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Preface

JR is a language for concurrent programming. It is an imperative language
that provides explicit mechanisms for concurrency, communication, and syn-
chronization. JR is an extension of the Java programming language with ad-
ditional concurrency mechanisms based on those in the SR (Synchronizing
Resources) programming language. It is suitable for writing programs for both
shared- and distributed-memory applications and machines; it is, of course, also
suitable for writing sequential programs. JR can be used in applications such
as parallel computation, distributed systems, simulation, and many others.

JR supports many “features” useful for concurrent programming. However,
our goals have always been keeping the language simple and easy to learn and
use. We have achieved these goals by integrating common notions, both sequen-
tial and concurrent, into a few powerful mechanisms. We have implemented
these mechanisms as part of a complete language to determine their feasibility
and cost, to gain hands-on experience, and to provide a tool that can be used
for research and teaching. The introduction to Chapter 1 expands on how JR
has realized our design goals.

As noted above, JR is based on Java and SR. Java itself provides concur-
rency via threads and a monitor-like mechanism. Java also provides RMI for
distributed programming. However, these mechanisms are low-level and not
easy to use (especially RMI). In contrast, JR provides higher-level abstractions
that are much simpler and more flexible to learn and use. (For an illustrative
example, see Reference [33]). JR is a more modern language than SR, e.g., it
is object-oriented. Being an extension of Java, JR should be easier for students
who already know Java to learn than it would be for them to learn SR, which
is an entirely different language. That is, students’ attention can be focused
on learning the concurrent extensions, not learning an entirely new language
(both sequential and concurrent mechanisms). (See Appendix E for a detailed
comparison of SR and JR.) JR programs also should run on any platform that
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supports Java (and the fairly standard tools used within the JR implementation)
and can use Java’s packages.

The JR implementation comes with three preprocessors that convert notations
for CCRs, monitors, and CSP (Communicating Sequential Processes) into JR
code. These allow students to get hands-on experience with those mechanisms.
Together with JR, the three preprocessors provide a complete teaching tool
for a spectrum of synchronization mechanisms: shared variables, semaphores,
CCRs, monitors, asynchronous message passing, synchronous message pass-
ing (including output commands in guards, as in extended CSP), RPC, and
rendezvous. JR itself directly contains the mechanisms other than CCRs, mon-
itors, and CSP.

Online Resources
The JR webpage is

http://www.cs.ucdavis.edu/ olsson/research/jr

The JR implementation is in the public domain and is available from the JR
webpage. The JR implementation executes on UNIX-based systems (Linux,
Mac OS X, and Solaris) and Windows-based systems. JR code is translated
to native Java code, which executes using the JR run-time system (RTS). The
implementation also uses true multiprocessing when run on a multiproces-
sor. The implementation includes documentation and many example programs.
We can’t provide a warranty with JR; it’s up to you to determine its suit-
ability and reliability for your needs. We do intend to continue to develop
and maintain JR as resources permit, and would like to hear of any prob-
lems (or successes!) and suggestions for improvements. Via email, contact
jr-project@cs.ucdavis.edu.

Complete source code for all programming examples and the “given” parts
of all programming exercises in the book are also available on the JR webpage.
This source code is organized so that we can easily test all programs and program
fragments to ensure that they work as advertised. As a result, we hope that
there will be very few bugs in the programs (a common source of annoyance in
programming language books).

Content Overview

This book contains 21 chapters. The first chapter gives an overview of JR and
includes a few sample programs. The remaining chapters are organized into
two parts: extensions for concurrency and applications. In addition, the appen-
dices contain language reference material, describe how to develop and execute
programs, present an overview of JR’s implementation and performance, and
trace JR’s historical roots.
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The introduction to Part [ summarizes the key language mechanisms. The
introduction to Part II describes how the applications relate to the material
in Part I. Each chapter in Part I (except for one) introduces new language
mechanisms and develops solutions to several problems. Some problems are
solved in more than one chapter to illustrate the tradeoffs between different lan-
guage mechanisms. The problems include the “classic” concurrent program-
ming problems—e.g., critical sections, producers and consumers, readers and
writers, the dining philosophers, and resource allocation—as well as many im-
portant parallel and distributed programming problems. Each chapter in Part II
describes an application, presents (typically) several solutions, and describes
the tradeoffs between the solutions. (However, the last two chapters of Part II
deal with graphical user interfaces and other concurrency notations.) The end
of each chapter contains numerous exercises, including several that introduce
additional material.

Part I describes how JR extends Java with mechanisms for concurrency.
Chapter 2 gives an overview of these extensions. Chapter 3 introduces the op-
eration; because this mechanism is so fundamental to JR, this chapter focuses
on just its sequential aspects. Chapter 4 introduces the language mechanisms
for creating concurrently executing processes. Chapter 5 presents synchroniza-
tion using shared variables; although this kind of synchronization requires no
additional language mechanisms, it does show one low-level way in which pro-
cesses can interact. Chapters 6, 7, 8, and 9 show how processes can synchronize
and communicate using semaphores, asynchronous message passing, remote
procedure call, and rendezvous, respectively. All these mechanisms are varia-
tions on JR’s operations. Chapter 10 describes how to distribute a program so
that it can execute in multiple address spaces, potentially on multiple physical
machines such as a network of workstations. Chapter 11 describes the classic
dining philosophers problem to show how many of JR’s concurrency features
can be used with one another. Chapter 12 describes how JR’s mechanisms for
operation invocation and servicing deal with exceptions. Chapter 13 defines
and illustrates how operations can be inherited. Finally, Chapter 14 presents ad-
ditional mechanisms for servicing operation invocations in more flexible ways.

