

THE JR
PROGRAMMING LANGUAGE
Concurrent Programming in an
Extended Java

THE KLUWER INTERNATIONAL SERIES IN
ENGINEERING AND COMPUTER SCIENCE

THE JR
PROGRAMMING LANGUAGE
Concurrent Programming in an
Extended Java

by

Ronald A. Olsson
University of California, Davis
U.S.A.

Aaron W. Keen
California Polytechnic State University
U.S.A.

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-8086-7
Print ISBN: 1-4020-8085-9

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2004 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

To the memory of my parents, Dorothy and Ronald RAO

To all who have touched my life AWK

This page intentionally left blank

Contents

Dedication

List of Figures
List of Tables
Preface
Acknowledgments

xv
xvii
xix
xxv

Op-methods

Operation and Method Declarations

Operation Capabilities

17

17

19

21

21

22

22

1. INTRODUCTION

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Key JR Components

Two Simple Examples

Matrix Multiplication

Concurrent File Search

Critical Section Simulation

Translating and Executing JR Programs

Vocabulary and Notation

Exercises

Part I Extensions for Concurrency

2. OVERVIEW OF EXTENSIONS

2.1

2.2

Process Interactions via Operations

Distributing JR Programs

3. OP-METHODS, OPERATIONS, AND CAPABILITIES

3.1

3.2

3.3

v

1

3

4

6

8

10

12

13

13

viii

Exercises 25

27

27

31

34

35

36

38

43

43

45

46

47

49

50

53

53

56

58

61

65

65

68

70

74

77

79

80

83

84

91

91

93

4. CONCURRENT EXECUTION

4.1

4.2

4.3

4.4

4.5

Process Declarations

The Unabbreviated Form of Processes

Static and Non-static Processes

Process Scheduling and Priorities

Automatic Termination Detection

Exercises

5. SYNCHRONIZATION USING SHARED VARIABLES

5.1

5.2

5.3

5.4

5.5

The Critical Section Problem

An Incorrect Solution

An Alternating Solution

The Bakery Algorithm for Two Processes

The Bakery Algorithm for N Processes

Exercises

6. SEMAPHORES

6.1

6.2

6.3

Semaphore Declarations and Operations

The Dining Philosophers Problem

Barrier Synchronization

Exercises

7. ASYNCHRONOUS MESSAGE PASSING

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Operations as Message Queues

Invoking and Servicing via Capabilities

Simple Client-Server Models

Resource Allocation

Semaphores Revisited

Data-Containing Semaphores

Shared Operations

Parameter Passing Details

Exercises

8. REMOTE PROCEDURE CALL

8.1

8.2

Mechanisms for Remote Procedure Call

Equivalence to Send/Receive Pairs

Contents ix

8.3 Return, Reply, and Forward Statements

Exercises

9. RENDEZVOUS

9.1 The Input Statement
9.1.1
9.1.2

General Form and Semantics
Simple Input Statements

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

Receive Statement Revisited

Synchronization Expressions

Scheduling Expressions

More Precise Semantics

Break And Continue Statements

Conditional Input

Arrays of Operations

Dynamic Operations

9.10 Return, Reply, and Forward Statements

Exercises

10. VIRTUAL MACHINES

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

Program Start-Up and Execution Overview

Creating Virtual Machines

Creating Remote Objects

Examples of Multiple Machine Programs

Predefined Fields

Parameterized Virtual Machines

Parameter Passing Details

Other Aspects of Virtual Machines

Exercises

11. THE DINING PHILOSOPHERS

11.1

11.2

11.3

Centralized Solution

Distributed Solution

Decentralized Solution

Exercises

96

103

107

108
108
109

112

115

118

119

120

121

122

123

124

128

139

140

141

143

144

146

149

151

152

153

159

160

162

165

169

x

12. EXCEPTIONS

12.1

12.2

12.3

Operations and Capabilities

Input Statements

Asynchronous Invocation
12.3.1
12.3.2

Handler Objects
Send

12.4 Additional Sources of Asynchrony
12.4.1
12.4.2

Exceptions After Reply
Exceptions After Forward

12.5 Exceptions and Operations

Exercises

13. INHERITANCE OF OPERATIONS

13.1

13.2

13.3

13.4

Operation Inheritance

Example: Distributing Operation Servicing

Example: Filtering Operation Servicing

Redefinition Considerations

Exercises

14. INTER-OPERATION INVOCATION SELECTION MECHANISM

14.1

14.2

Selection Method Expression

View Statement
14.2.1
14.2.2

General Form and Semantics
Simple View Statement

14.3 Selection Method Support Classes
14.3.1
14.3.2
14.3.3
14.3.4

ArmEnumeration Methods
InvocationEnumeration Methods
Invocation Methods
Timestamp Methods

14.4 Examples
14.4.1
14.4.2
14.4.3

Priority Scheduling
Random Scheduling
Median Scheduling

Exercises

173

173

174

174
175
176

177
177
178

179

180

185

186

187

188

190

191

193

194

197
197
198

198
199
199
199
199

200
200
201
203

204

Contents xi

Part II Applications

15. PARALLEL MATRIX MULTIPLICATION

15.1

15.2

15.3

15.4

Prescheduled Strips

Dynamic Scheduling: A Bag of Tasks

A Distributed Broadcast Algorithm

A Distributed Heartbeat Algorithm

Exercises

16. SOLVING PDEs: GRID COMPUTATIONS

16.1

16.2

16.3

16.4

A Data Parallel Algorithm

Prescheduled Strips

A Distributed Heartbeat Algorithm

Using Multiple Virtual Machines

Exercises

17. THE TRAVELING SALESMAN PROBLEM

17.1

17.2

17.3

Sequential Solution

Replicated Workers and a Bag of Tasks

Manager and Workers

Exercises

18. A DISTRIBUTED FILE SYSTEM

18.1

18.2

18.3

System Structure

Directory and File Servers

User Interface

Exercises

19. DISCRETE EVENT SIMULATION

19.1

19.2

A Simulation Problem

A Solution
19.2.1
19.2.2
19.2.3
19.2.4

Main Class
Processor Class
Bus Controller Class
Scheduler Class

19.3 Observations

Exercises

211

212

215

217

220

223

227

228

232

236

240

241

247

248

251

254

258

263

264

266

272

280

283

283

285
285
285
286
288

290

291

xii

20. INTERFACING JR AND GUIs

20.1

20.2

BnB Game Overview

BnB Code Overview
20.2.1 Main Class
20.2.2 Window Class
20.2.3 Button Class
20.2.4 Board Class
20.2.5 Toy Classes
20.2.6 Input Classes

20.3 Miscellany

Exercises

21. PREPROCESSORS FOR OTHER CONCURRENCY NOTATIONS

21.1

21.2

21.3

Conditional Critical Regions (CCRs)

Monitors

Communicating Sequential Processes (CSP)

Exercises

Appendices
A
B
C
D

Synopsis of JR Extensions
Invocation and Enumeration Classes
Program Development and Execution
Implementation and Performance

D.1

D.2

D.3

D.4

D.5

D.6

D.7

JR Virtual Machines

Remote Objects
D.2.1 Remote Class Loading

Operations and Operation Capabilities

Invocation Statements
D.4.1 Inheritance

Input Statements

Quiescence Detection

Performance Results
E History of JR

293

293

294
296
297
299
300
305
307

308

310

313

313

316

320

325

331
331
337
341
343

343

344
344

345

345
346

346

346

347
351

Contents

References

Index 359

xiii

355

This page intentionally left blank

List of Figures

Process interaction mechanisms in JR

Initial table setting for Dining Philosophers

Execution of simple return program

Execution of simple reply program

Execution of simple forward program

Structure of centralized solution
Structure of distributed solution

Structure of decentralized solution
Exception propagated through call chain

Exception propagated from method invoked asynchronously

Distribution of servicing through redefinition of opera-
tion in subclass BagServer

Filtering of invocations through redefinition of opera-
tion in subclass FilterServer

Pictorial representation of the structure of ArmEnumeration
Assigning processes to strips

Replicated workers and bag of tasks
Broadcast algorithm interaction pattern

Heartbeat algorithm interaction pattern

Initial rearrangement of 3 × 3 matrices A and B

Approximating Laplace’s equation using a grid

Search tree for four cities

Snapshot of the structure of DFS

Underlying UNIX file structure for DFS logical host
number 2

2.1

6.1

8.1

8.2

8.3

11.1
11.2

11.3

12.1

12.2

13.1

13.2

14.1
15.1

15.2
15.3

15.4

15.5

16.1

17.1

18.1

18.2

19

57

97

98

103

160
163

165

175

175

187

188

195
212

215
217

220

221

228

248

264

264

Simulation component interaction pattern
BnB game in action
Actual JR operation inheritance hierarchy
Translation of the invocation of a ProcOp

xvi List of Figures

19.1
20.1
D.1
D.2

284

295
344

345

List of Tables

Correspondence between semaphores and message passing
Time in microseconds to invoke an empty JR ProcOp
and an empty Java method in a local object
Time in milliseconds to invoke an empty JR ProcOp and
an empty RMI method in a remote object
Time in milliseconds to complete execution of all iter-
ations for all readers and writers

JR (inni) Solution: Percentage of total execution time
spent executing synchronization code for the Readers/Writers
experiment

Time in seconds to calculate the first n coefficients of
the function defined on the interval [0,2]

7.1
D.1

D.2

D.3

D.4

D.5

77

347

348

348

349

349

This page intentionally left blank

Preface

JR is a language for concurrent programming. It is an imperative language
that provides explicit mechanisms for concurrency, communication, and syn-
chronization. JR is an extension of the Java programming language with ad-
ditional concurrency mechanisms based on those in the SR (Synchronizing
Resources) programming language. It is suitable for writing programs for both
shared- and distributed-memory applications and machines; it is, of course, also
suitable for writing sequential programs. JR can be used in applications such
as parallel computation, distributed systems, simulation, and many others.

JR supports many “features” useful for concurrent programming. However,
our goals have always been keeping the language simple and easy to learn and
use. We have achieved these goals by integrating common notions, both sequen-
tial and concurrent, into a few powerful mechanisms. We have implemented
these mechanisms as part of a complete language to determine their feasibility
and cost, to gain hands-on experience, and to provide a tool that can be used
for research and teaching. The introduction to Chapter 1 expands on how JR
has realized our design goals.

As noted above, JR is based on Java and SR. Java itself provides concur-
rency via threads and a monitor-like mechanism. Java also provides RMI for
distributed programming. However, these mechanisms are low-level and not
easy to use (especially RMI). In contrast, JR provides higher-level abstractions
that are much simpler and more flexible to learn and use. (For an illustrative
example, see Reference [33]). JR is a more modern language than SR, e.g., it
is object-oriented. Being an extension of Java, JR should be easier for students
who already know Java to learn than it would be for them to learn SR, which
is an entirely different language. That is, students’ attention can be focused
on learning the concurrent extensions, not learning an entirely new language
(both sequential and concurrent mechanisms). (See Appendix E for a detailed
comparison of SR and JR.) JR programs also should run on any platform that

supports Java (and the fairly standard tools used within the JR implementation)
and can use Java’s packages.

The JR implementation comes with three preprocessors that convert notations
for CCRs, monitors, and CSP (Communicating Sequential Processes) into JR
code. These allow students to get hands-on experience with those mechanisms.
Together with JR, the three preprocessors provide a complete teaching tool
for a spectrum of synchronization mechanisms: shared variables, semaphores,
CCRs, monitors, asynchronous message passing, synchronous message pass-
ing (including output commands in guards, as in extended CSP), RPC, and
rendezvous. JR itself directly contains the mechanisms other than CCRs, mon-
itors, and CSP.

xx

Online Resources
The JR webpage is

http://www.cs.ucdavis.edu/~olsson/research/jr

The JR implementation is in the public domain and is available from the JR
webpage. The JR implementation executes on UNIX-based systems (Linux,
Mac OS X, and Solaris) and Windows-based systems. JR code is translated
to native Java code, which executes using the JR run-time system (RTS). The
implementation also uses true multiprocessing when run on a multiproces-
sor. The implementation includes documentation and many example programs.
We can’t provide a warranty with JR; it’s up to you to determine its suit-
ability and reliability for your needs. We do intend to continue to develop
and maintain JR as resources permit, and would like to hear of any prob-
lems (or successes!) and suggestions for improvements. Via email, contact
jr-project@cs.ucdavis.edu.

Complete source code for all programming examples and the “given” parts
of all programming exercises in the book are also available on the JR webpage.
This source code is organized so that we can easily test all programs and program
fragments to ensure that they work as advertised. As a result, we hope that
there will be very few bugs in the programs (a common source of annoyance in
programming language books).

Content Overview
This book contains 21 chapters. The first chapter gives an overview of JR and
includes a few sample programs. The remaining chapters are organized into
two parts: extensions for concurrency and applications. In addition, the appen-
dices contain language reference material, describe how to develop and execute
programs, present an overview of JR’s implementation and performance, and
trace JR’s historical roots.

The introduction to Part I summarizes the key language mechanisms. The
introduction to Part II describes how the applications relate to the material
in Part I. Each chapter in Part I (except for one) introduces new language
mechanisms and develops solutions to several problems. Some problems are
solved in more than one chapter to illustrate the tradeoffs between different lan-
guage mechanisms. The problems include the “classic” concurrent program-
ming problems—e.g., critical sections, producers and consumers, readers and
writers, the dining philosophers, and resource allocation—as well as many im-
portant parallel and distributed programming problems. Each chapter in Part II
describes an application, presents (typically) several solutions, and describes
the tradeoffs between the solutions. (However, the last two chapters of Part II
deal with graphical user interfaces and other concurrency notations.) The end
of each chapter contains numerous exercises, including several that introduce
additional material.

Part I describes how JR extends Java with mechanisms for concurrency.
Chapter 2 gives an overview of these extensions. Chapter 3 introduces the op-
eration; because this mechanism is so fundamental to JR, this chapter focuses
on just its sequential aspects. Chapter 4 introduces the language mechanisms
for creating concurrently executing processes. Chapter 5 presents synchroniza-
tion using shared variables; although this kind of synchronization requires no
additional language mechanisms, it does show one low-level way in which pro-
cesses can interact. Chapters 6, 7, 8, and 9 show how processes can synchronize
and communicate using semaphores, asynchronous message passing, remote
procedure call, and rendezvous, respectively. All these mechanisms are varia-
tions on JR’s operations. Chapter 10 describes how to distribute a program so
that it can execute in multiple address spaces, potentially on multiple physical
machines such as a network of workstations. Chapter 11 describes the classic
dining philosophers problem to show how many of JR’s concurrency features
can be used with one another. Chapter 12 describes how JR’s mechanisms for
operation invocation and servicing deal with exceptions. Chapter 13 defines
and illustrates how operations can be inherited. Finally, Chapter 14 presents ad-
ditional mechanisms for servicing operation invocations in more flexible ways.

Part II describes several realistic applications for JR. Chapter 15 gives four
solutions to matrix multiplication. It includes solutions appropriate for both
shared- and distributed-memory environments. Chapter 16 describes grid com-
putations for solving partial differential equations. It too provides both shared-
and distributed-memory solutions. Chapter 17 presents solutions to the travel-
ing salesman problem that employ two important paradigms: bag of tasks and
manager/workers. Chapter 18 describes a prototype distributed file system.
Chapter 19 shows how to program a discrete event simulation in JR. Finally,
Chapter 20 describes how JR programs can interact with the Java GUI (graph-

Preface xxi

ical user interface) packages AWT and Swing. Finally, Chapter 21 describes
other concurrency notations, which preprocessors convert into JR programs.

The first three appendices contain material in quick-reference format. They
are handy when actually programming in JR. Appendix A summarizes the
syntax for the JR extensions. Appendix B provides the details of the classes
and methods used with the inter-operation invocation selection mechanism de-
scribed in Chapter 14. Appendix C describes how to develop, translate, and
execute JR programs. Appendix D gives an overview of the implementation
and describes the performance of JR code. Finally, Appendix E gives a short
history of the JR language, mentions other JR-related work, and cites papers
published on JR.

xxii

Classroom Use
Drafts of this text have been used over the last few years in a variety of un-
dergraduate and graduate courses (formal classes and independent studies) at
the University of California, Davis, and a few other universities. These courses
cover topics such as programming languages, operating systems, concurrent
programming, parallel processing, and distributed systems.

This text can serve as a stand-alone introduction to one particular concur-
rent programming language or as a supplement to a more general concurrent
programming course. For example, the text can be used to teach a section on
concurrent programming in an undergraduate programming language course.
Indeed, SR is listed as one of the languages in the proposed knowledge units
for programming languages in ACM’s Curriculum 2001 (SIGPLAN Notices,
April 2000); JR can serve that purpose, too, and is, as already noted, a more
modern and easier-to-learn language. In course ECS 140B course at UC Davis,
we spend about three and a half weeks in lecture on JR. Lectures cover all of
Part I, although they only touch on the more advanced topics in Chapters 12–
14, and most of the applications in Part II. Students write about a dozen small
programs, mostly based on exercises in the book and do a small, group term
project using distributed programming. The project requires that the program
run on several physical machines and uses a GUI (Swing or AWT, as in Chap-
ter 20) to show some visualization of the program’s execution. This project has
been very successful. Since JR is an extension to Java, JR can be used with
Swing or AWT without trouble. Students can focus on the distributed aspects
of the project, which JR makes easy with its notions of virtual machines and
interprocess communication. A course could spend less time, yet still provide a
good introduction to concurrent programming, by covering most of Part I, and
just one or two of the applications from Part II.

As another example, the text forms a natural supplement for a course that
uses Greg Andrews’s text entitled Concurrent Programming: Principles and
Practice, published by Benjamin/Cummings. That text explores the concepts of

concurrent programming, various synchronization and communication mecha-
nisms, programming paradigms, implementation issues, and techniques to un-
derstand and develop correct programs. The notation used there is fairly close
to JR’s notation. In course ECS 244 at UC Davis, students implement as JR
programs some of their solutions to exercises in Andrews’s text. The students
use both native JR and the preprocessors that turn CCR, monitor, and CSP nota-
tion into JR code. The JR text can also serve as a supplement to Andrews’s text
entitled Foundations of Multithreaded, Parallel, and Distributed Programming,
published by Addison-Wesley (the MPD notation, being based on SR, is fairly
close to JR’s notation) or other texts on concurrent programming.

JR and the preprocessors are also appropriate for undergraduate or gradu-
ate operating systems courses. JR’s notation for processes, semaphores, and
monitors is straightforward and is close to what is often used in lectures and
texts. Instead of just writing their homework solutions on paper, students can
write some small programs using shared variables, semaphores, and monitors,
for which they can use JR and the preprocessors.

This book is aimed at junior or senior level undergraduate students and
at graduate students. Knowledge of Java is recommended and assumed, but
knowledge of C++ or another object-oriented language should suffice. The
additional maturity and knowledge gained via courses in data structures, pro-
gramming languages, or operating systems will be beneficial, although not
essential, in understanding the material. The specific prerequisite courses de-
pend on how the book is to be used. The following is a typical use of this
book: Read Chapters 1 and 2 to get a feel for the language; read Chapter 3
very carefully to understand the pervasive concepts of operations and operation
capabilities; read the rest of Part I to understand JR’s concurrent aspects; and
then read Part II to see how to apply JR in a number of application areas.

Each chapter contains exercises dealing with the concepts and examples pre-
sented in the chapter. They range from simple to more difficult ones, including
suggestions for a number of larger projects, especially in Part II. A number of
other exercises and projects can be found in general concurrent programming
books. As noted above under “Online Resources”, to save readers typing for
some of the exercises, complete programs that appear in this text are available
online.

Preface xxiii

This page intentionally left blank

Acknowledgments

Developing a new programming language and writing a book on it is a multi-
year project (more “multi” than even those who have completed similar projects
expect at the onset). Numerous people have made contributions.

First and foremost, we acknowledge the influence of the SR language and
its implementation. We thank the SR Project at The University of Arizona
(http://www.cs.arizona.edu/sr/), from whom we borrowed ideas, prose,
and code. We especially thank Greg Andrews, the founding father of SR, for his
continuing encouragement and for his (and Addison-Wesley Publishing, Inc.’s)
graciously allowing us to reuse portions of the SR text in this text. We also
thank Gregg Townsend, who over the years has contributed key ideas to SR and
has done a superb job with the SR implementation.

We received much help with the JR implementation from many great UC
Davis undergraduate students and graduate students (names marked with †).

Tingjian Ge† worked on an initial prototype of JR.

Justin Maris wrote a tool to convert the programs in the SR test suite to JR.

Greg Benson† contributed some ideas on invocation servicing.

Andrew Arcilla, Ezequiel Cervante, Alan Ngai, and Cindy Truong bravely
used an early JR prototype in independent study work.

Ben Ahlborn, Brett Groel, Dan Simon, and Mike Weaver worked on porting
the JR implementation to Windows; Hiu Ning (Angela) Chan, Esteban Pauli,
Nija Shi†, and Erik Staab helped apply the finishing touches.

Hiu Ning (Angela) Chan and Erik Staab added quantifiers to the input state-
ment.

Hiu Ning (Angela) Chan added parameterized virtual machines as part of
her undergraduate honors thesis work.

Steven Chau, Andre Nash, and Esteban Pauli did the initial work on adding
the concurrent invocation statement. Esteban Pauli, as part of his under-
graduate honors thesis work, and Hiu Ning (Angela) Chan are continuing
that work and are nearing completion of a working prototype.

Erik Staab is looking into ways to improve JR’s performance (both compile
time and run-time) and at porting JR to use Java 1.5.

Alex Wen and Ingwar Wirjawan are adding a timeout arm to the input state-
ment.

We appreciate the feedback and patience of students at UC Davis who used
early versions of JR and the JR book in ECS 140B and ECS 244 classes over
the last few years. The System Support Group of the UC Davis Department of
Computer Science, especially Babak Moghadam, did a great job in keeping our
systems up and up-to-date!

We thank Sun Microsystems, Inc. for making public the source code for
their Java translator and virtual machine. JR’s translator is built using Sun’s
Java translator.

The staff of Kluwer Academic Publishers has been great in helping us get
this book into print. Susan Lagerstrom-Fife is the Publishing Editor and Sharon
Palleschi is the Editorial Assistant. They have been very responsive and helpful
with all our large and small questions. The Kluwer Author Support Help Desk
was also great in answering our detailed formatting questions. Amy Hendrick-
son of Inc. (Kluwer’s consultant) nicely “tweaked” the formatting
macros to fit our specific needs. (Camera-ready copy was produced by Olsson.)

The National Science Foundation supported our early JR-related research
through grant CCR-9527295 at UC Davis. The NSF also partially supported
the computing equipment used in our work through grant EIA-0224469 at UC
Davis.

Many other people have made less technical, but not less meaningful con-
tributions to this book. Ron thanks his family and friends (especially Nancy
Wilson) for their support, understanding, and encouragement over the years;
he also thanks his present and former students, including his keen co-author,
for their continuing inspiration. Aaron thanks his family and friends for their
continued encouragement and support, his colleagues at Cal Poly for providing
a supportive environment in which to pursue this undertaking, and Ron, without
whom this book would not exist.

xxvi

INTRODUCTION

Concurrent programming is concerned with writing programs having mul-
tiple processes that may execute in parallel. The topic originated in the 1960s
when the invention of independent device controllers (channels) led people to
organize operating systems as concurrent programs, even for single-processor
machines. Since then, rapid developments in computer architecture have led to
an increasingly large number of multiprocessor architectures, such as shared-
memory multiprocessors, multicomputers, and networks of workstations. The
operating systems for these architectures are all instances of concurrent pro-
grams. More importantly, multiprocessor architectures make it possible to
write application programs that exploit the concurrency inherent in the hard-
ware. Both distributed systems, multiprocessor systems, and hybrids (e.g.,
distributed systems that include some multiprocessors) are prevalent today and
they are likely to remain so.

A concurrent program specifies two or more processes that cooperate in per-
forming a task. Each process consists of a sequential program. The processes
cooperate by communicating, which in turn gives rise to the need for synchro-
nization. Communication and synchronization are programmed by reading and
writing shared variables or by sending and receiving messages. Shared vari-
ables are most appropriate for concurrent programs that execute on a single
processor or a shared-memory multiprocessor. Message passing is most appro-
priate for distributed programs that execute on multicomputers or networks of
workstations. (Message passing can also be used on shared-memory machines.)

This book describes the JR programming language and shows how it can
be used to write concurrent programs for a variety of hardware architectures
and software applications. JR is an extension of the Java programming lan-

Chapter 1

guage [28] with additional concurrency mechanisms based on those in the SR
(Synchronizing Resources) programming language [6, 9].

Java has proven to be a clean and simple (and popular) language for object-
oriented programming. Even so, the standard Java concurrency model is rather
limited. It provides threads, a primitive monitor-like mechanism, and remote
method invocation (RMI). Although these features are useful, they offer little
flexibility in the design and implementation of concurrent programs.

JR provides a richer and more flexible concurrent programming model than
Java. JR adapts the following features from SR: dynamic remote virtual ma-
chine creation, dynamic remote object creation, remote method invocation, dy-
namic process creation, support for rendezvous, asynchronous message passing,
semaphores, and shared variables. JR takes a novel object-oriented approach
to synchronization whereas SR is not object-oriented.

Thus, JR inherits and extends one of SR’s distinguishing attributes: its ex-
pressive power. The communication and synchronization mechanisms listed
above include most of the ones that have proven popular and useful. This makes
JR suitable for writing concurrent programs for both shared- and distributed-
memory applications and machines.

In addition to being expressive, JR is easy to learn and use for someone
who has some background with Java. Its variety of concurrent programming
mechanisms is based on only a few underlying concepts. Moreover, these
concepts are generalizations of ones that have been found useful in sequential
programs. The concurrent programming mechanisms are also integrated with
the sequential ones, so that similar things are expressed in similar ways. An
important design goal has been to retain the “feel” of Java while providing a
richer concurrency model.

Part I of this book describes the concurrent aspects of JR in detail and gives
numerous, smaller examples. Part II develops complete programs for sev-
eral larger applications: matrix multiplication, partial differential equations,
the traveling salesman problem, a distributed file system, and discrete event
simulation. These illustrate the use of JR for distributed programming using
message passing and parallel programming using shared variables. JR is imple-
mented on top of Java, so, in principle, it can run on any platform that supports
Java, including networks of workstations and shared-memory multiprocessors.
JR programs can also be executed on single processor machines, in which
case process execution is interleaved. The current JR implementation runs on
UNIX-based (Linux, Mac OS X, and Solaris) and Windows-based systems.

The remainder of this chapter gives a brief overview of JR. First we describe
the main components of the language. Then we present complete programs
that solve several familiar problems. The solutions illustrate the structure of
JR programs and some—but by no means all—of the language’s power and
flexibility. Finally, we describe how to create and execute JR programs.

2 Introduction

As noted above, JR extends Java with additional mechanisms for supporting
concurrency. The key new features are virtual machines, remote objects, and
operations.

A JR virtual machine represents an address space, which is located entirely
on one physical machine. These virtual machines can be created dynamically
during program execution in a way similar to how objects are created. JR
virtual machines can be “populated” with remote objects, which are essentially
the usual instances of classes. In JR, a remote object is simply a Java object
that has been created in a way slightly different from the usual Java new. Thus,
JR object creation is dynamic, as in Java. A class in Java serves as the unit
of compilation and encapsulation; a class in JR serves a similar role. A JR
class may contain anything that a Java class may contain plus it may contain
additional JR features. The one difference in the use of classes is that in JR all
classes must be compiled together.

One such feature is the process, which represents a separate thread of con-
trol.1 JR provides a process abbreviation. Processes can be created dynamically
and can share variables in the same object, in the same class (static variables),
and in other classes on the same virtual machine (public static variables). Pro-
cesses can also communicate and synchronize by means of operations.

An operation can be considered a generalization of a method: It has a name
and can take parameters and return a result. An operation can be invoked in
two ways: synchronously by means of a call statement or asynchronously by
means of a send statement. An operation can also be serviced in two ways: by
a method or by input statements. These ways of servicing an operation support
local and remote method calls and rendezvous. As we shall see in Part I, this
variety of possibilities provides a great deal of flexibility and power for solving
concurrent programming problems.

JR contains several mechanisms that are abbreviations for common uses
of operations; these can be used to simplify many programs. Abbreviations
include process declarations, op-method declarations, receive statements, and
semaphores. JR also provides a few additional statements that are useful for
concurrent programming. The reply and forward statements provide additional
ways to use operations.

JR also provides a means to deal with program quiescence. A JR program
becomes quiescent when all of its processes have terminated or deadlocked. At
that point, the JR implementation will normally terminate the program’s exe-
cution. Instead, however, JR allows an operation to be registered as the “qui-

1JR uses the traditional term “process” to represent this abstraction. As we will see in later chapters, JR
processes are actually mapped to Java threads. To further confuse matters, the term “process” is often used
to represent an operating system process, which might contain multiple threads of execution.

1.1

1.1 Key JR Components

3Key JR Components

One of the best ways to learn a new programming language is to start writing
programs. To do so, it helps to look at examples.

A standard first example in a programming language text is a program that
writes the message “Hello World!” on the standard output file. In JR, the
following program does the trick:

It is nearly identical to the equivalent program in Java. The first difference is
that JR programs must import the JR package. However, to save space, most
examples in this book will omit that line; be sure to include it in any programs
that you actually try to compile, though! For the same reason, our code in
this book generally does not check for errors in input data or command-line
arguments. The second difference is that the JR program’s main method must
appear in a public class.

As noted earlier, the sequential aspects of JR are identical to those of Java
(with the exception of one extension seen in Chapter 3). However, JR provides
extensions to Java to simplify the writing of concurrent programs, as the next
example illustrates.

This program uses two processes to perform two independent computations:

4 Introduction

escence operation”; this operation will be invoked when the program becomes
quiescent. This feature is useful to avoid having to write code to determine
when processes have terminated.

JR programs can use all of the many packages provided for Java. For ex-
ample, these include common math functions and a variety of input/output
functions. JR programs can also interact with Java packages for building GUIs
(graphical user interfaces), such as AWT and Swing; Chapter 20 show some
examples of such interaction.

1.2 Two Simple Examples

Process p1 computes the sum of the elements in array A and outputs the result;
process p2 computes the inner product of the elements in array A with those in
array B and outputs the result.

This program illustrates four important aspects of JR. Chapter 4 discusses
these aspects in detail.

The first aspect to note is that JR programs use the same scoping as Java
programs. Consequently, each process gets its own copy of variables declared
local to it (such as sum and i), but the processes share variables and constants
(such as A and B) declared at the class level.

In this program, since the processes only read shared constants, there is no
potential for both processes updating a shared variable at about the same time
and interfering with each other in doing so. Such a race condition (or data
race) can occur with shared variables. An example illustrating a race condition
is given in Section 4.1. Processes can use synchronization to protect access to
shared variables. One such technique is demonstrated in Section 1.5. Others
are demonstrated in subsequent chapters; e.g., see Section 5.5 for an example of
how to use only shared variables to program synchronization and see Section 6.1
for an example of how to use semaphores.

The second important aspect of JR illustrated by the TwoProcesses program
involves the program’s output. It outputs two lines, one from each process, but
the order in which the lines appear is non-deterministic. The output might be
p1’s output followed by p2’s output, or vice versa. Which ordering occurs
depends on the order in which the two processes execute, which is also non-
deterministic.

The third aspect illustrated by the TwoProcesses program is that the pro-
cesses were declared to be static. Non-static processes are also allowed,
but static processes are slightly simpler to use, so we use them in many of the
examples in this book.

The final aspect deals with program termination. As noted in Section 1.1, a
JR program terminates when all of its processes have terminated or deadlocked;
it will also terminate when it has executed a JR.exit.

1.2 Two Simple Examples 5

Now consider the problem of multiplying two N × N real matrices A and B.
We first present a sequential program to solve this problem and then show how
to modify the program to compute all inner products in parallel.

The following program first reads in the source matrices, then computes the
matrix product, and finally prints the result matrix. (The code omits the details
of reading in the matrices as that code just uses standard Java features.) The
main method reads in the arrays, instantiates a MMMultiplier object to do the
actual computation, and then invokes the print method in that object.

6 Introduction

1.3 Matrix Multiplication

The code in MMMultiplier’s constructor computes inner products using
nested for statements. The inner for statement computes the inner product of
row r of A and column c of B and stores the result in C [r] [c]. The code in the
print method prints matrix C, with each row printed on a separate line.

Since the inner products are independent of each other, we can compute all
in parallel, as shown below. This program will not be very efficient, since

each process does very little computation, but we could readily modify it to
use fewer processes (see Exercise 1.2 and also Chapter 15). The main class the
same as the previous main class, except it uses a quiescence operation to print
the result, as described later below.

1.3 Matrix Multiplication 7

The MMMultiplier code now performs the matrix multiplication by using
compute processes.

The heading on compute contains two quantifiers, so processes are created,
one for each combination of values for r and c. In fact, r and c are parameters
to each instance of compute and are available in compute’s body. Each process
computes one inner product, just as each iteration of the innermost loop does
in the sequential program. The compute processes are created at the end of
execution ofMMMultiplier’s constructor.

When inner products are computed in parallel, C should not be printed out
until all processes have terminated. As mentioned in Section 1.1, a program
may register a quiescence operation, which is invoked when JR has detected
that the program has finished computation and is about to terminate. Hence, the
code associated with the quiescence operation is executed after the rest of the
computation terminates. In the program above, the main method registers done
as the program’s quiescence operation. Once the compute processes terminate,
the code in done is executed to print out C. By using a quiescence operation, we
do not need to add synchronization code to the rest of the program to determine
when all the compute processes have terminated. This feature of JR makes
many programs, including this one, easy to write. Chapter 15 describes how to
structure solutions to this problem in ways that do not require using a quiescence
operation.

8 Introduction

1.4 Concurrent File Search
The programs given so far are very short, so they consist of a single class.

Often it is best to employ multiple classes. The last two examples in this chapter
illustrate how to do so.

The grep family of UNIX commands is commonly used to search for patterns
in files. For example, the following command searches each of the named files:

Each line containing string is printed on standard output. (If there is more
than one file, each line of output begins with the name of the file.) The grep
command searches each file sequentially.

The following JR program gives a simplified, concurrent implementation of
the above command. In particular, it searches the files in parallel, one process
for each file. The program has the same arguments as grep above: a pattern
string and one or more file names. (It does not implement the grep command’s
other useful features, such as searching for strings matching patterns specified
by regular expressions; see Exercise 1.5.) Like grep, the program prints all

lines that contain the pattern string on the standard output. A string containing
the file name concatenated with a colon is printed at the front of each line. Since
searching and printing proceed in parallel, however, lines from different files
will be interleaved.

The program consists of two classes. Execution begins in the grepmain
class, which creates a grepworker object for each filename given on the com-
mand line.

The constructor for class grepworker has two parameters: pattern and
filename. It saves the parameters into object variables. When the constructor
is done executing, the new in grepmain completes and an instance of process
search in the newly instantiated grepworker object is created implicitly. The
search process finds all instances of pattern in filename and writes them
out; the file name and a colon are printed at the front of each line.

1.4 Concurrent File Search 9

All objects in the above program execute on the same machine. However, we
can readily modify the program so that different instances of grepworker exe-
cute on potentially different machines. For example, suppose a file name is spec-
ified on the command line as machine:filename. Also, suppose that main
separates machine from filename and stores the values in string variables
with those names. Then main can create a grepworker object on machine by
executing

A vm in JR is a virtual machine (address space). The first line declares a reference
for a vm. The second line creates a new vm on the machine whose name is stored
in variable machine. The third line creates an instance of grepworker on the
newly created vm, and hence on a potentially remote machine (as indicated
by the remote keyword). The effect of making the above changes is that each
grep object will open filename on the machine on which it is executing. (This
program assumes that, for reasons explained in Section 10.8, the names of the
files to be searched are specified as relative to home directory or are specified
as absolute pathnames on the remote machine.)

10 Introduction

1.5 Critical Section Simulation
As a final example, we present a program that illustrates a few of the numerous

message-passing mechanisms available in JR. The program also illustrates how
one can construct a simple simulation of a solution to a synchronization problem.

The following program contains numusers instances of a user process, each
of which repeatedly executes a critical section of code and then a non-critical
section. At most one process at a time is permitted to execute its critical section.
If more than one process wants to enter its critical section at the same time, the
one with the highest priority is permitted to do so. Each user process has an
index i; the lower the index value, the higher the priority of the process. We
simulate the duration of critical and non-critical sections of code by having each
user process “nap” for a random number of milliseconds.

The CSS class contains an arbitrator process that implements two oper-
ations: CSenter and CSexit. It first uses an input statement (inni) to wait
for an invocation of CSenter. This is JR’s rendezvous mechanism. If there is
more than one invocation of CSenter, the one that has the smallest value for
parameter id is selected, and a message is then printed. Next the arbitrator
uses a receive statement to wait for an invocation of CSexit. Receive is a
special case of inni that can be used when one just needs to receive a message
or, in this case, simply a signal.

Each user process calls the CSenter operation to get permission to enter
its critical section, passing its index i as an argument. After “napping” the
process then invokes the CSexit operation. The CSenter operation must be
invoked by a synchronous call statement because the user process has to wait
to get permission. However, since a user process does not need to delay when
leaving its critical section, it invokes the CSexit operation by means of the
asynchronous send statement.

The program employs several methods in Java packages. The
System.currentTimeMillismethod in the print statement returns the num-
ber of milliseconds since a particular epoch. The Thread.sleep method causes

1.5 Critical Section Simulation 11

To execute a JR program, one must first create one or more files containing
the program text. The names of these files must end with .jr. Following
Java requirements, the JR class x must be placed in the file x.jr if x is pub-
lic. For example, the “Hello world” program must be placed in a file named
HelloWorld.jr.

The standard tool to translate and execute a JR program is jr. Assuming
the directory containing jr is in a particular user’s search path, the user can
compile and execute the program in HelloWorld.jr by using the command

Note that the .jr suffix does not appear in this command; only the name of the
class containing the main method does. The jr command assumes that all .jr
files in the current directory are part of the program. After the main class name,
additional arguments to jr are the command-line arguments to be passed to the
main method.

The jr command performs several actions. Assuming no errors, it invokes
each of the following:

the JR compiler (jrc) to generate Java code for each .jr file (it also gen-
erates additional Java classes as needed by the program);

the Java compiler to translate that code to bytecode;

the RMI compiler to adapt the translated code to execute with RMI (which
JR uses to distribute programs); and

the JVM (Java Virtual Machine) to run the translated bytecode.

The jr command creates in the current directory a new subdirectory named
jrGen (first deleting the old one if it already exists). It uses this directory for
all the files created by the above steps, e.g., .java and .class files. The
programmer should have no need to be concerned with the contents of these
files but also should not modify them. However, jrGen is needed to run a
program, so it should not be deleted by the user if the program is to be executed
several times.

Several other JR tools provide flexibility in applying the above steps. The
following table summarizes these tools:

12 Introduction

a process to “nap” for the number of milliseconds specified by its argument.
The nextInt method in the Random class returns a pseudo-random integer
between 0 and its argument.

1.6 Translating and Executing JR Programs

We begin by explaining the notation and conventions we will be using in the
remainder of the book. As already seen in this chapter, we typeset JR syntactic
tokens and programs in the Courier (typewriter) typeface.

JR’s syntax extends Java’s syntax with additional statements and forms of
declarations and expressions; these extensions introduce several new keywords.
The specific keywords and syntax will be introduced as we describe the various
language mechanisms. The exact syntax and the complete set of keywords is
given in Appendix A.

We will present the syntax of the JR extensions in a form in which each syntax
display conveys what an element of the JR grammar looks like in a program. For
example, consider how we might describe the syntax of a simplified version
of JR’s receive statement. (Chapter 7 gives the full description.) A receive
statement names an operation and gives a list of zero or more variables separated
by commas. It has the following general form:

The keyword receive, the parentheses, and the commas are JR tokens, so they
are typeset in Courier. The items op_id and variable are non-terminals in the
JR grammar. When an item such as variable can be repeated, we will always
list two instances and two separators and follow them with an ellipsis. We will
also say whether there must be zero or more or one or more instances of the
item.

We will when possible follow common Java terminology in presenting JR
syntax. The key syntactic items we will use are summarized in the following
table.

1.7 Vocabulary and Notation 13

jr
jrc

jr_rmic

jrrun

jrgo

jrgox

translates and executes a JR program
translates a JR program
adapts JR-translated Java code to execute with RMI
executes an already-translated JR program
like jr, but tries to determine the name of main class
like jrrun, but tries to determine the name of main class

See Appendix C for further details on developing and executing JR programs.

1.7 Vocabulary and Notation

block
expr
id
variable

a block of zero or more statements enclosed within { and }
an expression
an identifier
a variable

Exercises
As noted in the Preface, source code for all programming examples and
the “given” parts of the programming exercises are available on the JR
webpage.

Compare the execution times of the sequential and parallel matrix
multiplication programs for various size matrices. Which is more
efficient?

Modify the parallel program so that it uses only N processes, each
of which computes one row of result matrix C. Compare the perfor-
mance of this program to your answers to part (a).

Execute the concurrent file search program using different patterns
and files on a UNIX system. Compare the output to that of the grep
command. Now try piping the output of your JR program through
the sort command, and compare the output to that of grep. What
happens if the file-name arguments to your JR program are given in
alphabetical order?

Modify the program to create instances of grep on different ma-
chines, as described in Section 1.4. Experiment with this version of
the program.

14 Introduction

1.1

1.2

Execute the TwoProcesses program several times to see whether the
order of output differs between executions. If not, then add an invocation
of Thread.sleep to force the other order of output.

Add to the TwoProcesses program a third process, which is to find the
maximum element in both of the arrays.

1.3

1.4

(a)

(b)

(a)

(b)

1.5

1.6

Modify the concurrent file search program so that it allows the search
string to be a regular expression. To save yourself a lot of work, use an
existing Java regular expression package like gnu.regexp.

Execute the critical section simulation program several times and exam-
ine the results. Also experiment with different nap intervals by modifying
the argument to the nextInt method. Modify the program by deleting
the phrase by id in the arbitrator process, and execute this version
of the program several times. How do the results compare to that of the
original program? What if by id is replaced by by –id?

EXTENSIONS FOR CONCURRENCY

This part of the text introduces JR’s mechanisms for concurrent program-
ming. JR extends Java with SR-like [9] concurrency mechanisms. (Much of
what we say about JR below applies equally well to SR; Appendix E summarizes
the differences.) JR is rich in the functionality it provides: dynamic process
creation, semaphores, message passing, remote procedure call, and rendezvous.
All are variations on ways to invoke and service operations. JR also provides
easy-to-use ways to construct distributed programs.

We describe the concurrent aspects of JR in a bottom-up manner, from sim-
pler mechanisms to more powerful ones. This also follows the historical order
in which the various concurrent programming mechanisms that appear in JR
were first developed. While reading these chapters, keep in mind that all the
process interaction mechanisms are based on invoking and servicing opera-
tions. Chapter 2 first gives a brief overview of JR’s extensions for concurrency.
Chapter 3 introduces op-methods, operation declarations, and operation capa-
bilities; because these mechanisms are so fundamental to JR, it focuses on just
their sequential aspects. Chapter 4 describes process creation and execution.
Chapter 5 presents synchronization using shared variables; although this kind
of synchronization requires no additional language mechanisms, it does show
one low-level way in which processes can interact. Chapter 6 discusses how
semaphores are declared and used. Chapter 7 introduces the mechanisms for
asynchronous message passing. Chapter 8 describes remote procedure call,
and Chapter 9 describes rendezvous. Chapter 10 presents the notion of a virtual
machine as an address space and shows how to create and use virtual machines.
Chapter 11 describes three ways to solve the classic Dining Philosophers Prob-
lem; the solutions illustrate several combinations of uses of the mechanisms
presented in the previous chapters in this part. Chapter 12 describes JR’s ex-
ception handling mechanism. Chapter 13 defines and illustrates how operations
can be inherited. Finally, Chapter 14 presents additional mechanisms for ser-
vicing operation invocations in more flexible ways.

PART I

This page intentionally left blank

OVERVIEW OF EXTENSIONS

JR’s concurrency mechanisms are variations on ways to invoke and service
operations. An operation defines a communication interface; an op-method
defines how invocations of that operation are to be serviced. We will see in
Chapter 3 that an op-method is merely an abbreviation for an operation dec-
laration specifying the parameterization and return value plus a method for
the method body. An op-method is invoked by a call statement or function
invocation. Capabilities act as pointers or references to operations.

Operations, methods, and calls are three of the bases for JR’s concurrent
programming mechanisms. To these we add send invocations and input state-
ments.

JR allows construction of distributed programs in which objects can be placed
on two or more machines in a network. Hence the caller of a method might
be in an object on one machine, and the method itself might be in an object on
another machine. In this case the call of a method is termed a remote procedure
call (or remote method invocation).

When a method is called, the caller waits until the method returns. JR
also provides the send statement, which can be used to fork a new instance
of a method. Whereas a call is synchronous—the caller waits—a send is
asynchronous—the sender continues. In particular, if one process invokes a
method by sending to the corresponding operation, a new process is created to
execute the body of the method, and then the sender and new process execute

Chapter 2

As noted in Part I, the extensions to JR include mechanisms for processes to
interact with one another and mechanisms to distribute a program across a net-
work of machines. Below, we give an overview of these extensions. Subsequent
chapters explore these topics in details.

2.1 Process Interactions via Operations

concurrently. JR also provides process declarations, which are the concurrent
programming analog of op-method declarations. A process declaration is an
abbreviation for an operation declaration, a method, and a send invocation of
that operation.

Processes in a concurrent program need to be able to communicate and syn-
chronize. In JR, processes in the same object or same class can share variables
and operations declared in that object or class. Processes in the same address
space can also share variables and operations. Processes can also communicate
by means of the input statement, which services one or more operations. A
process executing an input statement delays until one of these operations is
invoked, services an invocation, optionally returns results, and then continues.
An invocation can either be synchronous (call) or asynchronous (send). A
call produces a two-way communication plus synchronization—a rendezvous—
between the caller and the process executing an input statement.1 A send pro-
duces a one-way communication—i.e., asynchronous message passing.

To summarize, the bases for JR’s concurrent programming mechanisms are
operations and different ways to invoke and service them. Operations can
be invoked synchronously (call) or asynchronously (send), and they can be
serviced by a method or by input statements (inni). This yields the following
four combinations:

These combinations are illustrated by the four diagrams in Figure 2.1. The
squiggly lines in the diagrams indicate when a process is executing; the arrows
indicate when an explicit invocation message or implicit reply message is sent.

Further discussion of most of these concurrent programming mechanisms, in
a more general context, appears in Reference [7].

One virtue of JR’s approach is that it supports abstraction of interfaces. In
particular, JR allows the declaration of an operation to be separated from the
code that services it. This allows classes to be written and used without concern
for how an operation is serviced.

Another attribute of JR is that it provides abbreviations for common uses of
the above interaction possibilities. We have already mentioned the op-method
declaration and the process declaration, which abbreviates a common pattern of
creating background processes. The receive statement abbreviates a common
use of an input statement to receive a message. Semaphore declarations and

1For readers familiar with Ada, the input statement combines and generalizes aspects of Ada’s accept and
select statements.

18 Overview of Extensions

Invocation
call
call
send
send

Service
method
inni
method
inni

Effect
procedure (method) call (possibly remote)
rendezvous
dynamic process creation
asynchronous message passing

2.2

V and P statements abbreviate operations and send and receive statements that
are used merely to exchange synchronization signals. In addition to these
abbreviations, JR provides two additional kinds of statements that also deal
with operations: forward and reply.

Distributing JR Programs 19

Figure 2.1. Process interaction mechanisms in JR

2.2 Distributing JR Programs
JR also allows the programmer to control the large-scale issues associated

with concurrent programming. For constructing distributed programs, JR pro-
vides what is called a virtual machine—a named address space in which remote
objects can be created and variables and operations can be shared. A JR pro-
gram consists of one or more virtual machines. Virtual machines, like objects
of classes, are created dynamically; each can be placed on a different physi-
cal machine. Communication between parts of a program located on different
virtual machines is handled transparently.

Processes in a distributed program need to be able to communicate, and in
many applications communication paths vary dynamically. This is supported
in JR by operation capabilities, which are introduced in Chapter 3, and remote
object references, which were introduced in Chapter 1. An operation capability
is a pointer to a specific operation; a remote object reference is a pointer to all
the operations made public by the object. These can be passed as parameters
and hence included in messages.

20 Overview of Extensions

Chapter 3

OP-METHODS, OPERATIONS,
AND CAPABILITIES

This chapter examines how op-methods are declared and invoked. We shall
see that the mechanism for defining an op-method is really an abbreviation
that involves two more general mechanisms: an operation declaration and a
method. This chapter also introduces operation capabilities, which serve as
pointers or references to operations. The general mechanisms introduced in this
chapter—i.e., operation declarations, op-methods, and operation capabilities—
are also used in concurrent programming. Because these mechanisms are so
fundamental to JR, however, this chapter focuses on just their sequential aspects;
later chapters extend these mechanisms by examining their concurrent aspects.

3.1 Op-methods
An op-method declaration in JR has the same form as a method declaration

in Java, except the former includes the extra keyword op. An op-method can
be invoked in the same ways as a method can in Java, either as a separate
expression or part of a larger expression. In addition, an op-method can be
invoked via a call statement. All of these kinds of invocations are known as
call invocations. (Later chapters will introduce a send statement, which is used
in send invocations.) A call invocation is, for the present chapter, equivalent
to a regular Java method invocation; later chapters will describe the additional
semantics for call invocations when they are used in concurrent programming.
As in Java, invocation parameters are evaluated in left-to-right order.

As a basic example of an op-method and its use, consider the following code:

22 Op-methods, Operations, and Capabilities

main makes three call invocations. The first invocation’s value is used as an
argument to the print method. The other two invocations discard the return
value; they are equivalent.

3.2 Operation and Method Declarations
An op-method declaration is really an abbreviation for an operation decla-

ration and an ordinary Java method. An op-method declaration can be used in
all cases, but it is helpful in understanding the material in later chapters to see
the underlying mechanism here.

An operation declaration essentially gives the types of the parameters and
the return value. So, the square op-method from the previous section can be
written equivalently as

The method is said to service invocations of the operation.
The reason for having a separate operation declaration is that, as introduced

in Part I, invocations can be serviced in an additional way, with inni statements.
This additional form of servicing requires the declaration to be visible to invok-
ers, even though the servicing statements are not. Also, arrays of operations
are permitted. (See Chapter 9.)

3.3 Operation Capabilities
An operation capability is a pointer to (or reference to) an operation.1 Such

pointers can be assigned to variables, passed as parameters, and used in invoca-
tion statements; invoking a capability has the effect of invoking the operation to
which it points. A variable or parameter is defined to be an operation capability
by declaring its type in the following way:

The capability is defined to have the parameterization and return type in the
operation specification. The operation specification is similar to the method

1Java has no function pointers or references, but the effect can be simulated via using inner classes.

3.3 Operation Capabilities 23

return type and signature parts of a method header in Java, but it omits the name
of the method. (It may also contain throws clauses; see Chapter 12.)

An operation capability can be bound to any user-defined operation having
the same parameterization2. When parameterization is compared, only the
signatures of formals and return values matter; formal and return identifiers
are ignored. Capabilities can also be compared using the == and ! = relational
operators; however, the other relational operators (e.g., <) are not allowed for
capabilities since no ordering is defined among them.

Some simple examples will illustrate the declaration and use of operation
capabilities. The following partial program shows examples of how to declare
and use capability variables:

However, the following assignments are illegal for the reasons indicated:

2 Some matching on throw clauses (for exception handling) is also required, but we will defer discussing
that topic until Chapter 12.

24 Op-methods, Operations, and Capabilities

Note how the name of an operation in effect acts as a capability constant. It
cannot be assigned to, but its value can be used to invoke an operation, assigned
to capability variables, and compared with other capabilities.

As a more realistic example, consider the following program, which defines
an op-method, trapezoidal, that approximates the area under a curve (func-
tion) by means of the trapezoidal rule. The op-method has four parameters.
The first three specify the end points and number of intervals to use. The fourth
is a capability for the function that defines the curve. This op-method might be
used as follows:

The first invocation of trapezoidal will find the area under fun1 between 0
and 1 using 200 intervals. The second will find the area under fun2 between 0
and using 1000 intervals.

Arrays of capabilities can also be declared, following the normal Java style
for declaring arrays. However, we defer the discussion of such arrays until later
chapters where they are needed. See Section 6.1 and Section 9.8.

Capability variables can also take on two special values: null and noop.
Invocation of a capability variable whose value is null causes a run-time error.
In general, invocation of a capability variable whose value is noop has no effect.

