to fi nd a suitable way to 
measure the economic cost in terms of information units. 
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 Frequently occurring questions when doing network design are the follow-
ing: How much information is retained when considering two or more gauging 
stations simultaneously? How much of the uncertainty or information related to 
one gauge is still left if the information about another gauge is already known? 
How much information about gauge 1 can be inferred from the information of 
gauge 2? Which gauge is more important? How many gauges should there be? 
Where should gauges be located? These questions can be addressed using 
entropy.  

  14.2     Information-Related Approaches 

 Many approaches have been used in network evaluation and analysis. These 
include entropy; information variance; correlation function; transfer function 
variance; simulation; economic-worth of data approach; decision theory and 
Bayesian analysis; and linear estimation techniques, such as Thiessen polygons 
and spline surface fi tting; kriging; and square grid technique, among others. The 
fi rst four approaches are directly related to the concept of information espoused 
in this book. This chapter discusses only the fi rst three approaches, with particu-
lar emphasis on the entropy-based approaches. 

  14.2.1     Shannon Entropy 

 Because entropy is a measure of information or uncertainty associated with a 
random variable or its probability distribution, it can be used for measuring the 
information content of observations of the random variable at a monitoring 
station. A series of observations about an uncertain event contains more informa-
tion about the event than do observations about a less uncertain event. The 
Shannon entropy (Shannon  1948 )  H ( X ) of a discrete random variable  X : { x  1 ,  x  2 , 
…,  x n  } that has probability distribution  P : { p  1 ,  p  2 , …,  p n  } where  x i   is the  i th value 
of  X  that has probability  p i  ,  i   =  1, 2, …,  n , is defi ned as

  H X p x p xi i
i

n

( ) ( )log ( )= −
=
∑

1

      (14.1)   

 Information reduces uncertainty, i.e., information  I  is a reduction in uncertainty 
and can be defi ned as

  I H HI O= −       (14.2)  

where  H I   is the entropy (or uncertainty) of input (or message sent through a 
channel), and  H O   is that of the output (or message received). Equation  (14.2)  
defi nes a reduction in uncertainty. In an input–output channel, if there were no 
noise, the output (the message received by the receiver or receptor) would be 
certain as soon as the input (message sent by the emitter) is known. This 
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phenomenon means that the uncertainty in output  H O   would be 0 and  I  would 
be equal to  H I  .  

  14.2.2     Continuous Time Series Discretization 

 The Shannon entropy for a discrete random variable is defi ned by equation 
 (14.1) . In network evaluation and design, continuous data are often involved. 
Before entropy-based analysis, therefore, the continuous time series data need to 
be discretized. Several methods are available for continuous data discretization, 
such as the histogram-based density estimator (Scott  1979 ; Freedman and Diaco-
nis  1981 ; Birgé and Rozenholc  2002 ; Shimazaki and Shinomoto  2007 ), and math-
ematical fl oor function (Alfonso et al.  2010a, b ; Alfonso and Price, 2012). Some 
approaches directly estimate continuous analogs of entropy terms without dis-
cretization, like the work by Paninski ( 2003 ). However, these methods are infl ex-
ible for computation of multivariate entropy terms, such as joint entropy and 
total correlation, which are described in the next sections. 

 By minimizing the integrated mean square error (IMSE), Scott ( 1979 ) pro-
posed an asymptotic optimal choice for bin width h opt  as

  h
f x dx

nopt =
′ ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫

6
2

1
3 1

3

[ ]
      (14.3)  

where  f ( x ) is the true underlying density, [ f  ′ ( x )] 2  is the squared derivative of the 
assumed density, and  n  is the random sample size. In practice, the true density 
is unknown. Tukey ( 1977 ) suggested using the Gaussian density as a reference 
standard. Substituting the standardized Gaussian density function  f ( x )  =  (1/2 π )
exp( −  x  2 /2) in equation  (14.3) , one can have

  h nopt = ⎛
⎝

⎞
⎠

−2
1
3

1 3
1 6 1 3

/
/ /π σ       (14.4)   

 Replacing the underlying true standard deviation  σ  by the sampling 
standard deviation  s , Scott ’ s data-based choice for the optimal bin width is 
expressed as

  h snopt* . /= −3 49 1 3       (14.5)   

 Scott ( 1979 ) used this equation to estimate the probability density for several 
heavy-tailed non-Gaussian distributions and concluded that it produced satisfac-
tory results. 

 A continuous time series can be discretized (or labeled) by histogram parti-
tion as follows. First, determine the number of bins, assumed as  m , according to 
the optimal bin width  hopt*     and the data range. Then, compute the empirical 
quantiles  q ( i / m ), where  i   =  0, 1, 2, …,  m . These empirical quantiles are the thresh-
olds to label the continuous time series data. Finally, all data falling in the interval 
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[ q (( k  − 1)/ m ),  q ( k / m )], where  k   =  1, 2, …,  m , are labeled as  k . After discretization, 
a continuous random sample becomes a discrete (or categorical) one. This method 
has been widely used by Caselton and Husain ( 1980 ), Chapman ( 1986 ), Markus 
et al. ( 2003 ), and Mishra and Coulibaly ( 2010 ), among others. 

  Example 14.1          For a streamfl ow network as shown in Fig.  14-1 , the observations 
for the station (08082500) are given in Table  14-33  in Appendix 14.1. Using the 
histogram method, fi rst discretize the continuous streamfl ow time series and 
then compute its marginal entropy.   

  Solution     The length of the streamfl ow time series (number of observations) is 
240. The standard deviation of streamfl ow observations is 13.47. Substituting 
them into equation  (14.5)  yields

  hopt* . . .= × × =
−

3 49 13 47 240 7 56
1
3        

 The range of the observations is approximately from 0 to 99.25. The time series 
can be partitioned into 14 equally sized intervals. Each interval has a size of 7.10. 
All observations falling in the fi rst interval (0  ∼  7.10) are labeled as 1. Similar-
ly, all observations falling in the second interval (7.11  ∼  14.20) are labeled as 2, 
and so on. After discretization, the one-dimensional contingency table can be 

  Figure 14-1      Location map of the Brazos River basin and streamfl ow gauges 
on the mainstream.    
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constructed, as shown in Fig.  14-2 . Then from the results in Fig.  14-2  and accord-
ing to the defi nition of entropy, each term in the entropy defi nition equation can 
be computed and presented in Fig.  14-3 . Summation of all quantities in the last 
table yields the fi nal marginal entropy of streamfl ow for the fi rst station:

    H p pi i
i

station bits1 0 303 0 332 0 033 1 3692
1

14

( ) = − = + + + =
=
∑ log . . . .…        

 Besides the histogram partition method, mathematical fl oor function also can 
be exploited for data discretization. The application of the mathematical fl oor 

  Figure 14-2      Contingency table for station 1 (08082500). 
 Note:   Numbers in the fi rst table are the number of values in different intervals. 

Likewise, the values in the second table are those of relative frequencies of different 
intervals.    

  Figure 14-3      Computation of each term appearing in the defi nition equation of entropy.    
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function requires that a continuous value  x  be converted to its nearest lowest 
integer multiple of a constant  a , i.e.,

  x a
x a

a
q = +⎢

⎣⎢
⎥
⎦⎥

2
2

      (14.6)  

where  ⋅⎣ ⎦     represents the conventional mathematical fl oor function. Selecting a 
suitable constant  a  is crucial for the discretization and, in turn, for the computa-
tion of entropy terms. It should be neither too large nor too small. A too-large 
value of  a  would make stations with relatively small values of the variable of 
interest insignifi cant in terms of information content, whereas a too-small value 
of  a  would make every station have similar information content. Considering 
that the entropy theory-based network evaluation and design is essentially rank-
ing the importance of different candidate stations, rules of thumb can be used 
to guide the selection of parameter  a : (1) it should guarantee that all candidate 
stations have signifi cant and distinguishable information contents; (2) the spatial 
and temporal variability of time series of stations should be preserved as much 
as possible before and after discretization; and (3) the selected stations should be 
stable as much as possible, when  a  fl uctuates within a narrow interval centered 
at its optimal value. 

 One point worth noting is that after applying the mathematical fl oor function, 
the marginal entropy (equation  [14.1] ) is no longer a measure of uncertainty (or 
information) of the continuous random variable  X , but it is rather the uncertainty 
of  X  rounded to its nearest lowest integer multiple of a constant (Papoulis and 
Pillai  2001 ). In the context of hydrometric network evaluation and design, we do 
not need to exactly quantify the information (or uncertainty) retained by stations. 
Reasonable approximation is suffi cient as long as the relative relationship among 
stations can be reproduced in terms of information content. For example, the 
information “station 1 contains more uncertainty (or information) than station 2” 
should be effi ciently presented after discretization.  

   Example 14.2          For the same streamfl ow-monitoring network as in Example  14.1 , 
select a suitable value for parameter  a , discretize the streamfl ow time series for 
all stations, and then compute their marginal entropies.  

  Solution     If we take any station, say station 8, as an example, we can adopt a 
value of 150 m 3 /s for  a  and discretize the continuous streamfl ow time series. 
The results are presented in the Fig.  14-4 . The value of  a  is selected in the con-
text of the streamfl ow-monitoring network evaluation according to the three 
rules of thumb given in this section. For more detail. one can refer to Li et al. 
( 2012 ). 

  In the same way, the streamfl ow time series for other stations can also be 
discretized. After discretization, the marginal entropy can be computed. Follow-
ing the same method as in Example  14.1 , the marginal entropy for each station 
can be computed by constructing a one-dimensional contingency table and then 
applying the Shannon discrete entropy defi ned by equation  (14.1) . For economy 
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  Figure 14-4      Streamfl ow time series before and after discretization.    

Label 1 151 301 451 601 751

Counts 188 34 8 5 2 3

Frequency 0.783 0.142 0.033 0.021 0.008 0.013

 Table 14-1      Contingency table for station 8 using the mathematical fl oor function for 
discretization.  

of space, only the results for station 8 are presented in this section. The one-
dimensional contingency table for station 8 can be constructed as in Table  14-1 . 

  Then from Table  14-1 , each term in the defi nition of entropy can be computed, 
as presented in Fig.  14-5 . 

  Summation of all quantities in the last table yields the fi nal marginal entropy 
of streamfl ow for station 8:

  H p pi i
i

station bits8 0 276 0 399 0 079 1 0912
1

6

( ) = − = + + + =
=
∑ log . . . .…        

  Figure 14-5      Computation of each term in the defi nition equation of entropy.    
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 The results for other stations are tabulated in Table  14-2 . 
  Comparing the marginal entropy for station 1 computed in Example  14.1 , the 

result is much smaller here. In this example, all the stations are considered simul-
taneously, and this is always the case in hydrometric network evaluation and 
design. In this case, it should be guaranteed that all candidate stations have 
signifi cant and distinguishable information contents after discretization. In this 
sense, the computed marginal entropies seem reasonable.    

  14.2.3     Types of Entropy 

 The measures of information are marginal entropy, conditional entropy, joint 
entropy, and transinformation. The information observed at different sites (moni-
toring stations) can be inferred, to some extent, from the observations at other 
sites. The information transferred among information emitters (predictor sta-
tions) and the information receivers (predicted stations) can be measured by 
transinformation, which is also known as mutual information. Mutual informa-
tion is used for measuring the inferred information or equivalently for informa-
tion transmission. Entropy and mutual information have advantages over other 
measures of information because they provide a quantitative measure of the 
information at a station, the information transferred and the information lost 
during transmission, and a description of the relationship among stations based 
on their information transmission characteristics. 

 Let the data being collected at a station correspond to a random variable  X . 
Then, the marginal entropy,  H ( X ), given by equation  (14.1) , can be defi ned as the 
potential information of the variable; this is also the information of that monitor-
ing station. For two monitoring stations,  X  and  Y , the joint entropy  H ( X,Y )is the 
total information content contained in both  X  and  Y , i.e., it is the sum of marginal 
entropy of one of the stations and the uncertainty that remains in the other 
station when a certain amount of information that it can convey is already 
present in the fi rst station. Mathematically, joint entropy can be defi ned as

  H X Y p x y p x yi j i j
j

m

i

n

( , ) ( , )log ( , )= −
==
∑∑

11
      (14.7)   

 Joint entropy is symmetric with respective its arguments. 
 There exists an inequality relationship between joint entropy  H ( X,Y ) and 

marginal entropies  H ( X ) and  H ( Y ) that can be expressed as

  H X Y H X H Y( , ) ( ) ( )≤ +       (14.8)   

Station 
ID

1 2 3 4 5 6 7 8 9 10 11 12

Entropy 
 H 

0.097 0.337 0.352 0.407 0.573 0.638 0.743 1.092 1.334 2.385 2.447 2.469

 Table 14-2      Marginal entropy for each of the 12 stations.  
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 This inequality gives the upper boundary of joint entropy  H ( X,Y ), which is 
reached when the two random variables  X  and  Y  are statistically independent. 
In other words, the joint entropy of two dependent random variables deviates 
from the sum of their marginal entropies. Furthermore, the greater the magni-
tude of the dependence, the larger the inequality. 

 There is a natural extension from the bivariate joint entropy given by equa-
tion  (14.7)  to the multivariate joint entropy for any number of variables or sta-
tions. The multidimensional joint entropy for  N  gauges represents the common 
uncertainty of their measured data sets. Multivariate entropy helps quantify the 
amount of information retained by more than two stations simultaneously. The 
multivariate joint entropy can be defi ned as

  H X X X p x x x p x x xN i i Ni i i Ni
N

n

ii

( , , , ) ( , , , )log ( , , , )1 2 1 2 1 2
2

3

… … … …= − ∑
nnn

i

21

1
∑∑    

    (14.9)  

where  x ji  ,  j   =  1, 2, …,  N ;  i   =  1, 2, …,  n j  , represents the  i th value of variable  X j   or 
station  X j  ; there are  N  stations, each with different  n j   values. Similar to bivariate 
entropy, multivariate joint entropy is also symmetric with respect to its argu-
ments. Of course, the inequality relationship between multivariate joint entropy 
and the marginal entropies also holds, which for the multivariate case is just an 
analogy of inequality  (14.8) . Therefore, the multivariate joint entropy is maxi-
mized when all the random variables are independent. 

  Example 14.3          For the water-level monitoring network shown in Fig.  14-6  (from 
Alfonso  2010a, b ), observations are given in Table  14-34  in Appendix 14.1. Select-
ing the fi rst two monitors as illustrations, compute their marginal entropies and 
joint entropy and verify that the joint entropy is symmetric and that the inequal-
ity as in equation  (14.8)  holds.   

  Solution     The given water-level data are quantized, which means that they have 
been transformed from continuous type to discrete. Therefore, a contingency ta-
ble can be constructed by treating the same discrete values as a single event. 
For example, at gauge 1, all the 100 values are considered as the same event. 
Taking gauge 1 as an example, the contingency table is constructed as shown in 
Table  14-3 . 

Water level 75 80 85 90 95 100 105

Counts 18 59 33 18 17 23 32

Probability 0.090 0.295 0.165 0.090 0.085 0.115 0.160

 Table 14-3      Contingency table for gauge 1.  
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  Figure 14-6      Water-level monitoring network in The Netherlands.    

  Then, the marginal entropy for gauge 1 can be computed as

  
H X p x p xi i

i

n

( ) ( )log ( ) . log . . log .1
1

2 20 09 0 09 0 295 0 295

0

= − = − −

− −
=
∑
… .. log . .160 0 160 2 65792 = bits

       

 Likewise, the entropy of gauge 2 is computed, as follows: for gauge 1,  H ( X ) is 
2.6579; for gauge 2, it is 3.0235. 

 To compute the joint entropy, a two-dimensional contingency table is con-
structed, as shown in Table  14-4 . Taking  X  1   =  75 and  X  2   =  80 as an example, the 
joint probability  p ( X  1   =  75,  X  2   =  80) is computed as

   p X X1 275 80
17
200

0 085= =( ) = =, .        
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 Similarly, the joint probability mass table can be constructed as shown in 
Table  14-5 . 

  Then the joint entropy of gauges 1 and 2 can be computed as

  

H X X p x y p x yi j i j
ji

( , ) ( , )log ( , )

. log .

1 2
1

9

1

7

20 085 0 085

= − ( )

= − −
==
∑∑

00 005 0 005 0 160
0 160

2 2. log . . log
.

− −
=

…
bits

       

 Since the probability mass table for  P ( X  2 ,  X  1 ) is just the transpose of that for  P ( X  1 , 
 X  2 ), the value for  H ( X  2 ,  X  1 ) is defi nitely equal to  H ( X  1 ,  X  2 ). In other words, the 
joint entropy is symmetric with respective to its arguments. 

 The inequality expressed by equation  (14.8)  can be easily verifi ed as follows:

  H X H X H X X1 2 1 22 6579 3 0235 5 6814 3 7606( ) + ( ) = + = ≥ = ( ). . . . ,        

Gauge 1

Gauge 2

80 85 90 95 100 105 110 115 120 Sum

75 17 1 0 0 0 0 0 0 0 18

80 31 27 1 0 0 0 0 0 0 59

85 0 2 22 8 1 0 0 0 0 33

90 0 0 0 8 8 1 1 0 0 18

95 0 0 0 0 4 10 2 1 0 17

100 0 0 0 0 0 0 14 8 1 23

105 0 0 0 0 0 0 0 9 23 32

Sum 48 30 23 16 13 11 17 18 24 200

 Table 14-4      Two-dimensional contingency table for gauges 1 and 2.  

Gauge 1

Gauge 2

80 85 90 95 100 105 110 115 120 Sum

75 0.085 0.005 0 0 0 0 0 0 0 0.090

80 0.155 0.135 0.005 0 0 0 0 0 0 0.295

85 0 0.010 0.110 0.040 0.005 0 0 0 0 0.165

90 0 0 0 0.040 0.040 0.005 0.005 0 0 0.090

95 0 0 0 0 0.020 0.050 0.010 0.005 0.00 0.085

100 0 0 0 0 0 0 0.070 0.040 0.005 0.115

105 0 0 0 0 0 0 0 0.045 0.1145 0.160

Sum 0.240 0.150 0.115 0.080 0.065 0.055 0.085 0.090 0.120 1.0

 Table 14-5      Contingency table for gauges 1 and 2 for computation of joint probability.  
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   The conditional entropy  H ( X | Y ) is a measure of the information content of 
 X , which is not contained in  Y , or entropy of  X  given the knowledge of  Y  or the 
amount of information that still remains in  X  even if  Y  is known. It can be math-
ematically expressed as

  H X Y p x y p x yi j i j
j

m

i

n

( ) ( , )log ( )= −
==
∑∑

11
      (14.10a)  

where  p ( x i  | y j  ) represents the conditional probability mass function of random 
variable  X  given random variable  Y . Unlike joint entropy, conditional entropy is 
not symmetric, i.e., in general,  H ( X | Y ) is not equal to  H ( Y | X ). 

 Recalling that the conditional entropy  H ( X | Y ) is the amount of uncertainty 
still left in  X  after knowing  Y  and the joint entropy  H ( X | Y ) is the amount of 
uncertainty or information retained by  X  and  Y  simultaneously, one can intui-
tively generalize that the joint uncertainty quantifi ed by  H ( X , Y ) is reduced by 
the knowledge of  X , and the magnitude of this reduction is the conditional 
entropy  H ( Y | X ). This statement can be expressed mathematically as

  H Y X H X Y H X( ) ( , ) ( )= −       (14.10b)   

 The conditional entropy can also be interpreted as the amount of lost informa-
tion. The conditional entropy  H ( Y | X ), as the information error or noise, is the 
amount of information about  Y  that cannot be inferred from the knowledge of 
 X  or the amount of information retained by  Y  that has not been transferred out 
when using  Y  to evaluate or estimate  X .  H ( Y | X ) represents the amount of infor-
mation received as noise, that is, the part that was never sent by  X  but was 
received by  Y . Clearly, both of these quantities must be positive. It may be noted 
that conditional entropy  H ( X | Y ) represents the amount of information loss 
during transmission, meaning the part of  X  that never reaches  Y . 

 Equation  (14.10a)  can be extended to any number of variables or gauges. In 
multivariate cases, the amount of uncertainty left in the gauge with the most 
information or entropy when the records of all other gauges are known is 
expressed by the multivariate conditional entropy of the central gauge condi-
tioned on all other records. Similarly, the uncertainty left in the group of gauges 
(1 1  ,   …,   N N  ) when any new gauge is added (i.e., the expansion of the existing 
gauge network) can be defi ned as

  H X X X X p x x x p x x x xN N N N N[( , , , ) ] , , , log[ ( , , ,.1 2 1 1 2 1 1 2 1… … … …+ + += − ( ) ))]
N

MM

n

N

+

+

∑∑
1

1

1

1

1

   

    (14.11a)  

or

  H X X X X H X X X X H XN N n N N[( , , , ) ] ( , , , , ) ( )1 2 1 1 2 1 1… …+ + += −       (14.11b)  

where  M i  ,  i   =  1, 2,  N   +  1, is the number of points or values of  X i  . 
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  Example 14.4          Using the same data set as in Example  14.3 , denoting respectively, 
the water levels at gauges 1 and 2 by  X  1  and  X  2 , compute the conditional entropy 
 H ( X  2 | X  1 ) and  H ( X  1 | X  2 ). Discuss the results.  

  Solution     To compute the conditional entropy using equation  (14.10a) , the con-
ditional probability distribution needs to be computed fi rst. The joint probability 
distribution for  X  1  and  X  2  has been obtained in Example  14.3 ; for ease of under-
standing, it is tabulated again as Table  14-6 . 

  The conditional probability  p ( x  2   i  | x  1   j  ) can be computed from the above two-
dimensional contingency table. Taking  X  1   =  75 and  X  2   =  80 as an example, the 
conditional probability

  p X X2 180 75= =( )|       

is computed as

  p X X
p X X

p X
2 1

2 1

1

80 75
80 75

75
0 085
0 090

0 944= =( ) =
= =( )

=( )
= =|

, .
.

.        

 Similarly, we can obtain the conditional probability distribution  p ( x  2   i  | x  1   j  ) as 
shown in Table  14-7 . 

  According to the defi nition of conditional entropy, we can compute the con-
ditional entropy of  X  2  given  X  1  from the previous table as

  

H X X p x x p x xi j i j
j

m

i

n

( ) ( , )log ( )

. log .

2 1 1 2 2 1
11

20 085 0 9444

= −

= −
==
∑∑

−− − −
=

0 005 0 0556 0 045 0 0435
1 1027

2 2. log . . log .
.

…
bits

       

Gauge 1

Gauge 2

80 85 90 95 100 105 110 115 120 Sum

75 0.085 0.005 0 0 0 0 0 0 0 0.090

80 0.155 0.135 0.005 0 0 0 0 0 0 0.295

85 0 0.010 0.110 0.040 0.005 0 0 0 0 0.165

90 0 0 0 0.040 0.040 0.005 0.005 0 0 0.090

95 0 0 0 0 0.020 0.050 0.010 0.005 0.005 0.085

100 0 0 0 0 0 0 0.070 0.040 0.040 0.115

105 0 0 0 0 0 0 0 0.045 0.045 0.160

Sum 0.240 0.150 0.115 0.080 0.065 0.055 0.085 0.090 0.120 1.0

 Table 14-6      Joint probability distribution of gauges 1 and 2.  
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 Following the same procedure, the conditional entropy of  X  1  given  X  2  can be 
computed, i.e.,  H ( X  1 | X  2 )  =  0.7371 bits. This result also shows that  H ( X  1 | X  2 )  ≠  
 H ( X  2 | X  1 ), indicating the asymmetric property of conditional entropy. In addi-
tion, in Example  14.3 ,  H ( X  1 )  =  2.6579 bits and  H ( X  1 ,  X  2 )  =  3.7606 bits have already 
been obtained. Thus, one can easily verify that equation  (14.10b)  holds, i.e.,  H ( X  1 , 
 X  2 )  −   H ( X  1 )  =  3.7606  −  2.6579  =  1.1027  =   H ( X  2 | X  1 ).  

  The mutual entropy (information) between  X  and  Y , also called transinfor-
mation,  T ( X ,  Y ), is interpreted as the reduction in the original uncertainty of  X  
caused by the knowledge of  Y . It can also be defi ned as the information content 
of  X  that is contained in  Y . In other words, it is the difference between the joint 
entropy and the sum of entropies of two stations. This information is repeated 
or common information in both  X  and  Y  and defi nes the amount of uncertainty 
that can be reduced in one of the stations when the other station is known. 

 The information transmitted from station  X  to station  Y  is represented by the 
mutual information  T ( X ,  Y ) and is given (Lathi  1969 ) as

  T X Y p x y
p x y

p x
i j

i j

iji

( , ) ( , )log
( )

( )
= ∑∑       (14.12a)  

or

  T X Y p x y
p x y

p x p y
i j

i j

i jji

( , ) ( , )log
( , )

( ) ( )
= ∑∑       (14.12b)   

 Conceptually, transinformation  T ( X ,  Y ) is the amount of common (over-
lapped) information between  X  and  Y . The sum of information retained by  X  
and  Y  is computed as  H ( X )  +   H ( Y ). However, some of this information overlaps 
because of the dependence between  X  and  Y . The total information retained by 
 X  and  Y  simultaneously is the joint entropy  H ( X ,  Y ). Therefore, the overlapped 
information is just the difference between the sum of marginal entropies  H ( X ) 
and  H ( Y ) and the joint entropy  H ( X ,  Y ). In this sense, transinformation is also a 

Gauge 1

Gauge 2

80 85 90 95 100 105 110 115 120 Sum

75 0.9444 0.0556 0 0 0 0 0 0 0 1.0

80 0.5254 0.4576 0.0170 0 0 0 0 0 0 1.0

85 0 0.0606 0.6667 0.2424 0.0303 0 0 0 0 1.0

90 0 0 0 0.4444 0.4444 0.0556 0.0556 0 0 1.0

95 0 0 0 0 0.2353 0.5882 0.1176 0.0589 0 1.0

100 0 0 0 0 0 0 0.6087 0.3478 0.0435 1.0

105 0 0 0 0 0 0 0 0.2813 0.7187 1.0

 Table 14-7      Conditional probability distribution.  
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measure of dependence between two random variables. The relationships among 
marginal entropy, joint entropy, and conditional entropy are

  T X Y H X H Y H X Y, ,( ) = ( ) + ( ) − ( )       (14.13a)  

  T X Y H X H X Y, |( ) = ( ) − ( )       (14.13b)  

  T X Y H Y H Y X, |( ) = ( ) − ( )       (14.13c)   

  T ( X ,  Y ) is symmetric, i.e.,  T ( X ,  Y )  =   T ( Y ,  X ), and is nonnegative. A zero value 
occurs when two stations are statistically independent so that no information is 
mutually transferred, that is,  T ( X ,  Y )  =  0 if and only if  X  and  Y  are independent. 
When two stations are functionally dependent, the information at one site, say  X , 
can be fully transmitted to another site  Y  with no loss of information at all. Sub-
sequently,  T ( X ,  Y )  =   H ( X ). Otherwise, 0  ≤   T ( X ,  Y)  ≤  H ( X ). Larger values of  T  cor-
respond to greater amounts of information transferred. Thus,  T  is an indicator of 
the capability of the information transmission and the degree of dependency of 
two stations. That is the reason that transinformation has been widely used in 
hydrometric network design. Furthermore, transinformation is superior to using 
the correlation coeffi cient. The attractiveness of transinformation is that it captures 
not only linear relationship but also nonlinear relationship, whereas the correlation 
coeffi cient can only apply to the linear relationship, or more generally, it measures 
the dependence in multivariate spherical and elliptical distributed random vari-
ables, such as those that follow a multivariate Gaussian distribution. 

  Example 14.5          For the same water-level monitoring network as in Example  14.3 , 
observations are given in Table  14-33  in Appendix 14.1. Choosing the fi rst fi ve 
monitoring gauges, compute the transinformation between different gauges.  

  Solution     There are several ways to compute the transinformation. One is to 
use its defi nition equation, as shown in equations  (14.12a)  and  (14.12b) . Another 
one is to use the shortcut formulas, as shown in equations  (14.13a) ,  (14.13b) , and 
 (14.13c) . First we use the defi nition equation  (14.12b)  to calculate the transinfor-
mation, taking gauge 1 and gauge 2 as an example. First, the marginal distribu-
tions of gauge 1 and gauge 2 need to be calculated. Then their joint distribution 
is calculated. Finally, using the defi nition equation, the transinformation can be 
computed. Example  14.3  illustrates how to compute the marginal probability 
mass table, following which the marginal distribution for gauge 1 is computed 
and shown in Table  14-8 . Similarly, the marginal distribution for gauge 2 is given 
in Table  14-9 . 

Water level 75 80 85 90 95 100 105

Counts 18 59 33 18 17 23 32

Probability 0.090 0.295 0.165 0.090 0.085 0.115 0.160

 Table 14-8      Marginal probability distribution of gauge 1.  
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Water level 80 85 90 95 100 105 110 115 120

Counts 48 30 23 16 13 11 17 18 24

Probability 0.240 0.150 0.115 0.080 0.065 0.055 0.085 0.090 0.120

 Table 14-9      Marginal probability distribution of gauge 2.  

   Example  14.3  also illustrates how to construct a two-dimensional contin-
gency table. For convenience, fi nal results are directly tabulated in Table  14-10 . 

  Then, from the defi nition given by equation  (14.12b) , transinformation can 
be computed as

  

T X Y p x y
p x y

p x p y
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 In the same way, the transinformation values for other paired gauges can be com-
puted and the results are tabulated in Table  14-11 . 

Gauge 1

Gauge 2

80 85 90 95 100 105 110 115 120 Sum

75 0.085 0.005 0 0 0 0 0 0 0 0.090

80 0.155 0.135 0.005 0 0 0 0 0 0 0.295

85 0 0.010 0.110 0.040 0.005 0 0 0 0 0.165

90 0 0 0 0.040 0.040 0.005 0.005 0 0 0.090

95 0 0 0 0 0.020 0.050 0.010 0.005 0.005 0.085

100 0 0 0 0 0 0 0.070 0.040 0.040 0.115

105 0 0 0 0 0 0 0 0.045 0.045 0.160

Sum 0.240 0.150 0.115 0.080 0.065 0.055 0.085 0.090 0.120 1.0

 Table 14-10      Contingency table for gauges 1 and 2.  
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Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

Gauge 1 2.6579 1.9208 2.6579 0.0234 1.8371

Gauge 2 1.9208 3.0235 1.9208 0.0336 2.1469

Gauge 3 2.6579 1.9208 2.6579 0.0234 1.8371

Gauge 4 0.0234 0.0336 0.0234 0.1687 0.0764

Gauge 5 1.8371 2.1469 1.8371 0.0764 3.5642

 Table 14-11      Transinformation values.  

  Conversely, the shortcut formulas (equations  (14.13a) ,  (14.13b) , and 
 (14.13c) ) can also be exploited for the computation of transinformation. For 
example,

  

T X Y H X H Y H X Ygauge gauge gauge gauge gauge gauge1 2 1 2 1 2, ,( ) = ( ) + ( ) − ( ))
= + −
=

2 6579 3 0235 3 7606
1 9208

. . .

. bits
   

    

T X Y H X H X Ygauge gauge gauge gauge gauge1 2 1 1 2

2 6579 0

, |

. .
( ) = ( ) − ( )

= − 77371
1 9208= . bits

   

    

T X Y H Y H Y Xgauge gauge gauge gauge gauge1 2 2 2 1

3 0235 1

, |

. .
( ) = ( ) − ( )

= − 11027
1 9208= . bits

       

 Clearly, no matter which method is used, the fi nal result for transinformation is 
the same.    

  14.2.4     Interaction Information 

 Interaction information (or co-information) was defi ned by McGill ( 1954 ). For 
three variables  X ,  Y , and  Z , it can be expressed as

  
I X Y Z H X H Y H Z H X Y H Y Z H X Z H X Y Z

I X

( , , ) ( ) ( ) ( ) [ ( , ) ( , ) ( , )] ( , , )
(

= + + − + +
= ,, ; ) ( , ) ( , )Y Z I X Y I Y Z− −

   

    (14.14)   

 Interaction information has been interpreted differently in the literature. To illus-
trate these interpretations, consider three variables  X ,  Y , and  Z . Jakulin and 
Bratko ( 2003 ) interpret it as a measure of the amount of information common to 
 X ,  Y , and  Z  (all variables) but that is not present in any of these three variables. 
The interaction information can be positive or negative, because the dependency 
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among variables (say  X  and  Y ) can increase or decrease with the knowledge of 
a new variable (say  Z ). Jakulin and Bratko ( 2004 ) interpret a positive interaction 
information value as a synergy among  X ,  Y , and  Z , whereas a negative value is 
a redundancy among these variables. 

 Interaction information is interpreted by Srinivasa ( 2005 ) as a gain or loss in 
the information transmitted between a set of variables (say  X  and  Y ) caused by 
the knowledge of a new variable (say  Z ). The interpretation by Fass ( 2006 ) is as 
the name interaction information suggests. It refl ects the infl uence of one variable 
(say,  X ) on the amount of information shared among the remainder of the vari-
ables (say,  Y  and  Z ). He goes on to state that with the knowledge of the third 
variable (say,  Z ) a positive interaction information strengthens the correlation 
between the two variables (say,  X  and  Y ). Conversely, a negative value of correla-
tion diminishes the correlation between  X  and  Y . 

 The bivariate transinformation can be extended to the multivariate case for 
measuring different relationship characteristics among several dependent 
random variables, such as interaction information and total correlation. Interac-
tion information can be generalized as

  I X X X H X H X X H X X XN i
S

i j
S

N
N

S

( , , , ) ( ) ( , ) ( ) ( , , , )1 2
1

1 2

1 2

1… � �= − + + −∑ ∑ −

NN

∑    

    (14.15)  

where  S i   denotes all possible combinations consisting of  i  different random vari-
ables or stations and the sum notation means the sum over all possible combina-
tions, respectively. The interaction information reduces to transinformation when 
 N   =  2. However, unlike transinformation, which is always positive, multivariate 
interaction information can assume all real values. From the defi nition, it is clear 
that it is burdensome to compute interaction information, for it entails computa-
tion of many marginal entropy and joint entropy terms, especially when the 
number of random variables  N  is large. In practice, especially in hydrometric 
network design, the amount of common information shared by several random 
variables quantifi ed by the interaction information is not attractive because of 
its intractable computation and its sensitivity to the new added station. Con-
versely, to evaluate the redundancy of a hydrometric network, the interest is 
usually in the amount of repeated information among all existing or selected 
stations. The concept of total correlation provides a direct and effective way of 
assessing such kinds of repeated information, which is discussed in the subse-
quent section.  

  14.2.5     Total Correlation 

 McGill ( 1954 ) and Watanabe ( 1960 ), among others, have used total correlation 
defi ned as

  C X X X H X H X X XN i
i

N

N( , , , ) ( ) ( , , , )1 2
1

1 2… …= −
=
∑       (14.16)   
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 Equation  (14.16)  evaluates the total amount of duplication information among 
the  N  gauges and provides an alternative way of examining multivariate depen-
dency. Total correlation is symmetric with respect to its arguments. The total 
correlation is always nonnegative because the sum of marginal entropies of  N  
variables is no less than their joint entropy. If the  N  variables are independent, 
then  C  is 0. Otherwise, it is greater than 0. A large value of  C  may imply either 
a strong dependency among a few variables or a relatively small dependency 
among all of them. If  N   =  2, equation  (14.16)  reduces to the conventional tran-
sinformation  T . 

 Equation  (14.16)  involves two components: marginal entropies and joint 
entropy. The total correlation can be computed without resorting to the computa-
tion of multivariate entropy or multivariate probabilities. This step can be accom-
plished by recalling the grouping property of total correlation and accordingly 
a systematic grouping of bivariate entropies. For trivariate total correlation  C ( X  1 , 
 X  2 ,  X  3 ), the grouping property can be expressed as (Kraskov et al.  2003 )

  C X X X C X X C X X( , , ) ( , ) ( , ):1 2 3 1 2 1 2 3= +       (14.17)  

where  X  1:2  represents the merged variable of  X  1  and  X  2 , which is detailed in the 
next section. Sequentially using the grouping property, the multivariate total 
correlation can be computed recursively as
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∑       (14.18)   

 In equation  (14.18) , notation  X  1:   i   represents the merged variable of  X  1 ,  X  2 , …,  X i  . 
It can be seen that the total correlation is fi nally factorized as a summation of 
bivariate total correlation, which is just the conventional transinformation. In 
other words, the grouping property can reduce the dimension of multivariate 
total correlation, and thus, the estimation of multivariate probability distribution 
and multivariate joint entropy can be avoided. 

 Although the total correlation concept has been widely used in medicine, 
neurology, psychology, clustering, signifi cant feature selection, and genetics 
(Jakulin and Bratko,  2004 ; Fass,  2006 ), there appears to have been limited applica-
tion of total correlation in hydrology and water resources. Krstanovic and Singh 
( 1992a, b ) used it for evaluating multivariate ( N   >  2) dependence, where it has 
been assumed that the random variables follow normal or lognormal distribu-
tion, which is not always the case for hydraulic variables. Furthermore, in 
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network evaluation and design, most of the entropy theory-based analyses have 
been restricted up to the bivariate level. A major reason is the diffi culty of esti-
mating multivariate probability distributions and the limited availability of data. 
However, often there is a need to evaluate the total amount of information or 
uncertainty duplicated by several stations under consideration.  

  14.2.6     Discrete Variable Merging 

 Multivariate joint entropy and total correlation can be computed at any dimen-
sion with the aid of categorical variable merging. The basic idea for variable 
merging lies in creating a new variable  X , such that the information retained by 
it is equal to that retained by the original variables, say  X  1 ,  X  2 , …,  X n  . As an 
example, consider merging two categorical variables:  X  1   =  [1, 2, 1, 2, 1, 3, 3]  T   and 
 X  2   =  [1, 2, 2, 2, 1, 3, 2]  T  . Then the new variable  X  can be obtained by pairwise 
welding the corresponding digits together (Alfonso et al.  2010a, b ), i.e.,  X   =  [11, 
22, 12, 22, 11, 33, 32]  T  . It can be verifi ed that the information amount keeps invari-
ant before and after merging, i.e., the information content of  X  1  and  X  2  together 
is the same as that of  X . The direct welding approach, however, has a serious 
defect that may cause it to “run out of memory” as the number of variables to 
be merged increases, especially when the sample size is large. An effi cient alter-
native to the direct welding approach, which avoids this problem, is generalized 
in the following steps.

   1.      Create a new sample  X  from  X  1  and  X  2  by the direct welding approach.  
  2.      Pick out the unique values in  X  and rank them in ascending order, result-

ing in another ranked sample  X r  , whose length is  l .  
  3.      Access the location index of each element of  X  in the ranked sample  X r  .  
  4.      Assign a new label to each element of  X  as the number obtained by sub-

tracting its location index from  l  then adding 1.    

 After applying the variable merging procedure, each element in the new 
merged sample is relabeled by an integer ranging from 1 to  l . Remember that 
the merging approach is only suitable for categorical variables rather than the 
continuous type. That is why the histogram method or the mathematical fl oor 
function is used to discretize the continuous hydrologic time series data. In 
Example  14.6 , we illustrate the step-by-step procedure for discrete variable 
merging using the aforementioned algorithm. 

  Example 14.6          Considering the two records of monthly precipitation presented in 
Table  14-12 , create a merged series such that entropy of the merged series is equal 
to the joint entropy of the original two series.   

  Solution     For ease of understanding the step-by-step procedure of discrete vari-
able merging, we start with the original continuous time series by discretizing 
them using the histogram-based method. By dividing the observations into fi ve 
equal-sized intervals, discretization of the continuous precipitation sequence can 
be explicitly illustrated by Fig.  14-7 . Using the way illustrated in Fig.  14-7 , the 
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Year 1 2 3 4 5 6 7 8 9 10 11 12

 Station 1 

2006 0.17 0.09 0.81 0.25 0.91 0.47 0.5 0.31 5.17 0.67 0.02 1.02

2007 3.8 0.05 2.95 0.92 5.33 4.55 3.19 1.11 2.53 0.34 0.3 0.21

2008 0.45 0.05 0.56 0.15 1.63 0.09 0.09 4.77 0.99 0.61 0.07 0.2

2009 0.07 0.05 0.96 0.1 1.76 0.23 0.02 0.47 2.79 2.84 1.34 0.94

2010 2.23 1.83 0.74 0.01 2.39 1.92 0.83 0.22 3.54 0.03 0.38 0.15

 Station 2 

2006 0.08 0.26 0.2 0.02 4.51 0.09 2.22 0.01 2.52 0.68 0.01 1.64

2007 2.98 0.32 2.58 0.73 4.38 1.77 11.11 0.18 4.02 0.24 0.7 0.77

2008 0.24 0.05 0.55 3.19 3.43 0.31 3.97 10.35 3.32 1.02 0 0.35

2009 0.04 0.07 0.09 0.34 1.74 0 0.42 0.68 1.8 0.26 0.52 0.71

2010 4.98 3.63 0.65 2.74 0.41 0.01 3.08 0.26 5.62 0.06 0.01 0.08

 Table 14-12      Monthly precipitation (in inches) of two stations in Texas.  

  Figure 14-7      Illustration for continuous data discretization of the precipitation time 
series of station 1.    

continuous precipitation time series for the two stations can be discretized and 
labeled, as tabulated in Table  14-13 . 

   The fi rst step of variable merging is to put all the corresponding digits of the 
two discretized series together. The merged series thus obtained is shown in 
Table  14-14 . Then, pick out the unique values in the merged series and sort them 
in ascending order. Thus, one has Table  14-15 . 

   The next step is to access the location index of each element of the direct 
merged series in the sorted unique value sequence and assign the location index 
as the new label for the corresponding element in the direct merged series. For 
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Year 1 2 3 4 5 6 7 8 9 10 11 12

 Station 1 

2006 1 1 1 1 1 1 1 1 5 1 1 1

2007 4 1 3 1 5 5 3 2 3 1 1 1

2008 1 1 1 1 2 1 1 5 1 1 1 1

2009 1 1 1 1 2 1 1 1 3 3 2 1

2010 3 2 1 1 3 2 1 1 4 1 1 1

 1 : 0  ∼  1.064;  2 : 1.065  ∼  2.128;  3 : 2.129  ∼  3.192;  4 : 3.193  ∼  4.256;  5 : 4.257  ∼  5.320

 Station 2 

2006 1 1 1 1 3 1 1 1 2 1 1 1

2007 2 1 2 1 2 1 5 1 2 1 1 1

2008 1 1 1 2 2 1 2 5 2 1 1 1

2009 1 1 1 1 1 1 1 1 1 1 1 1

2010 3 2 1 2 1 1 2 1 3 1 1 1

 1 : 0  ∼  2.222;  2 : 2.223  ∼  4.444;  3 : 4.445  ∼  6.666;  4 : 6.667  ∼  8.888;  5 : 8.889  ∼  11.110

 Table 14-13      Discretized precipitation sequence.  

Station 1  +  station 2

Month 1 2 3 4 5 6 7 8 9 10 11 12

2006 11 11 11 11 13 11 11 11 52 11 11 11

2007 42 11 32 11 52 51 35 21 32 11 11 11

2008 11 11 11 12 22 11 12 55 12 11 11 11

2009 11 11 11 11 21 11 11 11 31 31 21 11

2010 33 22 11 12 31 21 12 11 43 11 11 11

 Table 14-14      Directly welded sequence.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14

11 12 13 21 22 31 32 33 35 42 43 51 52 55

 Table 14-15      Sorted unique value sequence.  
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Station 1  +  station 2

Month 1 2 3 4 5 6 7 8 9 10 11 12

2006 1 1 1 1 3 1 1 1 13 1 1 1

2007 10 1 7 1 13 12 9 4 7 1 1 1

2008 1 1 1 2 5 1 2 14 2 1 1 1

2009 1 1 1 1 4 1 1 1 6 6 4 1

2010 8 5 1 2 6 4 2 1 11 1 1 1

 Table 14-16      Final merged sequence.  