Part II describes several realistic applications for JR. Chapter 15 gives four
solutions to matrix multiplication. It includes solutions appropriate for both
shared- and distributed-memory environments. Chapter 16 describes grid com-
putations for solving partial differential equations. It too provides both shared-
and distributed-memory solutions. Chapter 17 presents solutions to the travel-
ing salesman problem that employ two important paradigms: bag of tasks and
manager/workers. Chapter 18 describes a prototype distributed file system.
Chapter 19 shows how to program a discrete event simulation in JR. Finally,
Chapter 20 describes how JR programs can interact with the Java GUI (graph-
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ical user interface) packages AWT and Swing. Finally, Chapter 21 describes
other concurrency notations, which preprocessors convert into JR programs.

The first three appendices contain material in quick-reference format. They
are handy when actually programming in JR. Appendix A summarizes the
syntax for the JR extensions. Appendix B provides the details of the classes
and methods used with the inter-operation invocation selection mechanism de-
scribed in Chapter 14. Appendix C describes how to develop, translate, and
execute JR programs. Appendix D gives an overview of the implementation
and describes the performance of JR code. Finally, Appendix E gives a short
history of the JR language, mentions other JR-related work, and cites papers
published on JR.

Classroom Use

Drafts of this text have been used over the last few years in a variety of un-
dergraduate and graduate courses (formal classes and independent studies) at
the University of California, Davis, and a few other universities. These courses
cover topics such as programming languages, operating systems, concurrent
programming, parallel processing, and distributed systems.

This text can serve as a stand-alone introduction to one particular concur-
rent programming language or as a supplement to a more general concurrent
programming course. For example, the text can be used to teach a section on
concurrent programming in an undergraduate programming language course.
Indeed, SR is listed as one of the languages in the proposed knowledge units
for programming languages in ACM’s Curriculum 2001 (SIGPLAN Notices,
April 2000); JR can serve that purpose, too, and is, as already noted, a more
modern and easier-to-learn language. In course ECS 140B course at UC Davis,
we spend about three and a half weeks in lecture on JR. Lectures cover all of
Part I, although they only touch on the more advanced topics in Chapters 12—
14, and most of the applications in Part II. Students write about a dozen small
programs, mostly based on exercises in the book and do a small, group term
project using distributed programming. The project requires that the program
run on several physical machines and uses a GUI (Swing or AWT, as in Chap-
ter 20) to show some visualization of the program’s execution. This project has
been very successful. Since JR is an extension to Java, JR can be used with
Swing or AWT without trouble. Students can focus on the distributed aspects
of the project, which JR makes easy with its notions of virtual machines and
interprocess communication. A course could spend less time, yet still provide a
good introduction to concurrent programming, by covering most of Part I, and
just one or two of the applications from Part II.

As another example, the text forms a natural supplement for a course that
uses Greg Andrews’s text entitled Concurrent Programming: Principles and
Practice, published by Benjamin/Cummings. That text explores the concepts of
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concurrent programming, various synchronization and communication mecha-
nisms, programming paradigms, implementation issues, and techniques to un-
derstand and develop correct programs. The notation used there is fairly close
to JR’s notation. In course ECS 244 at UC Davis, students implement as JR
programs some of their solutions to exercises in Andrews’s text. The students
use both native JR and the preprocessors that turn CCR, monitor, and CSP nota-
tion into JR code. The JR text can also serve as a supplement to Andrews’s text
entitled Foundations of Multithreaded, Parallel, and Distributed Programming,
published by Addison-Wesley (the MPD notation, being based on SR, is fairly
close to JR’s notation) or other texts on concurrent programming.

JR and the preprocessors are also appropriate for undergraduate or gradu-
ate operating systems courses. JR’s notation for processes, semaphores, and
monitors is straightforward and is close to what is often used in lectures and
texts. Instead of just writing their homework solutions on paper, students can
write some small programs using shared variables, semaphores, and monitors,
for which they can use JR and the preprocessors.

This book is aimed at junior or senior level undergraduate students and
at graduate students. Knowledge of Java is recommended and assumed, but
knowledge of C++ or another object-oriented language should suffice. The
additional maturity and knowledge gained via courses in data structures, pro-
gramming languages, or operating systems will be beneficial, although not
essential, in understanding the material. The specific prerequisite courses de-
pend on how the book is to be used. The following is a typical use of this
book: Read Chapters 1 and 2 to get a feel for the language; read Chapter 3
very carefully to understand the pervasive concepts of operations and operation
capabilities; read the rest of Part I to understand JR’s concurrent aspects; and
then read Part II to see how to apply JR in a number of application areas.