Exercises 25

However, arguments in the invocation are evaluated so any side effects they have
will occur. Also, if the invocation appears in an expression, the return value is
undefined.

As an example of the use of noop, suppose we are writing a terminal-
independent program that has a screen repaint command. We want the user
to be able to invoke the repaint command by simply executing

For terminals with screens, we would set repaintcap to the name of the op-
method that will actually repaint the screen. For a paper terminal, however,
invocations of the repaint command should be ignored, so repaintcap would
be set to noop. The advantage of using noop is that it simplifies code by
eliminating testing for special cases, which might depend on information that
is not readily available where it is required.

We shall see later that null is useful if we want to make sure that a capa-
bility variable has a value. Operation capabilities are also useful in programs
containing multiple classes and in distributed programs, as we shall see in later
chapters.

Exercises
3.1 Consider the following capability declarations and which operations can

be assigned to each.

For example, z can be assigned any operation that takes a single character
parameter and returns an integer. In a similar style, describe each of the
other capabilities.

3.2 Show the output from program Simple in Section 3.3 given the following
method declarations:

26 Op-methods, Operations, and Capabilities

3.3 Suppose we are writing an array-sorting program. For large arrays we
want to use quicksort, but for small arrays we want to use selection sort.
An outline for the program follows:

Rewrite this program to use a capability variable to invoke the appropriate
sorting routine. In particular, there should be only one call invocation.

3.4 Write a sort op-method that takes an array of integers and an operation
capability for the comparison method that sort is to use. For example,
the sort method might be invoked as:

The second parameters in these invocations, greaterthan and
lessthan, are operations whose names indicate the “sense” of the com-
parison that sort is to use. Provide a complete program that tests sort
on a few sample invocations.

Chapter 4

CONCURRENT EXECUTION

Processes are at the heart of concurrent programming. They represent inde-
pendent threads of control, each of which executes sequential code. Sequential
programs contain just a single thread of control; concurrent programs contain
multiple threads of control. Most of the programs in this book are concurrent.

This chapter describes the JR mechanisms for creating processes, all of which
are based on operations. We first describe process declarations, which provide
a simple way to create single processes and families (arrays) of processes.
Process declarations are actually an abbreviation for JR’s more general process-
creation mechanism: sending to an operation that is implemented by a method.
JR provides both static and non-static processes; for brevity of exposition, the
examples in this book generally use static processes where possible, although
non-static processes are also very useful. The next section describes process
scheduling and priorities. The final section describes JR’s automatic program
termination detection.

4.1 Process Declarations
We have already seen that a class can contain methods and op-methods. It

can also contain processes. The following is the simplest form of a process:

As usual, a block consists of zero or more statements enclosed within { and }.
A process declaration can also contain a list of one or more quantifiers to

specify multiple instances of the same process. Such a family (array) of pro-
cesses has the form

Note that the set of quantifiers is enclosed by one pair of parentheses and that
each quantifier is enclosed in another pair. A quantifier has the form

28 Concurrent Execution

Thus, a quantifier has the same form as the group of control expressions that
appear in for statements, except it may contain a fourth expression. Also, the
first expression is required and must specify a new variable, e.g., int i = 0
(see Exercise 4.13). The quantifiers imply loops to create the specified pro-
cesses. The extra, boolean such-that_expr is evaluated on each iteration of this
implied loop and a process is created on that iteration only if the expression
evaluated to true. This section and the next give examples.

All processes are created automatically, but when a particular process is
created depends on whether or not the process’s declaration is static. A static
process is created when its enclosing class is created. A non-static process is
created when an object of the class is created. Details appear in Section 4.2.
For process declarations that contain quantifiers, one instance of the process is
created for each combination of values of the bound variables. Each instance
of the process has access to the associated values of the bound variables; these
are implicitly passed as arguments to the instance.

A JR program terminates when its processes have terminated or deadlocked
or when it has executed a JR.exit. Although Java’s System.exit also shuts
down program execution for single virtual machine JR programs, such as those
seen in this chapter, it will not cleanly shut down program execution for mul-
tiple virtual machine JR programs. So using JR.exit, when explicit program
termination is needed, is a good practice to get into.

As a simple example of a program that uses processes, consider the following:

This program contains two processes, p1 and p2. When the program begins
execution, first x is initialized, then p1 and p2 are created. The processes
execute at the same time, at least conceptually. Above, each process unsafely
accesses variable x. Such shared variables are not automatically protected from
concurrent access; mutual exclusion must be programmed explicitly, e.g., using

or

4.1 Process Declarations 29

shared variable programming techniques (see Chapter 5). or using semaphores
(see Chapter 6).

The order in which processes execute is non-deterministic. Thus in the above
example, the order in which processes p1 and p2 execute their assignments is
not known. Similarly, the order in which they execute their prints is also non-
deterministic. However, the output from one print will not be interleaved with
the output from the other.

The above program has a potential race condition in its access to shared
variable x. The two processes can access x at about the same time in such a
way as to not affect its value as desired. For example, at the end of execution,
x’s value can be 3, 4, or 7. To see how, consider a variant of the above program:

It is, in effect, equivalent to the original program. Suppose that the program
is run on a single processor system, so that the executions of p1 and p2 are
interleaved. Then, the following execution ordering can occur:

1 p1 reads x’s value (0) and stores 0 into its copy of y

2 p1 increments its y by 3

3 p2 reads x’s value (0) and stores 0 into its copy of y

4 p2 increments its y by 4

5 p2 stores its y (4) to x (now 4)

6 p1 stores its y (3) x (now 3)

The Race program mirrors closely what can happen at the machine level repre-
sentation of the program when the original program is run on a single processor

30 Concurrent Execution

system. The extra, local variable y corresponds to a register. The three as-
signment statements correspond, respectively, to reading into a register from
memory, incrementing the register, and writing from the register back to mem-
ory. Each of these activities is atomic, i.e., indivisible. The interleaving of
the processes’ execution is accomplished by a context switch, which saves the
current process’s state (which includes values in registers) and restores another
process’s state. In the above, that occurs between steps 2 and 3.

Processes can also be declared as non-static as shown in the following variant
of the above program:

Here, the main program instantiates a Foo1 object. The output from this pro-
gram is the same as the earlier program. Of course, multiple Foo1 objects can
be created. Each Foo1 object has its own instances of variable x and processes
p1 and p2. If variable x were declared to be static, then all processes would
share that single variable. (See Exercise 4.6.)

As an example of a process declaration with quantifiers, consider the follow-
ing program:

It creates eight instances of process p and four instances of process q. Each
instance of process p is given its own local variable i, whose initial values are

4.2 The Unabbreviated Form of Processes 31

from 0 through 7. Each instance of process q is given its own local variable i,
whose initial values are 1, 2, 4, and 5.

As another example of process declarations with quantifiers, consider again
the matrix multiplication example presented in Section 1.3. Here is the relevant
portion of that code:

It employs an N × N array-like family of processes to perform matrix multi-
plication. Each process computes one element in the result matrix. The N*N
instances of compute are created as part of creating the enclosing object. Each
instance ofcompute can determine its own “identity” through r and c; these are
different in each instance. Since instances of compute only read values from
A and B and write disjoint parts of C, these variables can safely be accessed
concurrently.

4.2 The Unabbreviated Form of Processes
The process abbreviation given in the previous section is handy when the

number of instances to create is known in advance and when processes are
to be created at the same time the class is loaded or the object is created. In
some cases, though, processes need to be created as a program executes, say
in response to input or to actions occurring in other parts of the program. To
understand the general mechanism for creating processes, it is first useful to
examine the constituent pieces of the process abbreviation.

A process declaration is really an abbreviation for an operation declaration,
a method, and a send invocation. The difference between a send invocation
and a call invocation is that a send is asynchronous (i.e., non-blocking) whereas
a call is synchronous (i.e., blocking). That is, a send does not wait for the
invoked method to return any results; it terminates immediately after passing
the arguments to the method. A new process is created to execute the method; it
executes in parallel with the process that executed send. Figure 2.1 summarizes
these actions.

Program Foo in Section 4.1 can be written equivalently, without employing
process declarations, as follows:

32 Concurrent Execution

The changes are that p1 and p2 are now declared as operations, and their code
is now written as methods. (Note that p1 and p2 can be written using the op-
method abbreviation, but the expanded form is more fundamental.) Also, Foo
now contains static initializers with explicit sends to create an instance of each
process.

If the programmer is writing code to simulate the process abbreviation, the
creation code does not need to be placed in static initializers. For example, the
above program is equivalent to one without static initializers but in which the
sends are placed at the beginning of the main method. (See Exercise 4.8).

Programs with non-static processes are transformed similarly, but the details
differ. Program Foo1 in Section 4.1 can be written equivalently as follows:

4.2 The Unabbreviated Form of Processes 33

The code for main is identical to the code before, except it now creates a
Foo1Unabbrev object. As before, p1 and p2 are now declared as operations,
and their code is now written as methods. However, a new constructor now
contains explicit sends to create an instance of each process. (Those sends are
placed at the end of each constructor, if any exist, or, as above, placed within
the implicit constructor, if no other constructors exist.)

Programs with quantified processes use loops to create the process instances.
Program Quant in Section 4.1 can be written equivalently as follows:

Note how the loop for creating instances of process q includes an if statement
implied by the fourth expression in the quantifier. Clearly, it is simpler to use
the process abbreviation whenever possible!

As another example of how processes can be created dynamically, consider
the following class:

It declares a public operation, compress, which is to be used from another
class. A compressor object can be created and the compress operation may
be invoked by executing

34 Concurrent Execution

Each invocation of compress causes a new process to be created within
Compressor. The invoker does not wait for that process to terminate before it
continues executing. A process declaration could not be used in cases like this
because the invocation that causes processes to be created occurs outside the
class.

Since a process declaration is actually an abbreviation for an operation dec-
laration and a method, as seen in the above examples, additional processes may
be created dynamically by explicit send invocations. For example, suppose the
programmer initially wants two instances of a process p. This can be specified
by a process declaration:

Later, an additional instance of p can be created by, for example, executing

The value of id in the new instance will be 17.

4.3 Static and Non-static Processes
As seen in the previous sections, processes can be declared as static or non-

static. How processes are declared can be mixed within the same class. For
example, consider the following program:

One instance of Mixed’s server process is created statically; one instance of
Mixed’s client process is created for each Mixed object.

4.4 Process Scheduling and Priorities 35

This structure is useful for some client-server interactions. The client and
server can communicate, e.g., via operations as seen later in Chapter 9. This
flexibility in mixing static and non-static processes can be useful. However,
the programmer should be careful to be sure to specify static whenever that
is intended. For example, consider a variant of the above program in which
the programmer intends process client to be static—but mistakenly omits
the static keyword—and creates no Mixed objects. Then, only the server
process is created and the program is unlikely to work as the programmer
intends! Such a scenario might be hard to debug because the programmer is
likely to assume that the client process has been created.

As described in Section 4.2, static processes are created by static initializers,
which execute before any other code in a class. Consider, for example, the
following program;

Suppose the command-line argument is 10. On first inspection, it appears as
though ten instances of process p will be created. In fact, no instances of
process p are created. The problem is that N is not set to ten until after the static
initializer that contains the code that creates the instances of p executes; when
the static initializer executes, N is zero.

To get the intended behavior, the above program can use the unabbreviated
form of process creation (Section 4.2) with the sends appearing in main after N
has been set. Or, the above program can be written using non-static processes,
for example, as shown in the matrix multiplication example in Section 1.3.

4.4 Process Scheduling and Priorities
Processes in a JR program execute concurrently, at least conceptually. Con-

sequently, statements that access shared variables may need to be protected
by critical sections to insure they execute with mutual exclusion. This can
be implemented using semaphores (see Chapter 6) or the input statement (see
Chapter 9).

JR processes are mapped to Java threads, so how JR processes execute is
determined by the semantics for Java threads. The Java Language Specifica-
tion [28] neither requires nor prohibits that Java threads execute fairly. Consider
an implementation for a single processor system. It may timeslice execution

36 Concurrent Execution

among threads, thus providing fairness. Most of the implementations of Java
that the authors have used, including all of the recent implementations, use this
approach. Alternatively, a Java implementation may allow a thread to run until
the thread explicitly blocks on synchronization or waiting for I/O to complete,
or until it yields the processor. (Java’s Thread.yield() is not guaranteed to
actually do anything, but the implementations that the authors have used do
yield as expected.)

JR processes can determine and specify priorities by using the
underlying Java thread mechanisms: Thread.getPriority() and
Thread.setPriority(). Each JR process executes at the default thread prior-
ity level unless it explicitly sets its priority to another level. Similar to the above,
the Java language specification does not require that higher-priority threads ac-
tually be given preference over lower-priority threads. Many implementations,
though, do honor thread priorities.

As seen in the critical section simulation example in Section 1.5, JR processes
can also use Thread.sleep() to yield the processor for a specified amount of
time. Doing so is useful in simulations, as in the above example, and in some
other situations, such as when a thread needs to update a display periodically.

Although the above Java thread methods can be used safely with the current
JR implementation, other Java features dealing with threads cannot. In par-
ticular, using Java’s thread synchronization mechanisms (e.g., synchronized,
wait, and notify) or RMI within a JR program might interact oddly with the
JR implementation and cause undesirable results. (In the current implementa-
tion, the only such effect is that the automatic termination detection algorithm
might not work.)

4.5 Automatic Termination Detection
As described in Section 1.1, JR provides a means to deal with program

quiescence, i.e., all processes in a program have terminated or deadlocked.
Normally, JR just terminates the program. But, it also allows an operation
to be registered as the “quiescence operation”. This operation must have no
parameters and have a void return type. Once quiescence is reached, the
registered operation is implicitly invoked1 and the code associated with the
quiescence operation is executed, at which point the quiescence operation is
implicitly unregistered. If no operation has been registered (or if null has
been registered), then the program is simply terminated.

Note that a program in which all processes are sleeping is not considered to
be quiescent. A process will eventually awaken from sleep1ng and the program

1 For completeness, the invocation is invoked via a send, which was described briefly in Chapter 1 and will
be described fully in Chapter 7.

4.5 Automatic Termination Detection 37

will continue (whereas a process will not awaken from deadlock or termination).

The code associated with the quiescence operation may initiate other activity;
e.g., it may start up new processes. If desired, the code may also reregister an
operation to be the quiescence operation, which will be invoked when this new
activity becomes quiescent; the operation can be the same one or a different
one. Otherwise, when this new activity becomes quiescent, the program will
just terminate.

We saw in the example in Section 1.3 that automatic quiescence detection
is useful to avoid having to write code to determine when processes have ter-
minated. Here’s another, simpler example. It’s a version of the Race program.
The only difference is that it outputs x’s value at completion.

Note that the main method registers printx as the quiescence operation. That
operation is implicitly invoked when both p1 and p2 have completed.

As a simple example of reregistering the quiescence operation, consider the
following code:

38 Concurrent Execution

Its main method registers the operation foo. When the program becomes qui-
escent, foo is invoked; its code updates result and num, and reregisters itself
(foo). This activity continues until num is one, at which point the program
actually terminates. By the way, this program is not the recommended way to
write a factorial program!

In the two programs above, the quiescence operation is serviced by a method.
It can instead be serviced by JR’s receive or input statements, which are de-
scribed in Chapters 7 and 9. The overall effect is nearly identical.2 Examples
of this kind of quiescence operation appear in Chapter 17.

As noted above, JR’s normal behavior is to terminate a program once the pro-
gram becomes quiescent. This default behavior, though, can be changed via a
command-line option. For programs run under the non-default behavior, it is the
programmer’s responsibility to terminate program execution using JR.exit;
registering a quiescence operation has no effect on program execution. (See
Appendix C for details.)

Exercises
4.1 Consider the code for the Foo program. Suppose the two prints are

changed as follows:

2The difference is that for a quiescence operation serviced by a receive or input statements, the code associated
with the operation is executed only if the servicing process is already waiting for the quiescence operation
to be invoked.

Exercises 39

Give all possible outputs (including all possible output orderings) from
this program.

4.2 (a)

(b)

(c)

Give a step by step execution ordering (as in Section 4.1) to show
how the Race program can end with the value 4. Give a step by step
execution ordering (different from the one in Section 4.1) to show
how the Race program can end with the value 3. Also give two
different such orderings for the value 7.

Run the code for the Race program several times to see whether a
race condition actually occurs. (It may or may not depending on
implementation factors.)

Modify the code for the Race program to, in effect, force a race
condition to occur and have x end with the value 4. Do so by placing
one or more calls to Thread.sleep in the code.

4.3 Consider the following program.

(a) Give all possible outputs from executing the given program.

(b) Suppose each process executes its body twice. Describe the set of
all possible outputs in terms of your answers to the previous part.

4.4 Read in integer n (n>=2) and integer array a, which has n elements.
Calculate evenbig and oddbig: the largest number in a occurring in an
even position and the largest number in a occurring in an odd position,
respectively. Use one process to calculate evenbig and another process

40 Concurrent Execution

to calculate oddbig. Use quiescence to detect when those processes
have calculated the two values and have completed; then calculate (from
evenbig and oddbig) anybig, the largest in any position, and output
all three values.

Read in integer n(n >= 2 and n is even) and integer array a, which
has n elements. Calculate small1 and small2: the smallest number
in a occurring in positions 0 through (n-2)/2 and the smallest number
in a occurring in positions n/2 through n-1, respectively. Use one
process to calculate small1 and another process to calculate small2.
Use quiescence to detect when those processes have calculated the two
values and have completed; then calculate (from small1 and small2)
smallest, the smallest in any position, and output all three values.

Suppose that MainFoo1 creates three Foo1 objects.

(a) Show all possible outputs (including all possible output orderings).
What are the values of the x variables right before the program
terminates?

(b) Suppose variable x is declared as static. What is its value or its
possible values right before the program terminates?

Consider the code for the Foo program. Show how to rewrite it using a
family of two processes specified in a single quantified process.

Section 4.2 describes how a programmer simulating the process abbre-
viation may place the explicit sends in the main method versus in static
initializers. Give a specific example of where putting the explicit sends
at the end of the main method does not yield an equivalent program.

Write the equivalent of the declaration of the compute processes in
Section 4.1 without using the process abbreviation.

Section 4.1 shows an excerpt of the matrix multiplication example from
Section 1.3. Suppose we eliminate the print method (and its invocation)
and instead move its code to the end of the constructor. Would the new
program be equivalent to the original? Explain.

In the Foo1Unabbrev program in Section 4.2, suppose the send in the for
loop were replaced by call. Would the program’s behavior be affected?
Explain.

Suppose quantifiers were not allowed to include the fourth, boolean
expression.

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Exercises 41

Show how to rewrite the Quant program (Section 4.1) so that it
still uses a single process abbreviation for creating all of the q
processes.

Give a general technique for rewriting process declarations with
four-part quantifiers using only three-part quantifiers (with possibly
some changes to the body of the process).

Is there any disadvantage to this new style?

(a)

(b)

(c)

4.13 As described in Section 4.1, the first expression in a quantifier must
specify a new variable. The intent is that each process specified by the
quantifier will get its own local variable as its “process identity”, which
was seen to be useful in the examples in this chapter. However, this
intent can be defeated. For example, consider the following program

Explain how processes are created. What variable represent each
process’s identity and what is that value in each process?

Describe the output of the program. Be as specific as possible.

Modify program Quant so that

(a) it includes a quiescence operation that outputs “all done” just before
the program terminates.

(b) it includes a quiescence operation that outputs (only) the indices of
the p process and the q process that terminated last. (Hint: use two
class variables. You may assume that a process actually terminates
immediately after executing its last statement.)

The eight-queens problem is concerned with placing eight queens on a
chess board in such a way that none can attack another. One queen can
attack another if they are in the same row or column or are on the same
diagonal.

Write a parallel program to generate all 92 solutions to the eight-queens
problem. (Hint: Use a recursive procedure to try queen placements and
a second procedure to check whether a given placement is acceptable.)

(a)

(b)

4.14

4.15

42 Concurrent Execution

The quadrature problem is to approximate the area under a curve, i.e.,
to approximate the integral of a function. Given is a continuous, non-
negative function and two endpoints and The problem is to
compute the area of the region bounded by the axis, and the
vertical lines through and The typical way to solve the problem is
to subdivide the regions into a number of smaller ones, use something
like a trapezoid to approximate the area of each smaller region, and then
sum the areas of the smaller regions.

Write a recursive function that implements a parallel, adaptive solution to
the quadrature problem. The function should have four arguments: two
points and and two function values and It first computes
the midpoint between and then computes three areas: from to

to and to If the sum of the smaller two areas is within of
the larger, the function returns the area. Otherwise it recursively and in
parallel computes the areas of the smaller regions. Assume is a static
value.

Gaussian elimination with partial pivoting is a method for reducing real
matrix to upper-triangular form. It involves iterating across the
columns of and zeroing out the elements in the column below the
diagonal element This is done by performing the following
three steps for each column. First, select a pivot element, which is the
element in column having the largest absolute value. Second, swap
row and the row containing the pivot element. Finally, for each row

below the new diagonal row, subtract a multiple of row from row
The multiple to use for row is subtracting this

multiple of row has the effect of setting to zero.

Write a program that implements the above algorithm. Use parallelism
whenever possible. Assume every divisor is non-zero; i.e., assume the
matrix is non-singular.

4.16

4.17

Chapter 5

SYNCHRONIZATION USING
SHARED VARIABLES

This chapter illustrates a primitive way to provide synchronization between
processes. The technique introduced in this chapter can, for example, be used
to avoid race conditions such as the one discussed in Section 4.1. The synchro-
nization is accomplished by using only shared variables. That is, no special
language mechanisms are required. In contrast, Chapter 6, for example, in-
troduces JR’s semaphore mechanism, which requires new JR declarations and
statements that manipulate semaphores. The only assumption made for JR pro-
grams that use shared variables for synchronization is that reading or writing a
word of memory is atomic, as described in Section 4.1.

In this kind of synchronization, processes set and test shared variables indi-
cating their states. If one process finds that the state of another process should
prevent the first process from proceeding, then it waits until the state changes.
The process accomplishes such waiting by looping, repeatedly testing whether
the state has changed. This kind of waiting is termed busy waiting. (Imple-
mentations of synchronization mechanisms such as semaphores and message
passing do not require such busy waiting loops; instead they can place waiting
processes on queues.)

The rest of this chapter addresses the fundamental critical section problem.
This problem restricts execution of some piece of code to at most one process
at a time. Section 1.5 presented a version of this problem using JR’s message-
passing mechanisms; the version in this chapter uses only shared variables.
Further details on synchronization using shared variables and additional algo-
rithms appear in [7], [42], and [43].

5.1 The Critical Section Problem
The critical section problem consists of N processes, each repeatedly execut-

ing the same code. The code includes a critical section, in which the process

44 Synchronization Using Shared Variables

might be updating a shared variable, using a printer, writing a file, etc. In gen-
eral, the process is using some shared resource that can be properly used by
only one process at a time. The code also includes a non-critical section, in
which the process does not access any shared resources.

Here is an outline of the general form of a solution to the critical section
problem.

In this code, each process executes S sessions. Each session consists of non-
critical section code and critical section code. The critical section code is
preceded by code that obtains access to the critical section (the entry protocol)
and is followed by code that releases access to the critical section (the exit
protocol).

To make the examples in this chapter more concrete, the code includes a
shared variable, x. The critical section code simply increments x by 3. As seen
in Chapter 4, uncontrolled access to x can result in race conditions. Hence,
access to x is “protected” within a critical section. (Presumably, the non-critical
section does not access x.)

The desired properties of solutions to the critical section are, as given in
Reference [7]:

5.2 An Incorrect Solution 45

CS1

CS2

CS3

CS4

Mutual exclusion: At any time, at most one process is executing in its
critical section.

Absence of livelock: If two or more processes are attempting to enter
their critical sections, then one will succeed.

Absence of unnecessary delay: A process attempting to enter its critical
section is prevented from doing so only by another process that is exe-
cuting its critical section or by other processes attempting to enter their
critical sections.

Eventual entry: A process that is attempting to enter its critical section
will eventually be allowed to.

The term livelock (CS2) is used in this chapter because the processes will be
executing, but not progressing beyond their entry protocol. The term deadlock is
used instead for synchronization mechanisms, such as semaphores (Chapter 6),
for which the processes do not execute continuously, but instead block (i.e.,
suspend waiting to be resumed).

The careful reader will have noted a slight oddity regarding CS4 and the
code outline given in the GeneralForm program. CS4 can be satisfied for the
GeneralForm program by having process 0 execute its critical section S times
in a row, then having process 1 execute its critical section S times in a row, etc.
(See Exercise 5.3.) However, this kind of execution is likely to violate CS3
if the non-critical sections take any time to execute. In any case, the critical
section problem is often stated so that processes execute infinitely, which means
that the suggested execution ordering above would then violate CS4. In this
chapter, we place a bound on execution (S sessions) so that the programs will
terminate (we hope!) when we actually run them.

Section 5.5 gives a solution to the critical section problem for N processes.
First, though, the following sections explore several other solutions as a means
of better understanding this problem and the requirements of its solution. For
simplicity, these proposed solutions use just two processes. To aid in the exposi-
tion, in these solutions, one process increments x by 3 and the other increments
x by 4.

5.2 An Incorrect Solution
The following simple solution might appear on first look to be correct, but it

is not.

46 Synchronization Using Shared Variables

It potentially violates property CS1. Specifically, each process could find busy
to be false before either sets busy to be true. So, both processes could be
executing their critical sections at the same time.

The general difficulty here is that each process tests and sets the flag, but
those two actions are not performed atomically. Consequently, one process
might execute between the other process’s two actions. Some architectures
provide an atomic “test and set” instruction (or other similar instructions, such
as “fetch and add”) that can be used to avoid the problem with this proposed
solution.

5.3 An Alternating Solution
The following solution does provide mutual exclusion (CS1).

5.4 The Bakery Algorithm for Two Processes 47

The value of turn is always either 0 or 1. If p0 is in its critical section, then
turn is 0, which prevents p1 from entering its critical section. Unfortunately,
this solution potentially violates property CS3. For example, suppose that p0’s
non-critical section takes a long time to execute and p1’s non-critical section
takes a very short time. When the program starts, turn will be 0 and p0 will
be in its non-critical section when p1 reaches its entry protocol. Hence, p1
will delay unnecessarily until after p0 has completed its critical section and exit
protocol. The general behavior is that the two processes execute their critical
sections alternately.

5.4 The Bakery Algorithm for Two Processes
This section presents a correct solution to the critical section problem for two

processes. We defer explaining the motivation behind the name of this algorithm
until the next section, where it is clearer for the solution for N processes. The
key to avoid the alternating nature of the previous solution is to use two different
turn variables. Here is the code:

48 Synchronization Using Shared Variables

We argue informally that this program solves the critical section problem by
considering the key cases that arise in program execution. Although we cast
p0 and p1 in particular roles below, they are generally symmetric.

Suppose p0 is attempting to enter its critical section while p1 is in its non-
critical section. Then, p0 gains access because turn1 is 0.

Suppose p0 is attempting to enter its critical section while p1 is in its critical
section. Then, p0 will busy wait because turn1 is not 0 and turn0 was set
to be greater than turn1. When p1 finishes its critical section, it sets turn1
to 0. There are two subcases. In each, p0 will enter its critical section.

If p1 is executing in its non-critical section when p0 tests turn1 (i.e.,
turn1 is 0), then p0 will enter its critical section.

On the other hand, p1 might finish its non-critical section and set turn1
to turn0+1 as part of its entry protocol. When p0 retests its condition,

5.5 The Bakery Algorithm for N Processes 49

it will find it false because turn1 is greater than turn0. So, p0 will
enter its critical section.

Suppose that p0 and p1 begin execution of their entry protocols at about the
same time and each completes their first assignment statement; so, each turn
variable is 1. Suppose further that, say, p0 completes its second assignment
statement and evaluates its condition before p1 executes its second assign-
ment statement; so, turn0 is 2 and turn1 is 1. Then, p0 will wait until p1
continues execution and sets turn1 to 3. Note how one process setting its
turn variable to 1 forces the other process to wait until the first process has
finished picking its value for the turn variable.

Suppose p0 and p1, as in the previous case, complete their first assignment
statements, which set each turn variable to 1. Suppose now that execution of
the second assignment statements is interleaved at the machine instruction
level, similar to what was discussed for the Race program in Section 4.1.
That is, the following execution ordering can occur:

1 p0 reads turn1’s value (1)

2 p1 reads turn0’s value (1)

3 p0 adds 1 and stores the result (2) into turn0

4 p1 adds 1 and stores the result (2) into turn1

Although the turn variables have equal values (2), p1 will defer to p0 because
its condition uses >= whereas p0’s uses >.

5.5 The Bakery Algorithm for N Processes
The following solution generalizes the two-process solution in the previous

section.

50 Synchronization Using Shared Variables

The overall structure is similar to the previous solution. Each process sets
its turn variable to be one more than the maximum of the others. As in the
previous solution, more than one process can pick the same value for its turn.
Here again, the higher numbered process will defer to the lower numbered
process. Specifically, the code uses a loop to check whether to defer to each
other process. This checking uses a comparison method that performs a pairwise
“greater than” operator between pairs of (turn, process index). It orders pairs
by the value of turns, but within pairs with equal turns, it orders the pairs by
process index.

The name of the bakery algorithm is motivated by how each entering cus-
tomer (process) in a bakery takes a number just higher than the numbers already
taken by waiting customers. As noted above, though, if two customers enter the
bakery at about the same time, then they might both pick the same number, so
one needs to defer to the other. Another algorithm, the ticket algorithm, is mo-
tivated by the ticket machines that are often used in bakeries, which dispense a
sequence of increasing numbers to customers. However, it is more complicated
to write or it requires the use of a special hardware instruction.

Exercises
5.1 Give all possible outputs from the GeneralForm program assuming that

the entry and exit protocols are empty and using the given values for S
and N.

Exercises 51

5.2 Consider a variant of the GeneralForm program (with empty entry and
exit protocols) in which N is 3, S is 1, and the critical section code is

Give all possible outputs.

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Give a solution to the N process critical section problem in which, as
suggested in Section 5.1, process 0 executes its critical section S times
in a row, then process 1 executes its critical section S times in a row, etc.

Run the code for the BadCSFlag program several times to see whether
a race condition actually occurs. It may or may not depending on im-
plementation factors. If it does not, then modify the code to, in effect,
force a race condition to occur. Do so by placing one or more calls to
Thread.sleep in the code. (Hint: first rewrite the code in the style of
the Race program in Section 4.1.)

Gather evidence that the processes in the SoSoCSTurns program actually
alternate execution of their critical sections. First, add print statements
to the program and run the modified program. Then, place several calls
to Thread.sleep in the code and verify that the output still shows the
desired execution order.

Consider again the SoSoCSTurns program. What effect, if any, does
initializing turn to 1 instead of 0 have?

Rewrite the SoSoCSTurns program using a family of two processes
specified in a single quantified process.

Suppose each process in the SoSoCSTurns program is changed to output
x’s value after its for loop. Give all possible output values from this
modified program.

Gather evidence that the Bakery2 program executes as it should. Insert
print statements whenever a process enters or leaves its critical section,
and place a call to Thread.sleep within each process’s critical section.
Then, examine the output of the program to verify that it does not show
that two processes were in their critical sections at the same time.

Repeat the previous exercise for the BakeryN program.

Consider the Bakery2 program. What effect, if any, does each of the
following have?

(a) initializing turn0 and turn1 to 1 instead of 0.

5.10

5.11

52 Synchronization Using Shared Variables

(b) initializing turn0 to 1 instead of 0 (but still initializing turn1 to 0).

5.12

5.13

5.14

5.15

Consider the effect of deleting the assignments turn0 =.1 and
turn1 = 1 from the Bakery2 program. Does this modified program
still provide mutual exclusion? If so, give a convincing argument; if not,
give a specific execution ordering showing how both processes can be
executing in their critical sections at the same time.

Consider the values taken on by the turn variables in the Bakery2 pro-
gram. Are these values bounded or can they become arbitrarily large?
If they are bounded, give a specific bound and explain why that bound
holds; otherwise, give a specific execution ordering showing how they
can grow arbitrarily large. Give answers for when the program executes
S sessions and for when the program executes infinitely.

Consider the code for BakeryN when N is 2. Show that it really is
equivalent to the code for Bakery2.

Consider the code for BakeryN. What effect, if any, does eliminating the
if statement (but keeping its while loop) have? Explain your answer.

Chapter 6

SEMAPHORES

Semaphores are a low-level but efficient synchronization mechanism. They
are used in JR programs to synchronize the activities of processes. For exam-
ple, they can be used to implement mutually exclusive access to shared data.
Compared with synchronization using shared variables seen in the previous
chapter, semaphores are generally easier to use and more efficient because their
implementation does not require busy waiting.

A semaphore is a non-negative integer that is accessed by means of two
special operations, P and V .1 If s is a semaphore, V(s) increments the value of
s, and P(s) delays its caller until s is positive and then decrements s. A V is
used to signal the occurrence of an event, and a P is used to delay until an event
has occurred.

This chapter describes how semaphores are declared and shows how they
can be used. As mentioned in the introduction to Part I, JR’s semaphores are
actually an abbreviation of a particular form of message passing. Section 7.5
discusses this concept in detail. JR supports both simple semaphores and arrays
of semaphores.

6.1 Semaphore Declarations and Operations
A semaphore declaration contains a list of one or more semaphore definitions

separated by commas:

1Semaphores were invented by Dijkstra [18], who is Dutch. The operations P and V are mnemonics for the
Dutch words passeren and vrygeven, which mean “to pass” and “to release,” respectively.

54 Semaphores

Each semaphore definition specifies a single semaphore and optionally gives
the initial value of the semaphore. A semaphore definition has the following
general form:

As shown, the initialization clause is optional. Its value must be non-negative
since semaphores are non-negative. The default initial value of each semaphore
is zero.

JR uses traditional notation for the two standard semaphore operations, P
and V. They have the general forms

For simple semaphores, a sem_reference is just the name of the semaphore, i.e.,
a sem_id.

To illustrate one use of semaphores, consider the following instance of the
standard critical section problem seen in Chapter 5. Suppose N processes share
a class variable, e.g., a counter. Access to the counter is to be restricted to one
process at a time to ensure that it is updated atomically. An outline of a JR
solution follows:

The mutex semaphore is initialized to 1 so that only a single process at a time
can modify x.

Processes wait on semaphores in first-come, first-served order based on the
order in which they execute P operations. Thus waiting processes are treated
fairly: A process waiting on a semaphore will eventually be able to proceed
after it executes a P, assuming a sufficient number of Vs are executed on that
semaphore.

6.1 Semaphore Declarations and Operations 55

As mentioned, JR supports arrays of semaphores. Because a semaphore in
JR is an object, the declaration of an array of semaphores follows the style of
declarations of arrays of other objects in Java. Here, a reference to a semaphore
is an operation capability and so the sem_reference that appears within P or V
is also an operation capability. To obtain an array of semaphores, an array of
capabilities must be declared and each element of the array must be explicitly
instantiated. For example, an array of five semaphores, t, can be declared and
instantiated as follows:

This code might appear within a method or, in general, within a block of code.
Other examples below show how to declare semaphores at the class level. The
semaphore operations can be applied to individual elements of the array, e.g., a
V on the second element of t is written V(t[1]). In the above, each element of
t is initialized to zero, the default initial value for semaphores. An element can
be initialized to other, non-negative values by passing the value as the parameter
to the sem constructor, e.g.,

Arrays of semaphores are often used in managing collections of computing
resources (e.g., printers or memory blocks) or in controlling families of pro-
cesses. Typically one semaphore is associated with each computing resource or
each process. For example, suppose that N processes are to enter their critical
sections in circular order according to their process identities, i.e., first process
0, then process 1, and so on up to process N-1, with the cycle repeating four
times. This can be expressed as follows:

56 Semaphores

The array of semaphores, mutex, has one element for each process p. It acts as
a split binary semaphore [7]: At most one of the semaphores in the array is 1,
the rest are 0. That corresponds to the desired property that only one process
at a time can be in its critical section. The element of mutex that is 1 indicates
which process has permission to enter its critical section. As process i leaves
its critical section, it passes permission to enter the critical section to the next
process by signaling mutex[(i+1) % N].

Because semaphores are objects, they can be created any where in a program,
not just as part of initialization. Section 9.9 discusses such creation in a more
general setting.

6.2 The Dining Philosophers Problem
This section presents a semaphore solution to the classic Dining Philosophers

Problem [17]. In this problem, N philosophers (typically five) sit around a
circular table set with N chopsticks, one between each pair of philosophers.
Each philosopher alternately thinks and eats from a bowl of rice. To eat, a
philosopher must acquire the chopsticks to its immediate left and right. After
eating, a philosopher places the chopsticks back on the table.

The usual statement of this problem is that philosophers use two forks to eat
spaghetti rather than two chopsticks to eat rice. Apparently, the spaghetti is so
tangled that a philosopher needs two forks! Although we think the chopstick
analogy is more fitting, our explanations and code use the more traditional forks.

This initial table setting for five philosophers is illustrated in Figure 6.1. In
the figure a P represents a philosopher and an F represents a fork.

In our solution to this problem, we represent philosophers by processes.
Because philosophers (processes) compete for forks, their use needs to be syn-
chronized. So, we represent each fork as a semaphore. Here is the code:

6.2 The Dining Philosophers Problem 57

Figure 6.1. Initial table setting for Dining Philosophers

It declares the forks as an array of semaphores and initializes each fork to
indicate that it is available, i.e., on the table. Each philosopher determines the

58 Semaphores

indices of its left and right forks. It then executes its loop for T sessions of
eating and thinking. Before it eats, it acquires each fork by using a P; it will
wait if its neighboring philosopher is eating. When it finishes eating, it puts
down each fork by using a V .

Our solution could deadlock if not for the if statement in the code for the
philosopher. Deadlock (see Section 5.1) in this problem means that all philoso-
phers could be attempting to eat, but none would be allowed to. That can
happen (in code without the if statement) if each philosopher grabs its left
fork. Then each would try to grab its right fork, which is already held by an-
other philosopher! So, unfortunately, the philosophers could make no further
progress. Using that if statement avoids this problem by making one philoso-
pher act slightly differently. In particular, the effect of the if statement is that
philosopher 0 acquires its forks in the opposite order. Hence, bad scenarios
such as the one described above cannot occur.

Chapter 11 contains solutions to the dining philosophers problem in a dis-
tributed environment. The solutions presented there use the other JR synchro-
nization mechanisms developed in the remaining chapters in this part.

6.3 Barrier Synchronization
A barrier is a common synchronization tool used in parallel algorithms. It

is used in iterative algorithms—such as some techniques for finding solutions
to partial differential equations—that require all tasks to complete one iteration
before they begin the next iteration. (A barrier might also be used to synchronize
stages within an iteration.) This is called barrier synchronization since the end
of each iteration represents a barrier at which all processes have to arrive before
any are allowed to pass. (See Reference [7] for further discussion and specific
applications.)

One possible structure for a parallel iterative algorithm is to employ several
worker processes and one coordinator process. The workers solve parts of a
problem in parallel. They interact with the coordinator to ensure the necessary
barrier synchronization. This kind of algorithm can be programmed as follows:

6.3 Barrier Synchronization 59

Each worker first performs some action; typically the action involves accessing
part of an array determined by the process’s subscript i. Then each worker
executes a V and aP, in that order. The V signals the coordinator that the worker
has finished its iteration; the P delays the worker until the coordinator informs it
that all other workers have completed their iterations. The coordinator consists
of two for loops. The first loop waits for each worker to signal that it is done.
The second loop signals each worker that it can continue.

The above implementation of barrier synchronization employs an extra coor-
dinator process and has execution time that is linear in the number of workers.
It is more efficient to use a symmetric barrier with logarithmic execution time
(see Reference [7] and Exercise 6.15).

So far, the examples in this chapter have declared semaphores to be private
and static. They can also be declared to be public. In that role, semaphores
provide synchronization for processes executing inside or outside the class. A
semaphore can also be declared as non-static, which, as with other Java objects,
makes the semaphore specific to each instance of the class, rather than to the
entire class.

As an example, we can rewrite the code in the previous barrier example as
follows to put the semaphores and coordinator process in one class, Barrier,
and the workers in another, Workers. The Main class creates an instance of
Barrier and an instance of Workers, to which it passes a reference for the
former.

60 Semaphores

The Barrier class declares the semaphores to be public and contains the co-
ordinator process.

The Workers class contains the worker processes, which use the barrier that
the class is passed.

Exercises 61

The advantage of this structure is that it separates the details of the coordinator
process from the details of the workers. In fact, the workers could themselves
be in different classes. By making the semaphores non-static, this structure also
makes it easy to create multiple instances of barriers within the same program.
Other structures for barriers are also possible; for example, see Section 16.2
and Exercise 6.14.

Exercises
6.1

6.2

6.3

6.4

Write a program that contains two processes, p1 and p2. p1 outputs two
lines: “hello” and “goodbye”. p2 outputs one line: “howdy”. Use one
or more semaphores to ensure that p2’s line is output between p1’s two
lines.

Consider the code in the CS program in Section 6.1. What are the mini-
mum and maximum values that the mutex semaphore can take on dur-
ing execution of the program for any possible execution ordering of
processes? What is the maximum number of processes that might be
waiting to enter their critical sections? What is the minimum number of
times that processes might need to wait to enter their critical sections?
Explain your answers.

Consider the code in the CSOrdered program in Section 6.1. Suppose
the semaphore initialization code in the static initializer is moved to the
main method. The modified program is not guaranteed to be equivalent
to the original program because the processes might execute before the
semaphores are initialized. Show how to further modify this program
so that it is guaranteed to be equivalent. (Hint: add a single “go ahead”
semaphore on which processes wait until the main method indicates that
it has completed initialization.)

Complete the code in the CSOrdered program in Section 6.1 so that each
process outputs its process id (i.e., i) within its critical section. Also,
modify the order in which processes execute their critical sections to be
one of the following:

(a)

(b)

on each cycle: 0, 2, 4, ..., X, 1, 3, 5, ..., Y where X is the largest
even number < N and Y is the largest odd number < N .

for the overall program execution: 0, 0, 1, 1, 2, 2, ..., N-1, N-1, 0, 0,
1, 1, 2, 2, ..., N-1, N-1.

62 Semaphores

6.5

6.6

Consider Exercise 5.2 but with the critical section code (the assignment
to x) enclosed within P(t) and V(t). For each initial value 0, 1, 2, 3,
and 4 for the semaphore t, give all possible outputs from the program.

This exercise builds on Exercise 4.4.

(a)

(b)

(c)

Modify the solution to Exercise 4.4 so that

Both processes modify anybig directly and on each iteration.
(So, eliminate variables evenbig and oddbig.) Use a semaphore
to provide the needed synchronization. Explain why synchro-
nization is needed here.
The program outputs only anybig at the end.

Modify the program from part (a) by removing all synchronization.
Run the modified program several times. If the output ever differs
from the output of the program in part (a), explain why. If it does
not, explain why not. (Note: whether or not any difference appears
depends on implementation factors. See also the next part.)

Modify the program from part (b) so that it outputs an incorrect result
due to a race condition on a particular set of input data. (Include as
a comment in the code the input data.) Hint: Use Thread.sleep
to force context switches at strategic points of execution; have one
process sleep and the other not.

6.7

6.8

6.9

Repeat the previous exercise, but for Exercise 4.5 (and for variables
small1, small2, and smallest).

Consider the DiningPhilosophers program. First, remove the if state-
ment and run the program several times. Does the program deadlock?
(Whether or not it does depends on implementation factors.) Then, mod-
ify the program to force it to deadlock. Do so by adding Thread.sleep
to force context switches at strategic points of execution.

Another classic concurrent programming problem is the produc-
ers/consumers problem. In this problem, two kinds of processes com-
municate via a single buffer. Producers deposit messages into the buffer
and consumers fetch messages from the buffer. Here is an outline of the
code

Exercises 63

Obviously, this outline is missing synchronization to ensure that a con-
sumer does not take a message from an empty buffer or take a message
that another consumer has already taken, and that a producer does not
overwrite a message before a consumer consumes it. (Each message is
to be read by one consumer, not by all consumers.)

Complete the above outline with the necessary synchronization. Hint:
use two semaphores. (Section 9.2 reexamines this problem using the
rendezvous synchronization mechanism. The bounded buffer problem,
which is a generalization of this problem, is presented in Section 9.3 and
used in examples in Chapter 21.)

6.10

6.11

6.12

Consider the code in the Barrier class (see the start of Section 6.3). Can
the array of semaphores, proceed, be replaced by a single semaphore?
Explain.

Consider the code in the Barrier class (see the start of Section 6.3).
Can the done semaphore be replaced by an array of N semaphores, with
one element for each worker? Explain.

Eliminate the coordinator process from the code in the Barrier class
(see the start of Section 6.3) by having the last worker that arrives at
the barrier signal the other workers. Hint: Use a counter protected by a
critical section.

64 Semaphores

6.13

6.14

6.15

In the Barrier class (see the end of Section 6.3), why does the body
contain a process? What would happen if the code for the coordinator
process were moved to the end of Barrier’s constructor?

Rewrite the code in the Barrier and Workers classes (see the end of
Section 6.3) to hide all details about the implementation of the barrier
in the Barrier class. The Barrier class should make public a single
method that the workers call when they arrive at the barrier. The Barrier
class should declare the semaphores as private so they cannot be used
directly by the workers.

A dissemination barrier [21] is much more efficient than one imple-
mented using a coordinator process. It consists of a series of stages in
which each worker interacts with two others. Workers first interact with
others that are distance 1 away, then distance 2 away, then distance 4
away, and so on. If there are n workers, the number of stages is the
(ceiling of the) logarithm of n.

For example, suppose there are eight workers. In the first stage, worker
1 signals worker 2 then waits for worker 8, worker 2 signals worker 3
then waits for worker 1, and so on. In the second stage, worker 1 signals
worker 3 then waits for worker 7, worker 2 signals worker 4 then waits
for worker 8, and so on. In the third stage, worker 1 signals worker 5
and waits for worker 5, worker 2 signals worker 6 and waits for worker
6, and so on. At the end of the third stage, the workers can proceed past
the barrier since each will know that all others have arrived.

Implement a dissemination barrier for 20 processes; use semaphores for
synchronization. Compare its performance to either of the coordinator
barriers in Section 6.3.

Chapter 7

ASYNCHRONOUS MESSAGE PASSING

Asynchronous message passing is higher-level and more powerful than
semaphores. As its name implies, it allows processes to communicate as well
as synchronize by using operations to exchange messages.

Message passing in JR is accomplished by having processes send messages
to and receive messages from operations. In this role, operations serve as queues
that hold messages for receivers. The sender of a message continues immedi-
ately after the message has been sent. The receiver of a message delays until
there is a message on the queue and then removes one. Thus the send state-
ment is asynchronous (non-blocking) and the receive statement is synchronous
(blocking).

This chapter first describes this new use of operations as message queues.
We then show how the semaphore primitives described in the previous chapter
are actually abbreviations for a specific form of asynchronous message passing.
We also describe the use of data-containing semaphores, which are a generaliza-
tion of standard semaphores. Finally, we describe how multiple processes can
receive messages from the same operation and discuss the additional flexibility
that provides.

JR’s receive statement is actually just an abbreviation for a more general
mechanism for receiving messages. That more general mechanism—the input
statement—is discussed in Chapter 9.

7.1 Operations as Message Queues
As we saw in Chapters 3 and 6, operations can be serviced by methods. In

this case an operation definition specifies the method’s parameterization. Each
invocation of the operation results in a new instance of the method’s code being
executed to service the invocation. Specifically, a call invocation of a method

66 Asynchronous Message Passing

is like a procedure call (Chapter 3); a send invocation of a method results in a
new process being created (Chapter 6).

An alternative role of an operation is to define a message queue. In this
role the operation has no corresponding method. Instead, invocations of the
operation (i.e., messages) are serviced by receive statements within one or
more processes. A receive statement removes an invocation from the message
queue; the executing process delays if no invocation is present.

A send invocation of an operation serviced by receive statements causes
the invocation to be appended to the message queue. The invoker continues
immediately after the invocation has been sent. Figure 2.1 summarizes these
actions. Note that this is consistent with send invocations to methods being
asynchronous. Call invocations to operations serviced by receive statements
are also allowed; this provides a synchronous form of message passing, which
we discuss in Chapter 9.

A receive statement specifies an operation and gives a list of zero or more
variables separated by commas. It has the following general form:

The op_expr is any expression that evaluates to an operation: it can specify
an operation directly by the operation’s name or indirectly via an operation
capability. The former is most common, but the latter is also very useful as
will be seen in Section 7.2 and later chapters. A receive statement specifies
one variable for each parameter in the operation’s definition; it must match the
corresponding parameter’s type.

As mentioned earlier, execution of receive removes an invocation from the
message queue associated with the operation. The values of the arguments of
that invocation are assigned to the variables in the receive statement. (These
variables must already have been declared in the current scope.)

As an example, consider a three-process system. Each of two processes sends
an ordered stream of messages to the third, which outputs the merge of the two
streams. For simplicity, we assume that the messages contain just integers and
that the end of each stream is indicated by a value greater than any possible
value in the stream. Following is an outline of a solution:

7.1 Operations as Message Queues 67

This program uses two operations, stream1 and stream2. The first process
sends its numbers, including the end of stream marker EOS, to stream1, the
second sends to stream2. The merge process first gets a number from each
stream. It executes the body of the loop as long as one of the two numbers is
not EOS. The if statement compares the two numbers, outputs the smaller, and
receives the next number in the stream from which the smaller number came.
If one stream “dries up” before the other, v1 or v2 will be EOS. Since EOS is
larger than any other number in the stream, numbers from the non-dry stream
will be consumed until it too is dry. The loop terminates when both streams
have been entirely consumed.

As indicated for the above program, messages sent from one process to
another are delivered in the order in which they are sent. However, in other
cases, non-deterministic process execution can affect message ordering. For
example, consider the following program:

68 Asynchronous Message Passing

The order in which process three receives the two b messages depends on the
order in which the other two processes execute.

7.2 Invoking and Servicing via Capabilities
Section 3.3 showed how methods can be invoked indirectly via capabilities.

An operation serviced by a receive statement can too. As a simple example,
consider the following program.

The main method declares two capabilities and assigns them the values of f
and g, although which capability gets which value depends on whether any

7.2 Invoking and Servicing via Capabilities 69

command-line arguments are present. It then sends to the operations associated
with the capabilities. A more realistic example of the use of capabilities appears
in Section 7.3.

As seen in Section 7.1, a receive statement can also name a capability as a
way of indirectly specifying the operation from which to receive. The capability
is evaluated to determine the operation from which to receive. As a simple
example, consider the following program:

As in the previous program, the main method declares and assigns values to
two capabilities, y and z. It then sends to the two operations and receives from
the operation associated with y and then from the operation associated with z.
More realistic examples of this use of capabilities appear in later chapters (e.g.,
Section 20.2.4).

Capabilities can be used to circumvent normal scoping rules. Consider, for
example, the following program

70 Asynchronous Message Passing

Operation f is local to process p. However, a capability for it is passed outside
of p and used by process q. The capability is passed via the operation getcap,
which is known to both p and q. Section 7.3 contains a similarly structured
example. A similar technique can be used to make an operation that is private
in one class available in another class (see Exercise 7.5).

The above examples illustrate capabilities that are assigned operations ser-
viced by receive statements. As seen in Section 3.3, capabilities can also be
assigned operations serviced by op-methods. In fact, capabilities can be as-
signed to either kind of operation. Thus, how the operation being invoked via
the capability is actually serviced is transparent to the invoker. This flexibility
is often useful, as will be seen in later chapters. (See Exercise 7.6 for a simple
example.)

When an operation goes out of scope, it continues to exist if there are any
capabilities for it. That is, an operation is an object and capabilities act as
references to it. To demonstrate this effect, suppose that in the above program
process q executes a second send to operation f (indirectly via y). Process p
may or may not have terminated when this second invocation occurs. In either
case, though, the invocation is legal, but it has no effect in this program. (In
general, evaluation of its parameters might have side effects, another process
might service the operation, etc.) The invocation simply will not be serviced.
Similarly, any pending invocations of an operation when the operation ceases
to exist (i.e., due to there being no more references for it) will just be ignored.

The capability specified in a send or receive statement can take on the capa-
bility values null and noop. Their meanings in these contexts are consistent
with their meanings in invoking a method as described in Section 3.3. Sending
to or receiving from null causes a run-time exception. Sending to noop has
no effect (except for any side effects of argument evaluation). Receiving from
noop causes the program to hang (because there will never be an invocation
associated with noop).