Counts

Label  1  2  3  4  5  6  7 

35 5 1 4 2 3 2

Label  8  9  10  11  12  13  14 

1 1 1 1 1 2 1

Frequency

Label  1  2  3  4  5  6  7 

0.5833 0.0833 0.0167 0.0667 0.0333 0.0500 0.0333

Label  8  9  10  11  12  13  14 

0.0167 0.0167 0.0167 0.0167 0.0167 0.0333 0.0167

 Table 14-17      Contingency table for the merged sequence.  

example, the fi rst element of the direct merged sample is 21, in the sorted unique 
value sequence the location index of 21 is 6, then 6 is the new label for the fi rst 
element of the direct merged sample. In this manner, the new merged series is 
shown in Table  14-16 . 

  Then the marginal contingency table for the merged series can be summarized 
as shown in Table  14-17 . From Table  14-17 , the marginal entropy of the merged 
series can be computed as

   

H X1 2 2 2 20 5833 0 5833 0 0833 0 0833 0 0167 0 016: . log . . log . . log .( ) = − − − 77
0 0167 0 0167 0 0167 0 0167

0 0333 0 0333 0
2 2

2

− − −
− −
… . log . . log .

. log . .00167 0 0167
2 4087

2log .
.= bits

       

 Conversely, from Table  14-13 , one can also summarize the joint contingency table 
for station 1 and station 2. The results are presented in Table  14-18 . 
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Counts Table

Station 2

Station 1 0 ∼ 2.222 2.223 ∼ 4.444 4.445 ∼ 6.666 6.665 ∼ 8.888 8.889 ∼ 11.110 Sum

0 ∼ 1.064 35 5 1 0 0 41

1.065 ∼ 2.128 4 2 0 0 0 6

2.129 ∼ 3.192 3 2 1 0 1 7

3.193 ∼ 4.256 0 1 1 0 0 2

4.257 ∼ 5.320 1 2 0 0 1 4

Sum 43 12 3 0 2 120

Frequency Table

Station 2

Station 1 0 ∼ 2.222 2.223 ∼ 4.444 4.445 ∼ 6.666 6.665 ∼ 8.888 8.889 ∼ 11.110 Sum

0 ∼ 1.064 0.583 0.083 0.017 0.000 0.000 0.683

1.065 ∼ 2.128 0.067 0.033 0.000 0.000 0.000 0.100

2.129 ∼ 3.192 0.050 0.033 0.017 0.000 0.017 0.117

3.193 ∼ 4.256 0.000 0.017 0.017 0.000 0.000 0.033

4.257 ∼ 5.320 0.017 0.033 0.000 0.000 0.017 0.067

Sum 0.717 0.200 0.050 0.000 0.033 1.0

 Table 14-18      Joint contingency table for the two stations.  

  Then the joint entropy between the two stations can be computed directly from 
Table  14-17  as

  

H X X1 2 2 2 20 583 0 583 0 083 0 083 0 017 0 017
0

, . log . . log . . log .( ) = − − −
− −… .. log .
.

017 0 017
2 4087

2

= bits
       

 Obviously, one can see that the information content retained by the two stations 
remains invariant before and after variable merging. 

 The variable merging approach satisfi es the laws of association and commu-
tation in terms of information content. Taking the merging of three variables as 
an example, according to the law of association and commutation, the following 
equalities are satisfi ed:

  

H X X X H X X X

H X X X

H X X X

< >( ) = << > >( )
= < < >>( )
= < >(

1 2 3 1 2 3

1 2 3

1 3 2

, , , ,

, ,

, , ))
      (14.19)  

where angle brackets denote the merging operation for the convenience of indi-
cating the merging sequence.  
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   Example 14.7          Assuming that  X  1   =  [1, 2, 1, 2, 1, 3, 3]  T  ,  X  2   =  [1, 2, 2, 2, 1, 3, 2]  T  , and 
 X  3   =  [1, 1, 2, 2, 1, 3, 3]  T  , verify that the variable merging approach satisfi es the law 
of association and commutation.  

  Solution     To verify the law of association and commuatation, equation  (14.19)  
just needs to be verifi ed. Using the variable merging procedure, as demonstrated 
in Example  14.6 , fi rst we merge  X  1  and  X  2  as follows:

 X  1 1 2 1 2 1 3 3

 <   ⋅   > 

 X  2 1 2 2 2 1 3 2

 = 

 X  12 5 3 4 3 5 1 2

 Then we merge the new variable  X  12  with the third variable, as shown in the 
following: 

 X  12 5 3 4 3 5 1 2

 <   ⋅   > 

 X  3 1 1 2 2 1 3 3

 = 

 X  123 1 4 2 3 1 6 5

 In the same way, one can obtain

  X T
231 1 2 4 3 1 6 5= [ ], , , , , ,    

    X T
132 1 3 2 4 1 5 6= [ ], , , , , ,        

 Using the defi nition of marginal entropy, it is easy to get

  H X H T
123 1 4 2 3 1 6 5 2 522( ) = [ ]( ) =, , , , , , . bits    

    H X H T
231 1 2 4 3 1 6 5 2 522( ) = [ ]( ) =, , , , , , . bits    

    H X H T
132 1 3 2 4 1 5 6 2 522( ) = [ ]( ) =, , , , , , . bits        

 In terms of variable merging, the multivariate joint entropy,  H ( X  1 ,  X  2 , …, X n  ), 
can be computed by sequentially applying algorithm 1, i.e.,

  

H X X X H X X X X

H X X X X

H

n n

n

1 2 1 2 3

1 2 3

, , , , , , ,

, , , ,

… …

…

…

( ) = < >( )
= << > >( )
= < <<< > > >( )

= < < << > > > >( )

−

−

X X X X X

H X X X X X

n n

n n

1 2 3 1

1 2 3 1

, , , ,

, , , , ,

…
……

… … …

      (14.20)   
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 Therefore, the estimation of multivariate probability distribution can be success-
fully bypassed. The total correlation can also be computed by the aid of its group-
ing property (equation  [14.18] ) and the variable merging method.  

   Example 14.8          For the fi ve water-level monitoring stations considered in Exam-
ple  14.3 , compute the total correlation.  

  Solution     Here  N   =  5. Using equation  (14.18) , the total correlation can be decom-
posed as

  C X X X X X C X X C X X C X X C X X1 2 3 4 5 1 2 1 2 3 1 3 4 1 4 5, , , , , , , ,: : :( ) = ( ) + ( ) + ( ) + ( ))        

 From Example  14.5 , we have

  C X X T X X1 2 1 2 1 9208, , .( ) = ( ) = bits        

 To compute  C ( X  1:2  ,   X  3 ), fi rst a new variable  X  1:2  needs to be created such that 
 H ( X  1:2 )  =   H ( X  1,   X  2  ) . For illustrative purposes, only the fi rst 10 records of gauge 
1 ( X  1 ) and gauge 2 ( X  2 ) are considered, i.e.,  [ , ]X Xp p

1 2    , as an example. Part of the 
original record is repeated in Table  14-19 . A series of new records can be created 
by merging  X  1  and  X  2  together, as shown in Table  14-20 . 

   It is easy to verify that  H X H X Xp p p( ) ,:1 2 1 2= ( )     as follows. First, the marginal 
entropy of the new variable  Xp

1 2:     is computed. Its contingency table is shown as 
Table  14-21 . Therefore,

   H X p pp
i i

i

( ) log log . .:1 2 2
1

10

2 0 1 3 3219= − ( ) = − ( ) =
=
∑     

 Xp
1
    75 80 80 85 85 90 90 95 95 100

 X
p
2    85 85 90 95 100 105 110 110 115 115

   Note:   The superscript denotes that the data are only a portion of the original data set.   

 Table 14-19      The fi rst 10 records of gauges 1 and 2.  

 
Xp

1 2:    
7585 8085 8090 8595 85100 90105 90110 95110 95115 100115

 Table 14-20      Creation of a new record.  

Events 7585 8085 8090 8595 85100 90105 90110 95110 95115 100115

Counts 1 1 1 1 1 1 1 1 1 1

Probability 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

 Table 14-21      Contingency table.  

c14.indd   603c14.indd   603 5/21/2014   11:16:53 AM5/21/2014   11:16:53 AM



604 Entropy Theory in Hydraulic Engineering

 The two-dimensional contingency table for  [ , ]X Xp p
1 2     can be calculated as shown 

in Table  14-22 . The joint probability distribution is given as Table  14-23 . Then the 
joint entropy of  [ , ]X Xp p

1 2     is calculated in bits as

    

H X X p pp p
ij ij

ji

( , ) log

. log . . log

1 2 2
1

10

1

10

2 20 1 0 1 0 1

= − ( )

= − ( ) −
==
∑∑

00 1
3 3219

. ..
.

−
=

…
bits

       

 This result verifi es that the merging of variables is justifi ed. 
 By following this procedure, we see that the new variable can be sequentially 

created. Then, using the defi nition of bivariate transinformation, the components 
of the total correlation are

  C X X1 2 3 2 6579: , .( ) =    

    C X X1 3 4 0 1161: , .( ) =    

    C X X1 4 5 2 5574: , .( ) =        

 Xp
1    

 X p
2    

85 90 95 100 105 110 115 Sum

75 1 0 0 0 0 0 0 1

80 1 1 0 0 0 0 0 2

85 0 0 1 1 0 0 0 2

90 0 0 0 0 1 1 0 2

95 0 0 0 0 0 1 1 2

100 0 0 0 0 0 0 1 1

Sum 2 1 1 1 1 2 2 10

 Table 14-22      Two-dimensional contingency table.  

 X p
1    

 X p
2    

85 90 95 100 105 110 115 Sum

75 0.1 0 0 0 0 0 0 0.1

80 0.1 0.1 0 0 0 0 0 0.2

85 0 0 0.1 0.1 0 0 0 0.2

90 0 0 0 0 0.1 0.1 0 0.2

95 0 0 0 0 0 0.1 0.1 0.2

100 0 0 0 0 0 0 0.1 0.1

Sum 0.2 0.1 0.1 0.1 0.1 0.2 0.2 1.0

 Table 14-23      Joint probability distribution.  
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 Therefore, the fi nal result for the total correlation is

  
C X X X X X C X X C X X C X X C X X1 2 3 4 5 1 2 1 2 3 1 3 4 1 4 5, , , , , , , ,: : :( ) = ( ) + ( ) + ( ) + ( ))

= + + +
=

1 9208 2 6579 0 1161 2 5574
7 2522
. . . .
. bits

       

    Example 14.9          For the fi ve water-level monitoring stations considered in Exam-
ple  14.3 , compute the joint entropy.  

  Solution     By sequentially applying the variable merging method, we can con-
struct the merged variable  X  1:5 . Then the joint entropy of the fi ve monitoring 
gauges can be computed from the defi nition of marginal entropy. For economy 
of space, only the fi nal result is given

  H X X X X X H X( , , , , ) .:1 2 3 4 5 1 5 4 8200= ( ) = bits        

 Conversely, the total correlation can also be computed by the shortcut formula as 
given in equation  (14.16) . First the marginal entropy for each of the fi ve gauges 
can be computed, as listed in the following. 

Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

2.6579 3.0235 2.6579 0.1687 3.5642

 From Example  14.8 , the total correlation has already been computed.

  C X X X X X1 2 3 4 5 7 2522, , , , .( ) = bits        

 Then, by applying equation  (14.16) , we see that the joint entropy is

  
H X X X H X C X X Xi

i

( , , , ) ( ) ( , , , )

. . .

1 2 5
1

5

1 2 5

2 6579 3 0235 2 657

… …= −

= + +
=
∑

99 0 1687 3 5642 7 2522
4 8200

+ + −
=

. . .
. bits

       

 Clearly, no matter which method is used, the fi nal results for multivariate joint 
entropy are the same.  

   Example 14.10          For the fi ve water-level monitoring stations considered in Exam-
ple  14.3 , compute the interaction of the fi rst three monitoring gauges.  

  Solution     According to equation  (14.14) , to compute the interaction of the mar-
ginal entropies, the joint entropy for each pair of gauges and the trivariate joint 
entropy of the three monitoring gauges need to be computed. From Example  14.9  
we have

  H( ) .gauge bits1 2 6579=    
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    H( ) .gauge bits2 3 0235=    

    H( ) .gauge bits3 2 6579=        

 By using Example  14.3 , we can compute the joint entropy for each pair of gauges, 
and the results are

  H( , ) .gauge gauge bits1 2 3 7606=    

    H( , ) .gauge gauge bits2 3 3 7606=    

    H( , ) .gauge gauge bits1 3 2 6579=        

 By using Example  14.9 , we can compute the trivariate joint entropy, and the re-
sult is

  H( , , ) .gauge gauge gauge bits1 2 3 3 7606=        

 By applying equation  (14.14) , we see that the interaction is computed as

 

I H H H

H

( ; ; ) ( ) ( ) ( )gauge gauge gauge gauge gauge gauge

gau

1 2 3 1 2 3= + +
− gge gauge gauge gauge

gauge gauge gauge ga

1 2 2 3

1 3 1

, ,

, ,

( ) − ( )
− ( ) +

H

H H uuge gauge2 3
2 6579 3 0235 2 6579 3 7606

3 7606 2 6579 3

,
. . . .

. .

( )
= + + −

− − + ..
.

7606
1 9208= bits

       

   With the aid of variable merging, one can defi ne the multivariate transinforma-
tion between single and grouped variables, and between two grouped variables. 
The fi rst type of multivariate transinformation, denoted as  T ( X  1:   n  ;  X ), measures 
the information amount of a single variable that can be inferred from that of 
variables in the group, and vice versa. Transinformation between grouped vari-
ables,  T X Xn m1 1: :; ′( )    , measures the common information shared by the two 
grouped variables. The aforementioned two types of multivariate transinforma-
tion can be easily computed by fi rst merging variables in the group and then 
applying the defi nition of bivariate transinformation. 

 An intuitive explanation about the probabilistic rationality for discrete vari-
able merging is given in this section through a simple random experiment. 
Assume that there are two nontransparent boxes, each of which contains three 
balls of different colors (red, green, and blue). All attributes of the balls are the 
same except for their colors, which means that they are equally likely to be drawn 
from the box. One can think of the following random experiment in which one 
sequentially draws three balls with replacement from the fi rst box. The resulting 
random sample is denoted as  X   =  {Red, Blue, Blue}. Then repeat the procedure 
again to obtain another random sample from the second box, denoted as  

c14.indd   606c14.indd   606 5/21/2014   11:16:54 AM5/21/2014   11:16:54 AM



Water-Level Monitoring Networks 607

Y   =  {Green, Red, Green}. We are interested in the uncertainty of this random 
experiment. 

 Results of this experiment can be described in two different ways. First, they 
can be described in an analogous way as that in which the random experiment 
is carried out, i.e., the joint outcomes of two individual samples. The joint out-
comes can be fully represented by a two-dimensional contingency table (Table 
 14-24 A). Then the uncertainty measured by the joint entropy of the two random 
trials can be computed through equation  (14.7)  from the contingency table. 

  Second the experiment can also be represented by a single welding sample 
as  XY   =  {Red–Green, Blue–Red, Blue–Green}. This method is like carrying out 
the random sampling in the following manner: First draw a ball from the fi rst 
box and then draw another ball from the second box, resulting in a random event 
denoted as Red–Green; then repeat the same procedure, resulting in another 
event denoted as Blue–Red; fi nally the third trial can be done, leading to an event 
of Blue–Green. Similarly, the welding sample is fully described by a one-
dimensional contingency table (Table  14-24 B). The uncertainty of the welding 
sample can be computed from equation  (14.1) . 

 Obviously, the two-dimensional and one-dimensional contingency tables are 
different representations of the same random experiment, whose uncertainty is 
invariant no matter which way is used to describe the experimental outcomes. 
This conclusion can also be verifi ed by numerical results of joint entropy and 
marginal entropy corresponding to the different representations. One require-
ment of the variable merging approach is that the two samples must have the 
same length, which is a small limitation.  

  14.2.7     Directional Information Transfer Index 

 Although transinformation indicates the dependence of two variables, it is not 
a good index of dependence because its upper bound varies from site to site (it 

Y

 A: Two-dimensional 

 X  Red  Green  Blue 

Red 0 1 0

Green 0 0 0

Blue 1 1 0

 B: One-dimensional 

 Red–Green  Blue–Red  Blue–Green 

 XY 1 1 1

 Table 14-24      Two-dimensional (A) and one-dimensional (B) contingency tables 
(counts) for the two different representations of the same random experiment.  
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varies from 0 to marginal entropy  H ). Therefore, the original defi nition of  T  can 
be normalized by dividing by the marginal entropy. Yang and Burn ( 1994 ) nor-
malized  T  as

  
T
H

DIT
H H

H
H

H
= = − = −( )Lost Lost1       (14.21)  

where  H  Lost  is the amount of information lost. The ratio of  T  by  H  is called the 
directional information transfer (DIT) index. Mogheir and Singh ( 2002 ) called it 
the information transfer index (ITI). The physical meaning of DIT is the fraction 
of information transferred from one site to another. DIT varies from zero to unity 
when  T  varies from zero to  H . The zero value of DIT corresponds to the case 
where sites are independent and therefore no information is transmitted. A value 
of unity for DIT corresponds to the case where sites are fully dependent and no 
information is lost. Any other value of DIT between zero and one corresponds 
to a case between fully dependent and fully independent. 

 DIT is not symmetrical, as DIT  XY    =   T / H ( X ) is not in general equal to DIT  YX   
 =   T / H ( Y ). DIT  XY   describes the fractional information inferred by station  Y  about 
station  X , whereas DIT  YX   describes the fractional information inferred by station 
 X  about station  Y . Between two stations, the station with the higher DIT should 
be given higher priority because of its higher capability of inferring (predicting) 
the information at other sites. 

 DIT can be applied to the regionalization of the network. If both DIT  XY   and 
DIT  YX   are high, the two related stations can be arranged in the same group, 
because they are strongly dependent and information can be mutually trans-
ferred between them. If neither of the DIT values is high, they should be kept 
in separate groups. If DIT  XY   is high, station  Y , whose information can be pre-
dicted by  X , can join station  X  if station  Y  does not belong to another group; 
otherwise, it stays in its own group. The predictor station  X  cannot join station 
 Y  ’ s group, because if it were discontinued, the information at that site would 
be lost. 

 DIT can be both a measure of information transmission capability and an 
indicator of the dependency of a station. This phenomenon is an indicator of the 
information connection. In the station selection process, a predicted station 
should be removed fi rst, because it recovers information effi ciently but does not 
predict it effi ciently. When all remaining stations in the group have strong mutual 
connections with each other (i.e., both DIT  XY   and DIT  YX   are high), they can be 
further selected based on a criterion, designated as SDIT  i  , defi ned as

  SDIT DITi ij
j j i

m

=
= ≠
∑
1,

      (14.22)  

where DIT  ij   is the information inferred by station  i  about station  j , and  m   =  the 
number of stations in the group. The station in each group with the highest value 
of  S DIT, in comparison with members in the group, should be retained in the 
network. 
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 To be able to use transinformation and DIT, the probability density function 
of the variable being sampled must be determined. To that end, a nonparametric 
estimation method can be used. Nonparametric estimation does not describe a 
probability density function by a formula and parameters but rather by a set of 
point values everywhere in the domain. If the values of the density function are 
known everywhere, then the function is known numerically. This method of 
describing the density function is known as the nonparametric method, using a 
kernel estimator (Parzen  1962 ). For a multidimensional case where  X   =   X ( x  1 ,  x  2 , 
…,  x N  ), Cacoullos ( 1966 ) presents the kernel estimator in which components of 
 X :{ X  1 ,  X  2 , …,  X p  }could be mutually dependent or independent, but observations 
of each component are still assumed to be independent and identically 
distributed. 

 According to Adamowski ( 1989 ), the choice of a kernel is not crucial for the 
estimation. However, the selection of parameter  h  in the estimation method is 
crucial, because it affects both the bias and the mean square error of the estima-
tor. Some common forms of kernels are presented by Parzen ( 1962 ) and Wertz 
( 1979 ). In practice, hydrologic variables are nonnegative. Therefore, the original 
variables are logarithmically transformed and a Gaussian kernel is chosen to 
form the estimator. 

  Example 14.11          Compute the DIT using data from fi ve stations considered in Ex-
ample  14.3 .  

  Solution     The marginal information and transinformation are computed in Ex-
amples 14.9 and 14.5, respectively. The marginal entropies,  H ( X ), are

Gauge 1 Gauge 2 Gauge 3 Gage 4 Gage 5

 H ( X ) 2.6579 3.0235 2.6579 0.1687 3.5642

 The bivariate transinformation values are given in Table  14-25 . For example,

   DIT
T

H
gauge gauge

gauge gauge
gauge

1 2
1 2

2
1 9208
3 0235

0→ = = =
( , )

( )
.
.

.66353    

Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

Gauge 1 2.6579 1.9208 2.6579 0.0234 1.8371

Gauge 2 1.9208 3.0235 1.9208 0.0336 2.1469

Gauge 3 2.6579 1.9208 2.6579 0.0234 1.8371

Gauge 4 0.0234 0.0336 0.0234 0.1687 0.0764

Gauge 5 1.8371 2.1469 1.8371 0.0764 3.5642

 Table 14-25      Bivariate transinformation.  
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Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

Gauge 1 1.0000 0.6353 1.0000 0.1387 0.5154

Gauge 2 0.7227 1.0000 0.7227 0.1992 0.6024

Gauge 3 1.0000 0.6353 1.0000 0.1387 0.5154

Gauge 4 0.0088 0.0111 0.0088 1.0000 0.0214

Gauge 5 0.6912 0.7101 0.6912 0.4529 1.0000

 Table 14-26      DIT values.  

    DIT
T

H
gauge gauge

gauge gauge
gauge

2 1
1 2

1
1 9208
2 6579

0→ = = =
( , )

( )
.
.

.77227        

 Similarly, the DIT matrix is constituted as Table  14-26 .      

  14.3     Method of Application 

 Consider the problem of locating water-level gauges in a canal network. Data on 
time series of water level and discharge are needed. These data can be generated 
at a dense set of points using a hydrodynamic model, where each point is a 
potential monitoring site. The objective then is to determine the set of points that 
collectively yield the highest information content or prediction skill while they 
are most independent of one another. 

  14.3.1     The WMP Approach 

 Water-level monitoring in polders (WMP) design method is an adapted version 
of the method proposed by Krstanovic and Singh ( 1992a, b ). According to Alfonso 
et al. ( 2010 ), this approach can be accomplished as follows:

   1.      Using a hydrodynamic model, generate a water-level time series for 
each calculation point,  s i  ,  i   =  1, 2, …,  N , where  N   =  number of calculation 
points.  

  2.      Using the mathematical fl oor function as given in equation  (14.6) , convert 
the continuous water level, say  X , to a quantized value  x q  , which is 
rounded to the nearest multiple of  a .  

  3.      Compute the marginal entropy  H (  Xi  ) at each point  s i  , using equation 
 (14.1) .  

  4.      For each point  s i  , compute transinformation using equation  (14.12a)  or 
 (14.12b)  with respect to each of the remaining points. In this manner, 
construct a symmetric transinformation matrix like this:
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  T

T X X T X X T X X

T X X T X X T X X
N

N
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( , ) ( , ) . . . ( , )
( , ) ( , ) . . . ( , )

. .

1 1 1 2 1

2 1 2 2 2

.. . . .
. . . . . .
. . . . . .

( , ) ( , ) . . . ( , )T X X T X X T X XN N N N1 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥

       

   5.      Identify the central station that has the largest value of  H ( X i  ) or informa-
tion, i.e., max[ H ( X i  )], and designate it as  s  1 .  

  6.      Obtain the transinformation vector  V  1  corresponding to point  s  1 .  
  7.      Select a small value of transinformation threshold  ε  such that when two 

sites have a transinformation value less than or equal to this value, the 
sites can be considered independent.  

  8.      Inspect the elements of  V  1  and, using the selected value of  ε , determine 
the set of points that are independent of  s  1 , i.e.,  T ( X  1 ,  X i  )  <   ε  .   

  9.      Within the set of independent points or sites, determine the point with 
the highest information content  V  2   =  max[ H ( X i   ε  S  ind   1 )].  

  10.      Obtain the transinformation vector  V  2  of point  s  2 .  
  11.      Sum the two vectors  V  1  and  V  2  as  V  3   =   V  1   +   V  2 .  
  12.      Rename  V  3  as  V  1  and repeat steps 8 onward until a maximum number 

of points is determined or until the remaining points do not contribute a 
signifi cant amount of information.    

 Matrix  T  can be replaced by DIT  XY   and DIT  YX   when the DIT-based criteria 
are adopted. The main point in this method is that each new selected point leads 
to the maximum reduction in uncertainty. 

  Example 14.12          Consider a network of water-level monitoring stations as shown 
in Fig.  14-6 . Evaluate this water-level monitoring network using WMP.  

  Solution      Step 1: Continuous data quantization:  Water-level data in Table  14-34  in 
Appendix 14.1 are quantized data. Therefore, they can be directly used for fur-
ther calculation. 

  Step 2: Marginal entropy computation:  As in Example  14.9 , the marginal entropy 
is computed and is as follows: 

Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

 H ( x ) 2.6579 3.0235 2.6579 0.1687 3.5642

  Step 3: Transinformation matrix calculation:  Following the procedure in Exam-
ple  14.5 , the transinformation matrix between gauges can be obtained, as shown 
in Table  14-27 . 

   Step 4: Central station identifi cation:  From the results obtained in step 1, it can 
be seen that gauge 5 has the highest marginal entropy among others. So gauge 
5 is identifi ed as the central station, i.e.,  s  1   =  gauge 5. 
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Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

Gauge 1 2.6579 1.9208 2.6579 0.0234 1.8371

Gauge 2 1.9208 3.0235 1.9208 0.0336 2.1469

Gauge 3 2.6579 1.9208 2.6579 0.0234 1.8371

Gauge 4 0.0234 0.0336 0.0234 0.1687 0.0764

Gauge 5 1.8371 2.1469 1.8371 0.0764 3.5642

 Table 14-27      Bivariate transinformation.  

  Step 5: Obtain the transinformation vector of gauge 5:  The transinformation vec-
tor corresponding to gauge 5 is  V  1   =  [1.8371 2.1469 1.8371 0.0764 3.5642]. 

  Step 6:   Determination of independent gauges:  Determine the independent gaug-
es remaining in the candidate set. 

Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

Gauge 5 1.8371 2.1469 1.8371 0.0764 3.5642

 Assume that  ε   =  3.0. Then, gauges 1, 2, 3, and 4 as shown in this table are in-
dependent of gauge 5. 

  Step 7:  Select the next independent gauge with the highest information. 
Among these independent gauges, gauge 2 has the highest marginal entropy, 
2.1469 bits. Therefore,  s  2   =  gauge 2. 

  Step 8:  Obtain transinformation vectors in the selected sets and add them to-
gether. The transinformation vector associated with gauge 2 is  V  2   =  [1.9208 3.0235 
1.9208 0.0336 2.1469]. Then, add the transinformation vectors together:  

Gauge 1 Gauge 2 * Gauge 3 Gauge 4 Gauge 5 * 

Gauge 5 1.8371 2.1469 1.8371 0.0764 3.5642

 + 

Gauge 1 Gauge 2 * Gauge 3 Gauge 4 Gauge 5 * 

Gauge 2 1.9208 3.0235 1.9802 0.0336 2.1469

 = 

Gauge 1 Gauge 2 * Gauge 3 Gauge 4 Gauge 5 * 

Gauge 2  +  5 3.7579 5.1704 3.8173 0.1100 5.7111

   Note:       *   denotes already selected gauges.   

 So  V  3   =  [3.7579 5.1704 3.8173 0.1100 5.7111] 
  Step 9:  Determine independent gauges remaining in the candidate set. At 

this time, only gauges 1, 3, and 4 remain in the candidate set. Since  ε   =  3.0, only 
gauge 4 is found independent, as shown in the previous table. Therefore, gauge 
4 is added to the selected set. Because only one gauge satisfi es the independence 
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requirement, it is not necessary to determine which one in the independent set 
retains the most information. 

  Step 10:  Obtain transinformation vectors in the selected sets and add them 
together:  

Gauge 1 Gauge 2 * Gauge 3 Gauge 4 Gauge 5 * 

Gauge 2  +  5 3.7579 5.1704 3.8173 0.1100 5.7111

 + 

Gauge 1 Gauge 2 * Gauge 3 Gauge 4 * Gauge 5 * 

Gauge 4 0.0234 0.0336 0.0234 0.1687 0.0764

 = 

Gauge 1 Gauge 2 * Gauge 3 Gauge 4 * Gauge 5 * 

Gauge 2  +  5  +  4 3.7813 5.2040 3.8407 0.2787 5.7875

   Note:       *   denotes already selected gauges.   

  Step 11:  Determine the independent gauges remaining in the candidate set. 
 At this time, only gauge 1 and gauge 2 are left in the candidate set. As 

 ε   =  3.0, there is no gauge in the candidate set satisfying the independence require-
ment. Thus, gauges 5, 2, and 4 are selected sequentially for monitoring the 
water level.    

  14.3.2     MIMR-Based Approach 

 The idea of maximum information minimum redundancy (MIMR) criterion for 
hydrometric network evaluation and design lies in selecting (or ranking) stations 
from a candidate set, through which the selected stations can maximize the 
overall information amount, maximize the prediction ability, and minimize the 
redundant information. 

 Let there be  N  potential candidate hydrometric stations of interest,  X  1 ,  X  2 ,  X  3 , 
…,  X N  . It is assumed that for each candidate station there are several years of 
records about the hydrometric variable, such as water level, sediment concentra-
tion, and scour. Let  S  denote the set of hydrometric stations already selected for 
the network, and its elements are denoted by  X X X XS S S Sk1 2 3, , , ,�    , where  S i   can 
be 1, 2, …,  N,  or only some of them. Similarly, let  F  denote the set of candidate 
stations to be selected, and similarly its elements are denoted by 
 X X X XF F F Fm1 2 3, , , ,�    , where  F i   can be 1, 2, …,  N,  or only some of them. The sum-
mation of  k  and  m  is equal to  N , the total number of potential candidate stations. 
The amount of effective information retained by  S  can be modeled in terms of 
joint entropy and transinformation as

  H X X X T X XS S S S S F
i

m

k k i( , , , ) ( ; ):1 2 1
1

� +
=
∑       (14.23a)  
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where  XS Sk1:     denotes the merged time series of  X X X XS S S Sk1 2 3, , , ,�    such that 
its marginal entropy is the same as the multivariate joint entropy of 
 X X X XS S S Sk1 2 3, , , ,�    . In other words, the merged variable  XS Sk1:    contains the 
same amount of information as that retained by all of its individual members 
 X X X XS S S Sk1 2 3, , , ,�    . 

 The effective information contains two parts. The fi rst part is the joint entropy 
of the selected stations, measuring the total but not duplicated amount of infor-
mation that can be obtained from the selected stations. The second part is the 
summation of transinformation from the group of already selected stations to 
each station still remaining in the candidate set. When doing network design, 
one should keep in mind that the major function of a hydrometric network is to 
monitor the hydrometric variables of interest and to do the prediction. Therefore, 
the predictive ability of the network should not be neglected in the design. 
 T X XS S Fk i( , ):1    is a quantitative measure of the amount of information about the 
unselected station  XFi    , which can be inferred from the selected stations. In other 
words, it is a measure of the predictive ability of the selected stations. 

 Husain ( 1987 ) and Al-Zahrani and Husain ( 1998 ) considered the predictive 
ability of an optimal network. However, the effective information equation 
 (14.23a)  differs from the one they used in two respects. The fi rst respect is that 
the predictive ability of equation  (14.23a)  is measured while considering the 
selected stations as a whole group containing the same amount of information 
as that of all its elements rather than treating them separately. This predictive 
ability measure can successfully fi lter the duplicated information (redundancy) 
of the selected stations. Second, the multivariate joint entropy is used to quantify 
the total information rather than using the summation of marginal entropies in 
which the duplicated information is summed again and again. 

 Besides equation  (14.23a) , the effective information can also be expressed as

  H X X X T X XS S S S S F Fk k m( , , , ) ( ; ): :1 2 1 1� +       (14.23b)   

 It also contains two components: the total effective information part and the 
predictive ability part. In this equation, the unselected stations are also treated 
as a whole group. Transinformation  T X XS S F Fk m( , ): :1 1    is the amount of information 
about the unselected group that can be inferred from the selected group. 

 Another key point worthy of consideration in network design is the redun-
dant information among selected stations. Such redundancy means that the 
selected stations are not fully and effectively used since a lot of hydraulic infor-
mation collected from the network overlaps. In other words, some of the stations 
are not necessary and therefore the network is not an economically effective one. 
Even worse, the redundancy may deteriorate the predictive ability of the network 
even though the same amount of information can be obtained from a redundant 
network as that obtained from a less redundant one, considering that no redun-
dancy is impossible in real practice. 

 The total correlation of the selected stations can measure the redundancy 
among them, i.e.,  C X X XS S Sk( , , , )1 2 �    . The total correlation of already selected 
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stations measures the common information shared by any combination of these 
stations. Interaction information is sensitive to the newly added stations; in other 
words, it may change abruptly from positive to negative when a new station is 
added to the network. To understand this phenomenon, there may be a large 
amount of duplicated information between two stations; however, when adding 
a new station, these three stations may have no simultaneous common informa-
tion. In this sense, the total correlation is a more reliable measure of redundancy 
than interaction information. 

  14.3.2.1     Optimization 

 An informative hydrometric network should provide as much information as 
possible and at the same time constrain the redundant information as much as 
possible. This kind of maximum information and minimum redundancy network 
can be determined as

  
max : ( , , ) ( ; )

min : ( , , , )

:H X X X T X X

C X X X

S S S S S F
i

m

S S S

k k i

k

1 2 1

1 2

1

�

�

+
=
∑⎧⎧

⎨
⎪

⎩⎪
      (14.24a)  

or

  
max : ( , , ) ( ; )

min : ( , , ,

: :H X X X T X X

C X X X

S S S S S F Fm
i

m

S S

k k i1 2 1

1 2

1

�

�

+
=
∑

SSk )

⎧
⎨
⎪

⎩⎪
      (14.24b)   

 This set of maxims constitutes a multiobjective optimization problem, but it can 
be reduced to a single objective optimization problem by recalling that both the 
effective information part and the redundancy part have the same unit. The two 
objectives can be unifi ed as

  max : [ ( , , , ) ( ; )] ( , , ,:λ λ1
1

21 2 1 1 2H X X X T X X C X XS S S S S F
i

m

S Sk k i� �+ −
=
∑ XXSk )    

    (14.25a)  

or

  max : [ ( , , , ) ( ; )] ( , , ,: :λ λ1 21 2 1 1 1 2H X X X T X X C X X XS S S S S F F S S Sk k m� �+ − kk )    

    (14.25b)  

where  λ  1  and  λ  2 , whose summation is 1, are the information weight and redun-
dancy weight, respectively, since sometimes the decision maker needs a trade-off 
between the informativeness and redundancy of the hydrometric network. One 
can unify the information and redundancy objectives using a different strategy, 
such as

c14.indd   615c14.indd   615 5/21/2014   11:16:56 AM5/21/2014   11:16:56 AM



616 Entropy Theory in Hydraulic Engineering

  
max :

( , , , ) ( ; )

( , , , )

:H X X X T X X

C X X X

S S S S S F
i

m

S S S

k k i

k

1 2 1

1 2

11

�

�

+
=
∑

λ
      (14.26a)  

or

  max :
( , , , ) ( ; )

( , , , )
: :H X X X T X X

C X X X
S S S S S F F

S S S

k k m

k

1 2 1 1

1 2

�
�
+

λ
      (14.26b)  

where  λ  is the coeffi cient that makes trade-off between informativeness and 
redundancy of the network. Either of the two methods unifying informativeness 
and redundancy objectives can be adopted in the hydrometric network design.  

  14.3.2.2     Selection Procedure 

 Using the MIMR criterion, the selection procedure for a hydrometric network 
design entails the following steps:

   1.      Collect data of hydrometric variable of interest (such as precipitation or 
streamfl ow) at each candidate station.  

  2.      Discretize the continuous time series data by the mathematical fl oor func-
tion or by a histogram-based partition.  

  3.      Initialize the optimal set  S  as an empty set and the candidate set  F  as the 
one containing all candidate stations.  

  4.      Identify the central station as the one with maximum marginal entropy 
among all candidates.  

  5.      Update sets  S  and  F .  
  6.      Select the next optimal station from  F  by the MIMR criterion. In this step, 

all stations in the  F  set are scanned to search the one satisfying equation 
 (14.25a)  or equation  (14.25b) .  

  7.      Repeat steps 5 and 6 iteratively until the expected number of stations 
have been selected.    

 A pseudo code for this procedure is given in Table  14-28 . Convergence of the 
selection can be determined by the ratio of joint entropy of the selected stations 
to that of all the candidates. If the ratio is over a threshold, like 0.90, the selection 
procedure stops. If no threshold is provided, then all candidate stations are 
ranked in descending order of priority. 

  Other than the forward selection procedure, the optimal stations can also 
be determined in an opposite direction. For backward selection, the criterion 
should be changed to minimum information reduction and maximum redun-
dancy reduction, which is also based on the principle of MIMR. The reduced 
information and redundancy can be quantifi ed by the difference between the 
joint entropies and total correlations of stations before and after one is deleted, 
respectively. At the same time, we should guarantee that the information of the 
station to be deleted can be inferred from the remaining stations as much as 
possible. 

c14.indd   616c14.indd   616 5/21/2014   11:16:56 AM5/21/2014   11:16:56 AM



Water-Level Monitoring Networks 617

1.  F   ←  candidate set, including all 
candidate stations  
 S   ←  empty set

Initialize candidate set  F  and 
empty set  S .

2. Discretize the continuous time series.

3.  t Info  ←   H ( F )  ←  Equation  (14.9) Compute the total information of 
all the potential stations.

4. For  i   =  1: N   
 H ( X i  )  ←  Equation  (14.1)    
End

Compute the marginal entropy of 
each potential station.

5.
 X H Xi

X
i

i

argmax← ( )[ ]    
Select the fi rst central station.

6.  F   ←   F   −   X i    
 S   ←   S   +  X i  

Update  F  and  S  for the fi rst time.

7. For  i   =  2: N   
    m   ←  size ( F )  
    n   ←  size ( S )  
For  k   =  1: m   
    MIMRS XFk+      ←  Equation (14.25)  
End  

    XF
X

S Xk
Fk

Fk
= ( )+argmax MIMR      

    F F XFk← −      

    S S XFk← +      

End

Sequentially select stations 
from the updated candidate set 
according to the MIMR criterion.  
Update the candidate set and 
already selected set successively.

8. For  i   =  1 :  N   

    p H X X XS S SiInfo ← ( )1 2, , ,…      

    pct
p
t

←
Info
Info

     

If | pct   − threshold |  <  eps   

    S X X XS S Sifinal ← { , , , }1 2 …      

return  
End  
End

Determine the fi nal optimal 
station set  S fi nal   according to the 
information fraction of the 
selected set to the total 
information.

 Table 14-28      Pseudo code for the MIMR-based greedy selection algorithm.  
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  Example 14.13          Consider a network of water-level monitoring stations as shown 
in Fig.  14-6 . Rank the gauges using the MIMR criterion. Show each step as above 
with computations and results.  

  Solution      Step 1:   Continuous data quantization : As in Example  14.3 , water-level 
records in Table  14-34  in Appendix 14.1 are quantized data. They can be directly 
used for further calculation. 

  Step 2:   Candidate and selected set initialization : At the initial stage, the candidate 
set and selected set obviously are

  F = { , , , , }gauge gauge gauge gauge gauge1 2 3 4 5    

    S = {}, . ., .i e empty set        

  Step 3:   Central gauge identifi cation : The central gauge is identifi ed as the one 
with maximum marginal entropy. Following Example  14.9 , the marginal entropy 
for each candidate gauge is computed as follows:  

Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

 H ( x ) 2.6579 3.0235 2.6579 0.1687 3.5642

 Gauge 5 has the highest marginal entropy among stations, so gauge 5 is iden-
tifi ed as the central gauge, i.e.,  s  1   =  gauge 5. Then the candidate and selected sets 
can be updated as

  F = { , , , }gauge gauge gauge gauge1 2 3 4    

    S = { }gauge 5        

  Step 4:   Second gauge selection : According to MIMR, equation  (14.25a)  is chosen 
as the objective function. One can also use others, say equation  (14.25b) , equation 
 (14.26a) , or equation  (14.26b) . For simplicity, equal weights are used for informa-
tion and redundancy, i.e.,  λ  1   =   λ  2   =  0.5. 

 Compute joint entropy of set  S  with each gauge in  F : Taking the joint entropy 
of gauge 5 and gauge 1 as an example, calculate the joint contingency table as 
shown in Table  14-29 . The joint probability is shown in Table  14-30 . By using 
equation  (14.7) , we see that the joint entropy is

    H( , ) .gauge gauge bits5 1 4 3851=        

 Similarly,

  H( , ) .gauge gauge bits5 2 4 4408=    
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    H( , ) .gauge gauge bits5 3 4 3851=    

    H( , ) .gauge gauge bits5 4 3 6564=        

 Compute transinformation between gauges in  S  and each gauge in  F  and the 
other gauges in  F . Here variables need to be merged such that information con-
tained in the merged variable is the same as that retained by the original vari-
ables. For merging variables, one can follow the procedure discussed in Example 
 14.6 . Assuming that gauge 1 is selected in this step, then the predictive ability of 
 S  is evaluated.

  T( , ) .gauge gauge gauge bits5 1 2 2 6080+ =    

    T( , ) .gauge gauge gauge bits5 1 3 2 6579+ =    

    T( , ) .gauge gauge gauge bits5 1 4 0 1243+ =        

Gauge 
1

Gauge 5

35 40 45 50 55 60 65 70 75 80 85 90 95 100

75 2 15 0 1 0 0 0 0 0 0 0 0 0 0

80 0 18 10 9 8 7 7 0 0 0 0 0 0 0

85 0 0 0 0 0 2 2 9 10 10 0 0 0 0

90 0 0 0 0 0 0 2 0 0 0 12 4 0 0

95 0 0 0 0 0 0 0 2 0 0 0 9 6 0

100 0 0 0 0 0 0 0 0 1 2 1 0 11 8

105 0 0 0 0 0 0 0 0 0 0 1 2 3 26

 Table 14-29      Joint contingency table.  

Gauge 
1

Gauge 5

35 40 45 50 55 60 65 70 75 80 85 90 95 100

75 0.01 0.075 0 0.005 0 0 0 0 0 0 0 0 0 0

80 0 0.090 0.050 0.045 0.040 0.035 0.035 0 0 0 0 0 0 0

85 0 0 0 0 0 0.01 0.01 0.045 0.05 0.05 0 0 0 0

90 0 0 0 0 0 0 0.01 0 0 0 0.06 0.020 0 0

95 0 0 0 0 0 0 0 0.01 0 0 0 0.045 0.030 0

100 0 0 0 0 0 0 0 0 0.05 0.01 0.005 0 0.055 0.040

105 0 0 0 0 0 0 0 0 0 0 0.005 0.010 0.015 0.130

 Table 14-30      Joint probability values.  
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 Assume that gauge 2 is selected in this step. Then evaluate the predictive ability 
of the  S  set.

  T( , ) .gauge gauge gauge bits5 2 1 2 2982+ =    

    T( , ) .gauge gauge gauge bits5 2 3 2 2982+ =    

    T( , ) .gauge gauge gauge bits5 2 4 0 1385+ =        

 Assume that gauge 3 is selected in this step. Then evaluate the predictive ability 
of the  S  set.

  T( , ) .gauge gauge gauge bits5 3 1 2 6579+ =    

    T( , ) .gauge gauge gauge bits5 3 2 2 6080+ =    

    T( , ) .gauge gauge gauge bits5 3 4 0 1243+ =        

 Assume that gauge 4 is selected in this step. Then evaluate the predictive ability 
of the  S  set.