Each chapter contains exercises dealing with the concepts and examples pre-
sented in the chapter. They range from simple to more difficult ones, including
suggestions for a number of larger projects, especially in Part II. A number of
other exercises and projects can be found in general concurrent programming
books. As noted above under “Online Resources”, to save readers typing for
some of the exercises, complete programs that appear in this text are available
online.
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Chapter 1

INTRODUCTION

Concurrent programming is concerned with writing programs having mul-
tiple processes that may execute in parallel. The topic originated in the 1960s
when the invention of independent device controllers (channels) led people to
organize operating systems as concurrent programs, even for single-processor
machines. Since then, rapid developments in computer architecture have led to
an increasingly large number of multiprocessor architectures, such as shared-
memory multiprocessors, multicomputers, and networks of workstations. The
operating systems for these architectures are all instances of concurrent pro-
grams. More importantly, multiprocessor architectures make it possible to
write application programs that exploit the concurrency inherent in the hard-
ware. Both distributed systems, multiprocessor systems, and hybrids (e.g.,
distributed systems that include some multiprocessors) are prevalent today and
they are likely to remain so.

A concurrent program specifies two or more processes that cooperate in per-
forming a task. Each process consists of a sequential program. The processes
cooperate by communicating, which in turn gives rise to the need for synchro-
nization. Communication and synchronization are programmed by reading and
writing shared variables or by sending and receiving messages. Shared vari-
ables are most appropriate for concurrent programs that execute on a single
processor or a shared-memory multiprocessor. Message passing is most appro-
priate for distributed programs that execute on multicomputers or networks of
workstations. (Message passing can also be used on shared-memory machines.)

This book describes the JR programming language and shows how it can
be used to write concurrent programs for a variety of hardware architectures
and software applications. JR is an extension of the Java programming lan-



2 Introduction

guage [28] with additional concurrency mechanisms based on those in the SR
(Synchronizing Resources) programming language [6, 9].

Java has proven to be a clean and simple (and popular) language for object-
oriented programming. Even so, the standard Java concurrency model is rather
limited. It provides threads, a primitive monitor-like mechanism, and remote
method invocation (RMI). Although these features are useful, they offer little
flexibility in the design and implementation of concurrent programs.

JR provides a richer and more flexible concurrent programming model than
Java. JR adapts the following features from SR: dynamic remote virtual ma-
chine creation, dynamic remote object creation, remote method invocation, dy-
namic process creation, support for rendezvous, asynchronous message passing,
semaphores, and shared variables. JR takes a novel object-oriented approach
to synchronization whereas SR is not object-oriented.

Thus, JR inherits and extends one of SR’s distinguishing attributes: its ex-
pressive power. The communication and synchronization mechanisms listed
above include most of the ones that have proven popular and useful. This makes
JR suitable for writing concurrent programs for both shared- and distributed-
memory applications and machines.

In addition to being expressive, JR is easy to learn and use for someone
who has some background with Java. Its variety of concurrent programming
mechanisms is based on only a few underlying concepts. Moreover, these
concepts are generalizations of ones that have been found useful in sequential
programs. The concurrent programming mechanisms are also integrated with
the sequential ones, so that similar things are expressed in similar ways. An
important design goal has been to retain the “feel” of Java while providing a
richer concurrency model.

Part I of this book describes the concurrent aspects of JR in detail and gives
numerous, smaller examples. Part II develops complete programs for sev-
eral larger applications: matrix multiplication, partial differential equations,
the traveling salesman problem, a distributed file system, and discrete event
simulation. These illustrate the use of JR for distributed programming using
message passing and parallel programming using shared variables. JR is imple-
mented on top of Java, so, in principle, it can run on any platform that supports
Java, including networks of workstations and shared-memory multiprocessors.
JR programs can also be executed on single processor machines, in which
case process execution is interleaved. The current JR implementation runs on
UNIX-based (Linux, Mac OS X, and Solaris) and Windows-based systems.

The remainder of this chapter gives a brief overview of JR. First we describe
the main components of the language. Then we present complete programs
that solve several familiar problems. The solutions illustrate the structure of
JR programs and some—but by no means all—of the language’s power and
flexibility. Finally, we describe how to create and execute JR programs.
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11  Key JR Components

As noted above, JR extends Java with additional mechanisms for supporting
concurrency. The key new features are virtual machines, remote objects, and
operations.

A JR virtual machine represents an address space, which is located entirely
on one physical machine. These virtual machines can be created dynamically
during program execution in a way similar to how objects are created. JR
virtual machines can be “populated” with remote objects, which are essentially
the usual instances of classes. In JR, a remote object is simply a Java object
that has been created in a way slightly different from the usual Javanew. Thus,
JR object creation is dynamic, as in Java. A class in Java serves as the unit
of compilation and encapsulation; a class in JR serves a similar role. A JR
class may contain anything that a Java class may contain plus it may contain
additional JR features. The one difference in the use of classes is that in JR all
classes must be compiled together.

One such feature is the process, which represents a separate thread of con-
trol." JR provides a process abbreviation. Processes can be created dynamically
and can share variables in the same object, in the same class (static variables),
and in other classes on the same virtual machine (public static variables). Pro-
cesses can also communicate and synchronize by means of operations.