7.3 Simple Client-Server Models
As further examples of asynchronous message passing, we now consider

how to program several simple client-server models. A server is a process that
repeatedly handles requests from client processes. For example, a disk server
might read information from a disk; its clients might pass it requests for disk
blocks and then wait for results.

We first consider the case of one client process and one server process. An
outline of possible interactions between client and server is shown in program
Model1 below. The processes share two operations: request and results.

7.3 Simple Client-Server Models 71

The client sends to therequest operation and waits for results to be returned by
receiving from the results operation; between the send and receive, the client
can perform other work. The server waits for a request, performs the requested
action, and sends the results back. To make the examples in this section more
specific, our code shows the type of the request data as a character and the type
of the results data as a double.

Unfortunately, the above code does not generalize directly if more than one
client process is present. Specifically, one client can obtain the results intended
for the other because the results operation would be shared by both of them.
The processes can execute so that results intended for one process are sent to
results first, but another process is first to execute its receive statement. One
way to generalize the code is to use an array of result operations, one for each
client process. An outline of that kind of solution follows:

72 Asynchronous Message Passing

Here each client process passes its identity as part of its request message. The
identity is used by the server to send the results of a request back to the client
that initiated that request. Each client process receives from the one element of
the results operation that corresponds to its identity.

An obvious drawback of the code in resource Model2 is that it requires the
number of clients to be known in advance. That requirement is not reasonable
in many situations, such as when the server process is in a library. The results
array in Model2 provides a simple means to associate an operation with each
client process. Another way to achieve the same effect is to declare an operation
local to each client process:

7.3 73

Each client declares a local operation, results, whose parameterization is
that of the result messages. It passes a capability for that operation as the first
parameter to request. The server receives that capability in local variable
results_cap and uses it to send back results to the operation to which the
capability points.

An important advantage of the above structure is that it permits any client
process to interact with the server. All the process needs is a results operation to
pass to the server. Clients can even be in different resources than the server—
even different virtual machines—as long as the request operation is made
visible by declaring it in the spec of the server resource.

Another variant of the client-server model is to have multiple servers. Con-
sider the case where a new server is created for each client’s request. The
following outlines a solution:

Simple Client-Server Models

74 Asynchronous Message Passing

The key difference between this code and that in resource Model3 is that the
request operation is now serviced by a method. Thus a new server process is
created for each invocation of request. The parameterization of request is
unchanged. Each server process uses the capability technique from Model3 to
send results back to its client.

It is worth emphasizing that the only difference between programs Model3
and Model4 is the way the request operation is serviced. The client processes
execute exactly the same code. This is significant since clients can invoke
request without concerning themselves with how it is serviced—whether by
a method or by a receive statement. Section 8.2 shows a simpler way to package
servers like the ones in Model4.

Section 9.9 presents another client-server model. It uses dynamically created
operations, which can also be used with send and receive statements.

7.4 Resource Allocation
As a special, but important, kind of client-server model, consider the prob-

lem of resource allocation. Here, the server controls one or more units of
some resource, which it gives out to the clients in response to their requests.
As a concrete example, the server might manage a group of indistinguishable
printers.

To start, consider the case where the server manages only a single unit of the
resource. A client requests one unit of the resource, uses it, and then informs
the server that it has finished using the resource.

}

7.4 75

The code is similar to that for client-servers in the previous section, but now
clients and servers interact via two kinds of operations. Client request the
resource via the request operation and release the resource via the release
operation. Note that clients wait for a reply only after a request. The server code
is simple: it uses “flow of control” to alternately receive a request message and
then a release message. Section 9.2 will show this same example, but packaged
in a simpler way.

Now, consider the case where there are multiple units of the resource. The
code for the single unit case will clearly not work here and requires substantial
modification. The fundamental reason is that now the server, in some cases,
needs to be able to service either a request message or a release message. That
is, the server will not be able to service immediately all request messages. It
must somehow defer handling those until it has received release messages. The
following code solves this problem.

Resource Allocation

76 Asynchronous Message Passing

7.5 Semaphores Revisited 77

The interface between clients and server has changed. Now, a single operation,
action, is used for both request and release messages. The kind of message
is encoded as a parameter to action. The server code is considerably more
involved than it was for the previous example. It receives a message. For a
request message, if the server has any resources available, then it can handle
that request immediately, so it replies to the client; otherwise, it defers replying
to the request until after a resource is returned. It handles deferring by saving
the process’s id in a queue of pending requests. For a release message, if no
request is presently pending, then the server just returns the unit of resource to
its available pool; otherwise, it passes this unit to the first client that is waiting
on the queue.

This example shows a need for a multi-way receive. Although it can be
accomplished as shown above, Chapter 9 discusses the input statement, which
provides direct support for multi-way receive. Section 9.3 will show this same
example, but solved more directly using the input statement.

7.5 Semaphores Revisited
JR’s semaphores and P and V statements, as described in Chapter 6, are actu-

ally just abbreviations for operations and send and receive statements. Specif-
ically, a semaphore is a parameterless operation. A V on a semaphore corre-
sponds to a send to the operation; a P corresponds to a receive on the operation.
Initialization of the semaphore to expr corresponds to a for loop that sends to
the operation expr times.

The mapping of semaphore primitives to their general unabbreviated forms is
summarized in Table 7.1. A new variable, v, is introduced in case the semaphore
declaration contains an initialization expression. Its use ensures that expr is
evaluated just once. If the semaphore is a class semaphore, the code is executed
within a static initializer. If the semaphore is an instance semaphore, the code

78 Asynchronous Message Passing

is executed within a non-static initializer. If the semaphore is local, the code is
execute in-line within the block.

To illustrate, recall the solution to the critical section problem given in re-
source CS in Section 6.1. It can be written equivalently using asynchronous
message passing as follows:

The initialization of mutex consists of a single send, which places one mes-
sage on mutex’s message queue. When a process attempts to enter its critical
section, it attempts to remove an invocation from the message queue. If suc-
cessful, it continues—mutex’s message queue remains empty until that process
completes its critical section and sends an invocation to mutex. If a process is
unsuccessful in its attempt to remove an invocation, it delays until such an invo-
cation arrives and the process is the first process waiting for the invocation. (As
with semaphores, processes access message queues in first-come, first-served
order.) The message queue ofmutex will contain at most one invocation; that
corresponds to mutex’s value as a semaphore being at most one.

Using semaphores rather than the corresponding message passing primitives
makes programs somewhat more concise and readable. However, in our imple-
mentation of JR, the two classes of mechanisms are equally efficient, and both
are more efficient than general message passing. That is, our current JR im-
plementation does not optimize parameterless operations as shown in Table 7.1
into the equivalent semaphore primitive.

7.6 Data-Containing Semaphores 79

7.6 Data-Containing Semaphores
A data-containing semaphore is conceptually a semaphore that contains data

as well as a synchronization signal. It is, in essence, an unbounded buffer of
messages that have been produced and not yet consumed. Such a semaphore
is represented by a operation that is shared by several processes. The data
is passed as a parameter of the operation. Processes use send and receive
statements to append data to or remove data from the operation’s message queue;
synchronization between processes accessing the queue is implicit through their
use of send and receive statements.

A data-containing semaphore can be used, for example, to provide a pool of
buffers shared by a group of processes. Consider the following code outline:

Operation pool represents the buffer pool. The for loop in the static initializer
places N invocations on pool’s message queue; each invocation contains the
index of a free buffer. As shown in the above code, a process obtains a buffer
by receiving the index of a free buffer from pool. When done with the buffer,
a process returns it to the buffer pool by sending the index to pool. When used
in this way, operation pool is a bounded buffer. In general, however, such an
operation can contain an unbounded number of messages.

The advantage of using an operation’s message queue to represent a buffer
pool is that it saves the programmer from having to write code that explic-
itly implements a list of free buffers and code that synchronizes access to the
list. The disadvantage is that such use of an operation queue is somewhat less
efficient [39].

80 Asynchronous Message Passing

7.7 Shared Operations
Regular semaphores and data-containing semaphores are both examples of

operations that are shared by more than one process. That is, more than one
process can receive invocations from the operation’s message queue. In these
cases, the shared operations are declared at the top level within a class as
opposed to being declared within processes as in class Model3 (see Section 7.3).
When an operation is shared, servicing processes compete for the operation’s
invocations. Processes obtain access to pending invocations in a first-come,
first-served order.

Shared operations are almost a necessity given that multiple instances of a
process can service the same operation. The code in class CS (see Section 7.5),
for example, demonstrates this point: an invocation of mutex can be received
by any instance of process p. The code in class Model2 (see Section 7.3) also
contains a shared operation, results. By convention, however, each client
process accesses only its own element of that operation array. Thus, in effect,
the array elements are not shared in that code. In general, though, even array
elements can be shared.

Another useful application of shared operations is for server work queues. In
particular, a shared operation can be used to permit multiple servers to service
the same work queue. Clients request service by invoking a shared operation.
Server processes wait for invocations of the shared operation; which server
actually receives and services a particular invocation is transparent to the clients.

As an example of using shared operations for a server work queue, consider
the adaptive quadrature method for finding the area under a curve (i.e., a func-
tion). Given are a continuous, non-negative function f(x) and two values l
and r, with l < r. The problem is to compute the area bounded by f (x), the x
axis, and the vertical lines through 1 and r. This corresponds to approximating
the integral of f(x) from l to r. The following code outlines a solution. It
employs a shared operation, bag, which contains a bag of tasks. Each task
represents a sub-interval over which the integral of f is to be approximated.

7.7 Shared Operations

Initially, the administrator places in the bag one task corresponding to the en-
tire problem to be solved. Multiple worker processes take tasks from the bag and
service them, often generating two new tasks—corresponding to subproblems—
that are put into the bag. Specifically, a worker takes a task—representing the
interval [a, b]—from the bag, computes its midpoint m, and calculates three

81

82 Asynchronous Message Passing

areas. The three areas are those of the three trapezoids defined by the points
a, m, and b and the value of f at these three points. The worker then compares
the area of the larger trapezoid with the sum of the areas of the two smaller
ones. If these are sufficiently close (within Epsilon), the sum of the areas
of the smaller trapezoids is taken as an acceptable approximation of the area
under f, and the worker sends it to the administrator using operation result.
Otherwise, the worker adds to the bag the two subproblems of computing the
area from a to m and from m to b.

After initializing the bag of tasks, the administrator repeatedly receives re-
sults, which are parts of the total area. It adds these to area. The computation
terminates (in deadlock) when all message queues are empty and all processes
are blocked; i.e., all tasks have been processed by workers, and all results have
been received by the administrator. At this point the quiescence operation done
is executed. area is declared as a class variable, so it is accessible to both the
administrator process and done’s code.

An especially interesting aspect of the above algorithm is that it permits any
number of worker processes! If there is only one, the algorithm is essentially
an iterative, sequential algorithm. If there are more workers, subproblems can
be solved in parallel. Thus the number of workers can be tuned to match the
hardware on which the algorithm executes.

Another interesting aspect of the algorithm is that it uses a quiescence op-
eration to print the result. For this problem and many similar ones, it would
be difficult for the processes themselves to determine when all tasks had been
computed. Here the administrator would have to keep track of which parts of
the area had been computed. (It is not sufficient for the administrator to wait
for the bag to be empty because a worker may be about to put two new tasks in
it.) Letting the JR implementation detect termination, and using a quiescence
operation to print the result, yields a much simpler algorithm. Exercise 7.14
explores the above termination issues.

The above example demonstrated the use of a shared class (i.e., static) oper-
ation. To examine in more detail that and other ways in which operations can
be shared, consider the following program.

7.8 Parameter Passing Details 83

The main method creates two instances of Sharing. The Sharing class con-
tains two operations, f and g.

Operation f is static, so it can be shared directly by all static and all non-static
processes in Sharing. In this particular code, there are two static processes
(instances of p) and four non-static processes (two instances of q in each instance
of Sharing) that can share f. Operation g is non-static, so an instance of g
exists within each instance of Sharing. Each instance of g can be shared
directly by only the non-static processes in the same instance.

In addition, operations can be shared indirectly. As shown in the above
program, the main method may receive an invocation of Sharing.f and may
receive an invocation of s1.g. Such servicing is permitted here because f and
g are declared in Sharing as public. As described in Section 7.2, capabilities
for operations—even those operations declared within a process or declared as
private—can be passed around a program and serviced anywhere. (Servicing
an operation declared in a different virtual machine is also permitted, but doing
so incurs additional overhead; see Chapter 10.) Later chapters will illustrate
this powerful mechanism. One example uses such servicing to provide a bag
of tasks paradigm in a distributed fashion (Section 17.3).

7.8 Parameter Passing Details
Parameter passing in JR operation invocations on the same virtual machine

follow the same rules as parameter passing in Java method invocations. That is,
parameters are passed “by value”. Even object references are passed by value.
Consider, for example, the following program.

84 Asynchronous Message Passing

Its output is 65 and 87, twice. The first invocation contains (the value of) a
reference to an object, the array that b was assigned. However, the contents
of that object are changed before the first invocation is serviced. The above
program can be modified to output the two different values for b by adding the
following statement after the first send statement.

Doing so makes b reference a different array.
Parameter passing in JR operation invocations on the different virtual ma-

chines follows slightly different rules. See Section 10.7 for details.

Exercises
7.1

7.2

(a)

(b)

Consider the code in StreamMerge (see Section 7.1). Explain the effect,
if any, on the program’s execution if process two’s last send is changed
to send stream1(EOS).

The code in StreamMerge (see Section 7.1) assumes that EOS is larger
than the other values in the stream. This exercise explores removing that
assumption.

Run the original program. To make the program concrete, have
process one send the stream 1, 3, 5, 7, 9, EOS and process two send
the stream 4, 8, EOS.

Run the program from part (a) with the following values ofEOS: 99,
-99, and 6. Compare each of the outputs from these runs with the
output from the program in part (a); explain any differences.

Exercises 85

(c)

(d)

7.3

7.4

7.6

The program in part (b) implicitly assumes that EOS appears only
at the end of the stream. Or, if EOS does appear midstream, it is
still interpreted as EOS, and thus terminates the stream; subsequent
numbers are just ignored. Confirm this behavior by running the
program with EOS set to 5.

Rewrite the code in StreamMerge soEOS can be an arbitrary integer
value that is not necessarily larger than the other values in the stream.
(Assume that EOS appears only as stated in part (c).) This program’s
behavior should be identical to the original program’s behavior ex-
cept for the value of EOS it outputs. Run the modified program for
the values of EOS given in part (b).

7.5

(a)

(b)

(c)

Rewrite the code in StreamMerge (see Section 7.1) so it uses a family
of two processes to represent the processes that produce the streams and
an array of operations to represent the streams.

To make the program concrete, have the first process send the stream 1,
3, 5, 7, 9, EOS and the second process send the stream 4, 6, 8, 10, 12, 14,
16, EOS.

Generalize the previous exercise to have N processes producing streams.

Consider the code in class Cap3 (see Section 7.2).

Rewrite the code so that the two processes are in different classes
and f is still declared local to p.

Rewrite the code so that the two processes are in different classes
and f is now declared private to the class containing p.

Would either of the above two programs or the original program
work if getcap were declared private? Explain.

Show the output from the following program on input of 1 and on input
of 87.

86 Asynchronous Message Passing

7.7

7.8

7.9

(a)

(b)

Rewrite the code in program Model4 (see Section 7.3) so it uses arrays
of result operations as in program Model2.

The ResourceAllocatorMultiple program in Section 7.4 allows
clients to request or release resources only one unit at a time. Gen-
eralize the program to allow clients to request or release resources mul-
tiple units at a time. For simplicity, assume that clients release only
those units it currently possesses, as was assumed implicitly in the
ResourceAllocatorMultiple program. However, clients need not
release units in the same groups as they acquired them.

The ResourceAllocatorMultiple program in Section 7.4 could use
a more object-oriented style in how it uses messages.

Change action’s second parameter from an integer to an instance
of a new MsgKind class, which encapsulates the different kinds of
messages. (That is, simulate an enumeration type using MsgKind.)
Define the new class and change ResourceAllocatorMultiple
as needed.

Replace action’s second and third parameters with an instance
of a new, abstract Msg class. Define a subclass, derived from
Msg, for each kind of message. (The subclass corresponding
to the release message will contain the unit identifier.) Change
ResourceAllocatorMultiple as needed.

7.10 Atomic Broadcast Problem (based roughly on Exercise 6.16 in Refer-
ence [7]). A single slot integer buffer is shared by one producer process
and N consumer processes. The producer repeatedly deposits messages
into the buffer; consumers repeatedly fetch messages from the buffer.

(a) A given message is fetched by any N processes, not necessarily all
N processes. That is, a given message might be fetched multiple
times by some processes and not at all by other processes.

Exercises 87

(b)

(c)

Does your solution also work if there are multiple producers? Ex-
plain. (Address multiple producers only in this particular part; do
not use multiple producers in your solutions to any other parts of
this question.)

Modify your solution to the previous part so that each consumer
process fetches exactly once each message the producer deposits.

Modify your solution to the previous part so that only the consumer
processes waiting (if any) when the producer deposits a message get
to fetch that message.

Your solution must be structurally similar to the
ResourceAllocatorMultiple code in Section 7.4. This prob-
lem requires three kinds of processes that interact with only the
indicated interfaces:

producer — similar to a client. It interfaces to the coordinator by

consumer, with identity i between 0 and N – 1 — similar to a client.
It interfaces to the coordinator by

coordinator — similar to the server; it holds the buffer and synchro-
nizes access to it.

Use only send and receive (no inni, call, reply, forward, etc.).

7.11 Savings Account Problem. A savings account is shared by several cus-
tomers of a bank. Each customer may deposit or withdraw funds from
the account. Assume that the amount of each deposit or withdrawal is
positive. The current balance in the account is the sum of all deposits to
date minus the sum of all withdrawals to date. The balance must never
become negative, which implies that some withdrawals might need to be
delayed.

Your solution must be structurally similar to the
ResourceAllocatorMultiple code in Section 7.4. Each cus-
tomer is a client and the bank is the server. On a deposit, your solution
must service any waiting withdrawal request(s) that can be serviced.
(I.e., it is non-FCFS in part.)

88 Asynchronous Message Passing

7.12 Copy the outline for the adaptive quadrature program (see Section 7.7)
into a file.

(a)

(b)

(c)

Modify the program so that is Epsilon is 0.0001,
and the interval is [1,10]. Execute the program and compare the
computed area with the exact mathematical result.

Modify the original program so that the number of workers, N, is
a command-line argument. Execute your program using different
numbers of workers. How does the performance differ?

Repeat part (b) but for the program from part (a).

7.13 Copy the outline for the adaptive quadrature program (see Section 7.7)
into a file.

(a)

(b)

(c)

(d)

Modify the program so that is Epsilon is 0.0001,
and the interval is [0,10]. Execute the program and compare the
computed area with the exact mathematical result.

Modify the above program so that f is declared as a public static
method in a different class.

Modify the program again so that f is declared as a public non-static
method in a different class, named fun.

Modify the part (c) program so that the main invokes f(0.5) T times
(instead of computing the area). Do not have the program perform
any I/O. Time the results ten times using the UNIX csh command
“repeat 10 time jrrun AQ” (or the equivalent in another shell).1 (Also
see Exercise 10.10.)
Pick T so that the program runs at least 10 seconds but less than 30
seconds. The specific value for T will depend on the speed of the
processor on which the program is run. Start with 1,000 invocations
and increase that until a suitable value for T is determined.
Report the value of T and the ten execution times.

7.14 Recall how the adaptive quadrature program (see Section 7.7) depends
on JR’s automatic program termination detection for its termination and
to output its result. Suppose JR did not provide automatic program
termination detection. Modify the program so it terminates (and still
outputs its result) using

1Windows does not provide a direct equivalent of this command. It can be roughly simulated by typing ten
times the sequence “time”, “jrrun AQ”, “time” and calculating the differences in time. Alternatively, one
can write a Perl script to measure elapsed time, as suggested in http://www.perldoc.com/perl5.8.0/
lib/Time/HiRes.html.

Exercises 89

(a)

(b)

The technique suggested earlier in which the administrator keeps
track of which parts still need to be computed.

A different technique where the administrator counts how many out-
standing tasks need to be completed. Your solution might need to
use additional messages between the administrator and the workers.

7.15 Write a program that implements the quicksort method of sorting using
a shared bag of tasks. The tasks are slices of the data that need to be
sorted. The administrator should put the initial data in the bag. A worker
should remove a task, partition it into smaller tasks and put them back
in the bag. If a task is small enough, say eight data elements, a worker
should instead sort the data and send it to the administrator.

Execute your program using different input data and different numbers
of workers. How does the performance differ?

7.16 Develop a distributed program to implement a compare/exchange sorting
algorithm. Use W worker processes laid out in a line; each worker should
communicate only with its one or two neighbors. If there are N items
to sort, initially each worker should be given N/W items. Each worker
should sort its items, exchange high and low elements with its neighbors,
and repeat until all N items are sorted.

(a)

(b)

Execute your program using different input data and different num-
bers of workers. How does the performance differ?

Compare the performance of this program to your program for Ex-
ercise 7.15.

7.17 Develop a program to generate prime numbers using a shared bag of
tasks. The tasks are odd numbers that should be checked for primality.
The workers check different candidates. Each worker should have a
local table of primes that it uses to check candidates. When a worker
finds a new prime, it should send it to all the other workers.

Execute your program for different ranges of primes and different num-
bers of workers. How does the performance differ?

This page intentionally left blank

Chapter 8

REMOTE PROCEDURE CALL

Remote procedure call (RPC) is another mechanism that is used in many ap-
plications. Two processes are involved: the process doing the call (the invoker
or client) and the process created to service the call (the server). These pro-
cesses are typically in different objects and might even be on different virtual
or physical machines. The invoking process waits for results to be returned
from the call. Thus remote procedure call is synchronous from the client’s
perspective.

Remote procedure call (or remote method invocation) is accomplished in JR
through yet another use of operations. To initiate a remote procedure call, the
invoking process calls an operation. The operation is one that is serviced by a
method. A call invocation of a remote method results in a process being cre-
ated to service the invocation. A remote procedure call resembles a sequential
procedure call both syntactically and semantically. The fact that the method
that services a call might be located on a different virtual or physical machine
is transparent to the caller. (However, a remote procedure call takes longer than
a local, sequential procedure call.)

This chapter first presents the JR mechanisms for remote procedure call. We
then discuss the equivalence between remote procedure call primitives and send
and receive primitives. We also describe three statements—return, reply, and
forward—that can be used with remote procedure call to obtain additional flex-
ibility. (The use of these statements with rendezvous is discussed in Chapter 9.)

8.1 Mechanisms for Remote Procedure Call
The mechanisms for remote procedure call are op-methods (or in their un-

abbreviated form: operation declarations and methods) and call invocations.
Chapter 3 introduced these mechanisms and gave examples of how they are
used.

92 Remote Procedure Call

In all cases the semantics of a call invocation to a method is that a new process
is created to execute the method’s code for the invocation. After initiating the
call, the invoking process delays until the invoked process returns results to it.
This semantics can often be implemented as a conventional procedure call (see
below), but at least conceptually a new process is created to service each call.
Figure 2.1 summarizes these actions.

This view of call invocations is useful since the invoked method can be located
in another object, which might be located on another virtual or physical machine.
(Chapter 10 describes virtual machines and how they are created and placed
on physical machines.) This view also covers purely sequential method calls,
such as those described in Chapter 3. It is worth noting that process creation is
considerably more costly than executing a standard sequential method call. An
implementation can optimize many call invocations of methods so they use a
less expensive form of procedure call (e.g., see Reference [9]), and the current
JR implementation does so to some extent.

To illustrate remote procedure call, consider a (very) simple bank example,
with bank accounts and a single bank customer. The bank account is represented
by the following code:

It provides deposit and withdraw operations. The bank customer is repre-
sented by the following code:

8.2 Equivalence to Send/Receive Pairs 93

The bank customer instantiates two bank accounts, bl and b2, and invokes
the deposit and withdraw operations in those instances. Those invoca-
tions are call invocations to operations serviced as methods in a different
class, BankAccount. As coded above, the BankAccount objects created by
BankCustomer will be located on the same virtual machine as BankCustomer.
Hence the calls of deposit and withdraw will be local. However, the instances
of BankAccount could be placed on one or two different virtual machines (see
Chapter 10). In that case the calls would be remote. The syntax and seman-
tics of the calls are the same, but the BankAccount objects would need to be
created using the remote keyword (see Chapter 10). Besides that, only the
implementation, and consequently the performance, is different.

As mentioned earlier, each call invocation of a method results in a new pro-
cess, at least conceptually. Suppose, for example, that BankCustomer contains
several processes, each of which invokes bl’s and b2’s deposit and withdraw
operations. Each invocation of deposit and withdraw causes a new process
to be created to execute the corresponding code. That can lead to more than
one process manipulating the shared bank account variables at the same time:
Two processes, each executing on behalf of an invocation of deposit, can both
attempt to update balance at about the same time—i.e., a race condition can
result.

To avoid problems of accessing shared data, processes need to synchronize.
In the BankAccount class, a semaphore can be used to allow at most one process
at a time to execute either deposit or withdraw. In the next chapter, we will
see another way to solve this problem using a process and an input statement.

8.2 Equivalence to Send/Receive Pairs
A (remote) procedure call can be written equivalently as a send to a method

to create the process plus a receive to get back results when the process has
completed. Consider, for example, the following simple code outline:

94 Remote Procedure Call

The above code can be written equivalently as follows:

The operation p has been replaced by a new version of p and a new results
operation, r. Note that p is now declared as having no return type (i.e., void);
the return value is now passed back as the parameter of r. The call to the method
has been replaced by a send/receive pair. The send passes the parameter to p;
the receive gets the result back from p.

The above code works as long as only one process is invoking p. However,
if more than one process invokes p, each needs its own local results operation.
For this, we can use local operations and capabilities, as we did in class Model4
in Section 7.3. For example, suppose q is now a family of processes, each of
which invokes p :

8.2 Equivalence to Send/Receive Pairs 95

This code can be written equivalently as follows:

Here the operation p has been replaced by a new version; the new second
argument is a capability for an operation that is used to return the result. Each
invoking process now declares a local operation, r. Again the call to the method
has been replaced by a send/receive pair. A sending process passes the capability
for its r to p; p sends results back to that operation.

The structure of the above code is very similar to what we saw earlier in the
client-server code in class Model4 (see Section 7.3). In fact, that code can be
rewritten to use a call invocation instead of a send/receive pair (see Exercise 8.2).
Using a call invocation, though, precludes clients from performing other work
while waiting for the server to give back results.

In general, a call invocation provides a cleaner interface than does a
send/receive pair. In particular, the passing of results back to the invoker is
an implicit part of a call invocation. Using a send/receive pair, on the other
hand, requires declaring a local operation to which results get sent and passing
a capability for that operation. Using a call invocation also allows invocations
of value-returning operations within expressions. However, send/receive pairs
are useful when a client wants to do some work between initiating a request for
service and picking up results from that request.

96 Remote Procedure Call

8.3 Return, Reply, and Forward Statements
The return, reply, and forward statements provide additional flexibility in

handling remote procedure calls. They appear in the body of a method and alter
the way results are passed back to the invoking process. They can also be used,
with similar meanings, as part of the rendezvous mechanism, as discussed later
in Chapter 9. (As in Java, the return statement can appear within constructors,
but not within initializers. The reply and forward statements are not allowed
within constructors or initializers.)

Return
It has the form

The first form is used for void methods and the second for non-void methods.
We have already seen the return statement in the context of sequential meth-

ods (see Chapter 3). Its meaning there is consistent with its more general
meaning, which we give here.

Recall from Section 8.1 the view of a call invocation to a method: it causes
a new process to be created to service the invocation. A return statement, then,
terminates both the call invocation and the process that executes the return. Any
results of the invocation—i.e., the return value—are returned to the invoker.

As a simple example, consider the following code

Its execution is depicted in Figure 8.1. Process p invokes f and waits for it to
complete. A new process is created to execute the body of f. When it reaches
the return statement, it evaluates the expression in the return statement, and then
terminates. The return value, 80, is copied back and assigned to z, and process
p continues execution with its next statement.

Sometimes it is useful to allow a method to be invoked by either call or send.
For example, the method might update a display screen. In some cases invoking

8.3 Return, Reply, and Forward Statements 97

Figure 8.1. Execution of simple return program

processes will want to wait for the update to complete; in others they will not.
Such a method might execute a return statement. If the method was invoked by
send, the return statement just terminates the process that executes the return.
Since a send invocation terminates immediately after its parameters are sent to
the method, any results from the method are not actually returned.

Reply
The reply statement is used by a method to continue execution after servicing
an invocation of the method. It has the form

The first form is used for void methods and the second for non-void meth-
ods. Like a return statement, a reply statement terminates the invocation being
serviced by the enclosing method, if it was called. However, a process that ex-
ecutes a reply statement continues executing with the statement following the
reply. Such a process may continue to reference the formals until it leaves their
scope; however, no subsequent change to formal parameters or to the return
value is reflected back to the caller. A reply to a send invocation has no effect; a
subsequent reply to an invocation for which a reply has already been executed
also has no effect.

As a simple example of reply, consider the following code:

98 Remote Procedure Call

Its execution is depicted in Figure 8.2. The reply statement in f terminates

Figure 8.2. Execution of simple reply program

the invocation from p. At that point, the return value, 80, is copied back and
assigned to z, and process p continues execution with its next statement. The
process executing f continues execution, too, with the statements following
reply. It modifies the value of x, evaluates the expression in the return state-
ment, and then terminates. None of those actions has an effect on the caller
(but see Exercise 8.6); in particular, it does not change z.

The following, more realistic example of a reply also demonstrates one of
its common uses—programming what is called conversational continuity [7].
A client process creates a server process and wishes to carry out a private
conversation with it, i.e., send further requests for work to it. This interaction
can be accomplished by having the server process execute reply, passing back
a capability (or capabilities) for local operations. The following code outline
illustrates this technique:

8.3 Return, Reply, and Forward Statements 99

The declaration of operation server indicates that the server takes an integer
parameter and returns a value of type cap void (String), i.e., a capability
for an operation that takes a string parameter and has no return value. Here a
client process creates a server process, passing it n, the number of lines that
the client will later send it. The server first assigns a capability for its local
operation, line, and returns that to its client by executing a reply. The reply
allows both the client and the server to continue execution. The client sends
n messages to its server; the server receives n messages from its client. The
use of a local operation here ensures that only a server’s client can send it
messages. Section 18.2 presents another example of the use of reply to effect
a conversation between components of a distributed file system.

A communication structure similar to the one used above is employed in
the following example to implement a parallel sorting algorithm. Sorting is
performed by an array of worker processes connected in a pipeline fashion.
Each worker keeps the smallest value it sees, and passes all others on to the
next worker. For n input values, a total of n workers are eventually executing.
The first worker sees all n input values; the last sees just one value. After seeing
all the values it will receive, each worker passes back the smallest value it saw.

100 Remote Procedure Call

8.3 Return, Reply, and Forward Statements 101

Each worker, other than the last one, creates the next worker in the pipeline.
A worker uses a reply statement to pass a capability for its mypipe operation
back to its invoker. The first worker passes the capability back to the process
executing sort; each other worker passes it back to the previous worker.

Above, the worker processes are created dynamically, so exactly as many
as are required (n) are created. This necessitates the use of local operations
(mypipe) and capabilities for these operations. Exercise 8.8 explores a more
static version of this problem.

Forward
The forward statement defers replying to a called invocation and instead passes
on this responsibility. The fact that an invocation was forwarded is transparent
to the original invoker.

The forward statement names an operation and contains a list of expressions
separated by commas:

Execution of forward takes the operation invocation currently being serviced,
evaluates a possibly new set of arguments, and invokes the named operation.
An invocation can be forwarded to any operation having the same return type,
including the operation being serviced! (See Exercise 8.13.) If the invocation
being serviced was called, the caller remains blocked until the new invocation
has been serviced (to completion).

102 Remote Procedure Call

After executing forward, the forwarding process continues with the next
statement just as if it had replied to the forwarded invocation. During the
continued servicing of the invocation after the forward statement, a subsequent
forward or reply behave differently from usual. A subsequent forward is treated
as if it were a send invocation. A subsequent reply to a forwarded invocation
has no effect. Similarly, a subsequent return from within the block handling
the invocation has no effect on the caller if the invocation was called, although
it has the usual effect of causing the executing process to exit that block.

While within the block handling a forwarded invocation, the forwarding
process may still reference formal parameters. However, no subsequent changes
to parameters or to the return value will be seen by any other process.

As a simple (contrived) example, consider the following program fragment:

Its execution is depicted in Figure 8.3. First, process p invokes f. The process
executing f doubles its argument x, forwards the invocation to g, and then
continues executing; the process may change x and execute a return statement,
but this has no effect on the result returned to process p. Forwarding to g causes
a new process to be created; it adds 10 to its argument and returns the value to
p, which is waiting for its invocation of f to return. The overall effect, then, is
that variable a is assigned 12.

A more realistic example of the use of forward is the following. Client
processes make requests for service to a central allocator process. The allocator
assigns a server process to the request by forwarding the invocation to it. To
be more concrete, the allocator might represent a file server to which clients
pass the names of files. The allocator determines on which server the requested
file is located and forwards the client’s request to the server, which typically
would be located on a different machine. Section 18.2 explores this example
and its use of forward in detail. Because only the return types of the original

Exercises 103

Figure 8.3. Execution of simple forward program

operation and of the operation to which the invocation is being forwarded must
be identical, the allocator can forward a different set of parameters to the server.
It may add parameters — e.g., representing the results of its computation on
the invocation — or omit parameters — e.g., dropping those needed only by
the allocator.

Exercises
Consider the bank example in Section 8.1. Give a detailed explanation
(in the style of Section 4.1) of how two processes, each executing on
behalf of an invocation of deposit, can cause a race condition on the
account’s balance.

Show how to rewrite the client-server model in class Model4 (see the
end of Section 7.3) using a call statement instead of send and receive
statements. Assume clients do no work between the send and receive.

Suppose method p is declared as

Show how to rewrite p and calls to it using send/receive pairs.

Suppose method p is declared as

8.1

8.2

8.3

8.4

104 Remote Procedure Call

Show how to rewrite p and calls to it using send/receive pairs. Discuss
the need and desire for a reply statement in JR.

8.5 Suppose method p is declared and invoked as

Show how to rewrite p and calls to it using send/receive pairs.

8.6 In the Rep program (see Section 8.3), the actions of the process executing
f after it replies do not affect the caller. However, the actions might affect
the caller if the statements following the reply have side effects that are
visible globally. Modify the Rep program to demonstrate that.

8.7 Recode the Conversation class (see Section 8.3) so that clients are in
a different class than servers.

8.8 Show how to code the PipelineSort program (see Section 8.3) using
an array of operations instead of local operations. Assume exactly N
values are to be sorted, where N is a declared constant rather than an
input value.

8.9 Recode the PipelineSort program (see Section 8.3) so that workers
are not passed the number of numbers to expect. Instead they are passed
a sentinel (e.g., 0) after all legitimate numbers.

Do not pass anything as a parameter to the worker. Pass the mypipe
operation only the numbers in the stream followed by the sentinel. Do
not pass any additional messages. Use no global variables.

Exercises 105

8.10 Repeat the previous exercise, but assume each worker is sent a special
done message (represented by a new operation declared local to the
worker) after all legitimate numbers.

The solution requires an input statement, which was introduced in Chap-
ter 1 and is discussed in detail in Chapter 9. (Hint: the worker needs to
return two values; see the Sieve program in Section 9.10.)

8.11 Consider the PipelineSort program (see Section 8.3). In gathering
back the results, the sort method uses the statements

Can those be combined into a single statement? Explain your answer.

8.12 Consider the PipelineSort program (see Section 8.3). Each worker
passes back the smallest number it has seen and its worker id, so sort
can place the number in the correct position of the array. Show how to
eliminate passing back the worker id. In particular, each worker now
passes back only its value of smallest. (Hint: Have each worker,
except the last, pass back its value of smallest just before it passes the
last number to the next worker.)

8.13 Write a factorial procedure that is (technically) not iterative or recursive.
Use a forward statement to achieve the effect of a loop or a recursive
procedure call. Do not use a loop or a recursive call.

8.14 A monitor is a modular synchronization mechanism (see Reference [25],
Reference [7], and Chapter 21). It exports a collection of procedures that
are called by processes that want to communication and synchronize.
The procedures execute with mutual exclusion and use what are called
condition variables for condition synchronization.

Show how to simulate a monitor using RPC and semaphores. Illustrate
your simulation by converting one of the monitors in Reference [25],
Reference [7], or Chapter 21 into a JR class.

This page intentionally left blank

Chapter 9

RENDEZVOUS

A rendezvous, like a remote procedure call, involves two processes: an
invoking process and a process that handles the invocation. However, the invo-
cation is handled by an existing process; a new process is not created as a result
of the invocation. As with remote procedure call, rendezvous is synchronous
from the invoking process’s perspective, and the two processes can be located
on different virtual or physical machines. Figure 2.1 summarizes these actions.

Rendezvous, like JR’s other synchronization mechanisms, is accomplished
through the use of operations. The invoking process uses a call invocation of
an operation to initiate a rendezvous. The operation is one that is serviced by
an existing process executing what is called an input statement.1 JR’s input
statement allows a process to wait for one of several operations to be invoked.
It also allows a process to base its decision as to which invocation to service on
the values of the invocation parameters.

This chapter first discusses the general form of the input statement and gives
a few simple examples. We then show how the receive statement is an abbrevi-
ation for a common form of input statement. In Chapter 7 the receive statement
was used to service send invocations; receive can also be used to service call
invocations, which results in synchronous message passing. The remainder
of the chapter describes other aspects of the input statement—synchronization
expressions, scheduling expressions, conditional input, and servicing arrays of
operations—and its use with other statements such as break and reply. (Al-
though we focus on rendezvous, we also show how the input statement can be
used to handle send invocations.) These various aspects give the input statement
much flexibility in handling invocations. However, there are some applications

1 This kind of rendezvous is sometimes called an extended rendezvous to contrast it with the simple rendezvous
of synchronous message passing, as in Communicating Sequential Processes (CSP) [26].

108 Rendezvous

for which it does not provide sufficient flexibility. Chapter 14 discusses these
applications and additional, more flexible invocation selection mechanisms.

9.1 The Input Statement
The input statement is JR’s most complicated statement in that it has many

optional parts that can affect its execution. On the other hand, it is also JR’s
most powerful statement, as we shall see. In this section we describe the input
statement’s general form and give a few simple examples. Subsequent sections
explore the parts in detail and give numerous additional examples.

9.1.1 General Form and Semantics
An input statement2 contains one or more operation commands separated by

brackets that form boxes:

Each operation command specifies an operation to service, an optional syn-
chronization clause, an optional scheduling clause, and a block of code. An
operation command has the general form

The op_expr is any expression that evaluates to an operation (e.g., name or
capability), just as it was for the receive statement (Section 7.1). The formal list
contains types and names for the parameters, just as in Java’s method headers.
The op_expr may also contain a throws clause, just as in Java’s method headers;
we discuss exception handling for operations in Chapter 12. The keyword
st (such-that) introduces the synchronization expression. It specifies which
invocations of the operation are acceptable. The keyword by introduces the
scheduling expression. It dictates the order in which invocations are serviced.

In general, an input statement can service any operation declared in a scope
that includes the statement. The same operation can even appear in more than
one operation command (see Exercises 9.8, 9.9, and 9.10). An input statement
can also service an operation that is not in scope by specifying a capability for
the operation, similar to what was shown for receive statements in Sections 7.2
and 7.7. Thus, the servicing of a given operation can be shared by more than
one process, if desired.

Although not shown above, the operation in an operation command can be
an element of an array of operations, in which case it must be subscripted to
indicate the particular operation to be serviced. Furthermore, a quantifier can

2 The keyword inni combines the keywords delimiting the start of and end of SR’s input statement: in and
ni. An early version of JR used in, but that turned out to conflict with the use of that identifier by some
Java libraries.

9.1 The Input Statement 109

be used to specify that any one of a group of elements of an operation array is to
be serviced. Arrays of operations and quantifiers are discussed in Section 9.8.

A process executing an input statement is in general delayed until some
invocation is selectable. An invocation is selectable if the boolean-valued syn-
chronization expression for the corresponding operation is true (or is omitted).
In general, the oldest selectable invocation is serviced. However, if the corre-
sponding operation command contains a scheduling expression, the invocation
that is serviced is the oldest one that is selectable and that also minimizes
the scheduling expression. Both synchronization and scheduling expressions
can reference invocation parameters, thereby allowing selection to be based on
their values. If no invocations are pending for an input statement, the process
executing that statement delays until a selectable invocation is received.

An invocation is serviced by executing the corresponding block. The input
statement terminates when that block terminates. If the invocation was called,
the corresponding call statement also terminates at that time.

The operation commands in an input statement can be followed by an else
command, which has the form

This block of code is executed if no invocation is selectable. Thus a process will
never delay when it executes an input statement containing an else command.

For readers familiar with Ada, JR’s input statement combines and general-
izes aspects of Ada’s accept and select statements. In particular, an input
statement is like a select statement in which each arm is an accept statement.
Also, JR’s else command is similar to Ada’s otherwise clause in a select
statement. The notable differences between JR’s and Ada’s rendezvous mech-
anisms are: JR allows synchronization expressions to reference parameters of
operation invocations, whereas Ada does not; and JR includes a scheduling
expression, which Ada does not. These make the input statement much more
expressive and powerful, but they do add some implementation overhead when
used (see Appendix D).

9.1.2 Simple Input Statements
As a first example of an input statement, consider the code outline below.

The two processes, p and q, interact via a rendezvous through operation f.
Process p calls f(y) and then waits until process q receives y and increments
its local variable z; that is, p delays until q reaches the end of the command
block associated with f. If process q arrives at its input statement and finds no
pending invocations of f, it delays until p invokes f.

110 Rendezvous

The following code outline presents a slightly more complicated example of
an input statement:

Here three processes interact via two rendezvous: p1 and q interact through
operation f, and p2 and q interact through operation g, which returns a value.
The input statement allows process q to service either an invocation of f or an
invocation of g. When q reaches its input statement, it finds one of three states:

9.1 The Input Statement 111

An invocation of only one of f or g is pending—q will service the operation
that has pending invocations.

Invocations of both f and g are pending—q will service the invocation that
arrived first.

No invocations are pending—q delays until either f or g is invoked.

After invoking f, process p1 delays until its invocation is serviced by process
q, i.e., until q reaches the end of the block in the corresponding operation
command. Similarly, after invoking g, process p2 delays until its invocation
is serviced by process q. As programmed above, only one rendezvous will
actually occur; if the input statement were embedded in a loop and executed
twice, both would occur but in an unpredictable order.

The next example shows how input statements can be nested, even when
they service the same operation. It also demonstrates that the formal identifiers
used in input statements for a particular operation can be named differently in
different input statements for that operation, and they must be in this particular
case. Consider the following code outline:

112 Rendezvous

Processes p1 and p2 both invoke swap to exchange values. Process q uses a
nested input statement to service one invocation of swap within another. It
services one of the calls of swap with the outer input statement and another
with the nested input statement. In the innermost block, q has access to the
parameters of both invocations of swap because they have been given different
local names; as in Java, local names in nested blocks must be unique.

9.2 Receive Statement Revisited
The receive statement, introduced in Chapter 7, is an abbreviation for a simple

form of input statement. For example, if operation f is declared with two int
parameters, then

is equivalent to the following input statement:3

In the input statement, each variable that appears in the receive statement is
assigned the value of the corresponding parameter. Variables are assigned to
in left-to-right order. If the same variable appears more than once (which is
probably bad programming practice), only the last assignment is visible.

The receive statement was used in Chapter 7 to service send invocations.
It can also service call invocations. The effect is what is called synchronous
message passing: The calling process delays until a receiving process accepts
its message. For example, suppose foo is an operation used by two processes
as follows:

3The two variables must also have been initialized before the input statement.

9.2 Receive Statement Revisited 113

Assume foo is used only by these two processes and that there are no pending
invocations. Then the first process to arrive at its communication statement
delays until the other arrives; the value of v is then assigned to variable x,
and both processes continue execution. When call and receive are used as
above, they are like the output and input commands, respectively, in CSP [26]
and occam [14, 46].

The input statement has been used thus far in this chapter to service call invo-
cations. It can also service send invocations (even if the block in the operation
command is not empty). As an example of the use of send invocations with the
receive form of input statements, consider the following code for a process that
allocates a single unit of some resource:

It repeatedly services two operations, request and release, in that order.
To gain access to the resource, a process calls request. To release its access
to the resource, a process could call release. However, there is no need
for a releasing process to wait for the allocator to service its release (unlike
the request). Therefore, sending to release is better. This example was
seen as ResourceAllocatorSingle in Section 7.4, where only send and
receive were used. The use of call here obviates the need for an explicit
reply operation.

The receive statement can be used for simple forms of process interaction,
but the input statement must be used for more complicated forms. A receive
statement does not provide a process the means to wait for one of several
operations to be invoked, in contrast to the input statement in the More class in
Section 9.1. It also does not allow synchronization and scheduling expressions,
which are discussed in subsequent subsections. Finally, receive supports only
one-way information flow from the invoker to the receiving process; it cannot
be used to return a value from a non-void operation. 4

Consider, for example, the following code fragment that implements a single
slot buffer (mailbox):

4The receive statement can still service such an operation, but the value of the result returned is undefined.
For a send invocation, the undefined value does not cause problems because the return value is not accessible
to the invoker. For a call invocation, though, the undefined value can cause problems because the return
value is accessible. The current JR implementation issues a translation-time warning for a receive statement
for a non-void operation.

114 Rendezvous

The manager process repeatedly services a deposit operation and then a
fetch operation. Thus synchronization to the single slot buffer is provided
by “flow of control.” For example, if an item has just been deposited into the
buffer, the manager can service only a fetch, not another deposit. The first
input statement above can be written more concisely with a receive statement:

The second input statement cannot be written in this way, however, since fetch
has a return value.

Using a call invocation serviced by an input statement can simplify some
send/receive interactions. For example, some of the client-server models in
Section 7.3 can be simplified. In particular, both the code that used an array of
operations (class Model2) and the code that used capabilities (class Model3)
can be rewritten as follows:

The send/receive pair in the client has been replaced by a call invocation of
request. The request operation now returns a value. The server uses an

9.3 Synchronization Expressions 115

input statement to service each request. When the server reaches the end of the
input statement, it passes results back. This structure, though, precludes clients
from performing other work while waiting for the server to give back results.

The request operation above is serviced by a single server process. Hence
invocations of request are serviced one at a time, i.e., with mutual exclusion.
If request had been implemented by a method instead of an input statement,
instances of the method could execute concurrently but then the programmer
would have to program mutual exclusion, using semaphores, for example.

Section 7.7 discussed how shared operations can be used with send and
receive statements. The operations that are invoked as part of rendezvous—or
more generally, serviced by input statements—follow the same rules.

9.3 Synchronization Expressions
A boolean-valued synchronization expression can be used to control which

invocation an input statement services next. Consider the following input state-
ments:

The first input statement services an invocation of a only when the value of
variable c is positive. The second input statement services only invocations of
a whose parameter x is equal to 3. The third input statement services the same
invocations as the second, as well as invocations ofb whose parameters satisfy
the condition y == f(z), where f represents a user-defined or predefined op-
eration. The exact order in which such invocations are serviced is defined in
Section 9.5.

It is important to emphasize that synchronization expressions can reference
invocation parameters. That ability leads to straightforward solutions to many
synchronization problems, as we shall see later in this chapter and in Part I.
However, it is more expensive to implement such synchronization expressions
since it requires searching the queue of pending invocations (see Appendix D).
This tradeoff between expressive power and implementation cost is a funda-
mental aspect of language design.

As a more realistic application of a synchronization expression, consider a
process that manages a multiple unit resource. This example was first seen in
Section 7.4. Each client process requests or releases a single unit at a time. The
single-unit allocator code given in Section 9.2 would not work here because the
manager now needs to be able to service either a request operation or a release

116 Rendezvous

operation. A two-arm input statement with a synchronization expression can
be used for that purpose:

The synchronization expression with request‚ avail>0‚ ensures that a re-
source is only allocated to a requesting process if at least one unit of the re-
source is available. If a process requests a resource and none is available‚ the
invocation is not serviced—and the caller delays—until a resource becomes
available. The ResourceAllocatorMultiple program in Section 7.4 solved
this problem using only send and receive. The use of the input statement and
call here significantly simplifies the solution.

The next example presents a solution to the classic bounded buffer problem;
it generalizes the single slot buffer example in Section 9.2 The BoundedBuffer
program provides two operations: deposit and fetch. A producer process
calls deposit to insert an item into the buffer; a consumer process calls fetch
to retrieve an item from the buffer. An input statement synchronizes how
invocations of deposit and fetch are serviced to ensure that messages are
fetched in the order in which they were deposited‚ are not fetched until deposited‚
and are not overwritten. The code is as follows:

The manager process loops around a single input statement‚ which services
deposit and fetch. The synchronization expressions in the input statement

9.3 Synchronization Expressions 117

ensure that the buffer does not overflow or underflow. For example‚ a producer
is delayed if the buffer is full and a consumer is delayed if the buffer is empty.

A bounded buffer provides functionality somewhat similar to a stack. Both
provide similar operations: deposit and fetch versus push and pop. They differ‚
though‚ in that the stack operations enforce a last-in‚ first-out discipline whereas
the bounded buffer operations enforce a first-in‚ first-out discipline. The imple-
mentations of these operations also differ in how overflow and underflow are
handled. For the stack those invocations are handled as errors; for the bounded
buffer those invocations are not serviced until they can be handled without error.
Thus a bounded buffer is a synchronized queue. The same technique used for
programming the bounded buffer can be used to program a synchronized stack
(see Exercise 9.12).

The readers/writers problem is another classic synchronization problem [16].
Two classes of processes want to access a database (or file or set of shared
variables). Reader processes only examine the database; hence they can execute
concurrently with each other. Writer processes update the database; to keep
the database consistent‚ they must have exclusive access to it. Suppose that
reader processes call operation start_read before reading the database and
call (or send to) operation end_read when done. Similarly‚ writer processes
call start_write before and call (or send to) end_write after writing to
the database. The following process implements the specified reader/writer
exclusion:

Variables nr and nw count the number of active readers and writers‚ respectively.
Reader processes can start reading when there are no active writers; a writer
process can start writing when there are no active readers or writers. The process
above implements what is called a readers’ preference solution. Namely‚ if
there is a steady stream of readers‚ the value of nr will always be positive‚ and
hence a writer may never get to access the database. For example‚ suppose start
requests arrive in the order

118 Rendezvous

R1 R2 W1 R3

Suppose that R1 does not finish reading until after R3’s request arrives. Then‚
R3 would be serviced and W1 would be made to wait until there are no active
readers‚ which as noted above will not occur if there is a steady stream of readers.
The solution can be modified to give writers preference or to guarantee eventual
access to all processes (see Section 9.10 and Exercise 9.13).

One predefined method dealing with operations is particularly useful in syn-
chronization expressions. The expression f.length() returns the number of
pending invocations of operation f. This method can‚ for example‚ be used to
give preference to servicing invocations of one operation over another:

The synchronization expression on the second arm of the input statement says
that an invocation of g should be serviced only if no invocations of f are pending.
Thus the above input statement gives preferential service to invocations of f
over those of g.

9.4 Scheduling Expressions
A scheduling expression can be used to control which invocation—of those

whose synchronization expression is true—an input statement services next.
Preference is given to the selectable invocation that minimizes the value of the
scheduling expression; if there is more than one such invocation‚ the oldest is
selected. The type of a scheduling expression may be any ordered type—such
as int—or double. Scheduling expressions‚ like synchronization expressions‚
make it easy to solve many problems‚ but they do incur an implementation cost
since all pending invocations have to be examined.

Consider the following three input statements:

The first input statement services invocations of a‚ giving preference to those
with smaller values of x. The second services only invocations of a whose
parameter x is even‚ giving preference to those with larger values of x. The
third input statement services the same invocations of a‚ in the same order‚ as the
second input statement as well as services invocations of b‚ giving preference
to those with smaller values of y+z. The exact order in which such invocations
are serviced is defined in Section 9.5.

9.5 More Precise Semantics 119

A more realistic example of the use of a scheduling expression is a variant of
the single unit allocator given in Section 9.2. Suppose each requesting process
includes in its request the length of time it expects to use the resource; the
allocator gives preference to the request with the smallest time. The following
implements this shortest-job-next (SJN) allocation scheme:

The scheduling expression of the input statement causes invocations ofrequest
to be serviced in increasing order of the value of usage_time.