  T( , ) .gauge gauge gauge bits5 4 1 1 8849+ =    

    T( , ) .gauge gauge gauge bits5 4 2 2 2089+ =    

    T( , ) .gauge gauge gauge bits5 4 3 1 8849+ =        

 Compute the total correlation of all in the  S  set and each gauge in the  F  set. As 
only one gauge is in set  S , the total correlation is reduced to transinformation 
(bits). Therefore,

  C( , ) .gauge gauge5 1 1 8371=    

    C( , ) .gauge gauge5 2 2 1469=    

    C( , ) .gauge gauge5 3 1 8371=    

    C( , ) .gauge gauge5 4 0 0764=        

 Compute the fi nal score for each gauge in  F . From equation  (14.25a) , we have

  

Gauge gauge gauge gauge gauge gauge  
gauge

1 5 1 5 1 2
5

= + +
+ +
H T

T

( , ) ( , )
( ggauge gauge gauge gauge gauge
gauge gauge

1 3 5 1 4
5 1

4

, ) ( , )
( , )

+ +
−

=

T

C

.. . . . .

.
3851 2 6080 2 6579 0 1243 1 8371

7 9382
+ + + −

= bits
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Gauge gauge gauge gauge gauge gauge
gauge g

2 5 2 5 2 1
5

= + +
+ +
H T

T

( , ) ( , )
( aauge gauge gauge gauge gauge
gauge gauge

2 3 5 2 4
5 2

4

, ) ( , )
( , )

.

+ +
−

=

T

C

44408 2 2982 2 2982 0 1385 2 1469
7 0288

+ + + −
=

. . . .
. bits

   

    

Gauge gauge gauge gauge gauge gauge
gauge g

3 5 3 5 3 1
5

= + +
+ +
H T

T

( , ) ( , )
( aauge gauge gauge gauge gauge
gauge gauge

3 2 5 3 4
5 3

4

, ) ( , )
( , )

.

+ +
−

=

T

C

33851 2 6579 2 6080 0 1243 1 8371
7 9382

+ + + −
=

. . . .
. bits

   

    

Gauge gauge gauge gauge gauge gauge
gauge g

4 5 4 5 4 1
5

= + +
+ +
H T

T

( , ) ( , )
( aauge gauge gauge gauge gauge
gauge gauge

4 2 5 4 3
5 4

3

, ) ( , )
( , )

.

+ +
−

=

T

C

66564 1 8849 2 2089 1 8849 0 0764
9 5587

+ + + −
=

. . . .
. bits

       

 Obviously, gauge 4 has the highest score. Therefore, it is selected into set  S . Then, 
set  F  and set  S  can be updated as

  F = { , , }gauge gauge gauge1 2 3    

    S = { , }gauge gauge5 4        

  Step   5 :  Third gauge selection.  Following the same procedure as in step 4, one can 
select the third gauge using the MIMR criterion. 

 Compute the joint entropy of set  S  with each gauge in  F . Multivariate joint 
entropy can be computed using the shortcut formula between marginal entropies 
and total correlation. For the computation procedure, one can refer to Example 
 14.9 . Using the same method as in Example  14.9 , the joint entropies are

  H( , , ) .gauge gauge gauge bits5 4 1 4 4294=    

    H( , , ) .gauge gauge gauge bits5 4 2 4 4710=    

    H( , , ) .gauge gauge gauge bits5 4 3 4 4294=        

 Compute transinformation between (gauges in  S  and each gauge in  F ) and (the 
other gauges in  F ): 
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622 Entropy Theory in Hydraulic Engineering

 Assume that gauge 1 is selected in this step. Then evaluate the predictive ability 
of the  S  set.

  T( , ) .gauge gauge gauge gauge bits5 4 1 2 2 6329+ + =    

    T( , ) .gauge gauge gauge gauge bits5 4 1 3 2 6579+ + =        

 Assume that gauge 2 is selected in this step. Then evaluate the predictive ability 
of the  S  set.

  T( , ) .gauge gauge gauge gauge bits5 4 2 1 2 3089+ + =    

    T( , ) .gauge gauge gauge gauge bits5 4 2 3 2 3089+ + =        

 Assume that gauge 3 is selected in this step. Then evaluate the predictive ability 
of the  S  set.

  T( , ) .gauge gauge gauge gauge bits5 4 3 1 2 6579+ + =    

    T( , ) .gauge gauge gauge gauge bits5 4 3 2 2 6329+ + =        

 Compute the total correlation of all in  S  and each gauge in  F . Assume that gauge 
1 is selected in this step. Then,

  C( , , ) .gauge gauge gauge bits5 4 1 1 9613=        

 Assume that gauge 2 is selected in this step. Then,

  C( , , ) .gauge gauge gauge bits5 4 2 2 2854=        

 Assume that gauge 3 is selected in this step. Then,

  C( , , ) .gauge gauge gauge bits5 4 3 1 9613=       

 Now compute the fi nal score for each gauge in  F :

  

Gauge gauge gauge gauge
gauge gauge gauge gaug

1 5 4 1
5 4 1

=
+ + +
H

T

( , , )
( , ee
gauge gauge gauge gauge
gauge gauge gauge

2
5 4 1 3
5 4 1

)
( , )
( , ,

+ + +
−

T

C ))
. . . .
.

= + + −
=

4 4294 2 6329 2 6579 1 9613
7 7589 bits

   

    

Gauge gauge gauge gauge
gauge gauge gauge gaug

2 5 4 2
5 4 2

=
+ + +
H

T

( , , )
( , ee
gauge gauge gauge gauge
gauge gauge gauge

1
5 4 2 3
5 4 2

)
( , )
( , ,

+ + +
−

T

C ))
. . . .
.

= + + −
=

4 4710 2 3089 2 3089 2 2854
6 8034 bits
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Gauge gauge gauge gauge
gauge gauge gauge gaug

3 5 4 3
5 4 3

=
+ + +
H

T

( , , )
( , ee
gauge gauge gauge gauge
gauge gauge gauge

1
5 4 3 2
5 4 3

)
( , )
( , ,

+ + +
−

T

C ))
. . . .
.

= + + −
=

4 4294 2 6579 2 6329 1 9613
7 7589 bits

       

 Gauge 1 and gauge 3 have the same scores. We can make the fi nal selection be-
tween them by their marginal entropies. Here gauge 1 and gauge 3 also have the 
same marginal entropy. In this case, we can arbitrarily select one, say gauge 1, 
and add to set  S . Then set  F  and  S  can be updated as

  F = { , }gauge gauge2 3    

    S = { , , }gauge gauge gauge5 4 1        

  Step 6: Select the fourth gauge.  Compute the joint entropy of set  S  with each gauge 
in  F :

  H( , , , ) .gauge gauge gauge gauge bits5 4 1 2 4 8200=    

    H( , , , ) .gauge gauge gauge gauge bits5 4 1 3 4 4294=        

 Compute transinformation between (gauges in  S  and each gauge in  F ) and (the 
other gauges in  F ). Assume that gauge 2 is selected in this step. Then evaluate the 
predictive ability of the  S  set.

  T( , ) .gauge gauge gauge gauge gauge bits5 4 1 2 3 2 6579+ + + =        

 Assume that gauge 3 is selected in this step. Then evaluate the predictive ability 
of the  S  set.

  T( , ) .gauge gauge gauge gauge gauge bits5 4 1 3 2 2 6329+ + + =        

 Compute the total correlation of all gauges in  S  and each gauge in  F . Assume that 
gauge 2 is selected in this step. Then,

  C( , , , ) .gauge gauge gauge gauge bits5 4 1 2 4 5942=        

 Assume that gauge 3 is selected in this step. Then,

  C( , , , ) .gauge gauge gauge gauge bits5 4 1 3 4 6193=        

 Now compute the fi nal score for each gauge in  F .

  

Gauge gauge gauge gauge gauge
gauge gauge gaug

2 5 4 1 2
5 4

=
+ + +
H

T

( , , , )
( ee gauge gauge
gauge gauge gauge gauge

1 2 3
5 4 1 2

4 8200 2

+
−

= +

, )
( , , , )

.
C

.. .
.

6579 4 5942
2 8837

−
= bits
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Gauge gauge gauge gauge gauge
gauge gauge gaug

3 5 4 1 3
5 4

=
+ + +
H

T

( , , , )
( ee gauge gauge
gauge gauge gauge gauge

1 3 2
5 4 1 3

4 4294 2

+
−

= +

, )
( , , , )

.
C

.. .
.

6329 4 6193
2 4443

−
= bits

       

 Gauge 2 has a larger fi nal score. Therefore, gauge 2 is selected in this step since 
there are only fi ve gauges, among which four gauges have been ranked. The fi nal 
ranking for these fi ve gauges is

  { , , , , }gauge gauge gauge gauge gauge5 4 1 2 3        

 The results are different from those obtained in Example  14.12 , where the top 
three monitoring gauges are {gauge 5, gauge 2, gauge 4}.      

  14.4     Informational Correlation Coeffi cient 

 A measure of information is cross-correlation among records from nearby sites. 
Cross-correlation helps with the space–time trade-off and regional data collec-
tion. The correlation coeffi cient  r xy   is calculated for each pair of stations as

  r
S S

xy
xy

x y

=
Cov

      (14.27)  

where Cov  xy   is the covariance between random variables  X  and  Y ;  S x   and  S y   
are the standard deviation of variables  X  and  Y , respectively. Cov  xy   can be 
obtained as

  
Covxy

i i
i

n

x x y y

n
=

− −

−
=
∑ ( )( )

1

1

      (14.28)  

where  x     and  y     are the means of variable  X  and  Y , respectively. 

  Example 14.14          Compute correlation coeffi cients between the water-level moni-
toring stations shown in Fig.  14-2 . Determine the amount of explained variance 
between them. You may want to prepare a matrix of correlation coeffi cients.  

  Solution     The water-level values are fi rst normalized so that the variance be-
comes unity. The correlation coeffi cient between gauge 1 and gauge 2 is com-
puted as

  
Covxy

i i
i

n

i i
i

n

x x y y

n

x y
=

− −

−
=

− −

−
== =

∑ ∑( )( ) ( . )( . )
.1 1

1

1 95 1 98

400 1
0 9976
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 Similarly, coeffi cients of correlation between different pairs of stations are evalu-
ated and the correlation matrix is then prepared, as shown in Table  14-31 .   

  Transferability of information between hydrologic variables depends on the 
degree and the structure of dependence or interdependence of variables. The 
most likely measure of association between variables is the correlation coeffi -
cient. Its use is valid under the assumption of normality of variables and linearity 
of relationship between them. If variables are nonlinearly related, then either the 
variables have to be transformed to linearize the regression function or nonlinear 
regression has to be developed. For both linear and nonlinear types of interde-
pendence, the correlation coeffi cient measures the amount of information that is 
actually transferred by the assumed regression relationship. If the correlation 
coeffi cient is zero, it does not necessarily mean the absence of association between 
variables, but it may also be caused by the inappropriate choice of the regression 
relation. The informational correlation coeffi cient and transinformation represent 
the extent of transferable information without assuming any particular type of 
interdependence. They also provide a means of judging the amount of informa-
tion actually transferred by regression. The informational correlation coeffi cient 
 R  0  can be expressed as

  R T0 01 2= − −exp( )       (14.29a)   

 When the marginal and joint probability distributions of stations  X  and  Y  are 
approximated by their relative frequency distributions or when no particular 
probability distribution is assumed for the stations, then  T  0  represents the upper 
limit of transferable information between stations. The informational correlation 
coeffi cient  R  0  (Linfoot  1957 ) is a dimensionless measure of stochastic interdepen-
dence that varies between 0 and 1 and is a function of mutual information  T  0  
between stations. It does not assume normality or any type of functional relation-
ship between stations and, therefore, has advantages over ordinary correlation 
coeffi cients. It reduces to the classical correlation coeffi cient when the normality 
and linearity assumptions are satisfi ed. Although  R  0  and  T  0  do not provide any 
functional relationship between stations to transfer information, they serve as 
criteria for checking the validity of assumed types of dependence and probability 
distributions of the stations. Because  T  0  represents the upper limit of transferable 

Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

Gauge 1 1.000 0.976 1.000 0.124 0.911

Gauge 2 0.976 1.000 0.976 0.059 0.902

Gauge 3 1.000 0.976 1.000 0.124 0.911

Gauge 4 0.124 0.059 0.124 1.000 0.124

Gauge 5 0.911 0.902 0.911 0.124 1.000

 Table 14-31      Values of the coeffi cients of correlation.  
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information, it can be used as a criterion for defi ning the amount of actually 
transferred information under the assumptions made. If  T  1  represents the tran-
sinformation for any assumed type of relation between stations, then the ratio

  t
T T

T
T
T

1
0 1

0

1

0

1= − = −       (14.29b)  

measures the amount of nontransferred information, and 1 –  t  1  measures the 
amount of transferred information. Likewise,  R  0 , and  t  1  can be used as criteria to 
judge the validity of assumptions made about the dependence between stations. 
Entropy or transinformation does not provide any means of transferring infor-
mation but rather provides a means for measuring transferable information. 
Thus, it can help improve the transfer of information by regression analysis. 

 If the actual amount of information transferred by regression analysis is far 
below the transferable information defi ned by entropy measures, then one can 
attempt to improve the regression analysis. This step can be accomplished by (1) 
selecting marginal and joint distributions that better fi t the data, (2) searching 
for better relationships between stations, (3) analyzing the effect of autocorrela-
tion of each station upon interdependence and regression, and (4) analyzing the 
effect of lag cross-correlation upon interdependence and information transfer. 

 The coeffi cient of nontransferred information, defi ned by equation  (14.29b)  
as a measure of the nontransferred information as a percentage of the total trans-
ferable information (Harmancioglu and Yevjevich  1985, 1987 ), is used. Here  T  0  
is the total transferable information (not necessarily achieved by the hydrometric 
network), and  T  1  is the measured transinformation between  X  1  and  X  2 . To illus-
trate, assume that  X  1  is associated with the water-level record of the gauge that 
has the highest marginal entropy or information in the region, and  X  2   =   X i   ( i   =  
2, …,  n ) associated with water-level records of any other gauge. Then,

  T T X X H X H X X i ni i1 1 1 1 2 3= ( ) = ( ) − ( ) =, | , , , ,…       (14.30)   

 The value of  T  0  can be expressed as

  T H X0 1= ( )       (14.31)   

 Thus, the coeffi cient of nontransferred information is

  t
H X X

H X
t

i
1

1

1
10 1=

⏐( )
( )

≤ ≤,       (14.32)   

 Similarly, 1 –  t  1  defi nes the coeffi cient of transferred information, or transferred 
information as the fraction of the total transferable information:

  1 1
1

0

− =t
T
T

      (14.33)   

 By computing the coeffi cient of transferred information for all gauges, the 
isoinformation contours can be constructed. These contours are the lines of equal 
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transfer of information in the region (Singh and Krstanovic  1986 ). The isoinfor-
mation contour of the bivariate water-level record is the line of equal common 
information between any gauge in the watershed and the other existing gauges 
located in the watershed. In the selection process, the fi rst chosen gauge has the 
highest information content, and this gauge can be designated as the central 
gauge. Thus, it is convenient to choose that gauge as the reference point in the 
construction of all isoinformation contours when choosing gauges in order of 
descending importance. It is true that an isoinformation contour can be con-
structed between any two gauges, but it does not benefi t the gauge selection 
process. 

  Example 14.15          Compute informational correlation coeffi cients between water-
level monitoring stations shown in Fig.  14-2 . Determine the amount of explained 
variance between them. Prepare a matrix of correlation coeffi cients.  

  Solution     From computations in Example  14.3  and Example  14.5  for gauges 1 
and 2,  T  0   =   H ( X  2 )  =  3.0235 bits,  T  1   =   T ( X  1 ,  X  2 )  =  1.9208 bits. The transferable infor-
mation between gauge 1 and gauge 2 is

  1 1
1 9208
3 0235

0 36471
1

0

− = = − =t
T
T

.

.
.        

 Likewise, the transferable information between other pairs of gauges can be com-
puted in the same way. Then the matrix of transferable information can be con-
structed as shown in Table  14-32 .     

Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5

Gauge 1 0.0000 0.3647 0.0000 0.8613 0.4846

Gauge 2 0.2773 0.0000 0.2773 0.8008 0.3976

Gauge 3 0.0000 0.3647 0.0000 0.8613 0.4846

Gauge 4 0.9912 0.9889 0.9912 0.0000 0.9786

Gauge 5 0.3088 0.2899 0.3088 0.5471 0.0000

 Table 14-32      Transferable information.  

  Questions 

   Q14.1      Obtain continuous observations from a streamfl ow gauging station for 
a river. First discretize the continuous streamfl ow time series and then 
compute its marginal entropy.  

  Q14.2      For the same streamfl ow data as in Q14.1, select a suitable value for 
parameter  a , discretize the streamfl ow time series, and then compute 
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its marginal entropy. Compare this value of marginal entropy with that 
obtained in Q14.1.  

  Q14.3      Select two water monitors from Fig.  14-6 . Using the observations from 
these monitors given in Table  14-1 , compute their marginal entropies 
and joint entropy and verify that joint entropy is symmetric and that the 
inequality holds.  

  Q14.4      Using the same data set as in Q14.3, denoting, respectively, the water 
levels in gauges 1 and 2 by  X  1  and  X  2 , compute the conditional entropy 
 H ( X  2 | X  1 ) and  H ( X  1 | X  2 ). Discuss the results.  

  Q14.5       For the same water-level monitoring network as in Q14.3, choose fi ve 
monitoring gauges and compute the transinformation between different 
gauges.  

  Q14.6      Choose monthly streamfl ow observations from two nearby streamfl ow 
gauging stations. Then create a merged series such that the entropy 
of the merged series is equal to the joint entropy of the original two 
series.  

  Q14.7      Consider merging two categorical variables:  X  1   =  [1, 3, 1, 3, 1, 4, 4]  T   and  X  2  
 =  [1, 3, 3, 2, 1, 4, 3]  T  . Then obtain a new variable  X  by pairwise welding the 
corresponding digits together. Verify that the information amount keeps 
invariant before and after merging, i.e., that the information content of 
 X  1  and  X  2  together is the same as that of  X .  

  Q14.8      Select fi ve streamfl ow gauging stations in a river basin and obtain their 
streamfl ow records. Then, compute the total correlation of these gauging 
stations.  

  Q14.9      For the fi ve gauging stations considered in Q14.8, compute the joint 
entropy.  

  Q14.10     For the fi ve gauging stations considered in Q14.8, compute the interac-
tion of the fi rst three gauges.  

  Q14.11     Compute DIT using data of the fi ve gauging stations considered in Q14.8.  

  Q14.12     Take water-level data for several monitoring stations in a canal network. 
Compute marginal entropy of water level at each monitoring station and 
plot it as a function of distance between monitoring stations. What do 
you conclude from this plot? Discuss it.  

  Q14.13     For the water-level data in Q14.12, compute transinformation of water 
levels. Are all monitoring stations needed? What is the redundant infor-
mation? What can be said about increasing or decreasing the number of 
monitoring stations?  

  Q14.14     Consider a drainage basin that has a number of water-level measuring 
stations. Obtain daily water-level values for each monitoring station. 
Using daily water-level values, determine marginal entropy at each 
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station and also compute transinformation among stations. Comment on 
the adequacy of the water-level monitoring network.  

  Q14.15     Consider the same basin and the water-level monitoring network as in 
Q14.14. Now obtain hourly water-level values and compute marginal 
entropy, as well as transinformation. Comment on the adequacy of the 
water-level network. How does the adequacy change with reduced time 
interval? Which stations are necessary, and which are not?  

  Q14.16     Can entropy be used for designing a monitoring network? If yes, then 
how? Can entropy be used for evaluating the adequacy of an existing 
network? If yes, how?    
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  Appendix 14.1    

Station 08082500

 1  2  3  4  5  6  7  8  9  10  11  12 

1990 2.45 1.19 8.43 37.32 15.53 99.25 4.90 9.21 3.55 1.95 2.51 1.79

1991 3.62 2.20 1.14 0.81 15.83 90.67 2.57 12.63 21.98 7.10 6.35 17.06

1992 12.29 35.28 14.15 10.05 32.33 84.89 11.50 5.53 4.09 0.71 2.99 3.15

1993 2.65 9.08 8.18 2.72 4.40 9.00 0.64 0.45 2.02 0.71 0.48 1.01

1994 0.67 1.20 1.15 0.54 20.61 2.47 0.27 0.70 4.96 2.42 2.75 1.09

1995 1.03 0.60 1.17 0.45 17.53 22.34 2.45 28.83 5.67 2.24 2.84 0.90

1996 1.04 0.57 0.88 0.62 0.10 2.62 0.96 6.59 41.91 2.01 1.90 1.91

1997 0.57 8.24 2.95 14.78 21.05 18.30 9.33 5.22 2.28 0.92 0.56 2.24

1998 1.41 3.48 6.38 1.43 1.57 0.93 1.76 0.07 0.06 0.07 0.24 0.09

1999 1.12 0.93 4.04 1.82 15.87 54.25 6.88 1.76 1.64 0.49 0.08 0.16

2000 0.23 0.12 27.18 4.83 4.97 9.56 4.36 0.01 0.00 6.42 9.70 1.79

2001 1.59 6.59 19.81 4.05 3.99 3.73 0.11 0.71 1.29 0.08 4.17 1.29

2002 0.32 0.32 0.60 8.49 2.36 6.61 17.95 2.69 0.44 3.96 3.92 3.07

2003 1.71 0.97 0.97 0.49 0.42 20.18 2.48 0.02 1.86 0.11 0.20 0.10

2004 0.27 0.68 8.24 6.89 0.98 14.81 41.12 14.61 2.65 12.70 46.41 12.88

2005 7.37 6.95 5.39 2.59 1.85 4.34 2.53 67.64 4.19 3.82 1.50 1.21

2006 1.05 0.97 1.47 2.02 17.56 1.44 0.49 0.10 4.15 38.34 6.37 3.18

2007 3.17 2.40 5.65 7.64 17.09 20.99 7.84 18.81 4.79 1.77 1.15 1.88

2008 1.29 1.29 1.19 3.89 3.69 4.49 1.13 2.04 9.75 10.21 3.73 1.72

2009 1.11 0.86 0.63 0.84 1.37 4.46 4.68 2.53 1.51 0.96 0.56 0.59

 Table 14-33      Monthly streamfl ow (m 3 /s) of USGS stations.  
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Station 08088000

 1  2  3  4  5  6  7  8  9  10  11  12 

1990 3.38 3.87 39.87 153.90 190.88 121.56 7.82 17.73 36.27 8.91 6.06 3.59

1991 11.73 7.12 3.95 2.72 33.33 160.27 13.98 29.17 35.00 33.02 17.33 170.58

1992 47.35 254.48 117.32 32.90 44.83 225.83 42.98 18.78 11.73 2.97 10.28 15.10

1993 10.75 19.97 23.48 11.58 10.91 18.95 1.77 0.53 3.09 12.62 2.43 3.08

1994 2.32 3.37 2.36 1.41 62.41 6.23 3.78 0.49 5.15 23.50 8.06 3.58

1995 2.34 1.93 3.39 2.01 13.76 38.06 5.97 44.85 15.52 4.92 3.81 1.82

1996 2.29 1.61 1.47 2.54 0.57 2.62 1.10 10.72 68.36 6.21 15.14 12.88

1997 2.87 64.31 28.11 25.68 47.03 90.50 18.51 7.17 1.90 1.44 1.04 3.30

1998 3.05 4.69 40.32 3.58 2.53 1.83 1.79 0.00 0.00 0.11 0.33 0.71

1999 0.81 2.46 14.89 6.90 11.01 50.06 6.18 1.23 0.42 0.57 0.21 0.19

2000 0.17 0.09 23.99 9.56 6.78 9.67 7.71 0.02 0.00 2.24 16.55 4.24

2001 3.58 30.47 48.65 7.00 8.20 3.71 4.16 0.99 9.47 4.74 4.71 1.77

2002 0.49 0.73 1.52 21.63 13.97 15.93 29.17 7.46 1.83 4.89 8.48 4.76

2003 2.52 1.73 1.48 0.67 0.77 37.49 7.56 0.07 2.94 0.13 0.14 0.04

2004 0.14 1.43 9.17 10.78 3.50 23.50 51.59 62.27 11.00 19.40 115.02 23.40

2005 14.36 11.71 10.45 5.86 4.97 10.08 3.42 193.91 19.55 8.00 3.84 2.99

2006 2.41 1.88 3.11 4.20 32.88 2.72 0.47 0.03 6.18 35.96 10.34 3.53

2007 3.08 2.43 7.66 9.28 71.47 146.62 72.97 84.98 16.93 4.90 2.79 4.07

2008 3.13 2.82 13.47 13.73 12.03 13.46 1.18 2.29 16.21 11.07 4.83 2.36

2009 1.74 1.42 1.17 0.86 4.13 10.66 7.74 5.24 3.13 2.25 0.71 0.68
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Station 08088610

 1  2  3  4  5  6  7  8  9  10  11  12 

1990 3.26 2.98 48.87 225.18 240.78 109.98 7.12 16.47 40.12 14.86 8.56 8.81

1991 11.59 7.93 15.92 9.61 34.60 205.27 19.88 31.88 42.67 51.51 18.58 203.09

1992 62.21 245.20 140.11 34.97 31.26 227.21 34.01 23.70 13.20 4.01 8.51 7.31

1993 6.48 6.76 25.58 16.54 14.52 22.09 15.63 9.56 8.13 5.60 3.09 2.23

1994 2.65 1.66 2.24 3.57 70.65 9.52 11.05 12.03 8.69 5.08 14.66 13.72

1995 7.44 6.64 4.73 11.94 12.63 17.95 14.87 34.77 11.04 6.11 6.22 5.84

1996 6.91 4.16 5.50 2.54 1.78 1.98 1.15 1.50 49.58 13.69 12.38 18.82

1997 6.92 81.61 36.95 27.55 45.87 55.08 20.87 15.78 9.97 7.18 2.42 4.79

1998 3.59 3.26 14.49 9.54 13.04 12.90 8.18 5.57 4.34 1.25 1.87 2.42

1999 1.42 0.79 1.29 2.41 2.01 9.77 14.19 16.14 5.00 2.66 0.95 0.79

2000 0.84 0.87 1.67 2.79 4.94 3.32 3.46 7.66 4.82 1.30 1.27 3.23

2001 1.82 18.29 51.00 7.31 7.76 3.87 5.11 7.03 2.15 1.03 0.77 1.24

2002 3.32 5.24 3.57 4.59 5.07 3.16 15.51 10.28 8.49 6.68 4.50 5.09

2003 3.79 4.86 4.65 4.38 5.14 5.26 9.02 6.18 3.22 3.89 4.40 3.25

2004 2.19 1.62 2.27 5.74 4.98 3.09 9.91 26.65 10.54 6.41 85.60 19.79

2005 14.36 14.06 12.78 10.80 7.64 8.38 5.73 119.70 20.91 9.84 6.33 4.56

2006 2.70 2.19 4.72 6.00 16.15 6.29 9.32 6.53 2.35 1.96 4.26 2.48

2007 2.16 2.12 14.88 19.38 55.02 174.54 109.56 52.36 13.95 1.29 1.46 1.71

2008 1.57 1.76 15.90 14.20 11.76 8.22 6.10 4.28 3.70 7.44 4.22 1.63

2009 1.68 3.49 3.23 3.62 3.43 3.23 4.61 6.73 3.13 2.58 2.96 1.55

Table 14-33 Monthly streamfl ow (m3/s) of USGS stations. (Continued)
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 1  2  3  4  5  6  7  8  9  10  11  12 

1990 2.96 4.27 51.88 237.44 239.84 118.79 7.46 16.14 38.74 14.69 9.32 9.14

1991 14.16 10.32 18.07 10.17 34.52 208.38 25.69 31.35 42.90 52.05 19.22 220.87

1992 63.83 256.66 149.51 37.35 36.39 229.71 41.63 21.14 14.13 4.36 8.98 8.02

1993 7.02 10.42 27.11 17.30 14.66 23.31 16.04 8.94 8.66 8.25 4.04 2.80

1994 2.89 2.30 2.73 2.82 53.89 10.41 10.27 10.61 7.85 5.84 20.03 21.38

1995 9.11 9.17 5.57 19.64 19.35 24.55 18.63 45.96 15.00 6.73 7.18 7.05

1996 8.38 5.43 8.51 3.80 2.52 2.98 1.41 7.00 81.30 26.68 22.01 28.40

1997 8.90 106.13 39.13 37.97 58.84 86.22 26.68 19.80 14.89 8.38 3.10 4.33

1998 5.34 4.97 29.59 12.95 17.39 15.16 10.84 7.01 5.01 1.45 2.41 2.79

1999 1.11 1.15 4.79 2.18 2.28 11.85 15.40 18.40 4.10 3.10 1.15 1.13

2000 1.43 1.40 2.13 3.02 4.72 4.06 4.42 6.90 5.07 1.48 2.02 3.92

2001 2.83 39.90 86.14 13.60 10.59 3.68 6.50 9.92 2.39 1.18 0.96 1.20

2002 4.24 6.98 10.19 6.84 6.69 2.90 19.67 10.69 9.74 8.04 5.20 6.48

2003 4.50 5.94 6.22 5.35 6.50 7.90 9.37 6.24 3.56 3.24 5.10 3.33

2004 2.28 3.75 3.83 6.86 5.73 5.09 12.50 32.99 10.36 6.57 109.33 22.02

2005 17.13 19.13 18.86 14.26 8.21 7.91 4.87 129.80 28.19 11.77 5.75 4.72

2006 3.60 4.34 5.51 7.39 19.26 5.78 9.76 7.71 2.78 1.91 5.25 2.62

2007 2.33 2.61 26.86 28.10 67.93 222.85 145.77 64.05 17.84 1.88 1.78 1.63

2008 1.54 1.55 29.28 22.40 15.43 8.98 6.52 4.78 3.51 8.64 4.88 1.52

2009 1.61 3.98 2.80 3.22 3.17 3.22 4.59 6.86 3.47 4.17 3.57 1.81
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Station 08090800

 1  2  3  4  5  6  7  8  9  10  11  12 

1990 6.72 5.45 56.89 377.18 342.35 127.11 8.21 16.51 36.13 17.02 9.87 7.98

1991 12.65 10.09 12.15 6.43 29.87 186.07 30.38 33.84 33.33 85.86 34.89 346.60

1992 80.28 269.86 169.05 32.99 41.23 241.17 40.61 22.54 18.32 6.56 9.76 11.66

1993 9.25 20.41 30.95 17.81 16.25 22.38 16.26 9.51 9.54 43.55 4.30 5.11

1994 3.86 3.57 3.19 2.74 84.27 13.45 11.30 7.83 10.59 14.87 34.46 16.96

1995 9.23 7.05 8.33 19.05 40.07 26.32 17.53 83.19 27.02 7.36 7.71 6.88

1996 7.55 4.99 5.67 3.58 1.71 5.59 1.71 18.66 104.21 29.87 50.74 42.33

1997 9.55 229.22 90.02 73.43 88.29 90.64 37.66 19.80 12.00 8.33 3.48 4.97

1998 6.34 7.16 63.12 10.32 14.77 9.65 7.70 5.75 4.13 2.55 3.39 2.83

1999 1.40 0.82 14.31 5.07 5.67 14.76 11.90 16.08 4.39 2.44 1.02 1.01

2000 0.93 0.75 1.86 2.66 5.30 17.30 3.47 4.58 4.52 1.56 4.78 3.86

2001 7.91 82.85 117.60 22.83 12.73 3.83 4.46 7.92 2.98 0.78 1.18 1.61

2002 4.23 6.12 22.31 10.87 9.85 3.23 17.86 10.17 9.34 13.31 5.36 7.99

2003 4.54 5.67 5.98 4.77 4.29 7.16 8.23 6.14 5.11 3.35 5.77 3.92

2004 2.95 6.94 6.65 6.28 7.22 19.16 21.84 26.91 9.36 5.62 95.14 23.78

2005 16.68 15.39 18.24 12.03 8.13 5.66 3.40 113.10 24.24 9.12 5.13 5.32

2006 2.64 3.05 6.83 7.38 21.91 7.25 7.74 5.62 2.53 1.52 4.67 3.21

2007 3.04 2.16 37.52 71.87 95.54 309.79 224.13 70.14 22.56 2.46 2.21 2.25

2008 2.02 2.00 49.70 45.84 17.11 9.21 6.19 7.64 4.13 8.08 5.99 1.77

2009 1.61 3.72 3.78 3.72 4.30 3.44 5.82 9.28 8.81 28.19 7.13 2.65

Table 14-33 Monthly streamfl ow (m3/s) of USGS stations. (Continued)
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 1  2  3  4  5  6  7  8  9  10  11  12 

1990 4.83 9.87 72.32 406.63 394.17 136.29 6.50 19.54 34.07 15.12 10.21 8.02

1991 18.32 12.12 10.99 13.64 35.14 222.03 19.22 33.58 37.86 129.24 52.92 423.62

1992 87.75 319.70 189.27 27.10 33.98 229.68 35.65 22.17 19.59 2.70 11.23 17.04

1993 11.67 32.22 36.98 21.49 17.26 21.59 7.77 2.76 6.17 50.77 3.65 6.60

1994 5.17 3.38 4.21 3.00 91.92 17.35 10.05 3.56 16.34 21.54 45.39 32.34

1995 15.59 6.34 18.85 24.23 21.14 28.52 9.61 96.39 29.53 5.13 6.73 7.22

1996 9.27 5.97 3.51 3.03 0.44 0.50 0.62 15.81 108.40 31.18 61.16 56.97

1997 14.40 278.21 137.36 115.65 104.97 84.78 43.15 19.98 13.16 8.83 3.03 9.52

1998 16.08 23.29 106.98 14.57 20.55 10.51 6.47 1.51 0.45 0.87 2.53 5.61

1999 1.48 1.21 10.13 3.33 2.20 16.97 6.97 14.29 0.73 0.86 0.61 0.93

2000 0.91 0.82 0.98 0.61 0.52 33.87 1.26 0.35 0.50 1.37 1.83 2.21

2001 11.13 122.78 154.67 47.86 22.74 3.28 1.65 1.21 1.20 0.81 0.36 0.72

2002 0.77 1.56 30.92 27.28 24.57 1.90 14.63 2.48 4.04 10.13 2.45 5.33

2003 2.73 9.17 9.86 3.29 1.77 5.01 2.02 1.66 4.58 4.53 4.46 1.80

2004 0.93 10.00 10.00 7.63 10.95 54.48 26.04 23.27 7.19 4.32 94.21 29.79

2005 21.99 20.91 28.68 13.56 4.43 2.64 1.82 89.17 22.66 5.56 3.65 2.89

2006 2.19 2.44 17.03 5.08 24.77 2.59 3.65 1.95 1.68 0.66 1.80 0.71

2007 1.35 1.12 32.37 100.16 112.87 363.59 279.83 68.75 22.91 1.48 1.45 2.04

2008 1.55 1.48 45.82 51.48 17.83 7.03 2.67 2.85 2.30 2.29 1.98 0.81

2009 0.73 0.66 1.09 2.45 3.58 2.64 1.66 4.99 2.07 28.37 10.37 3.04
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Station 08093100

 1  2  3  4  5  6  7  8  9  10  11  12 

1990 10.55 10.76 75.86 206.29 652.14 298.46 16.59 19.09 11.64 24.62 11.60 10.88

1991 15.87 17.11 10.09 43.49 49.02 204.31 18.10 39.64 26.23 63.63 188.84 202.41

1992 509.99 316.86 387.94 83.17 68.50 289.68 73.06 22.56 28.32 11.86 15.81 11.78

1993 14.28 28.12 85.63 33.36 32.25 21.82 25.17 22.71 25.36 17.98 16.00 34.52

1994 25.84 10.73 14.05 11.73 47.09 34.09 25.36 20.09 18.19 12.79 41.00 44.83

1995 36.78 15.11 54.82 66.37 127.91 92.94 29.25 148.72 26.83 16.31 18.35 13.86

1996 19.31 11.80 11.20 4.34 3.01 7.48 20.98 8.43 32.31 24.30 52.73 68.19

1997 26.32 198.47 268.19 129.29 144.67 91.75 56.92 23.75 24.78 14.21 12.65 19.77

1998 16.69 18.25 181.43 24.88 18.80 26.66 26.91 22.72 19.53 6.48 6.19 10.74

1999 12.28 9.88 7.40 4.22 1.23 2.70 9.72 14.35 0.81 0.74 0.76 0.83

2000 0.75 0.65 1.11 0.73 6.82 5.29 12.01 21.79 15.53 2.41 9.32 11.47

2001 4.14 65.02 249.44 39.22 28.63 9.87 28.32 25.06 6.73 8.67 11.26 8.57

2002 8.80 12.31 5.58 39.45 26.84 10.62 26.88 34.40 16.79 22.09 25.24 17.81

2003 5.85 11.86 5.84 8.94 11.69 11.91 13.56 8.48 5.08 4.08 10.33 5.34

2004 3.53 4.26 6.82 15.63 19.84 78.78 51.11 38.06 64.42 11.73 76.17 122.05

2005 29.79 63.43 56.35 15.87 3.72 16.33 6.23 59.13 31.71 17.28 12.33 16.69

2006 7.75 8.49 3.90 7.19 6.47 10.72 17.15 13.90 8.44 6.44 5.46 3.77

2007 2.20 2.85 13.26 107.72 133.20 346.88 550.48 94.52 97.89 24.55 11.38 8.70

2008 9.57 9.36 12.38 55.36 56.80 28.43 8.47 16.80 8.62 9.27 7.27 8.10

2009 4.97 1.52 6.32 3.98 2.60 4.33 23.55 12.80 9.43 14.24 27.35 42.42

Table 14-33 Monthly streamfl ow (m3/s) of USGS stations. (Continued)
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 1  2  3  4  5  6  7  8  9  10  11  12 

1990 10.29 27.08 120.94 236.62 807.03 331.87 20.30 16.97 14.60 26.83 11.63 10.86

1991 28.11 30.92 19.05 66.01 85.77 216.62 26.65 63.34 37.55 61.62 243.04 426.73

1992 796.83 477.42 573.70 132.72 114.09 321.11 68.36 23.18 28.43 11.99 22.29 34.32

1993 25.96 94.89 145.21 60.97 46.58 31.32 29.00 16.81 18.67 26.75 19.44 33.16

1994 31.26 35.42 37.49 29.22 137.73 56.32 23.15 12.41 21.86 22.02 69.09 112.98

1995 94.55 39.70 134.87 209.94 282.04 158.21 42.02 206.71 42.93 23.93 21.65 12.97

1996 14.72 8.89 10.64 6.92 3.28 7.46 20.03 10.02 66.01 29.73 62.58 124.20

1997 69.43 393.60 482.24 229.34 212.35 161.83 69.09 24.42 22.02 18.00 17.55 91.49

1998 110.38 52.44 309.50 52.90 28.57 26.48 25.99 19.30 18.71 19.19 32.90 73.74

1999 40.63 25.41 13.92 15.52 4.93 4.01 12.05 20.59 0.94 1.09 1.22 2.25

2000 5.55 1.03 2.02 4.66 11.76 45.96 12.08 20.29 14.94 3.34 33.16 31.77

2001 51.62 141.10 417.67 82.09 62.18 12.97 33.84 33.13 11.12 12.45 32.31 81.44

2002 27.43 50.69 27.84 67.88 28.60 14.94 24.52 30.64 16.32 23.56 33.53 63.09

2003 37.92 32.03 44.57 12.95 16.33 19.14 12.56 8.23 7.08 8.12 18.66 6.31

2004 17.08 39.73 54.85 56.46 87.53 136.32 56.18 45.11 49.84 29.90 208.10 204.14

2005 72.77 113.27 121.05 34.35 10.35 20.91 9.02 58.79 33.22 19.07 13.83 15.66

2006 10.97 9.57 7.29 6.17 8.12 9.96 16.57 12.92 6.76 7.06 4.94 4.94

2007 5.44 3.86 65.98 188.62 243.64 548.21 750.40 118.65 138.36 32.48 11.71 11.90

2008 11.12 10.96 30.38 80.36 91.27 27.81 7.68 17.80 8.57 9.87 7.19 8.27

2009 3.95 1.96 15.34 15.56 11.84 4.45 17.88 6.42 14.49 157.84 71.30 52.95
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Station 08098290

 1  2  3  4  5  6  7  8  9  10  11  12 

1990 12.26 35.31 183.29 226.56 853.47 343.20 30.53 21.96 19.50 39.90 23.77 14.17

1991 94.32 68.92 23.59 89.62 128.70 221.18 25.78 72.07 51.68 64.73 286.57 476.57

1992 904.16 617.87 643.64 168.15 157.55 377.75 87.95 30.58 36.22 16.66 31.94 57.74

1993 40.52 128.28 214.64 104.12 77.73 40.18 30.33 22.14 27.84 36.59 29.05 38.77

1994 31.01 58.13 37.43 18.82 185.33 57.99 22.83 19.69 22.98 17.72 61.96 124.31

1995 97.04 37.66 151.30 216.00 311.20 170.61 36.78 243.52 43.13 24.08 22.95 16.89

1996 21.31 16.18 17.60 13.39 6.40 10.79 19.61 14.88 79.94 35.20 70.45 147.33

1997 82.49 439.19 537.17 316.86 261.08 200.85 85.21 27.28 25.32 21.79 21.76 138.10

1998 205.50 72.58 320.83 59.32 31.35 33.05 27.62 22.09 21.61 60.97 60.60 108.45

1999 58.64 43.58 21.13 26.74 8.61 6.13 12.50 21.17 3.28 3.68 3.04 5.43

2000 8.73 3.15 5.79 10.90 17.12 70.40 12.10 17.07 15.16 4.89 58.33 63.57

2001 87.36 145.94 476.85 85.29 67.65 16.52 29.22 46.47 22.53 24.63 58.64 168.85

2002 39.64 71.64 38.60 86.28 32.73 23.47 29.39 34.97 20.46 30.70 37.10 93.11

2003 53.60 90.33 63.54 16.29 16.94 24.50 12.53 8.91 9.47 30.89 21.31 8.36

2004 21.23 60.71 73.51 78.21 126.66 243.50 102.48 58.96 61.90 49.04 321.96 245.59

2005 86.73 156.08 160.33 47.09 15.68 27.51 11.22 109.25 38.88 20.62 16.92 21.05

2006 16.71 14.38 18.08 13.00 27.67 11.03 18.13 14.23 8.79 9.27 5.78 7.43

2007 56.44 5.57 96.36 237.63 402.66 625.23 837.61 140.31 150.53 40.89 15.11 17.67

2008 14.19 15.24 50.15 91.69 123.15 29.53 9.33 26.97 10.81 10.91 8.83 9.51

2009 5.42 4.03 21.50 28.23 23.82 3.42 16.21 6.69 25.25 270.06 106.58 74.84

Table 14-33 Monthly streamfl ow (m3/s) of USGS stations. (Continued)
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1990 30.98 64.87 264.68 307.24 1169.48 576.53 97.32 48.14 44.68 47.35 53.18 31.38

1991 605.70 306.67 129.69 338.67 353.96 318.28 58.93 81.61 93.16 57.43 321.96 984.86

1992 1585.46 1550.34 1428.58 647.61 655.82 909.82 442.03 233.61 94.97 47.60 69.04 185.53

1993 239.76 270.14 575.68 432.11 483.08 394.45 176.24 52.02 41.51 62.78 54.09 58.33

1994 62.67 126.55 133.03 54.31 286.85 187.03 50.94 37.41 42.33 496.39 135.50 398.70

1995 385.39 132.55 355.09 411.73 415.12 331.59 84.89 325.93 74.56 46.69 42.50 70.68

1996 35.06 24.00 22.72 26.67 27.00 54.34 30.75 21.87 155.83 63.06 82.43 237.32

1997 185.59 690.08 1062.73 764.27 593.24 499.79 283.17 82.26 47.63 53.60 58.47 257.80

1998 616.46 357.36 572.57 250.24 65.95 47.40 35.25 29.19 108.37 518.20 610.23 440.61

1999 192.33 284.02 109.84 101.23 92.91 55.19 46.58 32.54 14.63 10.07 10.69 12.12

2000 21.74 13.70 42.42 41.34 84.44 97.18 23.13 20.23 22.30 23.12 331.31 202.38

2001 404.08 307.80 888.58 291.38 219.71 159.57 72.12 46.41 247.46 89.03 167.04 502.06

2002 147.28 178.96 88.35 186.86 48.25 51.42 178.54 101.29 42.67 147.11 442.59 495.54

2003 267.08 518.20 423.05 121.17 53.80 81.41 36.98 19.19 52.90 188.53 78.35 35.79