An operation can be considered a generalization of a method: It has a name
and can take parameters and return a result. An operation can be invoked in
two ways: synchronously by means of a call statement or asynchronously by
means of a send statement. An operation can also be serviced in two ways: by
a method or by input statements. These ways of servicing an operation support
local and remote method calls and rendezvous. As we shall see in Part I, this
variety of possibilities provides a great deal of flexibility and power for solving
concurrent programming problems.

JR contains several mechanisms that are abbreviations for common uses
of operations; these can be used to simplify many programs. Abbreviations
include process declarations, op-method declarations, receive statements, and
semaphores. JR also provides a few additional statements that are useful for
concurrent programming. The reply and forward statements provide additional
ways to use operations.

JR also provides a means to deal with program quiescence. A JR program
becomes quiescent when all of its processes have terminated or deadlocked. At
that point, the JR implementation will normally terminate the program’s exe-
cution. Instead, however, JR allows an operation to be registered as the “qui-

'JR uses the traditional term “process” to represent this abstraction. As we will see in later chapters, JR
processes are actually mapped to Java threads. To further confuse matters, the term “process” is often used
to represent an operating system process, which might contain multiple threads of execution.
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escence operation”; this operation will be invoked when the program becomes
quiescent. This feature is useful to avoid having to write code to determine
when processes have terminated.

JR programs can use all of the many packages provided for Java. For ex-
ample, these include common math functions and a variety of input/output
functions. JR programs can also interact with Java packages for building GUIs
(graphical user interfaces), such as AWT and Swing; Chapter 20 show some
examples of such interaction.

1.2  Two Simple Examples

One of the best ways to learn a new programming language is to start writing
programs. To do so, it helps to look at examples.

A standard first example in a programming language text is a program that
writes the message “Hello World!” on the standard output file. In JR, the
following program does the trick:

import edu.ucdavis.jr.JR;
public class HelloWorld {
public static void main(String (] args) {
System.out.printin("Hello World!");
}
}

It is nearly identical to the equivalent program in Java. The first difference is
that JR programs must import the JR package. However, to save space, most
examples in this book will omit that line; be sure to include it in any programs
that you actually try to compile, though! For the same reason, our code in
this book generally does not check for errors in input data or command-line
arguments. The second difference is that the JR program’s main method must
appear in a public class.

As noted earlier, the sequential aspects of JR are identical to those of Java
(with the exception of one extension seen in Chapter 3). However, JR provides
extensions to Java to simplify the writing of concurrent programs, as the next
example illustrates.

This program uses two processes to perform two independent computations:

public class TwoProcesses {

private static final int []J A = { 8, 4, 11, 19};
private static final int {] B = {14, 17, 9, 3};
private static final int N = A.length;
private static process pl {

int sum = 0;

for (int i = 0; i < N; i++) {

sum += A[i];

}
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System.out.println("sum of A is " + sum);
}
private static process p2 {

int sum = 0;

for (int i = 0; i < N; i++) {

sum += A[i] * B[i];

}

System.out.println("inner product of A with B is " + sum);
}
public static void main(String [] args) {
}

}

Process p1 computes the sum of the elements in array A and outputs the result;
process p2 computes the inner product of the elements in array A with those in
array B and outputs the result.

This program illustrates four important aspects of JR. Chapter 4 discusses
these aspects in detail.

The first aspect to note is that JR programs use the same scoping as Java
programs. Consequently, each process gets its own copy of variables declared
local to it (such as sum and 1), but the processes share variables and constants
(such as A and B) declared at the class level.

In this program, since the processes only read shared constants, there is no
potential for both processes updating a shared variable at about the same time
and interfering with each other in doing so. Such a race condition (or data
race) can occur with shared variables. An example illustrating a race condition
is given in Section 4.1. Processes can use synchronization to protect access to
shared variables. One such technique is demonstrated in Section 1.5. Others
are demonstrated in subsequent chapters; e.g., see Section 5.5 for an example of
how to use only shared variables to program synchronization and see Section 6.1
for an example of how to use semaphores.

The second important aspect of JR illustrated by the TwoProcesses program
involves the program’s output. It outputs two lines, one from each process, but
the order in which the lines appear is non-deterministic. The output might be
pl’s output followed by p2’s output, or vice versa. Which ordering occurs
depends on the order in which the two processes execute, which is also non-
deterministic.

The third aspect illustrated by the TwoProcesses program is that the pro-
cesses were declared to be static. Non-static processes are also allowed,
but static processes are slightly simpler to use, so we use them in many of the
examples in this book.

The final aspect deals with program termination. As noted in Section 1.1, a
JR program terminates when all of its processes have terminated or deadlocked;
it will also terminate when it has executed a JR . exit.
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1.3  Matrix Multiplication

Now consider the problem of multiplying two N x N real matrices A and B.
We first present a sequential program to solve this problem and then show how
to modify the program to compute all N2 inner products in parallel.