9.5 More Precise Semantics
As seen already in this chapter‚ the input statement generally services in-

vocations in FCFS order based on their time of arrival. This order‚ however‚
can be altered if the input statement contains a synchronization or scheduling
expression. Exactly which invocation an input statement services depends on
what invocations are pending and when they arrived.

The general rule is as follows. The operation with the oldest pending in-
vocation (regardless of whether the synchronization expression is true for that
invocation) is checked first to determine if any of its invocations satisfy the syn-
chronization expression. If so then that invocation is serviced or‚ if a scheduling
expression is present‚ the oldest invocation that satisfies the synchronization ex-
pression and that minimizes the scheduling expression is serviced. Otherwise
the operation (of those remaining) with the oldest pending invocation is checked
next. The above process repeats until a suitable invocation is serviced or none
is found.

Consider again the third input statement at the beginning of Section 9.3.
Suppose that f(z) returns 2*z and that the following invocations are pending
(in order of arrival):

b(8‚4) b(0‚9) a(3) a(4) b(4‚2)

Then the input statement will service the invocation b(8‚4). If the same input
statement is executed a second time‚ it will service the invocation b(4‚2). In
this second execution the invocation b(0‚9) is the oldest‚ so the input statement
first tries to find any b invocations that satisfy the synchronization expression‚
even though the invocation b(0‚9) itself does not.

Now consider again the third input statement at the beginning of Section 9.4
with the above group of pending invocations. The first execution of the input
statement will service the invocation b(4‚2). Operation b is chosen because it
has the oldest invocation; invocation b(4‚2) is chosen because it minimizes the

120 Rendezvous

scheduling expression. The second execution will service invocation b(0‚9)
and the third will service invocation b(8‚4). Then‚ the fourth will service
invocation a(4). (The above assumes that no new invocations arrive because
they could be selected.)

Synchronization and scheduling expressions should not have side effects.
Although such is allowed‚ whether such side effects will occur and how often
is not defined. For example‚ the output from the following program fragment
under the current JR implementation is “2000 2001”.

Note how‚ perhaps unexpectedly‚ the second value output is positive and is the
value of x in the second invocation‚ not the value of x in the first invocation‚
which is the invocation actually selected for servicing. If predictable side-
effects are desired‚ then the behavior of st and by can be directly emulated
using the features described in Chapter 14.

9.6 Break And Continue Statements
As in Java‚ the break statement forces early termination of a loop. The

continue statement forces return to the loop control in such a statement. Break
and continue statements may also appear within an input statement that is nested
within a loop. In these cases execution of a break or continue statement also
forces the input statement to terminate.

For example‚ consider the following code outline‚ which illustrates a common
server structure:

A client process repeatedly makes requests for service by invoking work‚ usually
by a call invocation. When a client is through using the server‚ it so informs the
server by invoking done. The server process repeatedly services invocations
of work. When it services an invocation of done‚ it exits the loop; the break
statement also terminates the invocation of done. We will see this structure
again in later examples.

If a break or continue statement is executed within the arm of an input state-
ment whose operation returns a value‚ a return value must be passed back to

9.7 Conditional Input 121

the invoker. A reply statement can be used for that purpose; see Section 9.10
for an example.

9.7 Conditional Input
An input statement’s last operation command can be an else command. As

described earlier‚ the block of code associated with the else command is exe-
cuted if none of the input statement’s operation guards is true; when that block
terminates‚ so does the input statement. The use of an else command supports
conditional input since the executing process has control over whether it waits
for an operation to be invoked.

For example‚ consider the following program fragment:

If an invocation of a is present‚ the executing process executes the first assign-
ment; otherwise it executes the second assignment. If only one process services
invocations of a‚ the above input statement is equivalent to5

However‚ if more than one process receives invocations of a‚ then the above
two input statements are not equivalent because a process executing the sec-
ond statement could evaluate a.length()‚ find it positive‚ and yet block at
the receive statement. (Other processes could grab all pending invocations
after a. length() is evaluated.) In contrast‚ an input statement with an else
command never causes a process to block.

Conditional input is useful in a number of situations. One is illustrated by
the following code outline:

Here a process repeatedly does some work and then checks for an invocation of
the done operation‚ indicating that it should terminate. If no such invocation is
present‚ the process just continues with the next loop iteration.

A second situation in which conditional input is useful is typified by the
following code fragment:

5It is equivalent if a is invoked by send. However‚ if a is invoked by call‚ the caller continues before 1
is actually assigned to x. This difference does not matter if x is local to the process executing the receive
statement; it might matter if x is shared.

122 Rendezvous

The overall effect of the loop is to service all pending invocations of a whose
parameter x is equal to t. On each iteration of the loop‚ the input statement
services one such invocation‚ if there is one‚ or exits the loop.

9.8 Arrays of Operations
Input statements (or semaphore P statements or receive statements) can also

be used to service arrays of operations. A particular element of an array of
operations is serviced by specifying its index. For example‚ suppose N is a
constant and consider the following program outline:

Each process services one element of the array f.
An input statement can service any one of a group of elements of an operation

array by specifying a quantifier. For example‚ consider the following input
statement:

Note how the scope of the quantifier variable extends to the end of the command
block. Thus in the above‚ i can be used within the command block. Its value
indicates which element of signal is being serviced.

When a quantifier on an arm of an input statement specifies an empty range
of index values‚ then that entire arm of the input statement is ignored. The
behavior of the process executing the input statement is consistent with what
was described in Section 9.1. For example‚ suppose the empty arm is the only
arm in the input statement. Then‚ the process executing the statement will delay
forever‚ unless the input statement contains an else command.

9.9 Dynamic Operations 123

9.9 Dynamic Operations
Sections6.1‚ 7.3‚ and 9.8. showed how arrays of operations (and semaphores‚

a specific kind of operation) can be declared and initialized. Each element of an
array of operations is just a capability initialized with its own operation object‚
e.g.‚

Operations can be created anywhere in a program‚ not just as part of initialization
of an array. The following program illustrates this technique in a variant of the
client-server programs from Section 7.3.

The client invokes theget_worker operation to get a capability‚ my_worker‚
for its own worker. It then invokes its worker and prints out the result of the
worker’s computation. The get_worker operation is serviced by a manager
process. It creates a new operation and gets a capability for it‚ ret. The
manager then makes ret available to both the client and a new worker‚ which
it creates just to handle this request. Specifically‚ it returns ret to the client

124 Rendezvous

and it passes ret as a parameter to a new worker process‚ which it creates via
the send statement.

A similar structure can be used to return semaphores to processes‚ since
semaphores are just a specific kind of operation. Also‚ the manager process can
be tailored to fit different applications. For example‚ the manager might create
new processes up to a certain limit; see Exercise 9.21.

9.10 Return‚ Reply‚ and Forward Statements
Return‚ reply‚ and forward statements can be used within input statements.

The meaning of return is similar to its meaning within a method (see Sec-
tion 8.3); the only difference is what happens to the process executing return.
The meanings of reply and forward are identical to their meanings within a
method. Exercise 9.22 highlights these similarities and differences.

A return statement within an input statement transmits results to the invoker
of the operation being serviced—if it was called—and terminates the input
statement. The process executing return continues execution with the state-
ment following the input statement. (The process executing return terminates
when the return statement is not within an input statement.)

A reply statement within an operation command of an input statement trans-
mits results to the invoker‚ if the invocation was called. The replying process
continues execution with the statement following the reply. A forward statement
defers replying to a called invocation and instead passes on this responsibility to
another operation‚ which may be serviced by a method or by input statements.
The forwarding process continues execution with the statement following the
forward.

The following three examples illustrates the use of a reply statement within
an input statement.

The first example provides a fair solution to the readers/writers problem.
Section 9.3 presented a reader’s preference solution‚ which as discussed could
starve writers. The idea here is to service start invocations in first-come‚ first-
served order. For example‚ consider again the scenario from Section 9.3‚ which
involved the following sequence of start requests

R1 R2 W1 R3

Here‚ we will service the R1 and R2 requests. However‚ when W1 arrives‚ we
cannot service it until R1 and R2 have finished. When R3 arrives‚ we will not
service that because W1 has not yet been serviced. (In the earlier algorithm‚ R3
would be serviced and W1 would be made to wait until there were no readers.)
Thus‚ to ensure fairness‚ any read requests that arrive before a write request will
be serviced‚ but any read requests that arrive after a write request will not be
serviced until after the write request finishes.

Here is the code that implements this fair algorithm:

9.10 Return‚ Reply‚ and Forward Statements 125

This solution is interesting in that‚ unlike the previous solution‚ it uses no syn-
chronization expressions. Its top-level inni services a read or write request‚
which is fine because at that point of execution both nr and nw are guaranteed
to be 0. The arm for start_write simply tells the writer to proceed‚ by using
a reply statement‚ and then waits for the writer to finish‚ by using a receive
statement on end_write. The arm for start_read is more complicated be-
cause‚ unlike the arm for start_write‚ it needs to allow multiple readers.
This code enters a loop‚ which contains an inni that accepts invocations of
start_read‚ start_write‚ and end_read. It lets any new start_read in-
vocations proceed. It also handles end_read invocations. The interesting case
is when‚ during this loop‚ a start_write arrives. Such a request corresponds
to the example scenario above. So‚ the code waits for all current readers to
finish their accesses to the database and then it lets the writer start and waits for
it to finish. Thus‚ the reply statement is not executed until after the readers have
finished. This code takes advantage of the FCFS servicing of invocations. For

126 Rendezvous

example‚ in the scenario given above‚ the nested inni is guaranteed to service
W1’s invocation before R3’s invocation.

The second use of a reply statement within an input statement provides
another example of conversational continuity‚ which was introduced in the
Conversation class in Section 8.3. The problem considered here uses a sieve
of processes to find prime numbers. The solution is structurally similar to
the PipelineSort class in Section 8.3. The algorithm is a parallel imple-
mentation of what is called the sieve of Eratosthenes. Worker processes pass
numbers down a pipeline. Each worker filters out multiples of its prime number
and passes the next prime number on to the next worker‚ which it must create.
In this example‚ however‚ a given worker does not know in advance how many
numbers it will receive. Therefore‚ each worker also provides a termination
operation‚ which its invoker uses to inform it to terminate.

9.10 Return‚ Reply‚ and Forward Statements 127

Each worker provides two local operations‚ filter and done; it returns ca-
pabilities for these to its creator via the reply statement. Because each worker
needs to return two values‚ it uses Wrets to do so. A worker services invoca-
tions of filter from its creator until an invocation of done is sent‚ at which
point it exits its loop and informs its child‚ if any‚ to terminate. The use of the
termination message is another example of the structure we saw in Section 9.6.

Another use of a reply statement is to return a value before a break or con-
tinue statement executes. For example‚ suppose that the done operation in the
example in Section 9.6 returns a value. Then‚ a reply statement can be used to
do so as in the following:

128 Rendezvous

Exercises
9.1 Semaphores in JR are provided using abbreviations for operations and for

send and receive statements. In turn‚ receive statements are abbreviations
for input statements. Rewrite each program below to use operations and
send and input statements.

(a)

(b)

(c)

(d)

the critical section program CS given in Section 6.1.

the barrier synchronization program Barrier given in Section 6.3.

the program developed as a solution to Exercise 6.4(a).

the program developed as a solution to Exercise 6.4(b).

9.2 Consider the nested input statements used for swapping in Section 9.1.
Show how processes p1 and p2 can exchange values without involving
a third process.

9.3 Rewrite the PipelineSort class given in Section 8.3 so it uses input
statements instead of receive statements.

9.4 (a) Consider the single unit allocator given in Section 9.2‚ which re-
peatedly services request and release operations in that order.
Explain why the following is an incorrect solution to the problem:

(b) Modify the code in part (a) so it keeps the same nested structure but
correctly solves the problem.

Consider again the single unit allocator given in Section 9.2 Explain why
the following is an incorrect solution to the problem:

9.5

Show how to rewrite the second input statement in the single slot buffer
code (see Section 9.2) to use receive (and send). Also show what an
invocation of fetch must now look like.

9.6

Rewrite the code in StreamMerge (see Section 7.1) so that it does not
use an end of stream marker. Instead‚ have each sending process invoke
an additional operation that signifies end of stream.

9.7

Exercises 129

An operation may appear in more than one operation command in an
input statement. Consider the following input statement:

9.8

What will be printed if a(–1) is invoked? What if a(0) is invoked?
What if a(1) is invoked? Explain your answers.

Let S1 and S2 denote statement lists‚ and let B1 and B2 denote boolean
expressions. Are the following two input statements equivalent?

9.9

Give a convincing argument why they are‚ or a specific example demon-
strating why they are not.

Consider the multiple unit allocator given in Section 9.3. Initially there
are M units of the resource‚ as shown. Suppose there are W worker pro-
cesses that call request and release. The units could represent a bag
of tasks for the workers to process. In this case‚ a worker calls request
to get a task from the bag and calls release to put a new task in the bag.
Also‚ the allocator is an administrator process that manages the bag of
tasks.

Suppose the workers and allocator are the only processes and that each
worker has the following code outline:

9.10

130 Rendezvous

Assume that eventually request is called M more times than release‚
i.e.‚ that eventually the bag is empty and all tasks have been processed.

As programmed‚ the processes will deadlock. Modify the code in the
multiple unit allocator so that it terminates the computation by invok-
ing JRexit. Hint: Service an operation in more than one operation
command.

Modify the BoundedBuffer example (see Section 9.3) so that it also
provides current_size and query operations. The former returns the
current number of elements in the buffer; the latter returns a boolean
indicating whether a specified number is an element of the buffer.

Develop a complete test program as well. It must contain multiple user
processes and use Thread. sleep to make the output more interesting.

Program a stack class that provides synchronized push and pop opera-
tions in the same spirit as the BoundedBuffer example (see Section 9.3).

The readers/writers scheduling process RWAllocator (see Section 9.3)
gives preference to readers.

Modify the process to give preference to writers; i.e.‚ if a writer
wants to start writing‚ it gets to do so before a reader gets to start
reading. Hint: Use the length() method.

Modify the process to give further preference to readers. The solu-
tion in Section 9.3 already gives readers preference to some extent‚
but not in the following scenario. Suppose writer1 is writing the
database‚ and writer2 arrives‚ and then reader1 arrives. In the cur-
rent solution‚ when writer1 finishes writing the database‚ writer2
will be allowed to go‚ because JR services the oldest invocations
first when possible. Modify the given solution so that in scenarios
like this one‚ reader1 instead should be allowed to go. Hint: Use the
length() method.

(c) Modify the process so scheduling is fair; i.e.‚ any reader or writer
that wants to access the database is able to do so eventually‚ assum-
ing every reading or writing process eventually calls end_read or
end_write. Use the approach of allowing at most X readers to
proceed when a writer is waiting before switching to writing‚ and
vice versa. (Do not use the approach given in Section 9.10!)

9.11

9.12

9.13

(a)

(b)

Exercises 131

For each of the above‚ develop a complete test program as well. It must
contain multiple reader processes and multiple writer processes; it must
use Thread.sleep to make the output more interesting. The program’s
output must demonstrate that the program handles readers and writers
in the correct order.

The readers/writers scheduling process RWAllocator (see Section 9.3)
uses a four-arm input statement and synchronization expressions. Show
how to convert that input statement into code that has the same effect but
that does not use synchronization expressions. Hint: Use nested input
statements plus additional statements.

Atomic Broadcast Problem. Solve Exercise 7.10‚ but change the in-
terface so that producers and consumers use call invocations and the
coordinator uses one (or more) input statements possibly using synchro-
nization expressions.

Savings Account Problem. Solve Exercise 7.11‚ but change the interface
between customers and the bank so that customers making a withdrawal
use a call invocation and customers making a deposit use a send invo-
cation. Also‚ change the bank (server) so that it uses an input statement
with a synchronization expression to defer withdrawals when necessary.

One-Lane Bridge Problem. Cars coming from the north and the south
arrive at a one-lane bridge. Cars heading in the same direction can
cross the bridge at the same time‚ but cars heading in opposite directions
cannot. Assume that a maximum of N cars are in the system at any
time‚ that each car has some unique identifier‚ and that the capacity of
the bridge is unbounded (although one would hope no more than N cars
are on the bridge at any time!).

Write a deadlock-free program that solves this problem.

Modify your program so that it also ensures fairness. (Hint: allow
at most C cars to cross in one direction if cars are waiting to cross
in the other direction.)

Have the programs give meaningful output. For example‚ at each inter-
esting “event” (e.g.‚ each time a car gets on or off the bridge‚ etc.)‚ print
out the “state” of the entire system‚ i.e.‚ what each car is doing.

Bus Problem. Two kinds of processes–busses and passengers—arrive at
a bus stop. A passenger cannot leave the bus stop until it has boarded a
bus and its bus leaves. Each bus holds N > 0 passengers. A bus cannot
leave the bus stop until it has filled all its seats.

9.14

9.15

9.16

9.17

(a)

(b)

9.18

132 Rendezvous

The following hints should lead to a fairly straightforward solution. A
passenger waits until its bus leaves. A bus waits until there are at least
N passengers; it then‚ in effect‚ boards N passengers at once and leaves.
The key events‚ then‚ are when passengers arrive‚ when passengers leave‚
and when busses leave. Boarding is really only used for descriptive
purposes; it does not require additional synchronization. Note that a
passenger does not really leave “on” a bus; processes‚ after synchronizing
as described above‚ continue execution independently. Your program can
use an extra‚ manager process to coordinate the activities of the busses
and passengers.

Have the programs give meaningful output. For example‚ at each inter-
esting “event” (e.g.‚ each time a bus arrives at a bus stop‚ a passenger
arrives‚ etc.)‚ print out the “state” of the entire system‚ i.e.‚ what each
bus or passenger is doing.

9.19 Modify your solution to the previous question so that a bus leaves
the bus stop after boarding at most N passengers. Specifically‚ a bus
will board as many of those passengers waiting that it can‚ up to N‚
when it arrives. If no passengers are waiting‚ the bus departs empty.

Modify your solution to the previous part so that a bus waits for one
passenger to arrive and board if it arrives at a bus stop and finds no
passengers waiting.

(a)

(b)

Consider again the input statement that uses a quantifier given in Sec-
tion 9.8. First‚ show how that code can be rewritten without using a
quantifier. Now suppose that signal is declared with an upper bound
of N‚ which is read from input‚ and that the input statement is to service
any element of the signal array. Does your rewriting technique used
above generalize to this case? Explain why or why not.

9.20

Modify the Model5 program in Section 9.9 so that at most W worker
processes can co-exist. (Use‚ say‚ W = 6 when running your program.)
Thus‚ when W worker processes do exist‚ a request for a new worker
will need to be deferred until one of the worker processes has finished.

For the parts below‚ recall that Figure 2.1 depicts the execution of a
process executing a basic rendezvous.

Give a figure similar to Figure 8.1 (and give the corresponding code
outline) for when f is serviced by an input statement.

Give a figure similar to Figure 8.2 (and give the corresponding code
outline) for when f is serviced by an input statement.

9.21

9.22

(a)

(b)

Exercises 133

Give a figure similar to Figure 8.3 (and give the corresponding code
outline) for when f and g are serviced by input statements.

Repeat part (c) for when f is serviced by a method and g is serviced
by an input statement.

Repeat part (c) for when f is serviced by an input statement and g
is serviced by a method.

(c)

(d)

(e)

Consider the output of the code in the prime sieve algorithm (see Sec-
tion 9.10).

9.23

Is it printed in order or might it be interleaved? Explain.

Suppose the main process wants to output “Done” after all other
processes have output their numbers. Explain why adding just a
print statement to the end of the main process is not guaranteed to
work. Show how to modify the code to get the desired effect.

(a)

(b)

Consider again the prime sieve algorithm (see Section 9.10). First modify
the code so that each worker is passed‚ when it is created‚ its position
within the pipeline (i.e.‚ 1‚ 2‚ ...). Then‚ modify the code so that after
the pipeline is set up‚ it can be searched multiple times; each search
request specifies a single number for which to search. Use a separate
local operation‚ search‚ within each worker to service a single request
for searching. Also use a separate local operation‚ search_done‚ within
each worker; it is called after all searches to terminate the worker. The
output from a search indicates whether the number was found in the
pipeline and the position of the worker that made that determination.

Searching is to be done following the pipeline. That is‚ each worker tests
to see if it holds the given number. If it does‚ it returns that the number
was found and this worker’s position. If not‚ the worker determines
whether it can terminate the search early (hint: the pipeline is sorted).
If so‚ it returns failure and this worker’s position; if not‚ it passes the
request on to the next worker in the pipeline (with the last worker doing
something special); Each worker simply compares the values of its prime
number and the given search number — it does not test whether the given
number is a multiple of its prime number; e.g.‚ when searching for 9‚ the
worker holding 3 will pass the request on to the next worker.

9.24

Repeat the previous exercise for the pipeline sort algorithm introduced
in Section 8.3.

9.25

Consider again the prime sieve algorithm (see Section 9.10). Modify
the code so that an explicit done message is not needed. Instead pass a

9.26

134 Rendezvous

special number (e.g.‚ zero) to filter. Which technique is more general
and cleaner?

Consider the following operation declarations and input statement:9.27

Assume that these operations are invoked only by call. Show how the
input statement can be replaced by a receive statement. Also show how
a and b must now be invoked.

Consider the following input statement from the prime sieve algorithm
(see Section 9.10):

9.28

Within its containing loop‚ it services all invocations of filter and then
an invocation of done. The reason for that ordering of invocation servic-
ing is that the semantics of JR’s input statement picks which operation
to service based on the arrival times of the invocations. Suppose that
the semantics of JR’s input statement were that‚ instead‚ the operation
for which to service an invocation is picked in a non-deterministic order.
Show how the above input statement would need to be written so that all
invocations are handled in the same order as they are now.

A binary search tree. Write a JR program that reads in a list of numbers‚
builds a binary search tree from processes‚ and then responds to print (in-
order) and search commands. Your solution is to be similar in spirit to
the pipeline sort program (see Section 8.3) and the prime sieve algorithm
(see Section 9.10).

Specifically‚ use one process for each node in the tree‚ which holds one
number from the input. You do not know in advance how many node
processes are needed‚ which means that they must be created on demand.

9.29

Exercises 135

All processes must be created within a single object. Use local oper-
ations‚ capabilities‚ and the reply statement; do not use an array of
operations. Your program should terminate normally‚ not in deadlock.
For a search‚ output whether the number exists in the tree or‚ if it was
not found‚ the number in the node that determined it was not in the tree.

Source files containing parts of this program come with the JR distribu-
tion. Run your program on each of the supplied data files.

9.30 The following sort method uses an operation to sort an array:

Explain how it works. Its running time appears to be linear‚ i.e.‚ order
n‚ where n is the size of a. Of course‚ a general linear-time sorting
algorithm is not possible. Explain the discrepancy.

In extended forms of CSP [26] (also see Chapter 21)‚ guards in if and do
statements can contain both input and output commands; thus a process
can be waiting either to receive input or to send output. (CSP’s do state-
ment is similar to Java’s while statement‚ but the do statement‚ like an if
statement‚ allows multiple arms‚ each containing a guard and statement
list.) JR does not allow invocations to appear in guards of input state-
ments; on the other hand‚ send is non-blocking. Ada’s select statement
allows either invocation statements (calls) or accept statements (input)‚
but not both; Ada does not have an asynchronous invocation statement.

Discuss the tradeoffs between these three approaches. Are there differ-
ences in expressive power? In implementation cost?

9.31

Set partition [36]. Process A has a set of integers‚ S. Process B has a
set of integers‚ B. The processes are to exchange values one at a time
until all elements of S are less than all elements of T. Note that after
any exchange‚ S has the same number of elements in it as it did at the
beginning; the same applies to T.

Assume that S is not empty and that S and T are disjoint. Do not use
shared variables or additional processes.

Source files containing parts of this program come with the JR distribu-
tion. Run your program on each of the supplied data files.

9.32

136 Rendezvous

Dutch National Flag. A collection of colored balls is distributed among
processes. There are at most different colors of balls. The goal is

for the processes to exchange balls so that eventually‚ for all process
holds all balls of color Assume process identities and colors are

integers between 0 and

The number of balls in the collection is unknown to the processes. A
process might start holding no balls if that is how the balls were initially
distributed. Process will finish holding no balls if no balls of color
appear in the collection.

Write code for the processes. Assume interprocess communication
forms a ring: Process is allowed to give a ball only to process (with
wrap-around from process to process 0). Processes are allowed
to pass only messages that contain a single ball or control information
(but not counts of the number of balls). The processes should terminate
normally‚ not in deadlock.

Process can access only its source and target bags, not those of other
processes. Do not use shared variables or additional processes. The
solution must be symmetric, i.e., do not have processes execute special
case code based on their process indices. (Of course, a process will use
its process index in determining who to send to and receive from, and to
determine whether a ball belongs with the process.)

Source files containing parts of this program come with the JR distribu-
tion. Run your program on each of the supplied data files.

Give the output from the following program and explain how it works.9.34

9.33

Exercises 137

9.35 Give the output from the following program and explain how it works.

This page intentionally left blank

Chapter 10

VIRTUAL MACHINES

So far we have implicitly assumed that programs execute within a single
address space on a single physical machine. This chapter describes the JR
mechanisms that allow programs to contain multiple address spaces, which
can execute on multiple physical machines. These additional mechanisms thus
support truly distributed programming.

The JR model of computation allows a program to be split into one or more
address spaces called virtual machines. Each virtual machine defines an address
space on one physical machine. (A JR virtual machine includes a Java virtual
machine and an additional layer that supports the JR concurrency extensions.)
Virtual machines are created dynamically, in a way similar to the way objects
are created. When a virtual machine is created, it can be placed on a specific
physical machine.

How a virtual machine is used is reflected in how its objects are created. An
object is created using a slight variant of the usual new operator; an optional
clause specifies the virtual machine on which the new instance is to be located.
Processes, variables, and operations in an instance exist entirely within a single
virtual machine. As in Java, the static parts of a class are created automatically
as needed; however, a separate instance of the static parts is created on each
virtual machine that needs them.

Communication between virtual machines is transparent. For example, a
send invocation from one virtual machine to an operation serviced within an
object located on a different virtual machine has the same syntax and nearly
identical semantics as a send invocation to an operation serviced on the same vir-
tual machine. The same applies to the syntax and semantics of call invocations
between different virtual machines.

This chapter describes the JR mechanisms for creating virtual machines,
including how to place them on different physical machines. It also describes

Recall that execution of Java programs begins in the main method in the
designated “main” class. However, before that code actually executes, some
static initializers may execute: those in the “main” class and those in other
classes on which those in the “main” class depend. For example, if a static
initializer in the “main” class invokes a method in another class, then the static
initializers in the other class are executed before the method call.

Execution of JR programs is similar, but extends to programs with multiple
virtual machines. JR program execution begins with the implicit creation of a
“main” virtual machine, on which the “main” class begins execution. As noted
earlier, execution begins by executing any needed static initializers (such as
those associated with implicit process creation, as described in Section 4.2);
after that, execution continues in the main method. The main virtual machine
executes on the physical machine from which program execution was initiated.

When a virtual machine is created, it is, by default, essentially empty: It
contains no objects. (See Appendix D for details.) The main virtual machine
is empty when it is first created; however, it is special in that the static parts of
the “main” class are immediately and automatically created on it, as described
above. Code in the main method or in other methods, objects, or classes invoked
or created directly or indirectly by the main method, can create additional virtual
machines, which can be located on other physical machines. Objects can then
be created on those virtual machines. Consider a particular class C and what
happens the first time a C object is created or a static method in C is invoked on a
particular virtual machine. Any static initializers in C and any static initializers
in other classes on which C’s static initializers depend are executed. A given
virtual machine might extend the default virtual machine class, so it too can
contain variables, methods, and objects; see Section 10.6 for details.

As noted earlier, each virtual machine contains its own instance of static parts
of classes. Static variables are local to that virtual machine. Variables in ob-
jects created on a given virtual machine are local to the scope in which they are
created, so they too are accessible only within (a limited part of) a single virtual
machine. Access to operations follows similar rules, except operations can be
shared across virtual machines by using capabilities (see Section 7.7). Recall
that capabilities can be used to specify the operation in a receive statement
(Chapter 7) or in an input statement (Chapter 9). The specified operation can

140 Virtual Machines

how remote objects are created on virtual machines. Finally, we discuss several
practical issues that arise in programs that employ multiple virtual machines.
As usual, we present several example programs that employ multiple virtual and
physical machines. Additional, more realistic examples appear in Chapter 11
and Part II. Some of the rules for the mechanisms described in this chapter are
motivated by implementation concerns (see Appendix D).

10.1 Program Start-Up and Execution Overview

be located on a different virtual machine from the servicing statement. How-
ever, such servicing will generally incur additional execution cost. A typical
implementation will likely keep the invocations for an operation on the virtual
machine containing the operation. Access to the invocations from a different
virtual machine will require messages to be exchanged. See Appendix D for
details. The examples in Section 10.4 illustrate the sharing of variables and
operations.

Termination of a program with multiple virtual machines is similar to that for
a program with only a single virtual machine. As before, a program terminates
when all processes have terminated, a deadlock has occurred, or JR.exit is
executed. Note that the effect of JR.exit is not instantaneous; i.e., all parts
of a distributed program do not halt immediately. As for a program with only
a single virtual machine, a program with multiple virtual machines can use a
quiescence operation. Similar to what was discussed in Section 4.5, only the
operation most recently registered is invoked. Thus, the quiescence operation
is global across all virtual machines.

10.2 Creating Virtual Machines 141

10.2 Creating Virtual Machines
A virtual machine is created by creating an instance of the vm pseudo-class,

which is a special, predefined class. In this case, the value returned by new is a
reference of type vm. For example, consider

This code fragment creates a new virtual machine and assigns a reference for
that virtual machine to variable c.

By default, a new virtual machine is placed on the same physical machine as
its creator. A new virtual machine instance can be placed on a specific physical
machine (network node) by using the following form of creation:

The expression specifies the name of a physical machine as a string or specifies
a virtual machine reference. When the expression is a string, it is the name
of a physical machine (which is, of course, installation dependent) on which
to create the new virtual machine. When expr is a virtual machine reference,
it indicates that the new virtual machine is to be located on the same physical
machine as the specified virtual machine.

As an example, suppose the following code fragment is executed on a phys-
ical machine named magic:

Suppose this program is run on machine magic. If the command-line argu-
ments are camelot, excalibur, and camelot, then the program creates two
virtual machines on camelot and one on excalibur. If no command-line ar-
guments are given, then the program creates a single virtual machine on magic.
Notice how the loop handles creation in either case. Of course, this example
only creates virtual machines, but does not “populate” them with any objects.
However, this pattern is simpler than the alternative (see Exercise 10.1) and is
quite useful; e.g., it is used in Section 20.2.1.

JR has no explicit statement to destroy a virtual machine, which is consistent
with Java’s implicit object destruction. Conceptually, a virtual machine will
become “garbage” and can be garbage collected when the rest of the program
has no references to it and the virtual machine has become idle. Becoming

142 Virtual Machines

It creates three virtual machines and assigns references for them to c1, c2, and
c3. The first virtual machine is created on magic since no explicit physical
machine was specified. The second is created on a physical machine named
camelot and the third on excalibur. The fourth virtual machine is created
on magic; the name localhost is defined by the operating system as an alias
for the current machine.

The use of localhost is convenient as a system-independent way to specify
the present host name. For example, it is common to specify on the command
line the names of the physical machines on which to create virtual machines.
But, as a default, if no names are specified, then the program should create a
single virtual machine on the present host. The following code shows how to
do that.

10.3 Creating Remote Objects 143

idle means that all processes are blocked waiting for messages, i.e., no process
is executing, waiting for input/output to complete, or waiting to be awakened
from sleeping. In our current JR implementation, however, the JR execution
manager always holds a reference to each virtual machines created, so they are
not garbage collected.

10.3 Creating Remote Objects
Objects in standard Java programs are created using new and objects in JR

can also be created in the same way. However, objects in JR programs that are to
be placed on virtual machines must be declared and created slightly differently.
Specifically, such an object must be specified as being remote both when it is
declared and created, as indicated in the following code example

In addition, any class from which remote objects are instantiated (e.g., Foo
above) must be declared as public.

By default, a remote object is created on the same virtual machine as its
creator. The following form of remote object creation instantiates the specified
object on the specified (existing) virtual machine:

The value of the expression is a reference for the virtual machine on which the
object is to be created.

For example, consider the following, which uses c1 and c2 from above:

This code fragment creates three Foo objects. The first is created on virtual
machine c1, the second on c2, and the third on the same virtual machine as the
creator.

The operations in a remote object are accessed via a remote reference to
the object. Continuing the above example, where f is a remote reference for
a Foo object, suppose that class foo declares operation g, then f.g() invokes
operation g in the f remote object. A remote object reference is, in effect, a
collection of individual capabilities for the remote object’s operations. Thus,
the individual fields of a remote reference can be manipulated independently.
As seen earlier, a field can be used to invoke an operation. A field can also be
assigned to with a different capability; see Exercise 10.3.

Remote object references can be assigned two special values: null and
noop. These values have meanings similar to their use with capability variables

(Section 3.3). The effect is to set each of the remote reference’s individual
capabilities to the particular special value. A remote interface reference cannot
be assigned noop unless the reference is cast to a valid remote implementing
type for that interface. Otherwise, the type of noop could not be determined.
See Exercise 10.4 for examples.

Given that a remote reference is really a collection of individual operation
capabilities, non-static variables and methods are not accessible via a remote
reference to the object. If such access to a non-static method is desired, the
method must instead be made an operation. Static variables and static methods
in a class from which remote objects are instantiated can be accessed, as usual,
via the name of the class.1 Such a reference refers to a static member within the
local virtual machine (similar to the Main2 example in the next section). From
one virtual machine, the static members in another virtual machine cannot be
accessed directly.

One notable difference between remote objects and regular objects is that a
remote object is not garbage collected when the JR code no longer holds any
references for it. The reason is that our current JR implementation maintains
additional, internal references for remote objects.

1The current JR implementation does not allow a static member to be accessed via a remote object reference,
as Java allows for its object references.

144 Virtual Machines

10.4 Examples of Multiple Machine Programs
The following examples present programs composed from a class containing

only static variables and a semaphore, a class that uses those static fields, and
a class that contains the main method. Only the “main” classes differ between
the examples.

The first class is as follows:

It provides a shared variable, x, plus a semaphore, mutex that can be used to
protect accesses to it.

The second class is:

10.4 Examples of Multiple Machine Programs 145

Each of the N instances of process p adds n to the shared variable x; the update is
protected by using mutex, the semaphore (shared operation) declared in Glob.
Each process then sends a message to the operation pointed to by capability c,
which was passed to Foo’s constructor.

As a first example, consider the following main class:

It creates two Foo objects and then gathers done messages from every process
p in each instance. It then calls writex in the two Foo objects. At this point
the program terminates.

The above program executes on a single virtual machine. Therefore, only
one instance of Glob is created. The invocations of writex in both Foo objects
refer to the same value, 15, which is output twice. (The five processes in fool
each add 1 to x; the five in foo2 each add 2 to x.)

As a second example, consider the following main class:

146 Virtual Machines

The code here differs from Main1 in that it creates a second virtual machine
on which it places the second instance of Foo. Those two lines of code can be
written more compactly as:

Since Main2 executes on two virtual machines, an instance of Glob is created
on each. The effect is to create separate instances of x and mutex on each virtual
machine. The program outputs first the number 5—for the first writex (on the
main virtual machine)—and then the number 10—for the second writex (on
the second virtual machine).

This program executes on a single physical machine. If desired, the second
virtual machine can be placed on a different physical machine by changing the
statement that creates it as follows:

However, the program’s output remains the same as above. As before, the above
line of code and the line that creates foo2 can be combined as:

Virtual machines can be distributed easily over a group of physical machines.
Section 10.2 showed a basic example and Section 11.1 contains a complete
example in the context of a more realistic program.

In the examples, parameter c of Foo is a capability for the operation done
declared in the main class. It is worth noting that invocations of c might
cross virtual and physical machine boundaries. In Main2, for example, the
invocations of c from the second instance of Foo go from the explicitly created
virtual machine (pointed at by vmref) to the original one. Those invocations
also go from one physical machine to another if the second virtual machine is
on a different physical machine, which can be accomplished as shown above.
No change to the send or receive statements is required for such intermachine
invocations.

10.5 Predefined Fields
Just as it is sometimes convenient to have an object reference for the current

object (i.e., this), it is also sometimes convenient to have a remote object

10.5 Predefined Fields 147

reference for the current object. The latter can be obtained by applying the
remote field to this, i.e., this.remote. The following (artificial) program
demonstrates; a more realistic example appears in Section 17.3. The main
method creates a remote instance of A and invokes the h operation therein.

A’s constructor creates a remote instance of B, to which it passes as a constructor
parameter a remote object reference for itself.

B is then able to use any of the public operations in A through its remote reference
a, which it does within the body of e’s op-method.

Note that the same effect could be achieved by instead passing each of A’s
operations as parameters to B’s constructor, but that will generally be more

148 Virtual Machines

verbose. The remote field can also be applied to any object reference, not just
this.

One other predefined field deals with virtual machines. The field vm.thisvm
returns a reference for the virtual machine on which it is executed. The fol-
lowing program demonstrates the use of this field. The main program creates
N instances of Foo on separate virtual machines.

Each instance of Foo uses a static variable, x, defined in Glob, so a separate
instance of Glob is created on each virtual machine.

Each instance of Foo returns via its go operation a reference for its virtual
machine.

The main program uses those virtual machine references to create instances of
Goo on the separate virtual machines.

10.6 Parameterized Virtual Machines 149

Goo’s constructor simply prints out its i and Glob.x. The exact output of the
program is left as an exercise (see Exercise 10.6).

10.6 Parameterized Virtual Machines
The examples in the previous sections illustrate one common set up activ-

ity when using multiple virtual machines: Each virtual machine is given its
own, application-defined identifier. For example, in the Main2 program in Sec-
tion 10.4, class Foo uses n, in effect, to identify the virtual machine on which
it resides; in the thisvmDemo program in Section 10.5, class Goo uses i simi-
larly. If several classes each want access to the virtual machine identifier, then
each class needs the identifier passed to its constructor, which is somewhat
cumbersome.

A nicer solution is to use parameterized virtual machines. A parameterized
virtual machine is a class that extends the predefined vm class. The extended
class can then define operations accessible to all objects executing within a
virtual machine. These operations are accessible indirectly via the vm.thisvm
reference. (This access via operations is similar to the kind of access provided
by remote objects.)

As an example, here is how to rewrite a slight variant of the Main2 program
in Section 10.4 to use parameterized virtual machines. The slight difference is
that each instance of Foo is created on its own virtual machine. (The reason for
this slight difference is discussed at the end of this section.)

The major change in the code, of course, is the new class Myvm. It stores
a virtual machine identifier (an integer, although any type can be used) and
provides an access operation for it.

The main class changes only in the statements that create instances of Foo
on instances of the virtual machine Myvm. Notice how the virtual machine
number is now passed to Myvm’s constructor; previously it was passed to Foo’s
constructor.

150 Virtual Machines

The code for class Foo now needs to access the identifier from Myvm. To do
so, it downcasts vm.thisvm to Myvm and invokes the GetID operation in its
instance of Myvm. (This downcast would result in a run-time exception if the
current virtual machine were not a subclass of Myvm.)

Class Glob remains unchanged.
A parameterized virtual machine class (i.e., one that extends the predefined

vm class) can also declare static members, which are accessible via the class
name. Such a static variable can be used to achieve the effect of the virtual
machine identifier seen in the above example. In this case, the resultant code is
a bit simpler than the above code (see Exercise 10.8), but in general the above
code is more flexible.

Consider rewriting the original Main2 program in Section 10.4 so it uses
parameterized virtual machines, say Myvm above. The difficulty is that the
foo2 would be placed on a virtual machine of type Myvm, whereas fool would
be placed on the main virtual machine, which is of type vm. If fool attempts to
access the GetID operation, its downcast of vm.thisvm to Myvm would result
in a run-time exception. Moreover, JR does not provide a way to change the
virtual machine after it is created. Here, for example, that would be useful to
allow the main virtual machine to become an instance of Myvm.

A more realistic example of the use of parameterized virtual machines ap-
pears in Section 18.3.

10.7 Parameter Passing Details 151

10.7 Parameter Passing Details
As noted in Section 7.8, parameter passing in JR invocations on the same

virtual machine is “by value”. Consider a variant of the program in Section 7.8.

The difference is that now a separate process services invocations of f. The pro-
gram’s output is non-deterministic depending on the order in which processes
execute. For example, suppose process p executes its input statement before
the assignments after the first send statement in the main method. In this case,
the output will be 11, 34, 65, and 87. In other cases, the output can be different.

Parameter passing across virtual machines is slightly different. Passing just
an object reference would not work since the object being referenced is in a
different address space and so would not be directly accessible. Instead, a copy
of the object is passed too. More precisely, the JR implementation uses RMI.
RMI “serializes” objects that it passes between different virtual machines.

Consider again the above program. Suppose we modify it so that the R object
is created on a different virtual machine, i.e.,

Then the program’s output will always be 11, 34, 65, and 87. The reason is
that, in effect, each invocation of f now contains a copy of the b object at the
time the send statement is executed.

One other related effect is that parameters (and return values) for invo-
cations between virtual machines must be serializable. In many cases, that

152 Virtual Machines

will cause no difficulty since a parameter’s type will already be serializ-
able. In some cases, the programmer might need to specify that a class
implements java.io.Serializable. In a few cases, the programmer
might need to write code to make a class serializable (or change the inter-
face). Chapters 18 and 20 present examples and exercises where a class must
be specified as being serializable and further discusses this topic.

Another issue related to serializability involves comparisons of object refer-
ences. See Exercise 10.12.

10.8 Other Aspects of Virtual Machines
This section describes several aspects of virtual machines that arise in prac-

tice. Some of these aspects, as will be noted, are implementation dependent.
Moreover, some may cause different behaviors in multiple virtual machine pro-
grams than in single virtual machine programs.

The initially created virtual machine inherits the standard input (stdin),
standard output (stdout), and standard error (stderr) streams from the com-
mand that starts execution of an JR program. Other virtual machines created
by the program inherit these streams from the initial virtual machine. If sev-
eral machines print to these shared stdout or stderr streams, the ordering
of output is deterministic only if the prints are properly synchronized within
the JR program. Having multiple virtual machines read from stdin at about
the same time is usually not useful: they will compete for individual characters
from stdin and obtain them non-deterministically.

Except for this initial duplication of the standard streams, input/output is
virtual machine specific. In particular, Java file-related objects (e.g., such as
FileReader or PrintWriter objects) that have been created on one virtual
machine cannot be passed to other virtual machines. Attempting to do so will
result in a “not serializable” exception.

Command-line arguments are passed as arguments to the main method. As in
Java, if their values are needed elsewhere, they need to be made available, e.g.,
via passing them as parameters. The same holds in JR programs. In particular,
command-line arguments are not available on other virtual machines unless
they are passed to it, e.g., as parameters to a constructor or method on the other
machine.

The main virtual machine begins execution in the directory in which its
execution is initiated. However, in our implementation, other virtual machines
begin execution in the user’s home directory. This difference can have an effect
on programs that open files. If a filename is absolute, then there is no problem.
However, if a filename is relative to the current directory and code on a non-
main virtual machine attempts to open that file, then it will not find it. (Or,
worse, it will open the wrong file: the one with the same name relative to the
home directory!) Beside using absolute filenames, the above problem can be

Exercises 153

avoided by having code prepend the pathname of the current directory to all the
names of any files that it opens. The current directory can be obtained via:

The above discussion applies to executing virtual machines on the same phys-
ical machine as the main virtual machine or on a different physical machine
but with a common NFS (network file system) environment, in which files and
their names are identical across a collection of machines. For non-NFS envi-
ronments, the user might need to account for differences in file systems in other
ways, e.g., by mapping file names on one system to those on the other.

Exercises
10.1 Modify Main (see Section 10.2) so that it does not use localhost. Do

not modify Main’s creation loop, only modify the code above it. Hint:
What does the following code output?

10.2

10.3

Extend Main2 (see Section 10.4) so that it places the first instance of
Foo on a new virtual machine located on a physical machine different
from those already used. How many instances of Glob are now created,
and what does the program output?

Show the output from the following program. Assume that an invocation
of noop returns the value 0.

154 Virtual Machines

10.4 Consider the following classes and interface.

Exercises 155

For each assignment below, indicate whether it is legal and briefly ex-
plain.

10.5

10.6

10.7

10.8

10.9

10.10

Consider the Main1 and Main2 programs in Section 10.4. Each uses
done messages to inform the main method that all processes have fin-
ished. Rewrite each program so that it instead uses a quiescence opera-
tion for that purpose.

Show the output from the thisvmDemo program (Section 10.5).

Rewrite the thisvmDemo program (Section 10.5) so it uses parameter-
ized virtual machines.

Rewrite the Main2 program from Section 10.6 so it uses parameterized
virtual machines using a static variable in the Myvm class for the virtual
machine identifier, as suggested in Section 10.6.

Modify the adaptive quadrature program developed for Exercise 7.13(c)
so that AQ and fun are

(a) in different virtual machines on the same physical machine.

(b) in different virtual machines on different physical machines.

Modify the program developed for Exercise 7.13(d) so that AQ and fun
are

(a) in different virtual machines on the same physical machine.

(b) in different virtual machines on different physical machines.

Time the results as per the instructions in Exercise 7.13(d).

156 Virtual Machines

Compare the results and explain any significant differences in the average
invocation times for the three programs:

Exercise 7.13(d).

Exercise 7.13(d) modified as per (a).

Exercise 7.13(d) modified as per (b).

10.11

10.12

In a multiple virtual machine program, standard output from all virtual
machines appears by default on the main virtual machine’s stdout file.
Thus output can be interleaved and therefore difficult to comprehend. In
a multiple window UNIX environment, output from each virtual machine
can instead be directed to its own window (e.g., running xterm).

(a)

(b)

Demonstrate how to do so in your environment. As a concrete ex-
ample, use Main2 or a variant that does more output.

Adapt your solution so that each virtual machine takes its input from
its own window.

Consider the two classes:

Show the output from each of the following main programs:

Exercises 157

(a)

(b)

(c)

Explain any differences in the outputs.

This page intentionally left blank

Chapter 11

THE DINING PHILOSOPHERS

This chapter presents three solutions to the classic Dining Philosophers Prob-
lem [17]. The problem was described in Section 6.2. This problem is interesting
because it raises aspects of resource allocation problems that real operating and
distributed systems must deal with. In particular, avoiding deadlock and star-
vation (or lack of fairness) are important goals in solutions to this and similar
problems.

Our three solutions employ many JR communication mechanisms and illus-
trate different ways to structure solutions to synchronization problems. They
also illustrate how to use virtual machines so that a program can execute on
several physical machines. Unlike the other chapters in this part, this chapter
introduces no new language mechanisms. It does, however, show mechanisms
used in different combinations than seen earlier.

This problem can be solved in several ways in JR. A semaphore solution
was already given in Section 6.2. In contrast, the solutions in this chapter
distribute the philosophers and servant(s) onto several virtual machines and use
other synchronization mechanisms. In our three solutions, philosophers are
represented by processes. The solutions differ in how forks are managed, as
shown in the following table:

The first approach is to have a single, centralized servant process that manages
all n forks. The second approach is to distribute the forks among n servant
processes, with each servant managing one fork. The third approach is to
decentralize control but employ one servant per philosopher instead of one
servant per fork.

Approach
centralized
distributed
decentralized

Servant(s)
one servant
one servant per fork
one servant per philosopher

160 The Dining Philosophers

11.1 Centralized Solution
This approach employs a single servant process that manages all n forks.

Each philosopher requests two forks from the servant, eats, and then releases
the forks back to the servant. This interaction for n equals 5 is illustrated in
Figure 11.1. In the figure a P represents a philosopher, the S represents the
servant, and the lines represent communication.

Figure 11.1. Structure of centralized solution

Our solution employs three classes: Servant, Philosopher, and Main.
Execution begins in Main. It first reads command-line arguments specifying
the number of philosophers (n) and the number of “sessions” each philosopher
is to execute (t). Main then creates one instance of Servant and n instances
of Philosopher. The instance of Servant is passed the number of philoso-
phers. Each instance of Philosopher is passed a capability for the instance of
Servant, the philosopher’s identity, and the number of sessions.

Each philosopher alternately eats and thinks for t sessions. Before eat-
ing, a philosopher calls the servant’s getforks operation; after eating, it
calls the servant’s relforks operation. The Servant object services invo-
cations of getforks and relforks from all instances of Philosopher. Each

11.1 Centralized Solution 161

Philosopher object passes its id to these operations to allow the servant to dis-
tinguish between philosophers. A philosopher is permitted to eat when neither
of its neighbors is eating.

The Servant constructor is passed the number of philosophers (n) as a pa-
rameter. It uses this value to allocate the array eating, which indicates the
status of each philosopher. The server process continually services the opera-
tions getforks and relforks. The synchronization expression on getforks
uses the invocation parameter id together with n to determine, using modular
arithmetic, whether either of a philosopher’s neighbors is eating. If neither
neighboring philosopher is eating, server grants the philosopher requesting
forks permission to eat and updates the philosopher’s entry in eating.

162 The Dining Philosophers

The above solution is deadlock-free since, in effect, getforks allocates both
forks at the same time. However, a philosopher can starve if its two neighbors
“conspire” against it, i.e., if at any time at least one of them is eating.

The above program executes on a single virtual machine and, therefore, on
a single physical machine. It can be easily modified, though, so that each
philosopher executes on a different virtual machine. Only Main’s loop needs
to be changed as follows:

As seen in Section 10.2, the creation of a virtual machine can also specify
the physical machine on which to create the virtual machine. So, the above
loop can be further modified so as distribute the philosophers somewhat evenly
over a collection of physical machines (an attempt at primitive load balancing).

This code uses an array of machine names (each element is a string). To port a
program containing code such as that in the above loops to another installation,
only the hosts array needs to be changed to contain the local machine names.
To make the program more portable, the array can be read from a file or from
command-line arguments. In fact, that array might be defined in a separate
class and accessed as needed.

11.2 Distributed Solution
The centralized solution to the dining philosopher’s problem is deadlock-

free, but it is not fair. Also, the single servant could act as a bottleneck because
all philosophers need to interact with it. In contrast, the distributed solution

11.2 Distributed Solution 163

employs one servant per fork, and it is deadlock-free and fair. Each philosopher
interacts with two servants to obtain the forks it needs. A philosopher that is
hungry may eat after it obtains a fork from each of the servants. This interaction
is illustrated in Figure 11.2.

Figure 11.2. Structure of distributed solution

Our solution for this approach again employs three classes: Servant,
Philosopher, and Main. The Main class is similar to Main in the centralized
solution. It differs in that Main now creates n instances each of Philosopher
and Servant and passes references for the latter to the former so they can
communicate with each other.

164 The Dining Philosophers

The asymmetric way in which references for servants are passed as constructor
parameters to instances of Philosopher makes deadlock easy to avoid, as
discussed later.

The Philosopher class is also similar to its counterpart in the centralized
solution. The differences are that it is now passed references for two Servants,
and it now invokes getfork and relfork in each of those two Servants.

The server process in each Servant object continually services invocations
of first getfork and then relfork from its two associated Philosopher ob-
jects. This ensures that the servant’s fork is allocated to at most one philosopher
at a time. A philosopher is permitted to eat when it obtains a fork from each of
its two servants.

11.3 Decentralized Solution 165

The distributed solution is deadlock-free. When Main creates instances
of Philosopher, it passes them references for their left and right servants.
The order of these references is switched for the last philosopher (i.e., the
Philosopher passed an id of n). Thus the last philosopher requests its right
fork first, whereas each other philosopher requests its left fork first. This avoids
the typical deadlock scenario in which each philosopher picks up one of its
forks and then requests its other fork. A more formal way to state this property,
as defined in operating systems texts, is that requests from philosophers cannot
form a cycle in the resource (i.e., fork) allocation graph. Unlike the centralized
solution, the distributed solution also prevents starvation since forks are allo-
cated one at a time and invocations of getfork are serviced in order of their
arrival.

11.3 Decentralized Solution
The decentralized solution employs one servant per philosopher. Each philoso-

pher interacts with its own personal servant; that servant interacts with its two
neighboring servants. Each individual fork either is held by one of the two
servants that might need it or is in transit between them. A philosopher that is
hungry may eat when its servant holds two forks. This interaction is illustrated
in Figure 11.3.

Figure 11.3. Structure of decentralized solution

The specific algorithm that the servants employ is adapted from Refer-
ence [15]. It has the desirable properties of being deadlock-free and fair. The

166 The Dining Philosophers

basic solution strategy also has applications to other, realistic problems such as
file replication, distributed database consistency, and distributed mutual exclu-
sion.