2004 104.12 311.20 214.13 183.35 623.25 797.40 535.47 140.14 124.99 111.71 743.60 760.02

2005 346.03 532.36 605.98 157.41 65.02 64.17 32.62 219.57 72.80 38.74 32.56 34.69

2006 31.49 42.70 34.49 59.38 98.54 30.47 29.85 17.47 17.55 141.64 26.60 37.41

2007 530.94 64.53 441.46 549.35 809.58 1105.20 1646.06 592.39 455.05 229.31 58.47 65.86

2008 38.34 93.33 138.33 104.49 272.41 53.94 25.40 58.98 33.16 22.84 27.93 19.76

2009 14.97 13.97 31.63 109.47 168.77 18.26 33.90 24.33 82.66 476.57 410.59 229.85
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Station 08114000

 1  2  3  4  5  6  7  8  9  10  11  12 

1990 38.60 78.52 263.06 294.21 1117.66 558.69 94.55 43.58 43.49 44.17 55.36 32.99

1991 643.92 355.94 146.68 428.43 394.74 349.15 70.68 80.84 99.87 56.63 316.02 788.06

1992 1713.17 1540.72 1530.52 736.24 652.99 927.66 447.12 255.22 102.31 42.96 76.09 209.94

1993 276.80 298.74 574.26 473.74 560.11 507.44 207.99 45.22 36.16 67.93 64.85 64.99

1994 69.60 144.87 150.62 53.69 312.90 207.68 47.01 33.24 48.11 584.74 163.93 416.26

1995 461.56 162.99 401.82 442.31 434.38 372.08 90.95 334.14 77.62 53.77 49.44 84.47

1996 51.59 34.60 25.67 22.64 23.18 52.27 35.34 24.03 185.50 84.44 88.80 231.15

1997 196.66 609.09 1116.81 777.58 595.50 504.61 302.14 91.38 60.23 89.20 65.89 289.68

1998 624.95 379.45 593.24 271.02 78.47 46.13 32.22 27.07 134.82 618.44 723.78 449.67

1999 195.27 287.13 122.10 114.06 106.24 77.96 58.33 37.52 18.54 11.88 14.12 14.72

2000 21.95 14.94 41.20 43.55 90.95 91.60 23.34 22.74 16.92 21.14 345.75 188.70

2001 415.12 300.72 895.94 341.78 225.63 175.73 66.15 36.42 274.47 119.58 155.60 501.77

2002 168.34 176.47 81.55 211.16 41.40 45.34 171.57 116.16 55.25 203.17 558.69 521.60

2003 305.82 487.90 470.34 129.49 53.32 74.84 34.69 18.22 54.20 176.05 85.09 36.61

2004 105.51 321.40 209.29 165.14 654.40 751.81 622.40 138.81 138.64 100.89 743.60 795.42

2005 339.24 562.09 641.09 182.59 77.84 71.27 39.45 210.14 86.42 41.09 36.19 37.21

2006 31.54 40.46 31.83 61.56 94.35 30.21 32.20 20.01 18.00 153.65 32.93 24.05

2007 583.61 80.65 457.88 609.38 843.84 1218.47 1727.61 662.05 473.17 249.95 112.87 94.75

2008 64.70 123.23 162.76 112.67 276.54 60.91 22.03 55.67 39.22 21.10 36.25 19.26

2009 13.64 13.03 28.28 141.30 178.99 12.98 31.12 24.54 83.22 408.33 469.49 264.42

Table 14-33 Monthly streamfl ow (m3/s) of USGS stations. (Continued)
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Station 08116650

 1  2  3  4  5  6  7  8  9  10  11  12 

1990 36.16 80.45 245.14 274.93 1114.83 596.07 94.24 30.58 37.32 42.11 50.04 29.68

1991 684.98 368.40 144.76 479.69 369.25 349.15 69.26 62.16 84.84 53.12 324.23 661.48

1992 1998.03 1714.02 1703.82 839.03 740.77 1071.51 440.61 245.48 106.73 49.55 88.21 202.80

1993 279.06 284.58 598.33 508.00 585.59 542.55 188.56 37.60 33.98 77.81 104.18 75.10

1994 70.74 147.28 174.29 52.36 342.07 213.68 36.42 31.38 53.92 634.58 184.77 468.93

1995 545.38 197.51 468.93 521.03 473.17 379.73 97.24 321.96 75.78 60.00 56.35 118.17

1996 48.68 31.94 22.00 14.46 11.63 35.31 22.54 22.45 190.69 89.85 86.39 226.62

1997 219.77 638.54 1226.68 863.66 633.73 499.51 286.57 85.83 90.78 113.69 59.58 292.80

1998 685.55 406.35 667.71 265.81 77.81 41.54 23.79 23.78 207.05 643.64 803.91 470.91

1999 201.67 289.96 127.48 103.33 91.72 70.42 47.77 28.88 12.71 9.70 12.07 14.28

2000 18.82 12.34 30.58 40.61 79.85 84.27 12.74 11.34 9.81 16.53 357.36 170.84

2001 416.54 273.40 878.67 328.76 198.98 179.02 56.49 39.33 317.71 137.96 150.96 506.30

2002 177.18 170.69 86.82 210.48 47.94 43.15 160.73 140.14 63.29 222.91 552.46 496.39

2003 306.67 439.48 477.14 136.01 59.35 73.03 43.95 17.84 79.34 185.05 122.61 52.61

2004 130.91 362.17 226.22 174.01 690.93 765.12 674.51 165.68 170.47 132.13 720.10 816.09

2005 330.46 555.01 635.15 175.22 81.55 57.45 31.01 173.70 85.23 41.34 34.21 38.99

2006 33.22 40.75 33.30 69.74 104.32 41.20 58.59 23.21 20.51 219.77 51.42 26.58

2007 587.86 98.63 430.98 613.34 759.74 1191.85 1697.03 686.68 451.09 265.05 135.41 103.19

2008 97.98 139.69 174.06 117.94 288.83 65.50 19.26 53.43 47.54 18.69 40.75 22.75

2009 15.36 14.47 31.12 175.37 204.11 6.58 15.16 11.98 73.43 379.45 481.10 283.45
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642 Entropy Theory in Hydraulic Engineering

Time 
(min)

Water level (cm) at point

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 

0 75 85 75 165 50 15 50 50 45 40 60 75 40 40 40 350 300

30 80 85 80 165 50 15 50 50 45 40 60 75 45 45 45 355 300

60 80 90 80 165 55 20 55 55 50 45 65 80 50 45 50 355 305

90 85 95 85 165 60 25 60 60 50 50 70 85 55 50 50 360 305

120 85 100 85 165 60 30 60 60 55 55 75 85 60 55 55 360 310

150 90 105 90 170 65 35 65 60 60 55 80 90 65 55 60 360 315

180 90 110 90 170 65 40 65 65 60 60 80 90 65 60 60 365 315

210 95 110 95 170 70 40 70 65 65 65 85 90 70 65 65 365 320

240 95 115 95 170 70 45 70 70 70 65 85 90 70 65 65 365 320

270 100 115 100 170 75 45 75 75 70 70 85 90 75 70 70 365 325

300 100 115 100 170 80 50 80 75 75 75 90 90 75 75 75 365 325

330 100 115 100 170 80 50 80 80 80 75 90 90 80 80 80 365 330

360 100 120 100 170 85 55 85 85 80 80 90 90 80 80 80 365 330

390 105 120 105 170 85 55 85 85 85 85 95 95 85 85 85 365 335

420 105 120 105 170 90 60 90 90 85 85 95 95 85 85 85 365 335

450 105 120 105 170 90 60 90 90 90 90 95 95 90 90 90 365 335

480 105 120 105 170 95 60 95 95 90 90 95 95 90 90 90 365 340

510 105 120 105 170 95 60 95 95 95 90 100 95 90 90 95 365 340

540 105 120 105 170 95 65 95 95 95 95 100 100 95 95 95 365 340

570 105 120 105 170 100 65 100 95 95 95 100 100 95 95 95 365 340

600 105 120 105 170 100 65 100 100 95 95 100 100 95 95 95 365 340

630 105 120 105 170 100 65 100 100 95 95 100 100 95 95 95 365 345

660 105 120 105 170 100 65 100 100 100 95 100 100 95 100 100 360 345

690 105 120 105 170 100 65 100 100 100 95 100 100 95 100 100 360 345

720 105 120 105 170 100 65 100 100 100 100 100 100 95 100 100 360 345

750 105 120 105 170 100 65 100 100 100 100 105 100 100 100 100 360 345

780 105 120 105 170 100 65 100 100 100 100 105 100 100 100 100 360 345

810 105 120 105 170 100 65 100 100 100 100 105 100 100 100 100 360 345

840 105 120 105 170 100 65 100 100 100 100 105 100 100 100 100 360 345

870 105 120 105 170 100 65 100 100 100 100 105 100 100 100 100 355 345

900 105 120 105 170 100 70 100 100 100 100 105 100 100 100 100 355 345

930 105 120 105 170 100 70 100 100 100 100 105 100 100 100 100 355 345

960 105 120 105 170 100 70 100 100 100 100 105 100 100 100 100 355 345

 Table 14-34      Water level data at 17 points in a canal network in The Netherlands.  
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Time 
(min)

Water level (cm) at point

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 

990 105 120 105 170 100 70 100 100 100 100 105 100 100 100 100 355 345

1020 105 120 105 170 100 70 100 100 100 100 105 100 100 100 100 355 345

1050 105 120 105 170 100 70 100 100 100 100 105 100 100 100 100 355 345

1080 105 115 105 170 100 70 100 100 100 100 105 100 100 100 100 355 345

1110 105 115 105 170 100 70 100 100 100 100 105 100 100 100 100 355 345

1140 105 115 105 170 100 70 100 100 100 100 105 100 100 100 100 355 345

1170 105 115 105 170 100 65 100 100 100 100 105 100 100 100 100 355 345

1200 105 115 105 170 100 65 100 100 100 100 105 100 100 100 100 355 345

1230 105 115 105 170 100 65 100 100 100 100 105 100 100 100 100 355 340

1260 105 115 105 170 100 65 100 100 100 100 105 100 95 100 100 355 340

1290 105 115 105 170 100 65 100 100 100 95 105 100 95 100 100 355 340

1320 105 115 105 170 100 65 100 100 100 95 100 100 95 100 100 355 340

1350 100 115 100 170 100 65 100 100 100 95 100 100 95 100 100 355 340

1380 100 115 100 170 100 65 100 100 100 95 100 100 95 95 100 350 340

1410 100 115 100 170 100 65 100 100 95 95 100 100 95 95 95 350 340

1440 100 115 100 170 100 65 100 100 95 95 100 100 95 95 95 350 340

1470 100 115 100 170 100 65 100 100 95 95 100 100 95 95 95 350 340

1500 100 110 100 170 100 65 100 100 95 95 100 100 95 95 95 350 340

1530 100 110 100 170 100 65 100 100 95 95 100 100 95 95 95 350 340

1560 100 110 100 170 100 65 100 95 95 95 100 100 95 95 95 350 340

1590 100 110 100 170 95 65 95 95 95 95 100 100 95 95 95 350 340

1620 100 110 100 170 95 65 95 95 95 95 100 100 95 95 95 350 340

1650 100 110 100 170 95 65 95 95 95 95 100 100 95 95 95 350 340

1680 100 110 100 170 95 65 95 95 95 95 100 95 95 95 95 350 335

1710 100 110 100 170 95 65 95 95 95 95 100 95 95 95 95 350 335

1740 100 110 100 170 95 65 95 95 95 95 100 95 95 95 95 350 335

1770 100 110 100 170 95 65 95 95 95 95 100 95 95 95 95 350 335

1800 100 110 100 170 95 65 95 95 95 95 100 95 95 95 95 350 335

1830 100 110 100 170 95 65 95 95 95 95 100 95 95 95 95 350 335

1860 100 110 100 170 95 65 95 95 95 90 100 95 95 95 95 350 335

1890 100 110 100 170 95 65 95 95 95 90 100 95 90 95 95 350 335

1920 95 110 95 170 95 65 95 95 95 90 100 95 90 90 95 350 335

1950 95 105 95 170 95 65 95 95 90 90 100 95 90 90 90 350 335

1980 95 105 95 170 95 65 95 95 90 90 100 95 90 90 90 350 330

Continued

Table 14-34 Water level data at 17 points in a canal network in The Netherlands. 
(Continued)
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Time 
(min)

Water level (cm) at point

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 

2010 95 105 95 170 95 60 95 95 90 90 100 95 90 90 90 350 330

2040 95 105 95 170 95 60 95 90 90 90 100 95 90 90 90 350 330

2070 95 105 95 170 95 60 90 90 90 90 100 95 90 90 90 350 330

2100 95 105 95 170 90 60 90 90 90 90 100 95 90 90 90 350 330

2130 95 105 95 170 90 60 90 90 90 90 95 95 90 90 90 350 330

2160 95 105 95 170 90 60 90 90 90 90 95 95 90 90 90 350 330

2190 95 105 95 170 90 60 90 90 90 90 95 95 90 90 90 350 330

2220 95 105 95 170 90 60 90 90 90 90 95 95 90 90 90 345 325

2250 95 100 95 170 90 60 90 90 90 90 95 95 90 90 90 345 325

2280 95 100 95 170 90 60 90 90 90 90 95 95 90 90 90 345 325

2310 95 100 95 170 90 60 90 90 90 85 95 90 90 90 90 345 325

2340 95 100 95 170 90 60 90 90 90 85 95 90 90 90 90 345 325

2370 90 100 90 170 90 60 90 90 85 85 95 90 85 85 85 345 325

2400 90 100 90 170 90 60 90 90 85 85 95 90 85 85 85 345 325

2430 90 100 90 170 90 60 90 90 85 85 95 90 85 85 85 345 320

2460 90 100 90 170 90 60 90 85 85 85 95 90 85 85 85 345 320

2490 90 100 90 170 85 60 85 85 85 85 95 90 85 85 85 345 320

2520 90 100 90 170 85 60 85 85 85 85 95 90 85 85 85 345 320

2550 90 100 90 170 85 60 85 85 85 85 95 90 85 85 85 345 320

2580 90 100 90 170 85 55 85 85 85 85 95 90 85 85 85 345 320

2610 90 95 90 170 85 55 85 85 85 85 95 90 85 85 85 345 315

2640 90 95 90 170 85 55 85 85 85 85 95 90 85 85 85 345 315

2670 90 95 90 170 85 55 85 85 85 80 95 90 85 85 85 345 315

2700 90 95 90 170 85 55 85 85 85 80 95 90 85 85 85 345 315

2730 90 95 90 170 85 55 85 85 80 80 90 90 85 80 80 345 315

2760 90 95 90 170 85 55 85 85 80 80 90 90 80 80 80 345 310

2790 90 95 90 170 85 55 85 85 80 80 90 90 80 80 80 345 310

2820 90 95 90 170 85 55 85 80 80 80 90 85 80 80 80 345 310

2850 85 95 85 170 80 55 80 80 80 80 90 85 80 80 80 345 310

2880 85 95 85 170 80 55 80 80 80 80 90 85 80 80 80 345 310

2910 85 95 85 170 80 55 80 80 80 80 90 85 80 80 80 345 310

2940 85 95 85 170 80 55 80 80 80 80 90 85 80 80 80 345 305

2970 85 95 85 170 80 55 80 80 80 80 90 85 80 80 80 345 305

Table 14-34 Water level data at 17 points in a canal network in The Netherlands. 
(Continued)
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Time 
(min)

Water level (cm) at point

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 

3000 85 95 85 170 80 55 80 80 80 75 90 85 80 80 80 345 305

3030 85 95 85 170 80 50 80 80 80 75 90 85 80 75 75 345 305

3060 85 90 85 170 80 50 80 80 75 75 90 85 80 75 75 345 305

3090 85 90 85 170 80 50 80 80 75 75 90 85 75 75 75 345 300

3120 85 90 85 170 80 50 80 75 75 75 90 85 75 75 75 345 300

3150 85 90 85 170 75 50 75 75 75 75 90 85 75 75 75 345 300

3180 85 90 85 170 75 50 75 75 75 75 90 85 75 75 75 345 300

3210 85 90 85 170 75 50 75 75 75 75 90 85 75 75 75 345 300

3240 85 90 85 170 75 50 75 75 75 75 85 85 75 75 75 345 295

3270 85 90 85 170 75 50 75 75 75 75 85 85 75 75 75 345 295

3300 85 90 85 170 75 50 75 75 75 70 85 85 75 75 75 345 295

3330 85 90 85 170 75 50 75 75 70 70 85 85 75 70 70 345 295

3360 85 90 85 170 75 50 75 75 70 70 85 80 75 70 70 345 290

3390 85 90 85 170 75 45 75 75 70 70 85 80 70 70 70 345 290

3420 85 90 85 170 75 45 75 70 70 70 85 80 70 70 70 345 290

3450 85 90 85 170 70 45 70 70 70 70 85 80 70 70 70 345 290

3480 85 90 85 170 70 45 70 70 70 70 85 80 70 70 70 345 290

3510 85 90 85 170 70 45 70 70 70 70 85 80 70 70 70 345 290

3540 85 90 85 170 70 45 70 70 70 70 85 80 70 70 70 345 290

3570 85 90 85 170 70 45 70 70 70 65 85 80 70 65 70 345 290

3600 85 90 85 170 70 45 70 70 65 65 85 80 70 65 65 345 290

3630 85 90 85 170 70 45 70 70 65 65 85 80 70 65 65 345 290

3660 85 90 85 170 70 45 70 70 65 65 80 80 70 65 65 345 290

3690 85 90 85 170 70 45 70 65 65 65 80 80 65 65 65 345 290

3720 85 85 85 170 65 40 65 65 65 65 80 80 65 65 65 345 290

3750 85 85 85 170 65 40 65 65 65 65 80 80 65 65 65 345 290

3780 80 85 80 170 65 40 65 65 65 65 80 80 65 65 65 345 290

3810 80 85 80 170 65 40 65 65 65 60 80 80 65 65 65 345 290

3840 80 85 80 170 65 40 65 65 65 60 80 80 65 60 60 345 290

3870 80 85 80 170 65 40 65 65 60 60 80 80 65 60 60 345 290

3900 80 85 80 170 65 40 65 65 60 60 80 80 65 60 60 345 290

3930 80 85 80 170 65 40 65 65 60 60 80 80 60 60 60 345 290

3960 80 85 80 170 65 40 60 60 60 60 80 80 60 60 60 345 290

3990 80 85 80 170 60 35 60 60 60 60 80 80 60 60 60 345 290

Table 14-34 Water level data at 17 points in a canal network in The Netherlands. 
(Continued)

Continued
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Time 
(min)

Water level (cm) at point

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 

4020 80 85 80 170 60 35 60 60 60 55 80 75 60 60 60 345 290

4050 80 85 80 170 60 35 60 60 60 55 75 75 60 55 55 345 290

4080 80 85 80 170 60 35 60 60 55 55 75 75 60 55 55 345 290

4110 80 85 80 170 60 35 60 60 55 55 75 75 60 55 55 345 290

4140 80 85 80 170 60 35 60 60 55 55 75 75 60 55 55 345 290

4170 80 85 80 170 60 35 60 55 55 55 75 75 60 55 55 345 290

4200 80 85 80 170 55 35 55 55 55 55 75 75 55 55 55 345 290

4230 80 85 80 170 55 30 55 55 55 50 75 75 55 50 55 345 290

4260 80 85 80 170 55 30 55 55 55 50 75 75 55 50 50 345 290

4290 80 85 80 170 55 30 55 55 50 50 75 75 55 50 50 345 290

4320 80 85 80 170 55 30 55 55 50 50 75 75 55 50 50 345 290

4350 80 85 80 170 55 30 55 55 50 50 75 75 55 50 50 345 290

4380 80 85 80 170 55 30 55 50 50 50 75 75 55 50 50 345 290

4410 80 85 80 170 50 30 50 50 50 45 70 75 55 45 50 345 290

4440 80 85 80 170 50 30 50 50 50 45 70 75 50 45 45 345 290

4470 80 85 80 170 50 30 50 50 45 45 70 75 50 45 45 345 290

4500 80 85 80 170 50 25 50 50 45 45 70 75 50 45 45 345 290

4530 80 85 80 170 50 25 50 50 45 45 70 75 50 45 45 345 290

4560 80 80 80 170 50 25 50 50 45 45 70 75 50 45 45 345 290

4590 80 80 80 170 50 25 50 50 45 45 70 75 50 40 45 345 290

4620 80 80 80 170 50 25 50 45 45 40 70 75 50 40 40 345 290

4650 80 80 80 170 45 25 45 45 45 40 65 75 50 40 40 345 290

4680 80 80 80 170 45 25 45 45 40 40 65 75 45 40 40 345 290

4710 80 80 80 170 45 25 45 45 40 40 65 75 45 40 40 345 290

4740 80 80 80 170 45 20 45 45 40 40 65 75 45 40 40 345 290

4770 80 80 80 170 45 20 45 45 40 35 65 75 45 35 40 345 290

4800 80 80 80 170 45 20 45 45 40 35 65 75 45 35 35 345 290

4830 80 80 80 170 45 20 45 40 40 35 65 75 45 35 35 345 290

4860 80 80 80 170 45 20 45 40 40 35 65 75 45 35 35 340 290

4890 80 80 80 170 45 20 45 40 40 40 65 75 45 40 40 340 290

4920 80 80 80 170 45 20 45 40 40 35 65 75 45 35 35 340 290

4950 80 80 80 170 40 15 40 40 40 35 65 75 45 35 35 340 290

Table 14-34 Water level data at 17 points in a canal network in The Netherlands. 
(Continued)
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Time 
(min)

Water level (cm) at point

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 

4980 80 80 80 170 40 15 40 40 40 35 65 75 45 35 35 340 290

5010 80 80 80 170 40 15 40 40 40 40 65 75 45 40 40 340 290

5040 80 80 80 170 40 15 40 40 40 35 65 75 45 35 35 340 290

5070 80 80 80 170 40 15 40 40 35 35 65 75 45 35 35 340 290

5100 80 80 80 170 40 15 40 40 40 40 65 75 45 40 40 340 290

5130 80 80 80 170 40 10 40 40 40 35 65 75 45 35 35 340 290

5160 80 80 80 170 40 10 40 40 35 35 65 75 45 35 35 340 290

5190 80 80 80 170 40 10 40 40 35 35 65 75 45 35 35 340 290

5220 80 80 80 170 40 10 40 40 40 40 60 75 45 40 40 340 290

5250 80 80 80 170 40 10 40 40 40 35 60 75 45 35 35 340 290

5280 80 80 80 170 40 5 40 40 35 35 60 75 45 35 35 340 290

5310 80 80 80 170 40 5 40 40 40 35 60 75 45 40 40 340 290

5340 80 80 80 170 40 5 40 40 40 35 60 75 45 35 35 340 290

5370 80 80 80 170 40 5 40 40 35 35 60 75 40 35 35 340 290

5400 80 80 80 170 40 5 40 40 35 35 60 75 45 35 35 340 290

5430 80 80 80 170 40 0 40 40 40 40 60 75 45 40 40 340 290

5460 80 80 80 170 40 0 40 40 35 35 60 75 45 35 35 340 290

5490 75 80 75 170 40 5 40 40 35 35 60 75 45 35 35 340 290

5520 75 80 75 170 40 5 35 35 35 35 60 75 45 35 35 340 290

5550 75 80 75 170 40 5 40 40 40 40 60 75 45 40 40 340 290

5580 75 80 75 170 40 5 40 40 35 35 60 75 45 35 35 340 290

5610 75 80 75 170 40 5 35 35 35 35 60 70 40 35 35 340 290

5640 75 80 75 170 35 5 35 35 35 35 60 70 45 35 35 340 290

5670 75 80 75 170 35 10 35 35 35 35 60 70 45 35 35 340 290

5700 75 80 75 170 40 10 40 40 35 35 60 70 45 35 35 340 290

5730 75 80 75 170 40 10 40 40 40 40 60 70 45 40 40 340 290

5760 75 80 75 170 40 10 40 35 35 35 60 70 40 35 35 340 290

5790 75 80 75 170 40 10 35 35 35 35 60 70 40 35 35 340 290

5820 75 80 75 170 40 5 40 40 35 35 60 70 45 35 35 340 290

5850 75 80 75 170 40 5 40 40 40 40 60 70 45 40 40 340 290

5880 75 80 75 170 40 5 40 40 35 35 60 70 40 35 35 340 290

5910 75 80 75 170 40 0 40 40 35 35 60 70 40 35 35 340 290

5940 75 80 75 170 40 0 40 40 35 35 60 70 40 35 35 340 290

5970 75 80 75 170 40 5 40 35 35 35 60 70 45 35 35 340 290

Table 14-34 Water level data at 17 points in a canal network in The Netherlands. 
(Continued)
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    Chapter 15 

  Rating Curves  

       A rating curve, in principle, is a relation between fl ux (usually volumetric) and 
concentration related to a river or stream. A volumetric fl ux can be represented 
by fl ow discharge (cubic meters per second) and its corresponding fl ow concen-
tration by fl ow depth or stage above a datum. The relation between stage and 
discharge is often referred to as the stage–discharge relation or stage–discharge 
rating curve. It is treated as a kinematic relation (Singh  1993 ). Likewise, concen-
tration can also be represented by suspended sediment concentration. Then the 
relation between suspended sediment concentration and discharge defi nes a 
suspended sediment rating curve. Of course, the product of discharge and sedi-
ment concentration yields the sediment discharge. Similarly, if concentration is 
represented by pollutant concentration, then the relation between pollutant con-
centration and discharge corresponds to the pollutant rating cure. The pollutant 
discharge is obtained by multiplying the pollutant concentration with discharge. 
In a similar vein, the relation between infi ltration capacity rate and cumulative 
infi ltration can be viewed as infi ltration rating curve. Thus, there are different 
types of rating curves used in hydraulics and hydrology. Since the rating curves 
are of similar form from an algebraic viewpoint, and fundamental to all rating 
curves is the estimation of fl ux, this chapter focuses on the stage–discharge rating 
curve only. 

  15.1     Stage–Discharge Relation 

 Experimental measurements of discharge and the corresponding observations 
of stage at a station or gauge are used to develop a stage–discharge relation or 

c15.indd   653c15.indd   653 5/21/2014   11:17:33 AM5/21/2014   11:17:33 AM



654 Entropy Theory in Hydraulic Engineering

rating curve. This relation is used for the determination of discharge for a mea-
sured stage. Rating curves are used for a variety of purposes. They are used for 
constructing continuous records of discharge, continuous time series of sediment 
discharge or sediment concentration, continuous pollutant graphs, fl oodplain 
mapping, storage variation, hydraulic design, catchment routing, damage assess-
ment, and so on. 

 The fi rst step in establishing a rating curve is to obtain data on discharge and 
stage. Discharge is a product of cross-sectional fl ow area and fl ow velocity, and 
since cross-sectional area is computed using depth and width, it is desirable 
to determine the discharge at a place where velocity variations are kept to a 
minimum. For example, at a weir as water fl ow increases, the fl ow cross-sectional 
area increases but the velocity changes are kept to a minimum, and the discharge 
increases with the fl ow cross-sectional area. This phenomenon means that the 
discharge can be easily computed by knowing the weir geometry, and the height 
of the water above the weir crest can be translated into discharge with the use 
of a mathematical relation called rating curve. Where emplacement of a weir is 
not an option, a stable river cross section should be selected. Such a cross section 
is usually associated with a high depth-to-width ratio, and erosion and deposi-
tion of sediment is relatively small. 

 Ideally, the station rating curve should be a smooth curve of parabolic shape, 
without reversals in curvature. In the absence of an abrupt change in the slope 
of the rating curve, the rate of increase in stage corresponding to a specifi ed 
increase in discharge should be reasonably consistent throughout the stage. In 
the case of stage–discharge relation for a channel, the channel must be capable 
of regulating or stabilizing the fl ow past the gauge such that for a given stage 
or height of the water surface, the discharge past the gauge must remain unal-
tered. The stage–discharge relation is controlled by a section or reach of the 
channel below the gauge, known as the section control. It eliminates the infl uence 
of all other boundary conditions on the velocity of fl ow at the stage. A control 
includes all the channel physical features that hydraulically determine the weir 
height at a given point for a certain rate of fl ow. All conditions infl uencing 
the velocity of fl ow past the gauge must be included as part of the control. It is 
clear that control plays a fundamental role in establishing a stage–discharge 
relation. 

 A control may be complete or partial. A complete control, as the name sug-
gests, governs the stage–discharge relation for the full range of the stage and is 
independent of all downstream conditions. On the other hand, a partial control 
governs the relation for only part of the range in the stage. It may act in concert 
with other controls and be an essential part of the complete control. 

 The section control may be natural or artifi cial, and it must be capable of 
maintaining a fairly stable relation between discharge and water stage at the 
selected point above it. It entails controlling elements that are situated in a short 
length of the river. Examples of control include a boulder-covered rifl e, rocks 
crossing the river, an indurated bed, and an overfl ow dam. For artifi cial controls, 
such as dams and weirs, the stage–discharge relation may be developed in labo-
ratory conditions but must be verifi ed by fi eld measurements for their use. 
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 The channel control is composed of channel slope, resistance, and dimen-
sions over a considerable distance. This distance varies inversely with slope and 
increases with increasing stage. If the distance increases farther downstream and 
if it includes controls of new downstream features, then the curvature of the 
rating curve may exhibit reversals. If a channel has a fl at slope, the control at 
high stages may extend so far downstream that it may involve backwater effects 
that may not occur at lower stages. Abrupt changes in controls and submergence 
of controls most likely cause irregularities in the slope of the stage–discharge 
relation. 

 In order for a stage–discharge relation to be stable for a given discharge, both 
relations of slope to stage and slope to discharge must remain unaltered. This 
stability corresponds to a complete control in its effectiveness. These relations 
would be constant for steady-state conditions, which do not occur often. Never-
theless, the sites for the position of gauges and controls must be selected such 
that the variation in discharge for a given stage caused by variations in slope, 
velocity, or channel conditions is small during the period involved. 

 A permanent control ensures a permanent stage–discharge relation at all 
times, as long as the slope remains the same. For a permanent control, the posi-
tion with respect to the datum of the gauge, its distance downstream from 
the gauge, and the condition of the streambed between the gauge and part of 
the channel controlling the stage–discharge relation must remain unchanged. 
How ever, in real life these conditions are seldom met, and a permanent control 
and consequent permanent stage–discharge relation do not remain unchanged. 
Even if the control may seem permanent, the stage–discharge relation may 
change.  

  15.2     Forms of Stage–Discharge Relations 

 A rating curve for a gauge in a channel dominated by friction is normally 
expressed in a power form (Corbett  1962 ) as

  Q a y y cb= − +( )0       (15.1)  

where  Q  is discharge;  y  is stage or height of water surface;  y  0  is the height when 
discharge is negligible, or a constant, or a parameter;  b  is an exponent; and  a  and 
 c  are parameters. Equation  (15.1)  specializes into three types. 

  15.2.1     Type 1 

 In this case,  y  0   =  0 and  c   =  0. Equation  (15.1)  then becomes

  Q ayb=       (15.2a)  

or

  log log logQ a b y= +       (15.2b)    

c15.indd   655c15.indd   655 5/21/2014   11:17:33 AM5/21/2014   11:17:33 AM



656 Entropy Theory in Hydraulic Engineering

  15.2.2     Type 2 

 In this case,  c   =  0. Equation  (15.1)  then becomes

  Q a y y b= −( )0       (15.3a)  

or

  log log log( )Q a b y y= + − 0       (15.3b)    

  15.2.3     Type 3 

 In this case,  y  0   =  0. Equation  (15.1)  then becomes

  Q ay cb= +       (15.4a)  

or

  log( ) log logQ c a b y− = +       (15.4b)   

 It should be noted that values of parameters  a ,  b , and  c  vary from one relation 
to another. In the hydraulics literature, equations  (15.1)  to (15.4) have been 
applied. The objective here is to derive these relations using the entropy theory. 

  Example 15.1          A set of observed data of stage and discharge at the Lakhwar Dam 
site on the Yamuna River, India, is given in Table  15-1 . Plot the stage–discharge 
data on log-log graph paper. Then fi t a curve to the data. Which type of rating 
curve best represents this data set? Estimate the parameters of the equation rep-
resenting this curve.   

  Solution     The stage–discharge observations are plotted on log-log graph paper, 
as shown in Fig.  15-1 (a) and in arithmetic scale in Fig.  15-1 b. From the plot in 
Fig.  15-1 (b), it seems that rating curve type 3 better repesents the measurements. 
From the graph paper, parameters of the equation corresponding to this curve 
are  c   =  3.577, log a   =   − 5958.6,  b   =  926.76. Rating curves are fi tted to the data using 
the least-squares method.   

  Type 1 

  log . , .a b= − =5752 5 897 74     

    log log log . . logQ a b y y= + = − +5752 5 897 74        
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  Type 2 

  y a b0 622 2 5 2646 0 6952= = =. , log . , .     

    log log log( ) . . log( . )Q a b y y y= + − = + −0 5 2646 0 6952 622 2        

  Type 3 

  c a b= = − =3 577 5958 6 926 76. , log . , .    

    log( . ) log log . . logQ a b y y− = + = − +3 577 5958 6 926 76         

Stage 
(m)

Discharge 
(m 3 /s)

Stage 
(m)

Discharge 
(m 3 /s)

Stage 
(m)

Discharge 
(m 3 /s)

622.23 31.25 622.57 69.8 623.36 224.29

622.23 30.63 622.79 96.4 623.37 225.86

622.24 31.48 622.85 109.98 623.37 236.49

622.26 30.56 622.92 124.04 623.43 186.6

622.26 31.82 622.93 117.99 623.43 250.13

622.285 34.53 622.96 139.61 623.44 213

622.287 35.37 622.99 122.95 623.44 252.05

622.29 32.94 623 178.24 623.46 241.74

622.29 36.83 623 122.86 623.48 264.66

622.3 36.36 623.01 126.51 623.48 271.69

622.3 38.52 623.02 148.61 623.49 281.11

622.31 32.24 623.02 129.54 623.49 259.71

622.32 39.3 623.08 165.08 623.51 256.8

622.32 38.53 623.1 180.46 623.6 303.99

622.358 43.82 623.11 201.3 623.6 227.45

622.38 45.66 623.15 183.23 623.69 316.45

622.44 50.49 623.15 148.08 623.71 302.73

622.46 57.51 623.19 182.06 623.73 269.29

622.53 70.13 623.28 215.77 623.78 281.26

622.57 73.3 623.31 215.71 623.82 329.83

624.14 425.71 624 326.35 623.83 336.98

624.24 451.87 624.12 408.1 623.91 345.4

622.23 30.56

 Table 15-1      Stage–discharge data observed in 1978 at the Lakhwar dam site on the 
Yamuna River, India.  
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  Figure 15-1      Stage–discharge relation for Yamuna River at the Lakhwar Dam site, 
India.    

(a)

(b)

  Example 15.2          A set of data of stage and discharge observed for the Tennessee 
River near Scottsboro, Alabama, is given in Table  15-2 . Plot the stage–discharge 
data on log-log graph paper. Then fi t a curve to the data. Which type of rating 
curve best represents this data set? Estimate the parameters of the equation rep-
resenting this curve.   

  Solution     The stage–discharge observations are plotted on log-log graph paper, 
as shown in Fig.  15-2 . From the plot, it seems that rating curve type 2 better repe-
sents the measurements. From the graph paper, parameters of the equation cor-
responding to this curve are log  a   =  5.0454 and  b   =  2.0815. Rating curves are fi tted 
to the observed data using the least-squares method.   

  Type 1 

  log . , .a b= =8 5492 1 1246   

     log log log . . logQ a b y y= + = +8 5492 1 1246        
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  Figure 15-2      Stage–discharge relation for the Tennessee River near Scottsboro, 
Alabama.    

(a)

(b)

 Table 15-2      Stage–discharge data observed for the Tennessee River near Scottsboro, 
Alabama.  

Stage 
(ft)

Discharge 
(ft 3 /s)

Stage 
(ft)

Discharge 
(ft 3 /s)

Stage 
(ft)

Discharge 
(ft 3 /s)

26.28 247,000 16.85 124,000 9.44 59,300

24.36 215,000 15.64 96,500 8.52 53,200

24.19 216,000 14.91 91,000 7.38 45,200

23.3 202,000 14.73 107,000 6.46 40,100

23.22 188,000 13.96 95,800 5.09 31,400

22.5 180,000 11.26 79,200 4.54 28,800

19.39 131,000 11.29 68,200 3.98 25,000

18.74 132,000 10.76 73,200 2.04 14,800

18.61 136,000
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  Type 2 

  y a b0 7 6 5 0454 2 0815= = =. , log . , .   

     log log log( ) . . log( . )Q a b y y y= + − = + −0 5 0454 2 0815 7 6        

  Type 3 

  c a b= − = =2426 174 8 3726 1 1795. , log . , .    

    log( . ) log log . . logQ a b y y+ = + = +2426 174 8 3726 1 1795       

 Type 3 seems to better represent the data.  

  Consider, for example, equation  (15.3a)  or (15.3b). Parameters  a  and  b  can be 
estimated using a least-squares method for given observations of stage and dis-
charge (Singh  1993 ). Plotting equation  (15.3b)  on logarithmic paper requires an 
a priori estimation of  y  0 . To that end, one can plot stage against discharge for 
several values of  y  0  and select the value that yields the best fi t curve. Another 
simple way is to extend the curve to  Q   =  0 and from there get the value of  y  0 . 
Then, one plots log( y  –  y  0 ) versus log Q . If the plot is a straight line, the value of 
 y  0  obtained by extrapolation is acceptable. Otherwise, another value of  y  0  in the 
neighborhood of the previously selected value is used, and the procedure is 
repeated until a straight line is obtained. 

 One can also compute  y  0  analytically as follows. Consider a smooth curve 
between  Q  and  y  and select three points, designated as 1, 2, and 3, on this curve 
such that  Q  1 / Q  2   =   Q  2 / Q  3 . The coordinates of these points are ( Q  1 ,  y  1 ), ( Q  2 ,  y  2 ), 
and ( Q  3 ,  y  3 ). Then, one can write from equation  (15.3a) 

  
( )
( )

( )
( )

y y
y y

y y
y y

b

b

b

b
1 0

2 0

2 0

3 0

−
−

=
−
−

      (15.5)   

 Equation  (15.5)  can be written as

  
( )
( )

( )
( )

y y
y y

y y
y y

1 0

2 0

2 0

3 0

−
−

=
−
−

      (15.6)   

 Solving equation  (15.6) , one obtains

  y
y y y

y y y
0

1 3 2
2

1 3 22
=

−
+ −

      (15.7)   

 Equation  (15.7)  is an explicit expression for  y  0 . 
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  Example 15.3          If equation  (15.3a)  represents the data in Example  15.1  well, then 
determine parameter  y  0  using equation  (15.7) . Also determine this parameter 
graphically. How close are the two estimates?  

  Solution     Choose three points which are highlighted in Fig.  15-3 . Their coordi-
nates are

Stage 
(m)

Discharge 
(m 3 /s)

622.26 31.82

622.79 96.4

623.6 227.45

  Figure 15-3      Graphical method for determining  y  0 .    

    y
y y y

y y y
0

1 3 2
2

1 3 2

2

2
622 26 623 6 622 79

622 26 623 6 2 62
=

−
+ −

= × −
+ − ×

. . .
. . 22 79

621 26
.

.= m       

  From the graph, the trend line meets the storage axis at  y  0   =  622.2 m. The two 
values are not the same, but they are not far apart either.     

  15.3     Derivation of Rating Curves Using Entropy 

 Let the maximum stage (channel fl ow depth) be denoted as  D . It is then assumed 
that all values of stage  y  measured from the bed to any point between 0 and  D  
are equally likely (Singh  2010 ). In reality, this is not highly unlikely because at 
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different times different values of stages do occur. Then the cumulative probabil-
ity distribution of discharge can be expressed as the ratio of the stage to the point 
where discharge is to be considered and the stage up to the maximum water 
surface. The probability of discharge being equal to or less than a given value of 
 Q  is  y / D ; at any stage (measured from bed) less than a given value,  y , the dis-
charge is less than a given value, say  Q ; thus the cumulative distribution function 
of discharge,

  F Q P Q P( ) ( ), ,= ≤ =discharge a given value of probability       

can be expressed as

  F Q
y
D

( ) =       (15.8)   

  F ( Q ) denotes the cumulative distribution function, and  Q   =  discharge (m 3 /s). The 
probability density function is obtained by differentiating equation  (15.8)  with 
respect to  Q :

  f Q
dF Q

dQ D
dy
dQ

f Q D
dQ
dy

( )
( )

( )= = =
⎛
⎝⎜

⎞
⎠⎟

−
1

1

or       (15.9)   

 The term  f ( Q ) dQ   =   F ( Q   +   dQ ) –  F ( Q ) denotes the probability of the discharge 
being between  Q  and  Q   +   dQ . Since equation  (15.9)  constitutes the fundamental 
hypothesis used here for deriving stage–discharge relations using entropy, it is 
useful to evaluate its validity. This hypothesis (i.e., the relation between the 
cumulative probability  F ( Q ) and the ratio ( y / D ) should be tested for a number 
of natural rivers. 

  Example 15.4          Consider the set of data on stage and discharge. Determine if the 
hypothesis given by equation  (15.8)  is valid.  

  Solution     For the data shown in Example  15.1 , the histogram of discharge values 
corresponding to their probabilities is plotted as shown in Fig.  15-4a . Then the 
cumulative probability distribution against  y / D  can be plotted as shown in Fig. 
 15-4b . This fi gure shows that the hypothesis is only approximately valid. 

   The objective here is to determine the probability density function of  Q ,  f ( Q ). 
This goal is accomplished by maximizing the Shannon entropy (Shannon  1948 ) 
of discharge,  H ( Q ):

  H Q f Q f Q dQ
Q

QD
( ) ( )ln ( )= −∫

0
      (15.10)  

where  Q  0  and  Q D   represent the lower and upper limits of discharge for integra-
tion. Equation  (15.10)  expresses a measure of uncertainty about  f ( Q ) or the 
average information content of sampled  Q . Maximizing  H ( Q ) is equivalent to 
maximizing  f ( Q )ln  f ( Q ). To determine the  f ( Q ) that is least biased toward what 
is not known about discharge, the principle of maximum entropy (POME) 
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developed by Jaynes ( 1957, 1982 ) is invoked, which requires specifi cation of 
certain information, called constraints, on discharge. According to POME, the 
most appropriate probability distribution is the one that has the maximum 
entropy or uncertainty, subject to these constraints. 

 For deriving the stage–discharge relation, according to Singh ( 1998, 2010 ), the 
constraint to be specifi ed is the total probability law, which must always be satis-
fi ed by the probability density function of discharge, which is written as

  C f Q dQ
Q

QD

1

0

1= =∫ ( )       (15.11)  

and

  C Q f Q dQ Q
Q

QD

2

0

= =∫ ln ( ) ln       (15.12)   

 Equation  (15.12)  is the mean of the logarithmic discharge values,  lnQ   . Equation 
 (15.11)  is the fi rst constraint defi ning the total probability law,  C  1 , and equation 
 (15.12)  is the second constraint,  C  2 . 

  Figure 15-4a      Probability mass function of discharge.    

  Figure 15-4b      Relation between the cumulative probability  F ( Q ) and the ratio  y / D .    
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664 Entropy Theory in Hydraulic Engineering

 To obtain the least biased probability distribution of  Q ,  f ( Q ), the Shannon 
entropy, given by equation  (15.10) , is maximized according to POME, subject to 
equations  (15.11)  and  (15.12) . To that end, the method of Lagrange multipliers is 
used. The Lagrangian function then becomes

 L f Q f Q dQ f Q dQ C Q f Q d
Q

Q

Q

Q

u

D D

= − − − −
⎛

⎝⎜
⎞

⎠⎟
−∫ ∫( )ln ( ) ( ) ( ) ln ( )λ λ0 1 11

0

QQ C
Q

QD

−
⎛

⎝⎜
⎞

⎠⎟∫ 2

0

      (15.13)  

where  λ  0  and  λ  1  are the Lagrange multipliers. Recalling the Euler–Lagrange cal-
culus of variation and differentiating equation  (15.13)  with respect to  f  , noting 
that  f  is variable and  Q  is a parameter, and equating the derivative to zero, one 
obtains

  
∂
∂

= = − + − − −L
f

f Q Q0 1 10 1[ln ( ) ] ( )λ λ       (15.14)   

 Equation  (15.14)  leads to the entropy-based probability density function (PDF) 
of velocity as

  f Q Q( ) exp[ ln ]= − −λ λ0 1       

or

  f Q Q( ) exp( )= − −λ λ
0

1       (15.15)   

 The PDF of  Q  contains the Lagrange multipliers  λ  0  and  λ  1 , which can be deter-
mined using equations  (15.11)  and  (15.12) . 