The following program first reads in the source matrices, then computes the
matrix product, and finally prints the result matrix. (The code omits the details
of reading in the matrices as that code just uses standard Java features.) The
main method reads in the arrays, instantiates a MMMultiplier object to do the
actual computation, and then invokes the print method in that object.

public class MMMain {
public static void main{(String [] args) {
int N; // A and B are NxN
double [1(] A, B;
// read in NxN arrays A and B

MMMultiplier m = new MMMultiplier(A, B, N);
m.print();

public class MMMultiplier {
int N; // A and B are NxN
double [10] C;
public MMMultiplier(double [J[J A, double [J[] B, int N) {
this.N = N;
C = new double [NI[N];
// compute NxN inner products
for (int r = 0; r < N; r++) {
for (int ¢ = 0; ¢ < N; c++) {
Clr]lfec] = 0.0;
for (int k = 0; k < N; k++) {
Clrl[cl+= Alr]l[x]l * B(k]([c];
}
}
}
}
public void print() {
// output C
for (int r = 0; r < N; r++) {
for (int ¢ = 0; ¢ < N; c++) {
System.out.print(C[x] [c]+" ");
}
System.out.println();
}
}
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The code in MMMultiplier’s constructor computes n? inner products using

nested for statements. The inner for statement computes the inner product of
row r of A and column ¢ of B and stores the resultin C [r] [c]. The code in the
print method prints matrix C, with each row printed on a separate line.

Since the inner products are independent of each other, we can compute all
N? in parallel, as shown below. This program will not be very efficient, since
each process does very little computation, but we could readily modify it to
use fewer processes (see Exercise 1.2 and also Chapter 15). The main class the
same as the previous main class, except it uses a quiescence operation to print
the result, as described later below.

public class MMMain {
private static MMMultiplier m;
public static void main(String {] args) {
int N; // A and B are NxN
double [1[] A, B;
// read in NxN arrays A and B

m = new MMMultiplier(A, B, N);
// register done as the quiescence operation
try {
JR.registerQuiescenceAction(done);
} catch (edu.ucdavis.jr.QuiescenceRegistrationException e) {
e.printStackTrace();
}
}
private static op void done() {
m.print();
)
}

The MMMultiplier code now performs the matrix multiplication by using
compute processes.

public class MMMultiplier {
int N; // A and B are NxN
double [I[] A, B, C;
public MMMultiplier(double [1{] A, double [J[J B, int N) {
this.A = A; this.B = B; this.N = N;
C = new double [N][NJ;
}
process compute ( (int r = 0; r < N; r++),
(int ¢ = 0; ¢ < N; c++) ) {
// compute the inner product for C[r,c]
Clrlic] = 0.0;
for (int k = 0; k < N; k++) {
Clrllcl+= Alr](x] * B[k][cl;
}
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}
public void print() {
// output C --- code same as before
¥
}

The heading on compute contains two quantifiers, so N? processes are created,
one for each combination of values for r and c. In fact, r and ¢ are parameters
to each instance of compute and are available in compute’s body. Each process
computes one inner product, just as each iteration of the innermost loop does
in the sequential program. The compute processes are created at the end of
execution of MMMultiplier’s constructor.

When inner products are computed in parallel, C should not be printed out
until all processes have terminated. As mentioned in Section 1.1, a program
may register a quiescence operation, which is invoked when JR has detected
that the program has finished computation and is about to terminate. Hence, the
code associated with the quiescence operation is executed after the rest of the
computation terminates. In the program above, the main method registers done
as the program’s quiescence operation. Once the compute processes terminate,
the code in done is executed to print out C. By using a quiescence operation, we
do not need to add synchronization code to the rest of the program to determine
when all the compute processes have terminated. This feature of JR makes
many programs, including this one, easy to write. Chapter 15 describes how to
structure solutions to this problem in ways that do not require using a quiescence
operation.

1.4 Concurrent File Search

The programs given so far are very short, so they consist of a single class.
Often it is best to employ multiple classes. The last two examples in this chapter
illustrate how to do so.

The grep family of UNIX commands is commonly used to search for patterns
in files. For example, the following command searches each of the named files:

grep string filenamel filename2 ...

Each line containing string is printed on standard output. (If there is more
than one file, each line of output begins with the name of the file.) The grep
command searches each file sequentially.

The following JR program gives a simplified, concurrent implementation of
the above command. In particular, it searches the files in parallel, one process
for each file. The program has the same arguments as grep above: a pattern
string and one or more file names. (It does not implement the grep command’s
other useful features, such as searching for strings matching patterns specified
by regular expressions; see Exercise 1.5.) Like grep, the program prints all
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lines that contain the pattern string on the standard output. A string containing
the file name concatenated with a colon is printed at the front of each line. Since
searching and printing proceed in parallel, however, lines from different files
will be interleaved.