Our decentralized solution once again employs Servant, Philosopher, and
Main classes. Main is similar to its counterpart used in the distributed solution.
The differences are that Main in this solution passes different combinations
of references—to support the communication structure in Figure 11.3—and it
sends each instance of Servant the initial values for its local variables.

References for a philosopher’s servant are passed to the philosopher’s con-
structor as parameters. On the other hand, references for a servant’s neighbor
are passed to it via a separate operation, links. This dissimilarity results from
the fact that Main has to create the instances of Servant before it passes them
the references for each other. Here the servants are arranged circularly; there-
fore, no order of creation would allow this code to pass references for servants
as parameters to instances of Servant.

As in the previous solutions, each philosopher alternately eats and thinks for
t sessions. Before eating, a philosopher calls the getforks operation in its
personal instance of Servant; after eating, it calls the relforks operation in

11.3 Decentralized Solution 167

that Servant. Thus Philosopher here is almost identical to Philosopher
in the centralized solution. The only difference is that a philosopher no longer
passes its identity to getforks or relforks. Each philosopher now interacts
with a single servant, whereas in the centralized solution, the one servant is
shared by all philosophers.

Servant objects service invocations of getforks and relforks from
their associated Philosopher objects. They communicate with neighboring
Servant objects using the needL, needR, passL, and passR operations. A
philosopher is permitted to eat when its servant has acquired two forks. A ser-
vant may already have both forks when getforks is called, or it may need to
request one or both from the appropriate neighbor.

Two variables are used to record the status of each fork: haveL (haveR) and
dirtyL (dirtyR). Starvation is avoided by having servants give up forks that
are dirty; a fork becomes dirty when it is used by a philosopher. Further details
on the servant’s algorithm are in Reference [15].

168 The Dining Philosophers

Exercises 169

Notice the various combinations of operation invocation and servicing that are
employed. For example, getforks provides a procedural interface and hides
the fact that getting forks requires sending a hungry message and receiving
an eat message. Also, server processes use a send to invoke the need and
pass operations serviced by neighboring servers; a call cannot be used for this
because deadlock could result if two neighboring servers invoked each other’s
operations at the same time.

A philosopher and its servant are represented as separate classes. This struc-
ture provides a clean separation of their functionalities. However, they can be
combined into a single class (see Exercise 11.6).

The structure of the servants and their interaction in the above example is
typical of that found in some distributed programs, such as those that implement
distributed voting schemes. Such a program might contain a collection of voter
processes, each of which can initiate an election. After a voter process initiates
an election, it tallies the votes from the other voters. While a voter process
is waiting for votes to arrive for its election, it must also be able to vote in
elections initiated by other voter processes. This kind of communication can
be accomplished easily only by using an asynchronous send.

In the above example, when a servant is attempting to acquire both forks for
its philosopher, it might give up a fork it already possesses (because the fork
is dirty). In this case it passes the fork to its neighbor and then immediately
requests the fork’s return. To reduce the number of messages exchanged, the
request for the fork’s return could be combined with the passing of the fork.
In particular, the pass operations could be parameterized with a boolean that
indicates whether or not the servant, when its philosopher has finished eating,
should automatically pass the fork back to its neighbor (see Exercise 11.7).

Exercises
11.1

11.2

11.3

Give a solution to the dining philosophers problem in which all processes
reside in a single object and use semaphores to synchronize. (No servant
process is needed.)

Repeat the previous exercise, but define the semaphores within a separate
class and represent each philosopher as its own object.

Modify the code in the distributed solution so that each philosopher
is created on its own virtual machine and the one servant used by that
philosopher is created on the same virtual machine. Show how to modify

170 The Dining Philosophers

your solution so that each virtual machine executes on its own physical
machine.

Modify the code in the decentralized solution so that each philosopher
and its servant is created on a separate virtual machine. Show how to
modify your solution so that each virtual machine executes on its own
physical machine.

Rewrite the code for the decentralized solution so that it uses only call
invocations. (Good luck!)

Show how, in the decentralized solution, to combine philosophers and
servants into a single class, as suggested at the end of Section 11.3. Can
this also be done in the distributed solution?

Show how to write the variant of the decentralized solution suggested at
the end of Section 11.3 to reduce message passing.

A philosopher and its servant are represented as separate processes in
the decentralized solution. Can they be combined into a single process?
If so, show how. If not, explain why not.

Modify the decentralized solution so that servants terminate. A servant
can terminate once its philosopher has terminated and its neighboring
servants will no longer request a common fork from it.

In all the dining philosopher solutions, the operations to release one
or both forks have been invoked using calls. For each solution, state
whether it will work if those calls are replaced by sends. Justify your
answer.

Run each solution to the dining philosophers problem.

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

(a)

(b)

Evaluate the performance of the different solutions. Which is fastest?
Which is slowest? How much does performance differ? Explain the
reasons for your answers.

Does the order in which philosophers eat differ? If so, explain why.
If not, explain why not.

11.12 Distributed mutual exclusion. Given are user processes, each of which
repeatedly executes a critical section of code and then a non-critical
section. At most one process at a time is permitted to execute its critical
section of code.

Develop centralized, distributed, and decentralized solutions to this prob-
lem. The structures of your solutions should be similar to those for the

Exercises 171

dining philosophers problem. The centralized solution should have one
“servant” process with which all users interact. The distributed solu-
tion should have servant processes; each user process should interact
with all servants. The decentralized solution should also have ser-
vant processes, but each user should interact with just one servant; the
servants should also interact with each other.

This page intentionally left blank

Chapter 12

EXCEPTIONS

The Java programming languages provides an exception handling model to
support the reporting of errors and the handling exceptional conditions (e.g.,
I/O errors). To fully support its extensions to Java, JR adapts and extends
Java’s exception handling model. This chapter first discusses the support for
exceptions with respect to operations and input statements. The chapter then
discusses the extension of the exception handling model with handler objects
to support throwing exceptions from asynchronously invoked operations.

12.1 Operations and Capabilities
An operation (or op-method) declaration is very similar to a method decla-

ration in Java (see Chapter 3); an operation declaration specifies both its return
type and parameter types (and body for an op-method). This similarity extends,
as well, to the throws clauses used in Java to specify which exceptions can
be thrown from a method. The addition of the throws clause completes the
general form of an operation declaration, which is now

An example of an operation that may throw an exception is:

An op-method declaration, of course, would include a method body.
Operation capabilities are similarly extended. The complete general form of

an operation capabilities declaration is:

In addition to the parameterization requirements discussed in Section 3.3, an
operation capability can be bound only to an operation with a matching throws

174 Exceptions

clause. This requirement prevents attempts to propagate out of invocations
of capabilities and operations exceptions not listed in the respective throws
clauses.

12.2 Input Statements
Input statements now support exception handling in a manner similar to

operations. For each operation or capability serviced by an input statement,
a throws clause must list all exceptions that may be thrown from the body
of the respective operation command. For instance, if the servicing code for
an operation includes file I/O, then an IOException may be thrown. If this
exception is propagated out of the body of the operation command, then it must
be included in the throws clause as demonstrated by the following code:

The general form of the input statement discussed in Section 9.1.1 now
includes an optional throws clause as part of each operation command. An
operation command now has the general form

The exceptions listed in the throws clause of an operation command must
match those listed in the throws clause of the operation or capability specified
by the op-expr of the operation command.

An exception thrown from the body of an operation command is propagated
(except as discussed in Section 12.3) back to the invoker. Such an exception is
never propagated into the enclosing scope of the offending input statement. As
such, the enclosing scope does not require a catch clauses for the exceptions
listed in the operation commands.

12.3 Asynchronous Invocation
The exception handling mechanisms provided by sequential programming

languages rely upon the call chain for the propagation of exceptions. A thrown
exception is propagated (either implicitly or explicitly) up the call chain until
an appropriate handler is found. Figure 12.1 depicts such a propagation in a
parser program. Method read throws an exception because of an I/O error.
The exception is propagated through method parse1 and into method parse,
where it is finally handled.

Asynchronous invocations, however, “break” links in the call chain and ren-
der such propagations impossible. Figure 12.2 depicts the same program as
before, but with the method parse1 invoked asynchronously (in this modified
program each file is parsed concurrently). Again, an exception is thrown from

12.3 Asynchronous Invocation 175

Figure 12.1. Exception propagated through call chain

method read and propagated to method parse1. If method parse1 does not
have an appropriate exception handler, then the exception must be further prop-
agated. But, since method parse1 was invoked asynchronously, the preceding
link in the call chain is not accessible. In fact, the method that invoked parse1
(in this example, parse) may no longer be executing. Therefore, the call chain
cannot be used to propagate exceptions from methods invoked asynchronously.

Figure 12.2. Exception propagated from method invoked asynchronously

JR addresses this problem by providing handler objects and requiring the
specification of handler objects for exceptions thrown from asynchronously
invoked operations. More precisely, a handler object must be specified at each
point that a link in the call chain can be broken. These points are at each send,
reply, or forward statement. Handler objects and their specification for each
of the asynchronous statements are discussed in the sections that follow.

12.3.1 Handler Objects
A handler object is an instance of a class that (1) implements the Handler

interface in the edu.ucdavis.jr package and (2) defines a set of handler
methods. A method is defined as a handler through the use of the handler
modifier (much like the use of the public modifier). A handler method
takes only a single argument: a reference to an exception object. Each
handler method specifies the exact exception type that it can handle (e.g.,
FileNotFoundException). When an exception is delivered to a handler ob-
ject, it is handled by the handler method of the appropriate type (which is
synchronously invoked). Operations can also be defined as handlers using the
same modifier (see Section 12.5 for further discussion).

176 Exceptions

An example definition of a handler object’s class follows:

In this example, handler objects of type IOHandler can handle end-of-file
and file-not-found exceptions. An exception of type EOFException directed
to such a handler object will be handled by the handleEOF method; exceptions
of type FileNotFoundException will be handled by the handleNotFound
method.

12.3.2 Send
A send statement must specify, using a handler clause, the handler object

that is to be used to handle any exceptions propagated from the asynchronously
invoked operation. (Of course, if the operation has no throws clause, then a
handler object is unnecessary.) The following code demonstrates the specifi-
cation of an instance of the IOHandler class described above:

A handler object must be capable of handling any exceptions thrown from the
operation. Such an object, defined as discussed above, must define a handler
method for each exception thrown1. For the operation read in the example, the
handler object must support a handler method for FileNotFoundException
(which it does).

To illustrate how handler objects work, suppose the above examples are
combined into a complete, but simple program

1 More precisely, the handler methods may handle exceptions that are supertypes of the thrown exceptions,
resulting in potentially fewer handler methods than exceptions. In addition, a handler may actually be
defined as an operation (see Section 11.6).

12.4 Additional Sources of Asynchrony 177

Now, suppose that the read operation attempts to open its filename argument
and a FileNotFoundException exception is raised. Since read was invoked
asynchronously, the raised exception is propagated to the handler object speci-
fied as part of the invocation, ioHandler in this example. ioHandler refers to
an instance of IOHandler, which supports two handler methods: handleEOF
and handleNotFound. Since the propaged exception matches the argument of
the handleNotFound method, this method is selected and invoked to handle
the raised exception.

12.4 Additional Sources of Asynchrony
During a synchronous method invocation, asynchrony can arise if the invoked

operation executes

an early reply.

a forward.

In these cases, we can use handler objects to capture exceptions that occur
during execution of asynchronous activity.

12.4.1 Exceptions After Reply
Much like an asynchronous invocation, an early reply breaks the call chain

link between the invoking method and the invoked operation (recall that a reply
can only be used within an operation’s servicing code). As such, exceptions

178 Exceptions

thrown after a reply cannot be propagated back to the invoking method. There-
fore, a reply statement must specify a handler object that is capable of han-
dling any exceptions potentially thrown by the replying method as demonstrated
by the following code:

Exceptions thrown before a reply statement are propagated as appropriate
for the manner in which the operation was invoked (i.e., through the call chain
if invoked synchronously and to a handler object if invoked asynchronously).
Exceptions thrown after a reply are directed to the handler object specified as
part of the reply statement. Note that a subsequent reply to an invocation for
which a reply has already been executed does not return a value to the invoker,
but it may change the handler object to which exceptions are directed.

12.4.2 Exceptions After Forward
A forward statement also causes a break in the call chain. Unlike the send

and reply statements, however, the forward statement replaces the broken
link with a link to the newly invoked operation. As such, the newly invoked
operation can propagate exceptions up the call chain. The forwarding operation,
however, must handle exception thrown after forwarding locally or direct them
to a handler object. The following code demonstrates the specification of a
handler object as part of a forward statement:

12.5 Exceptions and Operations 179

The method to which responsibility is forwarded, readFile in the example,
inherits the call chain link from the forwarding method, read. In the example,
method read is synchronously invoked. After forwarding, the call chain link
that had been between main and read is changed to link main with readFile.
As such, exceptions thrown from method readFile will be propagated through
the call chain back to method main (the original invoker of method read).

Had the method read been invoked asynchronously, as demonstrated by
the following code, any exceptions thrown from method readFile would be
directed to the handler object specified as part of the asynchronous invocation
of method read (the object referred to by asynchHandler in the following
code).

12.5 Exceptions and Operations
Section 12.3.1 discusses the definition of handler objects. A handler object

must define a set of handler methods, one for each exception type that is to be
handled. These handler methods may, however, be operations. The use of op-
erations provides additional flexibility in handling exceptions. In particular, the
use of operations serviced by input statements allows the handling of exceptions
to be distributed among a number of threads (each executing an input statement
servicing the operation) or serialized by a single thread servicing multiple han-
dler operations with a single input statement. Distributing exception handling

180 Exceptions

allows exceptions to be routed to the appropriate components of the system.
Serializing exception handling can provide a means for prioritizing exception
handling.

The following code shows the class definition of a handler object that handles
exceptions using an input statement. The server thread repeatedly services
exceptions (one at a time) as they are propagated to the handler object.

If this example were combined with code similar to that in Section 12.3.2,
but that executes two sends with the same handler object (e.g., ioHandler
is reused), and exceptions are raised from each, then the inni handles the
exceptions one at a time in the order in which the handler object received
notification that they were raised.

Operations in a handler object can also be used to provide a means for an
invoking method to monitor the exception status of an asynchronously invoked
operation with which it is concurrently executing. Instead of the handler object
servicing the handler operations (as in the above example), the invoker (or any
other thread) can check for and handle any raised exceptions by executing an
inni statement (similar to that in the above example).

Exercises
12.1 What is the output for the following program that uses a reply? (Assume

that the reply statement itself does not raise an Exception.)

Exercises 181

12.2 What is the output for the following program that uses a forward?
(Assume that the forward statement itself does not raise a Exception.)

182 Exceptions

12.3 What is the output for the following program that uses a forward and
a send? (Assume that neither the forward nor the send raises an
Exception.)

Exercises 183

12.4

12.5

12.6

Modify the Bounded Buffer example from Chapter 9 so that an exception
(OutOfRangeException) is raised if the item (integer) that is about to
be deposited into the buffer is not within a valid range. Define the
OutOfRangeException and test your program with a valid range of 20
to 2000, inclusive.

(a) Modify the Readers/Writers example from Chapter 9 so that occa-
sionally, when reading the database, a reader process terminates.
Have this termination generate an exception (i.e., the reader termi-
nates by raising an exception). Use a single exception handler object
for all readers; in handling the exception, the handler object needs
to invoke the end_read operation on behalf of the terminating reader.
Note that the process abbreviation does not allow a throws clause,
so each reader process must be started with an explicit send. To test
your program, have the reader raise an exception based on a random
value.
Modify the program in part (a) so that a writer process may also
terminate with an exception while accessing the database. Use a
single exception handler object, separate from that for readers, for
all writers.
Modify the program in part (b) to use a single exception handler
object for both readers and writers.

(b)

(c)

The handler clause for the send, forward, and reply statements allows
only a single handler object to be specified. Discuss any limitations

184 Exceptions

this might impose. Discuss how one might be able circumvent these
limitations (consider an aggregate object).

Chapter 13

INHERITANCE OF OPERATIONS

This chapter defines and illustrates how operations can be inherited in JR.
Overriding inherited operations allows a subclass to specialize the implemen-
tation of those operations. Such specialization also facilitates changing the
manner in which an operation is serviced. This change in servicing enables,
among other things, the distribution of the servicing of an operation and the
filtering of invocations of a distributed operation.

This chapter first introduces the general notion of operation inheritance and
possibilities for redefinition in a subclass. It then illustrates the use of operations
inheritance through two examples. Finally, it presents some fine points that one
must consider when redefining the manner in which an operation is serviced.

This chapter assumes an understanding of inheritance in Java, but it is briefly
discussed again here to highlight some important points for the ensuing discus-
sion of operation inheritance. A Java class definition consists of a specification
and an implementation (a Java interface consists of only a specification). The
specification of a class defines the external interface “exported” by instances of
the class. An instance of a class is used by invoking instance methods declared
in the class’ specification. The implementation of a class defines the actions
taken when a method in the specification is invoked (i.e., the implementation
defines the statements that are executed upon invocation).

In Java, a new class may be derived from an existing class to create a subclass.
Through this derivation, the subclass inherits the specification of its parent
class. By default, a subclass also inherits its parent’s implementation of the
specification. A subclass can extend the inherited specification through the
addition of methods. Similarly, a subclass can modify the implementation of
its inherited specification by redefining the inherited methods.

186 Inheritance of Operations

13.1 Operation Inheritance
In JR, a derived class may modify the implementation of its inherited specifi-

cation by redefining the implementation of its inherited methods and operations.
An inherited method’s implementation is modified, as in standard Java, by re-
defining the method. Operations are classified according to their implementa-
tion. An operation that is associated with a method is termed a ProcOp. An
operation that is serviced by an inni statement is termed an InOp. In general,
JR allows a subclass to redefine the implementation of an inherited operation
as either a ProcOp or an InOp, regardless of the operation’s implementation in
the superclass.

The different combinations of operation redefinition are discussed below.
In brief, an operation’s implementation is redefined by either redefining the
servicing code or switching the manner in which the operation is serviced.
Redefinition of an operation’s implementation requires an explicit redeclaration
of the operation in the subclass only if the redefinition changes the operation
from an InOp to a ProcOp or vice-versa. Otherwise, an explicit redeclaration
of the operation is not required.

The notation means that the superclass defines the operation as
an and the subclass is redefining the operation to be an

ProcOp ProcOp

A redefinition from a ProcOp to a ProcOp corresponds directly to a method
redefinition in standard Java. The subclass can simply redefine the method
associated with the operation. Such a redefinition allows a subclass to
specialize the operation implementation.

InOp InOp

The implementation of an InOp is not actually redefined but rather extended.
Any inni statements that “service” an inherited InOp are added to the set
of inni statements that implement the operation. A subclass may explic-
itly redeclare an InOp as an InOp by explicitly redeclaring the operation.
This redeclaration allows a subclass to relax access restrictions (i.e., public,
private, and protected) but does not create a separate invocation queue.

ProcOp InOp

A ProcOp may be redefined as an InOp in a subclass by explicitly redeclar-
ing the operation and not defining a signature-compatible method. The
signature-compatible method that would have been inherited from the su-
perclass is ignored.

InOp ProcOp

An InOp may be redefined as a ProcOp in a subclass by both redeclaring
the operation and defining a signature-compatible method.

1.

2.

3.

4.

13.2 Example: Distributing Operation Servicing 187

13.2 Example: Distributing Operation Servicing
Redefinition of a ProcOp to be an InOp can be used to distribute the servicing

of the operation’s invocations without changing the client. Figure 13.1 graph-
ically depicts both the original client-server structure, which uses a ProcOp,
and the new bag of tasks structure that results from redefining the inherited
operation to be an InOp. With the original operation, each invocation results in
a new thread being created (at the server) to service the invocation.

Figure 13.1. Distribution of servicing through redefinition of operation in subclass BagServer

The following code segment defines the original centralized server. Clients
invoke the serv operation and wait for the result from the single server.

In the following code, theBagServer class extends the originalServer class
and redefines the serv operation to be an InOp (by redeclaring the operation
without defining a signature-compatible method).

188 Inheritance of Operations

With the redefined operation, each invocation is handled by an extant Worker
object, which was created at program startup and which may be located on a
separate host. A capability for serv is passed to the constructor of each Worker
object. Each Worker object repeatedly executes an inni statement to service
invocations on serv’s queue. These Worker objects can be located on an
arbitrary set of physical machines as specified by hosts.

13.3 Example: Filtering Operation Servicing
Redefinition of an InOp to be a ProcOp can be used to filter the invocations

of an operation. Figure 13.2 graphically depicts each server configuration.
With the original operation, as shown in Figure 13.2 (a), each invocation is
serviced by an extant Worker object. Redefinition of the operation, as shown
in Figure 13.2 (b), allows for the filtering of invocations in order to reduce
the amount of work done by the Worker objects. The following code segment
shows the definition of the subclass FilterServer that redefines an InOp to
be a ProcOp. In the original Server class, the serv operation is defined as an
InOp. FilterServer redefines the serv operation to be a ProcOp by explicitly
redeclaring the operation and defining a signature-compatible method.

Figure 13.2. Filtering of invocations through redefinition of operation in subclass
FilterServer

13.3 Example: Filtering Operation Servicing 189

Each invocation ofserv defined in the subclass is routed through the method
associated with the ProcOp to determine whether or not the invocation will be
passed on to a Worker object. If the invocation is not rejected by the filter, then
the subclass uses a forward statement to pass responsibility for servicing the
invocation to the InOp serv defined in the parent class (Server). Each Worker
object repeatedly executes an inni statement to service the InOp serv defined
in the Server class; this operation capability was passed to the constructor of
each Worker object during initialization in FilterServer’s constructor.

190 Inheritance of Operations

13.4 Redefinition Considerations
As discussed above, JR requires that a subclass explicitly redeclare an op-

eration if the subclass redefines an inherited InOp as a ProcOp or an inherited
ProcOp as an InOp. Such a redeclaration is required to statically determine that
the operation has been redefined and to reduce the potential for erroneous code.
The redeclaration also serves as a statement of intent.

Imagine that an explicit redeclaration were not required to redefine a ProcOp
as an InOp. Instead, assume that an operation is implicitly redefined as an
InOp if the operation is serviced by an inni statement. Full program analysis
would be required to statically determine that the operation has been redefined.
However, such an analysis is not sufficient when capabilities are used within
inni statements. This “redefinition” approach is unsatisfactory because all such
redefinitions cannot be discovered until run-time. Furthermore, allowing such
a “redefinition” could lead to hard-to-find errors if a programmer accidentally
“redefines” the wrong operation in an inni statement.

An InOp may be redefined to be a ProcOp if the subclass explicitly redeclares
the operation and defines a signature-compatible method. If an inni statement
attempts to service the operation through a reference to the subclass, then a
compile-time error will be raised. If an inni statement attempts to service the
operation through a reference to the superclass, then a run-time error will be
generated. These two cases are illustrated in the following code segment.

Exercises 191

JR makes a strict distinction between operations and methods. An inherited
operation may not be redefined as a method and an inherited method may not be
redefined as an operation. The interested reader can find a detailed discussion
of this topic in [30].

Exercises
13.1 Consider the following interface

Define two classes that implement this interface and a main method that
creates an instance of each class and invokes the operation foo on these
instances.

13.2 Consider the following abstract class

Define two classes that extend this class and a main method that creates an
instance of each class and invokes the operation foo on these instances.

13.3 Starting with the code in Section 13.2, create a centralized server program
and a decentralized server program.

Measure the performance of each program (at a minimum you will
want to simulate some real computation in the servicing of serv).

Discuss the circumstances under which each configuration is prefer-
able.

(a)

(b)

13.4 Starting with the code in Section 13.3, create a program where the
Worker objects filter invocations and a program where filtering is done
at the server.

Measure the performance of each program (at a minimum you will
want to simulate some real computation in the servicing of serv).

Discuss the circumstances under which each configuration is prefer-
able.

(a)

(b)

This page intentionally left blank

Chapter 14

INTER-OPERATION
INVOCATION SELECTION MECHANISM

Chapter 9 introduced the use of synchronization and scheduling expressions
to alter the default invocation servicing semantics of the input (inni) statement,
which is used for rendezvous. Though powerful, these expressions cannot be
used to specify an important set of selection algorithms. Imagine a bank that
gives priority service to preferred customers (e.g., businesses or individuals
with large balances). When there is a line, the customers are serviced in order
of priority based on their status (e.g., large businesses have higher priority
than small businesses). Consider the following input statement that attempts to
enforce this priority scheduling:

A single execution of this input statement services either an invocation of
deposit or an invocation of withdraw. The scheduling expressions enforce
priority scheduling in servicing invocations over each arm. Invocations of
deposit are serviced in order of their priority argument, as are invocations
of withdraw.

A scheduling expression applies only to the arm on which it is specified. As
such, the priority scheduling defined above does not hold over both arms as is
demonstrated by the following program segment.

194 Inter-operation Invocation Selection Mechanism

This program segment prints:

Notice, however, that the invocations of withdraw are serviced in order of pri-
ority, as are the invocations of deposit. (Recall that invocations are normally
serviced in order of arrival, but that this order is affected by synchronization and
scheduling expressions; see Section 9.5 for details.) Presentation of a solution
to priority scheduling over multiple arms is postponed until Section 14.4.

Scheduling and synchronization expressions apply only to the arm on which
they are specified and, therefore, cannot be used to implement an invocation
selection algorithm that applies to all arms on an input statement. To support
such selection algorithms, the input statement provides additional features to
specify a selection method and to examine pending invocations.

This chapter presents additional features of the input statement that can be
used to implement advanced invocation selection algorithms. The presentation
begins with a discussion of selection methods and the view statement. Next, an
overview of some predefined support classes is given. Finally, the chapter con-
cludes with some examples. Additional discussion appears in Reference [32].

14.1 Selection Method Expression
To implement an invocation selection algorithm that selects over all arms

instead of over a single arm, or that modifies the selection semantics within a
single arm, one must specify a selection method. A selection method expres-
sion is specified for an input statement by a with/over clause. Consider the
following input statement:

This input statement uses a with/over clause to specify that the invocation
to be serviced should be selected using the selMethod method, which the
programmer writes. This method may be a normal Java method, an operation,
or an expression that evaluates to a capability.

14.1 Selection Method Expression 195

When an input statement with a with/over clause is executed, an enu-
meration of the pending invocations for all operations being serviced by the
input statement is passed as an argument to the selection method. From the
enumeration, the selection method picks a single invocation to service and
returns the selected invocation. As such, the selection method’s argument
type must be edu.ucdavis.jr.ArmEnumeration and its return type must
be edu.ucdavis.jr.Invocation. If there is no suitable invocation to ser-
vice, then returning null will force the input statement to wait until another
invocation arrives. The declaration of the selection method used in the above
input statement (with the body elided) is:

Figure 14.1. Pictorial representation of the structure of ArmEnumeration

Figure 14.1 portrays the structure of the ArmEnumeration argument passed
to the selection method. Each ArmEnumeration object is associated with a
specific input statement. ArmEnumeration objects enumerate (through calls
to the nextElement method) a number of InvocationEnumeration objects,
one for each arm of the associated input statement, in lexical order of the arms

196 Inter-operation Invocation Selection Mechanism

of the associated input statement. Each InvocationEnumeration object, in
turn, enumerates (through calls to the nextElement method) the Invocation
objects within a specific arm in order of oldest pending invocation.

The following selection method demonstrates the use of the enumerations:

This selection method checks each arm for invocations and returns the first
invocation found (which need not be the oldest pending). So, for example for
the inni statement

with the following invocations

it would return the invocation of one with argument 100. If executed a sec-
ond time (assuming no new invocations arrive) it would return the invoca-
tion of two with argument 5. Further details of the methods provided by the
ArmEnumeration, InvocationEnumeration, and Invocation classes are
discussed in Section 14.3.

Selection methods provide access to the entire set of pending invocations dur-
ing invocation selection. With such access, it is possible to compare individual
invocations from different arms to determine which to service. This allows for
the implementation of selection algorithms, for example, that enforce priority
or that show preference for one arm over another under certain conditions (e.g.,
give preference to a writer over a reader if the writer is participating in an in-
teractive session). Synchronization and scheduling expressions, however, only
provide access to a single invocation at a time.

While a selection method is executing, the queues for the operations in the
associated input statement are locked. This locking prevents additional invo-
cations from arriving in the middle of a selection algorithm, which simplifies

14.2 View Statement 197

the implementation of such algorithms. The locking, however, also prevents
any other input statement from servicing one of the locked operations (or any
operation in an input statement that even refers to one of the locked operations).
As such, selection methods should, when possible, complete quickly.

14.2 View Statement
The previous section introduced the use of the with/over clause and the

implementation of selection methods. The presented features alone, however,
are insufficient for implementing the types of selection algorithms discussed in
the introduction to this chapter. For example, the priority scheduling selection
algorithm requires access to the arguments of the pending invocations. This
section presents the view statement, which provides access to the arguments of
an invocation.

14.2.1 General Form and Semantics
A view statement is similar, in function, to a switch statement; a view

statement attempts to match an invocation against a number of different cases.
The view statement differs, however, in that its cases are types rather than
values. A view statement contains an Invocation object and one or more as
commands separated by the keyword as:

The invocation_expr is any expression that evaluates to an Invocation object.
Each as command specifies a formal argument list and a block of code. The
formal list contains types and names for the parameters, just as in Java’s method
headers. The values of a matching invocation’s arguments are bound to the
formal parameters during execution of the associated block of code. After the
block completes, execution continues at the first statement following the view
statement.

A view statement evaluates the invocation expression to obtain a reference
to a specific Invocation object. The types of the arguments for the referenced
invocation are then matched against those in the different as commands. If a
match is found, then the as command’s block is executed with access to the
invocation’s values through the formal arguments.

The as commands in a view statement can be followed by an else command,
which has the form

This block of code is executed if the invocation type does not match a formal
argument list in any as command. If no match is found and the view state-
ment does not contain an else command, then execution continues at the first
statement following the view statement.

198 Inter-operation Invocation Selection Mechanism

A view statement provides a “view” of the contents of an Invocation object.
Using view statements, a selection method can be written that examines and
compares the contents of the pending invocations. Once the selection method
has determined which invocation to service, it returns that invocation.

14.2.2 Simple View Statement
The view statement is specifically intended to provide access to an invoca-

tion’s arguments within the implementation of a selection method. Typically,
a view statement will closely mirror the structure of the input statement with
which the selection method is associated. As such, consider the following input
statement originally discussed above:

This input statement services two operations, a and b, and delegates invocation
selection to a selection method, selMethod.

A simple view statement that may appear in selMethod would look as
follows:

This view statement attempts to match the Invocation object, invoc, against
the formal argument lists that correspond to the argument lists of the operations
being serviced. A successful match with the first argument list, (int m),
indicates a match with an invocation of operation a. The value of the first
argument of the invocation is bound to parameter m during the execution of
the block of code labeled “code for a”. Additional examples of the use of
the with/over clause, selection methods, and view statements are given in
Section 14.4.

14.3 Selection Method Support Classes
Selection methods make use of ArmEnumeration,

InvocationEnumeration, and Invocation objects to implement in-
vocation selection algorithms. Each of the following classes is a member of

14.3 Selection Method Support Classes 199

the edu.ucdavis.jr package. These classes provide methods to facilitate
the implementation of different selection algorithms. These methods are
summarized below. Detailed descriptions of the methods are provided in
Appendix B.

14.3.1 ArmEnumeration Methods
The ArmEnumeration class provides access to the invocations of

an associated input statement through the enumeration of a number of
InvocationEnumeration objects (one per arm of the input statement). The
ArmEnumeration class supports the following methods.

method
hasMoreElements
nextElement
reset
size

description
Tests if this enumeration contains more elements.
Returns the next element of this enumeration.
Resets the enumeration to the beginning.
Returns the number of elements.

14.3.2 InvocationEnumeration Methods
The InvocationEnumeration class provides access to the invocations of

a specific arm of an input statement through the enumeration of its pending
invocations (represented by Invocation objects). The pending invocations
are ordered by logical timestamp (oldest pending first). The logical timestamp
is an implementation specific data structure that ensures causal ordering of
messages. Logical timestamps need not (and do not) correspond to actual time.
The InvocationEnumeration class supports the following methods.

method
hasMoreElements
nextElement
reset
size

description
Tests if this enumeration contains more elements.
Returns the next element of this enumeration.
Resets the enumeration to the beginning.
Returns the number of elements.

14.3.3 Invocation Methods
The Invocation class provides access to a single pending invocation of a

specific arm of an input statement. The values of the actual arguments within
an invocation are accessed using a view statement as discussed in Section 14.2.
The Invocation class supports the following method.

method
getTimestamp

description
Returns the logical timestamp of the invocation.

14.3.4 Timestamp Methods
The Timestamp class stores a logical timestamp for an invocation. The

Timestamp class implements java.lang.Comparable and supports the fol-
lowing methods.

200 Inter-operation Invocation Selection Mechanism

method
equals
compareTo

description
Tests two Timestamp objects for numerical equality.
Compares two Timestamp objects numerically.

14.4 Examples
The following examples implement advanced selection algorithms using in-

vocation selection methods and view statements. These examples demonstrate
the use of a number of the methods discussed for the enumeration and invocation
classes.

14.4.1 Priority Scheduling
This example revisits the priority scheduling problem presented in the intro-

duction to this chapter. This selection algorithm services the following input
statement in order of priority over all invocations.

To select an invocation based on all pending invocations a with/over clause
is required and a selection method must be implemented.

The priority scheduling selection algorithm for the above input statement
can be implemented as follows.

14.4 Examples 201

This selection method iterates through the ArmEnumeration and, in turn, iter-
ates through each InvocationEnumeration to access the pending invocations.
The arguments of each pending invocation are accessed through the use of a
view statement to allow comparison between an invocation’s priority and that of
the currently believed highest priority invocation, cur (which is initially null
at the beginning). Once all invocations have been examined, cur will refer to
the highest priority invocation and it will be returned. If there are no pending
invocations, the method returns null and the input statement blocks until an
invocation arrives.

Note that the operations being serviced have matching signatures (i.e.,
both deposit and withdraw take an integer priority and a double amount).
Special attention must be paid when writing a selection method for opera-
tions with matching signatures. In such cases, it is only possible to dis-
tinguish between the invocations of different operations by the order of the
InvocationEnumerations as returned by the ArmEnumeration (they are re-
turned in lexical order of the input statement being serviced). In this example,
however, such a distinction is unnecessary since selection is based solely on the
priority argument.

14.4.2 Random Scheduling
Consider, again, the input statement discussed above. In this example, how-

ever, the invocation to service will be selected at random rather than according
to priority. Selecting an invocation at random, in essence, gives priority to those
clients with many pending requests, but still gives those with only a few requests
a chance. (The following algorithm can be modified to give a specific request
a greater chance for servicing by implementing lottery-scheduling [47].) The
following code defines a random scheduling selection method and demonstrates
the use of the reset and size methods discussed in Section 14.3.

202 Inter-operation Invocation Selection Mechanism

This selection method works in two phases. In the first phase, the total number
of pending invocations is calculated by iterating through the ArmEnumeration
and summing the sizes of the individual InvocationEnumerations using
the size method. Once the number of invocations has been tallied a random
number in the range from 0 to the total is calculated.

In the second phase, the ArmEnumeration is reset and iterated over again
until the InvocationEnumeration that contains the randomly selected invo-
cation is found. The selected InvocationEnumeration is then iterated over
until the invocation to service is found and returned.

Notice that the above selection method is an op-method. In this example,
there is no difference between defining the selection method as a normal method
or as an op-method; it works the same either way. In general, however, using an
operation as a selection method allows invocation selection to be implemented
by an input statement. Of course, if the input statement servicing the selec-
tion operation also services an operation in the original input statement, then
deadlock will result due to locking (see Section 14.1), for example, as in the
following code:

14.4 Examples 203

14.4.3 Median Scheduling
The final example demonstrates a more complicated selection algorithm in

which all invocations must be compared, in a sense, to each other. In this
example, the invocation to service is selected according to the median value
of the first parameter of the pending invocations. Again, assume the input
statement shown above in which there are two operations. The following code
implements the median scheduling selection algorithm.

204 Inter-operation Invocation Selection Mechanism

The selection method first iterates over all of the invocations and creates an
Element object containing each invocation and the invocation’s first argument.
As the Element objects are created, they are stored in a Vector. Once all
of the invocations have been gathered, the vector is converted into an array
and sorted (using the Comparator object in the Element class). Finally, the
median invocation is selected and returned for servicing.

Exercises
14.1 Write a selection method to return

the first invocation of the lexically last arm that has one.

the last invocation of the lexically first arm that has one.

(a)

(b)

14.2 The following input statement uses a synchronization (st) expression to
select which invocations to service.

Using a with/over clause instead of the synchronization expression,
write a selection method that simulates the above st expression (i.e.,
that selects the same invocations to service in the same order).

The following input statement uses a scheduling (by) expression to alter
the order in which invocations are serviced.

14.3

Exercises 205

Using a with/over clause instead of the scheduling expression, write a
selection method that simulates the above by expression (i.e., that selects
the same invocations to service in the same order).

This exercise asks that you write a selection method that simulates the
default JR invocation selection semantics for a specific input statement.
JR’s invocation selection semantics are as follows (see Section 9.5 for
further discussion):

14.4

Select the arm with the oldest pending invocation.

Search the selected arm for a serviceable invocation (i.e., for which
the synchronization expression is true).

If this arm contains a scheduling expression, then continue searching
this arm for a serviceable invocation that minimizes the scheduling
expression.

If no serviceable invocation is found, then select the arm with the
next oldest pending invocation and repeat the process. If there are
no unchecked arms, execute the else arm (if present) or block.

(a)

(b)

(c)

(d)

Write a selection method that simulates JR’s semantics for this input
statement:

Just to be clear, for the following set of asynchronous invocations

the output of repeated executions of the above input statement (assum-
ing that all invocations had already arrived before executing the input
statement) is:

206 Inter-operation Invocation Selection Mechanism

14.5 This exercise asks that you repeat Exercise 14.4 but write a selection
method that simulates the default SR invocation selection semantics in-
stead of JR’s semantics. SR’s invocation selection semantics are as
follows [9]:

Examine the invocations in order of oldest pending.

Find the oldest pending serviceable invocation (i.e., for which the
synchronization expression is true).

If the arm containing the oldest pending serviceable invocation has
a scheduling expression, then continue searching that arm for a ser-
viceable invocation that minimizes the scheduling expression.

If no serviceable invocation is found, then execute the else arm (if
present) or block.

(a)

(b)

(c)

(d)

Just to be clear, for the following set of asynchronous invocations

the output of repeated executions of the above input statement (assuming
that all invocations had already arrived before executing) is:

Synchronization and scheduling clauses can access not only the param-
eters of an invocation, but also variables in the local scope (i.e., local,
instance, and class variables). Selection methods, by virtue of being
invoked as a method, do not have access to variables local to the scope
in which the associated input statement resides. Furthermore, selec-
tion methods may not have access to the same set of instance and class
variables.

Discuss the potential implications of these differing access rights. Is it
possible to provide a selection method with access to the same set of
variables? If so, how?

14.6

Exercises 207

Discuss implementing a general selection method (or an object with a
selection method) that can be used to replace the use of the built-in syn-
chronization and scheduling expressions. Consider passing capabilities
to the object’s constructor. As a first step, verify that your solution works
on the examples in Exercises 14.2 and 14.3. Next, discuss any limitations
relating to Exercise 14.6.

14.7

This page intentionally left blank

PART II

APPLICATIONS

Part I described JR’s concurrent programming mechanisms and gave numer-
ous, mostly small examples. In this part we examine several larger applications.
These are representative of the kinds of parallel and distributed programming
problems JR can be used to solve. The solutions also illustrate several pro-
cess interaction paradigms that occur in concurrent programs. Each interaction
paradigm is an example or model of an interprocess communication pattern
and associated programming technique that can be used to solve a variety of
problems. The exercises at the end of each chapter explore additional problems
that can be solved using these paradigms.

Chapters 15 and 16 examine two problems that are representative of those
that arise in scientific computing: matrix multiplication and iterative solutions
to partial differential equations (PDEs). In both cases we develop solutions that
use shared variables and ones that use message passing. We also discuss perfor-
mance issues, including the effect of memory caches and the tradeoffs between
task size and communication and synchronization overhead. In Chapter 17
we examine the classic traveling salesman problem, which is representative
of combinatorial problems. Again we present both centralized and distributed
solutions and discuss performance tradeoffs. The next two chapters in Part II
present further examples of concurrent programs. Chapter 18 develops a simple
command interpreter and distributed file system. Chapter 19 develops an im-
plementation of a discrete event simulation package. Chapter 20 describes how
JR programs can interact with the Java GUI (graphical user interface) packages
AWT and Swing. Finally, Chapter 21 describes other concurrency notations,
which preprocessors convert into JR programs.

This page intentionally left blank

Chapter 15

PARALLEL MATRIX MULTIPLICATION

Matrix computations lie at the heart of most scientific computing problems.
Matrix multiplication is one of the most basic of these computations. In Chap-
ter 1 we presented a simple, but inefficient, parallel algorithm for matrix mul-
tiplication. Here we develop four realistic algorithms. Two employ shared
variables and hence are suitable for execution on shared-memory multiproces-
sors. The other two algorithms employ message passing and hence are suitable
for execution on distributed-memory systems. Each algorithm also illustrates
a different programming technique and a different combination of JR mecha-
nisms.

As in Section 1.3, the problem is to compute the product of two N × N
real matrices A and B. This requires computing inner products, one for
each combination of a row of A and a column of B. On a massively parallel,
synchronous multiprocessor, all inner products could be computed in parallel
with reasonable efficiency since, by default, every processor executes the same
sequence of instructions at the same time. However, on an asynchronous mul-
tiprocessor each process has to be created and destroyed explicitly, and each
inner product requires relatively little computation. In fact, the parallel program
in Section 1.3 would be much slower than a sequential program since the cost
of creating and destroying processes would far outweigh any benefits derived
from parallel execution.

To execute efficiently on an asynchronous multiprocessor, each process in a
parallel program must perform quite a bit of work relative to the amount of time it
takes to create the process and the amount of time the process spends communi-
cating and synchronizing with other processes. A common way to describe the
amount of sequential work that a process performs is in terms of the number of
basic steps—or grains—of the parallel computation. Choosing an appropriate
grain size is a ubiquitous and important problem in parallel computing because

212 Parallel Matrix Multiplication

Figure 15.1. Assigning processes to strips

the grain size determines each process’s sequential execution time, which must
be much greater than the concurrency and communication overhead. The exact
balance depends, of course, on the underlying hardware and on the concur-
rent programming mechanisms that are employed. This chapter develops four
matrix multiplication algorithms that employ different combinations of com-
munication and synchronization mechanisms. Each can readily be modified to
alter the balance between sequential execution time and concurrency overhead.

15.1 Prescheduled Strips
Our first algorithm uses N × N real matrices A, B, and C. Assume that these

are shared variables, and we wish to use PR processes to compute the product
of A and B and store it in C. For simplicity we also assume that N is a multiple
of PR; for example, N might be 100 and PR might be 10.

To balance the amount of computation performed by each process, each
should compute inner products. The simplest way to do this is to assign
each process responsibility for computing the values for all elements in a strip
of matrix C, as shown in Figure 15.1. In particular, let S be N/PR. Then the first
process computes the values of the first S rows of C, the second computes the
values of the next S rows of C, and so on. This kind of approach is sometimes
called prescheduling because each process is assigned in advance a certain
number of “chores,” i.e., inner products in this case.

To implement this algorithm in JR, we use a main class and a multiplier
class. The main class reads values for N, PR, A, and B from input files or the
command line (straightforward code not shown). It creates a multiplier object
and then calls the object’s compute method, which does the actual computation
and returns the results. The main class then outputs the results.

15.1 Prescheduled Strips 213

The multiplier class declares N, PR, S, and the matrices A, B, and C. Its
compute method creates PR processes to compute the inner products. These
processes share the three matrices, but each strip process computes a separate
strip of C so no synchronization is needed. The compute method starts up these
processes and then waits, using the done semaphore, for all processes to finish
computing their strips.

214 Parallel Matrix Multiplication

The compute method creates the strip processes using send invocations
and then waits for them to complete using a semaphore. That code could not
be replaced (only) by declaring the equivalent family of processes (using the
process abbreviation) because those processes might execute before the code
in the compute method initializes instance variables used within strip. (See
Exercise 15.3.)

Many shared-memory multiprocessors employ caches, with one cache per
processor. Each cache contains the memory blocks most recently referenced
by the processor. (A block is typically a few contiguous words.) The purpose
of caches is to increase performance, but they have to be used with care by the
programmer or they can actually decrease performance (due to cache conflicts).
Reference [22] gives three rules-of-thumb programmers need to keep in mind:

Perform all operations on a variable, especially updates, in one process.

Align data so that variables updated by different processors are in different
cache blocks.

Reuse data quickly when possible so it remains in the cache and does not
get “spilled” back to main memory.

A two-dimensional array in Java is an array of references to single-
dimensional arrays. So, a matrix is stored in row-major order (i.e., by rows),
although adjacent rows are not necessarily contiguous. The above program,
therefore, uses caches well. Each strip process reads one distinct strip of
A and writes one distinct strip of C, and it references elements of A and C by
sweeping across rows. Every process references all elements of B, but that is
unavoidable. (If B were transposed, so that columns were actually stored in
rows, it too could be referenced efficiently.)

15.2 Dynamic Scheduling: A Bag of Tasks 215

15.2 Dynamic Scheduling: A Bag of Tasks
The algorithm in the previous section statically assigned an equal amount

of work to each strip process. If the processes execute on homogeneous
processors without interruption, they would be likely to finish at about the
same time. However, if the processes execute on different-speed processors,
or if they can be interrupted—e.g., in a timesharing system—then different
processes might complete at different times. To dynamically assign work to
processes, we can employ a shared bag of tasks, as in the solution to the adaptive
quadrature problem in Section 7.7. Here we present a matrix multiplication
program that implements such a solution. The structure of the solution is
illustrated in Figure 15.2.

Figure 15.2. Replicated workers and bag of tasks

As in the previous program, we employ two classes. The main class is
identical to that in the previous section: it again creates a multiplier object,
calls the object’s compute method, and then prints out results.

The multiplier class is similar to that in the previous section in that it declares
N, A, and B. It also declares and initializes W, the number of worker processes.
The class declares an operation, bag, which is shared by the worker processes.

The code in method compute sends each row index to bag. It then creates the
worker processes, waits for them to terminate, and returns results to the invoker.
Each worker process repeatedly receives a row index r from bag and computes
N inner products, one for each element of row r of result matrix C. However, if
the bag is empty, then the worker process notifies the compute method that it
has completed and terminates itself. (See Exercises 15.5 and 15.6.)

216 Parallel Matrix Multiplication

This way of detecting when to terminate works here because once the bag
becomes empty, no new tasks are added to it; this way would not work for other
problems where the bag might become empty before additional tasks are placed
into it. For examples, see the adaptive quadrature example in Section 7.7, and
the two solutions to the traveling salesman problem in Sections 17.2 and 17.3.

This program should show nearly perfect speedup—over the one worker and
one processor case—for reasonable-size matrices, e.g., when N is 100 or more.
In this case the amount of computation per iteration of a worker process far
outweighs the overhead of receiving a message from the bag. Like the previous

15.3 A Distributed Broadcast Algorithm 217

Figure 15.3. Broadcast algorithm interaction pattern

program, this one uses caches well since JR stores matrices in row-major order,
and each worker fills in an entire row of c. If the bag of tasks contained column
indices instead of row indices, performance would be much worse because
workers would encounter cache update conflicts.

15.3 A Distributed Broadcast Algorithm
The program in the previous section can be modified so that the workers do

not share the matrices or bag of tasks. In particular, each worker (or address
space) could be given a copy of A and B, and an administrator process could
dispense tasks and collect results (see Exercise 15.4). With these changes, the
program could execute on a distributed-memory machine.

This section and the next present two additional distributed algorithms. To
simplify the presentation, we use processes, one to compute each element
C[r] [c]. Initially each such process also has the corresponding values of A and
B, i.e., A[r] [c] and B [r] [c]. In this section we have each process broadcast
its value of A to other processes on the same row and broadcast its value of B to
other processes on the same column. In the next section we have each process
interact only with its four neighbors. Both algorithms are inefficient as given
since the grain size is way too small to compensate for communication overhead.
However, the algorithms can readily be generalized to use fewer processes, each
of which is responsible for a block of matrix C (see Exercises 15.11 and 15.12).

Our broadcast implementation of matrix multiplication uses three classes: a
main class, a multiplier class, and a point class. The main class is identical to
those in the previous sections.

Instances of class Point carry out the computation. The multiplier class
creates one instance for each value of C[r][c]. Each instance provides three
public operations: one to start the computation, one to exchange row values, and
one to exchange column values. Operation compute is serviced by a method;
it is invoked by a send statement in the multiplier class and hence executes as
a process. The arguments of the compute operation are references for other

218 Parallel Matrix Multiplication

instances of Point. Operations rowval and colval are serviced by receive
statements; they are invoked by other instances of Point in the same row r and
column c, respectively.

The instances of Point interact as shown in Figure 15.3. The compute
process in Point first sends its value of Arc to the other instances of Point
in the same row and receives their elements of A. The compute process then
sends its value of Brc to other instances of Point in the same column and
receives their elements of B. After these two data exchanges, Point (r, c) now
has row r of A and column c of B. It then computes the inner product of these
two vectors. Finally, it sends its value of Crc back to the multiplier class.

15.3 A Distributed Broadcast Algorithm 219

The multiplier class creates instances of Point and gets back a reference
for each, which it stores in matrix pref. It then invokes the compute operations,
passing each instance of Point references for other instances in the same row
and column. We use pref[r] to pass row r of pref to compute. But, we
must extract the elements in column c of pref and store them in a new array,
cpref, which we then pass to compute. It then waits for all points to finish
their computations and gathers the results, which it returns to the invoker.

220 Parallel Matrix Multiplication

Figure 15.4. Heartbeat algorithm interaction pattern

As noted, this program can readily be modified to have each instance of
Point start with a block of A and a block of B and compute all elements of a
block of C. It also can be modified so that the blocks are not square, i.e., strips
can be used. In either case the basic algorithmic structure and communication
pattern is identical. The program can also be modified to execute on multiple
virtual machines: The multiplier class first creates the virtual machines and
then creates instances of Point on them.

15.4 A Distributed Heartbeat Algorithm
In the broadcast algorithm, each instance of Point acquires an entire row of

A and an entire column of B and then computes their inner product. Also, each
instance of Point communicates with all other instances on the same row and
same column. Here we present a matrix multiplication algorithm that employs
the same number of instances of a Point class. However, each instance holds
only one value of A and one of B at a time. Also, each instance of Point
communicates only with its four neighbors, as shown in Figure 15.4. Again,
the algorithm can readily be generalized to work on blocks of points and to
execute on multiple virtual machines.

As in the broadcast algorithm, we will use processes, one to compute each
element of matrix C. Again, each initially also has the corresponding elements of
A and B. The algorithm consists of three stages [37]. In the first stage, processes
shift values in A circularly to the left; values in row r of A are shifted left r

15.4 A Distributed Heartbeat Algorithm 221

columns. Second, processes shift values in B circularly up; values in column
c of B are shifted up c rows. The result of the initial rearrangement of the
values of A and B for a 3 × 3 matrix is shown in Figure 15.5. (Other initial

Figure 15.5. Initial rearrangement of 3 × 3 matrices A and B

rearrangements are possible; see Exercise 15.9.) In the third stage, each process
multiplies one element of A and one of B, adds the product to its element of C,
shifts the element of A circularly left one column, and shifts the element of B
circularly up one row. This compute-and-shift sequence is repeated N-1 times,
at which point the matrix product has been computed.

We call this kind of algorithm a heartbeat algorithm because the actions of
each process are like the beating of a heart: first send data out to neighbors,
then bring data in from neighbors and use it. To implement the algorithm in
JR, we again use three classes, as in the broadcast algorithm. Once again, the
main class is identical to those in the previous sections.

The computation is carried out by instances of a Point class, which pro-
vides three public operations as in the broadcast algorithm. However, here the
compute operation is passed references for only the left and upward neighbors,
and the rowval and colval operations are invoked by only one neighbor. Also,
the body of Point implements a different algorithm, as seen in the following.

222 Parallel Matrix Multiplication

Method compute in the multiplier class creates instances of Point and passes
each references for its left and upward neighbors. The compute method starts
up the computation in the Point objects and gathers the results from all the
points.