 Substituting equation  (15.15)  in equation  (15.11) , one gets

  
exp( )−
− +

=− +λ
λ

λ0

1

1

1
1

1

0
0

Q
D

y
Q

Q

y

y       (15.16)   

 Equation  (15.16)  yields

  Q Q
D

y y= +
− +

−⎡
⎣⎢

⎤
⎦⎥

− + − +
0

1 0 1
0

1
1

1 11λ λλ λexp( )( )
( )       (15.17)   

 Equation  (15.17)  gives a general rating curve corresponding to the constraints 
given by equations  (15.11)  and  (15.12) .  

   15.3.1     Rating Curve Type 1 

 If  y  0   =  0 and  Q  0   =  0, then equation  (15.17)  leads to

  Q
D

y=
− +⎡

⎣⎢
⎤
⎦⎥

− +exp( )( )λ λ λ0 1

1
11 1       (15.18)   
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 Let

  a
D

= − +⎡
⎣⎢

⎤
⎦⎥

− +exp( )
( )

λ
λ

λ0
1

1
1

1
1

      (15.19)  

and

  b =
− +

1
11λ

      (15.20)   

 Equation  (15.18) , with the use of equations  (15.19)  and  (15.20) , can then be 
expressed as

  Q ayb=       (15.21)  

which is the same as equation  (15.2a) . It may now be interesting to evaluate the 
Lagrange multipliers for this simple case, fi rst. 

 Substitution of equation  (15.15)  in equation  (15.11)  with  Q  0  yields

  exp( ) ln( ) ( )ln( )λ
λ

λ λ λ
λ

0

1

1
0 1 1

1

1
1 1=

− +
= − − + + − +

− +Q
QD

Dor       (15.22)  

where  Q D   is the discharge at  y   =   D . 
 Differentiating equation  (15.22)  with respect to  λ  1 , one obtains

  
∂
∂

= − +
− +

λ
λ λ

0

1 1

1
1

lnQD       (15.23)   

 One can also write from equations  (15.15)  and  (15.11) 

  λ λ
0

0

1= −∫ln Q dQ
QD

      (15.24)   

 Differentiating equation  (15.24)  with respect to  λ  1  and simplifying, one obtains

  
∂
∂

= −λ
λ

0

1

lnQ       (15.25)   

 Equating equation  (15.23)  to equation  (15.25)  leads to an estimate of  λ  1 :

  λ1 1
1= −
−ln lnQ QD

      (15.26)   

 Therefore, exponent  b  of the power form rating curve given by equation  (15.21)  
becomes

  b Q QD= −ln ln       (15.27)   
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666 Entropy Theory in Hydraulic Engineering

 Equation  (15.27)  shows that exponent  b  of the power form rating curve can be 
estimated from the values of the logarithm of maximum discharge at the water 
surface that covers the channel fully and the average of the logarithmic values 
of discharge. The higher the difference between these logarithm values, the 
higher the exponent. 

 The Lagrange multiplier  λ  0  can now be expressed as

  λ0
1=

−
+ −( ) = +ln

ln ln
ln ln ln ln ln

Q
Q Q

Q Q
b

Q bD

D
D D       (15.28)   

 The PDF of  Q  can be expressed as

  f Q Qb( ) exp( )= −
−

λ0

1
1

      (15.29)  

and the CDF as

  F Q b Qb( ) exp( )= −λ0

1

      (15.30)   

 For  b   >  1, the PDF monotonically increases from 0 to 1. For  b   >  1,  dF / dQ , which 
is equation  (15.29) , is always bigger than 0. Thus,  F ( Q ) is a monotonically increas-
ing function, which is minimum at  Q   =  0 and maximum at  Q   =   Q D  , as shown in 
Fig.  15-5 . 

  When  Q   =   Q D  , according to equation  (15.30) ,  F Q b QD
b( ) exp( )= −λ0

1

   , by substi-
tuting  λ  0  from equation  (15.28) :

  F Q b Q b
b

Q b Q bQ
b

QD
b

D D
b

D
b

D
b( ) exp( ) exp ln ln= − = − −⎛

⎝
⎞
⎠ =

−
λ0

1 1 1 1

1 1 1
1 1

11 1=       

  Figure 15-5      Cumulative probability distribution of discharge.    
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  The entropy (in Napier) of the discharge probability distribution can be 
obtained by substituting equation  (15.29)  in equation  (15.10) :

  H
b

Q= − −⎛
⎝

⎞
⎠λ0

1
1 ln       (15.31)   

 Equation  (15.31)  shows that the entropy value increases with increasing dis-
charge, because the average of the log discharge values is higher. This result 
means that the rating curve has more uncertainty. 

  Example 15.5          Using the observed data set given in Examples  15.1  and  15.2 , com-
pute parameters  a  and  b . Then fi t the theoretical rating curve and evaluate how 
good the parameter values are.  

  Solution      Lakhwar Dam site.  For the data at the Lakhwar Dam site on the Yamuna 
River, India, in Example  15.1 , it is seen from Table  15-1  that the rating curve does 
not satisfy the assumption  y  0   =  0 and  Q  0   =  0. To apply the type 1 rating curve with 
equation  (15.21) , let  y  ’   =   y  – 622 m, so that it can fi t the  y  0   =  0 and  Q  0   =  0 assump-
tion. Now  D   =  2.4 m.

  λ1 1
1

1
1

6 44 4 84
0 214= −

−
= −

−
=

ln ln . .
.

Q QD
      

  λ0
6 44

6 44 4 84
6 44 4 84 5=

−
+ −( ) =

−
+ − =ln

ln ln
ln ln ln

.
. .

ln( . . )
Q

Q Q
Q QD

D
D ..046       

  b =
− +

=
− +

=1
1

1
0 373 1

1 272
1λ .

.       

  a
D

= − +⎡
⎣⎢

⎤
⎦⎥

= −⎡
⎣⎢

⎤
⎦⎥

− +exp( )
( )

exp( . )
.

( . )
λ

λ
λ0

1

1
1

1
5 046

2 4
1 0 214

1
11 272

148 2
.

.=       

  Q ay yb= = ′148 2 1 272. .        

 Now change  y  ’  back to  y , and the curve is as shown in Fig.  15-6 a. 
   Tennessee River site . For data from the Tennessee River in Example  15.2 , it is seen 
from Table  15-2  that it satisfi es the  y  0   =  0 and  Q  0   =  0 assumption. Thus, equations 
 (15.19)  and  (15.20)  can be used directly to determine parameters  a  and  b  without 
any modifi cation.

  λ1 1
1

0 066= −
−

=
ln ln

.
Q QD

      

  λ0 11 665=
−

+ −( ) =ln
ln ln

ln ln ln .
Q

Q Q
Q QD

D
D       

  b =
− +

=1
1

1 071
1λ

.       
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  a
D

= − +⎡
⎣⎢

⎤
⎦⎥

=
− +exp( )

( ) ,
λ

λ
λ0

1

1
1

1 7 459
1       

  Q ay yb= = 7 459 1 071, .        

 The curve is plotted in Fig.  15-6 b.    

  15.3.2     Rating Curve Type 2 

 In this case,  Q   =  0 at  y   =   y  0 . Therefore, equation  (15.17)  becomes

  Q
D

y y=
− +⎡

⎣⎢
⎤
⎦⎥

−
− + − +exp( )( )

( )
λ λ λ λ0 1

1
1

0

1
11 1

1       (15.32)   

 Using equation  (15.19) , equation  (15.32)  becomes

  Q a y y b= −( )0       (15.33)  

  Figure 15-6      Type 1 curve at (a) the Lakhwar Dam site and (b) the Tennessee River.    

(a)

(b)
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  Example 15.6          Using the observed data set from Examples  15.1  and  15.2 , compute 
parameters  a ,  b , and  y  0 . Then fi t the theoretical rating curve and evaluate how 
good the parameter values are.  

  Solution      Lakhwar Dam site.  For the data at the Lakhwar Dam site on the Yamuna 
River, India, it is seen from Example  15.3  that  y  0  is computed as 622.2 m. As no 
change has been made in  Q , equations  (15.26)  and  (15.28)  are still valid. As com-
puted in Example  15.5 ,

  λ λ1 00 214 5 046= =. .        

 Thus,

  b =
− +

=
− +

=1
1

1
0 373 1

1 272
1λ .

.       

  a
D

= − +⎡
⎣⎢

⎤
⎦⎥

= −⎡
⎣⎢

⎤− +exp( )
( )

exp( . )
.

( . )
λ

λ
λ0

1

1
1

1
5 046

624 4
1 0 214

1

⎦⎦⎥
=

1 272

0 126
.

.       

  Q a y y yb= − = −( ) . ( . ) .
0

1 2720 126 622 2        

 The rating curve is plotted in Fig.  15-7 a. 

  Figure 15-7      Type 2 curve at (a) the Lakhwar Dam site and (b) the Tennessee River.    

(a)

(b)
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670 Entropy Theory in Hydraulic Engineering

   Tennessee River site.  For the data from the Tennessee River, choose  y  0   =  2 ft,  a  
and  b  are the same as the value computed in Example  15.5 .

  Q a y y yb= − = −( ) , ( ) ..
0

1 077 459 2        

 The rating curve is plotted in Fig.  15-7 b.     

  15.3.3     Rating Curve Type 3 

 In this case, let  q   =   Q   –   Q  0 , where  Q  0  is some small value. It is assumed that 
 q   =  0 at  y   =  0. Then the derivation in the case of rating curve type 1 holds, and 
equation  (15.17)  becomes

  Q ay cb= +       (15.34)  

which is the same as equation  (15.4a) . Here parameters  a  and  b  have the same 
defi nitions, but  Q  is replaced by  q , as in case I, and  c   =   Q  0 . 

  Example 15.7          Using the observed data set given in Tables  15.1  and  15.2 , compute 
parameters  a ,  b , and  c . Then fi t the theoretical rating curve and evaluate how 
good the parameter values are.  

  Solution      Lakhwar Dam site.  For the data at the Lakhwar Dam site on the Yamuna 
River, India, it is seen from Example  15.3  and from Fig.  15-5  that  c   =  40 m 3 /s, and 
 q   =   Q  – 40 m 3 /s. Thus, the Lagrange multipliers  λ  0  and  λ  1  should be computed by 
taking  q  instead of  Q  in equations  (15.26)  and  (15.28) .

  λ1 1
1

0 012= −
−

= −
ln ln

.
q qD

      

  λ0 6 132=
−

+ −( ) =
ln

ln ln
ln ln ln .

q
q q

q qD

D
D       

  b =
− +

=1
1

1 013
1λ

.       

  a
D

= − +⎡
⎣⎢

⎤
⎦⎥

=
− +exp( )

( ) .
λ

λ
λ0

1

1
1

1 217 3
1       

  q ay yb= = 217 3 1 013. .       

  Q ay c yb= + = +217 3 401 013. .        

 The rating curve is plotted in Fig.  15-8 a. 
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  Figure 15-8      Type 3 curve at (a) the Lakhwar Dam site and (b) the Tennessee River.    

(a)

(b)

   Tennessee River site.  It is seen from Fig.  15-8 a that  c   =  –30,284 m 3 /s and  q   =   Q   +  
30,284 m 3 /s.

  λ1 1
1

11 106= −
−

= −
ln ln

.
q qD

      

  λ0 14 988=
−

+ −( ) =
ln

ln ln
ln ln ln .

q
q q

q qD

D
D       

  b =
− +

=1
1

0 0826
1λ

.       

  a
D

= − +⎡
⎣⎢

⎤
⎦⎥

=
− +exp( )

( ) , .
λ

λ
λ0

1

1
1

1 18 657 6
1       

  q ay yb= = 18 657 6 0 0826, . .       

  Q ay c yb= + = −18 657 6 30 2840 0826, . ,.        

 The rating curve is plotted in Fig.  15-8 b.  
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   Example 15.8          Compute the rating curves by the least-squares method for the 
stage–discharge data from USGS-08080500-DMF-Brazos (2006–2009) given in 
Table  15-3 .   

  Solution     Using the least-squares method, parameters of rating curve types 1, 2, 
and 3 are computed and parameter values are found to be

 Type 1 4 65 2 45: log . , .a b= =       

 Type  m2 2 5 0 20 5 090: . , log . , .y a b= − = − =       

 Type  m /s3 64 3 41 3 590
3: , log . , .Q a b= = =        

 The rating curves are plotted in Fig.  15-9 . It is seen from Fig.  15-9  that the type 2 
curve fi ts the observation better than other curves.   

 Table 15-3      Observed stage–discharge data.  

Stage 
(m)

Discharge 
(m 3 /s)

Stage 
(m)

Discharge 
(m 3 /s)

Stage 
(m)

Discharge 
(m 3 /s)

0.39 78.7 1 31.9 1.81 739

0.39 79.2 1.01 150 1.87 459

0.42 87.8 1.04 144 1.98 507

0.52 33.9 1.1 60.9 2.02 597

0.54 10 1.12 138 2.06 606

0.58 7.45 1.16 160 2.16 574

0.58 20.7 1.17 168 2.18 852

0.61 62.7 1.23 132 2.2 1,200

0.71 25.6 1.24 57.1 2.44 1,440

0.72 15.9 1.29 127 2.82 1,440

0.78 77.3 1.31 360 2.99 1,440

0.8 19.7 1.4 156 3.2 2,330

0.88 166 1.44 178 3.56 3,660

0.9 124 1.54 340 4.39 5,550

0.9 17.6 1.55 434 4.51 7,780

0.93 33.6 1.74 610 5.64 13,100

0.94 18.9 1.78 229 5.64 13,100

0.98 142 1.78 246
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   Example 15.9          Use the entropy-based method to compute the type 1 rating curve 
for the data given in Table  15-3 . Compare with the result from the least-squares 
method.  

  Solution     First, we need to fi nd out whether a modifi cation is needed for the type 
1 curve assumption. When  y  0   =  0,  Q  0  is small but not 0; thus, let  y  ’   =   y  – 1.2 m.

  λ1 1
1

0 681= −
−

=
ln ln

.
Q QD

      

  λ0 4 164=
−

+ −( ) =ln
ln ln

ln ln ln .
Q

Q Q
Q QD

D
D       

  b =
− +

=1
1

3 14
1λ

.       

  a
D

= − +⎡
⎣⎢

⎤
⎦⎥

=
− +exp( )

( ) .
λ

λ
λ0

1

1
1

1 57 49
1       

  Q ay yb= = 57 49 3 14. .        

 The rating curve is plotted in Fig.  15-10 . It is seen from Fig.  15-10  that the entropy-
based method fi ts the observation better.   

  Figure 15-9      Rating curves using the least-squares method at USGS-08080500-DMF-
Brazos (2006–2009).    
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   Example 15.10          Using the entropy-based method, compute the type 2 rating 
curve for the data given in Table  15-3 . Compare with the result from the least-
squares method.  

  Solution     Taking  y  0   =  –0.7 m,  λ  0  and  λ  1  are the same as those computed in Exam-
ple  15.9 .

  Q a y y yb= − = +( ) . ( . ) .
0

3 1457 49 0 7       

  The rating curves are plotted in Fig.  15-11 . It is seen from Fig.  15-8  that the results 
for the two methods are similar to each other.   

  Figure 15-10      Type 1 rating curves for different methods.    

  Figure 15-11      Type 2 rating curves for different methods.    
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   Example 15.11          Using the entropy-based method, compute the type 3 rating 
curve for the data given in Table  15-3 . Compare with the result from the least-
squares method.  

  Solution     Taking  Q  0   =  19.5 m 3 /s and using the parameters computed in 
Example  15.9 ,

  Q ay c yb= + = +57 49 19 53 14. ..        

 The type 3 rating curves are plotted in Fig.  15-12 . It is seen from  Figs. 15-11 and 
15-12  that the type 3 curves are slightly bigger than type 2 curves at small values 
of discharge.   

  Figure 15-12      Type 3 rating curves for different methods.    

   Example 15.12          Compute the rating curves by the least-squares method for 
the stage–discharge data from USGS-08083100-FK-Brazos (2006–2009) give in 
Table  15-4 .   

  Solution     For the type 1 curve,  a   =  0.068 and  b   =  3.83. For the type 2 curve, 
 y  0   =  –1.9 m,  a   =  0.001, and  b   =  5.08. For the type 3 curve,  Q  0   =  0.67 m 3 /s,  a   =  0.878, 
and  b   =  3.1. Rating curves are plotted in Fig.  15-13 . It is seen from the fi gure that 
type 1 and type 2 curves are a better fi t than the type 3 curve.   
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  Figure 15-13      Rating curves using the least-squares method at USGS-08083100-
FK-Brazos (2006–2009).    

 Table 15-4      Observed stage–discharge data.  

Stage 
(m)

Discharge 
(m 3 /s)

Stage 
(m)

Discharge 
(m 3 /s)

Stage 
(m)

Discharge 
(m 3 /s)

Stage 
(m)

Discharge 
(m 3 /s)

2.14 1.02 2.5 4.17 2.84 3.21 4.18 40

2.16 1.02 2.51 2.55 2.9 9.21 4.52 33.7

2.21 1.14 2.52 1.79 2.93 13 4.76 24.3

2.26 1.11 2.52 2.25 2.97 3.33 5.14 59.5

2.26 1.85 2.54 2.66 2.97 7.43 5.16 32.2

2.27 0.93 2.55 4.14 3.06 4.84 5.17 49

2.3 1.05 2.56 3.1 3.06 7.51 6.78 125

2.37 1.02 2.57 1.44 3.16 4.87 7.87 190

2.37 1.03 2.57 1.49 3.18 2.92 8.85 327

2.38 1.12 2.58 1.86 3.21 15.4 10.46 504

2.39 1.04 2.59 2.21 3.26 7.97 11.08 692

2.39 1.47 2.61 2.56 3.27 3.93 11.66 987

2.4 1.49 2.62 3.44 3.3 2.87 11.73 876

2.42 1.44 2.63 1.51 3.31 9.62 12.39 1,090

2.42 1.85 2.63 2.57 3.47 13.4 13.06 1,230

2.42 4.29 2.64 2.62 3.54 9.17 13.44 1,280

2.43 2.92 2.68 2.68 3.56 16.7 13.56 1,350

2.45 1.88 2.68 2.93 3.6 4.15 13.77 1,210

2.46 3.11 2.69 2.29 3.7 17.5 15.5 1,970

2.47 1.01 2.69 3.94 3.73 28.1 18.32 3,380

2.47 1.48 2.74 2.54 3.85 21.1 19.07 4,030

2.48 4.54 2.79 7.92 4.02 20.4 20.48 5,110

2.49 0.87 2.84 2.33 4.04 35.1 21.55 6,960
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   Example 15.13          Using the entropy-based method, compute the type 1 rating 
curve for the data given in Table  15-4 . Compare with the result from the least-
squares method.  

  Solution     First, we need to fi nd out whether a modifi cation is needed for the type 
1 curve assumption. When  y  0   =  0,  Q  0  is small but not 0. Thus, let  y  ’   =   y  – 2.05 m. 
Then,

  λ1 1
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1       

  Q ay yb= = ′0 03 4 21. .        

 The type 1 rating curve is plotted in Fig.  15-14 .   

  Figure 15-14      Type 1 rating curves for different methods.    

   Example 15.14          Using the entropy-based method, compute the type 2 rating 
curve for the data given in Table  15-4 . Compare with the result from the least-
squares method.  

  Solution     Taking  y  0   =  –1.9 m,  λ  0  and  λ  1  are the same as those computed in Exam-
ple  15.13 .
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  Q a y y yb= − = +( ) . ( . ) .
0

4 210 03 1 9        

 The type 2 rating curve is plotted in Fig.  15-15 .   

  Figure 15-15      Type 2 rating curves for different methods.    

   Example 15.15          Using the entropy-based method, compute the type 3 rating 
curve for the data given in Table  15-4 . Compare with the result from the least-
squares method.  

  Solution     Taking  Q  0   =  11.5 m 3 /s and using the parameters computed in Example 
 15.13 , the type 3 rating curve is computed and plotted in Fig.  15-16 .

   Q ay c yb= + = +0 03 11 54 21. ..            

  Figure 15-16      Type 3 rating curves for different methods.    
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  Questions 

 Stage–discharge data from the USGS-08079600-DMF-Brazos station at the Brazos 
River in Texas are given in Table  15-5 .

   Q15.1      Verify the assumption on the cumulative distribution of equation  (15.8)  
and plot it.  

  Q15.2      Verify if the set of data can be considered for using the type 1 rating curve. 
(Examine whether  y  0   =  0 and  Q  0   =  0.)  

  Q15.3      If the answer of Q15.2 is yes, compute the Lagrange multipliers  λ  0  and 
 λ  1  using equations  (15.26)  and  (15.28) .  

  Q15.4      Compute parameters  a  and  b  and fi t the type 1 curve. Plot it and discuss 
the plot.  

  Q15.5      If  y  0   ≠  0, fi nd  y  0  from both the plot and equation  (15.7) .  

  Q15.6      With  y  0  computed from Q15.5, fi t the type 2 curve. Plot it and discuss the 
plot.  

  Q15.7      If  Q  0   ≠  0, fi nd  Q  0  from the plot.  

 Table 15-5      Stage–discharge data.  

Stage 
(m)

Discharge 
(m 3 /s)

Stage 
(m)

Discharge 
(m 3 /s)

0.15 6.07 0.64 26.2

0.2 6.9 0.8 53

0.22 28.1 0.86 49.8

0.24 9.54 0.89 34.3

0.25 7.96 0.91 60.8

0.27 5.5 0.96 36.3

0.31 11.6 0.98 35.2

0.33 5.58 1.02 112

0.39 13.8 1.27 70.7

0.42 11.5 1.36 112

0.42 4.58 1.72 160

0.47 15.9 2.1 268

0.5 17.8 2.44 466

0.52 19.9 6.59 2,150

0.53 21.4 6.92 2,440

0.55 21.7 0.59 28.1
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680 Entropy Theory in Hydraulic Engineering

  Q15.8      Compute the Lagrange multipliers  λ  0  and  λ  1  again with  Q  0 , and state how 
different they are from those computed in Q15.3.  

  Q15.9      Compute parameters  a  and  b , fi t the type 3 curve, and plot it. Discuss the 
plot to evaluate how well it fi ts.  

  Q15.10      Compare the entropy-based methods with the least-squares method.      
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685

    Chapter 16 

  Reliability of Water 
Distribution Systems  

       A typical urban water supply system is comprised of fi ve subsystems: water 
source, bulk transmission, treatment facility, fi nished water storage, and water 
distribution system. A nonurban water distribution system may simply be 
composed of a network of pipes along with pumps, valves, and storage tanks. 
Each subsystem can be investigated separately as a system. In general, pumps, 
storage systems, and bulk transmission and treatment are designed with sig-
nifi cant redundancy. That is why large municipal water distribution systems do 
not fail completely when there is a breakage of a pipe, or a pump, or other 
components. Pipes are of different sizes and carry water to demand centers. 
Pipes and pumps account for a large portion of the network cost, and their 
physical condition greatly determines the network reliability (Germanopoulos 
et al.  1986 ). 

 A water distribution network is represented as nodes connected by links that 
are made up of pipes and valves. Nodes are demand centers that are fed with 
water carried by links. The sources of water are denoted as nodes because water 
fl ows into them during low water demand and out of them during high demand. 
Both pipes and pumps are represented as links. Each pipe has a diameter, and 
each pump has a pumping capacity in terms of fl ow rate and static head. Valves 
are located on the links, and they control the direction and magnitude of fl ow in 
the links; therefore, they are indicated by arrows. Junctions of links without 
demands are not considered to be nodes. In this manner, all the components of 
a water distribution network are considered links (arcs) or nodes (sinks). 
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 Thus, from the standpoint of evaluating performance, a water distribution 
network is comprised of sources (one or more), nodes (demand points), and links 
(or pipes). A node represents a group of consumer units of water assigned to the 
end of the nearest link. Links are pipe mains. In the design, only pipes are con-
sidered, and small service pipes connecting to households may be ignored. 
Traditional designs are based on relationships among the parameters of fl ow, 
diameter, and head loss within a pipe. Because the objective of the network is to 
supply water to meet demand at demand nodes, the water can be supplied to a 
demand node through one or more links. The links can receive the water directly 
from the source or from a node. Thus, there can be many layouts for water dis-
tribution networks, depending on the way water is supplied. Fig.  16-1  shows a 

Layout 1

Layout 2 

Layout 3 

Layout 4 

Source

Link

Node

Layout 5

 Figure 16-1a      Eight simple layouts.    
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sample of water distribution network layouts. These networks are designed for 
different demands and have different levels of reliability in terms of meeting 
demand at nodes in case one or more links fail, which is not unusual in real life.   

 Consider, for example, a single demand node, as shown in Fig.  16-2 , with a 
demand fl ow of  Q  (m 3 /h). This demand fl ow is satisfi ed in fi ve alternative ways. 
It can be argued that layouts B, C, D, and E have redundant fl ow links or fl ow 
paths. It is intuitive to assume that in case of a link or pipe failure, the layout 
with more pipes feeding into the demand node is more reliable. Thus, it can be 
surmised that greater redundancy leads to greater reliability. Fundamentally, 

      

Layout 6 

Layout 7 

Layout 8 

Figure 16-1a, Continued
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1 2 3

4 5 6

7 8 9

Layout 2

Layout 3

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Layout 1

   

Layout 4

1 2 3

4 5 6

7 8 9

Layout 6 

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Layout 5 

 Figure 16-1b      Six alternative simple layouts.    
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redundancy in a water distribution network means that demand points or nodes 
have alternative supply paths for water in the event that some links go out of 
service. In a redundant network, there is suffi cient residual capacity to meet 
water fl ow requirements. For example, if any two links in layout D happen to 
go out of operation, demand can be met with supply from the other two links. 
Thus, redundancy is a characteristic of a water distribution system and is related 
to its reliability. This statement leads us to suggest that redundancy can be used 
as a measure of reliability. To ensure reliability, water distribution network design 
must incorporate some amount of redundancy. 

  Since the fl ow required for a node in the water distribution system is distrib-
uted in or carried by the links incident on the node, it is logical to interpret the 
redundancy at this node as a measure of disorder or diversity. These incident 
links are alternate paths, and clearly this disorder or diversity is related to the 
number of these paths or links. Now consider a case where there is only one link 
or fl ow path between the source and the node, implying a single link incident 
on the demand node. Then this system can be considered as a perfectly ordered 
system, because the geometric confi guration of the system is a branched network 
type or a network that has no loops. This system has no redundancy, and there 
is a complete knowledge about the fl ow distribution in the system. For a given 
demand pattern or design demands, one can compute fl ow rates in all pipes by 
working backward from a demand node and accumulating demand fl ows in 
each pipe up to a source node. This situation means that there is no uncertainty, 
no disorder, and no diversity and, hence, that its entropy is zero. Conversely, if 
there are alternate paths or links caused by the presence of loops carrying fl ows 
to the node, there is the possibility of fl ow variation in the links and, hence, 

  Figure 16-2      Five single-node water distribution layouts.    

BA

C D

E
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diversity or disorder and redundancy. In this case, the knowledge about the fl ow 
distribution in links is less than complete, implying nonzero system entropy. In 
this case, the system is more reliable. Thus, it is intuitive that one would want 
to maximize redundancy or disorder at the node. Hence, redundancy or reli-
ability can be quantifi ed using entropy. 

 This chapter focuses on the water distribution system only and discusses 
network reliability, which is evaluated in terms of the rate of failure of compo-
nents and their effect on the network, and the failure of the network to provide 
the required level of service during critical conditions. Discussion in the chapter 
draws heavily from the work of Awumah ( 1990 ) and Awumah et al. ( 1991 ). The 
need for reliability stems from uncertainties in consumer demand, fi re fl ow 
requirements and their locations, pumping system failures, ineffi cient storage, 
pipe failures and their locations, valve leakages and their locations, and reduced 
capacity caused by sedimentation. Goulter ( 1988 ) argues that the shape or layout 
of a network determines the level of reliability that can be imposed on the 
network. 

  16.1     Preliminary Considerations 

  16.1.1     Concept of Redundancy 

 Redundancy means that a network, which is composed of components, remains 
useful if one or more of its constituent components fail. This usefulness occurs, 
because the service provided by the failed components is taken over by other 
functioning components. In other words, the system provides backup capability. 
This design is how redundancy increases reliability of the network. The redun-
dancy can be provided in many ways, depending on the nature of the geometric 
confi guration. The effect of adding redundancy can be evaluated by a measure 
of the reliability of the system. If a system is such that its failure can be cata-
strophic, then a very high level of redundancy must be built into the components 
or stages that are considered critical to give high system reliability. 

 Redundancy may be applied at different levels to a multicomponent multi-
stage system, such as at the component level, stage level, subsystem level, or the 
system level itself. In the case of the component level, redundant components 
are added in parallel to some components at a particular stage. In the case of the 
stage level, some stages may be duplicated using parallel connections. In the case 
of the subsystem level, a group of stages forming the subsystem may be dupli-
cated. In the case of the system level, the entire system is duplicated. 

 Redundancy is a characteristic of the network geometry that is related to its 
reliability. Thus, redundancy can be considered as a reliability measure, refl ecting 
resilience or fl exibility of the network to external factors. In other words, if a 
network is truly redundant, then if a component fails the network has enough 
residual capacity to meet all fl ow requirements. When a network is old and 
requires frequent maintenance and reconstruction, the redundancy built into the 
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system at the planning stage comes in handy and seems to be the only way to 
continue to provide uninterrupted service as repair or reconstruction proceeds. 
This chapter discusses reliability via redundancy using entropy. 

 Redundancy can be expressed in terms of entropy, which is a measure of 
uncertainty. Redundancy at a particular node of a water distribution network 
can be viewed as a measure of uncertainty of the distribution of the required 
fl ow to the node in the links incident to the node, which are actually alternative 
fl ow paths. The uncertainty depends on the number of incident links that carry 
the water from the source to the node. If there is only one link between the source 
and the node, then the uncertainty or redundancy is zero; this confi guration, 
which has one link incident on a demand node, can be considered a perfectly 
certain system, that is, the confi guration has no uncertainty. If there are more 
links carrying water to the node, the system uncertainty increases.  

  16.1.2     Types of Redundancy 

 Two types of redundancy can be distinguished. The fi rst is active redundancy, 
in which all system components keep functioning permanently and mutually 
share the burden of keeping the system functioning, even when some of the 
components are not strictly needed or are underused in the nonfailed state of 
components. If any one component fails, others keep the system functioning, 
either at its normal level or at a reduced level, depending on the built-in redun-
dancy, until the failed component can be repaired or replaced. Examples include 
four aircraft engines and military reserves. 

 The second is passive redundancy, which involves arranging the redundant 
components in parallel to the regular components and keeping them in reserve. 
The redundant components are used only when regular components go out of 
service because of failure. Examples are the spare tire in a car or a standby electric 
generator in the event of failure of electricity. 

 In water distribution systems, mechanical and hydraulic redundancies are 
recognized. Hydraulic redundancy depends on the pumping head available, the 
availability of elevated storage tanks and their elevation, the time of the occur-
rence of failure, and the availability of the network to reverse fl ow in some links. 
It is a measure of the degradation of network performance that occurs, in terms 
of the percentage of the demand fl ow that can be supplied at some minimum 
pressure heads. Mechanical redundancy depends on the network layout (shape 
and size of components) and is a measure of the ability of the network to meet 
demand fl ows when a component fails, because water is carried by pipes. This 
type of redundancy is the focus of this chapter.  

  16.1.3     Relation to Reliability 

 Redundancy and reliability are related but are not one and the same. Reliability 
directly relates to probability and is stated by the percentage of times (or probabil-
ity) the system is deemed to have operated without failure. Thus, it is a measure 
of the frequency of failure, and, hence, explicitly measures risk. Conversely, 
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redundancy ensures that the system continues to operate when any of the com-
ponents that make up the system fail. Thus, redundancy relates only to the ability 
of the system to function in the event of failure and is not a measure of the fre-
quency of the occurrence of failure. Because increased redundancy results in 
increased reliability, reliability and redundancy are positively correlated. 

 Redundancy improves reliability by reducing the frequency of failure of the 
system, because it ensures that component failures do not affect the system 
adversely. It may be noted that the frequency of system failure is different from 
the frequency of individual component failure. Redundancy is a property of the 
network geometric confi guration that, in the event of pipe failures, determines 
if alternate supply paths can meet demand fl ows. The capacity of supply paths 
also becomes a factor in the redundancy measure. Thus, redundancy should 
incorporate both the layout structure and the hydraulic parameters, such as fl ow, 
within the layout. Conversely, reliability is a property of such things as the mate-
rial, corrosion, age and strength of pipes, soil environment, distribution of 
demands, and fi re requirements.  

  16.1.4     Units of Measuring Redundancy 

 Reliability can be measured on a scale of 0 to 1; zero means very unreliable, and 
one means highly reliable. Usually, a time frame is invoked when speaking of 
reliability. As a frequency measure, it is the fraction or the percentage of a given 
time span for which the component functions. Redundancy, however, depends 
on the factors, such as life span or design life, which must be taken into account 
for adequately stating the system performance. For example, it can be the number 
of alternative units of a component in the event of system failure. If the system 
performance is maintained at the normal level, its redundancy can be said to be 
one. If the system performance is a fraction, then the redundancy can be that 
fraction. In water distribution networks, one way to build redundancy is by 
providing looped networks, in other words, by providing two independent 
alternative paths from the source to each demand node. Thus, there is fl exibility 
in developing a redundancy measure. However, the measure depends on the 
factors that lead to adequate system performance. 

 Factors that may be included in a redundancy measure entail (1) the reli-
ability of the redundant component by comparison with the regular component; 
(2) the effi ciency or the output of the system under the two conditions, that is, 
under regular conditions and when the redundant component alone is in service; 
and (3) the type of redundancy in place. Now consider the case of a regular 
component and a parallel redundant component where both components are of 
equal capacity. If the capacity of the component is what is required by the system 
to operate fully, then the system can be characterized as having a redundancy of 
one unit with respect to this component, and this situation can be denoted as 
level-one redundancy. If the redundant component is half as full, then one can 
characterize the redundancy as half instead of unity. Likewise, if the system, 
under emergency, can deliver only a small fraction of the normal output, then 
the redundancy can be taken as this fraction. 
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 Redundancy can also be viewed a little differently. Consider the number of 
times or the proportion of time the system performs satisfactorily when each of 
the components fails in isolation and when failures occur one at a time. In this 
case, redundancy can be evaluated by removing a component from the system 
and then assessing the system performance. This step is repeated for each com-
ponent. Then, redundancy can be measured by the system output in each case 
as a fraction of the required output. The system can be considered redundant 
with respect to a particular component if the system output does not degrade 
below the desired level. 

 In the case of passive redundancy, the number of extra components in reserve 
or in parallel with regular components can be considered as a measure of redun-
dancy. However, in the case of active redundancy, the measure of redundancy is 
not straightforward. The reason is that all components of the system are in 
operation simultaneously, and neither of the components is totally regular nor 
totally redundant. In this case, if one component fails and the system continues 
to operate satisfactorily, then the system is redundant, but the unit it should have 
is not clear—should it be one? What happens when two components fail and 
the system continues to operate satisfactorily? Should it then have two units? 
What about more components failing? If the system output is a fraction of the 
required output, then the unit of redundancy can be a fraction. This discussion 
suggests that a universal defi nition of redundancy is lacking and so is its unit of 
measurement.  

  16.1.5     Redundancy in Water Distribution Networks 

 Clearly, a water distribution system must include some amount of redundancy 
through looped networks or through provision of independent paths of the 
source to each node, and there should be an appropriate measure of redundancy. 
The redundancy measure can be used to compare different network layouts, 
select the most appropriate layout, allocate redundancy within the distribution 
networks, determine the cost-redundancy frontier, and help with identifying the 
most reliable network. 

 A major component of a water distribution system is pumps, and the redun-
dancy thereof is important. For the pump system, both types of redundancy can 
be provided. For smaller water distribution systems, it is usual to provide passive 
redundancy in the pump arrangement, because this component is relatively 
inexpensive. However, for large distribution systems, active redundancy is the 
norm, because large-capacity pumps are expensive for passive redundancy. 
Rather, multiple smaller pumps can be provided so that when one pump goes 
out of service others can keep running at a satisfactory level. Pumps are usually 
selected to meet peak fl ow demand, and, hence, they have built-in redundancy 
with reference to average fl ow conditions. Storage tanks, both elevated and 
underground, are compartmentalized tanks, adding redundancy in the active 
form to the system. When a particular tank is scheduled for maintenance, the 
system continues to function, because other tanks or compartments remain 
active. This fact explains why large distribution systems do not fail completely 
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694 Entropy Theory in Hydraulic Engineering

because of the failure of a pipe or pump or other components, because there is 
a large amount of redundancy built into these systems.  

  16.1.6     Mechanical and Hydraulic Redundancies 

 In water distribution systems, two types of redundancy can be identifi ed: 
mechanical and hydraulic. Mechanical redundancy is the property of the layout 
(shape and size of components) and is a measure of the ability of the network to 
meet demand fl ows when a component fails. Conversely, hydraulic redundancy 
is a measure of the degradation of network performance expressed by the per-
centage of the demand fl ow that can be supplied at some minimum pressure 
heads. Hydraulic redundancy depends on pumping head available, the avail-
ability of elevated tanks and their elevations, time of occurrence of failure, and 
the ability of the network to change direction of fl ow in some links. Hydraulic 
redundancy contributes to network reliability by considering the percentage of 
degradation of network as the level of failure of the network. The discussion in 
this chapter focuses on mechanical redundancy.   

  16.2     Entropy-Based Redundancy Measures 

 In designing a water distribution network, a critically important requirement is 
that the fl ow to a demand node must be carried by multiple links instead of 
just one link, and these links should be connected directly to the node. Although 
these links may carry equal or unequal proportions of fl ow to the demand 
node, Goulter and Coals ( 1986 ) and Walters ( 1988 ) have shown that from a reli-
ability point of view it is more advantageous to carry equal proportions of fl ow 
for two reasons. First, in the case of unequal proportions of fl ow, network reli-
ability is severely affected if the link carrying the larger proportion goes out 
of service. Second, it is hydraulically ineffi cient. To illustrate, let the discharge 
in a pipe connecting nodes  i  to  j ,  q ij  , be expressed by the Hazen–Williams 
equation:

  q kC
h
L

Dij ij
ij

ij
ij=

0 54

0 54
2 63

.

.
.       (16.1)  

where  C ij   is the Hazen–Williams roughness coeffi cient,  L ij   is the pipe length,  h ij   
is the head loss through the pipe,  D ij   is the pipe diameter, and  k  is the conversion 
factor for units. For a given pipe network, head loss and discharge are variable 
but length and diameter are fi xed. 

 It is known from equation  (16.1)  that for a fi xed pipe size, discharge  q  carried 
by a pipe is approximately proportional to the 0.54 power of the head loss  h L   
in that pipe, i.e.,  q hL∝ 0 54.     or approximately  h L    ∝   q  2 . When a larger pipe fails and 
the fl ow is to be increased in a smaller pipe, then head loss would increase 
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quadratically as a function of discharge. For example, doubling the fl ow would 
quadruple the head loss, and tripling the fl ow would increase the head loss 
sixfold. Conversely, increasing the fl ow in a larger pipe would not cause the same 
order of head loss. 

 To develop a redundancy measure for a water distribution network, Awumah 
and Goulter ( 1989 ), Awumah et al. ( 1990, 1991 ), and Goulter ( 1992 ) defi ned four 
axioms. Following their work here, we consider a network with  N  nodes. Let the 
number of links incident at node  j  be  n ( j ). A particular link incident at node  j  is 
denoted by  i ; thus  i   =  1, 2, 3, …,  n ( j ). Let the fl ow carried by this  i th link to node 
 j  be denoted by  q ij  , fl ow in pipe-connecting links incident on node  j , or the total 
fl ow at node  j  by  Q j  , and the fraction of fl ow carried by link  i  by  W ij  . Then, for a 
particular fl ow pattern, fraction  W ij   can be denoted by

  W
q
Q

ij
ij

j

=       (16.2a)   

 Clearly,

  Wij
i

n j

=
∑ =

1

1
( )

      (16.2b)  

where

  Q qj ij
i

n j

=
=
∑

1

( )

      (16.3)   

  W ij   defi nes the relative contribution of link  i  to fl ow at node  j  and is, therefore, 
an indicator of relative fl ow capacity of the link incident at node  j . Thus, it can 
be construed as a measure of the potential contribution of the link to the required 
demand at the node if a link failed. Further, it enables consideration of relative 
fl ow capacities of links in the redundancy measure. 

 Let the redundancy at node  j  be denoted by  S j  . According to Awumah et al. 
( 1990 ), four axioms (in the next four sections) can now be stated. 

  16.2.1     Axiom 1 

 The fi rst axiom states that  S j   is a symmetric function of  W ij  , the variable of 
redundancy:

  S S W W Wj j j n j j= …( , , , )( )1 2       (16.4)   

 This measure should be a property of the geometric confi guration. Consider two 
identical networks where one is a replica of the other, but they differ in size. If 
the ratios of fl ows in links of their confi guration are the same, the redundancy 
is the same. Equation  (16.4)  states that if the values of fl ows were interchanged, 
the redundancy measure should remain the same.  
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696 Entropy Theory in Hydraulic Engineering

  16.2.2     Axiom 2 

 The second axiom states that if the number of links incident on node  j ,  n ( j ), is 
one, then the redundancy at node  j  is zero, i.e.,

  S n jj = =0 1if ( )       (16.5)   

 The number of links incident on node  j  represents the number of paths.  

  16.2.3     Axiom 3 

 The third axiom states that for a given number of links incident at node  j , redun-
dancy should be maximum if all fl ows are equally proportioned, i.e.,

  S W W W Wj j j j n j j→ = = = … =maximum if 1 2 3 ( )       (16.6)   

 This notion implies that  q  1   j    =   q  2   j    =  …  =   q n   (   j   )   j  .  

  16.2.4     Axiom 4 

 The fourth axiom states that for a given node the maximum value of  S j    =   S ( W  1   j  , 
 W  2   j  , …,  W n   (   j   )   j  ) should monotonically increase with  n ( j ). This axiom means that 
for equal fl ows through links, the redundancy at node  j  should increase with 
the number of incident links. Indeed, the closer the components in all their 
physical properties, the higher the redundancy. For unequal fl ows, the contri-
bution to the redundancy by the link with the larger value of  W i   should be less 
than the contribution by the link with a smaller  W j  , i.e., if  W i    ≥   W j  , then  R i    ≤   R j  , 
where  R i   and  R j   are the relative contributions to redundancy by links  i  and  j , 
respectively. This idea can be explained by observing that a system with a 
larger link is more vulnerable to the failure of a larger link and the system is 
less useful if this link fails. 

 It is desired that  S j   be a continuous concave, symmetrical, and differentiable 
function of instances of  W i  . Furthermore, the overall network redundancy is a 
weighted function of the nodal redundancies. 