The program consists of two classes. Execution begins in the grepmain
class, which creates a grepworker object for each filename given on the com-
mand line.

public class GrepMain {
public static void main(String T[] args) {
if (args.length < 2) {
System.err.println(
"needs arguments: pattern filename {filename}");
JR.exit(1);
}
String pattern = args{0];
// create a GrepWorker object for each filename
for (int k = 1; k < args.length; k++) {
new GrepWorker (pattern, args(k]);
}
}
}

The constructor for class grepworker has two parameters: pattern and
filename. It saves the parameters into object variables. When the constructor
is done executing, the new in grepmain completes and an instance of process
search in the newly instantiated grepworker object is created implicitly. The
search process finds all instances of pattern in £ilename and writes them
out; the file name and a colon are printed at the front of each line.

import java.io.*;
public class GrepWorker {
String pattern, filename;
public GrepWorker(String pattern, String filename) {
this.pattern = pattern;
this.filename = filename;
}
private process search {
try {
FileReader fr = new FileReader(filename);
BufferedReader br = new BufferedReader(fr);
String line;
while ((line = br.readLine()) != null) { // get null on EOF
if (line.indexOf (pattern) >= 0) {
System.out.println(filename + ":" + line);
}
}

fr.close();
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} catch (FileNotFoundException fe) {
System.err.println("can’t open " + filename);

} catch (IOException ioce) {
System.err.println("I0 Exception for " + filename);

}

All objects in the above program execute on the same machine. However, we
can readily modify the program so that different instances of grepworker exe-
cute on potentially different machines. For example, suppose a file name is spec-
ified on the command line as machine: filename. Also, suppose that main
separates machine from filename and stores the values in string variables
with those names. Then main can create a grepworker object on machine by
executing

vm vmcap;
vmcap = new vm() on machine;
new remote GrepWorker(pattern, filename) on vmcap;

A vm in JR is a virtual machine (address space). The first line declares a reference
for a vmm. The second line creates a new vm on the machine whose name is stored
in variable machine. The third line creates an instance of grepworker on the
newly created vm, and hence on a potentially remote machine (as indicated
by the remote keyword). The effect of making the above changes is that each
grep object will open £ilename on the machine on which it is executing. (This
program assumes that, for reasons explained in Section 10.8, the names of the
files to be searched are specified as relative to home directory or are specified
as absolute pathnames on the remote machine.)

1.5 Critical Section Simulation

As afinal example, we present a program that illustrates a few ofthe numerous
message-passing mechanisms available in JR. The program also illustrates how
one can construct a simple simulation of a solution to a synchronization problem.

The following program contains numusers instances of a user process, each
of which repeatedly executes a critical section of code and then a non-critical
section. At most one process at a time is permitted to execute its critical section.
If more than one process wants to enter its critical section at the same time, the
one with the highest priority is permitted to do so. Each user process has an
index 1i; the lower the index value, the higher the priority of the process. We
simulate the duration of critical and non-critical sections of code by having each
user process “nap” for a random number of milliseconds.

import java.util.Random;
public class CSS {
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private static op void CSenter(int);
private static op void CSexit();
private static process arbitrator {
while (true) {
inni void CSenter(int id) by id {
System.out.println("user " + id + " in its CS at " +
System.currentTimeMillis());
}
receive CSexit();
}
}
private static final int numusers = 3, rounds = 4;
public static void main(String [J args) {
}
private static process user( (int i = 1; i <= numusers; i++) ) {
Random r = new Random(); // seed with system time
for (int j = 1; j <= rounds; j++) {
call CSenter(i); // enter critical section
try {
Thread.sleep(r.nextInt(100)); // delay up to 100 msec
} catch (Exception e) {e.printStackTrace();}
send CSexit(); // exit critical section
try {
Thread.sleep(r.nextInt(1000)); // delay up to 1 second
} catch (Exception e) {e.printStackTrace();}

The CSS class contains an arbitrator process that implements two oper-
ations: CSenter and CSexit. It first uses an input statement (inni) to wait
for an invocation of CSenter. This is JR’s rendezvous mechanism. If there is
more than one invocation of CSenter, the one that has the smallest value for
parameter 1d is selected, and a message is then printed. Next the arbitrator
uses a receive statement to wait for an invocation of CSexit. Receive is a
special case of inni that can be used when one just needs to receive a message
or, in this case, simply a signal.

Each user process calls the CSenter operation to get permission to enter
its critical section, passing its index i as an argument. After “napping” the
process then invokes the CSexit operation. The CSenter operation must be
invoked by a synchronous call statement because the user process has to wait
to get permission. However, since a user process does not need to delay when
leaving its critical section, it invokes the CSexit operation by means of the
asynchronous send statement.

The program employs several methods in Java packages. The
System.currentTimeMillis method in the print statement returns the num-
ber of milliseconds since a particular epoch. The Thread . s1eep method causes
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a process to “nap” for the number of milliseconds specified by its argument.
The nextInt method in the Random class returns a pseudo-random integer
between 0 and its argument.

1.6  Translating and Executing JR Programs

To execute a JR program, one must first create one or more files containing
the program text. The names of these files must end with .jr. Following
Java requirements, the JR class x must be placed in the file x . jr if x is pub-
lic. For example, the “Hello world” program must be placed in a file named
HelloWorld.jr.

The standard tool to translate and execute a JR program is jr. Assuming
the directory containing jr is in a particular user’s search path, the user can
compile and execute the program in HelloWorld. jr by using the command

jr HelloWorld

Note that the . jr suffix does not appear in this command; only the name of the
class containing the main method does. The jr command assumes that all . jr
files in the current directory are part of the program. After the main class name,
additional arguments to jr are the command-line arguments to be passed to the
main method.