Exercises 223

The prev method uses modular arithmetic so that instances of Point on the left
and top borders communicate with instances on the right and bottom borders,
respectively.

Exercises
15.1 Determine the execution times of the programs in this chapter. To do so,

place an invocation of System. currentTimeMillis() just before the
computation begins and another just after the computation completes.
The difference between the two values returned by this method is the
time, in milliseconds, that the JR program has been executing.

15.2 Modify the prescheduled strip algorithm so that N does not have to be a
multiple of PR.

15.3 Rewrite the MMMultiplier class in Section 15.1 so that the strip pro-
cesses are declared as a family of processes using the process abbrevi-
ation. Be sure your solution prevents the potential problem mentioned in
the text; i.e., it prevents these processes from executing before instance
variables have been initialized.

15.4 Change the bag of tasks program so that it does not use shared variables.

15.5 Suppose we change the code in the MMMultiplier class in Section 15.2
so that the compute method does not create the processes. Instead they
are created using the process abbreviation:

Is this new program correct?

15.6 Suppose we change the code in the MMMultiplier class in Section 15.2
so that the worker process executes the following code

224 Parallel Matrix Multiplication

Is this new program correct?

15.7 The compute process in class Point in Section 15.3. contains the fol-
lowing receive statement:

This statement is within a for statement.

(a)

(b)

Write an equivalent input statement for the receive statement.

Explain why the receive statement cannot be simplified to the fol-
lowing, assuming the declaration of rowval is changed to omit the
sender field:

15.8

15.9

Suppose A and B are 5 × 5 matrices. Determine the location of each
value of A and B after the two shift stages of the heartbeat algorithm in
Section 15.4.

Reconsider the initial rearrangement phase of the heartbeat algorithm in
Figure 15.5. Suppose instead that each row r of A is shifted left r+1
columns and that each column c of B is shifted up c+1 rows. Show this
initial rearrangement for when A and B are 3 × 3 matrices. Will the
heartbeat algorithm still multiply arrays correctly?

Now suppose that each row r of A is shifted left r+2 columns and that
each column c of B is shifted up c+2 rows. Repeat the above questions,

If possible, generalize the above results.

Determine the total number of messages that are sent in the distributed
broadcast algorithm and the size of each. Do the same for the distributed
heartbeat algorithm. Explain the differences.

Modify the broadcast algorithm so that each instance of Point is re-
sponsible for a block of points. Use processes, where N is a multiple
of PR.

15.10

15.11

Exercises 225

15.12

15.13

15.14

15.15

Modify the heartbeat algorithm so that each instance of Point is respon-
sible for a block of points. Use processes, where N is a multiple of
PR.

Compare the performance of the various programs presented in this chap-
ter or those that you developed in answering the above exercises.

Implement matrix multiplication using a grid of filter processes [26, 7].

Implement Gaussian elimination (see Exercise 4.17) using the techniques
illustrated in this chapter.

This page intentionally left blank

Chapter 16

SOLVING PDEs: GRID COMPUTATIONS

Partial differential equations (PDEs) are used to model a variety of different
kinds of physical systems: weather, airflow over a wing, turbulence in fluids, and
so on. Some simple PDEs can be solved directly, but in general it is necessary to
approximate the solution at a finite number of points using iterative numerical
methods. In this chapter we show how to solve one specific PDE—Laplace’s
equation in two dimensions—by means of a grid computation, which employs
what is called a finite-difference method. As in the previous chapter, we present
several solutions that illustrate a variety of programming techniques and their
realizations in JR.

Laplace’s equation is an example of what is called an elliptic partial differ-
ential equation. The equation for two dimensions is the following:

Function represents some unknown potential, such as heat or stress.
Given a fixed spatial region and solution values for points on the boundaries of

the region, our task is to approximate the steady-state solution for points within
the interior. We can do this by covering the region with an evenly spaced grid of
points, as shown in Figure 16.1. Each interior point is initialized to some value.
The steady-state values of the interior points are then calculated by repeated
iterations. On each iteration the new value of a point is set to a combination of
the old and/or new values of neighboring points. The computation terminates
when every new value is within some acceptable difference of every old value.

There are several stationary iterative methods for solving Laplace’s
equation—Jacobi iteration, Gauss-Seidel, and successive over-relaxation
(SOR). In Jacobi iteration, the new value for each point is set to the average
of the old values of the four neighboring points. Jacobi iteration can be paral-

228 Solving PDEs: Grid Computations

Figure 16.1. Approximating Laplace’s equation using a grid

lelized readily because each new value is independent of the others. Although
Jacobi iteration converges more slowly than other methods, we will use it in
this chapter since it is easier to program. In any event, parallel computations
that use other iterative methods employ basically the same communication and
synchronization patterns.

16.1 A Data Parallel Algorithm
A data parallel algorithm is an iterative algorithm that repeatedly and in

parallel manipulates a shared array [23]. This kind of algorithm is most closely
associated with synchronous (SIMD) multiprocessors, but it can also be used on
asynchronous multiprocessors. Here we present a data parallel implementation
of Jacobi iteration.

The main loop in a data parallel implementation of Jacobi iteration repeatedly
executes three phases:

To implement this computation in JR, we use a main class, a Jacobi class, and
a results class.

The results class is the simplest. It is simply a container for the results of the
computation; it provides a print method to print out the results.

16.1 A Data Parallel Algorithm 229

The main class declares the grid size N, border values (left, top, right, and
bottom), and the convergence criterion epsilon. N is the number of rows and
columns in the grid of interior points, i.e., points whose steady-state value is to
be computed. The main method reads these values from input or as command-
line arguments (not shown in the code). It then creates a Jacobi object, which
will be used for the actual computation. The main method then invokes the
compute in the Jacobi object, gets back the results, and prints them out.

The Jacobi class provides the compute method. This method is passed the
grid size N, border values (left, top, right, and bottom), and the convergence
criterion epsilon. It initializes an array that contains old and new grid values
and two variables that are used to index grid. The current (old) grid values
are grid[cur] and the next (new) grid values are grid[nxt]. The code later
in this section reads values from the old grid and writes values to the new grid
on each iteration. At the end of each iteration, the code replaces the old values
by the new values by simply swapping nxt and cur, which is more efficient
than copying grid[nxt] to grid[cur] element by element. (Exercise 16.5
explores this issue in further detail.)

230 Solving PDEs: Grid Computations

Array grid consists of two matrices. Each matrix has N+2 rows and columns
so the boundary values can be stored within the matrix. This avoids having to
treat the boundaries as special cases in the main computation. For simplicity
each interior grid point is initialized to zero; for faster convergence each should
be initialized to a value that somewhat approximates the expected final value.

After initializing the grid, the compute method performs the actual iterative
computation. It initializes the array diff, which is used to record differences for
each point between successive iterations. It then invokes the compute method.
The main loop in compute has three phases, as outlined above. The first phase
is implemented by a co statement that makes calls ofupdate. The second
phase is implemented by swapping the two indices, which switches the roles of
the two grids. The third phase is implemented by a second co statement that
makes N calls of check_diff s and by an if statement that exits the loop if the
grid values have converged.

16.1 A Data Parallel Algorithm 231

232 Solving PDEs: Grid Computations

After the first group of processes have completed, matrix diff contains the
differences between all old and new grid points. Then, a second group of
processes determines the maximum difference: N instances of check_diffs
run in parallel, one for each row i. Each instance of check_diffs stores
the maximum difference of the elements in its row in diff[i][1]. The code
then updates local variable maxdiff, which contains the maximum of all the
differences. If this value is at most epsilon, we exit the loop and return the
results.

16.2 Prescheduled Strips
The main loop in the algorithm in the previous section repeatedly cre-

ates numerous processes and then waits for them to terminate. Process cre-
ation/destruction is much more time consuming than most forms of interpro-
cess synchronization, especially when processes are repeatedly created and
destroyed. Hence we can implement a data parallel algorithm much more ef-
ficiently on an asynchronous multiprocessor by creating processes once and
using barriers to synchronize execution phases. (See Reference [7] for further
discussion of this topic.) We can make the implementation even more efficient
by having each process handle several points of the grid, not just one.

This section presents a parallel algorithm for Jacobi iteration that uses a fixed
number of processes. As in the matrix multiplication algorithm in Section 15.1,
each process is responsible for a strip of the grid. In particular, for an N × N
grid, we use PR processes, with each responsible for S rows of the grid. The
solution also illustrates one way to implement a monitor [25] in JR.

Our program employs four classes: a main class, a barrier class, a Jacobi
class, and a results class. The results class is the same as in the previous section.
The main class is similar to the one in the previous section. The differences are
that it now also reads in PR, computes the strip size, and passes both to Jacobi’s
constructor.

16.2 Prescheduled Strips 233

The BarrierSynch class implements a barrier synchronization point for
PR processes. It is essentially a monitor, with mutual exclusion and condition
synchronization implemented using semaphores. In particular, the class pro-
vides one public operation barrier. Processes call barrier when they reach
a barrier synchronization point. All but the last to arrive block on a semaphore.
The last to arrive awakens those that are sleeping and resets the local variables.

Two delay semaphores are needed to prevent processes that are quick to arrive
at the next barrier synchronization point from “stealing” signals intended for
processes that have not yet left the previous barrier. Their use is analogous to
the use of an array of condition variables in a monitor. Variable sleep indicates
which element of delay a process is to block on; its value alternates between 0
and 1. Before blocking, a process copies the current value of sleep into a local
variable; this is necessary since the value of sleep could otherwise change
before the process blocks (see Exercise 16.6).

234 Solving PDEs: Grid Computations

The Jacobi class implements parallel Jacobi iteration using PR processes.
As before, each process repeatedly executes three phases: computing new val-
ues, replacing old values by new ones, and checking for convergence. These
are implemented in pretty much the same way as in the data parallel algorithm.
To ensure that all processes complete one phase before beginning the next, the
first and last are followed by a barrier synchronization point.

16.2 Prescheduled Strips 235

As commented in the code, only the first process counts the number of iterations
(all will execute the same number since all use the same convergence criterion).
Also, only the first process executes the swap statement that switches the roles
of the grids. Variable iters is global to the processes so that it is accessible to
the compute method. The strip processes are not created using the process
abbreviation for the same reason discussed in Section 15.1. (See Exercise 16.7.)

To avoid cache update conflicts, each strip process uses a local variable to
accumulate the maximum difference between old and new values in its strip of
the grid. Only at the end of phase one of its main loop does a process store
into shared array maxdiff. In the second phase, each process then reads these
shared values to determine the maximum difference in the entire grid; again it
uses local variable mdiff to avoid writing into shared variables.

236 Solving PDEs: Grid Computations

16.3 A Distributed Heartbeat Algorithm
The previous two programs for Jacobi iteration use shared variables. In

this section we present a distributed program that uses message passing. The
program again employs PR processes, and each is responsible for a strip of
S rows of the grid. Also, each process repeatedly executes the same three
phases: updating grid points, copying new values into old, and checking for
termination. These phases are realized differently, however, as is end-of-phase
synchronization.

In a distributed JR program that might execute on multiple virtual machines,
we cannot use shared variables to store shared data since each virtual machine
gets a distinct copy of static variables.

Hence we will use four classes—main, results, Jacobi, and worker classes—
with no public static variables. The main class and the result class are identical
to those in the previous section.

The Worker class implements the computation proper. The Jacobi class
creates PR instances of Worker and then starts the computation in each instance.
During each iteration of the computation, instances of Worker exchange the
boundaries of their strip of the grid.

The Worker class provides three public operations: toprow, which is used
to acquire a new top boundary; bottomrow, which is used to acquire a new
bottom boundary; and compute, which is used to start the computation. Each
instance of Worker is also parameterized with several values.

16.3 A Distributed Heartbeat Algorithm 237

238 Solving PDEs: Grid Computations

Each instance of Worker is responsible for a strip of S rows and N columns
of the grid. As before, array grid contains two matrices, and each has two
extra rows and columns to hold the values on the edges of the strip. The extra
columns contain boundary values, which do not change. However, the extra
rows contain values computed on each iteration by the instances of Worker
responsible for adjacent strips. Hence each instance exchanges these rows with
its neighbors on each iteration. The instances responsible for the topmost strip
and bottommost strip have only one neighbor, so they exchange only one row.
As we shall see, remote reference up is set to noop for the topmost strip, and
down is set to noop for the bottommost strip; this makes the corresponding send
statements have no effect.

The Jacobi class provides one public method, compute, which controls the
computation. The compute method creates instances of Worker, starts the
computation, checks for termination, gathers the results from the workers, and
returns the overall result to the invoker.

16.3 A Distributed Heartbeat Algorithm 239

The compute method provides two operations. Its terminate operation is
called by instances of Worker to check for termination. Its gather operation
is invoked by instances of Worker to return their part of the overall result.

The code that creates instances of Worker passes each worker its id, and
appropriate values for the worker to initialize its part of the grid. It saves
references for the workers for use when starting the computation. (The code
assumes that PR > 1; see Exercise 16.12.)

The code that starts the computation invokes the compute operation in each
of the PR instances of Worker. Each worker instance is passed references for its
two neighboring worker instances. Since the first and last instances of Jacobi
have only one neighbor, each is passed one noop capability. Each worker is
also passed two capabilities: one for the terminate operation and one for the
gather operation.

240 Solving PDEs: Grid Computations

The loop in Jacobi’s compute method that checks for termination illus-
trates an interesting use of nested input statements. On each iteration of its
computational loop, each instance of Worker calls terminate(diff), where
diff is the maximum difference it found. The outer input statement here uses a
synchronization expression (terminate. length () == PR) to wait for all PR
instances of Worker to call terminate. It then uses a scheduling expression
(–diff) to service the invocation that has the maximum value for parameter
diff. If this maximum is at most epsilon, the computation has converged,
so ans is set to true; otherwise ans is set to false.

The inner input statement is used to service and return the value of ans to
the PR–1 other invocations of terminate. It ignores the parameter passed in
because that value is smaller than the maximum difference, as described above.

After the computation has converged, the compute method receives results
from each worker. It combines them into a single result, which it returns to its
invoker.

16.4 Using Multiple Virtual Machines
The program in the previous section will execute on one virtual machine.

Here we show how to extend it to employ multiple virtual machines, which can
be on multiple physical machines.

To use multiple virtual machines, we need to make only a few changes to
the Jacobi class; the other classes do not need to change at all. In particular,
we need to create virtual machines before we create instances of Worker. Let
hosts be the name of a file that contains a list of at least PR strings, each of
which is the name of a physical machine. Then the following code will create a
virtual machine on each of the named host machines and then create an instance
of Worker on each:

Exercises 241

No further changes to the distributed program are required.

Exercises
Copy the four programs in this chapter into files and compile them.
(Source files containing the programs come with the JR distribution.)
Construct a set of experiments to determine the relative performance of
the four programs. Experiment with different problem sizes, numbers of
processes, and numbers of processors. Explain the results you observe.

16.1

16.2 (a) Develop a program for Jacobi iteration that uses a bag of tasks and
replicated workers, as illustrated in Section 15.2. Experiment with
different problem sizes, tasks sizes, and numbers of workers.

Compare the results of your experiments to the results of the ex-
periments conducted in Exercise 16.1. Explain any differences you
observe.

(b)

16.3 Consider the data parallel program in Section 16.1.

Modify the program to employ only PR processes in compute’s main
loop instead of N*N or N. Assume that N is a multiple of PR.

Compare the performance of your answer to (a) to the performance
of the original program. Experiment with different values of PR.
Explain your results.

(a)

(b)

Rewrite the convergence-checking code in Jacobi in Section 16.1 so
that only one process checks for convergence. If that process finds that
the maximum difference is at most epsilon, it should inform the others.

16.4

242 Solving PDEs: Grid Computations

16.5 Consider again the Jacobi program in Section 16.1. It uses an array
consisting of two grids of values—a current grid and a next grid—to avoid
having to copy values from the next grid to the current grid. Recall that
arrays in Java (and so in JR) are object references.

Is the above technique any more efficient than having two separate grid
variables, say gridcur and gridnxt, and swapping them by

First, answer the above question based only on what you expect to happen
based on your understanding of Java. Then, modify the program as
suggested and run several tests on different input data. Explain any
differences in what you expected and what you observed.

16.6 Consider the BarrierSynch class (see Section 16.2), which implements
a barrier.

Suppose local variable mysleep is not used. In particular, delete
its declaration and change the P operation to P(delay[sleep]).
Explain why the resulting code is incorrect. Hint: When could
context switches occur?

Suppose the array of delay semaphores is replaced by a single
semaphore (and variable sleep is deleted). Explain why the re-
sulting code is incorrect when used by the code in Jacobi (see
Section 16.2). Is there any situation in which the modified code
would correctly implement a barrier?

(a)

(b)

Rewrite the Jacobi class in Section 16.2 so that the strip processes are
declared as a family of processes using the process abbreviation. Be
sure your solution prevents the potential problem mentioned in the text;
i.e., it prevents these processes from starting their computations before
instance variables have been initialized.

In the convergence-checking code in Jacobi in Section 16.2, every
strip process calculates the maximum value in the array maxdiff.

16.7

16.8

Modify the program so that only one process computes the maximum
and other processes wait until that value has been computed.

Compare the performance of your answer to part (a) with the original
code for various numbers of strip processes. Which is faster?
Why? How does performance depend on the number of processes?

(a)

(b)

Exercises 243

The distributed program in Section 16.3 partitions the grid into strips and
assigns one instance of Worker to each strip. Suppose instead that the
grid is partitioned into blocks; e.g., a 100 × 100 point grid is partitioned
into 16 blocks of 25 × 25 points each. Modify the program to implement
this approach.

The Jacobi class in Section 16.3 implements convergence check-
ing. Modify the program in Section 16.3 so that the instances of
Worker interact only with each other to check for convergence. In
particular, delete the block of code in Jacobi between the comment
// do termination ... and the code that accumulates the results.

The termination checking code in Jacobi in Section 16.3 uses the
length method. Show how to rewrite the code in the following ways
so as not to use the length method.

16.9

16.10

16.11

Change the interface to the terminate operation and/or introduce
another operation.

Do not change the interface to the terminate operation. Instead
use the forward statement.

Do not change the interface to the terminate operation or use the
forward statment. Instead use additional processes.

Use recursion to simulate nested input statements, but do not use
any of the above “tricks.”

(a)

(b)

(c)

(d)

The code in Jacobi in Section 16.3 (and Section 16.4) assumes that PR
> 1. Modify the code so it works when PR = 1.

The code in Jacobi in Sections 16.3 and 16.4 uses the noop remote
reference. Show how to rewrite the code in Section 16.4 so it does not
use noop.

Gauss-Seidel and successive over-relaxation (SOR) are two additional
iterative methods for solving Laplace’s equation. With Gauss-Seidel,
on each iteration, new values for points are computed sequentially; each
new value is the average of two values from the current iteration and two
from the previous iteration. In particular, new values are computed by
the following loop:

16.12

16.13

16.14

244 Solving PDEs: Grid Computations

Note that grid is updated in place, unlike in Jacobi iteration.

SOR is a generalization of Gauss-Seidel that also averages in the previous
value of a point. With SOR, new values are computed by

Variable omega is called the over-relaxation parameter. For optimum
convergence it usually is chosen to be between 1 and 2. (If omega is 1,
SOR simplifies to Gauss-Seidel.)

Write sequential JR programs to implement Jacobi iteration, Gauss-
Seidel, and SOR. Compare the performance of your programs. For a
given set of initial values, which converges most rapidly? How does
the rate of convergence depend on the initial values? How does the
performance of SOR depend on the value of omega?

The Gauss-Seidel and SOR methods defined in the previous problem
have to be applied sequentially in order to converge. Both methods
update points in place, which can lead to chaos if the points were all
updated concurrently. However, both can be parallelized by using a
red/black (checkerboard) partitioning scheme that partitions the grid of
points into blocks. For example, partition a 100 × 100 point grid into 16
blocks of 25 × 25 points each. Next color each block red or black in a
checkerboard fashion; i.e., adjacent blocks have different colors. Assign
a process to each block or, better yet, to each set of two or four blocks.
On each iteration of the main computation, concurrently update all red
blocks, then concurrently update all black blocks. Within a block use
Gauss-Seidel or SOR to update points sequentially.

16.15

Implement a parallel algorithm for red/black SOR. Use shared vari-
ables and a value of 1.5 for omega.

Implement a distributed algorithm for red/black SOR. Use message
passing and a value of 1.5 for omega.

Construct a set of experiments to determine the performance of your
two programs. Compare their performance to the corresponding
programs in this chapter that use Jacobi iteration.

(a)

(b)

(c)

Exercises 245

The following region-labeling problem arises in image processing.
Given is an n × n integer array image. The value of each entry is
the intensity of a pixel. The neighbors of a pixel are the four pixels
that surround it, i.e., the elements of image to the left, right, above, and
below it. Two pixels belong to the same region if they are neighbors and
they have the same value. Thus a region is a maximal set of pixels that
are connected and that all have the same value.

The problem is to find all regions and assign every pixel in each region
a unique label. In particular, let label be a second n × n matrix, and
assume that the initial value of label[i][j] is n*i+j. The final value
of label[i][j] is to be the largest of the initial labels in the region to
which pixel [i][j] belongs.

16.16

Write a shared-variable program to solve this problem. Divide the
image into fixed-size sub-images, and assign one process to each
sub-image.

Write a recursive, divide-and-conquer algorithm to solve this prob-
lem. Start with the entire image and recursively fork processes to
assign labels to sub-images; stop recursing when you reach a sub-
image of some prespecified size. When subprocesses terminate,
combine their labeled sub-images into a larger labeled image.

Write a distributed program to solve this problem; use a heartbeat
algorithm. Divide the image into sub-images of some prespecified
size, and assign one process to each sub-image.

Write a program to solve this problem using the bag-of-tasks
paradigm. Divide the image into sub-images of some prespecified
size, and put these “tasks” into a bag. Worker processes repeatedly
take tasks from this bag, label the corresponding sub-image, and put
the labeled sub-images into a second bag. Other workers repeatedly
take pairs of adjacent sub-images from the second bag, combine
them into a larger labeled image, and put the combined image back
into the second bag. The computation terminates when the entire
image has been properly labeled. Implement the bags by means of
operations that are shared by the worker processes.

Repeat part (d), but do not use shared bags of tasks. Instead, have
one or two administrator processes implement the bags.

Write a program to solve this problem using a data parallel algorithm.
First, for each pixel determine whether it is on the boundary of a re-
gion. Second, have each boundary pixel determine which neighbors
are also on the boundary; in essence, for each region this produces a
doubly linked list connecting all pixels that are on the boundary of

(a)

(b)

(c)

(d)

(e)

(f)

246 Solving PDEs: Grid Computations

that region. Third, using the lists, propagate the largest label of any
of the boundary pixels to the others that are on the boundary. (The
pixel in a region that has the largest label will be on its boundary.)
Finally, propagate the label for each region to pixels in the interior
of the region.

Construct a set of experiments to compare the performance of the
programs you wrote for previous parts of this problem. Experiment
with different image sizes and numbers of processes. Explain the
results you observe.

(g)

Chapter 17

THE TRAVELING SALESMAN PROBLEM

The traveling salesman problem is the classic “hard” combinatorial search
problem. Given are n cities and an n × n matrix dist of intercity distances.
The value in dist[i][j] is the distance from city i to city j, e.g., the airline
miles. We assume there is a direct connection from each city to every other.

A salesman starts in city 1 and wishes to visit every city exactly once, ending
back in city 1. The problem is to determine a path that minimizes the distance
the salesman must travel. Thus we need to find a permutation of integers 1 to
n such that the sum of the distances between adjacent pairs of cities—plus the
distance back to city 1—is minimized.

For n cities, there are (n–1)! different paths starting and ending in city 1.
Unless n is small, this number is, of course, very large. Thus we need to look
for ways to reduce the amount of computation that has to be performed and for
ways to use parallelism to speed up the computation.

This chapter presents three solutions to the traveling salesman problem. To
simplify the programs, we develop exact solutions, i.e., ones that find a min-
imum cost tour. In practice, finding an exact solution is infeasible except for
small values of n (e.g., 15 or so). Consequently, many heuristics have been
developed to generate approximate solutions to the traveling salesman and sim-
ilar optimization problems. A few are considered in the exercises; see Refer-
ences [34] and [27] for descriptions of those heuristics and numerous others.

The first solution is a sequential program that uses depth-first search to ex-
amine all feasible paths. A path is feasible if it is not (yet) longer than the best
complete path that has been computed so far. The second solution is a parallel
program that uses the bag-of-tasks paradigm. In particular, partial paths are
stored in an operation queue shared by several worker processes; each worker
repeatedly extracts a partial path and extends it with cities that have not yet been

248 The Traveling Salesman Problem

Figure 17.1. Search tree for four cities

visited. The final, distributed solution modifies the second program to use only
message passing.

These last two programs are not as reusable as the programs in the previous
two chapters. That is, they depend on JR’s automatic termination detection to
terminate. To make them reusable, they can be rewritten without relying on
such a feature. Exercises 17.5 and 17.6 explore such explicit termination.

All three solutions illustrate techniques for solving branch-and-bound algo-
rithms, which arise in numerous applications such as searching game trees and
solving optimization problems.

17.1 Sequential Solution
To find the shortest path that visits all cities exactly once, we have to consider

every possible tour. If we start in city 1, there are n–1 possible cities we could
visit next. From each of these, there are n–2 possible cities to visit third, and
so on. We can thus represent all possible tours by a tree, with city 1 at the root.
The tree has depth n (the number of cities) and (n–1)! leaves (the number of
different tours). Figure 17.1 illustrates a search tree for four cities.

The standard way to examine all paths in a tree such as this is to use depth-
first search, which is realized by a recursive, backtracking algorithm. We must
follow a path all the way to a leaf node, then go part way back up the tree and
follow a path to a different leaf node, and so on. For example, if we search
from left to right in the tree in Figure 17.1, we would visit the four cities in the
following order:

(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4),
(1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)

In the traveling salesman problem, the goal is to find the shortest tour. It is not
necessary to consider a tour that is known to be longer than the shortest complete
tour that has been found so far. We can use this fact to “prune” infeasible paths
from the tree. The larger the number of cities, the more dramatic the effect

17.1 Sequential Solution 249

pruning can have. For example, on sample data for ten cities, we have seen
pruning reduce execution time by a factor of ten.

Below we present a sequential JR program to solve the traveling salesman
problem. Our solution consists of three classes: a main class, a compute class,
and a results class.

The results class is the simplest. It is simply a container for the results of
the computation; it provides a print method to print out the results. (Note that
cities in the output are numbered 1, 2, ... n, but within the programs in this
chapter cities are numbered 0, 1, ..., n–1 to simplify array subscripting.)

The main class reads two command-line arguments: the number of cities
and the name of a file that contains the distance matrix. It reads in the distance
matrix, initiates computation, and outputs the results.

250 The Traveling Salesman Problem

The compute class contains four methods. The computation is carried out by
method tsp. The compute method invokes tsp once for each partial path of
length 2; tsp in turn recursively examines all other feasible paths. The visited
method is used to determine whether a city has already been visited on the given
path. (A visited boolean array could be used instead; see Exercise 17.2.) The
update method is used to update the shortest path.

17.2 Replicated Workers and a Bag of Tasks 251

17.2 Replicated Workers and a Bag of Tasks
In the traveling salesman problem, paths are independent, so we could evalu-

ate all of them in parallel. However, this would lead to far too much concurrency
for most problem sizes and machines. An alternative is to employ a fixed num-
ber of worker processes that share a bag of tasks.

Each task contains a partial path, the number of cities (hops) on the path,
and the path’s length. We will initially put n–1 tasks in the bag, representing
the n–1 tours starting at city 1. Each worker repeatedly takes a task from the
bag and extends the path with every city that has not yet been visited. If a new
path is too long, it is discarded. If a path does not include all cities and it is not

252 The Traveling Salesman Problem

yet too long, the worker puts the new path and its length back into the bag of
tasks. If a path includes all cities and it might be shorter than the shortest path
found so far, the worker updates the shortest path.

Our program for this algorithm again has three classes: a main class, a
compute class, and a results class. The results class is identical to that in the
previous solution. The main class is nearly identical to that in the previous
solution. The difference is that it now handles an additional command-line
argument specifying the number of worker processes to employ and passes that
to the compute class:

The compute class now contains a bag of tasks, code that initializes the bag
with n–1 tasks, and a family of w worker processes. The constructor code
simply initializes the object’s copy of w. The compute method initializes the
bag by sending to it all partial paths of length 2 that start in the first city. (Note
how the code uses a new, local array for each invocation for the reason given
in Section 7.8.) It returns the results when the computation completes. Notice
how the code creates and registers a quiescence operation, done, and waits for
done to be invoked, which occurs when the computation has completed, i.e.
the bag is empty and no workers are active.

Tours are computed by the worker processes. On each iteration, the worker
process receives a new task from the shared bag. The task is a partial tour, which
the worker extends by each city that has not yet been visited. If a complete tour
is found that might be the best, the worker calls the shared procedure update.
Because update alters shared variables and might be called by more than one
worker at a time, its body now executes as a critical section. Again, we use the
length of the shortest tour found so far to avoid searching infeasible paths. Note,
though, that we do access the shared variable shortest without protection in
two conditions on if statements. If shortest is changed immediately after it
is accessed, then the program might perform some unnecessary computation,
but the overall result will still be correct.

17.2 Replicated Workers and a Bag of Tasks 253

254 The Traveling Salesman Problem

If there are more than a small number of cities (e.g., more than ten), this
program generates a huge number of partial tours. In fact the size of the bag
could become so large that the program will run out of memory. A better
approach is to put some fixed number of tasks in the bag to start—say partial
tours of length three. Then on each iteration a worker process extracts one
partial tour and uses the sequential algorithm of the previous section to examine
all paths starting with that partial tour. In addition to decreasing the amount
of storage required for the bag, this approach also increases the amount of
computation a worker does every time it accesses the bag.

17.3 Manager and Workers
The program in the previous section employs shared variables. However,

variables cannot be shared across virtual machines. Instead each gets its own
copy.

Here we present a distributed program that does not use shared variables.
To do so, we now represent each worker within a separate class, TSPWorker.
However, the bag of tasks and shortest path are now maintained within the
compute class, which contains a manager process. The workers and manager
use asynchronous message passing, RPC, and rendezvous to communicate with
each other.

The main class and the results class are identical to those in the previous
solution. See the previous sections for their code.

As in the previous section, the worker process repeatedly gets a partial tour
from the bag and extends it with all cities that have not yet been visited. A
worker process simply receives a new task from the bag, even though bag is
declared in a different class (which could even be located on a different virtual
machine).

17.3 Manager and Workers 255

One difference between theworker process below and the one in Section 17.2
is that the length of the shortest path is not directly accessible in a shared variable.
Instead the manager keeps track of the shortest path. Any time it changes, the
manager sends the new value to the updatemin operation exported by each
instance ofWorker.

256 The Traveling Salesman Problem

At the start of each iteration, the worker process checks to see if there is a
pending invocation of updatemin, which indicates that there is a new shortest
path.

The compute class provides two public operations used by workers: bag,
which contains the bag of tasks; and newmin, which is called by a worker when
it thinks it has found a new shortest path. Its constructor simply saves w, the
number of worker processes to be used.

The compute method acts as the manager. It first creates the w TSPWorker
objects and passes each a remote object reference for itself (via this. remote);
the worker accesses the bag and newmin operations through this reference. It
also passes each instance the values of n and dist since these are no longer
shared. Note that the manager needs references for the workers because it needs
to invoke their updatemin operations.

The manager uses an input statement to service operation newmin. When
the manager receives a new shortest path, it broadcasts the length of that path
to the workers.

Two (or more) workers could, at about the same time, find what they believe
to be new shortest paths. The input statement in the manager uses a scheduling
expression to service the invocation of newmin that has the smallest value of
parameter length. This can decrease the number of times that the manager
needs to broadcast a new value of shortest to the workers.

17.3 Manager and Workers 257

The manager uses a quiescence operation to detect when the workers have
completed the computations. Its use is similar to that seen in the previous
section, but here the done operation appears as an arm of an inni. Specifically,
it appears as an alternative to newmin. The code for done just exits the loop,
which causes the results to be returned from the manager.

Using the techniques shown in Section 16.4, we can readily extend the above
program to execute on multiple virtual machines. For example, we could have
TSPCompute and each instance of TSPWorker execute on a different virtual
machine, which in turn could be on a different physical machine.

258 The Traveling Salesman Problem

Exercises
Modify the sequential program in Section 17.1 so that it does not prune
infeasible paths. Compare the execution time of your program and the
one given in the text.

Modify the sequential program in Section 17.1 so that it maintains the
“visited” status of all cities in a visited boolean array instead of using
the visited method to search the path. (The same technique will also
work for the other programs in this chapter.)

Run the program in Section 17.2. Generate test data for various numbers
of cities. (If you have access to an airline guide, you might want to use
actual air distances between various cities.)

17.1

17.2

17.3

Analyze the performance of the program for various sets of input data
and various numbers of worker processes. Determine how large a
number of cities you can handle without running out of storage for
the bag of tasks.

Modify the program as suggested at the end of Section 17.2. In
particular, initialize the bag with some fixed number of tasks and
have each worker use the sequential algorithm to extend a partial tour
with all feasible tours. Analyze the performance of this program for
various sets of input data and various numbers of worker processes.
Compare the performance of this program to that of the program in
Section 17.2.

(a)

(b)

17.4 Run the program in Section 17.3. Generate test data for various numbers
of cities.

Analyze the performance of the program for various sets of input
data and various numbers of worker processes.

Compare the performance of this program to the performance of the
program in Section 17.2.

Modify the program to have the manager and each worker execute
on its own virtual machine, and place these on different physical
machines. Analyze the performance of this program for various sets
of input data and various numbers of worker processes.

(a)

(b)

(c)

The program in Section 17.2 terminates when the bag of tasks is empty
and all worker processes are blocked. Suppose JR did not support au-
tomatic distributed termination detection. Modify the program to detect
termination explicitly; invoke JR.exit when the bag is empty and all

17.5

Exercises 259

workers are blocked. (Exercise 7.14 explores a similar problem in a
different context.)

Repeat the previous exercise for the program in Section 17.3.

Consider the inner while loop in process worker in class TSPWorker;
it receives all pending updatemin messages and updates shortest.

17.6

17.7

The assignment to shortest can be replaced by(a)

but that might result in the worker performing extra computation.
Explain both why doing so is correct and how extra computation
might result.

Consider replacing the loop by(b)

Comment on the correctness of this code. Explain how it works or
give a counterexample of where it does not work. If it is correct,
does it cause the worker to perform more work than the original?

Related to the previous problem, consider the general problem of ser-
vicing the last pending invocation for an operation, say f (int x), and
discarding all other pending invocations.

17.8

Suppose the pending invocations appear in decreasing order of x.

Suppose the pending invocations appear in arbitrary order. Solve
this part in two ways: first using mechanisms only from Chapter 9
and then using mechanisms from Chapter 14.

(a)

(b)

Rewrite the program in Section 17.3 so that it uses no remote object
reference for TSPCompute.

17.9

17.10 (a) Solve the traveling salesman problem by assigning one process to
each city. City 1 generates partial tours of length 2 that are sent to
each other city. When a city gets a partial tour, it extends it and sends
it on to other cities. When it gets a complete tour, it sends it back to
city 1.

260 The Traveling Salesman Problem

Compare the performance of your program to the performance of
the program in Section 17.2. Explain any differences.

(b)

17.11 One heuristic algorithm for the traveling salesman problem is called the
nearest neighbor algorithm. Starting with city 1, first visit the city, say
c, nearest to city 1. Now extend the partial tour by visiting the city
nearest to c. Continue in this fashion until all cities have been visited,
then return to city 1.

Write a program to implement this algorithm. Compare its performance
to that of the programs in the text. What is the execution time? How
good or bad an approximate solution is generated? Experiment with
several tours of various sizes.

Another heuristic is called the nearest insertion algorithm. First find the
pair of cities that are closest to each other. Next find the unvisited city
nearest to either of these two cities and insert it between them. Continue
to find the unvisited city with minimum distance to some city in the
partial tour, and insert that city between a pair of cities already in the
tour so that the insertion causes the minimum increase in total length of
the partial tour.

17.12

Write a program to implement this algorithm. Compare its perfor-
mance to that of the programs in the text. What is the execution
time? How good or bad is the approximate solution that is gener-
ated? Experiment with several tours of various sizes.

Compare the performance of this program to one that implements
the nearest neighbor heuristic (Exercise 17.11).

(a)

(b)

A third traveling salesman heuristic is to partition the plane into strips,
each of which contains some bounded number B of cities. Worker pro-
cesses in parallel find minimal cost tours from one end of the strip to
the others. In odd-numbered strips the tours should go from the top to
the bottom; in even-numbered strips they should go from the bottom to
the top. Once tours have been found for all strips, they are connected
together.

17.13

Write a program to implement this algorithm. Compare its perfor-
mance to that of the programs in the text. What is the execution
time? How good or bad is the approximate solution that is gener-
ated? Experiment with several tours of various sizes.

Compare the performance of this program to one that implements
the nearest neighbor heuristic (Exercise 17.11). Which is faster?
Which gives a better solution?

(a)

(b)

Exercises 261

Research heuristic algorithms and local optimization techniques for solv-
ing the traveling salesman problem. Start by consulting References [34]
and [27]. Pick one or more of the better algorithms, write a program
to implement it, and conduct a series of experiments to see how well it
performs (both in terms of execution time and how good an approximate
solution it generates).

The eight-queens problem is concerned with placing eight queens on a
chess board in such a way that none can attack another. One queen can
attack another if they are in the same row or column or are on the same
diagonal.

Develop a parallel program to generate all 92 solutions to the eight-
queens problem. Use a shared bag of tasks. Justify your choice of
what constitutes a task. Experiment with different numbers of workers.
Explain your results.

17.14

17.15

This page intentionally left blank

Chapter 18

A DISTRIBUTED FILE SYSTEM

The three previous chapters presented examples of parallel programs. There
the purpose of each program was to compute a result for a given set of input.
In this chapter we present an example of a distributed program in which one
or more users repeatedly interact with the program. This kind of program is
sometimes called a reactive program since it continuously reacts to external
events. At least conceptually, the program never terminates.

Our specific example is a program, which we call DFS, that consists of a
distributed file system and a user interface. DFS executes on one or more
host computers. Each host provides a simple file system. Users interact with
DFS through a command interpreter, which is modeled on UNIX and supports
commands to create, examine, and copy files. Users identify files located on
remote hosts by using names that include host identifiers; these have the form
hostid:filename. Thus DFS is similar to what is called a network file system.
A user can log in to the system from any host and manipulate files on all hosts.
A user’s files on different hosts can differ; DFS does not provide a replicated
file system.

In this chapter we first give an overview of the structure of DFS. Then we
present the implementations of the file system and user interface. The pro-
gram employs the client/server process interaction pattern that is prevalent in
distributed systems. It also illustrates several aspects of JR: multiple virtual
machines, operation types, dynamic object creation, UNIX file and terminal
access, and the forward and reply statements. Our main purpose is to illustrate
how to program this kind of distributed system. Consequently, our implementa-
tion of DFS does some error checking, but it is by no means all that one would
desire. Our DFS implementation relies on some UNIX-specific file I/O fea-
tures, so it will not work on non-UNIX platforms. Unlike the previous chapters

264 A Distributed File System

Figure 18.2. Underlying UNIX file structure for DFS logical host number 2

in this part, each of which presents several solutions to a given problem, this
chapter outlines only one way to program a distributed file system.

18.1 System Structure
Our program for DFS consists of five key classes.

Main
Login
CmdInterpreter
DirServer
FileServer

creates the directory and login servers
handles login protocol and creates command interpreters
implements commands to operate on files
manages the files stored on one host
provides access to an open file

The main class creates one virtual machine on each host machine. On each
virtual machine, Main then creates one instance of DirServer and one instance
of Login for each terminal that can be used to talk to that host.

When a user successfully logs in, the corresponding instance of Login creates
an instance ofCmdInterpreter. Thus at any point in time there are as many
instances ofCmdInterpreter as there are active users.

To manipulate a file, a command interpreter first interacts with the instance
of DirServer on the target machine (i.e., the one on which the file resides).
Access to a file is provided by an instance of FileServer. A directory server
creates a new instance ofFileServer every time it opens a file for a command
interpreter. The command interpreter then interacts directly with the file server
to read and/or write data. When the file is closed, the file server terminates.

Figure 18.1 gives a snapshot of the structure of one possible execution of
the DFS program. It assumes there are two host machines and that each has

Figure 18.1. Snapshot of the structure of DFS

18.1 System Structure 265

one terminal for user interaction. In the illustration there are two instances
ofCmdInterpreter, which means there are two active users. There are also
three instances of FileServer, which means three files are being accessed.
For example, the user on the leftmost machine might be copying a file from
that machine to the other one (which uses two file servers), and the user on the
rightmost machine might be creating or reading a local file (which uses one file
server).

To store system data and user files in DFS, we make use of the underlying
UNIX file system. Before running DFS, we first need to create a directory named
DFS in the user’s home directory on each host machine. (The DFS program
creates virtual machines that will execute in that directory; see Section 10.8.)
The DFS directory should contain one file, Accounts, that contains a list of the
names of authorized users of DFS. (The names of these users are arbitrary; they
need not correspond to real users in the underlying UNIX file system.) The DFS
directory also contains a subdirectory named for each possible logical host in
DFS. Hosts in DFS are named 0,1,... up to whatever maximum number the user
chooses. Each host subdirectory contains one subdirectory for each user. Each
such subdirectory will be used by DFS to store a user’s files. In addition, DFS
employs one additional file, Files, in each user subdirectory; this contains a
list of the names of the user’s DFS files. For simplicity DFS assumes that the
DFS directories and their files and subdirectories described above exist already;
it does not create them as needed.

Figure 18.2 gives an example of the UNIX directory structure used by DFS
on one host machine, the host numbered 2. There are two users and each has
two files. The structure on other hosts will be similar: each host subdirectory
contains aAccounts file and a subdirectory for each user, which in turn contains
a Files file. However, the particular user files stored on different hosts will,
in general, differ.

The design of DFS uses logical host numbers, rather than physical host
names, to be more flexible. DFS is likely to be run in an instructional setting
where the underlying file system is NFS (Network File System, which provides
the same file system on each system). Using logical host numbers provides a
simple way to effect separate directories for each DFS host in such a system.
This structure even allows DFS to be run on a single system (with different
windows representing terminals on different systems). The code in this chapter
does just that, but can be easily extended to run on multiple systems (see Ex-
ercise 18.3). In fact, the DFS structure can even use just one virtual machine
with very minor changes to the code. It also allows DFS to run on a collec-
tion of systems in a non-NFS environment. Each physical machine is given a
portion of the entire DFS structure, namely the Accounts file and the subdirec-
tory corresponding to one logical host. The main class then sets up the logical

266 A Distributed File System

to physical host mapping by placing each virtual machine on the appropriate
physical machine.

18.2 Directory and File Servers
Each instance of the directory server class manages the DFS files on one

host. The class provides public operations to create a new file, open an existing
file, remove a file, determine whether a user has an account, obtain the names
of a user’s files, and update the user’s directory at the end of program execution.
DirServer implements these operations. First, however, its constructor

code reads in the Accounts file stored in the local machine’s DFS directory
and reads in the list of each user’s files. The fopen and check operations are
serviced by methods since they do not need to execute with mutual exclusion.
Multiple invocations of these operations can be serviced concurrently. However,
the other three operations update shared variables and need to execute with
mutual exclusion, so they are serviced by an input statement in a process. A
forward statement is used at the end of the body of the fcreate operation. By
using forward we avoid having the ds process delay until the file server’s open
operation has completed; this enables ds to service other requests while the file
is being opened.

18.2 Directory and File Servers 267

268 A Distributed File System

18.2 Directory and File Servers 269

The writeFiles method in DirServer writes out each user’s list of files; it
is invoked when execution of DFS terminates. This way the same set of files is
accessible the next time DFS is executed on the same hosts.

One instance of FileServer is created each time a file is opened. It provides
just one public operation, fopen, which is serviced by a method. The body of
the method declares three local operations, which are invoked to read, write,
and close the file. The code contains separate, but similar cases for reading and
writing a file. When fopen is called, it constructs a record containing capa-
bilities for its local operations (assuming the file can be opened successfully).
It assigns these to return variable fd and then executes a reply statement. At
this point the client process that invoked fopen can proceed, and the remainder
of the body of fopen continues executing as an independent server process.
These two processes then engage in a conversation in which the client reads
and writes the file. Eventually, the client invokes the cl (close) operation, at
which point the file server closes the file and then terminates.

270 A Distributed File System

18.2 Directory and File Servers 271

The FileServer makes use of two other simple classes for encapsulating
multiple return values. The FileDesc (file descriptor) class represents the
operations that can be performed on a file.

It must be serializable for reasons described in Section 10.7. FileServer
declares file operations locally and returns capabilities for them as the result of
opening a file. In turn the FileDesc (file descriptor) class uses the FReadInfo
class for representing the information that a read operation returns.

In our implementation of DFS, we employ one instance of FileServer
for each open file, which is an appropriate abstraction. However, since the
code does not contain any class variables, we could employ fewer instances.
For example, we could create just one instance of FileServer on each host

272 A Distributed File System

machine. Then we could have each process that is accessing a file interact with
a separate instance of a process executing the fopen method.

18.3 User Interface
The remaining key components of DFS are the user interface and the main

class. When a user of DFS first sits down at a terminal, that user is interacting
with an instance of the Login class. Each instance of Login reads from and
writes to one terminal device. This is likely to be a window on a workstation
(e.g., an xterm window). The Login class first opens the associated keyboard
and display. (These are like two files that happen to have the same name.) Then
Login waits for a user to attempt to log in to DFS. If the user is successful,
Login creates an instance of the command interpreter and then waits for the
command interpreter to terminate.

18.3 User Interface 273

The terminal devices used by the DFS program are typically running UNIX
shell processes. The name of each of these terminal devices needs to be given
to DFS when it begins execution (see the Main class later in this section). The
name of each terminal device can be obtained by using the tty UNIX shell
command. Furthermore, to prevent the shells from intercepting input intended
for DFS, each shell process should be put to sleep before DFS executes by using
the sleep UNIX shell command.

The command interpreter is the largest component of DFS. It implements
two kinds of user commands: ones that deal with files and ones that deal with
the current working directory. It also implements a logout command. These
commands are modeled on UNIX commands. They are summarized in the
following table:

The machine argument is optional in the ls and cd commands. The default
for ls is the current working directory, and the default for cd is to change to
the original home directory.

A file name has the general form machine:filename, wheremachine is a
logical host number and filename is a file on that host. If the machine name
(and colon) are omitted, a file name is interpreted relative to the current working
directory.

cr filename
cat filename
cp filename1 filename2
rm filename
ls [machine]
cd [machine]
pwd
exit

creates a new file by entering text
prints the contents of a file
copies the first file into the second
removes a file
lists the files in a user’s directory
changes current working directory
prints host number of current working directory
logs out of a session

274 A Distributed File System

The CmdInterpreter class is the client of the file and directory server
classes. Its body implements the above user commands. Many of the commands
have similar implementations, so we present below only part of the body of
CmdInterpreter. The source for the complete implementation is included
with the JR distribution.

The local methods implement details of the file access commands. For ex-
ample, the cmd_cr method given below implements the file-creation command
by first creating a new file on the designated server machine and then reading
terminal input and writing it to that file. The end of the input is indicated by a
line with a single dot.

The command-interpreter process, CI, repeatedly writes a prompt and then
reads and interprets a command. It uses an if statement, with one part per known
command, to search through the known commands. The else part catches all
unrecognized commands. Our implementation of the command interpreter does
a reasonable amount of error checking, but by no means all that one would, in
general, desire to have.

18.3 User Interface 275

276 A Distributed File System

18.3 User Interface 277

278 A Distributed File System

The next component of DFS is the main class, which gets everything started.
It first reads the command-line arguments, which specify the number of host
machines to use. Next Main creates one virtual machine for each logical host
and one directory server on each virtual machine. Main then prompts for the
names of each terminal that is to be used. After Main creates one instance of
Login for each terminal, DFS is operational.

The terminal used to initiate execution of DFS is not one of the terminals
within the system itself. Rather it serves as an “operator’s console.” The
operator stops execution of DFS by entering a string on the console. Upon
reading the string, Main determines whether the user intends to save the results
of the current session; if so, it invokes methods in the directory servers to save
DFS’s record of user files.

18.3 User Interface 279

The final class is the parameterized virtual machine class, Myvm. It just
provides a GetHost method, which returns the DFS host number.

280 A Distributed File System

Exercises
18.1

18.2

18.3

18.4

18.5

18.6

18.7

18.8

The text gave one set of activities that results in the structure shown in
Figure 18.1. Give another.

Run the DFS program. Use at least two logical hosts and at least one
terminal window per machine. Experiment interacting with DFS and
report on your experience. What features do you like, and why? What
features do you not like, and why? What features do you miss having,
and why?

Modify the DFS program to execute on multiple physical hosts. For ex-
ample, read the host names from a file or from the system console. Then
experiment and report with your modified DFS program as described in
the previous question.

Suppose the same user is logged in more than once on DFS. What hap-
pens if the user tries simultaneously to access the same file from more
than one terminal? Consider each combination of file-access commands
(cr, cat, cp, and rm).

In the DirServer class, the list operation is serviced by an input
statement in process ds. Suppose list were serviced by a method
instead. Carefully explain what could go wrong.

In the DirServer class, modify the list operation so that it returns the
set of file names, instead of an array of strings. Make necessary changes
to where list is used inCmdInterpreter. To do so, the particular set
representation you choose (from the java.util package) needs to be
serializable. Explain why.

The DFS implementation of rm does not actually remove files from the
underlying file system. Modify DFS to do so. (Be careful not to make
programming mistakes that unintentionally remove non-DFS files!)

If the user on the system console decides not to save a session, the
DFS implementation does not restore the DFS structure to exactly what

Exercises 281

it was before the session. With respect to the underlying file system,
newly created files are not deleted and files deleted during the session
are not restored. Modify DFS to do so. (Be careful of programming
mistakes that unintentionally remove non-DFS files!)

Extend DFS so users can access each other’s files. Define some pro-
tection scheme so that a user can control the way in which other users
access his files.

Add commands and functionality to DFS, such as who and wc com-
mands, a cat command with multiple arguments, tree-structured direc-
tories, pipes, I/O redirection, etc.

DFS is static with respect to the users and hosts that participate in a
session. Add “operator”commands and functionality to DFS, such as to
add or delete a user, to add or delete a host, etc. during DFS execution.

Add file caching to DFS.

Add automatic replication to DFS, so a user’s files are the same on all
hosts. (This exercise is interesting only if DFS is running in a non-NFS
environment!)

Add file locking to DFS to prevent several users from concurrently up-
dating the same file. Permit concurrent reading, however.

Rewrite the DFS classes so they do not use parameterized virtual ma-
chines.

18.9

18.10

18.11

18.12

18.13

18.14

18.15

This page intentionally left blank

Chapter 19

DISCRETE EVENT SIMULATION

A discrete event system is one in which state changes, or events, occur at
discrete instants of time. The arrivals and departures of buses and passengers at
a bus stop, for example, can be represented as such a system. The movements
of planes on runways and between airports is another example of something
that can be modeled as a discrete event system. In contrast, the flow of air
over the wing of an aircraft cannot be modeled as a discrete system since the
system state changes continuously. (Continuous systems can often be modeled
by partial differential equations and hence simulated as shown in Chapter 16.)

A discrete event simulation is a program that models a discrete event system.
The main components in a discrete event simulation are simulation processes,
which represent active objects such as people and buses; resources, which
represent passive objects such as a bus stop; and an event scheduler, which
controls the order in which simulation activities occur.

Concurrent programming languages are well suited for programming discrete
event simulations because processes in concurrent programs correspond closely
to simulation processes. JR is especially well suited because its rich collection
of synchronization mechanisms makes the interactions between the simulation
components easy to program.

This chapter presents a simple discrete event simulation problem and de-
scribes a JR solution to it. The problem and a solution programmed in Ada
originally appeared in Reference [13]. The presentation in this chapter is based
on Reference [39].

19.1 A Simulation Problem
The specific problem we consider here is simulating one aspect of a simple

multiprocessor architecture. Several processors compete to access a common
memory bus. Each processor cyclically seizes the bus, transfers data on the

284 Discrete Event Simulation

Figure 19.1. Simulation component interaction pattern

bus, releases the bus, and then performs some other activity. Each processor is
a simulation process, and the bus is a simulation resource. The purpose of the
simulation is to gather statistics on bus utilization and on delays encountered
by the processors.