 These four axioms are satisfi ed by the Shannon entropy (Shannon  1948 ). To 
develop a redundancy measure using the Shannon entropy, consider a network 
with  N  nodes in which these nodes constitute subsystems. The Shannon entropy 
of a node  j  can now be expressed in terms of  W ij   as

  S W W
q
Q

q
Q

j ij ij
i

n j
ij

j

ij

ji

n j

= − = −
= =
∑ ∑ln ln

( ) ( )

1 1

      (16.7)  

where  S j   is an entropic measure of redundancy at node  j ; this situation is called 
local redundancy. Maximizing  S j   would maximize the redundancy of node  j  and 
is equivalent to maximizing entropy at node  j . The maximum value of  S j   is 
achieved when all instances of  W ij   or  q ij  / Q j   are equal. This situation occurs when 
all instances of  q ij   are equal. 

c16.indd   696c16.indd   696 5/21/2014   11:18:53 AM5/21/2014   11:18:53 AM



Reliability of Water Distribution Systems 697

 For the entire water distribution network, redundancy is a function of redun-
dancies ( S j  ) of individual nodes in the network. The network redundancy or 
reliability,  S N  , cannot be expressed as the sum of local or nodal redundancies:

  S SN j
j

N

≠
=
∑

1
      (16.8)   

 Now let  Q  0  be the total fl ow in the network that is equal to the sum of fl ows 
in all links in the network, i.e.,

  Q Qj
j

N

0
1

=
=
∑       (16.9)  

where  N  is the number of nodes in the network. It should be emphasized that 
 Q  0  is not the total demand in the network or the total fl ow supply to the network; 
it is usually greater than the total demand in the network. To assess the overall 
network redundancy, the relative importance of a link to the total fl ow should, 
if a link fails, be recognized, i.e.,  q ij  / Q  0 . The importance of a link relative to the 
local fl ow is not as important, and that is the reason that the network redundancy 
is not a sum of nodal redundancies. Therefore, in equation  (16.7) ,  q ij  / Q j   should 
be replaced by  q ij  / Q  0 :

  S
q
Q

q
Q

j
ij ij

i

n j

* ln
( )

= −
=
∑

0 01

      (16.10a)   

 Then, the network redundancy can be expressed as

  S S
q
Q

q
Q

N j
j

N
ij ij

i

n j

j

N

= = −
⎡

⎣
⎢

⎤

⎦
⎥

= ==
∑ ∑∑* ln

( )

1 0 011
      (16.10b)  

where  S N   is the network redundancy and is a function of redundancies of indi-
vidual nodes  Sj*     in the network. In equation  (16.10b) , the summation is of the 
relative importance of links incident on a node, as opposed to the simple sum-
mation of the individual redundancies in the network. Equation  (16.10b)  can be 
simplifi ed as

  S
q
Q

Q
Q

q
Q

Q
Q

N
ij

j

j ij

j

j

i

n j

j

N

= −
⎡

⎣
⎢

⎤

⎦
⎥

==
∑∑

0 011

ln
( )

      (16.11a)  

or

  S
Q
Q

q
Q

q
Q

q
Q

Q
N

j ij

j

ij

ji

n j

j

N
ij

j

= − ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟==

∑∑
011

ln
( )

jj j

i

n j

j

N

Q
Q
Q0 011

⎛
⎝⎜

⎞
⎠⎟==

∑∑ ln ]
( )

      (16.11b)  

or

  S
Q
Q

q
Q

q
Q

Q
Q

Q
Q

q
N

j

j

N
ij

j

ij

ji

n j
j j

j

N
ij= −

⎛
⎝⎜

⎞
⎠⎟

−
= = =
∑ ∑ ∑

01 1 0 01

ln ln
( )

QQji

n j

=
∑

1

( )

      (16.11c)   
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698 Entropy Theory in Hydraulic Engineering

 This set of equations shows that the term within brackets in equation  (16.10b)  
expresses the individual contribution of node  j ,  

�
Sj    . Thus, considering the fl ow 

distribution at node  j  only, the contribution  
�
Sj     to the network redundancy can 

be cast as

  
�
S

Q
Q

S
Q
Q

Q
Q

j
j

j
j j= −

0 0 0

ln       (16.12a)   

 It should be noted that  
�
S     is different from  S j  ;  

�
S     is the redundancy at a node 

considering the fl ow distribution at this node relative to the total network fl ow, 
whereas  S j   is the redundancy at a node. Thus, the network redundancy can be 
expressed as

  S
Q
Q

S
Q
Q

Q
Q

N
j

j
j

N
j j

j

N

= −
= =
∑ ∑

01 0 01

ln       (16.12b)   

 Equation  (16.12b)  yields the overall network redundancy, expressed as a 
weighted sum of nodal redundancies plus network entropy. The weight  Q j  / Q  0  
defi nes the ratio of fl ow passing through node  j  to the total fl ow or the contribu-
tion of fl ow at node  j  to the total fl ow. Thus, the fi rst term in equation  (16.12b)  
can be interpreted as nodal redundancy weighted by the relative fl ow or impor-
tance of the node. Thus, a node with a higher fl ow would be weighted more 
heavily than the one with a lower fl ow, even if they both have the same value 
of local redundancy. This statement recognizes the difference between nodes that 
have the same value of redundancy. Improvement in redundancy at an indi-
vidual node can be achieved if fl ows in the links to the node can be equalized. 
This idea also has implications in repair, replacement, or maintenance of the 
network. 

 The second term on the right side in equation  (16.12b)  can be interpreted as 
the redundancy among nodes, because it is a measure of the distribution of fl ows 
to the nodes in the network. Because its form is the same as the Shannon entropy, 
it can be construed as the network entropy. Tanyimboh and Templeman ( 1993a, 
b ) also used the Shannon entropy for computing maximum entropy fl ows in 
networks. If the fl ows among the nodes can be equalized, then improvement in 
the network redundancy can be achieved. This equalization would mean that 
the demand distribution among nodes would also have to be equalized. A 
network with nodes that have values of  Q j  / Q  0  close to each other would have a 
better internodal measure of redundancy because it would be less vulnerable to 
the effect of pipe failures. 

 Xu and Jowitt ( 1992 ) derived equations ( 16.10a  and  1610b ) and ( 16.12a  and 
 1612b ) by recognizing that the use of entropy measure to operate on the propor-
tions of fl ow is functionally equivalent to the entropy of the set  A   ∩   B , where A 
and B are each a set of mutually exclusive propositions  A   =  ( a  1 ,  a  2 , …,  a n   )  and  B  
 =  ( b  1 ,  b  2 , …,  b n  ), such that  A   ∩   B  is the set of mutually exclusively and collectively 
exhaustive (though not statistically independent) elements of the type  a i    ∩   b j  . The 
entropy measure of  A   ∩   B  can be expressed as

  S p a b p a bi j i j
ij

= − ∑∑ ( )ln ( )       (16.13a)  
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or

  S p a b p b p a b p bi j j i j j
ij

= − ∑∑ ( ) ( )ln ( ) ( )       (16.13b)  

or

  S p b p a b p a b p b p b p a bj
j

i j i j
i

j j
j

i j
i

= − −∑ ∑ ∑ ∑( ) ( )ln ( ) ( )ln ( ) ( )       (16.13c)   

 Equation  (16.13c)  can be written as

  S p b S Sj A b B
j

j
= − −∑ ( )       (16.14)   

 where  SA bj     is the entropy associated with  A  conditioned on the occurrence of  b j  ; 
 S B   is the entropy associated with  B ;  p ( b j  ) is the probability of  b j  ; and  p ( a i  | b j  ) is the 
probability of  a i   conditioned on the occurrence of  b j  . Equation  (16.14)  is equiva-
lent to equation  (16.12b) . 

  Example 16.1          Using Xu and Jowitt ( 1992 ), consider three simple distribution net-
work layouts, as shown in Fig.  16-3 . The demand at point (node)  A  is one unit, 
and that at node  B  is 10 units. In confi guration 2, the demand at point  B  is sup-
plied via node  A . Compute the redundancy of the three layouts.   

  Solution     For layout 1,

  S
q
Q

q
Q

A
ij

ji

n j
ij

j

A

= − = − × ⎛
⎝

⎞
⎠ =

=
∑

1
22

0 5
1

0 5
1

1
( )

ln
.

log
.

bit    

    S
q
Q

q
Q

B
ij

ji

n j
ij

j

B

= − = − × ⎛
⎝

⎞
⎠ =

=
∑

1
22

5
10

5
10

1
( )

ln log bit    

    For layout 2,

  SA = − × ⎛
⎝

⎞
⎠ =2

5 5
11

5 5
11

12
.

log
.

bit    

    SB = − × ⎛
⎝

⎞
⎠ =2

5
10

5
10

12log bit    

    For layout 3,

  SA = − × ⎛
⎝

⎞
⎠ =2

0 5
1

0 5
1

12
.

log
.

bit    

    SB = − × ⎛
⎝

⎞
⎠ =2

5 5
11

5 5
11

12
.

log
.

bit    

    The redundancy is the same for the three layouts.  
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  Figure 16-3      Three simple distribution network layouts. 
  Note :    A  and  B  are demand nodes.    

Layout 1

Layout 2

Layout 3

1

5.5 0.5

0.55.5

AB

10

5.5 5

55.5

BA

0.5 5

50.5

1 10
BA

   Example 16.2          Consider fi ve simple single-node layouts, as shown in Fig.  16-4 . 
Compute the redundancy of each layout.   

  Solution      Case   1:   A . It has only one link, i.e.,  n ( j )  =  1. Therefore,

  S
q
Q

q
Q

j
ij

ji

n j
ij

j

= − = − ⎛
⎝

⎞
⎠ =

=
∑

1
2

240
240

240
240

0
( )

ln log    

    This means that it has no redundancy. 
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  Figure 16-4      Five simple single-node water distribution layouts.    

Case 1: A

Case 2: B

Case 3: C

Case 4: D

120 m3/h

60 m3/h60 m3/h

160 m3/h

80 m3/h

120 m3/h

120 m3/h

240 m3/h

Case 5: E

80 m3/h

80 m3/h80 m3/h
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  Case   2:   B . It has two links, i.e.,  n ( j )  =  2, with equal fl ow. Therefore,

  
S

q
Q

q
Q

j
ij

ji

n j
ij

j
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⎠ = bit

   

     Case   3:   C . It has two links i.e.,  n ( j )  =  2, with unequal fl ows. Therefore,

  
S

q
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q
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ij
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     Case   4:   D . It has three links, i.e.,  n ( j )  =  3, with unequal fl ows. Therefore,
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     Case   5:   E . It has three links, i.e.,  n ( j )  =  3, with equal fl ow. Therefore,

  S
q
Q

q
Q

j
ij

ji

n j
ij

j

= − = − × ⎛
⎝

⎞
⎠

⎡
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ln log . bbit    

    Since the higher the entropy, the higher the redundancy of the node, and, 
therefore, the more reliable the node, case 1 has only one input and one output. 
The entropy of the node is 0 bits, which means that if the incoming fl ow line 
fails, there shall be no outfl ow. Cases 2 and 3 have two incoming fl ows and one 
outfl ow. The fl ow in case 2 is equally distributed, and that in case 3 is distributed 
with a ratio of 2:1. The entropy is 1 bit for case 2 and 0.918 bit for case 3. The 
higher entropy of case 2 implies that the case with equally distributed infl ow 
is more reliable than the case with nonequally distributed infl ow. For example, 
if the probability of failure of pipes is half, case 2 is a better design than case 3. 
Cases 4 and 5 have three incoming pipes for one outfl ow. Both cases 4 and 5 give 
higher entropy values than does case 2; this fact means that a three-pipe arrange-
ment is more suitable than a two-pipe arrangement. Furthermore, equal distribu-
tion of incoming fl ow, as in case 5, gives a higher entropy value than does case 4 
(similar to cases 2 and 3 as discussed). Again, assuming the probability of failure 
to be equal for each pipe, case 5 is a more robust design capable of coping more 
effi ciently with the failure of one infl ow pipe.  
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 Figure 16-5      Eight alternative water distribution network layouts.            

Layout 1 Layout 2
2,000 m3/h

1,275 m3/h 725 m3/h

725 m3/h

1 2 3

225  m3/h

4 5 6

350 m3/h 550 m3/h

600 m3/h

7 8 9

175 m3/h 400 m3/h

150 m3/h

10 11 12

175 m3/h175 m3/h

2,000 m3/h

1,100 m3/h 725 m3/h

900 m3/h

1 2 3

175  m3/h
4 5 6

225 m3/h 550 m3/h

550 m3/h

7 8 9

225 m3/h 400 m3/h

325 m3/h

175 m3/h
10 11 12

175 m3/h

Layout 4

2,000 m3/h

1,275 m3/h 1125 m3/h

725 m3/h

1 2 3

4 5 6

950 m3/h

550 m3/h

7 8 9

475 m3/h 150 m3/h

225 m3/h

175 m3/h
10 11 12

75 m3/h100 m3/h

75 m3/h

650  m3/h

150  m3/h

2,000 m3/h

1,200 m3/h 650 m3/h

800 m3/h

1 2 3

175  m3/h

4 5 6

400 m3/h 575 m3/h

625 m3/h

7 8 9

225 m3/h 325 m3/h

225 m3/h

75 m3/h
10 11 12

100 m3/h175 m3/h

75 m3/h

Layout 3

   Example 16.3          Consider the eight layouts shown in Fig.  16-5 . The demand at the 
sources is 2,000 m 3 /h. The demand at each node of layout 1 is specifi ed in Table 
 16-1 . Note that the sum of demands at nodes equals the demand at the source. 
Compute the redundancy of each layout and discuss which layout should be 
preferred.    
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Layout 5

Layout 6

2,000 m3/h

1,000 m3/h 600 m3/h

1000 m3/h

1 2 3

4 5 6

425 m3/h

575 m3/h

7 8 9

325 m3/h 275 m3/h
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50  m3/h

Layout 7

Layout 8
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75 m3/h
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4 5 6
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Figure 16-5,  Continued
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Node Demand (m 3 /h)

1 2,000

2 150

3 175

4 175

5 175

6 150

7 225

8 225

9 225

10 150

11 175

12 175

 Table 16-1      Demand at each node of 1ayout 1 in 
Example  16.3 .  

  Solution     The network redundancy can be expressed as

  S
Q
Q

S
Q
Q

Q
Q

N
j

j
j

N
j j

j

N

= −
= =
∑ ∑

01 0 01

log    

    Layout 1: In layout 1, for nodes 2, 3, 4, 6, 7, 8, 9, 10, 11, and 12,  S j    =  0, as the 
number of link incidences equals one. The only node with redundancy is node 5, 
for which entropy is calculated as

  

S
q
Q

q
Q

q
Q

q
Q

5
25

5

25

5

45

1

45

5

225
400

225
400

175
400

= − −

= − −

log log

log log
1175
400

0 9887= . bit

   

    S
Q
Q

S
Q
Q

Q
Q

N
j j

j

N

= − =
=
∑5

0
5

0 01

3 3013log . bits    

    Therefore, the total redundancy of the network is 3.3013 bits. 
 Layout 2: In this layout, only for node 8,  S j    ≠  0.

  

S
q
Q

q
Q

q
Q

q
Q

8
58

8

58

8

78

8

78

8

175
400

175
400

225
400

= − −

= − −

log log

log log
2225
400

0 9887= . bit

   

    S
Q
Q

S
Q
Q

Q
Q

N
j j

j

N

= − =
=
∑8

0
8

0 01

3 2653log . bits    
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    Therefore, the total redundancy of the network is 3.2653 bits. 
 Layout 3: Entropy for nodes 1 to 12, except node 8, 11, and 12 is 0. Entropy 

values for nodes 8, 11, and 12 are calculated as

  S8
175
400

175
400

225
400

225
400

0 9887= − ⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
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    S11
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⎞
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⎝
⎞
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    Total redundancy is
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    Layout 4: For this layout, entropy is zero for all nodes except nodes 9, 11, and 
12 for which entropy values are calculated as

  S9 2
150
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1= − × =log bit    
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0 9457= − − =log log . bit    
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    Layout 5: For all nodes 1 to 12, except nodes 6, 9, and 12, entropy is 0. Entropy 
values for these three nodes are calculated as
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    S12
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    Total redundancy is
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    Layout 6: For nodes 5, 8, 11, and 12, the entropy values are calculated as 
follows:

  S5 2
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1= − × =log bit    

    S8
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0 5665= − − =log log . bit    
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    Layout 7: For this layout, entropy is 0 for all nodes except nodes 4, 8, 9, and 
12, for which entropy values are

  S4
500
900
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900
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900

400
900

0 9910= − − =log log . bit    
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    S12
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    Layout 8: Entropies for nodes 5, 6, 8, 11, and 12 are calculated as
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    Layout 8 has the highest redundancy.     

  16.3     Transmission of Redundancy through Network 

 In a water distribution network, nodes are connected to one another. Failure of 
one link affects not only the node upon which it is incident but also the down-
stream nodes, because the links upstream of the node service the downstream 
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nodes via redistribution of fl ows. Consider, for example, Fig.  16-6 , which shows 
three simple networks in which one node receives fl ow from another. In the fi rst 
network, node 1 has two independent paths or links and, hence, has some degree 
of redundancy. Node 2 receives fl ow from node 1 and hence has some redun-
dancy caused by the redundancy in node 1. In other words, some redundancy 
may be transferred from node 1 to node 2. Likewise, node 3 has some redun-
dancy because of the redundancy in node 2 and, hence, indirectly because of that 
in node 1. Intuitively, one can estimate the redundancy at node 2 by the propor-
tion of fl ow coming from node 1 to the total fl ow coming into node 1. The impli-
cation here is that any shortfall at node 1 is transmitted downstream to node 2 

  Figure 16-6      Three simple layouts.    

Case 1

Case 2

Case 3

50 m3/h

100 m3/h

50 m3/h50 m3/h

1 2 3
100 m3/h 50 m3/h

50 m3/h

q1

q2

q3

q4 q5

q6

q7

25 m3/h

150 m3/h

25 m3/h50 m3/h

1 2 3
200 m3/h 75 m3/h

q1

q2

q3

q5

q4

q6

200 m3/h

50 m3/h

1 2 3
250 m3/h 100 m3/h

q2

q1
q3 q4
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and hence to node 3. Thus, redundancy from node 2 is transmitted to node 3 
directly in proportion to the ratio of the total fl ow entering node 3 from node 2 
to the total fl ow entering node 2. This ratio of fl ows defi nes what Awumah et al. 
( 1991 ) called  transmissivity . More precisely, transmissivity can be defi ned empiri-
cally as the ratio of the fl ow through the link to the total fl ow into node at the 
upstream end of the link. One can analyze networks 2 and 3 in a similar manner. 
In this sense, redundancy in one area of the network affects the redundancy in 
another. 

  To determine the propagation of redundancy in one node upstream to 
another node downstream, one can defi ne the percentage of the redundancy at 
the upstream end that is transmitted to the downstream node and approximate 
it by the ratio of fl ow coming from that upstream node into the downstream 
node to the total fl ow entering the upstream node. Consider two nodes  j  and  k . 
The transmissivity of the connection between these two nodes can be 
expressed as

  t
q

q
jk

kj

lj
l Uk

=

∈
∑�       (16.15)  

where  q kj   is the fl ow in link  i  incident on node  j ;  t jk   is the transmissivity from 
node  k  to node  j ; and  

�
Uk     is the set of nodes immediately upstream of node  k . 

Note that fl ow is positive toward node  k . The entropy measure defi ned by equa-
tion  (16.7)  can now be extended to include this consideration as

  ′ = + ′
∈
∑S S t Sj j jk k
k Uj
�       (16.16)  

where  ′Sj     is the measure of the total (global) redundancy at node  j . 
 Equation  (16.16)  shows that the global redundancy at node  j  is the sum of 

local redundancy at the node and the contribution from upstream supplies to 
the redundancy performance of that node. It should be noted that the global 
redundancy at each node depends on the global redundancy of all upstream 
nodes. Therefore, it may be necessary to apply equation  (16.16)  recursively with 
distance or with the number of nodes distant from the source. In this recursive 
manner, redundancy of a particular node caused by the redundancy at all 
upstream nodes is included in the redundancy measure of that node. 

 To illustrate the transmissivity concept, consider network layout 3 in Fig. 
 16-6 . The global redundancy at node 1 (using simple notation of the fi gure) can 
be expressed as

  

′ = = −
+ + + +

+
+ + + +

⎡
⎣⎢

+

S S
q

q q q
q

q q q
q

q q q
q

q q q

q

1 1
1

1 2 3

1

1 2 3

2

1 2 3

2

1 2 3

ln ln

33

1 2 3

3

1 2 3q q q
q

q q q+ + + +
⎤
⎦
⎥ln

      (16.17)   
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 For node 2,

  ′ = + ′S S t S2 2 21 1       (16.18)  

where  t  21  is the transmissivity from node 1 to node 2 and is given by

  t
q

q q q
21

4

1 2 3
=

+ +
      (16.19)   

 Therefore,

  ′ = −
+ +
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⎠⎟
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⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

+S
q

q q
q

q q
q

q q
q

q q
q

2
4

4 6

4

4 6

6

4 6

6

4 6

ln ln 44
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1

q q q
S
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      (16.20)   

 Similarly, for node 3,

  ′ = + ′S S t S3 3 32 2       (16.21)  

where  t  3  2  is the redundancy between nodes 2 and 3 and can be written as

  t
q

q q
32

5

4 6

=
+

      (16.22)   

 Note that transmissivities are always less than or equal to unity. 

  Example 16.4          Consider three simple layouts as shown in Fig.  16-6 , Table  16-2 , 
and Table  16-3 . For each layout, indicate the number of loops and compute the 
redundancy measure derived from local redundancy and from global redundan-
cy. Show redundancy at each node and redundancy among nodes. Discuss the 
results. Which layout is preferable?    

Case 1  Q Flow (m 3 /hr) Case 2  Q Flow (m 3 /hr) Case 3  Q Flow (m 3 /hr)

1 50 1 50 1 50

2 250 2 200 2 100

3 200 3 150 3 50

4 100 4 75 4 100

5 5 25 5 50

6 6 25 6 50

7 7 50

 Table 16-2      Flow data for three simple layouts in Example  16.4 .  
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Node Flow (m 3 /hr)

1 100

2 100

3 100

 Table 16-3      Demand data for three nodes in Example  16.4 .  

  Solution     To compute the global redundancy at a node  S j  , transmissivity  t jk   from 
node  k  to node  j  is taken into account. The global redundancy,  S’ j  , is calculated as 
follows: 

  Case 1 

  

S
q

q q
q

q q
q

q q
q

q q
1

1

1 2
2

1

1 2

2

1 2
2

2

1 2

2
250
300

250
30

= −
+ +

−
+ +

= −

log log

log
00

50
300

50
300

0 65

2−

=

log

. bit

   

   In this case,

 Node 1 1 1: ′ =S S    

   Node 2 2 2 21 1: ′ = + ′S S t S    

    S2 2
200
200

200
200

0= − =log bit    

    t
q

q q
21

3

1 2

200
250 50

2
3

0 67=
+

=
+

= = .    

    ′ = + × =S2 0 0 0 67 0 65 0 43. . . . bit    

   Node 3 3 3 32 2: ′ = + ′S S t S    

    S3 2
100
100

100
100

0= − =log bit    

    t
q
q

32
4

3

100
200

0 5= = = .    

    Therefore,

  ′ = + × =S3 0 0 5 0 44 0 22. . . bit    
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      Case 2 

 Node 1 1 1: ′ =S S    
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+ +

−
+ +
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   Node 3 3 3 32 2: ′ = + ′S S t S    
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=
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   Therefore,

  ′ = + × =S3 0 81 0 43 1 02 1 25. . . . bits    

      Case 3 
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   Node 2 2 2 21 1: ′ = + ′S S t S    

    S2 2 2
50

150
50

150
100
150

100
150

0 92= − − =log log . bit    

    t
q

q q q
21

4

1 2 3

100
200

0 5=
+ +

= = .    

    ′ = + × =S2 1 5 0 5 1 5 1 67. . . . bits    

   Node 3 3 3 32 2: ′ = + ′S S t S    

    S3 2 2
50
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50

100
50

100
50

100
1= − − =log log bit    

    t
q

q q
32

5

4 6

50
150

0 33=
+

= = .    

   Therefore,

  ′ = + × =S3 1 0 0 33 1 67 1 56. . . . bits    

    In case 1, it is evident that there is only a small amount of redundancy, and 
the transmissivity of the nodes only further reduces the global redundancy. Case 
2 appears to be more reliable, primarily because there is an additional link con-
necting to nodes 2 and 3. Case 3 is the most reliable, with a global redundancy 
almost twice that of case 2. This large increase is caused by the addition of a link 
feeding into node 1 and several links that have the same fl ow of 50 m 3 /hr.   

   Example 16.5          Consider the eight simple layouts in Fig.  16-5 . For each layout, in-
dicate the number of loops, and then compute the redundancy measure derived 
from local redundancy and from global redundancy. Show redundancy at each 
node and redundancy among nodes.  

  Solution     Calculating the local redundancy and global redundancy:

  t
q

q
jk

kj

lj
l Uk

=

∈
∑�    

    ′ = + ′
∈
∑S S t Sj j jk k
k Uj
�      

where  ′Sj     is the measure of total (global) redundancy at node  j ;  S j   is the entropic 
measure of local redundancy at node  j ;  t jk   is the transmissivity from node  k  to 
node  j ; and  

�
Uj     is the set of nodes immediately upstream of node  j . 
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  Layout 1 
 There is one loop for this layout. For all nodes, except nodes 5 and 8, the total 
redundancy is 0.

 For node bit5 0 98875 5: .′ = =S S    

   For node bit8 0
225
400

0 55618 8 85 5 5: .′ = + ′ = + ′ =S S t S S    
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Q
Q

S
Q
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Q
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Q
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j j
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= =
∑ ∑

01 0 01
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0
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8

0
8

0
2ln log

QQj 01

12

3 3239
=
∑

= . bits
   

      Layout 2 
 There is one loop for this layout. For all nodes, except nodes 8 and 11, the total 
redundancy is 0.

  ′ = =S S8 8 0 9887. bit    

    ′ = + ′ = + ′ =S S t S S11 11 118 8 80
175
400

0 4326. bit    

    

S
Q
Q

S
Q
Q

Q
Q

Q
Q

S
Q
Q

S
Q
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N
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j
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N
j j
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01 0 01

8

0
8

11

0
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0
2
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log
QQ
Q

j

j 01

12

3 2790
=
∑ = . bits

   

      Layout 3 
 There are three loops for this layout. For all nodes, except nodes 8, 11, and 12, 
the total redundancy is 0. The redundancy values of these three nodes are calcu-
lated as follows:

 For node bit8 0 98878 8: .′ = =S S    

   For node 11
175
400

0 4375118: .t = =    

    ′ = + = + × =S S t S11 11 118 8 0 8813 0 4375 0 9887 1 3139. . . . bits    

   For node bits12 0 9852 75 250 0 312 1211: . ; / .S t= = =    

    
′ = + ′ = + ×S S t S12 12 1211 11 0 9853 0 3 1 3139. . . bits

bits
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S
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Q
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Q
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Q
Q
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Q
Q

S
Q
Q

S

N
j

j
j

N
j j

j

N

= ′ −

= ′ + ′ + ′

= =
∑ ∑

01 0 01
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0
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0
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12

0
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ln
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0

2
01

12

3 4168− =
=
∑ Q

Q
Q
Q

j j

j

log . bits
   

      Layout 4 
 There are three loops for this layout. For all nodes, except nodes 9, 11, and 12, 
the total redundancy is 0. The redundancy values of these three nodes are 
calculated as follows:

 For node bit9 19 9: ′ = =S S    

   For node bit11 0 945711 11: .′ = =S S    

   For node bit12 112: S =    

    t1211 75 275 0 2727= =/ .    

    t129 75 300 0 25= =/ .    

    ′ = + ′ + ′ = + × + × =S S t S t S12 12 1211 11 129 9 1 0 2727 0 9457 0 25 1 1 5079. . . . bitts    
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Q

S
Q
Q

Q
Q

Q
Q

S
Q
Q

S
Q
Q

S

N
j

j
j

N
j j

j

N

= ′ −

= ′ + ′ + ′

= =
∑ ∑

01 0 01
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0
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0
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0
1
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0

2
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3 3387− =
=
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j j

j

log . bits
   

      Layout 5 
 There are three loops for this layout. For all nodes, except nodes 6, 9, and 12, 
the total redundancy is 0. The redundancy values of these three nodes are 
calculated as follows:

 For node bit6 0 81136 6: .′ = =S S    

   For node bits9 0 6500
250
400

0 8113 1 15719 9 96 6: . . .′ = + ′ = + × =S S t S    

   For node bits12 0 9852
75
300

1 1571 1 274512 12 129 9: . . .′ = + ′ = + × =S S t S    

    

S
Q
Q

S
Q
Q

Q
Q

Q
Q

S
Q
Q

S
Q
Q

S

N
j

j
j

N
j j

j

N

= ′ −

= ′ + ′ + ′ −

= =
∑ ∑

01 0 01

6

0
6

9

0
9

12

0
12

ln

QQ
Q

Q
Q

j j

j 0
2

01

12

3 4212log .
=
∑ = bits
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      Layout 6 
 There are four loops for this layout. For all nodes, except nodes 5, 8, 11, and 12, 
the total redundancy is 0. The redundancy values of these three nodes are calcu-
lated as follows:

 For node bit5 15 5: ′ = =S S    

   For node bits8 0 5665
325
500

1 1 21658 8 85 5: . .′ = + × ′ = + × =S S t S    

   For node bits11 1
150
375

1 2165 1 486611 11 118 8: . .′ = + × ′ = + × =S S t S    

   For node 12 0 8631
125
300

1 4866 1 482512 12 1211 11: . . .′ = + × ′ = + × =S S t S bbits    

    

S
Q
Q

S
Q
Q

Q
Q

Q
Q

S
Q
Q

S
Q
Q

S

N
j

j
j

N
j j

j

N

= ′ −

= ′ + ′ + ′ +

= =
∑ ∑

01 0 01

5

0
5

8

0
8

11

0
11

ln

QQ
Q

S
Q
Q

Q
Q

j j

j

12

0
12

0
2

01

12

3 5429′ − =
=
∑ log . bits

   

      Layout 7 
 There are four loops for this layout. There are two paths to node 12, 4–7–10–11–12 
and 4–7–8–9–12.

 For node bit4 0 99104 4: .′ = =S S    

   For node bit7 0
725
900

0 9910 0 79837 7 74 4: . .′ = + × ′ = + × =S S t S    

    For the path 4–7–10–11–12,

 For node bit10 0
425
725

0 7983 0 468010 10 107 7: . .′ = + × ′ = + × =S S t S    

   For node bit11 0
275
425

0 4680 0 302811 11 1110 10: . .′ = + ′ = + × =S S t S    

    For the path 4–7–8–9–12,

 For node bit8 0 7219
75
725

0 7983 0 80458 8 87 7: . . .′ = + × ′ = + × =S S t S    

   For node bits9 1
150
375

0 8045 1 32189 9 98 8: . .′ = + ′ = + × =S S t S    
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    Then for node 12,

  
′ = + ′ + ′

= + × + ×

S S t S t S12 12 129 9 1211 11

0 9852
75
300

1 3218
100
275

0 30. . . 228 1 4258= . bits
   

    

S
Q
Q

S
Q
Q

Q
Q

Q
Q

S
Q
Q

S
Q
Q

S
Q

N
j

j
j

N
j j

j

N

= ′ −

= ′ + ′ + ′ +

= =
∑ ∑

01 0 01
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Q
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Q
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Q
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j j

j0
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0
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0
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0
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0
2

01

12

3

′ + ′ + ′ + ′ −

=
=
∑ log

.66136 bits

   

      Layout 8 
 There are fi ve loops for this layout. There are two paths to node 12, 5–6–9–12 and 
5–8–11–12.

 For node bit5 0 74255 5: .′ = =S S    

   For node bits6 0 9495
175
475

0 7425 1 22316 6 65 5: . . .′ = + × ′ = + × =S S t S    

   For node bit9 0
325
475

1 2231 0 83699 9 96 6: . .′ = + × ′ = + × =S S t S    

    For the path 5–8–11–12,

 For node bits8 0 9612
125
475

0 7425 1 15668 8 85 5: . . .′ = + × ′ = + × =S S t S    

   For node bit11 0 9710
100
325

1 1566 1 326911 11 118 8: . . .′ = + ′ = + × =S S t S ss    

    Then for node 12,

  
′ = + ′ + ′

= + × + ×

S S t S t S12 12 129 9 1211 11

0 9852
100
325

0 8369
75
250

1 32. . . 669 1 6408= . bits
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Reliability of Water Distribution Systems 719

         16.4     Extension of Entropy-Based 
Redundancy Measures 

 When a link connecting to a node fails, alternative paths that supply water to 
the node may originate some distance away in the immediate vicinity of the 
failed link. The number of these alternative paths signifi cantly affects the network 
redundancy and reliability. This notion shows that equation  (16.7)  does not 
entirely represent the redundancy at a node. In the redundancy measures dis-
cussed thus far, it has been implicitly assumed that the number of alternative 
paths from source to a demand node (point) is the same as the number of links 
incident on the node. This assumption is not always realistic. Consider, for 
example, a demand node that has three incident links but fl ow to these three 
links from a source that passes through two links some distance upstream and 
there are no other alternative links, as shown in Fig.  16-7 . In this case, the three 
paths from the source to the demand node are not independent. The contribution 
to the redundancy at a node by one of its incident links depends, therefore, on 
both the percentage of fl ow it brings to the node and also the number of paths 
between the supply source and the node via that link. In Fig.  16-7 a, node 5 
receives water through three paths: 1–2–5, 1–3–5, and 1–3–4–5, of which the latter 
two paths are independent. If link 4–5 fails, node 5 may continue to receive water 
through the remaining two paths. In this case, the network has redundancy 
because of alternative paths. From the source, there are two links that bring 
water: 1–2, and 1–3. If one of these two links fails, the demand at node 5 can still 
be met uninterrupted because of the availability of alternative paths. Of course, 
the redundancy in the two cases of failure is not the same. Likewise, in Figure 
 16-7 b, node 7 receives water from three different links: 3–7, 5–7, and 6–7. Thus, 
the network has redundancy because even if one of these links failed, node 7 
would continue to operate uninterrupted. Of course, the redundancy would 
depend on the failure of a particular link and its contribution of fl ow to node 7. 

  Now consider the two layouts in Fig.  16-8 , where the redundancy of node 6 
is analyzed. Incident link 5–6 in the two layouts is not the same because in layout 
A it has only one path from the source to node 6: 1–3–4–5–6; whereas in layout 
B, there are two paths: 1–3–4–5–6 and 1–3–5–6. If incident links 3–5 and 4–5 are 
carrying equal ratios of fl ow to node 6, then layout B should have more reliability. 
The redundancy measure should incorporate this consideration using what 
Awumah ( 1990 ) called  path parameter . Let the path parameter for node  j  be  a j  , 
which is considered to be equal to the number of alternative independent paths 
between the source and node  j . This number of paths depends on the degree of 
overlap between paths. To that end, one needs to know the number of links used 
by different paths. Thus, the total number of independent paths may be less than 
the total number of paths. In the case of dependent paths, the effective alternative 
independent number of paths from the given number of dependent paths can 
be derived. 

  Consider three simple layouts as shown in Fig.  16-9 . Network A has two 
independent paths: S–1– j  and S–2– j ; network B has two dependent paths: S–1–2– j  
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720 Entropy Theory in Hydraulic Engineering

and S–1–3– j ; and network C has two dependent paths: S–1–2–4– j  and S–1–3–4– j . 
Addition of link S–1 in the network effectively reduces the independence of 
paths from source S to node  j  because that link is shared by two paths. Similarly, 
addition of link 4– j  further reduces the number of independent paths. Following 
Awumah ( 1990 ), let the number of paths to which a link belongs defi ne the 
degree of that link. If different paths have no common links, then each link in 
these independent paths has one degree. If a link is common between two paths, 
as in network B of Fig.  16-9 , then it has a degree of dependency of one unit. If 
the link is shared by three paths, then it has a degree of dependency of two units. 

  Figure 16-7      (a) Water distribution network. (b) Water distribution network: 1 is 
source, 2, 3, 4, and 5 are demand nodes. 

 Note:   Node 5 received water from three lines, but paths are not independent.    

(a)

(b)

1 2 3

4 5 7

6

2

4 5

3

1
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If the degree of link is denoted by  d l  , then its degree of dependency  D l   is 
given as

   D dl l= − 1       (16.23)   

 If the number of alternative dependent paths from the source to the given 
node is  n d  , then the effective number of independent paths can be obtained by 
removing dependencies from the links. The required path parameter  a j  , which is 
the adjusted number of independent paths, can be expressed for node  j  as

  a n
d D

d
j d

l l
l

M

l

M

l
l

M=
−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

==

=

∑∑

∑
11

1

      (16.24)  

where  M  is the number of links in the  n d   number of paths. Equation  (16.24)  can 
be written as

  a n
D

d
j d

l
l

M

l
l

M= −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

=

∑

∑
1 1

1

      (16.25)   

  Figure 16-8      Water distribution network: Availability of incident links.    

Layout A

Layout B

1 3 4
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1 3 4

2 6

5
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722 Entropy Theory in Hydraulic Engineering

 The term within brackets is the factor that reduces the number of dependent 
paths to equivalent independent paths. For independent paths, the term 

 Dl
l

M

=
∑ =

1

0    , and, hence,  a j    =   n d  . Equation  (16.25)  shows that the value of  a j   decreases 

with increasing dependency, as seen from network A through C in Fig.  16-9 . 
 To incorporate the path parameter in the entropy-based measure of depen-

dency that is based on nodes, not on links, let  a ij   denote the effective number of 
independent paths from the source through link  ij  from node  i  incident on node 
 j , defi ned as

  a n
D

d
ij d

l
l

M

l
l

Mij

ij

ij
= −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

=

∑

∑
1 1

1

      (16.26)  

where  ndij     is the number of dependent paths from the source through link  ij  from 
node  i  incident on node  j , and  M ij   is the number of links in the  ndij     number of 

  Figure 16-9      Three alternative networks.    

(a)

(b)

(c)

s
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paths. The total number of effective independent paths for node  j , therefore, 
equals the sum of paths through node  n ( j ) incident links:

  a aj ij
l

n j

=
=
∑

1

( )

      (16.27)   

 Equation  (16.27)  permits  a j   to take on noninteger values and is the total number 
of paths to node  j , not the number of paths to a particular link. It may be noted 
that the lower bound for  a j   would be unity in all cases and would then represent 
a single branch from the source to the demand point.  

  16.5     Modifi ed Redundancy Measure with 
Path Parameter 

 Equation  (16.7)  can now be modifi ed by including the path parameter as

  S
q
Q

q
a Q

j
ij

j

ij

ij ji

n j

= −
⎛
⎝⎜

⎞
⎠⎟=

∑ ln
( )

1

      (16.28)   

 Note that the fi rst term  q ij  / Q j   does not have parameter  a ij   because the objective 
is to increase the basic redundancy measure if the number of independent paths 
between the source and the node is greater than one. This goal is accomplished 
by dividing the term with the logarithm by  a ij  . Note that ( q ij  / Q j  )  <  [ q ij  /( a ij Q j  )  ≤  1]; 
therefore, ln( q ij  / Q j  )  >  ln[ q ij  /( a ij Q j  )  ≤  1]. This increase is signifi cantly offset if the 
term outside of the logarithm is also divided by  a ij  , which is larger than 1 for the 
node that has more than one independent path through incident link  ij . There-
fore,  a ij   is not inserted in the term outside of the logarithm, and also the measure 
is qualitative at this juncture. 

 Equation  (16.28)  can be written as

  S
q
Q

q
Q

q
Q

aj
ij

j

ij

ji

n j
ij

j
ij

i

n

= −
⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟= =

∑ ln ln
( ) (

1 1

jj)

∑       (16.29)   

 The fi rst term in equation  (16.29)  represents the redundancy measure for node  j  
assuming independent paths from the source to node  j , as defi ned by equation 
 (16.7) . The second term is a correction factor for reducing the number of alterna-
tive paths if some of the paths are dependent. 

 It may be interesting to note the usefulness of equation  (16.29) . First, in the 
case of nodes with one incident link but several paths through the network 
upstream of the single incident link, if the equivalent number of paths exceeds 
1, then  a ij    >  0 and the second term makes a positive contribution to the redun-
dancy of the node. Second, for nodes with two or more incident links where each 
link is equal to one path from the source to the node, the second term ceases 
since  a ij    =  1 and then equation  (16.29)  reduces to equation  (16.7) . Third, for nodes 
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724 Entropy Theory in Hydraulic Engineering

with several incident links so that equivalent paths through some of these links 
are less than one,  a ij   would be less than one, and the second term would be nega-
tive. Then the redundancy measure would be less than that given by equation 
 (16.7) . The path parameter would still be less than one since it measures total 
equivalent paths, not the value for a particular link. 

  Example 16.6          Consider the following two networks, as shown in Fig.  16-10 . 
Compute the values of  a ij  .   

  Solution 

    a n
D

d

a aij d

l
l

M

l
l

M j ij
l

n j

ij

ij

ij
= −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

==

=

=

∑

∑
∑1 1

1

1

( )

      

  Layout 1 

  a a a a a a as s j j j1 1 2 2 1 21 1= = = = = +    

  Figure 16-10      Two simple networks.    
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j2
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Reliability of Water Distribution Systems 725

   The number of paths through the link from node 1 to node  j :  nd j1 1=    ; the number 
of links in the  nd j1     paths:  Md j2 2=    ; the degree of links:  d  1   =   d  2   =  1. Thus  a  1   j    =  1. 
Similarly,  a  2   j    =  1. Therefore,  a j    =   a  1   j    +   a  2   j    =  2.  

  Layout 2 

  a a a a as s1 1 2 2 121= = = +.    

    a a a a as s2 12 2 2 121 1
0
1

1 1 1
0
2

1 2= −⎛
⎝

⎞
⎠ = = −⎛

⎝
⎞
⎠ = = + =; ;    

    a a n M d d d dj j d dj j= = = = = = =2 1 2 3 42 12 4 1 2. , , , , ,therefore    

    a aj j= = −⎛
⎝

⎞
⎠ =2 2 1

1
5

8
5

   

       Example 16.7          Consider the layout as shown in Fig.  16-11 . Compute the 
value of  a ij  .   

  Solution     Computation of the value of  a ij   is done for different sub-networks as 
shown in Fig.  16-12 .

  a a a a1 2 3 6 1= = = =    

   Node 4 1 1 24 14 34: a a a= + = + =        

1 2

3 4 5

6 7 8

s

  Figure 16-11      A water distribution network layout.    
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 Figure 16-12      (a) Two paths for node 4. (b) Three paths for node 5. (c) Three paths for 
node 7. (d) Paths for node 8.    

   

(a)

(b)

1 2

3 4 5

s 1 2

3

4

5

6

7
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s

   

(c)

(d)

1 2

3 4 5

6 7 8

s 21

3

6

4

8

12

9

7

5

13

10
11

1

3 4

6 7

s
1

2 4

3

5

6

7

 Node 5: There are three paths: s–1–2–5, s–1–4–5, and s–3–4–5.

  d d d d d d d2 3 4 5 7 1 61 2= = = = = = =,    

    a a25 451
1
4

3
4

2 1
2
7

10
7

= − = = −⎛
⎝

⎞
⎠ =;    

    a a a5 25 45 2 18= + = .    

    Node 7: There are three paths to node 7: s–1–4–7, s–3–4–7, and s–3–6–7.

  d d d d d d d1 3 4 5 6 2 71 2= = = = = = =;    
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    a a a a a67 47 7 67 471
1
4

3
4

2 1
2
7

10
7

2 18= − = = −⎛
⎝

⎞
⎠ = = + =; ; .    

    For node 8: There are eight paths to node 8: s–1–2–5–8, s–1–4–5–8, s–3–4–5–8, 
s–1–4–8, s–3–4–8, s–1–4–7–8, s–3–4–7–8, and s–3–6–7–8.

  d d d d d d d1 2 3 4 5 6 74 1 4 3 1 3 2= = = = = = =, , , , , , ,    

    d d d d d d8 9 10 11 12 131 2 2 3 1 3= = = = = =, , , , ,    

    a a a a8 48 58 78= + +    

    For  a  48 , there are two paths, s–1–4–8 and s–3–4–8, through link 10.

  n d d d d dd48 2 4 4 3 3 21 3 4 6 10= = = = = =; , , , ,    

    a48 2 1
11
16

5
8

= −⎛
⎝

⎞
⎠ =    

    For  a  58 , there are three paths, s–1–2–5–8, s–1–4–5–8, and s–3–4–5–8, through 
link 11.

  n d d d d d d d dd58 3 4 1 4 3 1 3 2 31 2 3 4 5 6 7 11= = = = = = = = =; , , , , , , ,    

    Therefore,

  a58 3 1
13
21

8
7

= −⎛
⎝

⎞
⎠ =    

    For  a  78 , there are three paths, s–1–4–7–8, s–3–4–7–8, and s–3–6–7–8, through 
link 13.

  n d d d d d d d dd78 3 4 4 3 3 1 2 1 31 3 4 6 8 9 12 13= = = = = = = = =; , , , , , , ,    

    Therefore,

  a78 3 1
13
21

8
7

= −⎛
⎝

⎞
⎠ =    

    a a a a8 48 58 78
5
8

8
7

8
7

2 91= + + = + + ≈ .    