The jr command performs several actions. Assuming no errors, it invokes
each of the following:

» the JR compiler (jrc) to generate Java code for each . jr file (it also gen-
erates additional Java classes as needed by the program);

m the Java compiler to translate that code to bytecode;

» the RMI compiler to adapt the translated code to execute with RMI (which
JR uses to distribute programs); and

m the JVM (Java Virtual Machine) to run the translated bytecode.

The jr command creates in the current directory a new subdirectory named
jrGen (first deleting the old one if it already exists). It uses this directory for
all the files created by the above steps, e.g., . java and . class files. The
programmer should have no need to be concerned with the contents of these
files but also should not modify them. However, jrGen is needed to run a
program, so it should not be deleted by the user if the program is to be executed
several times.

Several other JR tools provide flexibility in applying the above steps. The
following table summarizes these tools:
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ir translates and executes a JR program

jre translates a JR program

jr_rmic  adapts JR-translated Java code to execute with RMI
jrrun executes an already-translated JR program

jrgo like jr, but tries to determine the name of main class
jrgox like jrrun, but tries to determine the name of main class

See Appendix C for further details on developing and executing JR programs.

1.7  Vocabulary and Notation

We begin by explaining the notation and conventions we will be using in the
remainder of the book. As already seen in this chapter, we typeset JR syntactic
tokens and programs in the Courier (typewriter) typeface.

JR’s syntax extends Java’s syntax with additional statements and forms of
declarations and expressions; these extensions introduce several new keywords.
The specific keywords and syntax will be introduced as we describe the various
language mechanisms. The exact syntax and the complete set of keywords is
given in Appendix A.

We will present the syntax of the JR extensions in a form in which each syntax
display conveys what an element of the JR grammar looks like in a program. For
example, consider how we might describe the syntax of a simplified version
of JR’s receive statement. (Chapter 7 gives the full description.) A receive
statement names an operation and gives a list of zero or more variables separated
by commas. It has the following general form:

receive op_id ( variable, variable, ... )

The keyword receive, the parentheses, and the commas are JR tokens, so they
are typeset in Courier. The items op_id and variable are non-terminals in the
JR grammar. When an item such as variable can be repeated, we will always
list two instances and two separators and follow them with an ellipsis. We will
also say whether there must be zero or more or one or more instances of the
item.

We will when possible follow common Java terminology in presenting JR
syntax. The key syntactic items we will use are summarized in the following
table.

block a block of zero or more statements enclosed within { and }
expr an expression
id an identifier

variable  a variable

Exercises

= Asnoted in the Preface, source code for all programming examples and
the “given” parts of the programming exercises are available on the JR
webpage.
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Execute the TwoProcesses program several times to see whether the
order of output differs between executions. If not, then add an invocation
of Thread. sleep to force the other order of output.

Add to the TwoProcesses program a third process, which is to find the
maximum element in both of the arrays.

(a) Compare the execution times of the sequential and parallel matrix
multiplication programs for various size matrices. Which is more
efficient?

(b) Modify the parallel program so that it uses only N processes, each
of which computes one row of result matrix C. Compare the perfor-
mance of this program to your answers to part (a).

(a) Execute the concurrent file search program using different patterns
and files on a UNIX system. Compare the output to that of the grep
command. Now try piping the output of your JR program through
the sort command, and compare the output to that of grep. What
happens if the file-name arguments to your JR program are given in
alphabetical order?

(b) Modity the program to create instances of grep on different ma-
chines, as described in Section 1.4. Experiment with this version of
the program.

Modify the concurrent file search program so that it allows the search
string to be a regular expression. To save yourself a lot of work, use an
existing Java regular expression package like gnu . regexp.

Execute the critical section simulation program several times and exam-
ine the results. Also experiment with different nap intervals by modifying
the argument to the next Int method. Modify the program by deleting
the phrase by idinthe arbitrator process, and execute this version
of the program several times. How do the results compare to that of the
original program? What if by id is replaced by by —1d?



PART I

EXTENSIONS FOR CONCURRENCY

This part of the text introduces JR’s mechanisms for concurrent program-
ming. JR extends Java with SR-like [9] concurrency mechanisms. (Much of
what we say about JR below applies equally well to SR; Appendix E summarizes
the differences.) JR is rich in the functionality it provides: dynamic process
creation, semaphores, message passing, remote procedure call, and rendezvous.
All are variations on ways to invoke and service operations. JR also provides
easy-to-use ways to construct distributed programs.

We describe the concurrent aspects of JR in a bottom-up manner, from sim-
pler mechanisms to more powerful ones. This also follows the historical order
in which the various concurrent programming mechanisms that appear in JR
were first developed. While reading these chapters, keep in mind that all the
process interaction mechanisms are based on invoking and servicing opera-
tions. Chapter 2 first gives a brief overview of JR’s extensions for concurrency.
Chapter 3 introduces op-methods, operation declarations, and operation capa-
bilities; because these mechanisms are so fundamental to JR, it focuses on just
their sequential aspects. Chapter 4 describes process creation and execution.
Chapter 5 presents synchronization using shared variables; although this kind
of synchronization requires no additional language mechanisms, it does show
one low-level way in which processes can interact. Chapter 6 discusses how
semaphores are declared and used. Chapter 7 introduces the mechanisms for
asynchronous message passing. Chapter 8 describes remote procedure call,
and Chapter 9 describes rendezvous. Chapter 10 presents the notion of a virtual
machine as an address space and shows how to create and use virtual machines.
Chapter 11 describes three ways to solve the classic Dining Philosophers Prob-
lem; the solutions illustrate several combinations of uses of the mechanisms
presented in the previous chapters in this part. Chapter 12 describes JR’s ex-
ception handling mechanism. Chapter 13 defines and illustrates how operations
can be inherited. Finally, Chapter 14 presents additional mechanisms for ser-
vicing operation invocations in more flexible ways.
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Chapter 2