We use one class to implement each simulation component. The main class
sets the simulation parameters, starts up the other parts of the simulation, and
shuts down the simulation when it has run long enough. The Processor
class contains one process for each processor in the system. The Bus class
implements the data bus. It provides public seize and release operations,
which the (simulated) processors call to seize and release the bus; it also makes
available a print operation, which is used to print the statistics Bus maintains.

The Scheduler class implements the event scheduler. In particular, it main-
tains the simulation clock and event list. When no (simulated) processors are
active, the scheduler picks the next event from the event list and updates the
simulation clock to that event’s time.

The Scheduler provides four public operations. The processors call delay
to simulate the passage of time during data transfers and other activity; the
end of each such time period defines an event. The bus controller calls
become_inactive to inform the scheduler that a processor has been blocked
in its attempt to seize the bus. The bus controller calls become_active when
the processor subsequently obtains access. These operations return the value of
the simulation clock so that statistics can be gathered. This interaction between
the scheduler and bus controller allows the scheduler to maintain a count of
active processors. Bus controllers call the final Scheduler operation, time, to
get the value of the simulation clock.

Figure 19.1 illustrates the interaction between the three simulation com-
ponents. The details of the Processor and Bus classes are specific to this
example. However, the Scheduler class provides functionality that is com-
monly required in any discrete event simulation. It is an abstract data type that
could be reused; it could also be extended with additional functionality.

19.2 A Solution 285

19.2 A Solution
This section presents and discusses these four classes. For pedagogic reasons,

we describe the classes in the following order: Main, Processor, Bus, and
Scheduler.

19.2.1 Main Class
The following is the simulation program’s main class:

Program execution begins in the main method. The code first sets the de-
fault number of processors and the default length of time to run the simula-
tion. (In practice, it should allow optional command-line arguments to override
those values.) Then it creates one Scheduler object, one Bus object, and one
Processor object, assigning references for the first two to sched and bus, re-
spectively. sched is passed to bus when it is created so bus can invoke sched’s
operations. For similar reasons, sched and bus are passed to the Processor
object.

The main method code lets the simulation run for TIME simulation clock
ticks by delaying itself for that long. After that delay it requests that statistics
on bus utilization be output and then stops the simulation.

19.2.2 Processor Class
The Processor class implicitly creates NUM_PROCESSORS instances of

processor, as shown in the following code.

286 Discrete Event Simulation

Each processor process interacts with bus and sched to simulate seizing the
bus, using the bus for a random amount of time, releasing the bus, and then
performing some other activity for a different random amount of time. The
upper bounds on the delay intervals are fixed in the above program; in practice
they too should be command-line arguments.

19.2.3 Bus Controller Class
TheBus class provides public seize, release, and print operations. It is

programmed as follows:

19.2 A Solution 287

The seize operation is serviced by a method, which hides the fact that seizing
the bus requires sending a try_seize message and receiving a go_ahead
message. The go_ahead operation is declared local to seize, so that a new
instance of go_ahead is created for each instance of seize. A capability for
go_ahead is sent to try_seize. That go_ahead capability will be invoked
when the associated seize request can be satisfied, thus allowing seize to
complete, and its caller to continue.

The try_seize, release, and print operations are repeatedly serviced by
an input statement in the background process bus_manager. The try_seize
operation determines if the bus is free. If so it allocates the bus and allows the
invoker to proceed by invoking go_ahead. If not it saves the capability for the
invoking process’s go_ahead operation. The release operation awakens a
waiting process, if one is present, by sending to that process’s go_ahead oper-
ation; release marks the bus as free if no process is waiting. The try_seize
and release operations also gather information on bus use and processor wait-
ing time. The print operation outputs statistics based on that information.

The bus_manager process maintains two local variables bus_time and
wait_time that record the total time the bus is in use and the total time that
processes have waited to obtain access to the bus, respectively. One way to view
bus_time is as the sum of the lengths of the intervals during which the bus is
in use. The endpoints of such intervals are the simulation clock values of when
the bus became busy and when it became free again; the lengths are then the
differences in these two clock values. Thus process bus_manager subtracts
the simulation clock from bus_time when the bus becomes busy, and it adds
the simulation clock to bus_time when the bus later becomes free. The effect
of this subtraction and addition is that bus_time is incremented by the length
of the interval during which the bus is in use. Process bus_manager similarly
maintains the variable wait_time.

The bus_manager maintains the queue of go_ahead capabilities for wait-
ing processes by using the local block_list operation. An element is added
to the end of the queue by sending to block_list. An element is removed
from the front of the queue by receiving from block_list. The number
of processes currently blocked in their attempts to seize the bus is there-
fore the number of pending invocations on block_list, i.e., the value of
block_list. length().

288 Discrete Event Simulation

19.2.4 Scheduler Class
The final class, Scheduler, provides four public operations. Its code is as

follows:

19.2 A Solution 289

290 Discrete Event Simulation

The delay operation is serviced by a method for much the same reason that
seize in the Bus class is serviced by a method. Here the method hides the fact
that delaying requires two sends and a receive.

The other four operations—become_active, become_inactive, time,
and event_list—are repeatedly serviced by an input statement in the back-
ground process event_manager. The code for both become_active and
become_inactive simply updates the number of active simulation processes
(active) and returns the value of the simulation clock(clock). The code for
time returns the value of clock.

Process event_manager services an invocation of event_list when no
simulation processes are active. It advances the simulation to the next event
on the event list and activates the associated simulation process. The guard
on event_list uses a synchronization expression to ensure that no simulation
processes are active, and it uses a scheduling expression to select from the event
list the invocation with the smallest time t. The code for event_list then
sets the simulation clock to the time in that invocation, increments active,
and sends a go_ahead signal to the process associated with the invocation so
that it may continue. Process event_manager then checks the event list for
other events scheduled for the same time. Each iteration of event_list’s loop
removes an invocation whose recorded time is identical to the current time, if
one is present. The inner input statement employs a synchronization expression
to select appropriate invocations. For each such invocation, the code increments
active and sends the go_ahead, as above. The loop exits when the event list
has no invocations with the current time.

19.3 Observations
The code in the Bus and Scheduler classes employs a technique of using the

implicit queues of pending invocations associated with message passing instead
of using explicit, programmer-defined queues. Thus operations are similar to
data-containing semaphores (see Section 7.6). Using this technique can lead to
more concise solutions to problems involving lists.

The block_list operation in Bus’s event manager process is used to main-
tain the list of processes that are blocked trying to seize the bus. Similarly,
the event_list operation in Scheduler is used to maintain the list of events
scheduled to occur in the future. However, these two operations are used dif-
ferently. Theblock_list operation is local to, and is invoked only within, the
event_manager process in Bus. On the other hand, event_list is global
to Scheduler and multiple instances of delay append (send) elements to

Exercises 291

event_list. Processes accessing event_list are automatically synchro-
nized. If the event list were coded instead to use an explicit, programmer-defined
queue, then the processes accessing the queue would need to be synchronized
explicitly.

Programs written in a language, such as JR, that provides a variety of syn-
chronization mechanisms are in many cases simpler than those written in lan-
guages that provide only one form of synchronization. The simulation program
presented in this chapter employs both rendezvous and asynchronous message
passing. For example, consider how a process is delayed when it attempts a
seize that cannot be satisfied immediately. It sends a message and waits for
a go_ahead. The bus_manager sends the go_ahead when the bus becomes
free; it does not need to respond immediately, as it would if it instead used
a rendezvous. Of course, this kind of interaction can be programmed using
rendezvous alone, but it is cumbersome (see Exercise 19.4).

The Scheduler class illustrates the use of two other interesting JR language
features not found in many concurrent programming languages. First, invoca-
tion parameters can be used in synchronization expressions. For example, the
second input statement that services event_list in the Scheduler class (see
Section 19.2) selects invocations whose time parameter matches the current sim-
ulation clock. Second, invocations can be selected in an order dictated by their
parameters. For example, the first input statement that services event_list
in Scheduler uses a scheduling expression to select the invocation with the
smallest time. These features of JR contribute to more concise solutions to
many programming problems, of which discrete event simulation is just one
example.

Exercises
19.1

19.2

19.3

19.4

19.5

Why does the main method (see Section 19.2) pass NUM_PROCESSORS+1
instead of just NUM_PROCESSORS when it creates Scheduler.

The program in this chapter uses JR.exit to terminate. At that time,
processes in Processor, Bus, and Scheduler still exist. Modify the
code so that the main method first explicitly terminates those processes
before using JR.exit to terminate the entire program.

Suppose that the simulation program did not need to gather statistics.
Show how that would simplify the code.

Program the bus controller class Bus (see Section 19.2) using only ren-
dezvous for synchronization. (Have fun!)

Program the inner input statement in class Scheduler (see Section 19.2)
without using a synchronization expression.

292 Discrete Event Simulation

Program the outer input statement in Scheduler without using a
scheduling expression.

The delay operation in Scheduler is serviced as a separate method.
Can it be serviced as an arm of the input statement in process
event_manager? Explain your answer.

The Scheduler variable clock is shared between event_manager and
instances of delay. Explain why it is safe for delay to add clock to t.

Consider the delay method in Scheduler. Describe the effects of the
following:

19.6

19.7

19.8

19.9

(a)

(b)

(c)

Changing the first send (only) to a call.

Changing the second send (only) to a call.

Changing both sends to calls.

19.10

19.11

19.12

19.13

19.14

19.15

19.16

19.17

Explain why it would be easier to replace theblock_list operation (in
Bus) by an explicit, programmer-defined queue than it would be to do
the same for event_list (in Scheduler).

Devise and execute various timing tests to determine the relative costs
of maintaining a queue shared by several processes as an operation and
as a programmer-defined linked list with explicit synchronization.

Show how to use an operation to maintain a stack.

Program a discrete event simulation that represents a simple cafeteria.
Customers obtain food from a single food server and then pay for it at a
single cashier. They then eat before repeating their activities. Reuse as
much of the code presented in this chapter as you can.

Program a discrete event simulation that models the distributed solution
to the Dining Philosophers Problem (see Section 11.2). Use it to gather
statistics on fork utilization and waiting times.

Program a simulation of passengers and buses arriving and departing
from a bus stop.

Program a simulation of traffic on a grid of city streets. Assume there is
a stop light at each intersection.

Program a simulation of the movements of planes on runways and be-
tween airports. Include gates from which planes depart and at which
they arrive.

INTERFACING JR AND GUIs

Graphical user interfaces (GUIs) are becoming more prevalent, powerful,
flexible, and easy to use. For example, the Swing and AWT toolkits enable
Java programs to easily include GUIs. GUIs are also useful to visualize the
executions of concurrent programs.

This chapter uses an example to illustrate how JR can be used with Swing.
It introduces a primitive game called “Balls and Boxes”, or BnB, for short.
Although BnB as a game is neither particularly interesting nor polished, it
does illustrate many of the useful pieces and a general structure that can be
used in building more interesting JR programs that use GUIs. For details
about Swing, Reference [48] and its online versions (http://java.sun.com/
docs/books/tutorial/uiswing/index.html and http://java.sun.
com/docs/books/tutorial/uiswing/mini/index.html) are extremely
helpful.

BnB is a multiplayer game intended to be played across several systems,
with one player per system. Each player sees a single game window, which
shows the game’s status on only that system, and interacts with the game via
the system’s keyboard and mouse. However, BnB is designed so that it can be
played by a single player on a single system too. On a single system, the game
can display just a single window or multiple windows. In the latter case, user
interaction is still via the keyboard and mouse according to which window has
focus.

Chapter 20

20.1 BnB Game Overview

294 Interfacing JR and GUIs

Figure 20.1 gives a screen snapshot of the game.1 It shows two windows on
a single system display. As seen, each window consists of a menu, a button,
and a board area. Windows are assigned unique identifiers (0,1, 2,...) and are
considered to be ordered left-to-right according to those identifiers. Each board
area holds two kinds of “toys”: balls and boxes. The menu and button are used
to create new balls. Each menu click creates a single green or orange ball. Each
button click creates a blue ball and a red ball. The balls and boxes move within
the board area. Each board area is initially assigned a box. Only one box for
each window exists during each game. The balls and boxes are labeled with
the number of the window from which they originated. The board area also
contains a text message, which simply moves randomly within the board area.

Balls move automatically left to right across the window, zig-zagging be-
tween the top and bottom. They “bounce” off the top or bottom, effecting a
change in their upward or downward direction. Each ball’s initial placement
within its originating window is randomly chosen. When a ball reaches the right
border, it moves to the next window on the right (according to the ordering on
window identifiers) or wraps around to the first window. Each ball expires after
it has moved a certain number of times.

Boxes move under user keyboard control. When a box reaches the left or
right border, it moves to the previous or next window, respectively. Boxes
cannot move beyond the top or bottom border. Each box lives for the duration
of the game.

As noted in the introduction to this chapter, the game is fairly simple so as
to illustrate the basic concepts in using Swing. Exercises 20.4 and 20.5 suggest
how to make the game more interesting.

20.2 BnB Code Overview
The BnB program consists of the following classes:

Main: the main program. It creates all the windows in the game.

Window: represents a window (one for each player). It creates the graphical
components it uses: a menu, a button, and a board.

SwingApplication: the button.

Board: the board. It creates and controls the toys on the board.

Toy: a base class (superclass) for all toys. Its extended classes (subclasses)
are:

1 Because this book is printed in black and white, the colors mentioned in this section do not appear in the
figure. A color version of this figure is available on the JR webpage

20.2
B

nB
 C

ode O
verview

295

296 Interfacing JR and GUIs

Ball

Box

Mtext (moving text)

KeyInput: keyboard input.

MouseInput: mouse input.

The subsections below present the code for these classes in the above order.
In a program that uses Swing, each graphical component provides a

paintComponent method. This method is invoked whenever the frame re-
paints itself. Thus, in the BnB program, Board provides a paintComponent
method; this method is responsible for drawing all the toys on the board. The
program’s other two graphical components — button and menu — have prede-
fined paintComponent methods. The frame repaints itself whenever, for ex-
ample, it detect that its contents have changed, e.g., the button has been clicked.
It also repaints itself in response to explicit requests via the repaint method,
such as those made within the code in Board. However, due to the event-driven
nature of Swing, such requests do not necessarily happen immediately. (A re-
paint request can be viewed as initiating an asynchronous activity, much like
JR’s send statement.) Moreover, several repaint requests might be combined by
Swing into a single one. Swing also provides the paintImmediately method,
an alternative to repaint that can be used when painting without delay is
desired.

20.2.1 Main Class
Main creates one Window for each player. It places each on its own virtual

machine. The virtual machines are created on the physical machines specified
by the command-line arguments or on the local host if none are specified (using
code similar to that in Section 10.2). It then gives each board remote references
for all the boards so that the boards can pass balls and boxes between them.
This structure is similar in purpose to that used to establish connections (“links”)
between the servants in Dining Philosophers in the code in Section 11.3 and
between the “points” in Matrix Multiplication in the code in Section 15.3, but
the code here differs in two ways. First, the code here also uses an additional
goahead operation to ensure that all boards have received their links before
any ballManager is started. (See Exercise 20.1.) Second, the code here also
sends each board references for all boards. Although this game uses only the
references for the two adjacent boards, all are sent to make the code easier to
change when adding new features to the game.

20.2 BnB Code Overview 297

20.2.2 Window Class
Window creates the graphical components needed by the game. It creates

a board, a button, and a menu. The code is somewhat detailed, but that is
necessary to specify all the desired graphical features. The code first creates
the board, the button, and the menu with its items. It then specifies how these
components should be placed together. Specifically, the button and board are
placed together in a JPanel named mainPanel. The window has listeners that
are used to quit the game and to give focus to the board. The window code
enables the button to start up new balls by passing to it a capability for the
board’s startBall operation. Similarly, it contains code for the menu items
that invoke the board’s startBall operation.

298 Interfacing JR and GUIs

20.2 BnB Code Overview 299

20.2.3 Button Class
The SwingApplication class creates the button. This code is modified

slightly from that given in Reference [48]. The button counts the number of
times it is clicked. On each click, it also creates two balls, one blue and one red.
It uses a capability for the board’s startBall operation to create each ball.

300 Interfacing JR and GUIs

20.2.4 Board Class
The Board class creates the board and controls the movements of the toys.

It keeps a list of its toys in myToys. When a toy moves from one board to
another, it is removed from the current board’s myToys and is passed to its new
board, where it is added to that board’s myToys. The board code also contains
a startup process to handle board start up (receiving remote references for
all boards, as described in Section 20.2.1) and to create the balls and box that
initially belong on the board. For each kind of toy, the board provides a manager
to control the movement of the individual toy.

20.2 BnB Code Overview 301

302 Interfacing JR and GUIs

20.2 BnB Code Overview 303

304 Interfacing JR and GUIs

The MtextManager is the simplest because only one Mtext object exists
on each board and the object never moves to another board. The manager first
creates an Mtext object. It then enters an infinite loop in which it randomly
picks the new position for the text, informs the object of its new position,

20.2 BnB Code Overview 305

requests that the board be repainted, and then sleeps for a random amount of
time.

The balls require more complicated code to create and control. The Board
class provides a start and a restart operation for balls. The start operation is
used to create a new ball. The restart operation is used by the start operation and
also when a ball moves from one board to another. The restart code starts up
a ballManager process to manage the ball. The ballManager process loops
for at most iters iterations. On each iteration of the loop, it computes the new
location of the ball. If the new location is at the top or the bottom of the board, it
in effect makes the ball “bounce off” the border. If the new location of the ball is
off the board to the left or the right, the ballManager process sends a message
to the adjacent board’s restartBall operation, exits the loop, removes the
ball from this board’s myToys, and terminates. The restart operation is given
the ball’s position and how many iterations remain for the ball. Otherwise, it
informs the ball object of its new position, requests that the board be repainted,
and then sleeps for a random amount of time.

Boxes are created and controlled similarly to how balls are. As for balls, the
Board class provides a start and a restart operation for boxes and a boxManager
process to manage each box. However, boxManager takes character input to
determine how to move the box. Note how boxManager receives this input
from the move capability. When a box moves off the current board, its manager
on the current board terminates and the box is passed to an adjacent board,
where a new box manager for it executes. The box still receives input when
the focus is on its home board, though, because a capability for the mymove
operation on the home board is passed with it. (See Exercise 20.3.)

Note that the myToys collection is declared as a synchronizedList and
that the paintComponent method uses a Java synchronized statement to
provide mutually exclusive access to the myToys collection. It ensures that other
processes do not changemyToys while it is being redrawn, i.e., while the iterator
is going through the collection. Generally, we advise against intermixing Java’s
and JR’s synchronization, but the above is simple and safe because those threads
blocked by a synchronized statement will not block indefinitely and interfere
with JR’s quiescence detection.

20.2.5 Toy Classes
The Toy class is an abstract base class for the toys. It simply provides fields

and methods that the toys have in common. It is serializable so that toys can be
passed between boards, which might be located on different virtual machines
(see Section 10.7).

306 Interfacing JR and GUIs

The Ball and Box classes extend the Toy class. Each has a mydraw method
that is used to draw the ball or the box at the toy’s current location.

20.2 BnB Code Overview 307

20.2.6 Input Classes
The KeyInput and MouseInput classes are used to provide input to the

board. The KeyInput class takes a capability (charKey) for an operation in its
board to which characters are to be sent. It sends only meaningful characters
and ignores others. It also handles exiting the game.

308 Interfacing JR and GUIs

The MouseInput class has a similar structure. However, for this game, mouse
clicks are not used by the board. (MouseInput does print out the cursor’s
position, though.) So, the board passes a noop capability as the mouseClick
parameter to its instance of MouseInput.

20.3 Miscellany
This section contains miscellaneous comments about the BnB program, using

Swing with JR programs, and GUI packages.

20.3 Miscellany 309

The BnB code has many constants in it, for example, to specify the sizes of
windows and toys. These constants could easily be specified as command-line
arguments (but they were not to keep the code a bit simpler to present).

Since BnB’s Board consists of a mainPanel that contains another panel
(board) and a button, the keyboard focus will be on one or the other of these
components. (Even though the button in BnB responds to only mouse clicks,
buttons in general can be triggered by keys too.) The focus can be changed
between components, as in many GUI applications, by hitting the tab key. The
code also sets the focus to the board area whenever the window is activated,
i.e., the mouse is moved into the window. Whether a particular program needs
to set focus, as here in BnB, depends on the exact structure of the components
it uses.

As discussed in Section 4.5, JR’s normal behavior is to terminate a program
once the program becomes quiescent. If a program is waiting to read input from
a terminal, the program will not be terminated. However, the current JR imple-
mentation is not aware of Swing (or AWT) events, which occur asynchronously
with respect to the JR program. Suppose, for example, that a JR program using
Swing is blocked waiting to receive a character from the keyboard (as in the
boxManager) or a mouse click, and that the program has no other processes
in it. Then, the JR implementation will consider the program to be quiescent
and will terminate it. (The BnB program does not terminate because, among
other processes, its MtextManager executes an infinite loop with no blocking
except for sleeping, of which the JR implementation is aware.) The simplest
way to prevent such termination is to use a command-line option when running
the program (see Appendix C for details). Another way is to use an additional
“sleeper” process that simply sleeps for longer than the program should execute
or sleeps for any period of time within an infinite loop.

Swing contains many other useful features. Here is a partial list of some
features that might be useful in writing JR programs with Swing.

many kinds of buttons, menus, etc.

menu selection via keyboard, possibly using “accelerators”.

other kinds of frames. For example, the BnB program could employ a text
frame to allow users on different systems to chat with one another. Or it
could display a small status window within each window to show what all
boards look like.

images. For example, the BnB program could, instead of drawing a rectangle
for each box, display a picture of a cat.

animation timers.

310 Interfacing JR and GUIs

The BnB program uses Swing. It could also be written using AWT. Swing
is a very flexible, but complicated package due to its many options. AWT is
lower-level, but probably simpler to learn, than Swing. However, Swing seems
to be the recommended choice. One key reason is that Swing programs will
present the same graphical displays on any system, whereas AWT programs are
not guaranteed to do so because AWT depends on the host’s native windowing
system. Such portability is very desirable in many applications.

Exercises
20.1

20.2

20.3

20.4

Suppose the BnB program did not use the goahead operation. Give a
step-by-step execution sequence that could yield an error.

Rewrite the startup code so that it uses capabilities for operations rather
than remote references.

Suppose the receive statement in boxManager receives from the mymove
operation instead of from the move capability. First, speculate as to the
differences in program behavior. Then, run the modified program to see
what actually happens.

Modify the BnB program so that:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

balls can also move from right to left. The direction of a particular
ball is chosen randomly when it is created.

modify the previous part so that balls created from the menu move
in the direction (left-to-right or right-to-left) specified in the menu,
which will need to be expanded to include direction choices.

boxes are allowed to wrap around from the top to the bottom of the
board and vice versa.

boxes keep moving in the last direction specified if no key is hit.

the board includes barriers, which are displayed on the screen. Balls
can pass through the barriers, but boxes cannot.

the game includes a new, triangle toy. In effect, there is one triangle
toy in the whole game; it is displayed in the same position on each
board. (Or one could view the game as having one triangle toy
per board; the triangles are displayed in the same relative position
on each board.) It moves randomly and periodically (say once per
second).

hitting the ‘c’ key will cause the box to move directly to the board
on which it was initially created.

hitting the ‘p’ key will cause the game to pause (in all windows)
until another key is hit (in the same window as original ‘p’).

Exercises 311

(i)

(j)

clicking the mouse within the board will move the box to the mouse’s
location. (If the box is on a different board, the box should move to
the specified position located on the other board.)

clicking the mouse within the board will set the focus (for the key-
board) to the board.

20.5 Modify the BnB program (or one of its variants developed in the previous
exercise) so as to make the game more interesting. Keep scores for each
player and display the current scores on each player’s display. Award
points when, for example,

a box collides with a ball on the screen.

a box collides with another box but only if the first box is not on its
home board.

a box’s bullet hits a ball. This change will require that boxes shoot
bullets, which will necessitate some other changes. Examples: the
shape of the box might change to indicate in which direction the
box’s shooter is pointing; the box should be able to rotate (e.g., say
via key ‘a’ to rotate counterclockwise and key ‘s’ to rotate clockwise)
to line up its shots.

other such rules of your own creation.

20.6 Develop a GUI that visualizes one of the programs developed in earlier
chapters, such as

one of the versions of Dining Philosophers (Chapter 11)

grid computation (Chapter 16)

the DFS program (Chapter 18)

20.7 Develop a distributed JR program that includes a GUI to perform some
animation or visualization. Possible examples include various arcade
games, card games, and other games:

Poker
Pong
Battleship
Risk

Hearts
PacMan
Othello
Monopoly

Tron
Frogger
Simon
Maze games

Combat
Alien Invaders
Space Invaders
Tetris

and other, more serious applications:

312 Interfacing JR and GUIs

Shortest Path Finding
Distributed Make
Cache Simulation
Multiprocessor Visualization
Distributed Graphics Renderer
Wave Simulation
Simplex Method Tableau Implementation
Highway (with Traffic Light) Visualization
Elevator Visualization
Railroad or Subway Visualization

Aim first for a simple prototype that demonstrates the essential, concur-
rent aspects of your chosen application. Then, refine it and add more
features.

Chapter 21

PREPROCESSORS FOR
OTHER CONCURRENCY NOTATIONS

In earlier chapters, we have seen several synchronization mechanisms and
how they are represented in JR. In particular, we have seen semaphores (Chap-
ter 6), asynchronous message passing (Chapter 7), remote procedure call (Chap-
ter 8), and rendezvous (Chapter 9). Besides these mechanisms, several other
notations for concurrency are noteworthy for historical, conceptual, and prac-
tical reasons. This chapter will explore Conditional Critical Regions (CCRs),
monitors, and Communicating Sequential Processes (CSP).

JR itself does not provide CCR, monitor, or CSP notation. However, the JR
implementation comes with preprocessors for each of these notations. Such a
preprocessor converts a program written in a particular notation into an equiv-
alent JR program, which can then be translated and executed in the normal
fashion. The concurrency notations use additional constructs; the keywords
used in these constructs begin with an underscore (e.g., _region).

The rest of this chapter briefly describes the three notations and how syn-
chronization is expressed in each. It also gives sample programs in each of the
notations. For more information about the preprocessors and specifics of the
notations (how to use them, summary of syntax, etc.), see the documentation
and sample programs that come with the JR implementation. For a thorough
general discussion of the three concurrency notations, see Reference [7]. (The
bounded buffer examples in this chapter are based on those in Reference [7]
and the overall presentation in this chapter is influenced by that work too.)

21.1 Conditional Critical Regions (CCRs)
Conditional Critical Regions (CCRs) [24] were developed to provide a syn-

chronization mechanism that is higher-level than semaphores. In programs
written with semaphores, it is not always apparent which variables are being
shared and whether P and V semaphore operations are being used where and as

314 Preprocessors for Other Concurrency Notations

they should be. For example, it is simple to accidentally omit a P or a V, use a
V where a P is needed, or P or V the wrong semaphore.

CCRs provide an abstraction mechanism, called a resource, to specify col-
lections of shared variables. They also provide a new statement, the region
statement, to access such collections. Variables within a resource can be ac-
cessed only within region statements that name that resource. Mutual exclusion
to variables in a given resource is implicit: only one process at a time is allowed
to be executing a region statement for a given resource.

As an example, consider the following problem involving three processes.
Each of the first two processes generates a number and adds its number to a
running sum. The third process waits until both of the other two processes have
added in their numbers before retrieving the sum.

Here is the CCR solution to this problem. First, we define a Data resource,
which contains two variables.

Note that the two variables are defined to be public, even though they can only
be accessed within region statements. Then, we define the code that instantiates
a Data resource and uses it.

27.7 Conditional Critical Regions (CCRs) 315

Notice that each _region specifies the name of a resource and a _with part,
and may specify a _when part. The _with part names a (new) variable to
be used within the region statement to reference variables within the named
resource. The optional _when part specifies under what condition (i.e., when)
the region statement is allowed to execute. Evaluation of the _when part and,
if that evaluates to true, subsequent execution of the region statement’s body is
atomic.

Thus, in the above program, the two p processes simply gain exclusive access
to the variables in the resource (a missing _when part is considered to be true)
and update the variables. The q process waits until count is 2, i.e., until both
p processes have incremented sum.

For the above CCR program, the BB resource and the BBMain class are placed
in separate files. Because each contains CCR constructs, each must be translated
by the CCR preprocessor to generate JR code.

As a more interesting example, consider the CCR solution to the bounded
buffer problem (described in Section 9.3). The BB resource declares the vari-
ables associated with the bounded buffer.

The BBMain class instantiates a bounded buffer and families of depositor and
fetcher processes to use it. The _region in the depositor ensures that there is
room in the buffer to deposit a new item; the _region in the fetcher ensures
that there is an item in the buffer to fetch.

316 Preprocessors for Other Concurrency Notations

A CCR program will terminate itself automatically if all of its processes have
terminated or are blocked waiting on their guards in _region statements.

21.2 Monitors
Monitors [25] have appeared in several languages and have influenced others,

including Java (see the end of this section). Like CCRs, monitors also provide
a higher-level abstraction than do semaphores. With CCRs, the declarations of
shared variables (i.e., resources) and the code that access shared variables (i.e.,
region statement) are scattered throughout the program. With monitors, these
appear together in a single construct; this construct is called a monitor and
resembles a class, but with some difference, which will be described below.
Processes outside the monitor access monitor variables indirectly by calling
monitor procedures (methods).

Like CCRs, mutual exclusion for monitors is implicit: only one process
at a time may be executing within a given monitor. Unlike CCRs, whose
region statement allows a boolean expression for synchronization, code within
a monitor uses explicit signaling, more like what is used with semaphores. This
signaling is accomplished via condition variables. A condition variable defines
a queue of processes, each of which is waiting to be signaled by some other
process.

Two statements manipulate condition variables: _wait and _signal. The
wait statement places the currently executing process at the rear of the queue for
the specified condition variable; it also releases the exclusive access this process
had for the monitor, thus allowing another process to gain access. The signal
statement awakens the first process on the queue for the specified condition
variable; the signaling process continues its execution in the monitor. The
signaled process will compete for access to the monitor with other processes
trying to enter the monitor. (Other possible definitions of signal’s behavior are
described later in this section.)

The wait and signal statements have some similarity to P and V semaphore
operations. However, a signal statement has no effect if the condition variable’s
queue is empty; unlike a V (which would increment the semaphore’s value in
such a case), a signal is not remembered. Also, a wait statement always delays
the currently executing process; recall that a P operation only delays the process
if the semaphore’s value is zero.

As a simple example, here’s a monitor solution to the Sum problem from
the previous section. The code that uses the monitor is straightforward. It

21.2 Monitors 317

instantiates a Data monitor and the processes simply invoke the appropriate
monitor procedures.

The monitor Data contains the shared variables and the code that accesses
them, and code that enforces the desired synchronization. It provides two
procedures: addToSum and getSum. The first is used by the two p processes
and the second is used by the q process.

Data also declares a condition variable, both. Each execution of addToSum
signals both. The code in getSum uses a loop to delay the invoking process
if necessary. For example, if only one p process has added its number to sum,
then the invoking q process needs to wait until the other p process has added
its number to sum (and incremented count to 2) and signaled. This monitor
can be written without using a loop (Exercise 21.3). However, wait statements

318 Preprocessors for Other Concurrency Notations

will generally be contained in loops to avoid bad effects that can occur due to
“signal stealers”, which will be described as part of the next example.

For the above monitor program, the Data monitor and the Sum class are
placed in separate files. The Data monitor contains monitor constructs, so it
must be translated by the monitor preprocessor to generate JR code. The Sum
class contains no monitor constructs so it is translated as a regular JR program.
(The invocations in Sum of the monitor’s methods are regular JR invocations.)

The next example gives a monitor solution to the bounded buffer problem.
Here again, the code that uses the monitor is straightforward. It instantiates a
BB monitor and its processes invoke the monitor procedures to deposit or fetch
an item.

The monitor BB declares the shared variables and two condition variables.
A process attempting to deposit an item will proceed only if there is room in
the buffer; it will delay on the not_full condition variable if the buffer is full,
until a consumer process later signals. When a process has completed a deposit,
it signals not_empty in case a consumer process is waiting. The actions of a
consumer process attempting to fetch an item are symmetric.

21.2 Monitors 319

Here again the waiting is done within a loop. On the contrary, suppose that
the code used an if statement instead of a while statement. Then, the following
sequence of activities could occur.

Consumer 1 attempts to fetch. It finds count to be 0, so it waits on
not_empty.

Producer 1 begins depositing an item.

Consumer 2 attempts to enter the monitor. It delays because Producer 1 has
access.

Producer 1 finishes depositing an item. Producer 1 signals not_empty,
which awakens Consumer 1.

Producer 1 leaves the monitor.

At this point, Consumer 1 and Consumer 2 are attempting to enter the
monitor. However, because Consumer 2 arrived first, it is granted access.

Consumer 2 fetches the item, sets count to 0, and leaves the monitor.

Consumer 1 now continues in the monitor (after its wait statement, which
we supposed is not within a loop). It fetches an undefined item, sets count
to -1 (oops!), and leaves the monitor.

Thus, the monitor’s data has been corrupted. The reason is that, in effect,
Consumer 2 stole the signal intended for Consumer 1. Enclosing the wait
statement in a loop, as in the original code, prevents the bad effect signal stealers
can cause (but it does not prevent signal stealing).

The particular definition of signal given above is known as signal and con-
tinue. The four standard definitions are summarized in the following table.
They differ in the effects of signal on the signaling and signaled processes.

320 Preprocessors for Other Concurrency Notations

SC

SW

SU

SX

signal and continue

signal and wait

signal and urgent wait

signal and exit

signaler continues executing in monitor.
signaled competes for re-access to monitor.
signaler steps out of monitor; it competes for re-
access to the monitor.
signaled executes in monitor next.
like SW, but signaling processes are given prefer-
ence in re-accessing the monitor.
signaler leaves monitor as though it executed a re-
turn (i.e., signal also terminates the invocation).
signaled executes in the monitor next.

Thus, in the last three, the signaled process preempts the signaling process in
executing in the monitor; due to preemption, placing wait statements within a
loop is generally needed only for SC. The preprocessor for monitor notation
supports all these signaling disciplines. The choice is made by a command-line
option; the default is SC.

The monitor notation also provides a few additional features. It allows arrays
of condition variables and testing whether a condition variable has any processes
waiting on it (_empty). It also provides prioritized waiting on a condition vari-
able (a variant of _wait) and a function to determine the priority of the first
process on a condition variable (_minrank). Finally, the notation provides a
way to awaken all processes waiting on a condition variable (_signal_all;
only allowed for SC). These features are described in more detail in the docu-
mentation for the monitor preprocessor.

A monitor program will terminate itself automatically if all of its processes
have terminated or are blocked due to wait statements.

Note that Java itself provides a form of monitor, but it does not provide the
various signaling disciplines and its signal (notify()) chooses the process to
awaken non-deterministically. The signals defined in this section, as in most
traditional definitions of monitors, awaken processes in first-come, first-served
order.

21.3 Communicating Sequential Processes (CSP)
CSP [26] is a separate language notation, but its key synchronization aspects

have appeared in or influenced several languages, including Ada [1], occam [14,
46], SR [9], and JR. CSP provides a form of rendezvous as its way for processes
to communicate. The exact form of rendezvous differs from what we have seen
earlier (Chapter 9). CSP uses input/output commands for rendezvous. An
input command is analogous to receive or inni in JR; an output command is
analogous to a call invocation in JR. However, as we shall see below, there are
significant differences. Input/output commands specify the name of the process
with which to communicate and the kind of message they wish to receive or
send. Input/output commands can appear as independent statements or as part
of if and do statements.

21.3 Communicating Sequential Processes (CSP) 321

As our first CSP program, we consider the Sum program seen in the previous
sections.

A CSP program requires the specification of the processes followed by the code
for the processes. The _spec gives their names and the kinds of messages they
can receive via input commands. In this program, p is declared being a one-
dimensional family of processes with two members; the code for p uses i as
the process’s “id”.

Process p uses an output statement to send its value of x to process q. Process
q uses an input statement to receive its value of x from each process q. Both
input and output statements are blocking. That is, processes delay until an
input command in one process corresponds with an output command in another
process. Correspondence means that an input command in one process names
the other process, an output command in the second process names the first
process, and the messages specified in the two commands match. When the
commands correspond, the values are copied from the output command to the
variables in the input command and the two processes continue their executions.

Note that in the above program, q rendezvouses with p[0] before it ren-
dezvouses with p[1]. Suppose that p[0] must perform a lot of work to compute
its value, whereas p[1] does not. Then, q and p[1] are waiting unnecessarily.
To improve the program’s performance, q can be modified to rendezvous with
whichever p is ready first. The new code for process q is as follows:

322 Preprocessors for Other Concurrency Notations

Each of q’s input statements now uses a quantifier to indicate that it is willing
to communicate with either of the two p processes. Note that this kind of
quantified input statement in CSP inspired a similar quantified input statement
in JR (see Section 9.8).

A CSP program, such as the above program, consists of just one _program
construct. Thus, the entire program is placed in one file, which is then translated
by the CSP preprocessor to generate JR code.

The next example is the bounded buffer problem, as seen in previous sections.
It shows how input/output commands can also appear as guards of if and do
statements. These statements are represented as _if and _do. They consist
of multiple “arms”, each of which contains a guard followed by a block of
code. Each guard is an input command, an output command, or a plain boolean
expression.
_if and _do execute differently from their counterparts in Java. A key dif-

ference is that all the guards for all arms are evaluated, conceptually, in parallel.
Then, one of the guards is chosen nondeterministically and the associated code
is executed. (Contrast that with evaluation of Java’s if statement, which se-
quentially evaluates the expression in the “if” part, then the expression in the
“else if” part, etc., stopping when it finds one true and executing the associated
code.) As a simple example, consider the following CSP if statement to set max
to the maximum of x and y.

It contains two arms; the guard of each consists of just a boolean expression.
Note that if x and y have the same value, both guards are true and either assign-
ment statement may be chosen to execute.

A CSP do statement executes similarly to a CSP if statement. However, if
any guard is true, then after the associated code is executed, the statement is
executed again, by reevaluating the guards, etc. The do statement terminates
when all of its guards evaluate to false.

As noted above, input/output commands can appear in guards in CSP if
and do statements. In this role, an input/output command may be preceded
by one or more quantifiers, as seen earlier, and by a boolean expression. If

21.3 Communicating Sequential Processes (CSP) 323

the boolean expression evaluates to false, then the entire guard is considered
to be false. Otherwise, the guard is considered to be true if the input/output
command corresponds with one in another process. A guard’s value is “not
yet determined” if its boolean expression is true, but its input/output command
does not (yet) correspond with one in another process. If the evaluation of
a process’s if or do statement yields no true guards but one or more not yet
determined guards, then the process is delayed until the value of those guards can
be determined. Such a guard becomes true when another process’s input/output
command corresponds with it.1 Such a guard becomes false when the process
named in the input/output command terminates.

Here is a CSP solution to the bounded buffer problem.

1To be more precise, for the guard to be true, the two processes must also commit to communicating with one
another via this pair of commands, and not with other processes with whom they might also have input/output
commands that correspond (or other commands with the same processes).

324 Preprocessors for Other Concurrency Notations

It has a family of producer processes and a family of consumer processes. It
uses a buffer manager process, which contains the actual buffer. As shown,
a producer process uses an output statement to deposit an item; a consumer
process uses an output statement followed by an input statement to fetch an
item. The buffer manager uses a do statement with two arms. One arm is used
to communicate with producers, but only when the buffer is not full. Similarly,
the other arm is used to communicate with consumers, but only when the buffer
is not empty. Both guards become false once all producers and consumers
terminate, which causes the buffer manager’s do statement to terminate too.

The above solution is asymmetric with respect to how the producers and con-
sumers interact with the buffer manager. A more pleasing, symmetric solution
uses an output command in a guard, so the code in the consumer is now just an
input statement.

Exercises 325

Some definitions of CSP or CSP-like rendezvous mechanisms (e.g., JR’s inni
statement, Occam’s alt statement, and Ada’s select/accept statements) do
not allow output commands or their equivalents as guards.

The description above indicates that when a process terminates, any guards
in which it is named become false. This semantics is known as implicit ter-
mination. An alternative semantics is known as explicit termination. In this
semantics, such a guard’s value would remain undetermined. Implicit termina-
tion is often simpler for the programmer, since explicit termination requires the
programmer to write additional code. (See Exercise 21.7.) The CSP preproces-
sor supports both kinds of termination. The choice is made by a command-line
option; the default is implicit termination.

Exercises
The Sum CCR code is not reusable. That is, suppose we want each of
the two p processes to produce two numbers and the q process to get the
sum of the first pair of numbers and then the second pair. Modify the
code to do so. Be sure your code pairs up one number from each p and
prevents two numbers from one p from being considered a pair.

Repeat Exercise 21.1 but for the Sum monitor.

Rewrite monitor Data so it does not use a loop (but so it still provides
the desired synchronization).

Explain why the original Sum CSP program is already reusable (in the
sense of Exercises 21.1 and 21.2). Is the Sum CSP program that uses
quantifiers reusable? Explain your answer.

Rewrite the Sum program using semaphores (Chapter 6).

Rewrite the monitor programs in this chapter using only Java’s monitor-
like mechanisms.

Rewrite the CSP bounded buffer program so that it uses explicit termina-
tion. When each producer and consumer process finishes, have it inform
the buffer manager via a “done” message. Then, the buffer manager can
terminate.

21.1

21.2

21.3

21.4

21.5

21.6

21.7

326 Preprocessors for Other Concurrency Notations

21.8 Program each of the following using the CCR, monitor, and CSP pre-
processors.

(a)

(b)

(c)

(d)

the CSOrdered program (Section 6.1).

a barrier (Section 6.3).

the Readers/Writers Problem (Section 9.3).

the Atomic Broadcast Problem (Exercises 7.10 and 9.15).
For the monitor solution, use the SC discipline.

Solve Exercise 7.10(a) in two ways: first without signal_all
and then with signal_all. Do not use signal_all in the
other parts.
You may use arrays of condition variables only in your solutions
to Exercise 7.10(b) and Exercise 7.10(c) but if you do, explain
why in each case you need them.
Use only the monitor procedures void deposit(int msg)
and int fetch(), with no additional parameters (unless the
parameters are used only to make the program’s output more
clear), except fetch can be passed a process’s id in your solu-
tion to Exercise 7.10(b) and Exercise 7.10(c).

(e) the Savings Account Problem (Exercises 7.11 and 9.16).
For the monitor solution, use the SC discipline.

First, develop a solution that is correct, but services any
waiting withdrawals it can when a deposit is made.
You may use signal_all in your solution, but if
you do, explain why it was useful. Use only the
monitor procedures void deposit (int amount) and
void withdrawal(int amount), with no additional pa-
rameters (unless the parameters are used only to make the
program’s output more clear).
Then, modify your solution so that withdrawals are serviced
FCFS. For example, suppose the current balance is $200 and
one customer is waiting to withdraw $300. If another customer
then requests to withdraw $10, it must be delayed until the ear-
lier withdrawal request has been completed. (Hint: record the
amount parameters of the processes waiting to complete their
withdrawals.)

(f)

(g)

the One-Lane Bridge Problem (Exercise 9.17).

the Bus Problem (Exercises 9.18 and 9.19). The CSP solution can
use a manager process, but the other solutions cannot. Do not use
_signal_all in the monitor solution.

Exercises 327

(h) the Dining Philosophers Problem (Chapter 11).

Set partition. Follow the directions for Exercise 9.32, but solve the
problem using the CSP preprocessor.

Assume implicit termination. Do not use output commands in guards.

Source files containing parts of this program come with the JR distribu-
tion. Run your program on each of the supplied data files.

Dutch National Flag. Follow the directions for Exercise 9.33, but solve
the problem using the CSP preprocessor.

Your program may use output commands in guards. Your solution can
end in deadlock (but only after finishing sorting).

Source files containing parts of this program come with the JR distribu-
tion. Run your program on each of the supplied data files.

Pairing Problem [20]. Given are N processes, each corresponding to a
node in a connected graph. Each process has one or more neighbors to
which it is connected. The goal is for each process to pair itself with
one of its neighbors. When the processes finish “pairing”, each process
is paired or single, and no two single processes are neighbors.

Denote the processes node[i], for i between 0 and N-1. The graph
connectivity is stored in a global N × N boolean matrix connect,
where connect[i][j] is true if and only if node[i] is a neighbor of
node[j]—connect is therefore symmetric. For all i, connect[i][i]
is false.

All node processes execute the same algorithm, which terminates, and
does not share variables other than connect, which cannot be modified.
A node only exchanges messages with nodes to which it is connected.
When done pairing, each process stores its pairing into its local inte-
ger variable p. That is, if nodes i and j pair with each other, then p
in node[i] should be set to j and p in node[j] to i; otherwise, p in
node[i] should be set to i. Consider the following (implicit termina-
tion) solution:

21.9

21.10

21.11

328 Preprocessors for Other Concurrency Notations

Briefly explain how the above solution works. Also, discuss whether
it would work if _do were replaced by _if. (Note: it is not optimal in
the sense of minimizing the number of single processes; that would
make this problem very hard.)

Suppose the above program were run under explicit termination.
Exactly which processes, if any, will not terminate? Explain.

Modify the above solution so it uses explicit termination (and all
processes terminate) and output commands in guards. Do not intro-
duce additional processes or shared variables. Your solution must
be symmetric.

Modify the above solution so it uses explicit termination (and all pro-
cesses terminate) and does not use output commands in guards. Do
not introduce additional processes or shared variables. Your solu-
tion need not be symmetric, but it still must reasonably distribute the
“work” among the processes; e.g., do not have one process compute
the pairings and send the results to the others.

(a)

(b)

(c)

(d)

Source files containing parts of this program come with the JR distribu-
tion. Run your program on each of the supplied data files.

21.12 Pairing Problem.

Repeat the previous question using JR. Because JR does not have
the equivalent of implicit termination or output commands in guards,
your solution will be closest to that for Exercise 21.11(d). Create all
processes within the same object. Use arrays of operations. Make
sure your solution terminates correctly.

Source files containing parts of this program come with the JR dis-
tribution. Run your program on each of the supplied data files.

Compare the CSP solution to Exercise 21.11 with your JR solution.
Which was easier to program? to understand? etc.

(a)

(b)

21.13 Set minimum problem [35] (based roughly on Exercise 8.5 in Refer-
ence [7]). A set of N integers is distributed over N processes, so that
each process has one integer value. The goal is for the processes to de-
termine the minimum of the set. The processes repeatedly interact, with

Exercises 329

each process trying to give away to another process the minimum value
it has seen so far. If a process gives away its minimum value, then it
terminates. Otherwise, it tries to interact again. Eventually, one process
will be left and it will know the minimum of set.

All processes execute the same algorithm, which terminates and which
does not share any variables.

Define MinCount and MaxCount as, respectively, the minimum and
maximum number of values that any process has seen during execution
of the program. The process’s initial value is included in these counts.

Solve this problem using implicit termination and output guards
in commands. Hint: your program will be similar to the solution
given to Exercise 21.11. Give MinCount and MaxCount for your
solution and explain your answer.

Suppose your solution to the previous part were run under explicit
termination. Exactly which processes, if any, will not terminate?
Explain.

Modify your solution so it uses explicit termination (and all pro-
cesses terminate) and output commands in guards. Do not introduce
additional processes or shared variables. Your solution must be sym-
metric. A process no longer needs to terminate immediately after
it gives away its value. Describe how processes in your solution
behave in this regard. Give MinCount and MaxCount for your
solution and explain your answer.

Modify the above solution so it uses explicit termination (and all
processes terminate) and does not use output commands in guards.
Do not introduce additional processes or shared variables. Your
solution need not be symmetric, but it still must reasonably distribute
the “work” among the processes. In particular, MaxCount must
be approximately N/2. Explain how your solution satisfies that
requirement. Hint: consider first the straightforward solutions when
MaxCount is 2 and when MaxCount is N. For simplicity, you
may assume that N >= 2.

(a)

(b)

(c)

(d)

Source files containing parts of this program come with the JR distribu-
tion. Run your program on each of the supplied data files.

21.14 Set Minimum Problem.

Repeat the previous question using JR. Because JR does not have
the equivalent of implicit termination or output commands in guards,
your solution will be closest to that for Exercise 21.13(d). Create all

(a)

330 Preprocessors for Other Concurrency Notations

processes within the same object. Use arrays of operations. Make
sure your solution terminates correctly.
Source files containing parts of this program come with the JR dis-
tribution. Run your program on each of the supplied data files.

Compare the CSP solution to Exercise 21.13 with your JR solution.
Which was easier to program? to understand? etc.

(b)

Appendix A
Synopsis of JR Extensions

Additional Syntax
JR extends Java with additional statements, types, etc. The syntax below shows these exten-

sions in terms of the syntax and the notation used in Chapter 18 of the Java Language Specification
(JLS) [28].1 Similar to the JLS BNF, the BNF below uses the following conventions:

BNF symbols appear in italics. Terminal symbols (i.e., tokens) appear in Courier. For
example, parentheses appear as BNF symbols as (and) versus as (and) as tokens.2

[x] denotes zero or one occurrence of x.

{x} denotes zero or more occurrences of x.

x|y means one of either x or y.

Multiple alternatives for each rule are placed on separate lines (i.e., an implicit | is assumed
between such lines).

The nonterminal being defined in each rule is given a suffix:

(JLS) indicates that the nonterminal is defined in the JLS BNF and that the rule given
here is in addition to those in the JLS BNF.

(new) indicates that the nonterminal is not defined in the JLS BNF, but it is defined
entirely here.

1Specifically, the grammar at the time of this writing is described inhttp://java.sun.com/docs/books/
jls/second_edition/html/syntax.doc.html#44467.
2Due to the typeface used in this book, { and } do not appear to be italicized. There should be no confusion,
though, because the BNF in this section uses no { or } token.

332 Appendix A: Synopsis of JR Extensions

Appendix A: Synopsis of JR Extensions 333

A few notes regarding the syntax:

The above BNF is “covering” in the same sense that the JLS BNF is. For example, the JLS
BNF allows conflicting modifiers, e.g., private public int x;. But, that is not allowed
in the language definition and is checked for by the translator. Similarly, the JR BNF allows,
for example, receive 1;.

A call invocation occurs when an operation is invoked from a call statement (as given in
the above BNF) or as part of an Expression, e.g., f() or x = g(3)/10 where f and g are
operations or capabilities.

In many cases, the expression in InniArmOp (or the receive statement) will simply be an
identifier directly naming the operation to service. However, it can also be an identifier
naming a capability variable, whose value is the operation to service. Moreover, it can be
any expression that evaluates to a capability for an operation.

CapOrOpDeclFormalParameters is the same as FormalParameters except that identifiers
are optional.

334 Appendix A: Synopsis of JR Extensions

OpMethodDecl, which is defined in terms of CapOrOpDeclFormalParameters, requires that
identifiers are specified. (That requirement is not shown in the above BNF.)

Quantifier’s first expression must specify a new variable (see Section 4.1).

Interestingly, all Java implementations we have tried allow identifiers and brackets to be
mixed in the specification of formal parameters. For example, each of the following is legal:

However, the grammar given in the JLS allows only the last of the above
forms. The JR implementation follows the Java implementation and allows
such mixing.

Additional Keywords
The following table lists all additional (with respect to Java) JR keywords and a brief descrip-

tion of how each is used. For more details on a particular keyword, consult the pages referenced
in its entry in the Index.

keyword
as

by
call
cap
forward
handler
inni
no op
op
over
P
process
receive
remote
reply
sem
send
st
V
view
vm
with

how used
arm of invocation view statement
scheduling expression in input statement
synchronous invocation
declaration of capability type
forwards invocation
exception operation handler specifier
input statement (for rendezvous and receive)
capability constant value (do nothing)
operation declaration
selection method
semaphore primitive
process abbreviation
receive statement
remote object specifier
reply statement
semaphore declaration
asynchronous invocation
synchronization expression in input statement
semaphore primitive
view invocations
virtual machine
selection method

Additional Classes
Details for the below additional classes appear in Appendix B.

class
ArmEnumeration
Invocation
InvocationEnumeration
Timestamp

how used
selection methods
selection methods
selection methods
selection methods

Appendix A: Synopsis of JR Extensions 335

Additional Predefined Methods
method
oper.length()
JR.exit(int status)

how used
returns number of pending invocations of operation oper
exits program with status as exit status

JR.registerQuiescenceAction(cap void() q)
registers q as quiescence operation

Additional Predefined Fields
field
r.remote

vm.thisvm

how used
remote reference for object reference r
(often used asthis.remote)
reference for vm on which this object resides

Additional Predefined Exceptions
exception when raised
edu .ucdavis . jr .QuiescenceRegistrationException

failure of JR.registerQuiescenceAction

This page intentionally left blank

Appendix B
Invocation and Enumeration Classes

This appendix provides the details of the classes and methods that are used in conjunction
with the inter-operation invocation selection mechanism described in Chapter 14.