        16.6     Modifi ed Redundancy Measure with Age Factor 

 Let  u ij   be the age factor parameter for the pipe material in link  ij . This factor 
refl ects the degree of deterioration of the pipe with age and the consequent 
reduction in carrying capacity and its contribution to redundancy. If the Hazen–
Williams formula for fl ow through pipes is used, then its friction coeffi cient  C ij   
(dimensionless) refl ects the characteristic of the pipe material as well as its age. 
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Its value ranges from 100 to 150. For example, for steel and plastic pipes, it is 
between 140 and 150; for bricks, it is around 100. For cast iron pipes, the  C  values 
can degrade from about 130 to 75 over a period of 50 years. Awumah ( 1990 ) 
expressed the equation as

  u C tij ij= 0 2. ln ( )       (16.30)  

where  t  is time after installation of pipes in years,  C ij   is the Hazen–Williams fric-
tion factor for pipe between nodes  i  and  j , and  u ij   is the age factor after time  t . 

 Awumah ( 1990 ) used  C   =  150 as the upper reference limit and scaled down 
all values therefrom. The reference point value for the age factor parameter is 
ln(150)  =  5.0. Dividing the parameter by 5.0 so that the age factor parameter for 
pipes with the Hazen–Williams friction coeffi cient  C ij    =  150 becomes unity leads 
to the scale factor of 0.2. Hwang ( 1981 ) found a linear relationship between the 
logarithm of  C  and the age of pipe in years with a correlation coeffi cient of 0.935. 

 Entropy-based redundancy equation  (16.7)  can be modifi ed as

  S u
q
Q

q
Q

j ij
ij

j

ij
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n j
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⎦
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=
∑ ln

( )

1

      (16.31)  

where  u ij   is the age factor for link  ij  incident on node  j . 
 The redundancy measure incorporating both the path parameter and the age 

factor can be expressed by modifying equation  (16.31)  as
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      (16.32)   

 Equation  (16.32)  can be recast as
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      (16.33)    

  16.7     Modifi ed Overall Network Redundancy 

 The overall network redundancy given by equation  (16.7)  can be modifi ed incor-
porating  u ij   and  a ij   as

  
�
S

u q
Q

q
a Q

ij ij

i

n j
ij
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01 01

( )

ln       (16.34)   

 The term within brackets represents the contribution from node  j  to the network 
redundancy:

  �S
u q
Q

q
a Q

j
ij ij ij

iji

n j

= −
=
∑

0 01

ln
( )

      (16.35)   
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 The contribution from a node can be decomposed as
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 Let
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      (16.37)  
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ln       (16.38)   

 Summing equation  (16.38)  over the  N  nodes yields the overall network 
redundancy:
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 Equation  (16.39)  is similar to equation  (16.12a) , except for the second term that 
includes  U j  —the sum of age factor parameters of the links incident on node  j . 
The second term is similar to the expression for useful entropy. Thus, the overall 
network redundancy is the sum of weighted nodal useful entropies and the 
useful entropies among nodes. It can be shown that equation  (16.33)  and, hence, 
equation  (16.39)  are concave.  

  16.8     Flow Reversal and Dual Flow Directions 

 In looped networks, it often happens that when a link fails, outfl ow links from 
some nodes can become infl ow links to the same nodes. For example, if a link 
upstream of node A fails, the fl ow can be provided to this node by diverting it 
around the other portions of the loop. The outfl ow link from node A could then 
become the infl ow link to that node. The fl ow reversal can be a critical factor in 
allowing the network to satisfy the demand fl ow as much as possible. This rever-
sal means that the outfl ow links provide additional fl ow paths to a node and, 
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hence, affect the network redundancy and reliability. Equation  (16.39)  can be 
modifi ed to include all incident links rather than only those that supply water 
under normal conditions. Thus, one obtains

  ′ = −
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⎡

∈
∑S u

q
Q

q
a Q

u
q
Q

q
a Q

j ij
ij

j

ij

ij ji U
jk

jk

j

kj

jk jj
’ ’ ’ ’ln ln

⎣⎣
⎢

⎤

⎦
⎥

∈
∑
k Lj

      (16.40)  

where  ′Qj     is the total of all fl ows leaving and entering node  j  by links contained 
in  Uj     and  Lj     expressed as

  ′ = +
∈ ∈
∑ ∑Q q qj ij
i U

jk
k Lj j

      (16.41)  

where  Lj     is the set of outfl ow links under normal conditions connected to node 
 j  in which the link  j – k  belongs to a loop containing node  j , and  Uj     is the set of 
 n  nodes on the upstream ends under normal conditions of links incident on node 
 j . It should be noted that only those outfl ow links are included that are part of 
the loop containing node  j  and do not include those that are part of pure branches. 

 To illustrate, consider a network as shown in Fig.  16-13 . Link 6–7 cannot 
contribute to supply node 6 if either link 3–5 or 4–6 of the main loop fails. This 
problem shows that pure branches cannot contribute to supply a node should 
one of the supply links fail. If only the outfl ow links that are part of a loop con-
taining node  j  are counted and outfl ow links from node  j  that are part of pure 
branches are not counted, then the network redundancy can be expressed as
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      (16.42)  

  Figure 16-13      A network layout.    
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which is the same as equation  (16.39) , except that  S j   in equation  (16.32)  is replaced 
by  ′Sj     from equation  (16.40) .    

  16.9     Other Considerations 

 In the real world, there are distribution networks that have several source nodes 
to serve the demand nodes. The procedure for redundancy calculation, however, 
remains the same. Because all nodes are interconnected, each node upstream of 
another node is a source node to the node downstream to it. Incident links are 
counted as those links connected to the upstream nodes that are source nodes to 
the downstream node for which redundancy is determined. In case of multiple 
sources connected to a demand node by a single link, this node may have mul-
tiple incident links and has a nonzero redundancy measure. Equation  (16.32)  or 
 (16.39)  for single or multiple links can be used for measure of redundancy. 

 Another aspect that occurs in the real world is that fl ows in links are not 
fi xed but vary with time in response to changing demands at nodes. The ques-
tion arises, Which fl ow pattern yields the redundancy measure? Answering this 
question entails defi ning the fl ow pattern. One may compute the redundancy 
measure for peak demand pattern or average fl ow pattern. The method of com-
putation, however, remains unaltered. 

 Pumps also contribute to the network redundancy. Because pumps are 
regarded as links in the network, the concepts applied to pipes also apply to 
pumps. The hydraulic property of pumps can be expressed as

  h Aq Bqij ij ij= +2       (16.43)  

where  h ij   is the pressure head of pump between nodes  i  and  j ;  q ij   is the pumping 
rate of the pump between nodes  i  and  j ; and  A  and  B  are constants. When con-
sidering pumps as links, the rate of pumping is related to the square of the 
pumping head  q hij ij∝ 0 5.    . In the case of two pumps, the redundancy is better if 
the two pumps are close to being of equal capacity. Likewise for multiple pumps. 
For inclusion in the redundancy measure, the relative pumping capacities are 
used in place of relative fl ow rates. 

 Valves are located on the pipes or links in the water distribution network. 
Therefore, their existence has the same meaning as that of pipes. Their hydraulic 
characteristics can also be described by the Hazen–Williams equation as for 
pipes, but the friction coeffi cient of the pipe is modifi ed by the presence of a 
valve thereon as

  q k C CV
h
L

Dij ij ij
ij

ij
ij= −( )

.

.
.

0 54

0 54
2 63       (16.44)  

where  CV ij   is the Hazen–Williams roughness coeffi cient of the valve,  C ij   is the 
Hazen–Williams coeffi cient of the pipe on which the valve is located,  L ij   is the 
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length of the pipe on which the valve is located,  h ij   is the head loss through the 
pipe,  D ij   is the diameter of the pipe, and  k  is the conversion factor for units. In 
this manner, the contribution of valves to the network redundancy is regarded 
through the pipes on which they are located. 

 Storage tanks within the distribution network are considered as demand 
nodes; the amount of water consumed is equal to the amount of water stored at 
these nodes, which is the same as the difference between infl ow to the tanks and 
outfl ow from the tanks multiplied by the time of storage. Thus, redundancy of 
these nodes is calculated as for other demand nodes. Their presence contributes 
to the network redundancy measure.  

  16.10     Optimization for Design of Networks 
Incorporating Redundancy 

 There can be two approaches by which entropy-based redundancy measures can 
be considered in developing optimization models for design of water distribu-
tion networks. In one approach, the cost of the network is minimized, subject to 
a minimum level of redundancy (entropy) and the usual hydraulic constraints. 
In the other approach, the network redundancy is maximized, subject to the 
necessary hydraulic constraints and the cost constraint. Both approaches assume 
that water demands at nodes are known and can accommodate both single 
demand pattern and multiple demand pattern. 

  16.10.1     Cost Minimization 

 There are two types of costs involved in a water distribution network: capital 
cost and energy cost. The capital cost is usually the cost of installing pipes, which 
is a function of pipe diameter and its length. U.S. Army Corps of Engineers ( 1980 ) 
has developed a cost function that can be used:

  M Dij ij= 0 39 1 51. .       (16.45)  

where  M ij   is the unit cost of installing pipe between nodes  i  and  j  in $10 6  per 
kilometer of pipe length; and  D ij   is the diameter of pipe in meters between nodes 
 i  and  j . If the total number of links is  N L   and the length of pipe between nodes  i  
and  j  is  L ij   in kilometers, then the total capital cost  C P   for the network in $10 6  can 
be expressed as

  C M L L DP ij ij
ij

N

ij ij
ij

NL L

= =
= =

∑ ∑
1

1 51

1

0 39. .       (16.46)   

 In equation  (16.46) , the lengths of links are fi xed. Denoting

  α ij ijL= 0 39.       (16.47)   
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 equation  (16.46)  can be written as

  C DP ij ij
ij

NL

=
=

∑α 1 51

1

.       (16.48)   

 The cost of energy,  C E  , that is needed to carry water depends on the rate of 
fl ow and pressure heads in the network and can be expressed as

  C q h HE ij ij
ij

N

j j
j
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⎡

⎣
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⎤

⎦
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= =
∑ ∑β

1 1

Δ       (16.49)  

where  β  is the price of one unit of energy,  q ij   is the fl ow rate in pipe between 
nodes  i  and  j ,  h ij   is the loss of pressure head between nodes  i  and  j ,  Δ   j   is the fl ow 
demand at node  j , and  N  is the total number of nodes in the network. From the 
Hazen–Williams equation, it can be shown that

  q h k
C
L

h D K h Dij ij
ij

ij
ij ij ij ij ij= =0 54
1 54 2 63 1 54 2 63.
. . . .       (16.50)  

where

  K k
C
L

ij
ij

ij

= 0 54.       (16.51)  

where, as before,  k  is the conversion factor for units, and  C ij   is the Hazen–
Williams coeffi cient for link  ij . Let

  γ
β

ij
ij

ij

kC
L

=
0 54.       (16.52)   

 The demand at a node is constant and is known. Then, let

  η βj j= Δ       (16.53)   

 The service head can also be expressed in terms of the head loss and pressure 
head at the source node as

  H H Z Z hj S S j ij
ij PSj

= + − −
∈
∑( )

( )
      (16.54)  

where  H S   is the pressure head at the source node,  Z S   is the height of the source 
node above a datum,  Z j   is the height of node  j  above the datum, and  P Sj   is the 
set of links between the source node  S  and demand node  j . Because the fi rst two 
terms in equation  (16.54)  are constant, one can write

  φ j S S jH Z Z= + −       (16.55)   
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 Equation  (16.49)  can be written as
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 Now the objective function for minimization of the sum of all costs (equa-
tions  [16.48]  and  [16.56] ), or the network cost, can be expressed as

  Minimize C D h D hT ij ij ij ij ij
ij

N

j j ij
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      (16.57)  

where  C T   is the total network cost. 
 The minimization of the total cost is done subject to the specifi ed constraints 

that are now expressed. First, hydraulic constraints are defi ned. These con-
straints relate to fl ow rates, pressure heads, head losses, and fl ow continuity. The 
fl ow rate in each link should be defi ned in terms of head loss through that link 
for either single demand pattern or multiple demand pattern. For a single 
demand pattern,

  q K h D ij Nij ij ij ij L= ∀ ∈0 54 2 63. . ( )links       (16.58)   

 For a multiple demand pattern, equation  (16.58)  can be extended as

  q K h D ijm D ij Nij ij ijm ij M L= ∀ ∈ ∀ ∈0 54 2 63. . ( ) ; ( )demands links       (16.59)  

where  D M   is the set of multiple demand patterns, and  h ijm   is the pressure head 
loss in the link from node  i  to node  j  for demand pattern  m . 

 The mass should be conserved at all nodes, that is, the difference between 
total infl ow and outfl ow must be equal to the demand at that node. For a single 
demand pattern, the fl ow continuity can be expressed as

  q q jij
i j h h

jk j
j k h hi j j k( , ) ( , )∈ >⎡⎣ ⎤⎦ ∈ >⎡⎣ ⎤⎦

∑ ∑− = ∀Δ nodes       (16.60)  

where  hi     is the head at node  i ,  h hi j>⎡⎣ ⎤⎦     is the set of links connected to demand 
node  j  where the head at node  j  is less than the head at node  i  at the other end 
of the link; and  h hj k>⎡⎣ ⎤⎦     is the set of links connected to node  k  where the head 
at node  j  is greater than the head at node  k  at the other end of the link. 

 For multiple demand patterns, the continuity equation can be written as

  q q j mijm jkm jm
j k h hi j h h j ki j

− = ∀ ∀
∈ >∈ >
∑∑ Δ

( , ) [ ]( , ) [ ]

;nodes demands ∈∈DM       (16.61)  

where  q ijm   is the fl ow in link from node  i  to node  j  for demand pattern  m , and 
 q jkm   is the fl ow in link from node  j  to node  k  for demand pattern  m . 

 Now the nodal pressure head constraint is expressed. The usual requirement 
is that pressure head at each node must be neither above some maximum value 
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nor below some minimum value. For a single demand pattern, this requirement 
can be expressed as

  H H H jj j jmax min≥ ≥ ∀ nodes       (16.62)  

where  H j   max  is the maximum pressure head allowed at node  j ,  H j   min  is the minimum 
pressure head permitted at node  j , and  H j   is the service pressure head at node  j  
as expressed by equation  (16.54) . Likewise, for multiple demand patterns, equa-
tion  (16.62)  can be extended to

  H H H j m Dj m j j m Mmax, min, ;≥ ≥ ∀ ∀ ∈nodes demands       (16.63)  

in which subscript  m  refers to the particular demand pattern. 
 The next constraint is about the net pressure head loss. In the links of every 

loop, the net pressure head loss must be zero according to hydraulic principles. 
For a single demand pattern, this requirement can be expressed as

  h hij

ij LP

jk

jk LP∈ ∈+ −
∑ ∑− = ∀ ∈0 LP Loops       (16.64)  

where Loops denotes the total number of loops in the network, LP  +   is the set of 
links in loop LP that have positive fl ow direction (clockwise), and LP  −   is the set 
of links in loop LP that have negative fl ow direction (counterclockwise). In a 
similar vein, for multiple demand patterns, one can write

  h h m Dij m

ij LP

jk m

jk LP

M, , ;
∈ ∈+ −
∑ ∑− = ∀ ∈ ∀ ∈0 LP Loops       (16.65)   

 The last constraint is the nodal redundancy. At each node, the redundancy 
must be above some minimum value. This requirement may lead to changes in 
the layout and component design of the network. For example, it may lead to 
the elimination of links between nodes if it is cheaper without compromising 
redundancy. For a single demand pattern, the redundancy can be expressed as
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q
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where  S j   min  is the minimum entropic redundancy permitted for node  j  and  S j   is 
the entropic redundancy at node  j  given by equation  (16.32) . 

 Likewise for multiple demand patterns, equation  (16.66)  can be 
extended to

  S u
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Q

q
a Q
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ijm
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ijm
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nodes jj m DM; ∀ ∈demands       (16.67)   

 This equation completes the formulation of optimum design based on cost 
minimization.  
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  16.10.2     Entropic Redundancy Maximization 

 Here the objective is to maximize the overall network entropy-based network 
redundancy. Thus, the objective function can be expressed as

  Maximize �S
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Q
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ln       (16.68)  

where the symbols are as defi ned earlier. The maximization is achieved, subject 
to the hydraulic and budgetary constraints. The hydraulic constraints specifi ed 
in the earlier case are also valid here, so they are not repeated. The total cost 
given by equation  (16.57)  must be less than or equal to the maximum allowable 
cost,  C T   max .  

  16.10.3     Relation to Reliability 

 For a number of layouts, Awumah ( 1990 ) computed parameters of nodal pair 
reliability (NPR) and percentage of demand supplied at adequate pressure (PSPF) 
and compared them with redundancy measures. NPR measures the probability 
that the source node and each of the demand nodes are connected and has been 
used by Quimpo and Shamsi ( 1988 ) and Wagner et al. ( 1988a, b ). The PSPF allows 
an assessment of the resilience of water distribution systems and, hence, permits 
a statement of hydraulic redundancy. Using the data from Awumah ( 1990 ), 
redundancy and NPR reliability are plotted as shown in Fig.  16-14  and that of 
PSPF in Fig.  16-15 . There is almost a one-to-one relation, and this relation 
can be used in entropy-based evaluation and design of water distribution 
networks.    

  Figure 16-14      Relation between network entropy and average network reliability.    
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  Figure 16-15      Network entropy versus average network PSPF.    
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  Questions 

   Q16.1      Consider fi ve simple single-node layouts as shown in Fig.  16-16 . Compute 
the redundancy of each layout and discuss the results.   

  Figure 16-16      Five simple single-node water distribution layouts.    
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  Figure 16-17      A simple single-node water distribution layout.    
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  Q16.2      Consider a pipe network layout as shown in Fig.  16-17 . Determine the 
redundancy measure at each node. Then determine the redundancy 
measure of the entire layout or network.   

  Q16.3      Using the layout in Q16.2, calculate the transmissivity at each node. 
Considering the transmissivity, calculate the modifi ed or global redun-
dancy measure at each node. Compare the redundancy values with those 
derived in Q16.2. Also compute the global redundancy measure for the 
network.  

  Q16.4      For the layout in Q16.2, compute the path parameter for each node. Con-
sidering the path parameter, compute the redundancy measure at each 
node. Then compute the global redundancy measure for the network.  

  Q16.5      For the layout in Q16.2, assume that pipes or links are somewhat old such 
that the friction factor for all links is 115. Then compute the redundancy 
measure at each node. Here you should also take into account the path 
dependency or path parameter. Then compute the global redundancy 
measure for the whole network.  
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  Q16.6      For the layout in Q16.2, assume that pipes or links are somewhat old 
such that the friction factor  C  for links is as follows:  C   =  115 for links 1–2 
and 2–3;  C   =  120 for links 1–4, 2–5, and 3–6;  C   =  125 for links 4–5, 5–6, 
4–7, 5–8, and 6–9;  C   =  130 for links 7–10, 8–11, and 7–8; and  C   =  140 for 
links 10–11, 11–12, and 9–12. Compute the redundancy measure at each 
node. Here you should also take into account the path dependency or 
parameter. Then compute the global redundancy measure for the whole 
network.  

  Q16.7      Consider the eight layouts shown in Fig.  16-18 . The demand at the 
sources is 2,500 m 3 /h. The demand at each node is specifi ed in Table 
 16-4 . Compute the fl ow in each link. Note that in this example the sum 
of demands at nodes equals the demand at the source. Compute the 
redundancy of each layout and discuss which layout should be preferred.    

  Q16.8      Consider the eight simple layouts in Fig.  16-18 . For each layout, indicate 
the number of loops and compute the redundancy measure derived from 
local redundancy and from global redundancy. Show redundancy at each 
node and redundancy among nodes. Discuss the results. Which layout is 
preferable? 

 Note that the sum of demands at nodes equals the demand at the 
source. Compute the redundancy of each layout and discuss which 
layout should be preferred.  

Node Demand (m 3 /h)

1-Source 2,500

2 250

3 275

4 225

5 250

6 200

7 250

8 200

9 250

10 200

11 200

12 200

 Table 16-4      Demand at each node in Q16.7.  
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 Figure 16-18      Eight alternative water distribution network layouts.    

c16.indd   740c16.indd   740 5/21/2014   11:18:58 AM5/21/2014   11:18:58 AM



Reliability of Water Distribution Systems 741

   

Layout 5

Layout 6

2,500 m3/h

1,275 m3/h 800 m3/h

1225 m3/h

1 2 3

4 5 6

525 m3/h

750 m3/h

7 8 9

225 m3/h 325 m3/h

350 m3/h

150 m3/h
10 11 12

75 m3/h

125 m3/h

250 m3/h

225 m3/h

150  m3/h

175 m3/h

2,500 m3/h

1,500 m3/h 575 m3/h

1000 m3/h

1 2 3

4 5 6

300 m3/h

775 m3/h

7 8 9

325 m3/h 200 m3/h

525 m3/h

325 m3/h
10 11 12

75 m3/h

125 m3/h

100  m3/h

675 m3/h

125  m3/h

Layout 7

Layout 8

2,500 m3/h

1,350 m3/h 725 m3/h

1,150 m3/h

1 2 3

4 5 6

450 m3/h

825 m3/h

7 8 9

100 m3/h 375 m3/h

375 m3/h

175 m3/h
10 11 12

125 m3/h

75 m3/h

100 m3/h

375 m3/h

200 m3/h

100 m3/h

125 m3/h

2,500 m3/h

1,825 m3/h 725 m3/h

675 m3/h

1 2 3

4 5 6

450 m3/h

850 m3/h

7 8 9

200 m3/h 250 m3/h

500 m3/h

300 m3/h
10 11 12

100 m3/h

100 m3/h

400 m3/h

850 m3/h

100 m3/h 100 m3/h

Figure 16-18, Continued
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  Figure 16-19      City water distribution layout.    

  Figure 16-20      An alternate city water distribution layout.    

  Q16.9      Consider a layout shown in Fig.  16-19 , in which number 1 denotes a fi l-
tration plant, numbers 3 and 4 denote the Taebaek city water reservoir, 
number 5 denotes the Samcheok city water reservoir, number 7 denotes 
the Yeongwul city water reservoir, number 8 denotes the Jeongseon city 
water reservoir, and other numbers denote nodes. Compute the redun-
dancy of the entire layout, transmission of redundancy, path parameter 
of redundancy, and age factor of redundancy (with  C   =  140 for steel).   

  Q16.10      Consider a layout shown in Fig.  16-20 , in which the real distance between 
node 2 and node 5 is 40 km. Numbers have the same meaning as in 
Q16.9. Compute common redundancy, transmission of redundancy, path 
parameter of redundancy, and age factor of redundancy.   
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  Q16.11      Consider a layout shown in Fig.  16-21 , in which the distance between 
nodes 2 and 5 is 40 km and the distance between nodes 8 and 3 is 30 km. 
Numbers have the same meaning. Compute common redundancy, trans-
mission of redundancy, path parameter of redundancy, and age factor of 
redundancy.   

  Q16.12      Consider a layout shown in Fig.  16-22 , in which the distance between 
nodes 2 and 5 is 40 km, the distance between nodes 8 and 3 is 30 km, and 
the distance between nodes 7 and 8 is 40 km. Numbers have the same 
meaning. Compute common redundancy, transmission of redundancy, 
path parameter of redundancy, and age factor of redundancy.   

  Figure 16-21      Another alternative city water distribution layout.    

  Figure 16-22      Another alternate city water distribution layout.    
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  Q16.13      Consider a layout shown in Fig.  16-23 , in which the distance between 
nodes 1 and 2 is 80 km. Numbers have the same meaning. Compute 
common redundancy, transmission of redundancy, path parameter of 
redundancy, and age factor of redundancy.     
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751

    Chapter 17 

  Evaluation of Water Quality 
and Wastewater Treatment 

Systems  

       Environmental pollution is caused by the discharge of material—biological, 
chemical, and physical materials, gaseous substances, and heat—into the envi-
ronment, which is composed of water, air, and soil. The discharge occurs in 
everyday activities of consumption and production. For example, water is used 
for such things as drinking, cooling, washing, energy production, waste disposal, 
transportation, recreation, and agricultural production. These activities and uses 
release compounds that pollute water through dissolution and diffusion. In a 
similar vein, when a hydrocarbon is transformed to a more usable form of energy 
through a series of conversions to heat, mechanical work, and fi nally to electric-
ity, a substantial part (about 60%) of the chemical energy originally present in 
the hydrocarbon is wasted as heat. The sulfur contained in the liquid fuel is 
released to the environment and causes air pollution. Today ’ s agriculture uses a 
lot of chemical fertilizers. Only a small portion of chemical fertilizer is used up 
by plants, and the rest goes to pollute soil and water resources. 

 When a chemical compound is added to water, the compound is likely to dis-
solve, diffuse, and result in an increase in pollution. Dissolution and diffusion of 
contaminants involve mixing, disordering, and randomization, and they increase 
entropy. Thus, an increase in pollution translates into an increase in entropy. 
This statement suggests that entropy can be used as a measure of water pollution. 
To purify polluted water, energy is required to remove pollutants and, in 
turn, decrease entropy. This chapter discusses entropy as a measure of water 
quality assessment and water quality improvement through the process of water 
treatment. 
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752 Entropy Theory in Hydraulic Engineering

  17.1     Diversity Index 

 The diversity index (DI) has been used as an indicator of diversity of species of 
organisms in water and, in turn, as an indicator of water pollution. In general, 
as the degree of pollution increases, the number of species decreases, meaning 
that there is a low diversity index. Of course, the exception is pure or unpolluted 
water that also has a low diversity index. It has been suggested by Routledge 
( 1979 ) that the admissible diversity indexes belong to the Hill family of indexes 
(Hill  1973 ) expressed as

  DIk i
k

i

N k

p= ⎡
⎣⎢

⎤
⎦⎥=

−

∑
1

1 1/( )

      (17.1a)  

where  k  is a coeffi cient and  p i   is the relative abundance of species  i  in a sample 
of  N  species. DI 1  is concave everywhere. Two important special cases of the Hill 
family are the Shannon–Weiner diversity index (Pielou  1966 ; Spellerberg and 
Fedor  2003 ) and the Simpson concentration (Simpson  1949 ; May  1975 ). The 
Shannon–Weiner index is based on the Boltzmann–Gibbs–Shannon entropic 
form, in which the diversity index, DI, can, with the Boltzmann constant as unity, 
be calculated as

  DI = −
=
∑ p pi i
i

N

ln
1

      (17.1b)  

where  p i   represents the number of organisms of species  i  divided by the total 
number  N  of organisms present in the water. DI, as a barometer of health, can 
also be used to compare the health of one body of water with another. 

 The Simpson concentration can be written as

  ψ =
=
∑ pi
i

N
2

1

      (17.2)  

where 1  −   ψ  denotes the Gini coeffi cient or the Simpson diversity (Lande  1996 ), 
is concave everywhere, and can be interpreted as a variance:  ψ  has an advantage 
in that it converges rapidly to the limit value of diversity for small sample sizes 
(Lande et al.  2000 ). Comparison of equation  (17.1)  with equation  (17.2)  shows 
that in equation  (17.1)  the expectation is over log (1/ p i  ), whereas in equation 
 (17.2) , it is over  p i   itself.  

  17.2     Evaluation of Water Quality Using 
the Diversity Index 

 Eutrophication corresponds to high productivity of lakes and streams by prema-
ture enrichment. Usually, DI drops as bloom occurs. For example, eutrophication 
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is most serious in summer months, and a drop in DI becomes evident, because 
there is a decrease in the number of organisms and different species. When lakes 
and streams receive nutrients, such as nitrogen and phosphorus, from point and 
nonpoint sources of pollution, these nutrients promote the growth of populations 
of phytoplankton during warm months, resulting in algal bloom and depletion 
of oxygen, and consequently degradation of water quality. One can examine the 
variations of the phytoplankton community of a lake, then compute the diversity 
index for phytoplankton using equation  (17.1) , and plot it as a function of time. 
Tai and Goda ( 1980 ) examined the phytoplankton of Lake Kasumigaura in 
Ibaraki, Japan, for a period of six years from 1972 to 1977 and computed DI, as 
shown in Fig.  17-1 , which shows that as DI decreases, entropy increases, as 
shown by equation  (17.1) . One can also examine the variation of DI with chemi-
cal oxygen demand (COD) for different lakes or water bodies. The diversity of 
phytoplankton species reaches a maximum when nutrient concentration is mod-
erate. Tai and Goda ( 1980 ) computed DI for phytoplankton communities of fi ve 
lakes in Japan—Chuzenji, Kasumigaura, Motosu, Shikotsu, and Yunoko—and 
plotted against measured COD, as shown in Fig.  17-2 . They reported that DI 
dropped in oligotrophic lakes, such as Lake Kasumigaura; increased in mesotro-
phic lakes, such as Lake Motosu and Lake Yunoko; and reached a maximum in 
the case of moderate nutrient concentration, such as Lake Chuzenji.    

  17.3     Evaluation of Water Treatment Systems 

 Energy is required to remove pollutants and purify water, that is, to decrease the 
entropy of the solution. A water treatment system generally requires and dissi-
pates a large amount of energy for removing pollutants from solution. Con-
versely, there is generation of entropy internally by the irreversibility of the 
treatment system. It can then be reasoned that the thermodynamic effi ciency of 
a treatment system can be evaluated by the rate of decrease of entropy of feed-
water and the rate of internal entropy production. Entropy makes it possible to 
evaluate both the unusable energy and the environmental pollution. 

  Figure 17-1      Variation of diversity index for phytoplankton in Lake Kasumigaura. 
 Source:   Tai and Goda ( 1980 ). Reproduced with permission from S. Tai.    
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  Figure 17-2      Relation between COD and diversity index for phytoplankton. 
 Source:   Tai and Goda ( 1980 ). Reproduced with permission from S. Tai.    

 Consider a wastewater treatment system, as shown in Fig.  17-3 , wherein 
polluted water is treated with reverse osmosis (RO) and solutes (salts) are sepa-
rated from a solution of raw water by a continuous separating plant; that is, the 
water separation system, such as RO, includes fl ows of material, energy, and 
entropy. The system is enclosed, permitting an exchange of both matter and 
energy with the surroundings. There is entropy of raw water, and there is internal 
entropy production caused by irreversible processes occurring in the system. 
Because of the removal of pollutants, the entropy of raw water decreases, but 
the entropy of the whole system increases because of the irreversibility of the 
system at a defi nite rate (internal entropy production). This phenomenon indi-
cates that the decrease in entropy of raw water,  Δ  S , is smaller than the internal 
entropy production,  dS i  . 

  The fl ows of matter, energy, and change in entropy in a water treatment 
system are shown in Fig.  17-3 . Let  Q  denote the fl ow rate with concentration  C . 
The fl ow consists of raw water, ( Q r  ), with concentration  C r  , effl uent ( Q e  ) with 
concentration  C e  , and concentrate (or sludge) ( Q s  ) with concentration  C s  . Let  E  
denote energy fl ow and  E h   denote heat energy fl ow. The energy fl ow consists of 
energy fl ow  E r   associated with raw water and heat energy  E hr  , energy associated 
with effl uent  E e   and heat energy  E he  , and energy associated with concentrate (or 
sludge)  E s   and heat energy  E hs  . Then one can write the mass balance as

  C Q C Q C Qr r e e s s= +       (17.3a)  

and energy balance as

  E E E E Er e he s hs= + + +       (17.3b)   
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 In a similar manner, one can consider the entropy of water fl ow and energy 
fl ow. Let  S  denote the entropy, which consists of the entropy of mixing,  S M  , and 
the internal entropy production,  S I  . Then,  S r   denotes the entropy of raw water, 
and the entropy associated with its heat energy is  Sr

h    .  S e   denotes the entropy of 
effl uent, consisting of internal entropy production,  Se

I    , and entropy associated 
with its heat energy,  Se

h    .  S s   denotes the sludge entropy, consisting of the internal 
entropy production,  Ss

I    , and entropy associated with its heat energy,  Ss
h    . The 

change in entropy can be written as

  ΔS S S S S S S S Se e
I

e
h

s s
I

s
h

r r
h= + + + + + − −       (17.4)   

 Thus, there are three types of water for consideration: polluted water, treated 
water, and wastewater. When raw water is fed into the treatment plant, concen-
trate (sludge) and effl uent (clean water) are produced by treatment, and heat is 
dissipated by the operating pressure. The mixture is made up of substances, each 
with a molar fraction with respect to substances  N i  . Entropy per mole of ideal 
solution and dilute real solution (raw or polluted water)  S  (g cm 2 /s 2  K) can be 
expressed (Tai and Goda  1985 ) as

  S R x x x si i i i= − +∑ ∑ln       (17.5)  

  Figure 17-3      Flow of matter and energy, and the change in entropy. 
 Source:   Tai and Goda ( 1980 ). Reproduced with permission from S. Tai.    
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where  R  is the gas constant (g cm 2 /s 2  mol K, 8.134  ×  10 7  g cm 2 /s mol K),  x i   is the 
mole fraction of component (substance)  i , and  s i   is the standard or thermody-
namic entropy from the third law of entropy of component  i  (g cm 2 /s 2  K), and 
K is the absolute temperature. In equation  (17.5) , the fi rst term represents “entropy 
mixing” per mole of ideal or real solution,  Δ  S M  , and the second term represents 
“standard entropy” per mole of solution. 

 Entropy changes as a result of mixing. One can compute the entropy of 
treated water, wastewater, and polluted water, as well as compute internal 
entropy production. To that end, one can consider (1  −   A ) moles of wastewater 
(sludge) mixed with  A  moles of clean water (treated water), as shown in Fig. 
 17-4 . Entropy of the effl uent (clean) water per mole  S e   can be expressed as

  S R x x x se i
Me

i
Me

i
Me

i
e= − +∑ ∑ln       (17.6)  

where  xi
Me     is the mole fraction of component  i  of effl uent (clean) water. 

  Entropy per mole of sludge  S s   can be written as

  S R x x x ss i
Ms

i
Ms

i
Ms

i
s= − +∑ ∑ln       (17.7)  

  Figure 17-4      Entropy change in mixing and water or wastewater treatment. 
 Source:   Tai and Goda ( 1985 ). Reproduced with permission from Taylor and Francis.    
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where  xi
Ms     is the mole fraction of component  i  of the concentrate or sludge. 

 Entropy per mole of the raw (polluted) water  S r   can be written as

  S R x x x sr i
Mr

i
Mr

i
Mr

i
r= − +∑ ∑ln       (17.8)  

where  xi
Mr     is the mole fraction of component  i  of the raw water. 

 The entropy decrease of a molar raw water in a water treatment system  Δ  S  
can be expressed as

  ΔS AS A S Se s r= + − −( )1       (17.9)  

where  A  is the molar ratio of effl uent fl ow to raw water fl ow. 
 Assuming that there is no chemical reaction, the absolute entropy term is 

deleted, and entropy caused by the mixing is retained. Substituting equations 
 (17.6) to (17.8)  in equation  (17.9) , the result is

  ΔS R x x A x x A x xi
Mr

i
Mr

i
Me

i
Me

i
Ms

i
Ms= − − −⎡⎣ ⎤⎦∑ ∑ ∑ln ln ( ) ln1       (17.10)   

 As an example, if one mole of feedwater is 18 cm 3 , the rate of entropy decrease 
of feedwater in the reverse osmosis system is given as

  
Δ
Δ

ΔS
t

S
Qr=
18

      (17.11)  

where  Q r   is the feedwater fl ow rate, and  ΔS     is given by equation  (17.8)  
or  (17.9) . 

  17.3.1     Internal Entropy Production 

 Natural water bodies, including rivers, canals, lakes, and estuaries, as well as 
some artifi cial fl ow systems, such as water treatment systems, are open systems. 
In such systems, there occurs an exchange of material and energy between the 
system and its external environment or surroundings. The total change in entropy 
of an open system  Δ  S  is the sum of change in entropy of the infl owing fl ux  Δ  S e   
and the entropy created irreversibly in the system  Δ  S I  . The increase in entropy 
in an open system can be expressed as

  Δ Δ ΔS S Se I= +       (17.12)   

 The local entropy production per unit time and volume,  σ , is related to 
the rate of internal entropy production within the system  Δ  S I  / Δ  t  (cal/K, g/s 3 K) 
by the volume integral. Thus, this relation for a system in steady state can be 
written as

  
Δ
Δ
S
t T

dVI

V
= ∫1 σ       (17.13)  
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where  σ  is the entropy production rate,  V  is the volume (cm 3 ), and  T  is the abso-
lute temperature. The term ( Δ  S I  / Δ  t ) T  is often referred to as the dissipative func-
tion  Φ :

  Φ Δ
Δ

= T
S
t
I       (17.14)   

 The local entropy production rate  σ  can be expressed as a sum of fl ows with 
conjugate forces. Important conjugate fl uxes and forces in nonequilibrium ther-
modynamics for various processes (Tai and Goda  1985 ) are given in Table  17-1 . 

  If the system is mechanical by virtue of a series of analytical procedures for 
irreversible thermodynamic processes, then the local entropy production rate can 
be expressed as

  σ μ= − + + −∑J
T

T
J
T

A
J
T

s ch i
igrad grad( ) ( )       (17.15)  

where  J s   is the entropy fl ux (vector),  J i   is the fl ux of component  i ,  μ   i   is the 
chemical potential of component  i ,  J ch   is the rate of chemical change per unit 
volume,  A  is the affi nity of chemical reaction, and  T  is the temperature of the 
system. (Symbols are also defi ned in Table  17-1 ). Equation  (17.13)  can now be 
expressed as

  
dS
dt T

J T J A J dVI
s ch i i

V
= − + + −⎡⎣ ⎤⎦∑∫ 1

grad grad( ) ( )μ       (17.16)   

 Equation  (17.16)  expresses the local entropy production rate as a sum of products 
of fl uxes and their conjugate forces.  

Processes Flux Conjugate force Power

Chemical reaction Reaction rate per unit 
volume,  J ch  

Chemical affi nity,  A  J ch    ×   A 

Flow of electric current Electric current,  I Electrical potential,  E  I   ×   E 

Diffusive fl ow of 
nonelectrolytes

Flux of 
nonelectrolytes,  J i  

Chemical potential 
gradient, grad ( −  μ   i  )

 J i    ×  grad( −  μ   i  )

Diffusive fl ow of 
electrolytes

Flux of electrolytes,  J i  Electrochemical 
potential gradient, 
grad ( −μi    )

 J gradi i−( )μ    

Volumetric fl ow Volumetric fl ow,  J v  Hydrostatic pressure 
difference,  Δ  P 

 J v   Δ  P 

Thermal fl ow Flux of entropy,  J s  Temperature 
gradient, grad( −  T )

J  s  grad( −  T )

 Table 17-1      Conjugate fl uxes and forces in nonequilibrium thermodynamics.  
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  17.3.2     Evaluation of Reverse Osmosis 

 Reverse osmosis (RO) is a water treatment process and has been used for treat-
ment of sewage effl uents and desalination of seawater. At the National Institute 
of Environmental Studies in Japan, wastewater from its laboratory is treated by 
reverse osmosis after treatment by precipitation with alum, sand, fi ltration, and 
activated carbon adsorption for reuse as cooling water and boiled feedwater 
transport across a reverse osmosis membrane as shown in Fig.  17-5 . The system 
is comprised of two compartments separated by a membrane of thickness  Δ  X . 
The compartments may contain different concentrations as well as components 
to which the membrane is impermeable, which causes a difference in osmotic 
pressure across the membrane. Pressures on the left side of the membrane are 
different from those on the right side, but a constant pressure difference is main-
tained in the system. 

  Let it be assumed that the system is isothermal, i.e., grad( −  T )  =  0, and that 
no chemical reaction takes place between them, i.e.,  J ch    =  0. Equation  (17.16)  sim-
plifi es to each chemical constituent:

  
dS
dt T

J dVI
i i

V
= −∑∫1

grad( )μ       (17.17)   

 The fl ows are constant in a stationary state, and, hence, equation  (17.17)  can be 
integrated across the membrane from surface 0 to  Δ  X  and can be used to deter-
mine the rate of increase in entropy production per unit area of the membrane 
as a whole:

  

dS
dt T

J dX

T
J

T
J

I
i i

X

i i i
x

i i

= −⎡⎣ ⎤⎦

= − =

∑∫

∑ ∑

1

1 1
0

0

grad( )

( )

μ

μ μ μ

Δ

Δ Δ
      (17.18)   

  Figure 17-5      Illustration of a membrane of thickness  Δ  x .    
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 During integration, the unknown chemical potential gradient in the mem-
brane, grad( −  μ   i  ), has been replaced by the known chemical potential differ-
ence  Δ  μ   i  . 

 The rate of internal entropy production for the transport of a binary solution 
of nonelectrolytes across the simple membrane can be expressed as

  
dS
dt T

J JI
s s w w= +1

( )Δ Δμ μ       (17.19)  

where subscripts  s  and  w  correspond to the solute and water, respectively. The 
chemical potentials  μ   s   and  μ   w   can be expressed as

  Δ Δμw w osV P P= −( )       (17.20)  

  Δ Δμs s
os

s

V P
P
C

= +⎛
⎝⎜

⎞
⎠⎟       (17.21)  

where  V w   is the partial molar volume of water,  V s   is the partial molar volume 
of the solute,  Δ  P  is the difference in operating pressure across the membrane, 
 Δ  P os   is the original osmotic pressure, and  Cs     is the average concentration 
of solute. 