OVERVIEW OF EXTENSIONS

As noted in Part I, the extensions to JR include mechanisms for processes to
interact with one another and mechanisms to distribute a program across a net-
work of machines. Below, we give an overview of these extensions. Subsequent
chapters explore these topics in details.

2.1 Process Interactions via Operations

JR’s concurrency mechanisms are variations on ways to invoke and service
operations. An operation defines a communication interface; an op-method
defines how invocations of that operation are to be serviced. We will see in
Chapter 3 that an op-method is merely an abbreviation for an operation dec-
laration specifying the parameterization and return value plus a method for
the method body. An op-method is invoked by a call statement or function
invocation. Capabilities act as pointers or references to operations.

Operations, methods, and calls are three of the bases for JR’s concurrent
programming mechanisms. To these we add send invocations and input state-
ments.

JR allows construction of distributed programs in which objects can be placed
on two or more machines in a network. Hence the caller of a method might
be in an object on one machine, and the method itself might be in an object on
another machine. In this case the call of a method is termed a remote procedure
call (or remote method invocation).

When a method is called, the caller waits until the method returns. JR
also provides the send statement, which can be used to fork a new instance
of a method. Whereas a call is synchronous—the caller waits—a send is
asynchronous—the sender continues. In particular, if one process invokes a
method by sending to the corresponding operation, a new process is created to
execute the body of the method, and then the sender and new process execute
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concurrently. JR also provides process declarations, which are the concurrent
programming analog of op-method declarations. A process declaration is an
abbreviation for an operation declaration, a method, and a send invocation of
that operation.

Processes in a concurrent program need to be able to communicate and syn-
chronize. In JR, processes in the same object or same class can share variables
and operations declared in that object or class. Processes in the same address
space can also share variables and operations. Processes can also communicate
by means of the input statement, which services one or more operations. A
process executing an input statement delays until one of these operations is
invoked, services an invocation, optionally returns results, and then continues.
An invocation can either be synchronous (call) or asynchronous (send). A
call produces atwo-way communication plus synchronization—a rendezvous—
between the caller and the process executing an input statement." A send pro-
duces a one-way communication—i.e., asynchronous message passing.

To summarize, the bases for JR’s concurrent programming mechanisms are
operations and different ways to invoke and service them. Operations can
be invoked synchronously (call) or asynchronously (send), and they can be
serviced by a method or by input statements (inni). This yields the following
four combinations:

Invocation Service Effect

call method procedure (method) call (possibly remote)
call inni rendezvous

send method dynamic process creation

send inni asynchronous message passing

These combinations are illustrated by the four diagrams in Figure 2.1. The
squiggly lines in the diagrams indicate when a process is executing; the arrows
indicate when an explicit invocation message or implicit reply message is sent.

Further discussion of most of these concurrent programming mechanisms, in
a more general context, appears in Reference [7].

One virtue of JR’s approach is that it supports abstraction of interfaces. In
particular, JR allows the declaration of an operation to be separated from the
code that services it. This allows classes to be written and used without concern
for how an operation is serviced.

Another attribute of JR is that it provides abbreviations for common uses of
the above interaction possibilities. We have already mentioned the op-method
declaration and the process declaration, which abbreviates a common pattern of
creating background processes. The receive statement abbreviates a common
use of an input statement to receive a message. Semaphore declarations and

'For readers familiar with Ada, the input statement combines and generalizes aspects of Ada’s accept and
select statements.
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Figure 2.1.  Process interaction mechanisms in JR

V and P statements abbreviate operations and send and receive statements that
are used merely to exchange synchronization signals. In addition to these
abbreviations, JR provides two additional kinds of statements that also deal
with operations: forward and reply.

2.2  Distributing JR Programs

JR also allows the programmer to control the large-scale issues associated
with concurrent programming. For constructing distributed programs, JR pro-
vides what is called a virtual machine—a named address space in which remote
objects can be created and variables and operations can be shared. A JR pro-
gram consists of one or more virtual machines. Virtual machines, like objects
of classes, are created dynamically; each can be placed on a different physi-
cal machine. Communication between parts of a program located on different
virtual machines is handled transparently.
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Processes in a distributed program need to be able to communicate, and in
many applications communication paths vary dynamically. This is supported
in JR by operation capabilities, which are introduced in Chapter 3, and remote
object references, which were introduced in Chapter 1. An operation capability
is a pointer to a specific operation; a remote object reference is a pointer to all
the operations made public by the object. These can be passed as parameters
and hence included in messages.



Chapter 3

OP-METHODS, OPERATIONS,
AND CAPABILITIES

This chapter examines how op-methods are declared and invoke