Selection methods make use of ArmEnumeration, InvocationEnumeration, and
Invocation objects to implement invocation selection algorithms. Each of the following classes
is a member of the edu.ucdavis. jr package. These classes provide methods to facilitate the
implementation of different selection algorithms. Each of these methods is discussed in detail
below.

ArmEnumeration Methods
The ArmEnumeration class provides access to the invocations of an associated input statement
through the enumeration of a number of InvocationEnumeration objects (one per arm of the
input statement). The ArmEnumeration class supports the following methods.

hasMoreElements
public boolean hasMoreElements()

Tests if this enumeration contains more elements.
Returns:
true if and only if this enumeration object contains at least one more
element to provide; false otherwise.

nextElement
public Object nextElement() throws NoSuchElementException

Returns the next element of this enumeration if this enumeration object has
at least one more element to provide.

Returns:
the next element of this enumeration.

Throws:

338 Appendix B: Invocation and Enumeration Classes

NoSuchElementException — if no more elements exist.

reset
public void reset()

Resets the enumeration to the beginning of the underlying group of ele-
ments.

size
public int size()

Returns the number of elements in the underlying container.

Returns:
the number of elements in the underlying container.

InvocationEnumeration Methods
The InvocationEnumeration class provides access to the invocations of a
specific arm of an input statement through the enumeration of its pending in-
vocations (represented by Invocation objects). The pending invocations are
ordered by logical timestamp (longest pending first). The logical timestamp is
an implementation specific data structure that ensures causal ordering of mes-
sages. Logical timestamps need not (and do not) correspond to actual time.
The InvocationEnumeration class supports the following methods.

hasMoreElements
public boolean hasMoreElements() throws RemoteException

Tests if this enumeration contains more elements.
Returns:
true if and only if this enumeration object contains at least one more
element to provide; false otherwise.

Throws:
RemoteException — if a RemoteException occurs.

nextElement
public Object nextElement() throws NoSuchElementException, RemoteEx-
ception

Returns the next element of this enumeration if this enumeration object has
at least one more element to provide.

Returns:
the next element of this enumeration.

Throws:

Appendix B: Invocation and Enumeration Classes 339

NoSuchElementException — if no more elements exist.
RemoteException — if a RemoteException occurs.

reset
public void reset() throws RemoteException

Resets the enumeration to the beginning of the underlying
ments.
Throws:

RemoteException — if a RemoteException occurs.

group of ele-

size
public int size() throws RemoteException

Returns the number of elements in the underlying container.

Returns:
the number of elements in the underlying container.

Throws:
RemoteException — if a RemoteException occurs.

Invocation Methods

The Invocation class provides access to a single pending invocation of a
specific arm of an input statement. The values of the actual arguments within
an invocation are accessed using a view statement as discussed in Section 14.2.
The Invocation class supports the following method.

getTimestamp
public Timestamp getTimestamp()

Returns the logical timestamp of the invocation.

Returns:
the logical timestamp of the invocation.

Timestamp Methods

The Timestamp class stores a logical timestamp for an invocation. The
Timestamp class implements java.lang. Comparable and supports the fol-
lowing methods.

equals
public boolean equals(Object obj)

340 Appendix B: Invocation and Enumeration Classes

Compares this object to the specified object. The result is true if and only if
the argument is not null and is a Timestamp object that contains the same
logical timestamp value as this object.

Parameters:
obj — the Object with which to compare.

Returns:
true if the objects have the same logical timestamp; false otherwise.

compareTo
public boolean compareTo(Timestamp another Timestamp)

Compares two Timestamp objects numerically.

Parameters:
anotherTimestamp — the Timestamp with which to compare.

Returns:
the value 0 if this Timestamp is equal to the argument Timestamp;
a value less than 0 if this Timestamp precedes in time the argument
Timestamp; and a value greater than 0 if this Timestamp succeeds the
argument Timestamp

compareTo
public boolean compareTo(Object obj)

Compares this Timestamp object to another object. If the object is a
Timestamp, this function behaves like compareTo (Timestamp). Oth-
erwise, it throws a ClassCastException (as Timestamp objects are only
comparable to other Timestamp objects).

Parameters:
obj — the Object with which to compare.

Returns:
the value 0 if this Timestamp is equal to the argument Timestamp;
a value less than 0 if this Timestamp precedes in time the argument
Timestamp; and a value greater than 0 if this Timestamp succeeds the
argument Timestamp

Throws:
ClassCastException — if the argument is not a Timestamp.

Appendix C
Program Development and Execution

This appendix provides a brief overview of the components of the JR system and the way
they are used to develop and execute JR programs. Detailed descriptions of commands and tools
are contained in the manual pages that are part of the JR distribution and in the JR webpage.

Basics of Translation and Execution
Section 1.6 outlines the basic steps and tools involved in translating and executing a JR

program. As described there, JR program code appears in files with . jr suffixes. The jrc tool
translates these files to Java code, which is then compiled using the Java translator. The jr_rmic
tool then adapts the resultant Java bytecode to execute with RMI. The jrrun tool then executes
the resultant code on the Java Virtual Machine (JVM).

Section 1.6 also mentions additional tools to simplify translation and execution: jr, which
combines the basic translation and execution steps; and jrgo and jrgox, which are even simpler
versions of jr and jrrun. The jrgo and jrgox tools will work with most programs.

See the JR webpage for specific details on how to use all of these tools. For example, it
describes the necessary settings for environment variables, search paths, etc.

Preprocessors
Chapter 21 describes the three preprocessors for use with JR. The first, ccr2jr, converts

source code written using a form of conditional critical regions (CCRs) into JR code. The second,
m2jr, converts source code written using a form of monitors into JR code; it also supports several
different monitor signaling disciplines. The third preprocessor, csp2jr, converts source code
written in a variant of Communicating Sequential Processes (CSP) into JR code. See the man
pages for descriptions of the preprocessors, including command-line options.

Multiprocessor Programs
When a JR program is executed on a single processor, JR processes are executed one at a time

in an interleaved fashion. However, on shared-memory multiprocessors, the JR implementation
supports true concurrency. In either case, the JR implementation simply uses the underlying
Java implementation. (See Appendix D for an overview of the JR implementation.)

342 Appendix C: Program Development and Execution

Distributed Programs
A JR program is treated as a distributed program if it makes explicit use of virtual machines.

In this case, it executes in cooperation with an execution-time manager, jrx. Execution of jrx
starts automatically when a JR program first creates an instance of a vm.

A new virtual machine is created on physical machine X by executing create vm() on X.
As described in Chapter 10, machine X can be specified in either of two ways. The simplest
way is to use a string expression that gives the symbolic name of a machine; this is of course
installation dependent. The second way is to specify an existing virtual machine; in which case
the new virtual machine is co-located with the existing one.

A distributed JR program can use only those hosts on a network to which a user has access.
A user’s login name must be the same on all these hosts. JR programs can be distributed over
machines that run the same version of the JR implementation.

When a JR program creates a virtual machine on a host, the jrx manager uses the rsh
command to initiate execution of the JR program on the remote host. Code is loaded onto the
remote host as it is needed from the host on which program execution was initiated.

Automatic Termination
Section 4.5 discussed how JR programs can deal with program quiescence. The JR imple-

mentation’s default behavior is to terminate a program when it becomes quiescent. This behavior
can be controlled via command-line options to jr or jrrun: -implicit and -explicit. The
first option specifies the default behavior; the second requires that the program terminate itself,
e.g., via JR.exit(0).

The JR implementation’s default behavior is not to output anything when it terminates the
program. However, that can be changed by specifying a positive “verbosity” level as a command-
line option to jrrun, e.g., -verbosity=1.

These options cannot be used with jrgo or jrgox.

Cautions and Pitfalls
We have tried to make the JR language easy to understand and consistent. However, like

any programming language, there are a few things in JR that might cause surprises, which are
summarized in the following list.

undefined return value for invocation ofnoop (Section 3.3).

static versus non-static processes (Section 4.3).

mismatched variables in quantifiers (see Exercise 4.13).1

passing object references (Section 7.8).

passing object references across virtual machines and serializability (Section 10.7).

the directory in which execution begins for new virtual machines (Section 10.8).

side effects in synchronization and scheduling expressions (Section 9.5).

premature GUI program automatic termination (Section 20.3).

use of an operation after it has gone out of scope (Appendix E).

1A similar pitfall occurs for Java’s for statement, but would not occur for a language with notation that
specifies the index variable once, e.g., for i := 0 to 9.

Appendix D
Implementation and Performance

The JR implementation has two major components: the translator and the run-time system
(RTS). The JR translator extends the Java1 compiler available in SUN’s JDK, Version 1.2.1
to support JR-specific features. This extension was, for the most part, straightforward, but
did require modifications to allow variables to be used as methods (to support capabilities).
The translator converts JR programs into standard Java programs that are supported by the JR
run-time system. Appendex C briefly describes the translation and compilation process. This
appendix gives an overview of the RTS, focusing on how it implements the concurrency features
of JR.

The JR run-time system is implemented in standard Java. The RTS provides the environment
in which the compiled program executes. In particular, it supports creating virtual machines and
remote objects, invoking and servicing operations, and loading class files over a network.

When a user starts execution of a JR program, the RTS creates one JR virtual machine (JRVM)
on the local physical machine. After initializing the JRVM, the RTS then executes the program’s
main method. Each JRVM executes in a single Java virtual machine. JRVMs exchange messages
using Java’s Remote Method Invocation (RMI).

The RTS hides the details of the network from the executable program; i.e., the number of
machines and their topology is transparent. When a request for a service provided on another
machine is initiated—e.g., creating a remote object or invoking an operation—the invocation of
the appropriate method is remotely executed via RMI on the remote machine. Results from such
requests are transmitted back through the standard RMI method return.

The remainder of this appendix describes how the RTS implements virtual machines, remote
objects, operations, invocation statements, and input statements. The last section discusses the
relative performance of the various thread-interaction mechanisms.

D.1 JR Virtual Machines
Each JR virtual machine is a small Java program that provides a thin layer over the standard

Java virtual machine to allow remote object creation. To create a new virtual machine, a thread
must contact a centralized virtual machine manager, called JRX, which plays a role similar to that
of SR’s SRX [9]. JRX contacts (via rsh or a specified alternate program) the physical host on

1JR currently extends Java 1.4. We have plans to further extend JR to incorporate the changes in Java 1.5.

344 Appendix D: Implementation and Performance

which the virtual machine is to be created and initiates the execution of the jrvm program. Once
created, a virtual machine executes a remote method invocation to contact JRX and register
itself as ready to receive requests. A reference to the virtual machine is then returned to the
instantiating thread so that remote objects can subsequently be created on the virtual machine.

D.2
Remote objects are created, using a new expression, on either the local virtual machine or

on a remote virtual machine. Upon execution of the new expression, the virtual machine on
which the object is to be created is contacted (via RMI) and passed the type of the object to be
instantiated, the types of each of the constructor’s arguments, and each of the arguments. The
virtual machine then uses Java’s reflection support to create a new instance of the object. After
the new instance is created, a remote “reference object” is returned to the instantiating thread.

These “reference objects” are implemented as java. io. Serializable proxy objects. Each
“reference object” contains references to each of the operations defined within the remote object’s
class. These operation references are actually operation capabilities that also implement the
java,io.Serializable interface. The subclassing of the remote proxy objects mimics the
inheritance hierarchy of the user-level JR classes with which they are associated. As such, a
reference to a remote java.lang.Object object can refer to a remote java.lang.String
object.

D.2.1 Remote Class Loading

Remote Objects

The dynamic class loading described in the Java RMI specification [45] allows for class
files to be loaded from either the local CLASSPATH or from a predefined URL. The JR run-
time system requires only that necessary class files for the program be accessible through the
CLASSPATH at the originating host (where the program is initially executed). When a remote
object is created, the necessary class files are retrieved from the JRX object on the originating
host through a custom network class loader. This reduces the amount of setup required by the
user and eliminates the need for a separate server (e.g., an http or ftp server) to provide file access.

Figure D.1. Actual JR operation inheritance hierarchy

D.3 Operations and Operation Capabilities 345

D.3 Operations and Operation Capabilities
Figure D.1 shows the actual inheritance hierarchy of operation classes in the RTS. Each

operation serviced by a method is implemented as a separate ProcOp object defined within the
class that declares the operation. Thus, a ProcOp object may be serviced by a private method.
Invocations of the operation are translated into invocations of the appropriate method (i.e., call,
send, etc.) in the ProcOp object. This translation is very similar to the common technique of
simulating a method reference (not directly representable in Java without using reflection) as an
object with a well-defined interface. Figure D.2 shows an approximation of this translation.

Figure D.2. Translation of the invocation of a ProcOp

An operation serviced by inni statements is implemented as an InOp object that contains a
message queue in which the arguments for each invocation are stored. An invocation of an InOp
is translated into an appropriate method invocation on the corresponding object. All operations
implement the java.rmi.Remote interface allowing methods to be invoked from remote hosts.

An operation capability is an object that implements the java.io.Serializable interface
and that contains a reference to the appropriate signature specific operation. As such, operation
capabilities can be passed over a network (at which point the Java RMI system will clone the
capability object) while retaining a reference to original operation object. Invocations of the
operation primitives (i.e., call, send, etc.) via a capability object are forwarded to the actual
operation to which the capability refers.

D.4 Invocation Statements
Synchronous invocations (i.e., calls) of an operation are translated directly into equivalent

Java RMI statements that invoke the call method supported by the target operation object. If
the operation is serviced by a method (i.e., it is a ProcOp), then the call method invokes the
actual servicing method. If the operation is serviced by inni statements (i.e., it is an InOp),
then the call method places a message containing the invocation’s actual arguments into the
operation’s invocation queue and blocks until the message is serviced.

Since the JR run-time system is built using RMI, the support for asynchronous message
passing is built upon a synchronous method invocation system. As such, the send statement
is not truly asynchronous, but is actually semi-synchronous [11]. A send is implemented as
an RMI invocation of the send method in the object that corresponds to the operation being
invoked. A ProcOp’s send method spawns a new thread to execute the method associated with
the ProcOp and then returns, releasing the invoking thread. An InOp’s send method places
a message containing the actual arguments into the invocation queue and then returns. This
strategy produces the desired effect, but does require the invoker to temporarily block.

346 Appendix D: Implementation and Performance

D.4.1 Inheritance
In Java, a method invocation causes a dynamic lookup to determine the actual method to

invoke. However, this lookup is not done when accessing a data field. Since each operation
in JR is implemented as a signature-specific Op object, the generated Java code must provide
support for dynamic lookup of operations. This support is provided via access methods used to
retrieve the appropriate operation object, an example of which can be seen in Figure D.2 (b).

D.5 Input Statements
Input statements are the most complicated statements in the language and hence have the

most complicated implementations. In its most general form, a single input statement can
service one of several operations and can use synchronization and scheduling expressions or a
with/over clause to select the invocation it wants. Moreover, an operation can be serviced by
input statements in more than one thread, which then compete to service invocations.

Classes are fundamental to the implementation of input statements. They are used to identify
and control conflicts between threads that are trying to service the same invocations. Classes are
created dynamically as determined by the presence of operations in inni statements. A class of
operations is an equivalence class of the transitive closure of the relation “serviced by the same
input statement.”

At run-time, when an inni statement is to be executed, its class of operations is determined
by the operations that the inni statement is about to service. The RTS represents each class by
a common lock. Those operations that exist in the same class share this common lock. This
lock is used to synchronize the arrival of messages and to store a list of threads that are waiting
to access the class. Further details can be found in [40].

At most one thread at a time is allowed to access the pending invocations of operations in a
given class structure. That is, for a given class at most one thread at a time can be selecting an
invocation to service or be appending a new invocation. Threads are given access to both pending
and new invocations in a class in first-come/first-served order. Thus a thread waiting to access
the invocations in a class will eventually obtain access as long as all methods in synchronization
and scheduling expressions and in with/over clauses terminate eventually.

Note that synchronization and scheduling expressions and with/over clauses are evaluated
by the executable program, not the RTS. We do this for two reasons. First, these expressions can
reference objects such as local variables for which the RTS would need to establish addressing if
it were to execute the code that evaluates the expression. Second, these expressions can contain
invocations; it would greatly complicate the RTS to handle such invocations in a way that does
not cause the RTS to block itself. A consequence of this approach to evaluating synchronization
and scheduling expressions and with/over clauses is that the overhead of evaluating such
expressions is paid for only by threads that use them.

D.6 Quiescence Detection
JR supports an automatic quiescence detection mechanism that will either cause a program

to terminate or that will invoke an operation if all threads are blocked. Java, however, does not
provide a simple reliable means to detect such a scenario. Since the current implementation of JR
does not modify the Java virtual machine, quiescence detection is implemented at the user-level.
In the generated code, each time that a thread is created via an asynchronous invocation a “thread
birth” is logged. Likewise, whenever such a thread terminates a “thread death” is logged. If a
JR virtual machine goes idle at any time, then it notifies JRX, the virtual machine manage. Once
JRX determines that all JR virtual machines are idle, and that there are not messages in transit,
it executes the quiescence action (program termination by default).

D. 7 Performance Results 347

This approach, though functional, has a negative impact on the overall performance of JR
programs. The performance impact can be lessened by disabling quiescence detection when
executing JR programs. Even so, since quiescence detection is a run-time option, programs
that disable the feature still incur some overhead since the code was generated to support both
options.

D.7 Performance Results
A number of microbenchmarks have been used to study the performance of JR programs

against equivalent RMI programs. The performance results demonstrate that remote method
invocations in JR incur little overhead compared with equivalent invocations in standard RMI
(upon which JR is built). Each of the following experiments was conducted on a cluster of 2
GHz Intel Pentium 4 workstations connected via a 10 Mbps Ethernet network. All experiments
were conducted using SUN’s JDK, Version 1.4.2.01 on Linux kernel 2.4.20-8.

The first experiment demonstrates the time needed to invoke an empty method. Table D. 1
shows the results of repeatedly invoking an empty ProcOp in JR and an empty method in Java.
The method takes as an argument a single object that contains an array of a specified number of
integers.

As evidenced by this experiment, a JR method invocation takes about fourteen times longer
than a standard method invocation.2 This is because an invocation of a ProcOp (or an InOp)
in the current implementation of JR requires additional method invocations to support dynamic
dispatch on operations, causal ordering of messages, quiescence detection, and communication
exception handling. The overhead to support dynamic dispatch on operations could be reduced
through implementation techniques similar to those used for methods. Further optimization at
the compiler level may reduce the overhead of local operation invocations by eliminating the
invocations for causal ordering.

The next experiment extends the previous experiment to measure invocations of an empty
method in a remote object. Table D.2 shows the results of repeatedly invoking an empty ProcOp
in JR and an empty method using standard RMI. The remote method takes as an argument a
single object that contains an array of a specified number of integers.

The performance differences demonstrated in Table D.2 are attributable to method invocation
overhead inherent in the current implementation of JR3. A remote method invocation begins by

2For an earlier version of JR that did not support quiescence detection, the ratio was about five [30].
3The differences are so minor, however, that instances of JR outperforming RMI, due to extraneous network
traffic, have been observed.

348 Appendix D: Implementation and Performance

invoking the call method of the operation capability. The operation capability call method invokes
the call method of the ProcOp. This invocation transmits the parameters to the remote host using
RMI. At the remote host, the ProcOp call method invokes the actual user-defined method.

Table D.3 shows the results of multiple executions of the Readers/Writers program using
both JR and RMI. In the JR solution the Readers/Writers server uses inni statements to service
invocations of the different InOps associated with requesting and releasing read/write access.
The RMI solution in this experiment, however, uses a semaphore-like approach to solving the
Readers/Writers problem. Therefore, Table D.3 includes performance results for a roughly
equivalent JR semaphore-like solution.

The JR semaphore-like solution uses JR’s semaphore abbreviations. These abbreviations
translate into sends and receives on an InOp. Further optimization of the InOp process fairness
code should improve the performance of this solution. It should be noted, however, that the JR
semaphore solution did outperform the RMI solution when the RMI server was restarted between
each test. Restarting the server between tests reduced the effectiveness of Java’s Just-In-Time
(JIT) compiler for the RMI solution. The results shown in Table D.3 for the RMI solution are
for a persistent server.

The JR solution that uses an inni statement did not perform as well as the other two solutions.
The performance difference is attributable to the current implementation of the inni statement’s
fairness preserving semantics. Table D.4 shows the percentage of time spent executing code that
pertains to the fairness semantics for the Reader/Writer experiment. As shown in the table, a

D. 7 Performance Results 349

large percentage of time is spent selecting the invocation to service from the currently pending
invocations (e.g., readRequest).

Invocation selection takes a large percentage of the total execution time, in this program,
because all invocations in an operation are examined until one is found that satisfies the arm’s
st clause. In this program, however, the st clause does not reference invocation arguments.
Therefore, if the st clause is false, all invocations in the operation are examined needlessly.
As an optimization for such cases, the st clause can be lifted out of the selection loop in the
generated code.

Table D.5 compares the performance results of the standard sequential version of the Java
Grande Forum Fourier Benchmark [19] against distributed versions written in JR and RMI.

The distributed versions of the program divide the computation equally among the available
servers. The JR program uses asynchronous message-passing to initiate each computation and
then collects the results using an inni statement. The RMI version uses threads to concurrently
initiate invocations of the remote method and to collect the results.

This page intentionally left blank

Appendix E
History of JR

JR is an extension of the Java programming language with additional concurrency mechanisms
based on those in the SR (Synchronizing Resources) programming language [6,9]. So, the history
of JR begins with the history of SR. Below, we summarize the history of SR (based on Appendix
F of Reference [9]), discuss the development of JR, and present differences between SR and JR.

History of SR

The basic ideas in SR—resources, operations, input statements, and asynchronous (send)
and synchronous (call) invocations—were conceived by Andrews in 1978 and written up in
early 1979; that paper eventually appeared in late 1981 [2]. The initial version of a full SR
language, now called was defined in the early 1980s and implemented by Andrews, Olsson,
and several graduate students [3]. Based on experience with Andrews and Olsson designed
a new version in the mid 1980s; it added RPC, semaphores, early reply, and several additional
mechanisms. Andrews and Olsson [4] describe the evolution of SR, explaining what was changed
and why, as well as what was not changed and why not (also see Olsson’s Ph.D. dissertation [38]).
After using and testing the new version locally, the authors of SR began distributing SR in March
1988. Andrews et al. [6] describe SR version 1.0, explain the implementation, and compare SR
with other languages.

Feedback from users of SR 1.0—and contributions from many of them—led to version 1.1,
which was released in May 1989 [5]. Further experience, plus the desire to provide better support
for parallel programming using shared variables and operations, led to the design of version 2.0,
which is the version described in the SR book [9]. Additional work on SR has added a few
new features (e.g., dynamic operations and receive from operation capabilities) and improved
the implementation, and has led to the most recent version [44].

SR has been used primarily at universities to teach concurrent programming and in numerous
research projects. A variant of SR, called MPD, with more C-like syntax has also been used
in Andrews’s recent book [8]. SR has been included in two survey articles on languages and
mechanisms for concurrent programming [10, 12]. SR is also included as one of the languages in
the proposed knowledge units for programming languages in the ACM’s Curriculum 2001 [41].

352 Appendix E: History of JR

Development of JR
The initial ideas of how to represent SR’s concurrency mechanisms in an object-oriented

fashion were developed in 1997. Work began shortly thereafter by Tingjian Ge, then a UC Davis
graduate student, on a proof-of-concept implementation. That implementation, although only
functional for a small subset of what is now JR, demonstrated the feasibility and highlighted some
of the implementation problems that would need to be addressed for a more complete language.
Work on a new implementation of JR, the basis for the current implementation, began in January
1999 by Aaron Keen, then a UC Davis graduate student. During the summer of 1999, Justin
Maris, then a UC Davis undergraduate student, developed an SR to JR translator, which was
especially helpful in developing a suite of JR test programs from SR’s existing suite. The first
prototype JR implementation was used in a class at UC Davis in Fall 2000. JR has been used since
then in UC Davis classes in programming languages and concurrent programming. The initial
JR design and implementation ideas appeared in 2001 [29]. JR’s approach to exception handling
appeared in Reference [31] and its approach to inter-operation invocation selection appeared in
Reference [32]. The complete integration of SR’s concurrency mechanisms with Java’s object-
oriented mechanisms into a coherent language was the topic of Keen’s Ph.D. dissertation [33].
Details of JR’s invocation selection mechanism appear in Reference [40]. The most recent
description of the design and implementation of JR appears in Reference [30].

Several other extensions to Java have modified its concurrency model to include, for exam-
ple, asynchronous communication, distributed shared memory, and active agents. A few of these
extensions have included support for some, limited SR-like concurrency mechanisms. None of
these extensions provide the flexibility of operations, capabilities, and inni statements. More-
over, many of the previous extensions still require the user to manually start remote programs.
For further discussion, see References [33] and [30]. JR can be classified a concurrent object-
oriented programming language. Many such languages have been proposed, e.g., as discussed
in a recent survey [12].

Differences between SR and JR
The major differences between SR and JR are:

JR, being an extension of Java, is object-oriented. SR is object-based: it has dynamic
modules (resources) accessed via pointers (capabilities), but it lacks inheritance and virtual
methods.

JR takes an object-oriented view of operations (see Chapter 13), which was not possible in
SR.

JR provides exception handling mechanisms defined for invocations of operations (see Chap-
ter 12). SR does not provide an exception handling mechanism.

JR provides additional support for invocation selection (see Chapter 14).

JR’s implementation runs on UNIX-based and Windows-based systems. SR’s implementa-
tion runs on only UNIX-based systems.

In addition, some other differences between SR and JR are:

JR does not provide call or send restrictions on how operations may be invoked. (This
feature might be added in a future version.)

JR, consistent with its Java heritage, does not provide variable or result parameters.

In JR, an operation does not “disappear” until there are no references to it. In SR, an operation
“disappears” when control exits the block in which the operation is declared. For example,

Appendix E: History of JR 353

suppose operation f is declared within process P1 and a capability for f is held by another
process P2. Then, in JR, P2 can invoke f even afterP1 has terminated. (In many programs,
such invocations are never serviced, although they might be via the capability for f.) In SR,
such an invocation would cause a run-time error.

JR has no restrictions on what operations or capabilities can be used in input statements.
SR has restrictions that ensure that an input statement requires at most a single exchange
of messages with a different virtual machine. This language design decision represents a
classic tradeoff between expressiveness and efficiency. In the JR implementation, only those
input statement that use such remote operations incur additional overhead. For details, see
Reference [40].

The semantics of invocation servicing in JR and SR differ slightly in the exact order of
selection. See Section 9.5 and Exercises 14.4 and 14.5 for details.

JR does not provide “optypes”, which SR provides as a convenience for specifying the types
of operations and capabilities.

JR does not directly provide recursive operation declarations (e.g.,
op f (int) returns cap f in SR); however, the effect can be easily simulated
as shown in Exercise 9.35.

JR allows an invocation to be forwarded to any operation that has the same return type. SR
requires that the types of the operations’ parameters match too.

JR does not allow reply to appear in constructor code. SR allows reply to appear in
resource initialization code (the rough equivalent of constructor code). In JR programs, a
similar effect can be simulated by making the code that would appear after the reply statement
a separate process. To illustrate, suppose that JR allowed reply to appear in constructor
code. Then the code in the Philosopher class in Section 11.1 could be rewritten; its phil
process can be eliminated by moving that code into the constructor after a reply.

JR does not have a concurrent invocation statement, but we are presently implementing one.

JR provides parameterized virtual machines (Section 10.6).

JR provides no equivalent of SR locate function, which is used to associate an integer with
a physical machine name. (In SR, the on clause used in creating a virtual machine can also
be an integer expression.)

Some of the above will be significant in converting programs written in SR to JR or vice versa.
The JR webpage includes a feature comparison chart.

This page intentionally left blank

References

American National Standards Institute. Reference Manual for the Ada Programming
Language, 1983. ANSI/MIL-STD-1815A.

G. R. Andrews. Synchronizing resources. ACM Transactions on Programming Languages
and Systems, 3(4):405-430, October 1981.

G. R. Andrews. The distributed programming language SR—mechanisms, design, and
implementation. SOFTWARE — Practice and Experience, 12(8):719–754, August 1982.

G. R. Andrews and R. A. Olsson. The evolution of the SR language. Distributed Com-
puting, 1(3): 133–149, July 1986.

G. R. Andrews and R. A. Olsson. Report on the SR programming language, version 1.1.
Technical Report TR 89-6, The University of Arizona, Department of Computer Science,
May 1989.

G. R. Andrews, R. A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin, and G. Townsend.
An overview of the SR language and implementation. ACM Transactions on Programming
Languages and Systems, 10(1):51–86, January 1988.

G.R. Andrews. Concurrent Programming: Principles and Practice. Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1991.

G.R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison Wesley Longman, Inc., Reading, MA, 2000.

G.R. Andrews and R.A. Olsson. The SR Programming Language: Concurrency in Prac-
tice. Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1993.

H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for distributed
computing systems. ACM Computing Surveys, 21(3):261–322, September 1989.

A. J. Bernstein. Predicate transfer and timeout in message passing systems. Information
Processing Letters, 24(1):43–52, January 1987.

J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and distribution in object-oriented
programming. ACM Computing Surveys, 30(3):291–329, September 1998.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

356 REFERENCES

G. Bruno. Using Ada for discrete event simulation. SOFTWARE — Practice and Expe-
rience, 14(7):685–695, July 1984.

A. Burns. Programming in occam 2. Addison Wesley, Reading, MA, 1988.

K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on
Programming Languages and Systems, 6(4):632–646, October 1984.

P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers” and
“writers”. Communications of the ACM, 14(10):667–668, October 1971.

E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming
Languages, pages 43–112. Academic Press, New York, NY, 1968.

E. W. Dijkstra. The structure of the “THE” multiprogramming system. Communications
of the ACM, 11(5):341–346. May 1968.

Edinburgh Parallel Computing Centre. Java Grande Forum Benchmark Suite. http:
//www.epcc.ed.ac.uk/research/javagrande/benchmarking.html.

R. A. Finkel, M. Solomon, and M. L. Horowitz. Distributed algorithms for global struc-
turing. In AFIPS Conference Proceedings, National Computer Conference (AFIPS 1979),
pages 455–460, Montvale, NJ, May 1979.

D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier synchronization.
International Journal of Parallel Programming, 17(1):1–17, January 1988.

M. D. Hill and J. R. Larus. Cache considerations for multiprocessor programmers. Com-
munications of the ACM, 33(8):97–102, August 1990.

W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Communications of the ACM,
29(12):1170–1183, December 1986.

C. A. R. Hoare. Towards a theory of parallel programming. In C. A. R. Hoare and R. H.
Perrott, editors, Operating Systems Techniques. Academic Press, New York, 1972.

C. A. R. Hoare. Monitors: an operating system structuring concept. Communications of
the ACM, 17(10):549–557, October 1974.

C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978.

D. S. Johnson. Local optimization and the traveling salesman problem. In Proceedings of
the 17th Colloquium on Automata, Languages, and Programming, pages 446–461, Berlin,
1990. Springer-Verlag.

Bill Joy, Guy Steele, Jr., James Gosling, and Gilad Bracha. The Java Language Spec-
ification. Addison-Wesley, Reading, Massachusetts, second edition, 2000. http:
//java.sun.com/docs/books/jls/.

A. W. Keen, T. Ge, J. T. Maris, and R. A. Olsson. JR: Flexible distributed programming in
an extended Java. In Proceedings of the 21st IEEE International Conference on Distributed
Computing Systems (ICDCS 2001), pages 575–584, Phoenix, Arizona, April 2001.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

REFERENCES 357

A. W. Keen, T. Ge, J. T. Maris, and R. A. Olsson. JR: Flexible distributed programming
in an extended Java. ACM Transactions on Programming Languages and Systems, May
2004. to appear.

A. W. Keen and R. A. Olsson. Exception handling during asynchronous method invoca-
tion. In B. Monien and R. Feldmann, editors, Euro-Par 2002 Parallel Processing, number
2400 in Lecture Notes in Computer Science, pages 656–660, Paderborn, Germany, August
2002. Springer–Verlag.

A. W. Keen and R. A. Olsson. An inter-entry invocation selection mechanism for con-
current programming languages. In Harald Kosch, László Böszörmény, and Hermann
Hellwagner, editors, Euro-Par 2003 Parallel Processing, number 2790 in Lecture Notes
in Computer Science, pages 770–780, Klagenfurt, Austria, August 2003. Springer–Verlag.

Aaron William Keen. Integrating Concurrency Constructs with Object-Oriented Pro-
gramming Languages: A Case Study. PhD dissertation, University of California, Davis,
Department of Computer Science, June 2002.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Traveling
Salesman Problem. John Wiley & Sons, Chichester, 1985.

G. M. Levin and D. Gries. A proof technique for Communicating Sequential Processes.
Acta Informatica, 15:281–302, 1981.

S. Mahadevan and R. K. Shyamasundar. Correctness preserving transformations for
distributed programs. In R. E. A. Mason, editor, Proceedings of the IFIP 9th World
Computer Congress (IFIP 1983), pages 307–313, Paris, France, September 1983. North-
Holland/IFIP.

U. Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, Reading,
MA, 1989.

R. A. Olsson. Issues in distributed programming languages: the evolution of SR. PhD
dissertation, The University of Arizona, Department of Computer Science, August 1986.

R. A. Olsson. Using SR for discrete event simulation: A study in concurrent programming.
SOFTWARE—Practice and Experience, 20(12): 1187–1208, December 1990.

R. A. Olsson, G. D. Benson, T. Ge, and A. W. Keen. Fairness in shared invocation servicing.
Computer Languages, Systems and Structures, 28(4):327–351, December 2002.

Programming Language Knowledge Unit Focus Group. Proposed knowledge units for
programming languages for curriculum 2001. ACM SIGPLAN Notices, 35(4):29–43, April
2000.

M. Raynal. Algorithms for Mutual Exclusion. MIT Press, Cambridge, MA, 1986.

A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. John Wiley &
Sons, New York, sixth edition, 2002.

The SR programming language, version 2.3.2, August 1999.
http://www.cs.arizona.edu/sr/.

Sun Microsystems. Java Remote Method Invocation Specification. Sun Microsystems,
Palo Alto, CA, 1997.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

358 REFERENCES

Kent retargetable occam compiler. http://www.cs.kent.ac.uk/projects/ofa/
kroc/.

C.A. Waldspurger and W.E. Weihl. Lottery scheduling: Flexible proportional-share re-
source management. In Proceedings of the First Symposium on Operating System Design
and Implementation, pages 1–11, Monterey, California, November 1994. USENIX.

K. Walrath and M. Campione. The JFC Swing Tutorial: A Guide to Constructing
GUIs. Addison-Wesley, Reading, Massachusetts, 1999. http://java.sun.com/docs/
books/tutorial/uiswing/index.html.

[46]

[47]

[48]

Index

abbreviations, 17–19
op-method, 22
processes, 31–34
receive statement, 112–115
semaphores, 77–78

Ada, 18, 109, 135, 283, 320, 325
adaptive quadrature, 80–82, 155, 215
administrators and workers, see replicated work-

ers
argument passing, see parameter passing
ArmEnumeration class, 194–202, 337–338
array of

capabilities, 24, see also array of opera-
tions

operations, 122, see also array of capabil-
ities

processes, 31
processes (simulation of), 33
semaphores, 54–56

asynchronous message passing, 18, 65–89, 254
implementation of, 345
relation to semaphores, 53, 77–78

Atomic Broadcast Problem, 86–87,131, 326
automatic termination detection, see quiescence
AWT, see graphical user interfaces

bag of tasks, 83, 89, 258
adaptive quadrature, 80–82
matrix multiplication, 215–217
prime number generation, 89
traveling salesman, 251–257

Bakery algorithm, 47–50, see also critical sec-
tion

bar, see also foo
barrier synchronization

coordinator, 58–59
dissemination barrier, 64
monitor-like, 233
preprocessors, using, 326
semaphores, using, 58–61

binary search tree, see filter processes
blocking primitives, 17–18, 31, 65, 321
BnB game, 293–312, see also graphical user in-

terfaces
bounded buffer problem, 130, see also pro-

ducer/consumer problem
CCR, using, 315–316
CSP, using, 322–325
monitor, using, 318–319
rendezvous, using, 116–117

broadcast communication, with
matrix multiplication, 217–220
traveling salesman, 254–257

buffer pool, using a shared operation, 79
Bus problem, 131–132, 326
by, see scheduling expression
by clause, see scheduling expression

caches, 209, 214, 217,235
call, see call statement
call statement, 17–18

implementation of, 345
performance of, 347–348

cap, see capabilities
capabilities, 21–26

array of, see array of capabilities
for arrays of semaphores, see array of ca-

pabilities
implementation of, 345
invoking via, 68–70
noop literal, see noop literal
null literal, see null literal
servicing via, 68–70, 108

across VMs, 140–141
with throws, 173–174

cautions, about using JR, 342
CCR, see Conditional Critical Regions
client and servers, in

distributed file system, 263
client and servers, with

360 INDEX

message passing, 70–77, 80
remote procedure call, 91, 94–95
rendezvous, 114–115
static and non-static processes, 34–35

Communicating Sequential Processes (CSP),
107, 113, 135, 313, 320–326, 341

compiling JR programs, see translating JR pro-
grams

concurrent invocation statement, xxvi, 353
concurrent program, 1
concurrent programming, 1
Conditional Critical Regions (CCR), 313–316,

325, 326
conditional input, 121–122
conversational continuity, 98–101, 126–127
coordinator process, see barrier synchronization
critical section

distributed environment, in, see dis-
tributed mutual exclusion

message passing, using, 78
semaphores, using, 54
shared variables, using, 43–52
simulation, 10–12

CSP, see Communicating Sequential Processes

data parallel algorithm, 228–232
data race, see race condition
data-containing semaphores, see semaphores
deadlock, 3, 5, 28, 36, 37, 45, 58, 62, 82, 129–

131, 141, 159, 162–165, 202, see
also livelock

DFS, see distributed file system
Dining philosophers problem, 15, 159–171,292,

296, 327
centralized solution, 160–162
decentralized solution, 165–169
distributed solution, 162–165
semaphore solution, 56–58

discrete event simulation, 283–292
dissemination barrier, see barrier synchroniza-

tion
distributed file system, 263–281
distributed JR programs, 19–20, 342, see also

virtual machines
distributed mutual exclusion, 170–171
distributed program, see concurrent program
Dutch national flag problem, 136, 327
dynamic operations, 123–124
dynamic process creation, 15, 17–20, 31–34

eight-queens problem, 41, 261
else, see else clause
else clause, see also conditional input
else clause, with

input statement, 109
enumeration of invocations, see selection method

support classes

eventual entry, 45
exception handling, 173–184
executing JR programs, 12–13, 341

automatic termination, see quiescence
distributed environment, in, 342
multiprocessor environment, in, 341

exit, see JR.exit
extending the vm class, see virtual machines, pa-

rameterized

factorial program, using
forward statement, 105
quiescence, 37–38

fairness, 35–36, 124–126, 130, 159, 162, 163,
165

family of processes, see array of processes
file search program, 8–10
file system, distributed, see distributed file sys-

tem
filter processes

binary search tree, 134–135
merge sort, 66–67, 84–85
pipeline sort, 99–101, 104–105
sieve of Erastosthenes, 126–127, 133–135

finite-difference method, 227, see also grid com-
putation

foo, see also bar
fork a process, 17, see also dynamic process cre-

ation
forward, see forward statement
forward statement

distributed file system, use in, 266–269
input statement, with, 124
remote procedure call, with, 96, 101–103
with handler clause, 178–179

Gauss-Seidel, 243–245
Gaussian elimination, 42, 225
grammar, for JR, see syntax of JR
graphical user interfaces, 293–312
grid computation, 227–228

data parallel algorithm, 228–232
heartbeat algorithm, 236–240
prescheduled strips, 232–235

GUIs, see graphical user interfaces

handler methods, 179–180
handler objects, 175–176
handler operations, 179–180
heartbeat algorithm, for

Jacobi iteration, 236–240
matrix multiplication, 220–223

implementation of JR, 343–347
inheritance

considerations, 190–191
distributing servicing, using, 187–188
filtering servicing, using, 188–189

INDEX 361

implementation of, 346
of operations, 185–191

inni, see input statement
InOp, 186
input statement, 107–137

arrays of operations, using, see arrays of
operations

conditional input, see conditional input
dynamic operations, with, see dynamic op-

erations
escape statements, with, 120–121
form of, 108–112
forward statement, with, see forward state-

ment
implementation of, 346
performance of, 348–349
quantifier with, 108–109, 122
receive statement, relation to, 112–115
reply statement, with, see reply statement
return statement, with, see return state-

ment
scheduling expression, see scheduling ex-

pression
synchronization expression, see synchro-

nization expression
with throws, 174

inter-operation invocation selection, 193–207
interaction statements, see process interaction

statements
invocation statements, 15, 17–20, see also call

statement, see also send statement
InvocationEnumeration class, 195–202, 338–

339
invocations

enumerations, see selection method sup-
port classes

number of pending, 118
order of servicing, 119–120, 205–206
preferential servicing, 118
via capabilities, see capabilities

Jacobi iteration, see grid computation
Java

monitors, 320
relation to JR, see JR
System.exit, 28
threads, 35–36

Java Virtual Machine, 12, 341
JR

differences from SR, 352–353
history of, 351–353
implementation of, see implementation of

JR
overview of, 3–4
performance of, see performance of JR
relation to Java, 1–2, 351–353
relation to SR, 1–2, 351–353

webpage, xx
jr, see translating JR programs
JR remote execution manager, 342
JR translator, see translating JR programs
JR.exit, 5, 28, 38, 141, 335, 342
jrc, see translating JR programs
jrGen directory, 12
jrgo, see translating JR programs
jrgox, see translating JR programs
jrx, see JR remote execution manager
JVM, see Java Virtual Machine

keywords, 13, 334

Laplace’s equation, 227–228
length, see invocations, number of pending
livelock, 45, see also deadlock
localhost, see virtual machines

mailbox, 113
manager and workers, 254–257, see also bag of

tasks, see also replicated workers
matrix multiplication, using

array of processes, 6–8
bag of tasks, 215–217
broadcast algorithm, 217–220
heartbeat algorithm, 220–223
prescheduled strips, 212–214

median scheduling, see scheduling, with selec-
tion method

merge sort, see filter processes
mesh computation, see grid computation
message passing, 15, 17–20, see also asyn-

chronous message passing, see also
remote procedure call, see also ren-
dezvous, see also synchronous mes-
sage passing

message queues, 65–68
monitors, 105, 313, 316–320, 325, 326
MPD, xxiii, 351
multi-way receive, 77, see also input statement
mutual exclusion, 45, see also critical section

nap, see processes with sleep
new, see new creation operator
new creation operator

remote object, see virtual machines
virtual machines, see virtual machines

non-blocking primitives, 17–18, 31, 65, 135
non-determinism in

CSP guard selection, 322
invocation selection, 134
monitor signaling, 320
output ordering, 5, 29, 151
process execution, 5, 29

non-static processes, see processes
noop, see noop literal
noop literal, 24–25, 70, 143–144

362 INDEX

null, see null literal
null literal, 24–25, 70, 143–144
number of pending invocations, see invocations,

number of pending

occam, 113, 320, 325
on, see on clause
on clause, see also virtual machines

remote objects, 143
virtual machines, 141–142

One-Lane Bridge problem, 131, 326
op, see operations
op-method

abbreviation, as an, see abbreviations
op-methods, 21–26
operations, 21–26

abstract, 191
array of, see array of operations
bounded buffer, as a, 79
capabilities, see capabilities
dynamic, see dynamic operations
implementation of, 345
inheritance of, 185–191
interfaces, 191
invocation of, see invocation statements
number of pending invocations, see invo-

cations, number of pending
servicing invocations of, see servicing op-

erations
shared, see shared operations
with throws, 173–174

order of invocation servicing, see invocations,
order of servicing

P, see semaphores
pairing problem, 327–328
parallel program, see concurrent program
parameter passing

order of evaluation, 21
serializable, and, see virtual machines
virtual machines, and, see virtual ma-

chines
parameterized virtual machines, see virtual ma-

chines, parameterized
partial differential equations, 227–228
PDEs, see partial differential equations
performance of JR, 347–349
philosophers, dining, see Dining philosophers

problem
pipeline algorithms, see filter processes
pitfalls, in using JR, 342
predefined

classes, 334
exceptions, 335
fields, 335
methods, 335

preferential servicing of invocations, see invoca-
tions

preprocessors for JR, 313–330, 341
prescheduled strips, see grid computation, see

matrix multiplication
prime number generation, see bag of tasks, see

sieve of Eratosthenes
priority of processes, see processes
priority scheduling, see scheduling, with selec-

tion method
process, see processes
process interaction statements, 15, 17–20
processes

abbreviation, as an, see abbreviations
array of, see array of processes
declaration, 27–31
dynamic creation, see dynamic process

creation
family of, see array of processes
priorities, 35–36
quantifier, see array of processes
scheduling, 35–36
sleep, with, 36–37
static and non-static, 34–35

ProcOp, 186
producer/consumer problem, 62–63, 113–114,

see also bounded buffer problem
program exit status, see JR.exit
propagation, see exception handling

quadrature problem, see adaptive quadrature
quantifier, 27–28

with input statement, see input statement
with processes, see array of processes

quicksort, 26, 89
quiescence, 3–4, 36–38, 342

GUIs, with, 309
implementation of, 346–347
operation, 36

race condition, 5, 29–30, 39, 44, 51, 93, see also
critical section

random scheduling, see scheduling, with selec-
tion method

reactive program, 263
readers/writers problem, 117–118, 124–126,

130–131, 326
receive, see receive statement
receive statement, 65–68, see asynchronous mes-

sage passing, see input statement
abbreviation, as an, see abbreviations
with non-void operation, 113

region-labeling problem, 245–246
remote, see remote field, see remote object
remote class loading, 344
remote field, use of, 146–148
remote object, see virtual machines

implementation of, 344
remote procedure call, 91–105, 254

INDEX 363

rendezvous, 254, see also input statement
equivalence to send/receive, 93–95
performance of, 93

replicated workers, see bag of tasks
reply, see reply statement
reply statement

input statement, with, 124–127
remote procedure call, with, 96–101
with handler clause, 177–178

reserved words, see keywords
resource allocation, 74–77, 113–119, 128–130
return, see return statement
return statement

input statement, with, 124
remote procedure call, with, 96–97

RPC, see remote procedure call
RTS, see run-time system for JR
run-time system for JR, 343
running JR programs, see executing JR programs

Savings Account Problem, 87, 131, 326
scheduling, see process scheduling
scheduling expression, 118–120, 135–137, 193–

194, 204–207, 256, 290–292, 342
scheduling, with selection method

median, 203–204
priority, 200–201
random, 201–202

selectable invocation, 109
selection method, 194–197
selection method support classes, 198–200, 337–

340
sem, see semaphores
semaphores

P primitive, 53–54
V primitive, 53–54
abbreviation, as an, see abbreviations
array of, see array of semaphores
data-containing, 79, 290
declaration, 53–54
performance of, 348
relation to asynchronous message passing,

see asynchronous message passing
split binary, see split binary semaphore

send, see send statement
send statement, 17–18, see also asynchronous

message passing
implementation of, 345
with handler clause, 176–177

serializable, 271, 305, see also virtual machines
and parameter passing

servicing
operations, 15, 17–20
via capabilities, see capabilities

Set minimum problem, 328–330
Set partition problem, 135, 327
shared operations, 80–83, 108, 115, 140, 144–

146

shared variables
critical section, using, see critical section
virtual machines, and, 144–146

shortest-job-next allocation, 118–119
sieve of Eratosthenes, see filter processes
simulation program, see discrete event simula-

tion
SJN, see shortest-job-next allocation
sleep, see processes with sleep
SOR, see successive over-relaxation
sorting algorithms

compare/exchange, 89
pipeline, see pipeline sort
quicksort, see quicksort
scheduling expression, 135

split binary semaphore, 56
SR

differences from JR, see JR
history of, 351
relation to JR, see JR

st, see synchronization expression
starvation, 159, 162, 165, 167, see also fairness
static processes, see processes
static variables, see shared variables and virtual

machines
stream merge program, see filter processes
successive over-relaxation, 243–245
such-that clause, see synchronization expression
Swing, see graphical user interfaces
synchronization expression, 115–120, 129, 131,

193–194, 204–207, 342
synchronous message passing, see also CSP, see

input statement, see rendezvous
syntax of JR, 331–334

terminal symbols, see tokens for JR
termination detection, see quiescence
thisvm, see virtual machines
tokens for JR, 13, 331
translating JR programs, 12–13, 341
traveling salesman problem, 247–261

bag of tasks, distributed, 254–257
bag of tasks, shared, 251–254
heuristics, 260–261
sequential solution, 248–251

UNIX operating system
grep command, 8
file system, 263–266
JR implementation on, 2
terminal output, 156, 273

unnecessary delay, 45

V, see semaphores
view, see view statement
view statement, 197–198
virtual machines, 19–20, 139–157, 342

364 INDEX

command-line arguments, and, 152
creation of, 141–143
creation of remote objects, and, 143–144
current working directory, and, 152–153
distributed programming examples

BnB game, 296–297
dining philosopher, 162
distributed file system, 278–280
Jacobi iteration, 240–241

implementation of, 343–344
input/output, and, 152
localhost, 142, 153, 296
parameter passing, and, 151–152
parameterized, 149–150, 279–281

predefined fields involving, 146–149
program execution, and, 140–141
servicing via capabilities across, see capa-

bilities
static members, and, 144–146
thisvm, 148–149

vm, see virtual machines

webpage for JR, see JR
Windows operating system

JR implementation on, 2
with/over, see selection method
workers, see bag of tasks

About the Authors

Ronald A. Olsson received the B.A. degree in mathematics and in computer
science, and the M.A. degree in mathematics, from the State University of New
York, College at Potsdam. He received the M.S. degree in computer science
from Cornell University and the Ph.D. degree in computer science from The
University of Arizona. Dr. Olsson has been at the University of California,
Davis since 1986, where he is currently a Professor of Computer Science. He
received the UC Davis Academic Senate Distinguished Teaching Award in
1995. His research interests include concurrent programming, programming
languages, verification, systems software, operating systems, and computer
security. Dr. Olsson co-authored (with Greg Andrews) the book “The SR
Programming Language: Concurrency in Practice”. For more information,
see http://www.cs.ucdavis.edu/~olsson.

Aaron W. Keen received a B.S. degree in computer science and engineer-
ing, an M.S. degree in computer science, and a Ph.D. in computer science
from the University of California, Davis. He has been an assistant professor at
the California Polytechnic State University, San Luis Obispo since 2002. Dr.
Keen’s research interests include concurrent programming, programming lan-
guages, verification, compilers, and operating systems. For more information,
see http://www.csc.calpoly.edu/~akeen.

	The JR Programming Language: Concurrent Programming in an Extended Java
	Cover

	Dedication
	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	1. INTRODUCTION
	Part I Extensions for Concurrency
	2. OVERVIEW OF EXTENSIONS
	3. OP-METHODS, OPERATIONS, AND CAPABILITIES
	4. CONCURRENT EXECUTION
	5. SYNCHRONIZATION USING SHARED VARIABLES
	6. SEMAPHORES
	7. ASYNCHRONOUS MESSAGE PASSING
	8. REMOTE PROCEDURE CALL
	9. RENDEZVOUS
	10. VIRTUAL MACHINES
	11. THE DINING PHILOSOPHERS
	12. EXCEPTIONS
	13. INHERITANCE OF OPERATIONS
	14. INTER-OPERATION INVOCATION SELECTION MECHANISM

	Part II Applications
	15. PARALLEL MATRIX MULTIPLICATION
	16. SOLVING PDEs: GRID COMPUTATIONS
	17. THE TRAVELING SALESMAN PROBLEM
	18. A DISTRIBUTED FILE SYSTEM
	19. DISCRETE EVENT SIMULATION
	20. INTERFACING JR AND GUIs
	21. PREPROCESSORS FOR OTHER CONCURRENCY NOTATIONS

	Appendices
	A Synopsis of JR Extensions
	B Invocation and Enumeration Classes
	C Program Development and Execution
	D Implementation and Performance
	E History of JR

	References
	Index
	Team DDU