 Inserting equations  (17.20)  and  (17.21)  in equation  (17.19) , one obtains

  
dS
dt T

J V J V P
J
C

J V PI
w w s s

s

s
w w os= + + −⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1
( )Δ       (17.22)   

 The fi rst term within parentheses on the right side represents the total volume 
fl ux  J v   across the membrane:

  J J V J Vv w w s s= +       (17.23)   

 Substituting equation  (17.23)  in equation  (17.22) , one obtains

  
dS
dt T

J P P J
P
C

C VI
v os s

os

s
s s= − + +⎡

⎣⎢
⎤
⎦⎥

1
1( ) ( )Δ       (17.24)   

 An order of magnitude analysis shows that  C V C Vw w s s>>     and  C Vw w ≅ 1    . Equa-
tion  (17.24)  then simplifi es to

  
dS
dt T

J P P J
P
C

I
v os s

os

s

= − +⎡
⎣⎢

⎤
⎦⎥

1
( )Δ       (17.25)  

For ideal solutions with small concentration differences,  Cs     can be taken as 
the numerical average of the concentrations of each side of the membrane:

  C
C C

s
s s

X

= +0

2

Δ
      (17.26)   
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 The osmotic pressure across the membrane,  P os  , can be written following van ’ t 
Hoff ’ s law for the osmotic pressure of dilute solutions as

  P RT C Cos s s
X= −( )0 Δ       (17.27)   

 Substituting equations  (17.26)  and  (17.27)  in equation  (17.25) , the result is

  
dS
dt T

J P RTJ C C RTJ
C C
C C

I
v v s s

X
s

s s
X

s s
x

= − − + −
+

⎡
⎣⎢

⎤
⎦⎥

1
20

0

0
Δ Δ

Δ

Δ( )       (17.28)   

 The rate of internal entropy production during the transport of solution 
of a single electrolyte dissociating into two ions across the membrane can be 
expressed as

  
dS
dt T

J P RTJ C C RTJ
C C
C C

IEI
v v s s

X
s

s s
X

s s
x

= − − + −
+

+⎡
⎣⎢

⎤
⎦⎥

1
20

0

0
Δ Δ

Δ

Δ( )       (17.29)  

in which  E  is the electric potential difference between the reversible electrodes 
and  I  is the electric current. For the case of nonelectrolytes,  E   =  0 or  I   =  0, and 
equation  (17.29)  reduces to equation  (17.28) . For the transport of multielectrolyte 
solution across a simple membrane, the rate of internal entropy production can 
be expressed as

  
dS
dt T

J P RTJ C C RT J
C C
C C

IEI
v v s s

X
s

s s
X

s s
x

= − − + −
+

+⎡
⎣⎢

⎤∑ ∑1
20

0

0Δ Δ
Δ

Δ( )
⎦⎦⎥

      (17.30)   

 Referring to the fl ow diagram of a reverse osmosis system in Fig.  17-6 , the points 
of measurements for the actual RO system are the entrance (feed) and exit (con-
centrate and permeate) in each vessel. Using the symbols of the fi gure,

  ΔP
P P

Pf c
p=

+
−

2
      (17.31)  

  Figure 17-6      Diagram of reverse osmosis system (spiral-wound type). 
 Source:   Tai and Goda ( 1985 ). Reproduced with permission from Taylor and Francis.    
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  J Qv p=       (17.32)  

  J Q Ci p pi=       (17.33)  

  C
C C

i
f si i0

2
=

+       (17.34)  

  C Ci
X

pi
Δ =       (17.35)  

where subscript  f  refers to the feed,  C  refers to the concentrate,  p  refers to the 
permeate,  P f   is the hydrostatic pressure of feedwater in the RO system (g cm  − 1 s  − 2 ), 
 P c   is the hydrostatic pressure of concentrate in the RO system (g cm  − 1 s  − 2 ),  P p   is 
the hydrostatic pressure of permeate in the RO system (g cm  − 1 s  − 2 ),  J v   is the volume 
fl ux across a membrane (cm/s),  Q p   is the fl ow rate of permeate in the RO system 
(cm/s), and  J i   is the fl ux of component  i  across a membrane (g cm  − 2  s  − 1 ),
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or
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      (17.37)     

  17.3.3     Thermodynamic Effi ciency 

 Effi ciency of an engineering system is generally represented by the ratio of work 
done to input energy. A wastewater treatment system decreases the entropy of 
polluted feed water. Using the reverse osmosis membrane technique separates 
solutes from wastewater. Fig.  17-6  shows the energy conversion in a wastewater 
treatment system. The input energy per unit of time  Δ  E / Δ  t  is converted into three 
parts: (1) available work for removing contaminants,  −  T  Δ  S / Δ  t , (2) work dissi-
pated as unavailable work,  TDS I /dt  (entropy produced within the system per 
unit time) or useless work, and (3) diffuse energy,  Δ  E  ′ / Δ  t , not converted 
and fl owing out of the system. The input energy applied to do work can be 
expressed as

  
Δ
Δ

Δ
Δ

Δ
Δ

E
t

E
t

T
S
t

T
dS
dt

I− ′ = − +       (17.38)   
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 Effi ciency of the treatment system,  η , and the work done can be expressed as

  η = −
− +

T S t
T S t TdS dtI

Δ Δ
Δ Δ

/
/ /

      (17.39)   

  Example 17.1          Tai and Goda ( 1985 ) conducted an experiment on removing salts 
from treated wastewater by the use of the reverse osmosis facility at the National 
Institute for Environmental Studies at Ibaraki, Japan. They then evaluated the 
dissipation function and the rate of production of internal entropy for the mem-
brane process. For each stage, entropy change, dissipation function, and internal 
entropy production rate are given in Table  17-2 . Compute the thermodynamic 
effi ciency for each stage in the desalination of treated wastewater by the reverse 
osmosis system.   

  Solution     The thermodynamic effi ciency can be computed using equation  (17.39) . 
For stage 1,

  η = − −
− −

× =( . )
. ( . )

.
0 932

51 30 0 932
100 1 784    

    For stage 2,

  η = − −
− −

× =( . )
. ( . )

.
0 781

42 63 0 781
100 1 80    

    For stage 3,

  η = − −
− −

× =( . )
. ( . )

.
1 166

43 63 1 166
100 2 60    

    For stage 4,

  η = − −
− −

× =( . )
. ( . )

.
0 959

33 61 0 959
100 2 77    

    The effi ciency of removal of salts is below 3%, which is very low.  

Stage   Δ S/ Δ t (g/s 3  K )   Φ    ×  10 3  g/s 3  dS i /dt  (g/s 3  K )

1  − 0.932 15.39 51.3

2  − 0.781 12.81 42.63

3  − 1.166 13.11 43.61

4  − 0.959 10.11 33.61

   Source:   Data from Tai and Goda ( 1985 ).   

 Table 17-2      Entropy change, dissipation function, and internal entropy production rate 
for each stage in Example  17.1 .  
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   Example 17.2          Using the reverse osmosis system, Tai and Goda ( 1985 ) removed 
salt from seawater, for which the operating conditions are given in Table  17-3 . 
They also computed the rate of change in entropy using equation  (17.10) , the dis-
sipation function using equation  (17.36) , and the rate of internal entropy produc-
tion using equation  (17.35) , as shown in Table  17-4 . Compute the thermodynamic 
effi ciency.    

  Solution     The thermodynamic entropy is computed using equation  (17.38) . For 
spiral wound,  η   =  41.1%; for hollow fi ber (permasep),  η   =  40.0%; for hollow fi ber 
(XFS),  η   =  1.3%; and for tubular,  η   =  44.2%.     

Operating condition

Type of module
 Q f    

( × 10  − 4  cm/s)
 Q p    

( × 10  − 4  cm/s)
 C f    

(g/l)
 C p    

(g/l)
  Δ P   

( × 10 7  g/cm·s 2 )

Spiral wound (ROGA-2A-TFC) 19.3 3.38 30 0.3 6.08

Hollow fi ber (permasep-B-10) 2 0.33 30 0.27 5.67

Hollow fi ber (XFS-416708) 1.3 0.41 30 0.3 5.67

Tubular (Nitto-NRO-A) 4.1 2.25 24 2.5 5.37

   Source:   Data from Tai and Goda ( 1985 ).   

 Table 17-3      Operating conditions for the reverse osmosis of salt from seawater in 
Example  17.2 .  

Type of module

Entropy change, 
  Δ S/ Δ t   

(g/s 3 · K )

Dissipation function 
  Φ    

( × 10 3  g/s 3 )

Internal entropy 
production rate, 

  Δ S i / Δ t   
(g/s 3 · K )

Spiral wound 
(ROGA-2A-TFC)

 − 28.5 12.2 40.8

Hollow fi ber 
(permasep-B-10)

 − 2.4 1.1 3.6

Hollow fi ber 
(XFS-416708)

 − 0.7 1.3 4.4

Tubular 
(Nitto-NRO-A)

7.3 7.3 24.4

 Table 17-4      Rate of change in entropy, dissipation function, and rate of internal entropy 
production for Example 17.3.  
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  17.4     Relation to Shannon Entropy 

 The entropy of mixing per molar solution for ideal solution and dilute 
solution is

  ΔS R x xM
i i= − ∑ ln       (17.40)   

 Introducing equation  (17.9)  in equation  (17.40) , one obtains the decrease of 
entropy of raw water:

  Δ Δ Δ ΔS A S A S Se
M

s
M

r
M= + − −( )1       (17.41)  

where  ΔSe
M     is the entropy of mixing per mole of effl uent,  ΔSs

M     is the entropy of 
mixing per mole of concentrate, and  ΔSr

M     is the entropy of mixing per mole of 
raw water. 

 Here is the Shannon discrete entropy:

  H p pi i= −∑ ln       (17.42)   

 Comparing equation  (17.42)  with equation  (17.40) , one gets

  ΔS RHM =       (17.43)   

 In a similar manner,

  Δ ΔS R H=       (17.44)  

where  Δ  H  represents the change in entropy of discrete information in raw water 
and can be determined by the use of conditional entropy of discrete information. 
The entropy of mixing per ideal solutions can be computed by multiplying the 
entropy of discrete information by the gas constant. Similarly, the change in 
entropy when separating solutes from solution can be computed by multiplying 
the change in entropy of discrete information by the gas constant. Information 
can be equated to the decrease of entropy.  

  17.5     Environmental Performance of Waste 
Treatment Systems 

 Waste treatment yields a variety of products, organic and inorganic. Emissions 
of these products into the environment, including the atmosphere, the hydro-
sphere, the pedosphere (land), and the lithosphere, does not follow uniform 
standards throughout the world. In countries with high standards of waste 
management, the emissions are limited by stringent environmental protection 
regulations. The products or resources have both pollution (toxic) and resource 
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(recyclable) potential. Some of the products can be used for recycling or landfi ll-
ing. It may be desired to analyze the partitioning of substances during waste 
treatment. 

 There are many treatment systems available—for example, thermal and 
mechanical, and their application may depend on the type of waste. A treatment 
system may be a simple process or a combination of processes. If the goals of a 
waste treatment system are environmental protection and resource conservation, 
then the question arises, Which treatment best satisfi es these goals? Total emis-
sions and residues of the treatment system must be minimized or optimized. 

 In general, gaseous and aqueous emissions from waste management should 
contain low concentrations of metals. As these cannot be destroyed, they must 
be transferred into solid outputs of waste treatment systems. There is, of course, 
considerable uncertainty as to the fate and the leaching potential of metals in 
residues over a long period of time. The optimal waste treatment system gener-
ates one or more residues with high or low concentrations of metals that can be 
used as a resource. The effi ciency of transfer of a metal contained in a waste to 
a high percentage into a single output is called the substance-weighted concen-
trating effi ciency (SCE). 

 The evaluation of a waste treatment system (WTS) depends on the concentra-
tions in the outputs. For simplicity, ranges of mean concentrations of single 
outputs can be used for evaluating different systems using SCE. The Shannon 
entropy provides a measure of SCE. Let there be  n  number of substances to be 
considered and  k  number of  n  outputs of a WTS. Then the concentration of a 
substance  j  in a system output  i  is denoted as  C ij  . One can write

  C C j nj ij
i

k

= = …
=
∑

1

1 2, , , ,       (17.45)   

 Interpreting  C ij /C j   as a measure of probability of substance  j  to get into output  i , 
that is, substance  j  is being fractionated into  k  outputs, the Shannon entropy  H  
as a measure of SCE can be expressed as

  H C
C
C

C
C

C C Cij
ij

ji

k
ij

j
j ij ij

i

k

( ) log log log= −
⎛
⎝⎜

⎞
⎠⎟

= −
= =
∑ ∑

1
2 2 2

1

      (17.46)   

 It can be shown that  H ( C ij  ) is indirectly a function of mass balance and transfer 
coeffi cients of substances into the WTS residues but is not a function of input 
concentrations of these substances. 

 If  C ij    =   C j   for any  i , then  H ( C ij  )  =  0. This statement means that substance  j  is 
transferred into one single output fraction. Clearly, this case, although highly 
likely to be reality, corresponds to the optimum scenario for a WTS, because 
the concentration cannot be zero in any output. Conversely, if  C ij    =   C j /k ,  i   =  
1, 2, …,  k , then

  H C kij( ) log= 2       (17.47)   
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 This equation states that substance  j  is equally fractionated among  k  outputs, or 
that all outputs have the same concentration, and it corresponds to the worst-
case scenario. The implication is that WTS only dilutes the input during sub-
stance transport and that no increase or decrease of concentration occurs. 

 The relative entropy  H  rel ( C ij  ), which is dimensionless and ranges between 0 
and 1, can be defi ned as

  H C
H C

H C
H C

k
ij

ij

ij

ij
rel ( )

( )
( )

( )
logmax

= =
2

      (17.48)   

  H ( C ij  ) can be used to assess the range of concentration of any metal in different 
residues. A question arises: What happens if a system has more than two solid 
outputs? Then the mean concentration of an output must be weighted with the 
frequency of occurrence of concentration (corresponding to the mass fl ow of the 
output). Let  m i   denote the frequency (mass) of output  i  ( m i    ≥  1),  i   =  1, 2, …,  k , 
such that

  m mi
i

k

=
=
∑

1

      (17.49)   

 Then,

  C m Cj i ij
i

k

=
=
∑

1

      (17.50)   

 The Shannon entropy can be expressed as

  H C m C
C

m Cm ij i j
j

i ij
i

k

( , ) log= −
=
∑2

1

1
      (17.51)  

and

  H C m mm ij i( , ) log ( )max = 2       (17.52)   

 The mass-weighted relative entropy can be expressed as

  H C m
H C m

H C m
H C m

m
m ij i

m ij i

m ij i

m ij i
rel ( , )

( , )
( , )

( , )
logmax

= =
2

      (17.53)   

 The SCE of a WTS for a substance  j  can be expressed as

  SCE relj m ijH C= ( )       (17.54)   

 The value of SCE  j   ranges between 0 and 1; the optimum is 0. 
 For comparing SCE  j   for different substances, the substance-specifi c SCE  j   

must be weighted. Let  H  rel ( C ij  ) ref  be the relative entropy of substance  j  for its 
natural occurrence, which can be interpreted as a measure for a fi ctitious natural 
partitioning of substance (e.g., concentration of one mass unit of Earth ’ s crust 
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and concentration of one mass unit (ore). The substance-weighted SCE  j,w   for 
substance  j  can be written, with  g j   as weighting between 0 and 1 for  n  metals, as

  SCE SCEj w j jg, =       (17.55)  

where

  g
H C

H C
j

ik

ij

= rel ref

rel ref

( )
( )

min
      (17.56)   

 The total substance-weighted concentrating effi ciency (TSCE) for  n  substances 
can be expressed as

  TSCE

SCE SCE

= ==

=

=

=

∑

∑

∑

∑

g

g g

j j
j

n

j
j

n

j w
j

n

j
j

n
1

1

1

1

,

      (17.57)   

 The value of TSCE ranges between 0 and 1; the optimum is 0.  

  Questions 

   Q17.1      Collect monthly data on the phytoplankton of a lake for a number of 
years and then compute DI. Plot the DI as a function of time, and discuss 
if entropy increases or decreases and why.  

  Q17.2      Collect monthly data on the phytoplankton and COD of several lakes for 
several years. Then plot the variation of DI with COD for these lakes and 
comment on the plot.  

  Q17.3      Consider a reverse osmosis (RO) system composed of, say, four stages 
that is used for treatment of wastewater that can then be reused. Obtain 
data on the operating condition and analyze the feed, permeate, and 
concentrate in the RO system. Then compute the rate of entropy decrease 
of the feedwater and the rate of internal entropy production for each 
stage.  

  Q17.4      Assume the same system as in Q17.3 for treatment of seawater or saltwa-
ter. Using similar data as in Q17.3, compute the rate of entropy decrease 
of the feedwater and the rate of internal entropy production for each 
stage.  

  Q17.5      Compute the ratio of the rate of internal entropy production of the feed-
water to the rate of entropy decrease for each stage and discuss the result. 
If the difference in concentrations of the seawater and wastewater are 
neglected, then for what kind of water is the RO system more effective?  
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  Q17.6      Compute the effi ciency of the RO system based on the results in Q17.3 
and Q17.4. The effi ciency may depend on the membrane confi guration.    
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589–592 
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 Continuous time series discretization, 
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 Cross-sectional geometry, 565–566 
 Crushing tests, 352–353, 353f 
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 hypothesis on, 47–48, 71–72 
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domains, 164–165, 165t, 166f–168f, 
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 Cumulative probability distribution of 
velocity, 186–187 

 Darcy ’ s friction factor, 252–253 
 Darcy-Weisbach equation, 252, 284 
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 Debris fl ow.  See also  Sediment 
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 explanation of, 399 
 sediment concentration distribution 

and, 409–411, 410f, 411f, 411t 
 uniform, 400f 
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 for momentum transfer, 371–373, 372f, 
373t 

 for sediment transport, 363–364, 364f 
 Dimensionless entropy.  See  Relative 

entropy 
 Dimensionless shear stress, 555, 556, 

558f 
 Dimensionless shear stress distribution, 

556–557 
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 Dip phenomenon, 106 
 Directional information transfer (DIT) 

index, 607–610, 609t, 610t 
 Discharge at remote locations 

 accounting for wave travel time and, 
259, 259t 

 estimation of wave travel time and, 
259–260, 260t 

 fl ow conditions and, 260, 261 
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 lateral fl ow and, 262–265, 263t 
 methods and, 257–258 

 Discharge estimation, 269 
 Discharge measurements, 253–256, 254f, 

257f 
 Discrete variable merging, 597–598, 

598f, 598t–601t, 600–607, 603t, 604t, 
607t 

 Distribution systems.  See  Water 
distribution systems 

 Diversity index (DI) 
 explanation of, 752 
 water quality evaluation using, 

752–753, 753f, 754f 
 Downstream hydraulic geometry.  See also 

 Hydraulic geometry 
 background of, 423–424 
 calibration of power relations and, 

428–431, 429t–431t 
 equations for given discharge, 439–450, 

441t–443t 
 mean values of hydraulic variables 

and, 427–428 
 types of analyses and, 427 

 Downstream hydraulic geometry 
relations.  See also  Hydraulic 
geometry relations 

 discussion of, 424, 425t, 426f 
 variations in, 465 

 D-V method, 552, 553, 553t, 554f, 562 

 Egiazaroff, I. V., 570 
 Eigen-entropy, 316, 317, 326 
 Einstein, H. A., 370, 371f 
 Energy, momentum coeffi cients and, 

246–248, 247f, 248t, 249f, 249t 
 Energy gradient 

 distribution of, 526–531, 527t–531t, 
528f, 530f, 531f 

 longitudinal river profi les and, 
518–520 

 Entropy.  See also specifi c types of entropy  
 Bayesian, 12, 13 
 calculation of transinformation and, 

32–36, 32f, 37t–45t 
 class intervals in histograms and, 

300 
 concentration theorem and, 11–12 
 conditional, 15–16, 15f, 19, 20, 20t–23t, 

23, 585, 589–592 

 for derivation of suspended sediment 
concentration equation, 376–385, 
378t, 379f, 380f, 380t, 382f, 382t–386t, 
384f, 385f 

 to derive rating curves, 661–675, 663f, 
666f, 668f, 669f, 671f, 672t, 673f–678f, 
676t, 677–678 

 environmental pollution and, 753–754 
( See also  Wastewater treatment 
systems; Water quality) 

 explanation of, 2–4 
 feature extractor and relative, 301–302, 

302f 
 informational correlation coeffi cient 

and, 45–46 
 information and, 13–14 
 information measurement and, 13–14 
 interaction information and, 27–28, 

29t–31t, 32 
 joint, 24, 480, 585, 588, 596 
 marginal, 13, 17, 18t, 19t, 583–585, 585t, 

596 
 maximization of, 49–50, 78–79, 109–110, 

401–403, 435, 520 
 multivariate, 14–15, 586 
 pollution and, 751 ( See also  Water 

quality) 
 principle of maximum, 10–11 
 principle of minimum cross-entropy, 

12–13 
 redundancy and, 691, 694–700, 700f, 

701f, 702–703, 703f, 704f, 705–708, 
705t ( See also  Redundancy) 

 relative, 14, 767 
 Shannon, 4–6, 6f, 7t, 10t ( See also 

 Shannon entropy) 
 spatial, 9 
 thermodynamic, 5 
 transinformation and, 16–17, 18t–23t, 

19–20, 22, 24–27, 25t–27t 
 of velocity density function, 80, 88, 89f 
 of velocity distribution, 80, 88, 89f, 120, 

190, 203–204, 204f, 205f 
 of velocity in terms of entropy 

parameter, 118–119 
 Entropy-based redundancy equation, 696, 

728 
 Entropy-based redundancy measures.  See 

also  Redundancy; Water distribution 
systems 
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 axioms for, 695–700, 700f, 701f, 702–
703, 703f, 704, 705–708, 705t 

 cost minimization and, 732–735 
 extension of, 719–723, 720f–722f 
 maximization and, 736 
 for water distribution systems, 694–695 

 Entropy-based sediment concentration 
distribution 

 entropy-based velocity distribution, 
391–394 

 explanation of, 386–389, 388t–390t, 
389f, 390f, 395, 396t 

 power law velocity distribution and, 
394 

 Prandtl-von Karman velocity 
distribution and, 394–395 

 Entropy-based velocity distribution 
 empirical sediment concentration 

distribution and, 391–394 
 sediment concentration distributions 

and, 395, 396t 
 Entropy increment 

 base entropy and, 327–329, 329f 
 explanation of, 324–325 
 maximum value of, 325 

 Entropy number  M,  114 
 Entropy parameter determination, 

269–272 
 Entropy theory 

 background of, 1 
 concentration theorem and, 11–12 
 data collection networks assessment 

and, 577–578 
 hypothesis on cumulative distribution 

function and, 47–48, 47t, 48f 
 sediment concentration in debris fl ow 

and, 400–405, 404f–411f, 404t–408t, 
407, 409–417, 411t, 412t, 413f, 414t, 
415f, 416t–418t, 417f ( See also 
 Sediment concentration in debris 
fl ow) 

 Entropy theory applications 
 constraints and, 49 
 entropy maximization and, 49–50 
 for hydraulic engineering problems, 46 
 Lagrange multipliers and, 51–55 
 methodology for, 48–55 
 probability distribution and, 50–51 
 random variables and, 48–49 
 types of, 1 

 Equilibrium sediment concentration 
 in debris fl ow, 411–417, 412t, 413f, 414t, 

415f–417f, 416t–418t 
 equation for, 414 
 relation for computing, 412 

 Euler number, 65 
 Eutrophication, 752–753, 753f, 754f 
 Events occurrences, 55 

 Fass, D. M., 595 
 Feature extraction, grain size and, 

301–302, 302f 
 Fiorentino, M., 1, 531 
 Flow depth 

 depth distribution and, 267–269 
 determination of, 265–266 
 discharge estimation of, 269 
 probability distribution of, 266–267 

 Flow reversal, 729–731, 730f 
 Frequency analysis, class intervals for, 

300–301, 301f 
 Frequency histograms, 300 
 Frictional resistance, of alluvial channels, 

563–564 
 Friction coeffi cient, pipe fl ow and, 287, 

288f–290f, 289, 290, 291f 
 Friction factor 

 alluvial channels and, 563–564 
 Darcy ’ s, 252–253 
 explanation of, 125–126 
 velocity distribution in pipe fl ow and, 

285–287, 286f 
 Froude number, 65 

 Garcia, M. H., 359 
 Gaussian density function, 580 
 Gini coeffi cient, 752 
 Global sediment concentration, 412–413 
 Goda, T., 753, 754f–756f, 761f, 763f, 764 
 Goulter, I. C., 578, 690 
 Grading entropy 

 application of, 311, 352–355, 353f, 354f 
 background of, 311–314, 312t, 313f 
 as concept, 314–319, 315t, 317t 
 coordinates, 324–329, 327f, 329f, 

346–351, 347f, 349f, 351f 
 extension property of entropy diagram 

and, 351–352, 352f 
 map, 329–342, 330f–332f, 336f, 337f, 

339f–345f 
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 simplex for characterization of, 
319–324, 320f–323f 

 Grading entropy map 
 explanation of, 329–330 
 inverse image of, 342–346, 342f–345f 
 nature of, 329–342, 330f–332f, 336f, 

337f, 339f–345f 
 Grain distribution curve, 347–348 
 Grain size analysis 

 applications of, 299 
 grain size distribution in, 299–304, 

301f–303f, 305f, 306–311 
 soil characteristics using grading 

entropy and, 311–355, 312t, 313f, 
315t, 317t, 320f–323f, 327f, 329f–332f, 
336f, 337f, 339f–345f, 347f, 349f, 
351f–354f ( See also  Soil 
characteristics) 

 Grain size distribution 
 background of, 299 
 class intervals for frequency analysis 

and, 300–301, 301f 
 derivation of, 308–311 
 feature extraction and, 301–302, 302f 
 lognormal distribution to describe, 

309–311 
 methods to characterize, 306–308, 311 
 multivariate case and, 307–308 
 normal distribution to describe, 

308–309 
 sorting index and, 302–304, 303f, 305f, 

306 
 univariate case and, 306–307 

 Granulometric analysis of sediments, 306 

 Harmancioglu, N. B., 1 
 Harmonics, sediment size and, 302 
 Hazen-Williams formula for fl ow 

through pipes, 727–728 
 Hazen-Williams friction coeffi cient, 

731–733 
 Head, energy in open channels and, 76 
 Head loss, velocity distribution in pipe 

fl ow and, 285–287, 286f 
 Henderson, F. M., 535 
 Hill, M. O., 752 
 Histogram-based density estimator, 580 
 Histogram partition method, 581, 582 
 Histograms, grain size and, 300, 303, 303f 
 Husain, T., 614 

 Hwang, N. H. C., 728 
 Hydraulic engineering problems 

 application of entropy theory to, 46 
 types of, 46 

 Hydraulic geometry.  See also  At-a-station 
hydraulic geometry; Downstream 
hydraulic geometry 

 channel types and, 466 
 explanation of, 423 
 theories of, 431, 466–467 

 Hydraulic geometry relations.  See also 
 At-a-station hydraulic geometry 
relations; Downstream hydraulic 
geometry relations 

 applications for, 457–458 
 at-a-station, 457–458, 459t, 460f, 461f, 

462, 462t, 463f, 463t 
 for depth, roughness, and velocity, 

445–447, 491–492 
 for depth, roughness,slope, and 

velocity, 504–505 
 for depth, velocity, and slope, 493–494 
 for depth, width, roughness, and 

velocity, 447–450 
 derivation of, 432–439, 438t 
 discontinuities in, 464 
 downstream, 424, 425t, 426f 
 for velocity, roughness and slope, 495 
 for width, depth, roughness, slope, and 

velocity, 507–508 
 for width, depth, velocity, and slope, 

502 
 for width, depth, velocity and 

roughness, 497–500 
 for width, depth and velocity, 444–445, 

484, 485f–486f, 486–487 
 for width, roughness and velocity, 

439–444, 441t–443t, 488 
 for width, velocity, and slope, 490 
 for width, velocity, roughness and 

slope, 500 
 Hydraulic redundancy, 691, 694.  See also 

 Mechanical redundancy; 
Redundancy; Water distribution 
systems 

 Ikeda, S., 556 
 Imaginary (secondary) cell system, 312, 

313, 313f, 314, 318, 324 
 Imre, E., 354 
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 Information 
 entropy and measures of, 13–14 
 interaction, 27–28, 29t–31t, 32 

 Informational correlation coeffi cient, 
45–46, 624–627, 625t, 627t 

 Informational entropy, 13–14 
 Information transfer index (ITI), 608 
 Integrated mean square error (IMSE), 

580 
 Interaction information 

 explanation of, 27–28, 29t–31t, 32 
  S -notation for, 56 

 Isovels 
 construction of, 127–135, 132f, 133f, 

135f–138f, 214–217, 216f–220f, 
224–231, 225f–231f 

 explanation of, 106–108 
 slope of, 130 

 Jakulin, A., 28, 594, 595 
 Jaynes, E. T., 1, 11 
 Joint entropy 

 computation of, 24, 580 
 as measure of information, 585–586, 

588, 596 
 Jonsson, I. G., 557 
 Jowitt, P. W., 698 

 King, H. W., 535 
 Knight, D. W., 552, 557, 569 
 Knighton, A. D., 464, 465, 467 
 Krstanovic, P. F., 596, 610 
 Kullback, S., 1 
 Kurtosis, 304 

 Lagrange multiplier 
 alluvial channel design and, 549–551 
 determination of, 51–55, 79–80, 85–86, 

110–112, 112f, 113f, 189, 200–203, 
202f, 402–403, 520–522, 539, 543–544, 
544f, 544t 

 entropy of velocity and, 80, 199–200 
 estimation of, 87–88 
 method of, 98–100 
 sampling velocity measurements and, 

241, 242 
 Langbein, W. B., 466–467 
 Laplace ’ s principle 

 explanation of, 12–13 
 principle of Maximum entropy and, 11 

 Law of association and communication, 
601–602 

 Leachate collection system, 352 
 Leibler, R. A., 1 
 Leopold, L. B., 457, 458, 465 
 L’Hospital ’ s rule of limit theory, 549 
 Li, R. M., 467 
 Lien, H.-P., 414 
 Lindley, D. V., 1 
 Lognormal distribution, to describe grain 

size distribution, 309–311 
 Longitudinal channel profi le, from fall 

entropy, 531 
 Longitudinal river profi les 

 background of, 517–518 
 derivation of, 519–531, 521t, 522f, 

523t–531t, 524f–526f, 528f, 530f, 531f, 
533f 

 energy gradient and, 518–520 
 Lookup table approximation method, 

343, 343f, 344f 
 Lorincz, J., 311, 312, 352–353 
 Lundgren, H., 557 

 Mach number, 66 
 Maddock, T. J., 457, 458 
 Manning ’ s  n,  135, 135f–138f, 290, 291f, 

293, 294, 436, 442 
 Manning ’ s roughness factor, 247, 270, 458 
 Marginal entropy 

 computation of, 17, 18t, 19t, 583, 584, 
585t 

 as measure of information, 585, 587, 
596 

 Marini, G., 155 
 Mathematical fl oor function, 580, 582–

583, 584t 
 Maximum information minimum 

redundancy (MIMR) criterion.  See 
 MIMR-based approach 

 Maximum velocity.  See also  Velocity 
 axis of, 144 
 Darcy ’ s friction factor, entropy number 

and, 252–253 
 determination of, 143–144 
 discharge measurements and, 254–256 
 fl ow, 265–266 
 location of, 139–143, 141f, 142f 
 in pipe fl ow, 277 
 pipe fl ow and, 287, 288f–290f, 289 
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 relation of location of, 144–145 
 two-dimensional velocity distribution 

and, 158–159 
 McGill, W. J., 27, 594, 595 
 Mean velocity.  See also  Velocity 

 alternative method for estimation of, 
153–155, 154f 

 comparison of estimates of, 152 
 determination of, 146–150, 148f, 149f 
 discharge measurements and, 253, 255 
 estimation from velocity profi le along 

the  y -axis, 150–151, 151f 
 pipe fl ow and, 287, 288f–290f, 289 
 two-dimensional velocity distribution 

and, 158–159 
 Mechanical redundancy, 691, 694.  See also 

 Redundancy; Water distribution 
systems 

 Merigliano, M. F., 466 
 MIMR-based approach 

 explanation of, 613–615 
 selection procedure and, 616, 617t, 

618–624, 619t 
 Mizuyama, T., 412, 414 
 Modifi ed overall network redundancy, 

728–729 
 Mogheir, Y., 608 
 Momentum coeffi cients, 246–248, 247f, 

248t, 249f, 249t 
 Momentum transfer, diffusion coeffi cient 

for, 371–373, 372f, 373t 
 Monitoring networks.  See  Water-level 

monitoring networks 
 Monthly streamfl ow  (m 3 /s)  of USGS 

stations, 630t–641t 
 Moody diagram, 284, 284f 
 Moramarco, T., 147, 257–259, 264, 269 
 Morphological equations 

 at-a-station hydraulic geometry and, 
473–478, 481 

 downstream hydraulic geometry and, 
436–439 

 Multivariate case, grain size distribution 
and, 307–308 

 Multivariate entropy 
 explanation of, 14–15 
 joint, 586, 597 

 Multivariate transinformation, 606 
 Mutual entropy.  See  Transinformation 
 Myrick, R. M., 465 

 National Institute of Environmental 
Studies (Japan), 759, 763 

 Network design, framework for, 
578–579 

 Niggli ’ s index of sorting, 304 
 Nikuradse, J., 287 
 Nodal pair reliability (NPR), 736 
 Non-normalized entropy diagrams, 330, 

342–343 
 Nonparametric estimation, 609 
 Normal distribution, to describe grain 

size distribution, 308–309 
 Normalized entropy map 

 maximization of, 331–333, 336, 337f, 
338–340, 354 

 plotting of, 330–331, 331f 
 points in, 342–343 

 One-dimensional power law velocity 
distribution 

 entropy of velocity distribution and, 
190 

 estimation and, 195–196 
 Lagrange multipliers and, 189 
 maximization of entropy and, 188 
 probability distribution of velocity and, 

188 
 sampling velocity measurements and, 

241 
 specifi cation of constraints and, 188 
 testing and, 190–195, 191f–193f, 194t, 

195f 
 use of, 187, 190 

 One-dimensional Prandtl-von Karman 
universal velocity distribution 

 determination of Lagrange multipliers 
and, 200–203, 202f, 203f 

 entropy of velocity distribution and, 
203–204, 204f, 205 

 explanation of, 185–186, 196–199, 
197f–199f, 205–206 

 probability distribution and, 199–200 
 specifi cation of constraints and, 199 
 testing and, 206–210, 207f, 208f, 208t 

 One-dimensional velocity distribution 
 explanation of, 65–66 
 with no physical constraint, 81–84, 

82f–84f 
 with one physical constraint, 85–90, 

89f, 91f, 92f 
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 preliminaries on, 67–69, 67f, 69t, 70t 
 with three physical constraints, 96–98, 

98f 
 with two physical constraints, 92–94, 

94t, 95t 
 One-dimensional velocity distribution 

derivation 
 derivation of probability density 

function of velocity and, 79 
 determination of Lagrange multipliers 

and, 79–80 
 entropy of velocity function and, 80 
 explanation of, 66, 70 
 expression of Shannon entropy and, 

72–73 
 general velocity distribution and, 81 
 hypothesis on cumulative distribution 

function of velocity in terms of fl ow 
depth and, 71–72, 71t, 72f 

 maximization of entropy and, 78–79 
 specifi cation of constraints and, 73–78, 

74f, 75f, 77f, 77t 
 One-physical-constraint velocity 

distribution 
 explanation of, 85–90, 89f, 91f, 92f 
 test of, 89, 90t, 91f, 92, 92f 

 Open-channel fl ow 
 explanation of, 65–67 
 momentum conservation and, 73–75 
 sheer stress and, 249 
 use of  k  1 -entropy relation for 

characterizing, 244–245, 246f 
 velocity in, 127, 186 

 Open channels, energy in, 76 
 Optimization problem, 615–616 
 Ou, G., 412, 414 

 Parameter  G  
 evaluation of, 162–163 
 for generic geometry domain, 169 

 Parameter  M  
 channel information and, 146–147 
 defi nition and meaning of, 114 
 estimation of, 124–127, 125f, 126f, 152 
 hydraulic applications for, 269 
 signifi cance of, 120–123, 121f–123f 

 Park, C. C., 467–468 
 Particle fall velocity, 361–362, 362f 
 Particle migration, 352 
 Parzen, E., 609 

 Passive redundancy, 693.  See also 
 Redundancy 

 Path parameter 
 explanation of, 719, 721, 722 
 modifi ed redundancy measure with, 

723–727, 724f–726f 
 Pentachoron, 319 
 Percentage of demand supplied at 

adequate pressure (PSPF), 736, 
737f 

 Pipe fl ow.  See also  Velocity distribution in 
pipe fl ow 

 relation between mean and maximum 
velocity in, 146 

 treatment of, 277 
 Pollution, 751, 752.  See also  Water 

quality 
 Polytope, 319 
 Poorly sorted, 302–303 
 Power functions of discharge, 458, 464 
 Power law equation, 370 
 Power law velocity distribution.  See also 

 One-dimensional power law velocity 
distribution; Two-dimensional power 
law velocity distribution 

 construction of isovels and relation 
between coordinates and, 214–217, 
216f–220f, 220 

 entropy-based probability distribution 
and, 211–212, 212f, 213f 

 entropy of velocity distribution and, 
190 

 estimation and, 195–196 
 explanation of, 185, 186, 209–210 
 hypothesis, 210 
 Lagrange multipliers and, 189 
 maximization of entropy and, 188 
 probability distribution of velocity and, 

188 
 sediment concentration distribution 

and, 394 
 specifi cation of constraints and, 188, 

211 
 testing and, 190–195, 191f–193f, 194t, 

195f 
 use of, 187, 190 
 velocity distribution and, 213–214 

 Power law velocity distribution in two 
dimensions, using general 
framework, 232–234 
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 Prandtl-von Karman universal velocity 
distribution.  See also  One-
dimensional Prandtl-von Karman 
universal velocity distribution; 
Two-dimensional Prandtl-von 
Karman universal velocity 
distribution 

 construction of isovels and relation 
between coordinates and, 224–231, 
225f–231f 

 determination of Lagrange multipliers 
and, 200–203, 202f, 203f, 221–223 

 entropy-based sediment concentration 
distribution and, 394–395 

 entropy of velocity distribution and, 
203–204, 204f, 205, 223 

 explanation of, 185–186, 196–199, 
197f–199f, 205–206, 223–224 

 pipe fl ow and, 282–283, 283f 
 probability distribution and, 199–200 
 specifi cation of constraints and, 199, 

221 
 testing and, 206–210, 207f, 208f, 208t 

 Price formula, 262, 263t 
 Primary morphological equations, 

436–439 
 Primary (real) cell system.  See  Real 

(primary) cell system 
 Principle of maximum entropy (POME) 

 background of, 1 
 explanation of, 10–11, 435 
 probability density function of velocity 

and, 66, 187 
 sediment concentration distribution 

and, 386 
 Principle of minimum cross-entropy 

(POMCE), 1, 12–13 
 Probability density function (PDF) 

 determination of, 403–405, 404f–409f, 
404t–408t, 407 

 entropy theory and, 11 
 fl ow depth and, 266–267 
 maximum entropy and, 538–539, 542 
 Shannon entropy and, 187 
 of velocity, 79, 118–119 

 Probability distribution 
 in dimensionless form, 159–162, 

159f–162f 
 of energy gradient, 520 
 entropy of, 13, 211–212, 212f, 213f 

 entropy theory applications and, 50–51 
 of fl ow depth, 266–267 
 maximum entropy and, 522–526, 

523t–526t, 524f, 525f 
 Probability distribution of velocity, 110, 

188 
 Pumps, redundancy and, 731 

 Quaternary diagrams, 321, 322f, 323f 

 Random approximation methods, 
343–344, 344f 

 Random variables, entropy theory 
applications and, 48–49, 580 

 Rating curves 
 applications for, 654 
 explanation of, 653, 654 
 forms of stage-discharge relations and, 

655–658, 657t, 658f, 659f, 659t, 
660–661, 661f 

 stage-discharge relations and, 653–655 
 use of entropy to derive, 661–675, 663f, 

666f, 668f, 669f, 671f, 672t, 673f–678f, 
676t, 677–678 

 Real (primary) cell system, 312–314, 324, 
346, 348 

 Redundancy.  See also  Water distribution 
systems 

 entropy-based measures, 694–700, 700f, 
701f, 702–703, 703f, 704f, 705–708, 
705t, 719–723, 720f–722f 

 explanation of, 690–691 
 hydraulic, 691, 694 
 measures of, 692–693 
 mechanical, 691, 694 
 modifi ed measure with age factor, 

727–728 
 modifi ed measure with path 

parameter, 723–727, 724f–726f 
 modifi ed overall network, 728–729 
 optimization for network design 

incorporating, 732–737 
 passive, 693 
 pump systems and, 693–694 
 reliability and, 690–692, 736, 737f 
 transmission through water 

distribution network, 708–718, 709f, 
711t, 712t 

 types of, 691 
 in water distribution systems, 693–694 
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 Regular points, in grading entropy map, 
342–343 

 Relative entropy 
 explanation of, 14, 767 
 feature extractor and, 301–302, 

302f 
 Reliability 

 redundancy and, 690–692, 736, 737f 
( See also  Redundancy) 

 water distribution systems and, 736, 
736f, 737f 

 Reverse osmosis (RO) 
 evaluation of, 759–762, 761f 
 explanation of, 754 

 Reynolds number 
 gradation of boundary material and, 

569 
 use of, 65, 66 
 von Karman ’ s universal constant and, 

185–186 
 Richards, K. S., 464, 466 
 Richardson number, 66 
 Rouse equation, 373 
 Routledge, R. D., 752 

 Said, C.A.A., 147, 153, 155, 254 
 Sampling velocity measurements, 

241–244, 243t, 244f 
 Schumm, S. A., 466 
 Scott, D. W., 580 
 Secondary cell system.  See  Imaginary 

(secondary) cell system 
 Sediment concentration 

 deterministic equations and, 373–376, 
375t, 376f, 376t 

 dimensionless equilibrium, 410–411 
 entropy and, 282f, 376–385, 378t, 

379f, 380f, 380t, 382t–386t, 384f, 385f, 
394 

 equilibrium in, 411–417, 412t, 413f, 
414t, 415f–417f, 416t–418t 

 global, 412–413 
 governing equation for, 361 
 unit stream power and, 433 

 Sediment concentration distribution 
 debris fl ow and, 409–411, 410f, 411f, 

411t 
 empirical, 391–394 
 entropy-based, 386–389, 388t–390t, 

389f, 390f, 395, 396t 

 Sediment concentration in debris fl ow 
 background of, 399–400 
 entropy theory and, 400–405, 404f–411f, 

404t–408t, 407, 409–417, 411t, 412t, 
413f, 414t, 415f, 416t–418t, 417f 

 equilibrium, 411–417, 412t, 413f, 414t, 
415f–417f, 416t–418t 

 Lagrange multipliers and, 402–403 
 maximization of entropy and, 401–402 
 notation and defi nition for, 400 
 probability density function and 

maximum entropy and, 403–405, 
404f–409f, 404t–408t, 407 

 sediment concentration distribution 
and, 409–411, 410f, 411f, 411t 

 Shannon entropy and, 400–401 
 specifi cation of constraints and, 401 

 Sediment discharge, 359, 360.  See also 
 Suspended sediment discharge 

 Sediment particles 
 granulometric analysis of, 306 
 in incipient motion, 414, 415 

 Sediment transport 
 background of, 359 
 diffusion coeffi cient for, 363–364, 364f 
 diffusion coeffi cient for momentum 

transfer and, 371–373, 372f, 373t 
 particle fall velocity and, 361–362, 

362f 
 velocity gradient and, 364–371, 367t–

370t, 368f 
 Shannon, Claude, 1 
 Shannon-Boltzmann-Gibbs entropy.  See 

 Shannon entropy 
 Shannon entropy 

 alluvial channels and, 537–538 
 background of, 1 
 continuous form of, 73 
 for discrete random variable, 580 
 explanation of, 4–6, 6f, 7t, 10t 
 expression of, 72–73, 109 
 grading entropy and, 315, 316 
 grain size distribution and, 306 
 longitudinal profi les and, 519 
 of node, 696 
 Prandtl-von Karman universal velocity 

distribution and, 199 
 principle of minimum cross-entropy 

and, 12 
 probability density function and, 187 
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 sediment concentration in debris fl ow 
and, 400–401 

 wastewater treatment systems and, 
765–767 

 water-level monitoring and, 579–580 
 Shannon-Weiner diversity index, 752 
 Shear stress 

 dimensionless, 555, 556 
 distribution of, 556–557 
 local boundary, 557 
 open-channel fl ow and, 249 
 probability of, 249, 250 
 wide rectangular channels and, 252 

 Shields, A., 415 
 Shields diagram, 560, 560f 
 Shields parameter, 415 
 Sieve analysis, 311–312 
 Simplex 

 explanation of, 319 
 grading entropy and, 319–324, 

320f–323f 
 Simpson concentration, 752 
 Singh, V. P., 1, 257–259, 264, 269, 466, 596, 

608, 610 
 Skewness, sorting and, 304 
  S -notation 

 for bivariate and trivariate 
transinformation, 56 

 explanation of, 55 
 for interaction information, 56 

 Soil characteristics, 311–312.  See also 
 Grading entropy 

 Sorting index, grain size distribution and, 
302–304, 303f, 305f, 306 

 Srinivasa, S., 595 
 Stage-discharge relations.  See also  Rating 

curves 
 explanation of, 653–655 
 forms of, 655–658, 657t, 658f, 659f, 659t, 

660–661, 661f 
 stability of, 655 

 Standard deviation (SD), sorting and, 303 
 Statistical cell systems, 312–313 
 Stebbings, J., 562, 563f 
 Stream power (SP) 

 adjustment of, 434–435, 441, 473–477 
 explanation of, 432–434 

 Streamwise slope, 567–568 
 Substance-weighted concentrating 

effi ciency (SCE), 766–768 

 Suspended sediment concentration 
 deterministic equations and, 373–376, 

375t, 376f, 376t 
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